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A Bayesian Approach for Partial Gaussian
Graphical Models With Sparsity∗

Eunice Okome Obiang†, Pascal Jézéquel‡ and Frédéric Pröıa§

Abstract. We explore various Bayesian approaches to estimate partial Gaussian
graphical models. Our hierarchical structures enable to deal with single-output as
well as multiple-output linear regressions, in small or high dimension, enforcing
either no sparsity, sparsity, group sparsity or even sparse-group sparsity for a bi-
level selection through partial correlations (direct links) between predictors and
responses, thanks to spike-and-slab priors corresponding to each setting. Adapta-
tive and global shrinkages are also incorporated in the Bayesian modeling of the
direct links. An existing result for model selection consistency is reformulated to
stick to our sparse and group-sparse settings, providing a theoretical guarantee
under some technical assumptions. Gibbs samplers are developed and a simula-
tion study shows the efficiency of our models which give very competitive results,
especially in terms of support recovery. To conclude, a real dataset is investigated.

MSC2020 subject classifications: Primary 62A09, 62F15; secondary 62J05.

Keywords: high-dimensional linear regression, partial graphical model, partial
correlation, Bayesian approach, sparsity, spike-and-slab, Gibbs sampler.

1 Introduction and motivations

This paper is devoted to the Bayesian estimation of the partial Gaussian graphical
models. Graphical models are now widespread in many contexts, like image analysis,
economics or biological regulation networks, neural models, etc. A graphical model for
the d-dimensional Gaussian vector Z ∼ Nd(μ,Σ) is a model where the conditional
dependencies between the coordinates of Z are represented by means of a graph. We
refer the reader to the handbook recently edited by Maathuis et al. (2018) for a very
complete survey of graphical models theory, or to Chap. 7 of Giraud (2014) for a wide
introduction to the subject. It is well-known that the partial correlation between Zi and
Zj satisfies

Corr(Zi, Zj |Z �= i, j) = − Ωij√
Ωii Ωjj
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where Ω = Σ−1 ∈ S
d
++ is the precision matrix of Z (the notation S

d
++ for the cone

of symmetric positive definite matrices of dimension d is used in all the paper). A
fundamental consequence of this is that there is a partial correlation between Zi and
Zj if and only if the (i, j)-th element of Ω is non-zero. The sparse estimation of Ω is
therefore a major issue for variable selection in high-dimensional studies, which has given
rise to a substantial literature, see e.g. the seminal work of Meinshausen and Bühlmann
(2006). This logically led numerous authors to investigate interesting properties under
various kind of hypotheses, estimation procedures and penalties. Let us mention for
example the optimality results obtained by Cai and Zhou (2012) and the penalized
estimations of Yuan and Lin (2007), Rothman et al. (2008), Banerjee et al. (2008),
Cai et al. (2011) or Ravikumar et al. (2011), all coming with theoretical guarantees,
algorithmic considerations and real world examples. Besides, the famous graphical Lasso
of Friedman et al. (2008) has become an essential tool for dealing with precision matrix
estimation. Perhaps more attractive to us since focusing on each entry of the precision
matrix (no longer taken as a whole), the approach of Ren et al. (2015) is remarkable
and will serve as a basis for comparison in our simulation study. The Bayesian inference
counterpart has been developed as well, it is e.g. the subject of Chap. 10 of Maathuis
et al. (2018) where various Wishart-type priors are considered for Ω, see also Li et al.
(2019) or Gan et al. (2019) for spike-and-slab approaches and all references within.

Suppose now that we deal with a multivariate linear regression of the form

Y = XB + E

where Y ∈ R
n×q is a matrix of q-dimensional responses of which k-th row is Y t

k ,
X ∈ R

n×p is a matrix of p-dimensional predictors of which k-th row isX t
k , B ∈ R

p×q con-
tains the regression coefficients and E ∈ Rn×q is a matrix-variate Gaussian noise. The
Partial Gaussian Graphical Model (PGGM), developed e.g. by Sohn and Kim (2012) or
Yuan and Zhang (2014), appears as a powerful tool to exhibit relations between predic-
tors and responses that exist through partial correlations (called from now on ‘direct
links’, as opposed to ‘indirect links’ resulting from correlations). Indeed, assume that
the couple (Yk, Xk) ∈ R

q+p is jointly normally distributed with zero mean, covariance
Σ and precision Ω. Then, the block decomposition given by

Ω =

(
Ωy Δ
Δt Ωx

)

with Ωy ∈ S
q
++, Δ ∈ R

q×p and Ωx ∈ S
p
++ leads to Yk |Xk ∼ Nq(−Ω−1

y ΔXk, Ω
−1
y ).

This is a crucial remark because one can see that Yk = B t Xk+Ek with Gaussian noise
Ek ∼ Nq(0, R) is a multiple-output regression that may be reparametrized with

B = −Δt Ω−1
y and R = Ω−1

y . (1.1)

A large volume of literature exists for the sparse estimation of B with arbitrary group
structures (see e.g. Li et al. (2015) or Chap. 6 of Giraud (2014)), but we will not tackle
this issue in our study. At least not frontally but indirectly, since the latter relations
show that an estimation of B is possible through the one of the pair (Ωy,Δ). Whereas
B contains direct and indirect links between the predictors and the responses (due
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e.g. to strong correlations among the variables), Δ is clearly more interesting from an
inferential point of view for it only contains direct links. However, while the estimation
of (Ωy,Δ) appears to be essential, it usually depends on the accuracy of the estimation
of the whole precision matrix, which, in turn, may be strongly affected by the one of
Ωx. For example, the graphical Lasso of Friedman et al. (2008) involves maximizing
the log-likelihood penalized by the elementwise �1 norm of Ω. For multiple-output high-
dimensional regressions where generally p � q, we understand that a significant bias
is likely to result from the large-scale shrinkage. Another substantial advantage of the
partial model is that we can override this issue by computing a new objective function
in which Ωx has disappeared, i.e. the penalized log-likelihood

Ln(Ωy,Δ) = − ln det(Ωy) + tr(Sy Ωy) + 2 tr(S t
yx Δ)

+ tr(Sx Δ
t Ω−1

y Δ) + λ pen(Ωy) + μpen(Δ) (1.2)

where Sx ∈ S
p
++ and Sy ∈ S

q
++ are the empirical variances of the responses and the

predictors, respectively, and where Syx ∈ R
q×p is the empirical covariance, computed

on the basis of a set of n observations. This can be obtained either by considering
the multiple-output Gaussian regression scheme, or, as it is done by Yuan and Zhang
(2014), by eliminating Ωx thanks to a first optimization step in the objective function
of the graphical model. The usual convex penalties are elementwise �1 norms, possibly
deprived of the diagonal terms for Ωy. This paved the way to the recent study of Chiquet
et al. (2017) where the authors replace the penalty on Ωy by a structuring one enforcing
various kind of sparsity patterns in Δ, and to the one of Okome Obiang et al. (2021) in
which some theoretical guarantees are provided for a slightly more general estimation
procedure.

However, to the best of our knowledge, the Bayesian approach for the PGGM is a
new research topic. Given the outputs gathered in Y and the predictors gathered in
X, the objective of this paper is the Bayesian estimation of the direct links and the
precision matrix of the responses. This is inspired by the ideas of Xu and Ghosh (2015)
for the single-output setting (q = 1), and by the ones of Liquet et al. (2017) for the
multiple-output setting (q > 1). Taking advantage of the relations (1.1), we consider
that a Gaussian prior for B must remain Gaussian for Δ (with a correctly updated
variance), and that an inverse Wishart prior for R merely becomes a Wishart one for
Ωy. Yet, despite these seemingly small changes in the design of the priors, we will see
that the resulting distributions are completely different. The hierarchical models that
we are going to study all come from this working base, but let us point out that a
wide variety of refinements exists in the recent literature for Bayesian sparsity, like the
grouped ‘horseshoe’ of Xu et al. (2016), the ‘aggressive’ multivariate Dirichlet-Laplace
prior of Wei et al. (2020), the theoretical results for group selection consistency of
Yang and Narisetty (2020) or even the extension of the Bayesian spike-and-slab group
selection to generalized additive models of Bai et al. (2020), all related to the regression
setting but that might also be investigated for PGGMs. To enforce various types of
sparsity in Δ for high-dimensional problems, we decided to make use of spike-and-slab
priors, with a spike probability guided by a conjugate Beta distribution.
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The paper is organized as follows. Sections 2, 3 and 4 are dedicated to the study of
our hierarchical models enforcing either no sparsity, sparsity, group sparsity or sparse-
group sparsity in the direct links, respectively, according to the terminology of Sec. 2.1 of
Giraud (2014). In particular, we will see that our bi-level selection clearly diverges from
the strategy of Liquet et al. (2017). We also adapt the reasoning of Yang and Narisetty
(2020) to establish group selection consistency under some technical assumptions and
an appropriate amount of sparsity. The Gibbs samplers are tested in Section 5. This
empirical section is focused on a simulation study first, to evaluate and compare the
efficiency of the models, then a real dataset is treated, and a short conclusion ends
the paper. All the technical developments are postponed to the supplementary material
(Okome Obiang et al., 2022). But, firstly, let us give some examples of what exactly we
mean by ‘sparse’, ‘group-sparse’ and ‘sparse-group-sparse’ settings, and let us summarize
the definitions that we have chosen to retain for the well-known distributions as well as
for the less usual ones, in order to avoid any misinterpretation of our results and proofs.

Example 1.1. To explain a set of phenotypic traits, suppose that we investigate a large
collection of genetic markers spread over twenty chromosomes. For coordinate sparsity
(‘sparse’ setting), only a few markers are active. For group sparsity (‘group-sparse’
setting), the markers are clustered into groups (formed by chromosomes) and only a
few of them are active. For sparse-group sparsity (‘sparse-group-sparse’ setting), only
a few chromosomes are active and they are sparse, the result is a bi-level selection
(chromosomes and markers). This will be the context of our example on real data
(Section 5.2).

Definition 1.1 (Gaussian). The density of X ∈ R
d1×d2 following the matrix normal

distribution MNd1×d2(M, Σ1, Σ2) is given by

p(X) =
1

(2π)
d1 d2

2 |Σ1|
d2
2 |Σ2|

d1
2

exp

(
−1

2
tr
(
Σ−1

2 (X −M)t Σ−1
1 (X −M)

))

where M ∈ R
d1×d2 , Σ1 ∈ S

d1
++ and Σ2 ∈ S

d2
++. When d2 = 1, this is a multivariate

normal distribution Nd(μ, Σ) with d = d1, μ = M and Σ = Σ−1
2 Σ1, having density

p(X) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(X − μ)t Σ−1(X − μ)

)

where μ ∈ R
d and Σ ∈ S

d
++.

Definition 1.2 (Generalized Inverse Gaussian). The density of X ∈ S
d
++ following the

matrix generalized inverse Gaussian distribution MGIGd(ν, A, B) is given by

p(X) =
|X|ν− d+1

2∣∣A
2

∣∣ν Bν

(
A
2 ,

B
2

) exp

(
−1

2
tr
(
AX−1 +BX

))
1{X ∈ S d

++}

where ν ∈ R, A ∈ S
d
++, B ∈ S

d
++ and Bν is a Bessel-type function of order ν. When

d = 1, this is a generalized inverse Gaussian distribution GIG(ν, a, b) with a = A and
b = B, having density

p(X) =
Xν−1(

a
2

)ν
Bν

(
a
2 ,

b
2

) e− a
2X − bX

2 1{X > 0}
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where ν ∈ R, a > 0 and b > 0.

Definition 1.3 (Wishart/Gamma/Exponential). The density of X ∈ S
d
++ following

the matrix Wishart distribution Wd(u, V ) is given by

p(X) =
|X|u−d−1

2

2
d u
2 Γd

(
u
2

)
|V |u2

exp

(
−1

2
tr
(
V −1X

))
1{X ∈ S d

++}

where u > d−1, V ∈ S
d
++ and Γd is the multivariate Gamma function of order d. When

d = 1, this is a Gamma distribution Γ(a, b) with a = u
2 and 1

b = 2V , having density

p(X) =
b a Xa−1

Γ(a)
e−bX 1{X > 0}

where a > 0 and b > 0. The exponential distribution E(�) is then defined as the Γ(1, �)
distribution, for � > 0.

Definition 1.4 (Beta). The density of X ∈ [0, 1] following the Beta distribution β(a, b)
is given by

p(X) =
Xa−1 (1−X) b−1

β(a, b)
1{0�X � 1}

where a > 0, b > 0 and β is the Beta function.

In all the paper, data and parameters are gathered in Θ = {Y,X,Δ,Ωy, ν, λ, π} and,
to standardize, for any e ∈ Θ, we note Θe = Θ\{e}.

2 The sparse setting

In this section, λi ∈ R is the i-th component of λ ∈ Rp, Δi ∈ Rq is the i-th column
of Δ and Xi ∈ Rn stands for the i-th column of X (1 � i � p). Let us consider the
hierarchical Bayesian model, where the columns of Δ are assumed to be independent,
given by ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y |X,Δ,Ωy ∼ MNn×q(−XΔt Ω−1
y , In, Ω

−1
y )

Δi |Ωy, λi, π
⊥⊥∼ (1− π)Nq(0, λi Ωy) + π δ0

λi
⊥⊥∼ Γ(α, �i)

Ωy ∼ Wq(u, V )
π ∼ β(a, b)

(2.1)

for i ∈ �1, p�, with hyperparameters α = 1
2 (q + 1), �i > 0, u > q − 1, V ∈ S

q
++, a > 0

and b > 0. A general ungrouped sparsity is promoted in the columns of Δ through the
spike-and-slab prior. In this mixture model, π is the prior spike probability and λ is an
adaptative shrinkage factor acting at the predictor scale (λi is associated with the direct
links between predictor i and all the responses). When �i = � for all i, we will rather
speak of global shrinkage. The degree of sparsity will be characterized by the number
N0 of zero columns of Δ, that is

N0 = Card(i, Δi = 0) =

p∑
i=1

1{Δi =0}. (2.2)
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To implement a Gibbs sampler from the full posterior distribution stemming from (2.1),
we may use the conditional distributions given in the proposition below.

Proposition 2.1. In the hierarchical model (2.1), the conditional posterior distributions
are as follows.

− The parameter Δ satisfies, for i ∈ �1, p�,

Δi |ΘΔi ∼ (1− pi)Nq(−si Hi, si Ωy) + pi δ0

where

Hi = Ωy Y
t
Xi +

∑
j �= i

〈Xi, Xj〉Δj , si =
λi

1 + λi ‖Xi‖ 2

and

pi =
π

π + (1− π) (1 + λi ‖Xi‖ 2)−
q
2 exp

(
si H t

i Ω−1
y Hi

2

) .
− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, Δ(Xt

X+D−1
λ )Δt, Y t

Y+ V −1

)

where Dλ = diag(λ1, . . . , λp).

− The parameter λ satisfies, for i ∈ �1, p�,

λi |Θλi ∼ 1{Δi �=0} GIG
(
1

2
, Δt

i Ω
−1
y Δi, 2 �i

)
+ 1{Δi =0} Γ(α, �i).

− The parameter π satisfies

π |Θπ ∼ β
(
N0 + a, p−N0 + b

)
.

Proof. See Section B.1 of the supplementary material.

Remark 2.1. The Bayesian Lasso, as introduced e.g. in Sec. 6.1 of Hastie et al. (2015)
or in Park and Casella (2008), assumes a prior Laplace distribution for the regression
coefficients conditional on the noise variance. In our case, Δi |Ωy, π is still a multivariate
spike-and-slab (after integrating over λi), with a slab following a so-called multivariate
K-distribution (see Eltoft et al. (2006)), which is a generalization of the multivariate
Laplace distribution. See e.g. Sec 2.1 of Liquet et al. (2017). From this point of view, our
study is in line with the usual Bayesian regression schemes. Perhaps more interesting,
going on with the idea of the authors, suppose that, for all 1 � i � p, Δi = bi Δ

∗
i

where Δ∗
i follows the multivariate K-distribution described above and bi |π ∼ B(1− π)

is independent of Δ∗
i . Now, the sparsity in Δ is not induced by a spike-and-slab strategy

anymore but, equivalently, by multiplying the slab part by an independent Bernoulli
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variable being 0 with probability π. Then, it is possible to show that the negative log-
likelihood of this alternative hierarchical model is given, up to an additive constant that
does not depend on Δ, by

1

2

∥∥∥(Y+ XΔt Ω−1
y ) Ω

1
2
y

∥∥∥2
F
+

p∑
i=1

ci

∥∥∥Ω− 1
2

y Δ∗
i

∥∥∥
F
+ ln

(
1− π

π

) p∑
i=1

bi

where ci > 0. We first recognize an �2-type penalty but also an �0-type penalty on Δ
(provided that π < 1

2 ) since summing the bi amounts to counting the number of non-
zero columns in Δ. Consequently, there is a close connection between our hierarchical
Bayesian model and the regressions penalized by �2 and �0 norms, problems that are
known to be very hard to solve due to combinatorial optimization.

The particular case q = 1 is a very useful corollary of the proposition (see Corollary
A.1 in the supplementary material). Note that we can also easily derive the Bayesian
counterpart of the standard PGGM adapted to the small-dimensional case, with no
sparsity, by taking π = 0.

Corollary 2.1. In the hierarchical model (2.1) with π = 0, the conditional posterior
distributions are as follows.

− The parameter Δ satisfies, for i ∈ �1, p�,

Δi |ΘΔi ∼ Nq(−si Hi, si Ωy)

where

Hi = Ωy Y
t
Xi +

∑
j �= i

〈Xi, Xj〉Δj and si =
λi

1 + λi ‖Xi‖ 2
.

− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+ u

2
, Δ(Xt

X+D−1
λ )Δt, Y t

Y+ V −1

)

where Dλ = diag(λ1, . . . , λp).

− The parameter λ satisfies, for i ∈ �1, p�,

λi |Θλi ∼ GIG
(
1

2
, Δt

i Ω
−1
y Δi, 2 �i

)
.

Proof. This is a consequence of Proposition 2.1.

In the simulation study of Section 5.1, Scen. 0, 1 and 2 are dedicated to the sparse
setting. The next section discusses the group sparsity in Δ.
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3 The group-sparse setting

The predictors are now ordered in m groups of sizes κ1 + . . . + κm = p. For the g-th
group (1 � g � m), λg ∈ R is the g-th component of λ ∈ R

m, the covariate submatrix
is Xg ∈ R

n×κg and the corresponding slice of Δ is Δg ∈ R
q×κg . Let us consider the

hierarchical Bayesian model, where the columns of Δ are assumed to be independent
both within and between the groups, given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y |X,Δ,Ωy ∼ MNn×q(−XΔt Ω−1
y , In, Ω

−1
y )

Δg |Ωy, λg, π
⊥⊥∼ (1− π)MNq×κg (0, λg Ωy, Iκg ) + π δ0

λg
⊥⊥∼ Γ(αg, �g)

Ωy ∼ Wq(u, V )
π ∼ β(a, b)

(3.1)

for g ∈ �1,m�, with hyperparameters αg = 1
2 (q κg+1), �g > 0, u > q−1, V ∈ S

q
++, a > 0

and b > 0. A general group sparsity is promoted in the columns of Δ through the spike-
and-slab prior at the group level. In this mixture model, π is the prior spike probability
and λ is an adaptative shrinkage factor acting at the group scale (λg is associated with
the direct links between the predictors of group g and all the responses). Likewise, when
�g = � for all g, we will rather speak of global shrinkage. Now, the degree of sparsity
will be characterized by N0 given in (2.2), but also by the number G0 of zero groups of
Δ, that is

G0 = Card(g, Δg = 0) =

m∑
g=1

1{Δg =0}. (3.2)

To implement a Gibbs sampler from the full posterior distribution stemming from (3.1),
we may use the conditional distributions given in the proposition below.

Proposition 3.1. In the hierarchical model (3.1), the conditional posterior distributions
are as follows.

− The parameter Δ satisfies, for g ∈ �1,m�,

Δg |ΘΔg ∼ (1− pg)MNq×κg (−Hg Sg, Ωy, Sg) + pg δ0

where
Hg = ΩyY

t
Xg +

∑
j �= g

Δj X
t
j Xg, Sg = λg

(
Iκg + λg X

t
g Xg

)−1

and
pg =

π

π + (1− π) |Iκg + λg X
t
g Xg|−

q
2 exp

(
tr(H t

g Ω−1
y Hg Sg)

2

) .
− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, Δ(Xt

X+D−1
λ )Δt, Y t

Y+ V −1

)

where Dλ = diag(λ1, . . . , λ1, . . . , λm, . . . , λm) with each λg duplicated κg times.
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− The parameter λ satisfies, for g ∈ �1,m�,

λg |Θλg ∼ 1{Δg �=0} GIG
(
1

2
, tr(Δt

g Ω
−1
y Δg), 2 �g

)
+ 1{Δg =0} Γ(αg, �g).

− The parameter π satisfies

π |Θπ ∼ β
(
G0 + a, m−G0 + b

)
.

Proof. See Section B.2 of the supplementary material.

Note that Remark 2.1 still applies to this configuration, after some adjustments (the
�0-like penalty is on the number of non-zero groups). Here again, the particular case
q = 1 is a very useful corollary (see Corollary A.2 in the supplementary material). In
the simulation study of Section 5.1, Scen. 3 and 4 are dedicated to the group-sparse
setting. To conclude this section, a theoretical guarantee is provided (given Ωy and
with λ = λn and π = πn depending on n). It is possible to obtain a model selection
consistency property for this approach when both the number of observations n and
the number of groups m = mn tend to infinity, by adapting the reasoning of Yang
and Narisetty (2020) related to the linear regression (with q = 1). Indeed, when Ωy

is known, Δ reduces to a linear transformation of B. Thus, it is not surprising that a
similar result follows under the same kind of hypotheses. In the sequel, we denote by
X(k) ∈ R

n×|k| the design matrix of rank rk corresponding to the submodel indexed by
the binary vector k ∈ {0, 1}m having |k| non-zero values (kg = 1 means that the g-th
group is included in the model), and by Π(k) ∈ R

n×n the projection matrix onto the

column-space of X(k). Similarly, Δ restricted to k is Δ(k) ∈ R
q×|k|. The true model is

called t and t±g are submodels of t that contain only the g-th group or that are deprived
of it, respectively. Let

δ1 = inf
1� g � |t|

∥∥(In −Π(t−g))X(t+g) Δ
t
(t+g) Ω

− 1
2

y

∥∥2
F

and, for some K > 0,

δK2 = inf
k∈EK

∥∥(In −Π(k))X(t) Δ
t
(t) Ω

− 1
2

y

∥∥2
F

with EK = {k such that t 	⊂ k and rk � Krt}. Let also,

μK
n,min = inf

k∈FK

μ+

(
X

t
(k) X(k)

n

)
and μ̄n = inf

k∈F
μ∗

(
X

t
(k) (In −Π(k∩ t))X(k)

n

)

with FK = {k such that t ⊂ k and rk � (K + 1) rt} and F = {k such that |k\t| > 0},
and where, for a square matrix A, μ+(A) is the minimum non-zero eigenvalue of A and
μ∗(A) is the geometric mean of the non-zero eigenvalues of A. The hypotheses are those
of Yang and Narisetty (2020) that we have to slightly adapt. By fn � gn we mean that
there is a constant c 	= 0 such that fn/gn → c as n tends to infinity.
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(H.1) There exists a rate such that mn = evn with vn → +∞ and vn = o(n).

(H.2) The prior slab probability satisfies 1− πn � 1/mn.

(H.3) The shrinkage factors satisfy nλ�
n � m2+η

n μ̄−η
n and μK

n,min nλ
�
n → +∞ for some

η > 0, where λ�
n = maxi λn, i.

(H.4) There exists ε1 > 0 such that δ1 > (1 + ε1) rt [(4 + η) lnmn − η ln μ̄n].

(H.5) There exists ε2 > 0 such that δK2 > (1 + ε2) rt [(4 + η) lnmn − η ln μ̄n] for some
K > max(8/η + 1, η/(η − 1)).

We refer the reader to p. 917 of Yang and Narisetty (2020) where the authors give very
clarifying comments on the interpretation to be given to these technical assumptions.
In particular, while (H.1), (H.2) and (H.3) control the behavior of mn, πn and λn as
n tends to infinity, (H.4) and (H.5) are related to sensitivity and specificity and are
therefore in connection with the true model t.

Proposition 3.2. Suppose that (H.1)–(H.5) are satisfied. Then, as n tends to infinity,

P(T |Y,X,Ωy)
P−→ 1

where T = {t is selected} and t is the true model.

Proof. The result is obtained by following the same lines as the proof of Thm 2.1 of
Yang and Narisetty (2020). One just has to clarify a few points to solve the issues
arising from q � 1 and from the adaptative shrinkage, which is done in Section B.4 of
the supplementary material.

Remark 3.1. Obviously, Proposition 3.2 also holds for the sparse setting (with m = p)
and in that case, it is instructive to draw the parallel with Thm. 1 of Ren et al. (2015)
even if the estimation procedure is very different. The authors show that, to obtain
a
√
n-consistent estimation of the precision matrix Ω in a GGM, Ω must contain at

most � √
n/ ln p non-zero columns. In the Gibbs sampler (see Proposition 2.1), the slab

probability 1− π is generated according to a distribution that satisfies

E[1− π |Θπ] =
p−N0 + b

p+ a+ b
and V(1− π |Θπ) =

(N0 + a)(p−N0 + b)

(p+ a+ b)2 (p+ a+ b+ 1)
.

Thus, if the model selects � √
n/ ln p predictors, it follows that the posterior expectation

of 1 − π is � √
n/(p ln p) = 1/p when p = e

√
n. In that case, the posterior variance of

1−π is � 1/p2. To sum up, in a model with � √
n/ ln p predictors selected, the posterior

distribution of 1−π is very concentrated around 1/p which conforms to (H.1) and (H.2).
This is not directly comparable due to the different procedures, but it seems interesting
to observe that the same orders of magnitude are involved to reach theoretical guarantees
for the estimation of Δ.

In the next section, an approach is suggested to deal with sparse-group sparsity in
Δ, for a bi-level selection.
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4 The sparse-group-sparse setting

To produce a sparse model both at the variable level (for variable selection) and at
the group level (for group selection), it seems natural to carry on with our strategy
by introducing another spike-and-slab effect into the first one. The predictors are still
ordered in m groups of sizes κ1 + . . . + κm = p. For the g-th group (1 � g � m),
λg ∈ R is the g-th component of λ ∈ R

m and, for the i-th predictor of this group
(1 � i � κg), νgi ∈ R is the i-th component of νg ∈ Rκg . The i-th column of the
covariate submatrix Xg is Xgi ∈ R

n and the corresponding slice of Δg is Δgi ∈ R
q

while Δg\i ∈ R
q×(κg−1) is Δg deprived of Δgi. Here our approach diverges from Xu and

Ghosh (2015) and Liquet et al. (2017). The bi-level selection of the authors is made
through spike-and-slab effects both at the group scale and on the individual variances,
considered as truncated Gaussians, generating zero groups and (almost surely) zero
coefficients within the groups. Let us suggest instead the Bayesian hierarchical model
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y |X,Δ,Ωy ∼ MNn×q(−XΔt Ω−1
y , In, Ω

−1
y )

Δg | νg, λg, π
⊥⊥∼ (1− π1)

[
(1− π2)Nq(0, λg νgi Ωy) + π2 δ0

]⊗κg
+ π1 δ0

νgi
⊥⊥∼ Γ(α, �gi)

λg
⊥⊥∼ Γ(αg, γg)

Ωy ∼ Wq(u, V )

πj
⊥⊥∼ β(aj , bj)

(4.1)

for g ∈ �1,m�, i ∈ �1, κg� and j ∈ �1, 2�, with hyperparameters α = 1
2 (q + 1), αg =

1
2 (q κg + 1), �gi > 0, γg > 0, u > q − 1, V ∈ S

q
++, aj > 0, and bj > 0. In this mixture

model, π1 is the prior spike probability on the groups whereas π2 is the prior spike
probability within the non-zero groups, for a bi-level selection. In terms of cumulative
shrinkage effects, λ is an adaptative shrinkage factor acting at the group scale and ν
is an adaptative shrinkage factor acting at the predictor scale (λg is associated with
the direct links between the predictors of group g and all the responses whereas νgi is
associated with the direct links between predictor i of group g and all the responses).
In this way, (4.1) opens up many perspectives for dealing with bi-level shrinkage. We
can set γg = γ for all g, for a global shrinkage at the group scale. At the predictor
scale, when �gi = �g for all i, this is a global shrinkage in the g-th group but we might
even consider a full global shrinkage �gi = �. However, an identifiability issue may result
from the product λg νgi between group and within-group effects. Even if the posterior
distributions depend on different levels of data that shall resolve it, one can for example
fix λg = 1 (for adaptative) or νgi = 1 (for global) and let the shrinkage entirely rely on
the other parameter. Although it achieves the same objectives as those of Xu and Ghosh
(2015) and Liquet et al. (2017), this hierarchy seems more consistent with our previous
sections (take π2 = 0 and νgi = 1 to remove the within-group effect and recover the
group-sparse setting of Section 3, take π1 = 0 and λg = 1 to remove the group effect
and recover the sparse setting of Section 2). In this context, the degree of sparsity is still
characterized by N0 given in (2.2) for the predictor scale, by G0 given in (3.2) for the
group scale, but also, for the within-group scale, by the number N0g of zero columns in
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each particular group g, that is, for all 1 � g � m,

N0g = Card(i, Δgi = 0) =

κg∑
i=1

1{Δgi =0}. (4.2)

We also need to define the number J0 of zero columns in the non-zero groups, that is

J0 = Card(i, Δgi = 0 and Δg 	= 0) =

m∑
g=1

N0g 1{Δg �=0}. (4.3)

To implement a Gibbs sampler from the full posterior distribution stemming from (4.1),
we may use the conditional distributions given in the proposition below.

Proposition 4.1. In the hierarchical model (4.1), the conditional posterior distributions
are as follows.

− The parameter Δgi satisfies, for g ∈ �1,m� and i ∈ �1, κg�,

Δgi |ΘΔgi ∼ (1− pgi)Nq(−sgi Hgi, sgi Ωy) + pgi δ0

where

Hgi = Ωy Y
t
Xgi +

∑
h,j �= g,i

〈Xgi, Xhj〉Δhj , sgi =
νgi λg

1 + νgi λg ‖Xgi‖ 2

and

pgi =
ρgi

ρgi + (1− π1) (1− π2) (1 + νgi λg ‖Xgi‖ 2)−
q
2 exp

(
sgi H t

gi Ω
−1
y Hgi

2

)
in which ρgi = (1− π1)π2 1{Δg\i �=0} + π1 1{Δg\i =0}.

− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, Δ(Xt

X+D−1
λν )Δ

t, Y t
Y+ V −1

)

where Dλν = diag(ν11 λ1, . . . , ν1κ1 λ1, . . . , νm1 λm, . . . , νmκm λm).

− The parameter ν satisfies, for g ∈ �1,m� and i ∈ �1, κg�,

νgi |Θνgi ∼ 1{Δgi �=0} GIG
(
1

2
,
Δt

gi Ω
−1
y Δgi

λg
, 2 �gi

)
+ 1{Δgi =0} Γ(α, �gi).

− The parameter λ satisfies, for g ∈ �1,m�,

λg |Θλg ∼ 1{Δg �=0} GIG
(
qN0g + 1

2
, tr(D−1

νg
Δt

g Ω
−1
y Δg), 2 γg

)
+1{Δg =0} Γ(αg, γg)

where Dνg = diag(νg1, . . . , νgκg ).
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− The parameter π satisfies, for j ∈ �1, 2�,

πj |Θπj ∼ β
(
Aj + aj , Bj + bj

)
.

where A1 = G0, B1 = m−G0, A2 = J0 and B2 = p−N0.

Proof. See Section B.3 of the supplementary material.

It only remains to evoke the explicit results for the particular case q = 1 (see
Corollary A.3 in the supplementary material). In the simulation study of Section 5.1,
Scen. 5 and 6 are dedicated to the sparse-group-sparse setting.

5 Empirical results

In this empirical section,1 let us call (s), (gs) and (sgs) the related settings, and let
us denote by (ad) the adaptative shrinkage and by (gl) the global shrinkage. First
of all, these models contain many hyperparameters that have to be carefully tuned.
Our experiments showed that, unsurprisingly, the results are strongly impacted by the
prior amount of shrinkage on Δ, driven by � and even by γ for (sgs). Apart from the
usual cross-validation procedures, we could stay in line with our Bayesian approach
and suggest conjugate Gamma hyperpriors. This is very easy to implement, but the
hyperparameters are now replaced by other hyperparameters and the same questions
arise. Instead, like in Xu and Ghosh (2015) and Liquet et al. (2017), we follow the idea of
Park and Casella (2008) and we use a Monte-Carlo EM algorithm. By way of example,
from the full posterior probability (B.1 in suppl. mat.) and since λi ∼ Γ(α, �i) for all i,
it is not hard to see that, with (s),

ln p(Δ,Ωy, λ, π |Y,X) =
p∑

i=1

(α ln �i − �i λi) + T�= �

where the term T�= � does not depend on �. Thus, the k-th iteration of the EM algorithm
should lead to

�
(k)
i =

1
2 (q + 1)

E(k−1)[λi |Y, X]
and � (k) =

p
2 (q + 1)∑p

i=1 E
(k−1)[λi |Y, X]

for the adaptative shrinkage and the global shrinkage (λi = λ), respectively. The in-
tractable conditional expectations are then estimated with the help of the Gibbs sam-
ples. For (gs), the results are mainly the same as above (replace q + 1 by qκg + 1 in
the first case, p(q + 1) by qp + m in the second case and consider 1 � g � m instead
of 1 � i � p), and similar results also follow with (sgs). Recall that our definitions
of the adaptative and global shrinkages are given in the corresponding sections, in the
description of the hierarchical models. The tuning of u and V (or v) is actually trickier.
Because E[Ωy] = uV , we set V = 1

uIq and u is conveniently chosen to be the smallest

1The codes and the dataset are available at https://github.com/FredericProia/BayesPGGM.
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integer such that Ωy is (almost surely) invertible, that is u = q (see e.g. Brown et al.
(1998)). This is particularly adapted when the dataset is standardized. Finally, a and
b reflect the degree of sparsity to introduce in the direct links. We can set a � b to
promote sparse settings, which is potentially interesting when p � n, but a = b = 1 is a
standard non-informative choice and a < b may also be useful for variable selection (see
e.g. the real dataset of Section 5.2). They can be chosen from a cross-validation step (for
prediction purposes) or to enforce some degree of sparsity (for selection purposes), just
like a practitioner manages the tuning parameter of the Lasso. The posterior median
is used to estimate Δ and get sparsity whereas the posterior mean is used to estimate
Ωy. Indeed, we don’t want to impose any sparsity on Ωy (q is small), so we decided
to retain this standard choice. But the concern is much greater for Δ because some
coordinates must be exactly zero. This is the reason why the posterior median seemed
a more appropriate choice (in particular, it suffices for the sampler to generate zeros
more than half the time for the empirical posterior median to be zero). Due to the huge
amount of calculations in the simulations, the estimations are made on the basis of 3000
iterations of the sampler in which the first 2000 are burn-ins. This is revised upwards
for the real data (10000 iterations with 5000 burn-ins).

Remark 5.1. To the best of our knowledge, there is no simple way to sample from the
MGIGd distribution as soon as d > 1. The recent method described in Sec. 3.3.2 of
Fang et al. (2020), relying on the Matsumoto-Yor property (see Thm. 3.1 of Massam
and Weso
lowski (2006)) to get a MGIGd sample from the very standard GIG and Wd

distributions, is unfortunately inapplicable in our context. Indeed, for example in the
sparse setting, that would require finding z ∈ R

q such that Y
t
Y + V −1 = b zzt for

some b > 0, which is clearly impossible since Y
t
Y+ V −1 has full rank. In Fazayeli and

Banerjee (2016), the authors show that MGIGd(ν, A, B) is a unimodal distribution of
which mode M ∈ S

d
++ is the unique solution of the algebraic Riccati equation (d+ 1−

2 ν)M+MBM = A, and a standard importance sampling approach follows for the mean
of the distribution. Our fallback solution is to solve this Riccati equation at each step
and to replace all MGIGd random variables by the (unique) mode of the consecutive
distributions. To assess the credibility of this ad hoc sampling, the ‘oracle’ models in
which Ωy and the shrinkage parameters are known are added to the simulations. We will
see that, despite an unavoidable loss, the results remain pretty consistent. In particular,
the support recovery does not appear to be impacted.

5.1 A simulation study

In this section, the matrix of order d � 1 given by

Cd =
(
ρ|i−j|)

1� i,j � d

will be used as a typical covariance structure, for some 0 � ρ < 1. Thus, the preci-
sion matrices will be chosen as a multiple of C −1

d to keep the same guideline in our
simulations. The responses

Yk = B t Xk + Ek

are generated through relations (1.1) where, for all 1 � k � n, Ek ∼ Nq(0, R). Because
our models assume prior independence (or group-independence) in the columns of Δ,
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it seems necessary to look at the influence of correlation among the predictors. So
the standard choice Xk ∼ Np(0, Ip) is first considered, but in some cases we will also
test Xk ∼ Np(0, Cp) for ρ = 0.5 and ρ = 0.9 to introduce a significant correlation
between close predictors (see Figure 1). For each experiment, the support recovery of
Δ is evaluated thanks to the so-called F -score given by

F =
2 pr re
pr + re

where pr =
TP

TP + FP
and re =

TP

TP + FN

are the precision and the recall, respectively, and where T/F and P/N stand for true/false
and positive/negative. To assess prediction skills, ne randomly chosen observations are
used for estimation (for different ne) and the remaining nv = n−ne = 100 independent
observations serve to compute the mean squared prediction error (MSPE). The results
are compared to the ones obtained via the penalized maximum of likelihood (PML)
approach of Yuan and Zhang (2014) thanks to the correctly adapted implementations
of Chiquet et al. (2017) and Okome Obiang et al. (2021), with a cross-validated tuning
parameter. In addition, we compute the sparse precision matrix estimations given by
the graphical Lasso (GLasso) of Friedman et al. (2008), and by the CLIME algorithm of
Cai et al. (2011), using the R packages glasso and fastclime, respectively. Note that
we always keep a small value for q, so Δ is penalized but not Ωy when possible (PML
and GLasso). Finally, the recent approach of Ren et al. (2015), called ANT and based on
the individual estimations of the partial correlations, is also implemented. Unlike PML,
GLasso and CLIME, sparsity is not the result of penalizations for ANT but, instead, a
threshold is deduced from the asymptotic normality of the estimates to decide which are
significant and which can be set to zero. Let us add some preliminary comments about
the methods compared in these simulations, all related to high-dimensional precision
matrix estimation.

− There is a important advantage in favor of our Bayesian approaches, PML and ANT
because they do not need the estimation of Ωx ∈ S

p
++. Indeed, extracting the esti-

mation of Δ ∈ R
q×p and Ωy ∈ S

q
++ from that of the full precision matrix Ω ∈ S

q+p
++

may generate a drastic bias when p � q, and that explains in particular why GLasso
and CLIME give pretty bad results in what follows.

− In its standard version, ANT is not designed to produce column-sparsity or group-
sparsity in Δ. So, by considering multiple testing at the column or even group level,
we allow groups of coefficients to be zeroed simultaneously. We have observed that
this modified ANT method (called ANT* in the simulations) loses a bit in prediction
quality but is greatly improved for support recovery.

− Unfortunately, this is not appropriate for PML, GLasso and CLIME. It is therefore
not surprising that they are largely outperformed by our Bayesian models and ANT*
for (gs) and (sgs). Using group-penalties, which to the best of our knowledge still
does not exist, should improve the results of these methods to some extent.

The seven scenarios below, from Scen. 0 to Scen. 6, as heterogeneous as possible,
represent the diversity of the situations (high-dimensionality, kind of sparsity, dimension
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of the responses, coefficients hard to detect, etc.). We repeat each one N = 100 or
N = 50 times, depending on the computation times involved, and the numerical results
for ne = 400 and uncorrelated predictors are summarized in Table 1. In addition, the
evolution of MSPE is represented on Figure 1 for Scen. 1, 3 and 5, when ne grows from
100 to 500, both for uncorrelated and correlated predictors. The three configurations
(s), (gs) and (sgs) are tested on the grouped scenarios (from Scen. 3 to Scen. 6) with
the adaptative shrinkage.

− Scenario 0 (small dimension, no sparsity). Let q = 1, p = 5 and set ωy = 1. We fill
Δ with N (0, 2ωy) coefficients.

− Scenario 1 (sparse direct links, univariate responses). Let q = 1, p = 50 and set
ωy = 1. We randomly choose 10 locations of Δ filled with N (0, ωy) coefficients while
the others are zero.

− Scenario 2 (sparse direct links, multivariate responses). Let q = 2, p = 80 and set
Ωy = 2C −1

2 with ρ = 0.5. We randomly choose 10 columns of Δ filled with N2(0,Ωy)
coefficients while the others are zero.

− Scenario 3 (group-sparse direct links, univariate responses). Let q = 1, p = 320 and
set ωy = 1. We consider m = 5 groups of size 100, 10, 100, 10 and 100. The two
groups of size 10 are filled with N (0, 0.5ωy) and N (0, ωy) coefficients, respectively,
while the other groups are zero.

− Scenario 4 (group-sparse direct links, multivariate responses). Let q = 3, p = 500
and set Ωy = 3C −1

3 with ρ = 0.5. We divide the columns of Δ into m = 25 groups
of size 20. We randomly choose 3 groups filled with N3(0, 0.5Ωy), N3(0,Ωy) and
N3(0, 1.5Ωy) coefficients, respectively, while the other groups are zero.

− Scenario 5 (sparse-group-sparse direct links, univariate responses). Let q = 1, p = 150
and set ωy = 1. We consider m = 3 groups of size 50. Only the second group is non-
zero, into which we randomly fill 10 locations with N (0, ωy) coefficients.

− Scenario 6 (sparse-group-sparse direct links, multivariate responses). Let q = 5, p =
1000 and set Ωy = 5C −1

5 with ρ = 0.5. We divide the columns of Δ into m = 20
groups of size 50, and a randomly chosen one is half filled with N5(0,Ωy) coefficients.
The others columns of Δ are zero.

Now, let us try to summarize our observations. In terms of support recovery, the
Bayesian spike-and-slab framework and the modified ANT* method give results in-
comparably better than the sparsity-inducing penalized approaches (PML, GLasso and
CLIME). As suggested in Rem. 3.3 of Okome Obiang et al. (2021), this may be a conse-
quence of the fact that the cross-validation steps calibrate the models to reach the best
prediction error, sometimes at the cost of support recovery by picking a small penalty
level. The superiority of ANT over GLasso and CLIME is recognized and discussed in
Ren et al. (2015), but this also highlights the ability of our Bayesian models to reach
good results both in prediction and in support recovery. It can also be seen that (s)



E. Okome Obiang, P. Jézéquel, and F. Pröıa 481

Scenario 0

Mod. Shr. MSPE F pr re
(s-or) - 1.01 (0.11) 1.00 1.00 1.00
(s) (ad) 1.03 (0.13) 1.00 1.00 1.00
(s) (gl) 1.03 (0.13) 1.00 1.00 1.00

PML - 1.01 (0.16) 1.00 1.00 1.00
GLasso - 1.00 (0.15) 1.00 1.00 1.00
CLIME - 1.00 (0.15) 1.00 1.00 1.00
ANT* - 1.04 (0.13) 1.00 1.00 1.00

Hyperparam. π = 0

Scenario 1

Mod. Shr. MSPE F pr re
(s-or) - 1.02 (0.13) 0.95 1.00 0.90
(s) (ad) 1.04 (0.13) 0.95 1.00 0.90
(s) (gl) 1.03 (0.13) 0.95 1.00 0.90

PML - 1.08 (0.15) 0.82 0.69 1.00
GLasso - 2.37 (0.96) 0.78 0.77 0.80
CLIME - 2.52 (0.98) 0.79 0.78 0.80
ANT* - 1.25 (0.22) 0.87 0.85 0.90

Hyperparam. (25, 1)

Scenario 2

Mod. Shr. MSPE F pr re
(s-or) - 0.52 (0.09) 0.95 1.00 0.90
(s) (ad) 0.54 (0.09) 0.95 1.00 0.90
(s) (gl) 0.55 (0.08) 0.95 1.00 0.90

PML - 0.77 (0.15) 0.86 1.00 0.75
GLasso - 1.74 (0.49) 0.72 0.91 0.60
CLIME - 1.11 (0.35) 0.73 0.76 0.70
ANT* - 1.04 (0.44) 0.90 0.89 0.91

Hyperparam. (80, 1)

Scenario 3

Mod. Shr. MSPE F pr re
(gs-or) - 1.03 (0.27) 1.00 1.00 1.00
(gs) (ad) 1.04 (0.27) 1.00 1.00 1.00
(gs) (gl) 1.04 (0.34) 1.00 1.00 1.00
(s) (ad) 1.16 (0.27) 0.92 1.00 0.85
(sgs) (ad) 1.07 (0.25) 0.92 1.00 0.86
PML - 1.80 (0.36) 0.89 1.00 0.80

GLasso - 4.23 (1.61) 0.58 0.50 0.70
CLIME - 2.98 (1.22) 0.68 0.90 0.55
ANT* - 1.52 (0.95) 1.00 1.00 1.00

Hyperparam. (100, 1) – (5, 1) – (5, 1, 25, 1)

Scenario 4

Mod. Shr. MSPE F pr re
(gs-or) - 0.40 (0.14) 1.00 1.00 1.00
(gs) (ad) 0.45 (0.16) 1.00 1.00 1.00
(gs) (gl) 0.46 (0.17) 1.00 1.00 1.00
(s) (ad) 0.52 (0.18) 0.98 1.00 0.96
(sgs) (ad) 0.48 (0.17) 0.99 1.00 0.98
PML - 3.18 (0.53) 0.75 0.94 0.62

GLasso - 9.46 (1.38) 0.46 0.66 0.35
CLIME - 8.32 (1.51) 0.48 0.45 0.52
ANT* - 6.53 (1.22) 1.00 1.00 1.00
Hyperparam. (100, 1) – (25, 1) – (50, 1, 50, 1)

Scenario 5

Mod. Shr. MSPE F pr re
(sgs-or) - 1.00 (0.15) 0.96 1.00 0.92
(sgs) (ad) 1.04 (0.16) 0.95 1.00 0.91
(sgs) (gl) 1.03 (0.16) 0.91 1.00 0.84
(s) (ad) 1.08 (0.14) 0.93 1.00 0.87
(gs) (ad) 1.24 (0.19) 0.33 0.20 1.00
PML - 1.92 (0.60) 0.89 1.00 0.80

GLasso - 3.48 (1.30) 0.78 0.86 0.71
CLIME - 1.88 (0.92) 0.79 1.00 0.65
ANT* - 1.26 (0.98) 0.88 0.86 0.90

Hyperparam. (50, 1) – (3, 1) – (3, 1, 50, 1)

Scenario 6

Mod. Shr. MSPE F pr re
(sgs-or) - 0.21 (0.13) 1.00 1.00 1.00
(sgs) (ad) 0.24 (0.32) 1.00 1.00 1.00
(sgs) (gl) 0.24 (0.33) 1.00 1.00 1.00
(s) (ad) 0.29 (0.26) 0.98 1.00 0.96
(gs) (ad) 0.31 (0.30) 0.67 0.50 1.00
PML - 0.50 (0.17) 0.83 0.95 0.74

GLasso - 3.83 (0.77) 0.50 0.97 0.34
CLIME - 2.98 (0.51) 0.51 1.00 0.34
ANT* - 2.10 (0.72) 1.00 1.00 1.00
Hyperparam. (100, 1) – (20, 1) – (20, 1, 50, 1)

Table 1: Medians of the mean squared prediction errors (with standard deviations), F -
scores, precisions and recalls after N = 100 repetitions of Scen. 0 to Scen. 6 (N = 50 for
Scen. 4 and Scen. 6), with ne = 400 and uncorrelated predictors. The suffix -or is used
to denote ‘oracle’ settings. The hyperparameters chosen for the prior spike probability
are indicated in the last row of each table, from left to right: (a, b) for (s) and (gs),
(a1, b1, a2, b2) for (sgs).
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Figure 1: Medians of the mean squared prediction errors obtained after N = 100 repeti-
tions of Scen. 1 (top), Scen. 3 (middle) and Scen. 5 (bottom) with ±1 standard deviation
and ne growing from 100 to 500. The black curves correspond to uncorrelated predictors
(ρ = 0) while the blue and red curves correspond to correlated predictors (ρ = 0.5 and
ρ = 0.9, respectively).

gives weaker results than (sgs) in the grouped scenarios, probably due to the fact that

it does not take into account the group structure, but still better than the penalized

methods. However, the computational times involved (see remarks below) make (s) less

relevant than (sgs) in these situations, even if the results are not drastically different.

Unsurprisingly, (gs) is not suitable in the sparse-group-sparse settings in terms of sup-

port recovery. Our experiments show that it is able to identify influential groups without

being mistaken but, even though the resulting estimates are small where they should
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Chr. 1 2 3 4 5 6 7 8 9 10
Nb. 74 67 63 60 39 45 52 43 31 51

Chr. 11 12 13 14 15 16 17 18 19 20
Nb. 21 26 33 22 15 27 18 30 34 19

Table 2: Number of markers on each chromosome, which correspond to the sizes κg of
each group for 1 � g � 20 when running (gs) and (sgs).

be zero, it is not designed to be used for bi-level selection. Figure 1 shows that the
results are pretty stable from ne = 200 observations in the learning set: for ne < 200
the MSPEs are rather chaotic before stabilizing. The same figure also highlights that
the presence of correlation in the predictors does not seem to have a significant effect
on the estimation procedure, except for small size samples and high correlation where
the degradation is noticeable. Overall, the real strength of the Bayesian spike-and-slab
approach is clearly the support recovery of the direct links between predictors and re-
sponses but it seems that one can hardly expect to deal with very high-dimensional
studies as long as we do not impose a group structure or a huge degree of sparsity. The
highly competitive MSPEs obtained confirm the relevance of Bayesian PGGMs not only
for variable selection but also for prediction purposes in the context of high-dimensional
regressions.

5.2 Identification of a sparse set of predictors in a real dataset

Let us now study the Hopx dataset, fully described in Petretto et al. (2010). It contains
p = 770 genetic markers spread over m = 20 chromosomes from n = 29 inbred rats. It
also contains the corresponding measured gene expression levels of q = 4 tissues (adrenal
gland, fat, heart and kidney). The goal is to identify a sparse set of predictors that
jointly explain the outcomes, with the natural group structure formed by chromosomes
(see Table 2). This dataset has already been analyzed in Liquet et al. (2016), using a
Bayesian regression without group structure, and later in Liquet et al. (2017) including
group and sparse-group structures. So the PGGM is supposed to bring new perspectives
about relationships in terms of partial correlations. A particularity of this dataset is
that the responses are very correlated, so we should expect an estimation of Ω−1

y with
significant non-diagonal elements and a clear advantage in using PGGMs. Indeed, a
predictor considered to be influencing all the outcomes could be the result of a direct
relation to one tissue propagated to the others by an artificial correlation effect. As
can be seen on Figure 2, the predictors are also highly correlated with their neighbors
(for the sake of readability, we only represent the correlogram of predictors located on
chromosomes 8, 9 and 10).

The small sample size relative to the number of covariates (29/770) weakens the
study. To strengthen our conclusions, we decided to run N = 100 experiments based
on 25 randomly chosen observations and to aggregate the results. We first investigate
the selection of predictors at the chromosomes scale, i.e. we run (gs) according to the
previous protocol with an adaptative shrinkage and we choose (a, b) = (1, 20) in the prior
probability π. The empirical distribution of the posterior probability of inclusion for each



484 A Bayesian PGGM With Sparsity

Figure 2: Correlogram of responses (left) and correlogram of predictors located on chro-
mosomes 8, 9 and 10 (right). The colormap associates red with negative correlations
and blue with positive correlations.

Figure 3: Empirical distribution of the posterior probability of inclusion estimated by
(gs) for each chromosome (left). Aggregated (gs) estimation of Δ on chromosome 14
with D14Mit3 highlighted (right).

chromosome is represented on the left of Figure 3. The selection procedure focuses on
chromosomes 14, 15 and 17 (and not just on chromosomes 2 and 3 as in Liquet et al.
(2017)) but the estimation process gives an overwhelming advantage to chromosome
14, far ahead of its neighbors. This is undoubtedly the influence of D14Mit3, a marker
located on chromosome 14 and known to have a very significant effect on this dataset.
The main conclusion to be drawn at this stage is that chromosome 14 has a positive
effect on Fat and a negative effect on Heart, as can also be seen on the right of Figure 3.
Therefore, it is likely that the overall positive influence of D14Mit3 identified by previous
authors is due to the combination of a direct positive link with Fat, a direct negative
link with Heart and a correlation effect from the outcomes. This hypothesis is given
additional credibility by the numerical results: from (gs), the corresponding column
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of Δ is approximately (0.00, 0.04,−0.09, 0.00) which, through relations (1.1), leads to
(0.15, 0.25, 0.34, 0.21) as estimated regression coefficients. This roughly corresponds to
the values indicated in Tab. 2 of Liquet et al. (2017), at least for the main effect on
Heart. Thus for chromosome 14, the numerical results coincide but the interpretations
are clearly different. Of course, similar reasonings can be carried out for the less influent
chromosomes.

It is perhaps more interesting to look for a bi-level selection in order to identify a
sparse set of markers and not only chromosomes. In this regard, (sgs) is launched using
the same statistical protocol, adaptative shrinkage and hardly informative hyperparam-
eters a1 = 3, b1 = 1, a2 = 1 and b2 = 1 which happen to be sufficient to generate a
huge degree of sparsity. While many chromosomes are excluded from the model given
by (gs), with (sgs) we see some contributions localized in certain chromosomes having
little influence when taken as a whole. At the markers scale, the randomness of the
sampler and the high level of correlation between close predictors probably explain the
presence of artifacts which sometimes make it difficult to distinguish the real contribu-
tions from the background noise. We therefore use the N = 100 experiments to build
95% confidence intervals and keep only significant estimates. By way of example, Fig-
ure 4 displays the results obtained on chromosomes 7, 8 and 14. The main markers
standing out are summarized in Table 3 together with the kind of direct influences de-
tected. Markers already highlighted in Liquet et al. (2016) or Liquet et al. (2017) are
also indicated. One can see that most of our conclusions coincide, but new markers are
suggested (especially on chromosome 8) and others have disappeared. Overall, the more
stringent statistical protocol that we used led to the retention of fewer predictors with
more guarantee. An important consequence of this study is the new interpretations in
terms of direct influences allowed by PGGMs. Especially as the residual correlations,
hidden in the estimation of R = Ω−1

y and closely related to the correlations between the
responses, are very high (greater than 0.7), as we suspected from Figure 2.

5.3 Discussion and conclusion

To conclude, we would like to draw the attention of the reader to some weaknesses of
the study, still under investigation. On the one hand, as soon as p is large (say, p � 500),
the Bayesian studies should be conducted with a group structure or by promoting very
sparse settings because due to the outline of the sampler, looping over each column of
Δ may quickly become intractable. A group structure limits the number of loops (only
m � p per sampler iteration), although each loop may require the generation of large
Gaussian vectors (up to (q×κg)-dimensional), so compromises are needed. Subdividing
the dataset is natural when it is intrinsically equipped with a group structure (e.g.
that of the previous section), we could suggest otherwise a clustering of the set of
predictors to gather similar entries and control the size of the groups. At this stage,
our procedures cannot compete with the Lasso-type algorithms (GLasso, CLIME or
even ANT) in terms of computational times. This is an issue on which future studies
should focus (ongoing works are devoted to translating the samplers into more efficient
environments), enhanced MCMC methods may also be useful or novel computational
strategies like the ‘shotgun’ stochastic algorithm of Yang and Narisetty (2020). On
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Figure 4: Aggregated (sgs) estimation of Δ on chromosomes 7, 8 and 14, from left to
right and bottom. The highlighted markers are D7Cebr205s3, D7Mit6, D7Rat19, Myc
and D7Rat17 for chromosome 7, D8Mgh4, D8Rat135 and Rbp2 for chromosome 8 and
D14Rat8 and D14Mit3 for chromosome 14.

the other hand, the procedures are obviously very sensitive to the initialization of the
sampler, especially when p � n. For example, the term |Iκg + λg X

t
g Xg| is likely to

explode when κg is large and λg > 1, that is why λg has to be carefully controlled via an
accurate initial choice of �g. Our heuristic approach is to initialize �g such that E[λg] < 1
to control the behavior of |Iκg + λg X

t
g Xg| during the first iterations. This works pretty

well in practice, but needs to be done on a case-by-case basis, which could be improved.
From a theoretical point of view, we should obviously enhance the estimation procedure
by sampling from the MGIGq distribution for q > 1, and not using the mode. Our
fallback solution gives satisfactory but not completely rigorous results. In addition, it
could be interesting to generalize the support recovery guarantee of Proposition 3.2 to
(sgs), which is certainly possible at the cost of a few additional developments. Overall,
our study shows that for the moderate values of p (up to 103 or 104), the Bayesian
approach of the partial Gaussian graphical models is a very serious alternative to the
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Chromosomes Markers Main direct influences
3 D3Mit16* Adrenal+ Heart–

7

D7Cebr205s3* Fat+ Heart–
D7Mit6* Fat–
D7Rat19* Heart–
Myc* Adrenal+

D7Rat17 Adrenal+ Heart–

8
D8Mgh4 Adrenal– Heart–
D8Rat135 Fat+ Heart–
Rbp2 Fat–

10
D10Rat33* Adrenal+
D10Mit3* Adrenal+
D10Rat31* Fat–

11 D11Rat47 Fat–

14
D14Rat8* Fat+ Heart–
D14Mit3* Fat+ Heart–

15
D15Cebr7s13 Kidney–
D15Rat21* Adrenal+ Kidney–

17 Prl Adrenal– Kidney–
20 D20Rat55 Kidney–

Table 3: Main relations detected by (sgs). X* means that marker X has already been sug-
gested by previous authors in this dataset. Y– (Y+) means that response Y is negatively
(positively) influenced by X.

frequentist penalized estimations, for prediction but also and especially for support

recovery.

Supplementary Material

A Bayesian approach for partial Gaussian graphical models with sparsity (supplemen-

tary material) (DOI: 10.1214/22-BA1315SUPP; .pdf). Single-output corollaries and

computational steps related to posterior distributions.
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Pravenec, M., Hübner, N., Aitman, T. J., Cook, S. A., and Richardson, S. (2010).
“New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-
tissue Approach.” PLOS Comput. Biol., 6(4): 1–13. 483

Ravikumar, P., Wainwright, M., Raskutti, G., and Yu, B. (2011). “High-dimensional
covariance estimation by minimizing �1-penalized log-determinant divergence.” Elec-
tron. J. Stat., 5: 935–980. MR2836766. doi: https://doi.org/10.1214/11-EJS631.
466

Ren, Z., Sun, T., Zhang, C. H., and Zhou, H. H. (2015). “Asymptotic Normality and Op-
timalities in Estimation of Large Gaussian Graphical Models.” Ann. Stat., 43(3): 991–
1026. MR3346695. doi: https://doi.org/10.1214/14-AOS1286. 466, 474, 479, 480

Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008). “Sparse permutation invari-
ant covariance estimation.” Electron. J. Stat., 2: 494–515. MR2417391. doi: https://
doi.org/10.1214/08-EJS176. 466

https://mathscinet.ams.org/mathscinet-getitem?mr=3724978
https://doi.org/10.1214/17-BA1081
https://mathscinet.ams.org/mathscinet-getitem?mr=3724978
https://doi.org/10.1214/17-BA1081
https://mathscinet.ams.org/mathscinet-getitem?mr=3889064
https://mathscinet.ams.org/mathscinet-getitem?mr=2208845
https://doi.org/10.1016/j.jmva.2004.11.008
https://mathscinet.ams.org/mathscinet-getitem?mr=2278363
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://mathscinet.ams.org/mathscinet-getitem?mr=4283606
https://doi.org/10.1051/ps/2021010
https://doi.org/10.1214/22-BA1315SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=2524001
https://doi.org/10.1198/016214508000000337
https://mathscinet.ams.org/mathscinet-getitem?mr=2836766
https://doi.org/10.1214/11-EJS631
https://mathscinet.ams.org/mathscinet-getitem?mr=3346695
https://doi.org/10.1214/14-AOS1286
https://mathscinet.ams.org/mathscinet-getitem?mr=2417391
https://doi.org/10.1214/08-EJS176
https://doi.org/10.1214/08-EJS176


490 A Bayesian PGGM With Sparsity

Sohn, K. A. and Kim, S. (2012). “Joint estimation of structured sparsity and output
structure in multiple-output regression via inverse-covariance regularization.” In Pro-
ceedings of the Fifteenth International Conference on Artificial Intelligence and Statis-
tics., volume 22 of Proceedings of Machine Learning Research, 1081–1089. PMLR.
466

Wei, R., Reich, B. J., Hoppin, J. A., and Ghosal, S. (2020). “Sparse Bayesian additive
nonparametric regression with application to health effects of pesticides mixtures.”
Statist. Sinica, 30: 55–79. MR4285485. doi: https://doi.org/10.5705/ss.202017.
0315. 467

Xu, X. and Ghosh, M. (2015). “Bayesian variable selection and estimation for Group
Lasso.” Bayesian Anal., 10(4): 909–936. MR3432244. doi: https://doi.org/10.

1214/14-BA929. 467, 475, 477

Xu, Z., Schmidt, D. F., Makalic, E., Qian, G., and Hopper, J. L. (2016). “Bayesian
grouped horseshoe regression with application to additive models.” In AI 2016:
Advances in Artificial Intelligence, 229–240. Springer International Publishing.
MR3595648. doi: https://doi.org/10.1007/978-3-319-50127-7_19. 467

Yang, X. and Narisetty, N. (2020). “Consistent Group Selection with Bayesian High
Dimensional Modeling.” Bayesian Anal., 15(3): 909–935. MR4132654. doi: https://
doi.org/10.1214/19-BA1178. 467, 468, 473, 474, 485

Yuan, M. and Lin, Y. (2007). “Model selection and estimation in the Gaussian graphi-
cal model.” Biometrika., 94(1): 19–35. MR2367824. doi: https://doi.org/10.1093/
biomet/asm018. 466

Yuan, X. T. and Zhang, T. (2014). “Partial Gaussian graphical model estimation.”
IEEE. T. Inform. Theory., 60(3): 1673–1687. MR3168429. doi: https://doi.org/
10.1109/TIT.2013.2296784. 466, 467, 479

Acknowledgments

The authors warmly thank the two anonymous reviewers for their valuable suggestions and

comments which clearly contributed to the improvement of the article. The authors thank Mario

Campone (project leader and director of the ICO), Mathilde Colombié (scientific coordinator
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