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Informative Priors for the Consensus Ranking in
the Bayesian Mallows Model
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Abstract. The aim of this work is to study the problem of prior elicitation for
the consensus ranking in the Mallows model with Spearman’s distance, a pop-
ular distance-based model for rankings or permutation data. Previous Bayesian
inference for such a model has been limited to the use of the uniform prior over
the space of permutations. We present a novel strategy to elicit informative prior
beliefs on the location parameter of the model, discussing the interpretation of
hyper-parameters and the implication of prior choices for the posterior analysis.
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1 Motivation

In recent years, interest in preference data has increased, in part due to internet-related
activities. The study of rankings, in particular, has received special attention, since
this type of data arise in many fields. Notable examples are electoral systems in which
voters are required to rank candidates, as is the case of the Irish general elections
(Gormley and Murphy, 2008); automatic recommender systems seeking to aggregate
preferences in order to suggest products to the customers (Sun et al., 2012); market
research based on surveys in which competing services, or items, are compared or ranked
by customers (Dabic and Hatzinger, 2009); medical applications, especially in genomics,
in which genes are sometimes ranked according to their expression levels under various
experimental conditions (Vitelli et al., 2018), and other data is often transformed into
rankings in order minimize the effect of miscalibration error from the measuring devices
(Mollica and Tardella, 2014).

The Mallows model (MM) (Mallows, 1957; Diaconis, 1988) is a popular two-parame-
ter distance-based family of models for ranking data, based on the assumption that a
modal ranking, which can be interpreted as the consensus ranking of the population,
exists. The probability of observing a given ranking is then assumed to decay expo-
nentially fast as its distance from the consensus grows. Individual models with different
properties can be obtained depending on the choice of distance on the space of permuta-
tions. The scale or precision parameter, controlling the concentration of the distribution,
determines the rate of decay of the probability of individual ranks.
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We focus on the Mallows model with Spearman’s distance (MMS), introduced by
(Mallows, 1957) with the name of rho-model, since Spearman’s distance, when re-scaled
to lie between −1 and 1, arises naturally as the correlation between the ranks of two
samples. Marden (1995) and Vitelli et al. (2018) have studied Bayesian inference for
the MMS, limiting the analysis to the use of a uniform, non-informative prior on the
consensus ranking.

Within the Bayesian literature, non-informative and objective priors can be used
to provide a sense of neutrality to the analysis by allowing the data to be the only
source of information in the estimation procedure. However, when information is avail-
able from experts or external sources, it may be argued that a fully Bayesian analysis
should include this subjective prior belief. Dawid (1997) clearly stated that “no theory
which incorporates non-subjective priors can truly be called Bayesian, and no amount
of wishful thinking can alter this reality”. While admitting that both approaches may
be valid in different situations, in this paper we explore the possibility of including gen-
uine prior information, which might come from a literature review, from an expert or
from an earlier data analysis, into the Bayesian Mallows model for ranking data (Vitelli
et al., 2018).

Previous proposals to include prior information on the consensus ranking of a MM
include Gupta and Damien (2002), who suggest eliciting a prior on the consensus which
is constant on conjugacy classes. In other words, they propose a prior that assigns
a priori equal probability to all permutations with the same cyclic structure. However,
the conjugate classes defined by cyclic structures do not coincide with those defined by
permutations lying at the same distance (e.g. Spearman’s) from the consensus ranking,
making this approach impractical for the MMS, as it is difficult to assess a way in which
prior information enters the model. Meilǎ and Bao (2010) and Meilǎ and Chen (2010)
consider the MM with Kendall’s distance within the Bayesian paradigm and provide
a conjugate prior for the model parameters which is known up to a normalization
constant. However, their analysis does not extend to the MMS. Xu et al. (2018) propose
an alternative family of models for rankings, based on a mapping of the data to the
unit sphere (see also McCullagh, 1993). The location parameter of their model has an
interpretation analogous to that of the consensus ranking but it is not limited to be
itself a ranking, thus allowing to express a more general form of consensus. The MMS is
a particular case of this model, and the authors propose a conjugate Bayesian prior for
the consensus parameter. However, the emphasis of the paper is on efficient inference
via an approximation of the model’s normalizing constant and the use of variational
methods; prior elicitation and the inclusion of prior information are not discussed. In a
different setting, when data consist of rankings which vary in time, Asfaw et al. (2017)
introduce a dynamic version of the Bayesian Mallows model and assume a smoothing
prior for modelling the slow time-varying consensus ranking.

In the present work, which stems from Chapter 6 of Crispino (2017), we aim to
provide experts using the MMS with a tool to express their beliefs, knowing the effect of
prior choices in their analysis, should they wish to do so. With this in mind, by exploiting
the notion of permutohedron, also known as permutation polytope, (Thompson, 1993;
McCullagh, 1993; Marden, 1995), we propose an explicit form for a conjugate prior on
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the consensus parameter for the MMS. We then study its properties, presenting some
theoretical insights on the prior elicitation problem. Subjective prior information on the
consensus ranking can therefore be elicited by choosing appropriate hyper-parameters.
The proposed prior density can handle a situation when only partial information is
available, which is particularly relevant when the set of items to be ranked is very large.
In such cases it is unlikely that a full ranking is a priori available, while it could be
possible to express some prior belief regarding which are the most (or least) preferred
items. An additional advantage of our prior is given by the interpretability of the hyper-
parameters in terms of the amount and type of information included.

We initially assume the scale parameter of the MMS to be known, given that in most
applications it is considered a nuisance, the interest being focused on the estimation of
the consensus ranking (see Vitelli et al., 2018, Section 3). In the more realistic case when
the scale parameter is unknown, multiple approaches are possible. For instance, in Vitelli
et al. (2018) an exponential prior density is proposed; In Marden (1995), Section 6.4,
the conjugate prior for the scale parameter is used, when a uniform prior density for
the location is employed. In this manuscript we propose as an alternative a reference
prior on the scale parameter, which is a valid option when no prior information on this
parameter is available.

The paper is organized as follows. In Section 2 we give an overview of the MMS. In
Section 3 we discuss the novel results regarding the conjugate prior for the consensus
parameter of the MMS, initially assuming the dispersion parameter to be known (Sec-
tion 3.1), then (Section 3.2) working with both parameters unknown. In Section 4 we
outline the MCMC algorithm used to perform inference on our model, and in Section 5
we illustrate the inference on simple examples, exploiting both simulations and real
datasets. We conclude with some final remarks in Section 6.

2 Preliminaries

A (full) ranking of n items, or n-ranking is defined as a map from a finite set, {A1, . . . ,
An}, of labeled items to the space Pn of n-dimensional permutations. A ranking can,
therefore, be represented by a vector r = (r1, . . . , rn), where ri is the rank assigned to
item Ai according to some criterion. Formally, individual ranks are ordinal numbers, so
that ri < rj when item Ai is preferred to (ranked lower than) item Aj . Alternatively,
rank data may be represented through orderings, which are ordered vectors of labels.
Clearly, there is a one-to-one relationship between the two representations, e.g. a possible
ranking of the set A1, . . . , A5 is r = (1, 3, 4, 5, 2), corresponding to the ordering o =
(A1, A5, A2, A3, A4). Since the ranking vector representation has many advantages in
terms of modelling, we will stick to it throughout the paper, and only use the orderings
when necessary for illustrative purposes. Given the trivial one-to-one relation between
ordinal and cardinal numbers, with a slight abuse of notation, one may consider n-
rankings as n-dimensional vectors obtained by permuting the first natural numbers,
{1, . . . , n}. It is then easy to see that Pn is contained in a (n − 1)-dimensional affine
subspace of Rn. In fact, it is composed by the n! points on the intersection between
the hyper-plane with coordinate sums equal to sn = n(n + 1)/2 and the surface of
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an n-dimensional sphere of squared radius cn = n(n + 1)(2n + 1)/6 centered at the
origin. Thus, all the points of Pn lie on an (n− 1)-dimensional sphere of squared radius

φn = n(n2 − 1)/12 centered at (n+1)
2 1n, where 1n ∈ Rn denotes the vector with all

entries equal to 1 (McCullagh, 1993).

The Mallows model for ranking data (Mallows, 1957) defines the probability that a
random n-ranking R takes a value r ∈ Pn as

P(R = r |ρ, θ, d) = 1

Zd(θ)
exp [−θ d(r,ρ)] , (1)

where ρ ∈ Pn is a location parameter representing the shared consensus ranking and
θ≥ 0 is a scale parameter describing the concentration of the mass around the shared
consensus. Different families of models are obtained through different choices of the
right-invariant (Diaconis, 1988) distance d(·, ·) on Pn. Right-invariance, which ensures
that distances are independent of any relabeling of the items, is an important property
in this context, as it ensures that the partition function Zd(θ) =

∑
r∈Pn

e−θd(r,ρI) of the
MM does not depend on ρ (Mukherjee, 2016; Vitelli et al., 2018). In the above expression
ρI = (1, 2, 3, . . . , n) denotes the identity permutation. Nevertheless, the number of terms
in the sum makes direct calculation of this partition function unfeasible for all but very
small values of n. As a consequence, the MM is known up to a proportionality constant,
except for some particular choices of the distance, for which Zd has a closed form
(Fligner and Verducci, 1986). Different approximation strategies have been proposed
(see e.g. McCullagh, 1993; Mukherjee, 2016; Vitelli et al., 2018), allowing inference even
with a large number, n, of items. Notice that the distance function induces a partition of
Pn formed by sets of rankings which are equidistant from ρ. Within each partition set,
the MM assigns equal probability to all rankings. As a consequence, exact computation
of the partition function is possible for moderate n, for some choices of d(·, ·) for which
the cardinalities of the partition sets are known (see e.g. Irurozki et al., 2016; Vitelli
et al., 2018). The partitions of Pn associated to Spearman’s distance play a crucial role
in understanding the behavior of the prior proposed here for the MMS.

In this work we focus on the Mallows model with Spearman’s distance, given by
dS(r,ρ) = ||r − ρ||2 =

∑n
i=1 (ρi − ri)

2
, for r,ρ ∈ Pn, which was first introduced by

Mallows (1957). Notice that Spearman’s distance is an unnormalized version of the
Spearman’s rank correlation, used to measure the statistical correlation between the
ranks of two variables, but, when rankings are considered as vectors in Rn, it is simply
the squared Euclidean distance, or L2-norm. Therefore, we say that a random ranking
R follows an MMS distribution, denoted by R|ρ, θ ∼ M(ρ, θ), if its probability mass
function is given by

p(R |ρ, θ) ..= P(R = r |ρ, θ) = 1

Z(θ)
exp

[
−θ ‖ρ−R‖2

]
, (2)

where Z(θ) ..= ZdS
(θ) does not have a closed form. Notice that when θ = 0, the MMS

reduces to the uniform distribution on Pn.
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Given a sample R1, . . . ,RN |ρ, θ iid∼ M(ρ, θ), the likelihood function takes the form

p(R1, . . . ,RN |ρ, θ) = 1

Z(θ)N
exp

⎡
⎣−θ

N∑
j=1

‖ρ−Rj‖2
⎤
⎦ . (3)

In most applications the parameter θ is considered a nuisance and the main interest
is in the estimation of ρ. It can be shown that, for θ > 0, the maximum likelihood
estimator (MLE) ρMLE is given by

ρMLE = argmin
ρ∈Pn

N∑
j=1

‖ρ−Rj‖2 = argmax
ρ∈Pn

ρ · R̄ = Y (R̄),

where the dot denotes the scalar product on Rn, R̄ = (R̄1, . . . , R̄n) is the sample mean

vector of R̄i = 1
N

∑N
j=1 Rij , i = 1, . . . , n, and Y (r) = (Y1(r), . . . , Yn(r)) ∈ Pn is

the rank transformation of vector r, whose coordinates are defined as Yi = Yi(r) =∑n
h=1 1(rh ≤ ri), i = 1, . . . , n, 1(E) being the indicator function of the event E.

In the remainder, we propose and study an informative prior density for ρ, specifi-
cally tailored to the MMS, building on the Bayesian Mallows model for ranking data of
Vitelli et al. (2018).

3 An informative prior

This section is devoted to the proposal of a prior distribution for the ρ parameter of
the MMS. In Section 3.1 we analyze the simpler case in which the precision parameter
θ is assumed known. Then, in Section 3.2, we give an intuition on how to deal with the
more general and realistic case of unknown θ.

3.1 Known precision parameter

For fixed θ and ρ ∈ Pn, the likelihood (3) can be simplified as

p(R1, . . . ,RN |ρ, θ) ∝ exp

⎡
⎣2θ

N∑
j=1

ρ ·Rj

⎤
⎦ ∝ exp

(
2θNρ · R̄

)
. (4)

Notice that the sample mean R̄ belongs to the permutohedron of order n, denoted
by ppn, that is the convex hull of the points ρ ∈ Pn ⊂ Rn. The set ppn is sometimes
called the permutation polytope (see e.g. Thompson, 1993; Marden, 1995). This term,
however, refers also to a similar polytope whose vertices follow a different order. We,
here, use the term permutohedron to avoid ambiguity.

A conjugate prior for ρ ∈ Pn is given by

π(ρ|ρ0, η0) =
1

Z∗(η0,ρ0)
exp

[
−η0||ρ0 − ρ||2

]
∝ exp [2η0 ρ · ρ0] . (5)
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We call this the Extended Mallows Model with Spearman distance (EMMS) and
write ρ|η0,ρ0 ∼ EM(ρ0, η0). Note that the conjugate prior (5) is analogous to the
angle-based model proposed by Xu et al. (2018), originally developed in McCullagh
(1993). The two hyper-parameters η0 ≥ 0 and ρ0 ∈ ppn can be interpreted as precision
and location parameters, respectively, analogous to those of the MMS. In particular, η0
determines the concentration of the distribution around ρ0, with η0 = 0 corresponding
to a uniform prior on ppn while larger values reflect a stronger prior belief on ρ0. Notice
however that, differently from the MMS, the modal parameter ρ0 is not, in general, a
permutation, except when it lies on the vertices of the permutohedron ppn. Recall that
Mallows models have the limitation that all rankings which are equidistant (in terms
of the distance in (1)) from the consensus ranking have the same probability. For the
MMS, this implies in particular that it is not possible to freely assign different masses
to different rankings at the same Spearman’s distance to the consensus ranking. By
allowing the modal parameter of (5) to take any value in the permutohedron ppn, that
is, to be any convex combination of the elements of Pn, such structure can be broken,
allowing for a more flexible distribution of the mass. In fact, the prior (5) assigns equal
mass to all permutations that lie at the same L2-norm from ρ0, and greater mass
is given to permutations closest to ρ0. For instance, consider the EMMS centered at

the barycenter of the permutohedron, that is, with ρ0 = (n+1)
2 1n. This results in a

uniform distribution on rankings for any value of the precision parameter η0. Small

deviations from uniformity can be achieved by letting η0 > 0 and ||ρ0 − (n+1)
2 1n||2

be small. The direction of the vector ρ0 − (n+1)
2 1n in Rn determines the rankings for

which the mass increases and those for which it decreases. The case described above,

where ρ0 = (n+1)
2 1n, is therefore equivalent to assigning to ρ the uniform prior on Pn,

π(ρ) = 1
n! , like in Marden (1995) and Vitelli et al. (2018).

Note that, since ρ0 ∈ ppn, the partition function in (5),

Z∗(η0,ρ0) =
∑
ρ∈Pn

exp
[
−η0||ρ0 − ρ||2

]
, (6)

in general depends on both η0 and ρ0, unless ρ0 ∈ Pn ⊂ ppn, in which case the Z∗ is
a function only of η0.

1 This implies that (5) is known up to a normalization constant.
However, in the following sections we show that this drawback can be overcome in
practice.

The posterior density for ρ is given by

πN (ρ |θ) ∝ exp

[
2(η0 + θN) ρ ·

(
θN

η0 + θN
R̄+

η0
η0 + θN

ρ0

)]
. (7)

The first thing we observe is that the proposed prior is indeed conjugate. In other

words, if R1, . . . ,RN |ρ, θ iid∼ M(ρ, θ) and ρ |ρ0, η0 ∼ EM(ρ0, η0), then it holds that

1The independence of Z∗(η0,ρ0) from ρ0 follows from the property of right-invariance of the Spear-
man’s distance, like it happens for Z(θ).
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ρ | θ,ρ0, η0,R1, . . . ,RN ∼ EM(ρN , ηN ), with updated parameters:

ρN =
θN

η0 + θN
R̄+

η0
η0 + θN

ρ0 ∈ ppn, (8)

ηN = η0 + θN ≥ 0. (9)

The above expressions evoke the classical result (Diaconis and Ylvisaker, 1979) that,
under regularity conditions, the posterior estimates have the form of a linear combina-
tion of the prior belief and the empirical evidence. Furthermore, the reparametrization
of (5) obtained by letting η0 = θ0N0 (with the possibility to choose θ0 = θ), shows
that the mixing weights of the posterior parameters in (8) explicitly depend on N and
N0 which can be thought of as an a priori sample size, representing the amount of
information on which the expert bases the prior belief about the central tendency of ρ.
For any finite prior precision, as the sample size increases, the posterior accumulates
mass around ρN , which approaches the sample mean, R̄ as N increases. Some insights
into the role of the prior hyper-parameters can be obtained by considering limiting sit-
uations. An infinite prior precision would express a priori certainty, by accumulating
all the prior mass on ρ0. The posterior would maintain the infinite precision thus accu-
mulating mass on ρN = ρ0. In such hypothetical case, learning would be possible only
for infinite sample sizes, with

lim
N→∞

ρN =

⎧⎪⎨
⎪⎩
ρ0 if N0/N → ∞,

(1− α)ρ0 + αR̄ if N0/N → (1/α− 1) ∈ (0, 1),

R̄ if N0/N → 0.

Notice that, if all the coordinates of the vector ρN take different values, the maximum
a posteriori (MAP) of ρ is unique and given by ρMAP = Y (ρN ) ∈ Pn.

The prior (5) has a shape which is analogous to the one discussed earlier by Gupta
and Damien (2002). In their paper, however, the authors propose the use of the Haus-
dorff distance among subsets (conjugacy classes) of Pn, in place of the squared L2-norm
between a ranking and the location parameter of the prior (5), which is an element
of the permutation polytope. This difference implies that the proposal of Gupta and
Damien (2002) assigns equal probability to all permutations within a conjugacy class.
In particular, all rankings in the modal conjugacy class of the prior are assigned the
same mass, even if information may not be available on all such rankings. Furthermore,
two permutations in the same class are not necessarily close with respect to the distance
used in the MM, which is a crucial element of the model specification. Our proposal,
instead, is specifically tailored to the MMS, and gives the possibility to choose whether
to give maximum prior weight to a unique permutation, or to more than one. In Sec-
tion 5.2 we show the inferential differences resulting from using the prior of Gupta and
Damien (2002) and our proposal.

To complete this section, we note in the following Result that the findings in Gupta
and Damien (2002, Section 3.3) can be extended to our prior (5).
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Result 1. Let D(ρ) =
∑N

j=1 ‖Rj − ρ‖2, and D∗(ρ) = ‖ρ0 − ρ‖2. Then:

a) for each ρ1,ρ2 ∈ Pn, and given θ, η0, the ranking ρ1 will have higher posterior
probability than ρ2 if and only if

D(ρ1)−D(ρ2) < γ[D∗(ρ2)−D∗(ρ1)], (10)

where γ = η0/θ.

b) for each ρ ∈ Pn, if D
∗(ρ) ≥ D∗(ρMLE), ρ will have lower posterior probability

than ρMLE.

c) for each ρ1,ρ2 ∈ Pn, if D
∗(ρ1) = D∗(ρ2), ρ1 will have higher posterior probability

than ρ2 if and only if D(ρ1) < D(ρ2).

d) for each ρ1,ρ2 ∈ Pn, if D(ρ1) < D(ρ2) and D∗(ρ1) < D∗(ρ2), then ρ1 will have
higher posterior probability than ρ2.

The result, analogous to Gupta and Damien’s Theorem 2 and corollaries, gives an
intuition on the behavior of the posterior density, by providing a relationship between
θ and η0, that determines which rankings receive the highest posterior probabilities.
In Section 5.2 we illustrate, through simulated data, some of the consequences of this
result on the inference.

Elicitation of the hyper-parameters

The elicitation involves the two hyper-parameters (ρ0, η0) of (5) which, as mentioned
in the previous section, can be interpreted as a location and a precision parameters,
analogous to the parameters (ρ, θ) of the MMS.

An expert would be asked her prior opinion about the modal (also referred to as
consensus) ranking ρ, and to express it via the vector ρ0. In the simplest case, we
request from the expert a prior modal ranking of all the items {A1, . . . , An}. If she were
able to provide one, this would result in ρ0 being a proper ranking, that is ρ0 ∈ Pn.
However, particularly in situations when the set of items to be ranked is very large,
the expert may only able to express partial information about the consensus ranking.
For example, in the field of Genomics, the number n of items, corresponding to genes,
is often of the order of thousands, with the geneticists normally knowing barely a few
dozens of them, typically, the k most relevant for their analysis. In such a case, the
expert would be asked to rank as many items as possible, say the in-her-opinion top-k
out of n. Then, ρ0 would contain k elicited ranks, and n−k values equal to (n+k+1)/2
corresponding to the items that the expert was not able to rank. This corresponds to
assigning the same prior mass to all rankings for which the top-k ranks coincide. The
uniform distribution on this class represents the lack of prior information on the ranks
of the n− k bottom items. Therefore, the vector ρ0 would not be a ranking, ρ0 �∈ Pn.
However, being an element of ppn, it could still be used as hyper-parameter of the
EMMS prior, conveying only partial information about the modal ranking ρ.
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In a second moment, to elicit a value for η0, we would reason by calibration,
in the spirit of Paganin et al. (2021). Consider the prior expectation f(η0,ρ0) :=
Eπ(ρ)

[
1
n ||ρ− ρ0||2| η0,ρ0

]
. This quantity is decreasing in η0 for each ρ0 ∈ ppn, and

can be interpreted as the expected average (per-item) error in the i-th prior rank ρ0i
(Vitelli et al., 2018). A value for η0 may be found by first asking the expert to choose
the a priori per-item expected error size, e0, and then finding the value of η0 such that
f(η0,ρ0) = e0. We can also guide the expert in the choice of a reasonable value of e0,
for instance by providing the range of possible values of f(η0,ρ0), and by asking her
to express a belief on the per-item expected error size, as a fraction of such range, for
instance e0 = 0.5(fmax−fmin). The minimum and maximum values of f(η0,ρ0) depend
on k and n only (that is, on the partial information carried by ρ0) and can be easily
computed, for given ρ0, on a grid of η0 values.2

In a different setting, we can imagine a researcher wishing to include covariate
information into the analysis. For instance, a certain number xh = (xh1, . . . , xhn),
h = 1, . . . , H, of covariates may be available, describing some features of the items. We
could then introduce this information into the prior (5), by choosing a hyper-parameter
ρ0 = ρ0(x1, . . . ,xH) which depends on the relevant covariates. An example of the latter
scenario is given in Section 5.3.

Our proposed prior naturally handles the case when multiple sources of prior infor-
mation are available. Notice that, since any ρ0 ∈ ppn can be expressed as a convex
combination of rankings in Pn, it can always be interpreted as arising from multiple
(possibly infinite) experts, the calculation of the individually elicited parameters being
an exercise in linear algebra.

In the elementary case, two experts may believe, a priori, in different modal rankings,
say ρ01 and ρ02. An analyst wishing to express an equally strong prior on such two
rankings may simply use the prior (5) with ρ0 = (ρ01+ρ02)/2 ∈ ppn. More generally, an
analyst may like to aggregate prior opinions from a number L of experts by calculating
ρ0 and η0 as a simple average (see e.g. Burgman et al., 2011) of the individual ρ0,�, η0,�
parameters elicited from each expert 	. A more robust way of aggregating multiple prior
opinions is pooling (O’Hagan et al., 2006), which can also allow to weight unequally the
different experts’ opinions (Genest et al., 1986). However, when it is not reasonable to
think that the experts provide independent observations, these approaches may not be
adequate.

2If ρ0 is the barycenter of the permutohedron, ρ0 =
(n+1)

2
1n (which corresponds to the case k = 0),

the prior is uniform, and the choice of η0 is not relevant (no prior information is available).
If all the ranks of ρ0 are elicited (which corresponds to the case ρ0 ∈ Pn, that is k = n), then

fmin ≡ limη0→∞ f(η0) = 0 < f(η0) ≤ n2−1
6

= fmax ≡ f(0).
If k = 1, 2, 3, . . . , n− 2, then

fmin =
1

12
h(h+ 1)(h+ 2), h = n− k − 1;

fmax =
1

2n

k∑
i=1

(n− 2i+ 1)2 +
1

2n

n−k∑
i=1

(
n+ k + 1

2
− i

)2

+
1

2n
fmin.
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An interesting way of dealing with dependent experts is to treat the elicited informa-
tion as data in the spirit of French (2011) and Albert et al. (2012). This latter approach
amounts to performing indirect elicitation, by inferring the hyper-parameters of in-
terest using the posterior of a prior Bayesian analysis. In our framework, this means
that, instead of directly using a combination of the experts’ opinions ρ0,�, 	 ≥ 1, as
hyper-parameter of (5), we use the ρ0,�, 	 ≥ 1 as conditionally independent data, and
elicit the hyper-parameters ρ0 and η0 based on a prior analysis. More formally, letting

ρ0,1, . . . ,ρ0,L|ρ0, η0
iid∼ M(ρ0, η0), we can infer, based on the posterior density of such

an analysis, η̂0 and ρ̂0 and set them equal to the hyper-parameters η0 and ρ0 of (5)
respectively. In Section 5.3, we show how this can be done in a practical example.

3.2 Unknown precision parameter

When θ is unknown, the Bayesian paradigm requires a prior on the pair of parame-
ters (ρ, θ). We here suggest to choose a joint prior of the form π(ρ, θ) = π(θ)π(ρ|θ),
where π(ρ|θ) is the EMMS of (5). Notice that the particular case of prior independence,
π(ρ, θ) = π(θ)π(ρ), is achieved in practice by choosing the hyper-parameter η0 indepen-
dent of θ. Regarding the choice of π(θ) some proposals are present in the literature, for
instance an exponential density (Vitelli et al., 2018), or the conjugate prior of Marden
(1995). Both options can be employed in our framework, if the researcher wishes to put
some prior information on the θ parameter. As an alternative, we suggest the use of the
Jeffreys prior for θ, which, for small values of n, can be computed exactly and may be
an interesting alternative when no information on θ is available a priori. The following
proposition, proved in Crispino and Antoniano-Villalobos (2022), holds for any MM
with a right-invariant distance, and in particular for the MMS.

Proposition 1. The Jeffreys prior for θ in a MM with right-invariant distance d takes
the form

πJ(θ) =
√

VR|θ [d(R,ρI)|θ], (11)

where VR|θ denotes the variance with respect to R ∼ M(ρI , θ), which depends on θ.

The posterior density of the model parameters, with the conjugate prior π(ρ|θ) given
in (5) is

πN (ρ, θ) ∝ π(θ)

ZN (θ)Z∗(η0,ρ0)
exp

{
−θN

[(∥∥ρ− R̄
∥∥2 + cn −

∥∥R̄∥∥2)]− η0 ‖ρ0 − ρ‖2
}
.

(12)

Equation (12) can be easily evaluated in two cases: when (a) Z∗ does not depend
on θ, that is, when η0 is independent of θ (prior independence scenario), or when (b)
η0 = θN0, and n is small enough, so that Z∗ can be calculated exactly, for given prior
hyper-parameters ρ0 and N0 (see also Section 4).

The more problematic case (c) when η0 = θN0 and n is too large for computing Z∗

exactly, can be handled by using as prior density for θ, πlarge n(θ) ∝ Z∗(θN0,ρ0), so



M. Crispino and I. Antoniano-Villalobos 401

that the posterior density (12) can be written as

πN (ρ, θ) ∝ 1

ZN (θ)
exp

{
−θ

[
N

(∥∥ρ− R̄
∥∥2 + cn −

∥∥R̄∥∥2)+N0 ‖ρ0 − ρ‖2
]}

. (13)

We believe that the choice of πlarge n(θ) motivated by the simplification of the pos-
terior represents, nevertheless, a sensible belief. Indeed, Z∗(θN0,ρ0) is a decreasing
function of θ, and its shape is dominated by an exponential, with rate parameter de-
pending both on N0, and on ρ0. The larger N0, the more peaked the density is around
θ = 0 (reducing to the improper constant on R+ when N0 = 0). ρ0 also affects the
tightness of the prior (the larger the number of elicited ranks, the more peaked is the
density around θ = 0), but its influence is smoother.

In the next section we outline the algorithms developed for inference on the MMS
in both cases of known and unknown θ, within the situations (a), (b) and (c) described
above.

4 Posterior simulation

Notice that, when θ = θ∗ is known, the posterior (7) is known up to a normalization
constant. Posterior simulation is straightforward in this case and it basically reduces
to a visualization problem because of the complexity of the space of permutations. In
this simple case, we employ a Metropolis-Hastings (M-H) Markov Chain Monte Carlo
(MCMC) scheme for the update of ρ. We propose ρ′ according to the Leap and Shift
distribution of Vitelli et al. (2018), which is an asymmetric proposal centered around
the current value of ρ. We then accept ρ′ with probability ε = min{1, aρ}, where

log aρ = 2θ∗(ρ′ − ρ) · R̃+ log pLS(ρ
′|ρ)− log pLS(ρ|ρ′), (14)

where, R̃ = NR̄ + N0ρ0, and pLS denotes the transition probability of the Leap and
Shift distribution. Notice that, for the sake of simplicity, we are considering the case
η0 = θ∗N0, but the results follow trivially for other parametrizations.

When θ is not known, we implement a Metropolis within Gibbs scheme for posterior
simulation. However, further considerations must be made for the different cases outlined
in Section 3.2. First, we consider case (a), where ρ is assumed a priori independent of θ,
which amounts to eliciting η0 of (5) independently of θ; in cases (b) and (c) the precision
parameter of the EMMS takes the form η0 = θN0.

In (a) Z∗ is simply constant, so it creates no additional difficulty. Posterior inference
can be performed with the efficient scheme of Vitelli et al. (2018, Algorithm 1), by
simply modifying the acceptance probabilities of the M-H steps to include the non-
uniform prior density on ρ.

In cases (b) and (c) we have the additional issue of dealing with Z∗, for which
different solutions are possible. In (b), that is for small n, we can compute Z∗ on a grid
of η0 values; whenever its evaluation is required within the M-H step for the update of
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θ, an approximate value can be obtained via interpolation for values of η0 = θN0 not
in the grid. In this case we therefore have two steps. First, we update ρ conditional on
θ from the posterior full conditional (see (12)),

πN (ρ|θ) ∝ exp
[
2θρ · R̃

]
. (15)

This is done as described above, that is, we propose ρ′ according to the Leap and Shift
distribution and accept it with probability ε = min{1, aρ}, where aρ is given in (14),
with θ∗ equal to the current value of θ. Second, we update θ conditional on ρ. Note
that the posterior full conditional for θ is

πN (θ|ρ) ∝ πN (ρ, θ) ∝ π(θ)

ZN (θ)Z∗(θN0,ρ0)
exp

[
−θ(g̃ − 2ρ · R̃)

]
, (16)

where g̃ = (2N + N0)cn + N0 ‖ρ0‖2. The proposal θ′ is sampled from a log-normal
density centered on the current value of θ with a variance tuned in order to obtain a
desired acceptance rate.

In (c), that is, for large values of n, only the proposed prior for θ, and therefore its
posterior full conditional, changes and it is given by

πN (θ|ρ) ∝ 1

ZN (θ)
exp

[
−θ(g̃ − 2ρ · R̃)

]
. (17)

Posterior simulation is therefore identical to that of case (b), with the obvious difference
in the acceptance probability for θ.

5 Illustrative analyses

The examples considered in this section have multiple purposes. First we illustrate the
effects of our prior on the inference through very elementary datasets (Sections 5.1
and 5.2). Second, we show an example of how to elicit the hyper-parameters of interest
based on covariates (Section 5.3). Finally, in 5.4, we consider an application of data
related to the COVID-19 pandemic, where the inclusion of prior information is relevant.

5.1 Simulation study

In this section we illustrate the effect of the prior on the posterior via a small simulated
dataset. A small n is used so that all possible permutations can be listed.

We generate a sample of N = 30 rankings from P4 from the MMS with given
true parameters ρ∗ = (2, 1, 4, 3) and θ∗ = 0.06. We then set the prior consensus to
ρ0 = (2, 1, 3, 4), and perform inference on the model in different settings corresponding
to increasing prior sample size for the prior parametrization η0 = θN0, and the Jeffreys
prior for θ. The observed sample mean vector is R̄ = (2.33, 2.17, 3, 2.5), which leads to
ρMLE = Y (R̄) = (2, 1, 4, 3). We report in Table 1 the estimated posterior probability
(EPP) of each of the rankings in P4. Notice that ρMLE is the ranking with smallest value
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ρ D(ρ) D∗(ρ) N0 = 0 N0 = 5 N0 = 10 N0 = 15 N0 = 16 N0 = 20
(1,2,3,4) 260 2 0.029 0.038 0.050 0.053 0.053 0.050

(1, 2, 4, 3) 230 4 0.172 0.125 0.080 0.052 0.050 0.036
(1, 3, 2, 4) 310 6 0.007 0.003 0.003 0.004 0.004 0.004
(1, 3, 4, 2) 250 10 0.049 0.010 0.005 0.004 0.004 0.003
(1, 4, 2, 3) 330 12 0.004 0.001 0.001 0.002 0.002 0.001
(1, 4, 3, 2) 300 14 0.007 0.002 0.001 0.002 0.001 0.001
(2,1,3,4) 250 0 0.048 0.129 0.257 0.417 0.436 0.546
(2,1,4,3) 220 2 0.367 0.579 0.527 0.410 0.386 0.303
(2, 3, 1, 4) 350 8 0.003 0.001 0.001 0.002 0.002 0.002
(2, 3, 4, 1) 260 14 0.029 0.005 0.003 0.002 0.002 0.002
(2, 4, 1, 3) 370 14 0.002 0.001 0.001 0.001 0.001 0.001
(2, 4, 3, 1) 310 18 0.006 0.001 0.001 0.001 0.001 0.001
(3,1,2,4) 290 2 0.009 0.010 0.015 0.017 0.023 0.022

(3, 1, 4, 2) 230 6 0.169 0.065 0.032 0.016 0.017 0.012
(3, 2, 1, 4) 340 6 0.003 0.002 0.002 0.003 0.003 0.003
(3, 2, 4, 1) 250 12 0.049 0.007 0.004 0.002 0.002 0.002
(3, 4, 1, 2) 380 18 0.002 0.001 0.001 0.001 0.001 0.001
(3, 4, 2, 1) 350 20 0.003 0.001 0.001 0.001 0.001 0.001
(4, 1, 2, 3) 300 6 0.007 0.005 0.004 0.004 0.004 0.004
(4, 1, 3, 2) 270 8 0.019 0.007 0.006 0.004 0.004 0.004
(4, 2, 1, 3) 350 10 0.003 0.002 0.001 0.001 0.002 0.001
(4, 2, 3, 1) 290 14 0.009 0.002 0.002 0.001 0.001 0.001
(4, 3, 1, 2) 370 16 0.002 0.001 0.001 0.001 0.001 0.001
(4, 3, 2, 1) 340 18 0.003 0.001 0.001 0.001 0.001 0.000

Table 1: Results of the simulation study of Section 5.1. List of the 24 4-rankings (column
1), along with the quantities D(ρ) and D∗(ρ) defined in Result 1 (columns 2 and
3 respectively). Columns 4 to 9 contain the estimated posterior probabilities of each
ranking (rows) and each setting, for increasing values of N0. Four rows are highlighted:
in dark-gray, the prior consensus ρ = ρ0 (D∗(ρ) = 0); in light-gray, the rankings
nearest ρ0 (D∗(ρ) = 2). The MLE (where D(ρ) = 220 is minimized) is indicated by
bold characters.

of D(ρ) (row highlighted in light-gray and with bold characters). Studying this table, we
can verify that Result 1 holds. For instance, solving (10) with ρ1 = ρ0 and ρ2 = ρMLE,
we obtain that ρ0 has a higher posterior probability than ρMLE if and only if N0 > 15,
which the empirical results confirm. Also, all rankings ρ with D∗(ρ) ≤ D∗(ρMLE) have
lower posterior probabilities than ρMLE. Furthermore, if D∗(ρ1) = D∗(ρ2), then ρ1 has
a higher posterior probability than ρ2 if D(ρ1) > D(ρ2).

We can also notice the following sensitivity behavior of the posterior probabilities:
with increasingN0, the rankings which are closer to ρ0 (in terms of Spearman’s distance,
or equivalently a smaller D∗(ρ)) have increasing posterior probabilities, while those that
are farthest from ρ0 have decreasing posterior probabilities, even when the distance to
the data D(ρ) is not too high. An example of this can be seen in the row corresponding
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to ρ = (3, 1, 4, 2), which has D(ρ) = 230 and D∗(ρ) = 6 and for which increasing N0

from 0 to 20 has the effect of decreasing the posterior probability from 0.169 to 0.012.
The posterior means of θ in the six settings were 0.068, 0.074, 0.065, 0.06, 0.057, 0.055,
while θMLE = 0.08.

o Prop. N0 = 0 N0 = 1 N0 = 5 N0 = 10 N0 = 49 N0 = 98 D∗(ρ)
ACDEB 0.337 0.047 0.055 0.062 0.076 0.105 0.078 4
ADCEB 0.184 0.037 0.044 0.050 0.060 0.129 0.129 2
ACDBE 0.122 0.031 0.035 0.041 0.048 0.095 0.103 2
ADCBE 0.082 0.025 0.030 0.034 0.041 0.114 0.176 0
ACEDB 0.061 0.022 0.028 0.024 0.025 0.018 0.015 10
CADEB 0.051 0.025 0.028 0.030 0.026 0.023 0.019 8
ADECB 0.051 0.015 0.019 0.021 0.020 0.020 0.020 6

Table 2: Results for the idea dataset. List of orderings corresponding to the rankings
with the highest observed frequencies in the data (columns 1 and 2 respectively), along
with their EPP in different settings, corresponding to values of N0 between 0 and N
(columns 3 to 8). In column 9 we present the Spearman distance between each ranking
and the prior mode. The highest EPP of each setting is highlighted in bold characters.

5.2 idea dataset

For illustrative purposes, in this section we use the benchmark dataset idea (see e.g.
Fligner and Verducci, 1990; Gupta and Damien, 2002). The data, collected by the
Graduate Record Examination (GRE) Board, consist of a sample of N = 98 rankings,
each of them generated by a college student who was asked to rank n = 5 words
according to their strength of association with the target word ‘idea’. The five words
are ‘thought’ (A), ‘play’ (B), ‘theory’ (C), ‘dream’ (D), and ‘attention’ (E). Our aim
is to show the effect of our informative prior for ρ on the inference. Since n is very
small in this example, we can use the exact framework for posterior simulation outlined
in Section 4, and choose the Jeffreys prior for the parameter θ, thus reflecting our
lack of prior knowledge. In this example, we assume there is reason to believe that
o0 = (A,D,C,B,E) is the true ordering of association of the five words. We therefore
choose the corresponding ranking vector ρ0 = (1, 4, 3, 2, 5) as the prior mode. The choice
of N0, interpreted as an equivalent sample size, reflects our confidence in ρ0, so we
consider different settings, corresponding to increasing values of N0. Inference is carried
out via MCMC posterior simulation, using a sample size of 5 × 104 iterations, after a
burn-in of 5 × 103, and the results are shown in Table 2. The orderings corresponding
to the most frequently observed rankings in the dataset and their empirical frequencies
or sample proportions are shown in columns 1 and 2 respectively, along with their
estimated posterior probabilities (EPP) in the different settings (columns 3 to 8). In
column 9 we report the Spearman distance between each of the top observed rankings
and the prior mode (that is, D∗(ρ)).

Recall that our prior (5) assigns equal mass to all rankings at the same Spearman
distance from ρ0. This behavior has some analogies with the prior of Gupta and Damien
(2002). However, while there is always a unique ranking at Spearman’s distance 0 from
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ρ0, each conjugacy class contains more than one ranking, all of which are assigned the
same mass by the prior of Gupta and Damien (2002), henceforth GD. As we show below,
this difference has a relevant effect on the posterior inferences based on our prior (5),
when compared to the results by GD.

From this table we can notice the following:

• the EPP of (A, D, C, B, E), which corresponds to the prior mode ρ0 (row 4),
increases consistently with N0; when N0 = N , it becomes the posterior modal
ranking;

• the ordering (A, C, D, E, B), corresponding to ρMLE (row 1), remains the ranking
with largest EPP provided that the equivalent sample size N0 is not too large. In
other words, if the prior does not assign too much mass to ρ0 �= ρMLE ;

• the relative ordering of the seven rankings in terms of posterior probability de-
pends on N0, changing for large values which imply strong prior information.

Comparing our results with the findings of GD (Table 3), we notice that:

1. the posterior distribution of GD places most of the mass (about 0.93) on the top
6 rankings, thus penalizing all other rankings in P5;

2. the EPP of the prior modal ranking with ordering (A, D, C, B, E), obtained by
GD does not increase with the concentration parameter (in their paper denoted
by λ∗), but rather decreases (from 0.019 when λ∗ = 0, to 0.0067 when λ∗ = 0.1).
This is not in line with the expected behavior of an informative prior.

Our posterior distributions, instead, are generally flatter and, importantly, do not
show the contradictory behavior with respect to the concentration parameter exhibited
by the results of GD, which is probably a consequence of the complex structure of the
conjugacy classes of P5.

5.3 The prior elicitation problem in practice

In this section we show an example of prior elicitation based on covariates. For the illus-
tration we use the sushi benchmark data of Kamishima (2003), which consists of full
rankings of n = 10 different kinds of sushi items given by N = 5000 respondents accord-
ing to their personal preference. This dataset, available at http://www.kamishima.net/
sushi/, has been extensively analyzed (see for instance Lu and Boutilier, 2011; Vitelli
et al., 2018; Xu et al., 2018), and exploited in order to show inferential results under
different models. We here are not interested in doing inference on this dataset (which
requires a mixture model extension, and a deeper analysis), but rather to illustrate a
possibility to elicit the hyper-parameters of the proposed prior in a real case study.
Indeed, this dataset is particularly interesting because it includes covariates of the sushi
item, which we use to build an informative prior over the consensus ranking.

http://www.kamishima.net/sushi/
http://www.kamishima.net/sushi/
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Sushi item oil eat price sell

shrimp 2.73 2.14 1.84 0.84
sea eel 0.93 1.99 1.99 0.88
tuna 1.77 2.35 1.87 0.88
squid 2.69 2.04 1.52 0.92

sea urchin 0.81 1.64 3.29 0.88
salmon roe 1.26 1.98 2.70 0.88

egg 2.37 1.87 1.03 0.84
fatty tuna 0.55 2.06 4.49 0.80
tuna roll 2.25 1.88 1.58 0.44

cucumber roll 3.73 1.46 1.02 0.40

Table 3: Covariate values of interest (columns) for each of the n = 10 sushi items (rows).

We begin from the elicitation of the consensus ranking hyper-parameter ρ0 of (5).
The following covariates of the sushi items (see Table 3) are likely to have an impact
on the personal preference of the respondents:

1. oil: the oiliness in taste (measured on a 0–4 continuous scale, where the smaller
the value is, the more oily is the sushi item);

2. eat: How frequently the sushi item is eaten in sushi shops (measured on a 0–3
continuous scale, where high values correspond to highly frequently sold);

3. price: the normalized price of the item;

4. sell: the frequency with which the sushi item is sold (measured on a 0–1 contin-
uous scale, where high values correspond to highly frequently eaten).

According to our judgement, we believe that i) the more oily the sushi item is, the
more it is preferred; ii) the more eaten, the more it is preferred; iii) price is positively
correlated with preference; iv) the more a sushi is sold, the more it is preferred. Clearly,
the above assumptions are subjective, and someone else may decide to include these
covariates differently (for instance, another judge could let the price play the opposite
role). Table 4 shows the rank vectors obtained from the above criteria by applying
the rank transformation Y introduced in Section 2 to the covariate vectors of Table 3.
Notice that, while the transformation gives rise to proper rankings when applied to the
oil, eat and price variables, it does not result in a proper ranking when applied to
the sell variable (column 5): sea eel, tuna, sea urchin and salmon roe have the same
covariate value (0.88 in Table 3), which results in a tied rank (3.5 in Table 4). Similarly,
shrimp and egg have the same value (0.84) resulting in the tied rank (6.5). Nonetheless,
the transformed vector for the covariate sell is an element of the permutation polytope
pp10, and is therefore a valid choice for the hyper-parameter ρ0.

An interesting feature of Table 4 is that the rankings induced by the different covari-
ates are not equal but partially agree. The researcher would therefore be interested in
combining the prior information coming from these different sources. The simplest possi-
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Sushi item oil eat price sell

shrimp 9 2 6 6.5
sea eel 3 5 4 3.5
tuna 5 1 5 3.5
squid 8 4 8 1

sea urchin 2 9 2 3.5
salmon roe 4 6 3 3.5

egg 7 8 9 6.5
fatty tuna 1 3 1 8
tuna roll 6 7 7 9

cucumber roll 10 10 10 10

Table 4: Rank vectors for the sushi items, obtained from the covariates via the rank
transformation.

bility in this regard, is to set the prior consensus hyper-parameter equal to the average of
the rankings induced by the four covariates, that is, ρ01 =(5.875, 3.875, 3.625, 5.25, 4.125,
4.125, 7.625, 3.25, 7.25, 10) ∈ pp10, or to its rank vector, ρ02 = Y (ρ01) = (7, 3, 2, 6, 4.5,
4.5, 9, 1, 8, 10) ∈ pp10. Alternatively, the four rankings could be given unequal weights,
which would amount to calculating a weighted average, in the same spirit of Genest
et al. (1986). The elicitation of the precision parameter, η0, requires a more qualitative
reasoning. Considering the parametrization η0 = θ0N0, we may decide to fix N0 = 4,
since the consensus hyper-parameter comes from the average of four rankings, which
may be interpreted as the opinions of four experts. At the same time, we may choose a
relatively large value of θ0, for instance θ0 = 0.1 (which is considered large, given the
scale of the problem), thus reflecting confidence in ρ0, given the partial agreement of
the four rankings used to construct the consensus hyper-parameter.

Another option for the elicitation of η0, is to reason by calibration, as explained in
Section 3. After having elicited the prior modal vector ρ02 = Y (ρ01) = (7, 3, 2, 6, 4.5,
4.5, 9, 1, 8, 10) ∈ pp10, the analyst may elicit the a priori expected per-item error size,
e0, and then solve for η0. To do so, we first compute the expected error size range with
n = 10 and k = 8, which results in fmax − fmin = 16.4. Then, we elicit e0 as a fraction
of the range, say e0 = 0.5(fmax − fmin) = 8.2. Finally, we find the value η0 such that
f(η0,ρ0) = e0. For instance, if e0 = 8.2 the corresponding value for the prior precision
is η0 = 0.03, while if e0 = 0.1(fmax − fmin) = 1.64, then η0 = 0.2, reflecting the larger
a priori confidence of the expert in the elicited modal ranking.

Another interesting possibility, mentioned in Section 3.1, is to treat the four rankings
as data and perform a prior analysis on these, through a simple Mallows model. The
posterior estimates of the parameters resulting from this prior analysis could then be
used as the elicited hyper-parameters for the prior. We proceeded as follows. First, we
converted the four rankings to pairwise preferences: each item was preferred to all items
with strictly higher rank. This preprocessing was done in order to take the sell covariate
into account, since the Mallows model does not admit rankings with ties (like the sell
covariate of Table 4) as input. After this transformation, however, the Mallows model
for pairwise preferences (Vitelli et al., 2018) can be used. We fit a Mallows model with
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Spearman’s distance on such data, and a point estimate is obtained from the posterior
distribution of the consensus ranking, which is then used as the hyper-parameter in
the prior. We choose, as the point estimate, the cumulative probability (CP) consensus
ranking, obtained by first assigning rank 1 to the item which has the maximum a
posteriori marginal probability of having rank 1, then assigning rank 2 to the item,
among the remaining ones, which has the maximum a posteriori marginal posterior
probability of having ranks 1 or 2, and so on. As noted in Vitelli et al. (2018), the
CP consensus ranking is a robust estimator which can be seen as a sequential MAP
estimator. We obtain ρ̂CP = (7, 3, 2, 6, 4, 5, 9, 1, 8, 10)3 and the posterior mean of the

scale parameter is θ̂ = 0.44. The results of this prior analysis can now be used as
hyper-parameters of the prior (5), by setting η0 = θ̂, and ρ0 = ρ̂CP .

5.4 A real-world example: COVID-19 and Italian support policies

In this section we use some data collected by the Bank of Italy in order to show the use
of our proposed prior.

The data are part of a special survey (Iseco4) carried out between March and May
2020, a period marked by the spread of the COVID-19 pandemic and by the containment
measures taken by the Italian Government. The survey contained questions intended to
assess how the pandemic was affecting firms’ business and how firms were responding
to it. In total 3503 firms were interviewed.

We here focus on one particular question (answered by N = 3462 firms), which
asked the firms which support policies were judged most appropriate to contain the
impact of the spread of the Coronavirus on the economy. Each firm was asked to select
up to two policies (among n = 8 possible options/choices labelled a1 to a8) in order of
importance. As such, the answers to the question are an example of top-2 rankings.

Interestingly, the survey was conducted in a 10-week period of time, and in each time
point a different sample of firms was interviewed. We then divide the original sample
into 10 sub-samples corresponding to the week in which the survey was answered by the

firm, and run the model separately in each time period. We denote by R(t) = {R(t)
j }N(t)

j=1

the sample of top-2 rankings provided by the N (t) firms at time point t, and assume that,
for each week t, there is a consensus ranking ρ(t) of the eight answers, which reflects
the consensus of the N (t) firms at time t. We model this with a Mallows model, thus

assuming that, for each t, R
(t)
1 , . . . ,R

(t)

N(t) |ρ(t), θ(t)
iid∼ M(ρ(t), θ(t)). We aim at making

inference on ρ(1), . . . ,ρ(10).

The data, in each time period, are analyzed with an adapted version of the Bayesian
Mallows model for partial data (see Vitelli et al., 2018), which can handle top-k rankings

3Note that the Maximum a Posteriori (MAP) ranking, in this case would be ρ̂MAP =
(7, 3, 2, 6, 5, 4, 9, 1, 8, 10) with an associated EPP of 0.00078. The EPP of ρ̂CP is instead 0.00061. These
very low figures imply that the posterior distribution is quite flat, which is expected, since the sample
size is only N = 4, while the cardinality of the permutation space is 10!.

4The data can be processed with Bank of Italy’s BIRD system at the following link: https://www.
bancaditalia.it/statistiche/basi-dati/rdc/bird/index.html.

https://www.bancaditalia.it/statistiche/basi-dati/rdc/bird/index.html
https://www.bancaditalia.it/statistiche/basi-dati/rdc/bird/index.html
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Figure 1: Results of scenario a. The development of the ranks of the considered 8
options (a1 to a8, see right-vertical axis). Ranking obtained on the posterior cumulative

probability rankings, computed from the marginals of the posterior πN(t)

(ρ(t)|R(t)), t =
1, . . . , 10. Best option has rank 1.

with the help of data augmentation techniques, in two different settings:

a. with the uniform prior over ρ(t), t = 1, . . . , 10. This amounts to setting the central

parameter of (5) equal to the barycenter of the permutohedron, ρ0 = (n+1)
2 1n, in

each time priod t;

b. using a summary of the posterior density of ρ(t) as hyper-parameter for prior (5)
in the current week’s inference (at time t+ 1).

Since n = 8, we use the exact framework for posterior simulation outlined in Sec-
tion 4, and choose, for each t, the exponential prior for θ(t), π(θ(t)|λ) = λ exp (−λθ(t)),
with λ = 0.1, after some tuning. In this example we also assume prior independence

π(ρ(t), θ(t)|λ, η(t)0 ,ρ
(t)
0 ) = π(θ(t)|λ)π(ρ(t)|η(t)0 ,ρ

(t)
0 ), and set the hyper-parameter η

(t+1)
0 ,

t ≥ 1, equal to the posterior mean of the θ(t) parameter obtained in the previous pe-
riod’s inference. For each period, we run 100 different chains with 104 iterations and
discarded the first 103 as burn-in.

In Figure 1, obtained under setting a., the CP consensus ranking of the eight options
is reported (on the right-vertical axis) for each time period (on the x-axis, in brackets,
the number of firms that were interviewed during the corresponding week is also shown).
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Figure 2: Results of scenario b. The development of the ranks of the considered 8
options (a1 to a8, see right-vertical axis). Ranking obtained on the posterior cumulative

probability rankings, computed from the marginals of the posterior πN(t)

(ρ(t)|R(t)), t =
1, . . . , 10. Best option has rank 1.

We see that answer a1 (gray line) acquires popularity over time, passing from being
ranked as the third option (first three weeks), to being ranked first in the remaining
weeks. Answer a5 (yellow line) instead goes from being the first choice (first three weeks)
to be classified as third in the following weeks.

We then repeat the analysis using setting b. and inspect the differences in the infer-
ence. Under scenario b., where the inference in time t + 1 is enriched with some prior
information gained in period t, one might expect the resulting estimates to be more
stable than those in scenario a. Indeed, in Figure 2 we see that answer a5 (yellow line)
loses popularity over time as in scenario a., but it passes from being ranked first to being
ranked third more smoothly, by being ranked second in week 4. Note that, indirectly,
this may also affect other answers’ ranks because the rankings are mutually exclusive
(see how a2, orange line, makes room for a5 in week 4, to allow the smoother adjust-
ment). The increased stability in the time development of some ranks is also apparent
when looking at answers a4 and a3 (green and light blue lines respectively).

6 Conclusion

In this paper we have proposed an informative prior distribution for the consensus
ranking of the Mallows model with Spearman’s distance. The peculiarity of the proposed
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prior is that it is a location-scale family for which the location parameter does not need to
be a ranking. This is convenient for the elicitation problem, since the prior can naturally
handle the case when it is difficult to indicate a full ranking which is a priori the most
likely. For instance, when the total number of items in the application considered is
very large, it may be unlikely that an expert is able to elicit a prior ranking over all the
items. On the contrary, it may be possible to put some prior information only over the
top-ranked items. This is often the case in genomics applications, where thousands of
genes are considered in the statistical analysis, but only few of them are known to be
related to some disease. Another case which is naturally handled by our prior, is when
multiple competing rankings are available prior to the analysis, and we are interested
in including all of them into the analysis.

A limitation, discussed in Section 4, arises from the intractability of the normal-
izing constant Z∗ of (5) when the location parameter is not itself a ranking. Possible
directions for future work include exploring tractable approximations for this quantity,
perhaps in the spirit of Mukherjee (2016). In general, more efficient methods for poste-
rior simulations might be developed, but these developments fall outside of the scope of
the present work. We do hope, however, that some of the ideas presented here can shed
light on potentialities and limitations of the Mallows model with Spearman’s distance,
and encourage further developments in constructing more flexible priors.

All the simulation algorithms are implemented in R with the cpp package, and will
soon be integrated into the BayesMallows R package (Sørensen et al., 2020).

Supplementary Material

Additional proofs (DOI: 10.1214/22-BA1307SUPP; .pdf). Proof of Result 1 and of
Proposition 1.
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