
The Annals of Probability
2023, Vol. 51, No. 2, 442–477
https://doi.org/10.1214/22-AOP1599
© Institute of Mathematical Statistics, 2023

LOGARITHMIC HEAT KERNEL ESTIMATES WITHOUT
CURVATURE RESTRICTIONS

BY XIN CHEN1,a, XUE-MEI LI2,b AND BO WU3,c

1School of Mathematical Sciences, Shanghai Jiao Tong University, achenxin217@sjtu.edu.cn
2Imperial College London and EPFL, bxue-mei.li@epfl.ch

3School of Mathematical Sciences, Fudan University, cwubo@fudan.edu.cn

The main results of the article are short time estimates and asymptotic
estimates for the first two order derivatives of the logarithmic heat kernel of
a complete Riemannian manifold. We remove all curvature restrictions and
also develop several techniques.

A basic tool developed here is intrinsic stochastic variations with pre-
scribed second order covariant differentials, allowing to obtain a path inte-
gration representation for the second order derivatives of the heat semigroup
Pt on a complete Riemannian manifold, again without any assumptions on
the curvature. The novelty is the introduction of an ε2 term in the variation
allowing greater control. We also construct a family of cut-off stochastic pro-
cesses adapted to an exhaustion by compact subsets with smooth boundaries,
each process is constructed path by path and differentiable in time. Further-
more, the differentials have locally uniformly bounded moments with respect
to the Brownian motion measures, allowing to bypass the lack of continuity
of the exit time of the Brownian motions on its initial position.

1. Introduction. Let (M,g) be an n-dimensional connected and complete Riemannian
manifold endowed with the Levi–Civita connection ∇ . Let � denote the Laplace–Beltrami
operator, and let p(t, x, y) denote its heat kernel, by which we mean the minimal positive
fundamental solution to the equation ∂

∂t
= 1

2�. The objective of this article is to provide
estimates on the first and the second order gradients of logp(t, x, ·) without imposing any
curvature conditions on M . For a fixed x ∈ M , we use the abbreviation logp for the loga-
rithmic heat kernel logp(t, x, ·) and use ∇ logp and ∇2 logp for its first and second order
derivatives, respectively.

We begin with explaining some of the motivations and potential applications. Let o ∈ M

be fixed; we denote

Po(M) := {
γ ∈ C

([0,1];M) : γ (0) = o
}

the based path space over M . Likewise, let Lo(M) denote the based loop space over M ,

Lo(M) := {
γ ∈ Po(M) : γ (0) = γ (1) = o

}
.

A classical problem is to seek a suitable probability measure on Po(M) or Lo(M), with which
analysis on these infinite dimensional nonlinear spaces can be made and understanding of the
path spaces can be furthered. If M is compact or more generally with bounded geometry, a
natural candidate for the probability measure on Lo(M) is the probability distribution of the
diffusion process with the infinitesimal operator

L := 1

2
� + ∇ logp(1 − t, ·, o)
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and the initial value o. This is the Brownian bridge measure. Since there is no analogue of
a Lebesque measure, translation invariant, on Lo(M), the Brownian bridge measure is es-
sentially the canonical measure to use. Indeed, for M = Rn, the Brownian bridge measure is
a Gaussian measure and it is quasi-invariant under translations of Cameron–Martin vectors.
To construct such a diffusion process, which is usually called the Ornstein–Uhlenbeck pro-
cess, we define a pre-Dirichlet form. This form will be called the Ornstein–Uhlenbeck (O-U)
Dirichlet form. To verify that the pre-Dirichlet form yields a Markov process, it is neces-
sary to show it is closed—a property following readily once we have an integration by parts
(IBP) formula. The key ingredient for such an IBP formula is suitable short time estimates
on ∇ logp and ∇2 logp. We refer the reader to Aida [1, 2], Airault and Malliavin [4], Driver
[22], Hsu [43] and Li [52] for more detail.

Another interesting problem is to establish functional inequalities for the O-U Dirichlet
form. This includes the Poincaré inequality and logarithmic Sobolev inequality. They de-
scribe the long-time behaviours of the associated diffusion process. The logarithmic Sobolev
inequality for Gaussian measures was obtained by Gross in the celebrated paper [39]. How-
ever, this is not known to hold for loop space over a general manifold M . When M was the
hyperbolic space, Poincaré inequality was shown to hold on L0(M) by the authors of the
article [16] and Aida [3]. If M was compact simply connected with strictly positive Ricci
curvature, a weak Poincaré inequality with explicit rate function was also established by the
authors of the article [17]. It was shown in Gross [40] that the Poincaré inequality for O-U
Dirichlet form did not hold on Lo(M) when M was not simply connected. Soon after, Eberle
[24] constructed a simply connected compact manifold for which the Poincaré inequality for
O-U Dirichlet form did not hold on Lo(M). When the based manifold M was compact, Aida
[1], Eberle [23], Gong and Ma [36], Gong, Röckner and Wu [35] and Gross [40] have ob-
tained weighted log-Sobolev inequalities or other different versions of modified log-Sobolev
inequalities on Lo(M). In all the results mentioned above, the crucial ingredient was again
the asymptotic estimates for ∇ logp and ∇2 logp.

We want to stress that all the results mentioned above have been established for the base
manifold M compact or with some bounded geometry conditions, since the short time or
asymptotic estimates for ∇ logp and ∇2 logp were only known for manifolds with such
restrictions. Our immediate concern is to study the construction of diffusion processes and
functional inequalities on Lo(M) without any bounded geometry conditions on M . We will
obtain short time or asymptotic estimates for ∇ logp and ∇2 logp in this paper. These esti-
mates will be applied to study several problems on Lo(M) in a forthcoming paper [15].

It is intriguing that estimates for ∇ logp and ∇2 logp are also main tools for proving the
continuous counterpart of Talagrand’s conjecture for the hypercube �n = {−1,1}n, which
we explain below. Let σ i denote the configuration with the ith coordinate of σ flipped, and
let σi denote the ith component of σ ∈ �n. Let μn ≡ 2−n be the uniform measure on �n

which is reversible associated with the generator Lf (σ) := 1
2
∑n

i=1(f (σ i) − f (σ)), where
σ ∈ �n. Setting Tsf (σ ) := ∫

�n
f (η)	n

i=1(1 + e−sσiηi)dμn(η), then Talagrad’s conjecture
states that, for any s > 0, there exists a constant cs independent of the dimension n such that
μn({σ : Tsf (σ ) ≥ t}) ≤ cs

1
t
√

log t
for t > 1. The value cs is uniformly in the function f with

‖f ‖L1(μn) = 1 and in the dimension. The continuous counterpart of the conjecture is for the
Ornstein–Uhlenbeck semigroup Tt with generator � − x · ∇

sup
f ≥0,‖f ‖

L1(γn)
=1

γn

({
σ : Tsf (σ ) ≥ t

}) ≤ cs

1

t
√

log t
, t ≥ 2,

where γn ∼ N(0, In×n) is the standard n-dimensional normal distribution. This was proven
to be affirmative in Ball, Barthe, Bednorz, Oleszkiewicz and Wolff [9]. The dimension free
best constants were given in Eldan and Lee [26] and Lehec [47] where the key ingredients
are:
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(1) For any g ∈ L1(γn) and any s > 0, ∇2(logTsg) ≥ −c2
s Id.

(2) For any g ∈ L1(γn) nonnegative and with ∇2(logg) ≥ −β Id with a β > 0, one has
γn(g ≥ t) ≤ Cβ

t
√

log t
for any t > 1.

Here, Id is the identity operator. Such estimates for non-Gaussian measures and also for the
M/M/∞ queue on N were obtained by Gozlan, Li, Madiman, Roberto and Samson [37].

2. Main results. The short time and asymptotic estimates are presented in (2.1)–(2.5)
below. To the best of our knowledge, such estimates were obtained only for a Riemannian
manifold with bounded geometry, including a compact Riemannian manifold. Gradient and
Hessian estimates of the form (2.1)–(2.2) were proved by Sheu [64] for Rn with a nontrivial
Riemannian metric where the objective was a nondegenerate parabolic PDEs with bounded
derivatives up to order three, and (2.1) for a compact Riemannian manifold can be found
in Driver [22], obtained using a result of Hamilton [41], Corollary 1.3 and the Gaussian
bounds on heat kernels, see, for example, Li and Yau [48], Cheeger and Yau [14], Davies
[20], Setti [63] and Varopoulos [72, 73]. The estimate (2.2) was shown in Hsu [42] again for
the compact case. For a noncompact Riemannian manifold with nonnegative Ricci curvature,
(2.1) was obtained by Kotschwar [46]. Under a bounded geometry condition together with
a volume noncollapsing condition, similar estimates were obtained by Souplet and Zhang
[65] and Engoulatov [33]. For the heat kernel associated with the Witten Laplacian operator,
these estimates were proved by X.D. Li [49] under a bounded geometry condition on the
Bakry–Emery Ricci curvature. In addition, in all the references mentioned above, suitable
bounded geometry conditions were required. Likewise, the bounded geometry restrictions are
used to derive differential Harnack inequalities and global heat kernel estimates, by Cheeger,
Gromov and Taylor [13], Cheng, P. Li and Yau [19], Hamilton [41], P. Li and Yau [48], they
provide an important step toward (2.1)–(2.2). Meanwhile, the asymptotic gradient estimate
(2.4) was first shown in Bismut [12] for a compact Riemannian manifold. It was extended
to the hypoelliptic heat kernel and the heat kernel on a vector bundle, for M with bounded
geometry, respectively, by Ben Arous [10], Ben Arous and Léandre [11] and Norris [62], cf.
also Azencott [8].

The asymptotic second order gradient estimate (2.5) was established by Malliavin and
Stroock [59] for a compact Riemannian manifold. For “asymptotically flat” Riemannian man-
ifolds with poles and bounded geometry this can be found in Aida [2]. On cut-locus estimates
was studied by Neel [61].

A natural question is then whether the estimates (2.1)–(2.5) still hold for a general non-
compact Riemannian manifold? Note that in Azencott [7], it was illustrated that Gaussian
type heat kernel estimates could not be automatically extended to an arbitrary manifold and
may fail if the completeness of the Riemannian metric was removed.

We state the main estimate. For any y ∈ M , let Cut(y) be the cut locus of y and i(y) the
injectivity radius of y.

THEOREM 2.1 (Theorems 6.7 and 6.10). Suppose that M is a complete Riemannian
manifold with Riemannian distance d:

(1) For every compact subset K of M , the following statements hold:

(a) There exists a positive constant C(K), which may depend on K , such that∣∣∇x logp(t, x, y)
∣∣
TxM ≤ C(K)

(
1√
t

+ d(x, y)

t

)
,(2.1)

∣∣∇2
x logp(t, x, y)

∣∣
TxM⊗TxM ≤ C(K)

(
d2(x, y)

t2 + 1

t

)
(2.2)

for any x, y ∈ K and for any t ∈ (0,1].
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(b) For any y ∈ M and δ < i(y) there exist positive constants t0 and C1 such that

(2.3)

∣∣t∇2
x logp(t, x, y) + ITxM

∣∣
TxM⊗TxM

≤ C1
(
d(x, y) + √

t
)
, x ∈ By(δ), t ∈ (0, t0],

where ITxM is the identical map on TxM .

(2) Let y ∈ M , and assume that K̃ ⊂ M \ Cut(y) is a compact set. Then

lim
t↓0

sup
x∈K̃

∣∣∣∣t∇x logp(t, x, y) + ∇x

(
d2(x, y)

2

)∣∣∣∣
TxM

= 0,(2.4)

lim
t↓0

sup
x∈K̃

∣∣∣∣t∇2
x logp(t, x, y) + ∇2

x

(
d2(x, y)

2

)∣∣∣∣
TxM⊗TxM

= 0.(2.5)

Remarks on the main theorem. As explained in Section 1, these estimates are crucial for
the stochastic analysis of the loop space Lo(M). Despite of the collective efforts, so far, these
type of results have been largely proved only for based manifolds with bounded geometry.
While in this paper, we only need to assume that the based manifold M is complete and
stochastically complete. For analysis on the path space Po(M) over a general complete Rie-
manian manifold without curvature conditions, some work have already been done by Chen
and Wu [18] and Hsu and Ouyang [44]. For Po(M), the content of Theorem 2.1 is not essen-
tial. In a forthcoming paper [15], we shall apply these to obtain integration by parts formula
and construct of O-U Dirichlet form on Lo(M) and to prove several functional inequalities
on Lo(M).

Our main idea is to obtain localised asymptotic comparison theorems for the first and the
second order gradients of logarithmic heat kernel (see Proposition 6.6 and 6.9 below). One
novelty is a new second order derivative formula via a new type of (second order) stochas-
tic variation for Brownian paths on the orthonormal frame bundles which is, in particular,
different from that used by Bismut [12] or Stroock [66]. The idea of stochastic variation
was initiated in [12] for obtaining an integration by part formula. While the choice of the
variation in [66] will produce a term with (the time reverse of) a nonrandom vector field on
L2,1(�;Rn), see also Malliavin and Stroock [59, (1.5)], it seems not possible to replace the
nonrandom vector field in their paper by a random one (otherwise the time reversed field is
not adapted, hence, Itô’s integral is not well defined) which prevents the extension of the for-
mula in [59] to a general noncompact M by a suitable localisation argument. We shall choose
a variation (see Section 4 below) with desired properties which, in particular, ensures that
the formula for the second order gradient of heat semigroup can take a random vector fields.
This is the key step for us to extend the new formula to a general complete M (see, e.g.,
Theorem 3.1 below). The expression we obtain for the second order gradient of heat semi-
group is different from that by Elworthy and Li [32], Li [53, 54], or from that in Arnaudon,
Plank and Thalmaier [6] or that in Thompson [69]. We prove the formula by combining the
second order stochastic variation (shown to hold for a compact manifold) and approximation
arguments (for a noncompact manifold) which is totally different from that in [6, 69]. This
new method is adapted for both the proof of Proposition 6.9 here and the integration by parts
formula in our forthcoming paper [15].

3. Expression for the second order gradient of heat semigroup. Throughout the pa-
per, (�,F ,Ft ,P) denotes a filtered probability space satisfying the standard assumptions,
and Bt = (B1

t ,B2
t , . . . ,Bn

t ) is a standard Rn-valued Brownian motion. Let L(�;Rn) de-
note the collection of all stochastic processes h : R+ × � → Rn which are Ft -adapted. Let
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h′(·,ω) denote the time derivative of h(·,ω). We define the Cameron–Martin space on the
Wiener space as follows:

L2,1(�;Rn) :=
{
h ∈ L

(
�;Rn) : h(·,ω) is absolutely continuous for a.s. ω ∈ �,

and E

[∫ 1

0

∣∣h′(s,ω)
∣∣2 ds

]
< ∞

}
.

Elements of L2,1(�;Rn) are usually called (random) Cameron–Martin vectors. Let Cb(M)

and Cc(M) denote the collection of all real valued bounded and continuous functions on M

and continuous functions with compact supports in M , respectively. Let so(n) denote the set
of of antisymmetric n×n matrices, and let SO(n) denote the collection of orthonormal n×n

matrices.

The curvature. Let Rx denote the sectional curvature tensor, and let Ricx denote the Ricci
curvature tensor at x ∈ M , respectively. Thus, both Rx : TxM × TxM → TxM × TxM and
Ric

x : TxM → TxM are linear map, the latter is given by the duality〈
Ric

x(v1), v2
〉
TxM = Ricx(v1, v2), ∀v1, v2 ∈ TxM.

The horizontal Brownian motion. Given a point x ∈ M , let OxM denote the space of
linear isometries from Rn to TxM . Let OM := ⋃

x∈M OxM , which is the orthonormal frame
bundle over M , and let π : OM → M denote the canonical projection which takes a frame
u ∈ OxM to its base point x. For every u ∈ OM, we define Ru : Rn × Rn → Rn × Rn and
ricu :Rn →Rn by

Ru(e1, e2) := u−1(Rπ(u)(ue1, ue2)
)
,

ricu(e1) := u−1(Ric
π(u)(ue1)

)
for every e1, e2 ∈ Rn.

Given a vector e ∈ Rn, we denote by He the associated canonical horizontal vector field
on OM with the property that (T π)u(He) = ue ∈ Tπ(u)M . Thus, the solution of the ODE

u′(t) = He

(
u(t)

)
projects to the geodesic on M with the initial position x and the initial speed u(0)(e).

We choose an orthonormal basis {ei}ni=1 of Rn. Suppose {Ut }t≥0 is the solution of follow-
ing OM-valued Stratonovich stochastic differential equation

(3.1) dUt =
n∑

i=1

Hei
(Ut ) ◦ dBi

t ,

where the initial value U0 is a fixed orthonormal basis of TxM . We usually call {Ut }0≤t<ζ

the canonical horizontal Brownian motion, where ζ : � → R+ is the lifetime for Ut . Let
Xx

t := π(Ut), 0 ≤ t < ζ(x), then Xx
t is a Brownian motion on M with initial value x and

life time ζ(x). This is the celebrated intrinsic construction of M-valued Brownian motion
by Eells and Elworthy [25] and Elworthy [28], see also Malliavin [58]. It is well known that
the Brownian motion on M does not explode if and only if the horizontal Brownian motion
Ut on OM does not explode. In particular, it does not rely on the choice of an isometrically
embedding from M to an ambient Euclidean space. Let

Ptf (x) := E
[
f
(
Xx

t

)
1{t<ζ(x)}

]
be the heat semigroup associated to Brownian motion X·.

The superscript x may be omitted if there is no risk of confusion.
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3.1. Second order gradient of the heat semigroup. Let {Ut }0≤t<ζ(x) denote the horizontal
Brownian motion on M , and {Xx

t = π(Ut)}0≤t<ζ(x) is the Brownian motion on M with initial
value x and life time ζ(x). For any h ∈ L2,1(�;Rn), we set

(3.2) �h
t :=

∫ t

0
RUs

(◦dBs,h(s)
)
, �h

t := h′(t) + 1

2
ricUt

(
h(t)

)
.

It is easy to see that �h
t is an so(n)-valued process. For t ≥ 0, we define

(3.3) �h
t := �h

t h′(t)+ 1

2
U−1

t ∇ Ric
Xt

(
Uth(t),Uth(t)

)− 1

2
�h

t ricUt

(
h(t)

)+ 1

2
ricUt

(
�h

t h(t)
)
.

We are now ready to state one of our main tools, the second order gradient formula on a
general complete M .

THEOREM 3.1. Suppose that M is a complete Riemannian manifold. Let {Dm}∞m=1 de-
note the increasing family of exhaustive relatively compact open sets of M , and let {lm}∞m=1
denote the cut-off vector fields, as constructed in Lemma 5.1. Assume that x ∈ M , and there
exists m0 ∈ N such that x ∈ Dm0+1.

For every m > m0, v ∈ TxM and t ∈ (0,1], we define

h(s) :=
(

t − 2s

t

)+
lm
(
s,Xx·

)
U−1

0 v, s ≥ 0.

Then h ∈ L2,1(�;Rn). Furthermore, for any f ∈ Cb(M) we have

(3.4)

〈∇2Ptf (x), v ⊗ v
〉
TxM⊗TxM

= Ex

[((∫ t

0

〈
�h

s ,dBs

〉)2
−

∫ t

0

〈
�h

s ,dBs

〉− ∫ t

0

∣∣�h
s

∣∣2 ds

)
f
(
Xx

t

)
1{t<ζ(x)}

]
.

In particular, the processes lm(t, γ ) equals to 1 at any time before γ exits Dm−1 and equals
to zero after it exits Dm for the first time. So it is obvious to see that h(t, γ ) = U−1

0 v at t = 0
and vanishes after the first exit time of γ from Dm.

3.2. Comments. The main idea for proving the second order gradient of the heat semi-
group Pt is to approximate the formula on M by those for a family of specific compact
manifolds. We first use a result of Greene and Wu [38] to construct a family of relatively
compact exhausting open subsets {Dm}∞m=1 which is valid for a complete Riemannian man-
ifold M . This allows to construct a series of random cut-off vector fields lm ∈ L2,1(�;Rn)

vanishing, as soon as the sample path exits Dm for the first time, with the necessary quanti-
tative estimates needed for the localisation, see Lemma 5.1 below for details. The lemma is
partly inspired by the work of Thalmaier [67] and Thalmaier and Wang [68], where geodesic
balls are used. For the purpose of embedding into compact manifolds, we make sure that each
Dm having a smooth boundary which, because of the cut locus, can not be taken as granted
of geodesic balls on arbitrary Riemannian manifolds.

We want to remark that this offers a more powerful (and also a more reliable) alternative to
localisation with stopping times, the latter has been commonly used in stochastic calculus and
occasionally incorrectly used. The stopping time argument relies on a continuity assumption
on the Brownian motion with respect to the initial value. Such continuity condition seems
not easy to verify (for stopping times) and ought not be applied casually, see, for example,
Elworthy [27], Li and Sheutzow [55], and Li [51] for more details. Note, however, that exit
times from regular domains do have good regularity properties in the sense of Malliavin
calculus, we refer the reader to the work of Airault, Maillian, and Ren [5] for more details.
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Cut-off vector fields have been previously applied by Arnaudon, Plank and Thalmaier
[6], Thompson [69], Thalmaier [67] and Thalmaier and Wang [68] to provide a localised
differential formula for heat semigroups. As explained earlier, we use a new type of (second
order) stochastic variation argument to construct the global second order gradient formula
given below. In particular, the expression here is different from that of Elworthy and Li [32],
Arnaudon, Plank, and Thalmaier [6], Li [53, 54] and Thompson [69]. And we do not use the
doubly parallel translation operators used in [53, 54].

3.3. Comparison theorems. The outline of the proof is as follows. We first show that the
formula holds for a compact Riemannian manifold, this proof is given in Section 4 using a
new stochastic variation. To pass from a compact manifold to a noncompact manifold, we use
a suitable isometric embedding from Dm into a compact Riemannian manifold M̃m as well as
the quantitative cut-off process lm constructed by Lemma A.1 and Lemma 5.1, respectively.

Denote by p
M̃m

(t, x, y) the heat kernel on M̃m. Although the heat kernel of a Riemannian
manifold is determined in a global manner by the Riemannian metric, we obtain below short
time comparison theorems between ∇ logp

M̃m
, ∇2 logp

M̃m
and ∇ logp, ∇2 logp. These are

used for proving (2.1)–(2.5).
The comparison theorem below allows us to obtain estimates for ∇ logp and ∇2 logp,

with the successive applications of first order and second order gradient formula as well as
comparison estimates for functionals of the Brownian motions on M and those on M̃m.

PROPOSITION 3.2 (Propositions 6.6 and 6.9). Suppose K is a compact subset of M . For
any constant L > 1, there exists a m0 = m0(K,L) ∈ N, which may depend on K and L, such
that, for all m ≥ m0, we could find a positive time t0 = t0(K,L,m) such that

sup
x,y∈K

∣∣∇x logp(t, x, y) − ∇x logp
M̃m

(t, x, y)
∣∣
TxM ≤ C(m)e−L

t , ∀t ∈ (0, t0],

sup
x,y∈K

∣∣∇2
x logp(t, x, y) − ∇2

x logp
M̃m

(t, x, y)
∣∣
TxM⊗TxM ≤ C(m)e−L

t , ∀t ∈ (0, t0],

where C(m) is a positive constant depending on m.

4. Second order variation on a compact manifold. Throughout this section, M is an
n-dimensional compact Riemannian manifold. In Proposition 4.4 below, we shall establish
(3.4) for a compact manifold which is a fundamental step toward Theorem 3.1.

The first second order differential formula for the heat semigroup Pt was obtained by El-
worthy and Li [30] for a noncompact manifold, however, with restrictions on their curvature.
Another disadvantage of the formula was its involvement of a nonintrinsic curvature which
was due to the application of the derivative flow of gradient stochastic differential equations
as well as a martingale approach developed in Li [50]. An intrinsic formula for ∇2Ptf was
given by Stroock [66] for a compact Riemannian manifold, while a localised intrinsic for-
mula was obtained by Arnaudon, Plank and Thalmaier [6] with the martingale approach. The
study of the second order gradient of the Feynman–Kac semigroup of an operator �+V with
a potential function was pioneered by Li [53, 54], where a path integration formula was ob-
tained with the help of doubly damped stochastic parallel transport equation. (The first order
gradient formula was previously obtained in Li and Thompson [56]; cf. [30, 31].) A localised
version of the Hessian formula (still with doubly stochastic damped parallel translations) for
the Feynman–Kac semigroup was derived by Thompson [69].

However, all the expressions mentioned earlier do not seem to lead to our application,
such as the proof of Proposition 3.2. To overcome this problem, we introduce a quantitative
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localisation procedure and obtain a second order gradient formula to which this localisation
method can be applied.

One of our main tools is to extend Bismut’s idea to perturb the M-valued Brownian mo-
tion with initial value ξ(ε) (where ξ(ε) is a smooth curve in M), they will be constructed as
solutions of a family of SDEs with the driving Brownian motion {Bt }t≥0 rotated and trans-
lated appropriately. The rotation and translation exerted on {Bt }t≥0 transmits the variation in
the initial value of the Brownian motion on the manifold to variations, in the same param-
eter, of the Radon Nikodym derivatives of a family of probability measures with respect to
which the solutions are Brownian motions on M . This simple and elegant idea was applied
in Bismut [12] for deducing an integration by parts formula. Incidentally, such integration by
parts formula and the first order gradient formula of the heat semigroup were proved to be
equivalent on a compact manifold by Elworthy and Li [32]. In Stroock [66], by calculating
the concrete form of the second variation introduced by Bismut, this idea was adapted for
obtaining the second order derivative formula for the heat semigroup on a compact manifold.
As explained earlier, the choice of stochastic variation in [66] (see also Malliavin and Stroock
[59, (1.5)] will produce a term coming from the time reverse of a nonrandom vector field on
L2,1(�;Rn), and it seems not possible to replace the nonrandom vector field by a random
one (otherwise, the time reversed field is not adapted, hence, Itô’s integral is not well de-
fined). Therefore, the formula obtained in Stroock [66] may not be extended to the one with
a random vector field and so is not suitable to for extension to noncompact manifolds with
the localisation technique we introduce shortly.

One crucial ingredient for our choice of the stochastic variation is that it ensures (4.10)
which implies that the second variation vanishes at time t when we choose a vector field h

in the translated part satisfying h(t) ≡ 0. This allows us to derive a second order gradient
formula with localised vector fields and to extend it to a general (noncompact) complete
Riemannian manifold.

4.1. A novel stochastic variation with a second order term. As before, {Ut }0≤t<ζ(x) is the
solution of equation (3.1) with initial point U0 and π(U0) = x. In Bismut [12] the following
classical perturbation for the driving force Bt was used:

B̂ε
t =

∫ t

0
e−ε�h

s dBs + ε

∫ t

0

(
h′(s) + 1

2
ricUs h(s)

)
ds,

where h ∈ L2,1(�;Rn) is a chosen Cameron–Martin vector and �h
t := ∫ t

0 RUs (◦dBs,h(s)).
This perturbation of the noise works well with the first variation for which one needs to ensure
that ∂

∂ε
|ε=0π(Uε

t ) = Uth(t) and has been the popular and standard perturbation, as used also
in Driver [21], Fang and Malliavin [34]. Other variation of the noise are also of first order
perturbations.

However, with the above mentioned variation, ∂2

∂ε2 |ε=0π(Uε
t ) �= 0 as long as h(t) �≡ 0.

To solve this problem, we will introduce a second order variation (such perturbation is not
unique, and we may find a slightly different choice). Unlike the case with the classical per-
turbation, this time we cannot avoid differentiating the structure equation so have to choose
a connection on the frame bundle. Our approach is inspired by the theory of linear connec-
tions induced by a SDE developed by Elworthy, LeJan and Li [29]. We believe that the same
method can also be used for higher order variations.

For any h ∈ L2,1(�;Rn), we have defined an so(n)-valued process �h
t and Rn-valued

process �h
t , �h

t by (3.2) and (3.3), respectively. We first introduce the translation and define
the Rn-valued process B

ε,h
t as follows:

(4.1) B
ε,h
t := Bt + ε

∫ t

0
h′(s)ds + ε2

2

∫ t

0
�h

s ds,
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where �h
t := �h

t h′(t). We then introduce a rotation for Rn-valued Brownian motion. Let us
first set

(4.2)
�

(2),h
t :=

∫ t

0
U−1

s ∇Rπ(Us)

(
Ush(s),Us ◦ dBs,Ush(s)

)−
∫ t

0
�h

s RUs

(◦dBs,h(s)
)

+
∫ t

0
RUs

(
h′(s), h(s)

)
ds +

∫ t

0
RUs

(◦dBs,�
h
s h(s)

)
.

It is easy to see that �
(2),h
t is an so(n)-valued process. Then, for every ε > 0, we define

SO(n)-valued process G
ε,h
t as follows:

G
ε,h
t := exp

(
−ε�h

t − ε2

2
�

(2),h
t

)
,

where exp : so(n) → SO(n) is the exponential map in the Lie algebra so(n) of SO(n).
We can now introduce B̃

ε,h
t , the variation of Bt as well as the corresponding equation on

OM.

DEFINITION 4.1. Let ξ(ε), ε ∈ (−1,1), be a geodesic with ξ(0) = x. Let
{
U

ε,h
0 : ε ∈

(−1,1)
}

be a parallel orthonormal frame along ξ(ε) with π(U
ε,h
0 ) = ξ(ε). Let Uε

t denote the

solution of the following equation with initial condition U
ε,h
0 ,

(4.3)
dU

ε,h
t =

n∑
i=1

Hei

(
U

ε,h
t

) ◦ dB̃
ε,h,i
t ,

dB̃
ε,h
t = G

ε,h
t ◦ dB

ε,h
t , B̃

ε,h
0 = 0.

We define X
ε,ξ(ε),h
t = π(U

ε,h
t ). If ε = 0, then X

0,x,h
t = Xx

t with Xx
t = π(Ut).

We remark that the perturbation in U
ε,h
t has a translation part B

ε,h
t and a rotation part G

ε,h
t .

The rotation G
ε,h
t is chosen to offset precisely the twisting effects induced by the second order

stochastic variation.
For simplicity we omit the subscript h, in �h

t , �h
t , X

ε,h
t , �h

t , �
(2),h
t , G

ε,h
t , B

ε,h
t and U

ε,h
t ,

from time to time.
Let � and θ denote, respectively, the so(n)-valued connection 1-form and the Rn-valued

solder 1-form, respectively. Set

�ε
t := �

(
∂

∂ε
Uε

t

)
, θε

t := θ

(
∂

∂ε
Uε

t

)
.

Through this paper we use Dt , dt to denote the stochastic covariant differential for vector
fields and stochastic differential on M along a semimartingale, respectively, and D

∂ε
denotes

the covariant derivative for vector fields on M with respect to the variable ε.

LEMMA 4.1. If we choose h ∈ L2,1(�;Rn) such that h(0) = U−1
0 ( ∂

∂ε
|ε=0ξ(ε)), then

(4.4) �ε
t =

∫ t

0
RUε

s

(
Gε

s ◦ dBε
s , θε

s

)
.

And θε
t satisfies the following equation:

(4.5)

⎧⎨
⎩

dθε
t = −(

�t + ε�
(2)
t

)
Gε

t ◦ dBε
t + �ε

t Gε
t ◦ dBε

t + Gε
t

(
h′(t) + ε�t

)
dt,

θε
0 = (

Uε
0
)−1 dξ(ε)

dε
.
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In particular, we have

(4.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0
t := θ

(
∂

∂ε

∣∣∣∣
ε=0

Uε
t

)
= h(t),

� 0
t = �t ,

D

∂ε

∣∣∣∣
ε=0

(
Uε

t Gε
t e
) = 0, ∀e ∈ Rd,

∂Xε
t

∂ε

∣∣∣∣
ε=0

= Uth(t).

PROOF. We first use the structure equation

d�

(
dtU

ε
t ,

∂

∂ε
Uε

t

)
= −� ∧ �

(
dtU

ε
t ,

∂

∂ε
Uε

t

)
+ RUε

t

(
θ
(
dtU

ε
t

)
, θ

(
∂

∂ε
Uε

t

))

= −
n∑

i=1

� ∧ �

(
Hei

(
Uε

t

) ◦ dB̃
ε,i
t ,

∂

∂ε
Uε

t

)
+ RUε

t

(
θ
(
dtU

ε
t

)
, θε

t

)

= RUε
t

(
θ
(
dtU

ε
t

)
, θε

t

)
to obtain

d�ε
t = d�

(
dtU

ε
t ,

∂

∂ε
Uε

t

)
= RUε

t

(
θ
(
dtU

ε
t

)
, θε

t

) = RUε
t

(
Gε

t ◦ dBε
t , θε

t

)
.

Since at time 0, the variation {Uε
0 ; ε ∈ (−1,1)} is parallel along the geodesic ξ , �ε

0 = 0. Then
(4.4) follows immediately.

Here we have used the Transfer Principle: on the compact manifold M we could treat
the Stratonovich integral as the ordinary derivative (with respect to time variable) in the
computation. Crucially, we could exchange the order of differentiations and integrations.
The transfer principle is well known for compact manifolds, see, for example, [34] or [57],
but not automatically apply to noncompact manifolds nor automatically to the less smooth
case nor to the derivative processes. This is used in similar computations later in the article
without further comment.

Due to the torsion free property, the time derivative and the derivative for ε could commute:
Dt

∂
∂ε

= D
∂ε

dt . Also note that θε
t = (Uε

t )−1T π( ∂
∂ε

Uε
t ), so we have,

(4.7)

dθε
t = (

Uε
t

)−1
(
Dt

(
∂

∂ε
Xε

t

))
= (

Uε
t

)−1
(

D

∂ε
dtX

ε
t

)

= (
Uε

t

)−1
(

D

∂ε

(
Uε

t Gε
t ◦ dBε

t

))

= �ε
t Gε

t ◦ dBε
t + ∂Gε

t

∂ε
◦ dBε

t + Gε
t ◦ d

(
∂

∂ε
Bε

t

)

= �ε
t Gε

t ◦ dBε
t − (

�t + ε�
(2)
t

)
Gε

t ◦ dBε
t + Gε

t

(
h′(t) + ε�t

)
dt,

where the fourth equality is due to

(4.8)
D

∂ε

(
Uε

t Gε
t

) = Uε
t

(
�ε

t Gε
t + ∂

∂ε
Gε

t

)
.

So we have obtained the first equation in (4.5). The initial condition in (4.5) follows triv-
ially from the fact θε

0 = (Uε
0 )−1π( ∂

∂ε
Uε

0 )), {Uε
0 ; ε ∈ (−1,1)} is a parallel orthonormal frame

bundle along ξ(·) and Xε
0 = ξ(ε).
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Based on the fact that

� 0
t =

∫ t

0
RUs

(◦dBs, θ
0
s

)
, �t =

∫ t

0
RUs

(◦dBs,h(s)
)

and taking ε = 0 in (4.5), we arrive at

dθ0
t =

(∫ t

0
RUs

(◦dBs, θ
0
s

)−
∫ t

0
RUs

(◦dBs,h(s)
)) ◦ dBt + h′(t)dt, θ0

0 = h(0).

It is easy to verify that θ0
t = h(t) is the unique solution to above equation, proving the first

line of (4.6). Then plugging in θ0
t = h(t) into (4.4) to see that � 0

t = �t , so we have

D

∂ε

∣∣∣∣
ε=0

(
Uε

t Gε
t e
) = Ut

(
� 0

t e + ∂

∂ε

∣∣∣∣
ε=0

Gε
t e

)
= Ut(�te − �te) = 0,

which is the third line of (4.6). Finally, Dt

(
∂Xε

t

∂ε
|ε=0

)
= Ut dθ0

t = Uth
′(t)dt , giving

∂Xε
t

∂ε
|ε=0 = Uth(t). This completes the proof. �

In particular, we obtain the following lemma.

LEMMA 4.2. For every h ∈ L2,1(�;Rn) with h(0) ≡ v = U−1
0 ( ∂

∂ε
|ε=0ξ(ε)), we have

(4.9)
∂

∂ε

∣∣∣∣
ε=0

�ε
t =

∫ t

0
RUs (◦dBs, ηs) + �

(2)
t ,

where ηs := ∂θε
s

∂ε
|ε=0 and �

(2)
t is defined by (4.2).

PROOF. By the first line of (4.6) we have θ0
t = h(t). We differentiate the integral expres-

sion (4.4) for �ε
t and apply the third line of (4.6) to obtain

∂

∂ε

∣∣∣∣
ε=0

�ε
t = ∂

∂ε

∣∣∣∣
ε=0

∫ t

0

(
Uε

s

)−1RXε
s

(
Uε

s Gε
s ◦ dBε

s ,Uε
s θε

s

)

=
∫ t

0

∂

∂ε

∣∣∣∣
ε=0

(
Gε

s

(
Uε

s Gε
s

)−1RXε
s

(
Uε

s Gε
s ◦ dBε

s ,Uε
s Gε

s

(
Gε

s

)−1
θε
s

))

=
∫ t

0

(
∂Gε

s

∂ε

∣∣∣∣
ε=0

)
RUs

(◦dBs, θ
0
s

)+
∫ t

0
U−1

s ∇RXs

(
Usθ

0
s ,Us ◦ dBs,Usθ

0
s

)

+
∫ t

0
RUs

(
◦d

∂Bε
s

∂ε

∣∣∣∣
ε=0

, θ0
s

)
+

∫ t

0
RUs

(
◦dBs,

(
∂(Gε

s )
−1

∂ε

∣∣∣∣
ε=0

)
θ0
s

)

+
∫ t

0
RUs

(
◦dBs,

∂θε
s

∂ε

∣∣∣∣
ε=0

)
.

Here, the last term is
∫ t

0 RUs (◦dBs, ηs), while the sum of the rest is �
(2)
t , so we have com-

pleted the proof. �

We observe that ηs = ∂θε
s

∂ε
|ε=0 is essentially the second variation of π(Uε

s ).

LEMMA 4.3. For every h ∈ L2,1(�;Rn) with h(0) ≡ v = U−1
0 ( ∂

∂ε
|ε=0ξ(ε)), we have

ηt ≡ 0 for all t ∈ [0,1] and

(4.10)
D

∂ε

∣∣∣∣
ε=0

(
∂Xε

t

∂ε

)
= Ut�th(t).
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PROOF. We recall the first equation of (4.5),

dθε
t = −(

�t + ε�
(2)
t

)
Gε

t ◦ dBε
t + �ε

t Gε
t ◦ dBε

t + Gε
t

(
h′(t) + ε�th

′(t)
)

dt.

Differentiating it at ε = 0, using (4.9) and the following fact:

� 0
t = �t ,

∂Bε
t

∂ε

∣∣∣∣
ε=0

= h′(t), ∂Gε
t

∂ε

∣∣∣∣
ε=0

= −�t , �t = �th
′(t),

we could obtain

dηt = −
(
�

(2)
t + �t

∂Gε
t

∂ε

∣∣∣∣
ε=0

)
◦ dBt − �t ◦ d

(
∂Bε

t

∂ε

∣∣∣∣
ε=0

)

+
(
� 0

t

∂Gε
t

∂ε

∣∣∣∣
ε=0

+ ∂�ε
t

∂ε

∣∣∣∣
ε=0

)
◦ dBt

+ � 0
t d

(
∂Bε

t

∂ε

∣∣∣∣
ε=0

)
+ ∂Gε

t

∂ε

∣∣∣∣
ε=0

h′(t)dt + �th
′(t)dt

=
(∫ t

0
RUs (◦dBs, ηs)

)
◦ dBt .

At the same time, since Xε
0 = ξ(ε), ξ(·) is a geodesic and also {Uε

0 , ε ∈ (−1,1)} is a
parallel orthonormal frame bundle along ξ(·), we could verify that

η0 = ∂θε
0

∂ε

∣∣∣∣
ε=0

= U−1
0

(
D

∂ε

∣∣∣∣
ε=0

(
∂ξ(ε)

∂ε

))
= 0.

Observe that the unique solution to following equation is vt ≡ 0:

dvt =
(∫ t

0
RUs (◦dBs, vs)

)
◦ dBt, v0 = 0.

Then we derive that ηt ≡ 0 for all t ∈ [0,1].
Moreover, note that by definition we have ∂Xε

t

∂ε
= Uε

t θε
t , due to the fact ηt = ∂θε

t

∂ε
|ε=0 ≡ 0,

we obtain

D

∂ε

∣∣∣∣
ε=0

(
∂Xε

t

∂ε

)
= D

∂ε

∣∣∣∣
ε=0

(
Uε

t θε
t

) = Ut

(
� 0

t θ0
t + ∂θε

t

∂ε

∣∣∣∣
ε=0

)
= Ut�th(t).

Now we have obtained (4.10). �

4.2. Proof for the second order gradient formula on a compact manifold.

PROPOSITION 4.4. Let t > 0, x ∈ M and v ∈ TxM . Then, for any f ∈ Cb(M) and h ∈
L2,1(�;Rn), satisfying that h(0) = U−1

0 v and h(t) = 0 a.s., we have

(4.11)
〈∇Ptf (x), v

〉
TxM = −E

[
f
(
Xx

t

) ∫ t

0

〈
�h

s ,dBs

〉]
,

where �h
t := h′(t) + 1

2 ricUt (h(t)). Furthermore,

(4.12)

〈∇2Ptf (x), v ⊗ v
〉
TxM⊗TxM

= E

[
f
(
Xx

t

)((∫ t

0

〈
�h

s ,dBs

〉)2
−

∫ t

0

〈
�h

s ,dBs

〉− ∫ t

0

∣∣�h
s

∣∣2 ds

)]
.
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PROOF. We take ξ(·) to be a geodesic with initial value ξ(0) = x and initial velocity
∂ξ(ε)
∂ε

|ε=0 = v. Let {Uε
0 ∈ (−1,1)} denote the parallel orthonormal frame bundle along ξ(·)

with Uε
0 |ε=0 = U0. In particular, it holds that π(Uε

0 ) = ξ(ε). Recall that Uε
t is the solution to

(4.3) with initial value Uε
0 chosen above. It holds that∫ t

0
Gε

s ◦ dBε
s =

∫ t

0
Gε

s ◦ dBs +
∫ t

0
Gε

s

(
εh′(s) + ε2

2
�sh

′(s)
)

ds

=
∫ t

0
Gε

s dBs +
∫ t

0

1

2
d
〈
Gε· ,B·

〉
s +

∫ t

0
Gε

s

(
εh′(s) + ε2

2
�sh

′(s)
)

ds

=
∫ t

0
Gε

s dBs + ε

∫ t

0
Gε

s�s ds + ε2

2

∫ t

0
Gε

s�s ds.

Here we have used that

d
〈
Gε· ,B·

〉
t = −εGε

t d〈�·,B·〉t − ε2

2
Gε

t d
〈
�(2)· ,B·

〉
t

= ε

2
Gε

t ricUt

(
h(t)

)
dt + ε2

2
Gε

t

[
U−1

t ∇Ric
π(Ut )

(
Uth(t),Uth(t)

)
+ �t ricUt

(
h(t)

)− ricUt

(
�th(t)

)]
.

Note that Wε
t := ∫ t

0 Gε
s dBs is still an Rn-valued Brownian motion, so we have

dUε
t = H

(
Uε

t

) ◦
(

dWε
t + Gε

s

(
ε�t + ε2

2
�t

)
dt

)
.

Let

Mε
t := exp

(
−
∫ t

0

〈
ε�s + ε2

2
�s,dBs

〉
−

∫ t

0

(
ε2

2

∣∣∣∣�s + ε

2
�s

∣∣∣∣2
)

ds

)
.

Then by the Girsanov theorem, the distribution of {Uε
s ; s ∈ [0, t]} under dQε := Mε

t dP is
the same as that of {U0,ε

s ; s ∈ [0, t]}, where U0,ε· is the solution to equation (3.1) with initial
value U

0,ε
0 = Uε

0 . Therefore, we obtain

(4.13) Ptf
(
ξ(ε)

) = E
[
f
(
X

ξ(ε)
t

)] = E
[
f
(
X

ε,ξ(ε)
t

)
Mε

t

]
,

where X
ε,ξ(ε)
t = π(Uε

t ), X
ξ(ε)
t = π(U

0,ε
t ).

We first assume f ∈ C2
b(M), differentiating (4.13) with respect to ε yields that

(4.14)

〈∇Ptf (x), v
〉
TxM = ∂

∂ε

∣∣∣∣
ε=0

Ptf
(
ξ(ε)

)

= E

[
∂

∂ε

∣∣∣∣
ε=0

f
(
X

ε,ξ(ε)
t

)]+E

[
f (Xt)

(
∂

∂ε

∣∣∣∣
ε=0

Mε
t

)]
.

Another round of differentiation gives

(4.15)

〈∇2Ptf (x), v ⊗ v
〉
TxM⊗TxM

= ∂2

∂ε2

∣∣∣∣
ε=0

Ptf
(
ξ(ε)

)

= E

[
∂2

∂ε2

∣∣∣∣
ε=0

f
(
X

ε,ξ(ε)
t

)]+ 2E
[(

∂

∂ε

∣∣∣∣
ε=0

f
(
X

ε,ξ(ε)
t

))( ∂

∂ε

∣∣∣∣
ε=0

Mε
t

)]

+E

[
f
(
Xx

t

) ∂2

∂ε2

∣∣∣∣
ε=0

Mε
t

]
.



LOGARITHMIC HEAT KERNEL ESTIMATES WITHOUT CURVATURE RESTRICTIONS 455

According to the last line of (4.6), (4.10), the definition of Mε
t and the fact that h(t) ≡ 0, we

derive
∂

∂ε

∣∣∣∣
ε=0

f
(
X

ε,ξ(ε)
t

) = 〈∇f
(
Xx

t

)
,Uth(t)

〉
TXx

t
M = 0

and also
∂

∂ε

∣∣∣∣
ε=0

Mε
t = −

∫ t

0
〈�s,dBs〉.

Furthermore,

∂2

∂ε2

∣∣∣∣
ε=0

f
(
X

ε,ξ(ε)
t

) =
〈
∇2f

(
Xx

t

)
,
∂X

ε,ξ(ε)
t

∂ε

∣∣∣∣
ε=0

⊗ ∂X
ε,ξ(ε)
t

∂ε

∣∣∣∣
ε=0

〉
TXx

t
M⊗TXx

t
M

+
〈
∇f

(
Xx

t

)
,

D

∂ε

∣∣∣∣
ε=0

(
∂X

ε,ξ(ε)
t

∂ε

)〉
TXx

t
M

= 〈∇2f
(
Xx

t

)
,Uth(t) ⊗ Uth(t)

〉
TXx

t
M⊗TXx

t
M + 〈∇f

(
Xx

t

)
,Ut�th(t)

〉
TXx

t
M

= 0,

∂2

∂ε2

∣∣∣∣
ε=0

Mε
t =

(∫ t

0
〈�s,dBs〉

)2
−

∫ t

0
〈�s,dBs〉 −

∫ t

0
|�s |2 ds.

Crucially, this special choice of variation ensures that ∂2

∂ε2 |ε=0f (X
ε,ξ(ε)
t ) depends only on

h(t), not on the history of the process h.
Putting these back to (4.14) and (4.15) yields (4.11), (4.12) for f ∈ C2

b(M). By standard
approximation procedure and the compact property of M , we see that these equalities still
hold for any f ∈ Cb(M). �

5. Quantitative cut-off processes. From now on, we assume that M is an n-dimensional
general complete Riemannian manifold, not necessarily compact.

In this section we introduce a class of cut-off processes satisfying estimates crucial for
the localisation procedures, which we shall apply later to (4.12) and to obtain the asymptotic
gradient estimates for the logarithmic heat kernel.

Since geodesic balls have typically nonregular boundary, we first construct a family of rel-
atively compact open sets {Dm}∞m=1 with smooth boundary which plays the roles of geodesic
balls and such that

⋃∞
m=1 Dm = M . Our localisation procedure crucially relies on Dm has

smooth boundaries, see Lemma A.1. We first use a result in Greene and Wu [38] on the exis-
tence of a smooth approximate distance function, which is valid for complete manifold, and
then construct a family of cut off vector fields adapted to {Dm}∞m=1. Fixing an o ∈ M , denote
by d the Riemannian distance function on M from o. Since M is complete, according to [38],
there exists a nonnegative smooth function d̂ : M → R+ with the property that 0 < |∇d̂| ≤ 1
and ∣∣∣∣d̂(x) − 1

2
d(x)

∣∣∣∣ < 1, ∀x ∈ M.

For every nonnegative m, define Dm := d̂−1((−∞,m)) := {z ∈ M; d̂(z) < m}, then it is easy
to verify Bo(2m−2) ⊂ Dm ⊂ Bo(2m+2), where Bo(r) := {z ∈ M;d(z) < r} is the geodesic
ball centred at o with radius r . Let φ :R → [0,1] be a smooth function such that

(5.1) φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1, r ≤ 1,

∈ (0,1), r ∈ (1,2),

0, r ≥ 2.
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Setting

(5.2) fm(z) := φ
(
d̂(z) − m + 2

)
, z ∈ M,

then it is easy to see that

fm(z) =

⎧⎪⎪⎨
⎪⎪⎩

1, if z ∈ Dm−1,

0, if z ∈ Dc
m,

∈ (0,1), otherwise

and Dm = {z ∈ M;fm(z) > 0}. Without loss of generality, we can assume that Dm is a
bounded connected open set (otherwise, we could take the connected component of Dm con-
taining Bo(2m − 2)). Moreover, since ∂Dm = {z ∈ M; d̂(z) = m} and |∇d̂(z)| �= 0 for all
z ∈ M , we know ∂Dm is a smooth n − 1 dimensional submanifold of M .

As before, we suppose that {Ut }0≤t<ζ(x) is the solution to the canonical horizontal equation
(3.1) with ζ(x) denoting its explosion time, and {Xx

t := π(Ut)}0≤t<ζ(x) is a Brownian motion
on M with initial value x := π(U0).

Let ∂ denote the cemetery state for M , and set M̄ = M ∪ {∂}. Given a x ∈ M , we let

Px(M̄) := {
γ ∈ C

([0,1]; M̄) : γ (0) = x
}

denote the collection of all M̄-valued continuous paths with initial vale x. Let μx denote the
Brownian motion measure on Px(M̄). We also refer the natural filtration of the canonical
process γ (·) as the canonical filtration on Px(M̄) which is augmented to be complete and
right continuous as usual.

It is well known that the distribution of {Xx
t }0≤t<ζ(x) and {Ut }0≤t<ζ(x) under P is the same

as that of the canonical process {γ (t)}0≤t<ζ(γ ) and its horizontal lift {Ut(γ )}0≤t<ζ(γ ) under
μx , where ζ(γ ) denotes the explosion time of γ (·). Set

τm(γ ) = τDm(γ ) := inf
{
s ≥ 0 : γ (s) /∈ Dm

}
.

LEMMA 5.1. For any m ∈ N, there exists a stochastic process (vector field) lm : [0,1] ×
Px(M̄) → [0,1] such that:

(1) lm(t, γ ) =
{

1, t ≤ τm−1(γ ) ∧ 1,

0, t > τm(γ ).

(2) Absolute continuity: lm(t, ·) is adapted to the canonical filtration and lm(·, γ ) is ab-
solutely continuous for μx-a.s. γ ∈ Px(M̄).

(3) Local uniform moment estimates: For every positive integer k ∈ N, we have

(5.3) sup
x∈Dm−1

∫
Px(M̄)

∫ 1

0

∣∣l′m(s, γ )
∣∣k dsμx(dγ ) ≤ C1(m, k)

for some positive constant C1(m, k) (which may depend on m and k).

PROOF. In the proof, the constant C (which may depend on m) will change in different
lines. The main idea of the proof is inspired by the article of Thalmaier [67] and Thalmaier
and Wang [68].

(1) Since for any m ≥ 1, Dm ⊂ Dm+1 ↑ M , there exists a m0 ∈ N such that{
x ∈ Dm, when m ≥ m0,

x /∈ Dm, when 1 ≤ m < m0.
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When x /∈ Dm, let lm(t, γ ) ≡ 0. In the following we will consider the case of x ∈ Dm (which
implies that τm(γ ) > 0) without loss of generality. Let fm : M → R+ be the function given
by (5.2), we define a sequence of functions

Tm(t, γ ) :=
⎧⎪⎨
⎪⎩
∫ t

0

ds

[fm(γ (s))]2 , t < τm(γ ),

∞, t ≥ τm(γ ).

Then each Tm(·, γ ) is an increasing right continuous function of t . For any t ≥ 0, set

Am(t, γ ) := inf
{
s ≥ 0 : Tm(s, γ ) ≥ t

}
.

We may omit the parameter γ in the notation of Tm(t, γ ), Am(t, γ ) for simplicity in the
proof.

Since infs∈[0,t] fm(γ (t)) > 0 for t < τm(γ ), then Tm(t) < ∞ for every t < τm and Tm(·) is
strictly increasing and continuous in [0, τm) (with respect to the variable t). Therefore, Am(·)
is continuous on [0, Tm(τm)) and Tm(Am(t)) = t for every 0 ≤ τm < Tm(τm). Furthermore,
we have Tm(τm) = ∞. To see this, we only need to observe that

fm

(
γ (s)

) = fm

(
γ (s)

)− fm

(
γ (τm)

) ≤ 1

2
sup

x∈Dm

∣∣∇2fm(x)
∣∣d(γ (s), γ (τm)

)2

≤ Cm(γ )
√|s − τm|, ∀s < τm,

where Cm(γ ) is a constant, and we applied the property that d(γ (s), γ (τm)) ≤ Cm(γ )|s −
τm|1/4 which is easy to prove by the Kolmogorov criterion. Combing the fact Tm(τm) = ∞
with Tm(t) < ∞ for all 0 ≤ t < τm immediately yields that Am(Tm(t)) = t for every 0 ≤ t ≤
τm and τm > Am(t) for every 0 ≤ t < ∞.

Next, we use the truncation function φ :R→R in (5.1) to define

(5.4) lm(t, γ ) = φ

(∫ t

0

φ(Tm(s) − 2)

f 2
m(γ (s))

ds

)

which is clearly adapted to the canonical filtration. Suppose that t ≥ τm > Am(3), then∫ t

0

φ(Tm(s) − 2)

f 2
m(γ (s))

ds ≥
∫ t

0
1{Tm(s)≤3}f −2

m

(
γ (s)

)
ds

=
∫ t

0
1{s≤Am(3)}f −2

m

(
γ (s)

)
ds

= Tm

(
Am(3)

) = 3,

which implies lm(t, γ ) = 0 for t ≥ τm by the definition of φ.
If s ≤ τm−1(γ ), then fm(γ (s)) = 1 and so Tm(s) = s. Consequently, φ(Tm(s)− 2) = 1 for

every s ≤ τm−1 ∧ 1. Hence, we obtain

lm(t, γ ) = φ(t ∧ 1) = 1, ∀t ≤ τm−1 ∧ 1,

concluding the proof of part (1).
(2) Still by the expression of (5.4), we know the conclusion of part (2) holds.
(3) Now it only remains to verify the estimates (5.3). First,

∣∣l′m(t)
∣∣ = ∣∣∣∣φ′

(∫ t

0

φ(Tm(s) − 2)

f 2
m(γ (s))

ds

)∣∣∣∣φ(Tm(t) − 2)

f 2
m(γ (t))

≤ ∥∥φ′∥∥∞f −2
m

(
γ (t)

)
1{φ(Tm(t)−2) �=0} ≤ Cf −2

m

(
γ (t)

)
1{Tm(t)≤4}.
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Then, for every k ∈ N,

(5.5)

∫ 1

0

∣∣l′m(s)
∣∣k ds ≤ C

∫ 1

0
f −2k

m

(
γ (s)

)
1{Tm(s)≤4} ds

≤ C

∫ 1

0
f −2k+2

m

(
γ (s)

)
1{s≤Am(4)} dTm(s)

= C

∫ 4∧Tm(1)

0
f −2k+2

m

(
γ
(
Am(r)

))
dr

≤ C

∫ 4

0
f −2k+2

m

(
γ
(
Am(r)

))
dr.

Observe that the distribution of Xx· under P is the same as that of γ (·) under μx ,

(5.6)

sup
x∈Dm−1

∫
Px(M̄)

∫ 4

0
f −2k+2

m

(
γ
(
Am(s)

))
dsμx(dγ )

= sup
x∈Dm−1

E

[∫ 4

0
f −2k+2

m

(
Xx

Am(s,Xx· )

)
ds

]
.

Let Sj,m(γ ) := inf{t > 0;fm(γ (t)) ≤ 1
j
}. According to Itô’s formula, we obtain for all j, k ∈

N and x ∈ Dm−1,

(5.7)

E
[
f −k

m (XAm(t)∧Sj,m
)
] = f −k

m (x) + 1

2
E

[∫ Am(t)∧Sj,m

0
�
(
f −k

m

)
(Xs)ds

]

= 1 + 1

2
E

[∫ Am(t)∧Sj,m

0

(
f 2

m�
(
f −k

m

))
(XAm(Tm(s)))dTm(s)

]
.

We have applied the fact that Am(Tm(s)) = s for every 0 ≤ s < Sj,m and fm(x) = 1 for all
x ∈ Dm−1. Meanwhile, we have

f 2
m�

(
f −k

m

) = k(k + 1)f −k
m |∇fm|2 − kf −k+1

m �fm

= k(k + 1)f −k
m

∣∣φ′(d̂ − m + 2)
∣∣2|∇d̂|2

− kf −k
m

(
fmφ′′(d̂ − m + 2)|∇d̂|2 + φ′(d̂ − m + 2)fm�d̂

)
≤ k(k + 1)f −k

m

(∥∥φ′∥∥∞ + ∥∥φ′′∥∥∞ + ∥∥φ′∥∥∞ sup
z∈Dm

∣∣�d̂(z)
∣∣)

≤ Cf −k
m .

Putting this into (5.7), we arrive at

E
[
f −k

m (XAm(t)∧Sj,m
)
] ≤ 1 + CE

[∫ Am(t)∧Sj,m

0
f −k

m (XAm(Tm(s)))dTm(s)

]

≤ 1 + C

∫ t

0
E
[
f −k

m (XAm(r)∧Sj,m
)
]
dr,

where the last step follows from the procedure of change of variable u = Tm(s) and the fact
Am(t) ≤ t .

Hence, by Grownwall’s inequality we arrive at, for all k, j ∈ N,

E
[
f −k

m (XAm(t)∧Sj,m
)
] ≤ CeCt .

Then, letting j → ∞ and observing that Am(t) ≤ τm = limj→∞ Sj,m, we obtain for all k ∈ N,

E
[
f −k

m (XAm(t))
] ≤ CeCt ,

combining this with (5.5) yields (5.3). This completes the proof for Lemma 5.1. �
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6. Proof of the main estimates. In this section we shall apply the cut-off procedures,
using the quantitative localised vector fields, introduced in Section 5, to obtain short time as
well as asymptotic first and second order gradient estimates for the logarithmic heat kernel
of a complete Riemannian manifold without imposing on it any curvature bounds.

Let {Dm}∞m=1 and {fm}∞m=1 be the sequences of domains and functions constructed in
Section 5. Recall that, for every m, Dm = {x ∈ M : fm(x) > 0} is a bounded connected open
set. By Lemma A.1 from the Appendix, there exists a compact Riemannian manifold M̃m

such that Dm is isometrically embedded into M̃m as an open set. We could and will view
Dm ⊂ M̃m as an open subset of M̃m. In particular, we have

(6.1) d
M̃m

(x, y) = d(x, y), ∀x, y ∈ Bo(2m − 2),

where d and d
M̃m

are the Riemannian distance function on M and M̃m. We denote the heat

kernel on M and M̃m by p(t, x, y) and p
M̃m

(t, x, y), respectively. For every e ∈ Rn, we also

let Hm
e denote the horizontal lift of ue on T O(M̃m).

Let us fix a probability space (�,F ,P). Let {Bt }t≥0 be the standard Rn-valued Brownian
motion with Bt = (B1

t , . . . ,Bn
t ), and we denote by Ft the filtration generated by it. Now we

fix an orthonormal basis {ei}ni=1 of Rn.
For x ∈ Dm ⊂ M̃m and U0 a frame at x so that U0 ∈ OxM = OxM̃m, let Um

t denote the
solution to the following O(M̃m)-valued stochastic differential equation:

(6.2) dUm
t =

n∑
i=1

Hm
ei

(
Um

t

) ◦ dBi
t , Um

0 = U0.

Set X
m,x
t := π(Um

t ). This is a M̃m-valued Brownian motion. Recall that Xx
t := π(Ut),

where Ut is the solution to (3.1) with the same driving Brownian motion Bt and the same
initial value U0 as in (6.2).

Throughout this section, for every m,k ∈ N with k ≥ m, we define

τm := inf
{
t > 0;Xx

t /∈ Dm

}
, τ k

m := inf
{
t > 0;Xk,x

t /∈ Dm

}
.

Note that for every k > m, Hk
ei

= Hei
on π−1(Dm). It is easy to verify that

(6.3) τm = τ k
m, Xx

t = X
k,x
t , ∀k ≥ m > 1,0 ≤ t ≤ τm.

As before, the superscript x may be omitted from time to time when there is no risk of
confusion. The probability and the expectation for the functional generated by Xx· or Xm,x·
(with respect to P) are denoted by Px and Ex , respectively, in this section.

If M is compact, then when m is large enough, we have Dm = M , and we can take M̃m =
M (we do not have to apply Lemma A.1 when M is compact), then all the conclusions in this
section automatically hold. Hence, in this section we always assume that M is noncompact.

We shall use the following estimates which are crucial for our proof.

LEMMA 6.1 ([7, 60, 70, 71]). For any x, y ∈ M ,

(6.4) lim
t↓0

t logp(t, x, y) = −d(x, y)2

2
,

and the convergence is uniformly in (x, y) on K × K for any compact subset K .
Moreover, for every connected bounded open set D ⊇ K with smooth boundary,

(6.5) lim
t↓0

t logPx(τD < t) = −d(x, ∂D)2

2
, ∀x ∈ K.

Here, τD := inf{t > 0;Xt /∈ D} is the first exit time from D and d(x, ∂D) := infz∈∂D d(x, z).
And the convergence is also uniform in x on K .
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The asymptotic estimates (6.4) and (6.5) were first shown to hold for Rn in Varadhan [70,
71], extension to a complete Riemannian manifold was given in Molchanov [60]. In addition,
Azencott [8] and [45] indicated that these statements may fail for an incomplete Riemannian
manifold. We shall also use the following statement which follows readily from the small
time asymptotics and the Gaussian heat kernel upper bounds.

LEMMA 6.2 ([8], [45], Lemma 2.2). For any compact subset K of M and any positive
number r , then there exists a positive number t0 such that

(6.6) sup
t∈(0,t0]

sup
d(z,y)≥r,y∈K

p(t, z, y) ≤ 1.

6.1. Comparison theorem for functional integrals involving approximate heat kernels.
Let Dm denote the relatively compact subset, and let lm : [0,1] × Px(M) → R be the
cut-off processes adapted to Dm, as constructed by Lemma 5.1. Let pDm(t, x, y) denote
the Dirichlet heat kernel on Dm. Let K be a compact set and x, y ∈ K be such that
d(x, y) < d(x, ∂Dm) ∨ d(y, ∂Dm). Then p(t, x, y) and pDm(t, x, y) are asymptotically the
same for small t ; see [8], Lemma 2.3 on page 156.

Below we give a quantitative estimate on p and pDm on a compact set K × K for suffi-
ciently large m. By sufficiently large we mean that m ≥ m0 for a natural number m0 and m0
may depend on other data. In all the results below, it depends on the compact set K and the
prescribed exponential factor L > 0.

LEMMA 6.3. Suppose that K is a compact subset of M and L > 1 is a positive number.
Then, for sufficiently large m, there exists a positive number t0 = t0(K,L,m) such that, for
every t ∈ (0, t0],

(6.7)

sup
x,y∈K

∣∣p(t, x, y) − pDm(t, x, y)
∣∣ ≤ e− 2L

t ,

sup
x,y∈K

∣∣p
M̃m

(t, x, y) − pDm(t, x, y)
∣∣ ≤ e− 2L

t .

In particular, for every t ∈ (0, t0],
(6.8) sup

x,y∈K

∣∣p(t, x, y) − p
M̃m

(t, x, y)
∣∣ ≤ e−L

t .

PROOF. The estimates in (6.7) could be found in Azencott [8], Section 4.2, and also in
Bismut [12], Section III.a, and Hsu [43], The proof of Theorem 5.1.1. Here, we include a
proof for the convenience of the reader. The technique and the intermediate estimates will be
used later.

By the strong Markovian property,

Ptf (x) = Ex

[
f (Xt)1{t≤τm}

]+Ex

[
EXτm

[
f (Xt−τm)

]
1{τm<t<ζ }

]
,

and so, for any x, y ∈ K and t > 0,

(6.9) p(t, x, y) = pDm(t, x, y) +Ex

[
p(t − τm,Xτm, y)1{τm<t<ζ }

]
.

Since M is noncompact, given any number L > 1, there exists a natural number m0 such
that

K ⊂ Bo(2m0 − 2), d(K, ∂Dm0) ≥ d
(
K,∂Bo(2m0 − 2)

)
> 4L.
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Then, according to (6.5) and (6.6), for every m ≥ m0, we could find a positive number
t0(K,L,m) such that, for any t ∈ (0, t0],

Px(t > τm) ≤ exp
(
−d(x, ∂Dm)2 − 1

2t

)
≤ e− 2L

t , ∀x ∈ K,

p(t, z, y) ≤ 1, for all z ∈ ∂Dm, and y ∈ K.

By these estimates we obtain that, for all m ≥ m0 and all t ∈ (0, t0],
Ex

[
p(t − τm,Xτm, y)1{t>τDm }

] ≤ sup
t∈(0,t0)

sup
z∈∂Dm,y∈K

p(t, z, y) · Px(t > τm) ≤ e− 2L
t .

Putting this into (6.9), we arrive at that for all m ≥ m0, all x, y ∈ K and for all t ∈ (0, t0],
(6.10)

∣∣p(t, x, y) − pDm(t, x, y)
∣∣ ≤ e− 2L

t .

Note that, for every m ≥ m0, Dm ⊂ M̃m and x ∈ K ,

d
M̃m

(x, ∂Dm) ≥ d
M̃m

(
x, ∂Bo(2m − 2)

) = d
(
x, ∂Bo(2m − 2)

)
,

which is due to (6.1). By the same argument for (6.10) and changing the constant t0 if neces-
sary, we could find a t0(K,L,m) such that, for all m ≥ m0,

∣∣p
M̃m

(t, x, y) − pDm(t, x, y)
∣∣ ≤ e− 2L

t , x, y ∈ K, t ∈ (0, t0].
This, together with (6.10), yields (6.7) and (6.8). �

LEMMA 6.4. Suppose that K is a compact subset of M and L > 1 is a positive number:

(1) For m0 sufficiently large and any m > m0, there exists a t0(K,L,m) such that, for
every 0 < s ≤ t

2 and 0 < t ≤ t0, we have

(6.11) sup
x,y∈K

sup
z∈Dm0

∣∣∣∣p(t − s, x, z)

p(t, x, y)
− p

M̃m
(t − s, x, z)

p
M̃m

(t, x, y)

∣∣∣∣ ≤ 2e− 4L
t .

(2) Suppose ϒt is an Ft adapted process and for any q > 0 and m ≥ 1 we set

Fq
m(ϒ,X·) =

(∫ s

0
ϒrl

′
m(r,X·)dBr

)q

, F q
m

(
ϒ,Xm·

) =
(∫ s

0
ϒrl

′
m

(
r,Xm·

)
dBr

)q

.

We also assume that

(6.12) sup
x∈K

Ex

[∫ 1∧τm

0
|ϒs |2q ds

]
< ∞, ∀m ≥ 1

for some q ∈ N. Then, for every sufficiently large m (any m greater than some number
m0(K,L)), we can find a positive number t0(K,L,m) with the property that

(6.13)
sup

x,y∈K

∣∣∣∣Ex

[
Fq

m(ϒ,X·)
p(t − s,Xs, y)

p(t, x, y)

]
−Ex

[
Fq

m

(
ϒ,Xm·

)pM̃m
(t − s,Xm

s , y)

p
M̃m

(t, x, y)

]∣∣∣∣
≤ C(m)e−L

t

for any 0 < t ≤ t0, 0 < s ≤ t
2 . Here, the positive constant C(m) may depend on m and on

αm := supx∈K Ex[∫ 1
0 |ϒrl

′
m(r,X·)|q dr]. (Note that l′m(r,X·) �= 0 only for r < τm = τm

m so the
quantity is well defined.)
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PROOF. In the proof the constant C may represent different constants in different lines.
Let r0 := supx,y∈K dM(x, y) denote the diameter of K . Since M is noncompact, we can
choose a natural number m̃0 (which may depend on K and L) such that

K ⊂ Bo(2m̃0 − 2) ⊂ Dm̃0

and for all m > m̃0,

d
(
K,∂Bo(2m̃0 − 2)

) = d
M̃m

(
K,∂Bo(2m̃0 − 2)

)
> 4(L + r0 + 1).

Also, by the heat kernel comparison (6.7) and (6.8), we can find a m0 > m̃0 so that for all
m > m0, there exists a constant t2(K,L,m) > 0 such that

(6.14) ∣∣p(t, z, y) − p
M̃m

(t, z, y)
∣∣ ≤ e− 4(L+r0+1)2

t , ∀t ∈ (0, t2], z, y ∈ Dm0 .

According to the asymptotic relations (6.4) and (6.5), for every m > m0 (taking m0 larger as
is necessary) we could find a constant 0 < t1(K,L,m) ≤ t2 such that, for all t ∈ (0, t1],

p(t, z, y) ≤ e
1
t , p

M̃m
(t, z, y) ≤ e

1
t , ∀z, y ∈ Dm0,(6.15)

p(t, z, y) ≥ e− r2
0 +1
t , p

M̃m
(t, z, y) ≥ e− r2

0 +1
t , ∀z, y ∈ K,(6.16)

Pz(τm0 < t) ≤ e− 4(L+r0+1)2

t , ∀z ∈ K.(6.17)

By the small time locally uniform heat kernel bound (6.6), for every m > m0 there exists a
number 0 < t0(K,L,m) ≤ t1 such that, for all t ∈ (0, t0],
(6.18) p(t, z1, y) ∨ p

M̃m
(t, z2, y) ≤ 1, ∀z1 ∈ M ∩ Dc

m0
, z2 ∈ M̃m ∩ Dc

m0
, y ∈ K.

Therefore, for every m > m0 and for every 0 < s ≤ t
2 , every 0 < t ≤ t0 and for all x, y ∈ K

and z ∈ Dm0 , we have

(6.19)∣∣∣∣p(t − s, x, z)

p(t, x, y)
− p

M̃m
(t − s, x, z)

p
M̃m

(t, x, y)

∣∣∣∣
≤ p(t − s, x, z)|p

M̃m
(t, x, y) − p(t, x, y)| + p(t, x, y)|p

M̃m
(t − s, x, z) − p(t − s, x, z)|

p(t, x, y)p
M̃m

(t, x, y)

≤ 2e
2(1+r2

0 )

t e
2
t e− 4(L+r0+1)2

t ≤ 2e− 4L
t .

Here, the second step above is due to (6.14)–(6.16). Thus, we finish the proof of (1).
For all m > m0, let us split the terms as follows:

Ex

[
Fq

m(ϒ,X·)
p(t − s,Xs, y)

p(t, x, y)

]

= Ex

[
Fq

m(ϒ,X·)
p(t − s,Xs, y)

p(t, x, y)
1{t≤τm0 }

]
+Ex

[
Fq

m(ϒ,X·)
p(t − s,Xs, y)

p(t, x, y)
1{t>τm0 }

]

=: Im
1 (s, t) + Im

2 (s, t).

Since l′m(r,X·) �= 0 if only if t < τm, then l′m(r,Xm· ) = l′m(r,X·), and we have

Fq
m

(
ϒ,Xm·

) =
(∫ s

0
ϒrl

′
m

(
r,Xm·

)
dBr

)q

=
(∫ s∧τm

0
ϒrl

′
m

(
r,Xm·

)
dBr

)q

=
(∫ s

0
ϒrl

′
m(r,X·)dBr

)q

= Fq
m(ϒ,X·).
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Note also, Xm
s = Xs for every s ≤ t

2 < τm. It holds that

Ex

[
Fq

m

(
ϒ,Xm·

)pM̃m
(t − s,Xm

s , y)

p
M̃m

(t, x, y)

]

= Ex

[
Fq

m(ϒ,X·)
p

M̃m
(t − s,Xs, y)

p
M̃m

(t, x, y)
1{t≤τm0 }

]

+Ex

[
Fq

m(ϒ,X·)
p

M̃m
(t − s,Xm

s , y)

p
M̃m

(t, x, y)
1{t>τm0 }

]

=: Jm
1 (s, t) + Jm

2 (s, t), 0 < s <
t

2
.

Note that

(6.20) αm = sup
x∈K

Ex

[∫ 1

0

∣∣ϒrl
′
m(r,X·)

∣∣q dr

]
< ∞.

This follows from the moment estimates on lm, (5.3), the assumption (6.12), and also

αm ≤ sup
x∈K

Ex

[∫ 1∧τm

0
|ϒr |2q dr

]1/2
sup
x∈K

Ex

[∫ 1∧τm

0

∣∣l′m(r,X·)
∣∣2q dr

]1/2
.

For all m > m0, x, y ∈ K , 0 < s ≤ t
2 , and 0 < t ≤ t0, we may assume that t0 ≤ 2,

∣∣Im
1 (s, t) − Jm

1 (s, t)
∣∣

≤ sup
z∈Dm0

∣∣∣∣p(t − s, z, y)

p(t, x, y)
− p

M̃m
(t − s, z, y)

p
M̃m

(t, x, y)

∣∣∣∣Ex

[∣∣∣∣
∫ s

0
ϒrl

′
m(r,X·)dBr

∣∣∣∣q
]

≤ Ce− 4L
t sup

x∈K

Ex

[∫ 1∧τm

0

∣∣ϒrl
′
m(r,X·)

∣∣q dr

]
= Cαme− 4L

t .

In the penultimate step we have applied Burkholder–Davies–Gundy inequality and (6.11).
According to (6.15) and (6.18), we also have

sup
z∈M,y∈K

p(t, z, y) ≤ e
1
t , ∀0 < t ≤ t0.

Combining this with (6.16)–(6.17), Cauchy–Schwarz inequality and Burkholder–Davies–
Gundy inequality, we obtain that, for every m > m0, x, y ∈ K , 0 < s ≤ t

2 and 0 < t ≤ t0,
∣∣Im

2 (s, t)
∣∣

≤ Ce
r2
0 +1
t sup

r∈[ t
2 ,t],z∈M,y∈K

p(r, z, y)Ex

[∣∣∣∣
∫ s

0
ϒrl

′
m(r,X·)dBr

∣∣∣∣2q]1/2
Px(τm0 < t)1/2

≤ Ce
r2
0 +1
t e

2
t e− 2(r0+L+1)2

t Ex

[∫ 1∧τm

0

∣∣ϒrl
′
m(r,X·)

∣∣2q dr

]1/2
≤ Cαme− 2L

t .

Here, in the last step we used (6.20). Similarly, we obtain that, for every m > m0, x, y ∈ K ,

∣∣Jm
2 (s, t)

∣∣ ≤ Cαme− 2L
t , 0 < s ≤ t

2
,0 < t ≤ t0.
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Combing the above estimates for Im
1 , Im

2 , Jm
1 , Jm

2 , we see that, for every m > m0, x, y ∈ K ,
0 < s ≤ t

2 and 0 < t ≤ t0,∣∣∣∣Ex

[
Fq

m(ϒ,X·)
p(t − s,Xs, y)

p(t, x, y)

]
−Ex

[
Fq

m

(
ϒ,Xm·

)pM̃m
(t − s,Xm

s , y)

p
M̃m

(t, x, y)

]∣∣∣∣
≤ ∣∣Im

1 (s, t) − Jm
1 (s, t)

∣∣+ ∣∣Im
2 (s, t)

∣∣+ ∣∣Jm
2 (s, t)

∣∣ ≤ Cαme−L
t ,

which is (6.13), and we have finished the proof. �

REMARK 6.1. By the same arguments in the proof for (6.13), we could obtain the fol-
lowing under the conditions of Lemma 6.4. For sufficiently large m we could find a positive
number t0(K,L,m) so that, for every x, y ∈ K , 0 < s ≤ t

2 and 0 < t ≤ t0, the following
estimates hold, replacing l′m by lm or dBr by dr :∣∣∣∣Ex

[(∫ s

0
ϒrlm(r,X·)dBr

)q(p(t − s,Xs, y)

p(t, x, y)
− p

M̃m
(t − s,Xm

s , y)

p
M̃m

(t, x, y)

)]∣∣∣∣ ≤ C(m)e−L
t ,(6.21)

∣∣∣∣Ex

[(∫ s

0
ϒrl

′
m(r,X·)dr

)q(p(t − s,Xs, y)

p(t, x, y)
− p

M̃m
(t − s,Xm

s , y)

p
M̃m

(t, x, y)

)]∣∣∣∣ ≤ C(m)e−L
t ,(6.22)

∣∣∣∣Ex

[(∫ s

0
ϒrlm(r,X·)dr

)q(p(t − s,Xs, y)

p(t, x, y)
− p

M̃m
(t − s,Xm

s , y)

p
M̃m

(t, x, y)

)]∣∣∣∣ ≤ C(m)e−L
t .(6.23)

These estimates will also be used in the proof for Proposition 6.6.

6.2. Proof of the main theorem: Gradient estimates.

LEMMA 6.5. Let t > 0, x ∈ M and v ∈ TxM . Suppose that m is a natural number such
that x ∈ Dm. Let h ∈ L1,2(�;Rn) be given by

h(s) =
(

t − 2s

t

)+
lm(s,X·)U−1

0 v.

Then, for any f ∈ Cb(M) we have

(6.24)
〈∇Ptf (x), v

〉
TxM = −Ex

[
f (Xt)

∫ t

0

〈
�h

s ,dBs

〉
1{t<ζ }

]
,

where �h
s defined by (3.2) with the h chosen above.

PROOF. When M is compact, (6.24) is just (4.11) established in Proposition 4.4. For gen-
eral noncompact complete M , we will use the arguments based on truncation and approxima-
tion. For each k > m, let {Uk

t }t≥0 be the horizontal Brownian motion on compact manifold
M̃k , as defined in (6.2) with π(Uk

0 ) = x ∈ Dm. Set Xk
t = π(Uk

t ) and P k
t f (x) = Ex[f (Xk

t )].
Let

(6.25) h(s) =
(

t − 2s

t

)+
lm(s,X·)U−1

0 v.

According to (6.3), precisely τm = τ k
m and h(s) �= 0 if and only if when s ≤ t

2 ∧ τm. So
furthermore,

h(s) =
(

t − 2s

t

)+
lm
(
s,Xk·

)
1{s< t

2 ∧τm}U−1
0 v, ∀k > m,

h′(s) =
(
−2

t
lm
(
s,Xk·

)+ l′m
(
s,Xk·

)( t − 2s

t

)+)
1{s< t

2 ∧τm}U
−1
0 v, ∀k > m,
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which means that we can replace X· by Xk· in the expression of h(s) and h′(s). Let �h,k
s be

given by (3.2) with the manifold M replaced by M̃k (associated with Xk· ). Therefore, by (3.2)
we have the following expression:

(6.26) �h,k
s = h′(s) + ricM̃k

Uk
s

(
h(s)

) = h′(s) + ricUs

(
h(s)

) = �h
s , ∀k > m.

Here, both sides of (6.26) vanish for s > τm. Meanwhile, we have used the fact that Us = Uk
s

when s < τm and RicM̃k
z = Ricz for every z ∈ Dm and

ricM̃k

Uk
s

(
h(s)

) = ricM̃k

Uk
s

(
h(s)

)
1{s<τm} = ricUs

(
h(s)

)
, ∀k > m.

Moreover, we observe that, for any compact set K ⊂ Dm and q > 0,

(6.27)
sup
x∈K

Ex

[∫ 1∧τm

0

∣∣ricUs

(
U−1

0 v
)∣∣q ds

]
≤ |v|q sup

x∈K

Ex

[∫ 1∧τm

0
| ricUs 1{s<τm}|q ds

]

≤ |v|q sup
z∈Dm

‖Ricz‖q < ∞.

Combining this with (5.3) and the fact that h(s) �= 0 only if s ≤ t ∧ τm = t ∧ τ k
m yields

immediately that

(6.28) sup
x∈Dm,v∈TxM,|v|=1

Ex

[∫ t

0

∣∣�h
s

∣∣2 ds

]
< ∞, ∀t > 0.

Thus, applying Proposition 4.4 to P k
t f (note that M̃k is compact) and using (6.26), we obtain

that, for all v ∈ TxM ,

(6.29)
〈∇P k

t f (x), v
〉
TxM = −Ex

[
f
(
Xk

t

) ∫ t

0

〈
�h,k

s ,dBs

〉] = −Ex

[
f
(
Xk

t

) ∫ t

0

〈
�h

s ,dBs

〉]
.

For any function ψ ∈ C∞
c (M) and vector field V ∈ C∞

c (M;T M) with supports in Dm satis-
fying that |V (x)| ≤ 1 for all x ∈ Dm, we can use ∇ and dx for the the gradient operator and
the Riemannian volume measure on both manifolds M and M̃k , so we have

(6.30)

∫
M
Ex

[
f
(
Xk

t

) ∫ t

0

〈
�h(x)

s ,dBs

〉]
ψ(x)dx

=
∫
M

〈∇P k
t f (x),V (x)

〉
TxMψ(x)dx

=
∫
M̃k

〈∇P k
t f (x),V (x)

〉
TxMψ(x)dx

= −
∫
M̃k

Ex

[
f
(
Xk

t

)]
div(V ψ)(x)dx = −

∫
M
Ex

[
f
(
Xk

t

)]
div(V ψ)(x)dx.

Here, h(x) is defined by (6.25) with v = V (x).
Meanwhile, note that Xt = Xk

t if t < τk , for every x ∈ Dm it holds

lim
k→∞

∣∣∣∣Ex

[
f
(
Xk

t

) ∫ t

0

〈
�h(x)

s ,dBs

〉]−Ex

[
f (Xt)

∫ t

0

〈
�h(x)

s ,dBs

〉
1{t<ζ }

]∣∣∣∣
≤ lim

k→∞Ex

[∣∣f (
Xk

t

)− f (Xt)1{t<ζ }
∣∣∣∣∣∣
∫ t

0

〈
�h(x)

s ,dBs

〉∣∣∣∣
]

≤ lim
k→∞

√
Ex

[∣∣f (
Xk

t

)− f (Xt)1{t<ζ }
∣∣2]

√
Ex

[∣∣∣∣
∫ t

0

〈
�

h(x)
s ,dBs

〉∣∣∣∣2
]

≤ lim
k→∞

√
2C‖f ‖∞

√
Px(τk ≤ t < ζ ) = 0,
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where

C := sup
x∈Dm,v∈TxM,|v|=1

Ex

[∫ t

0

∣∣�h
s

∣∣2 ds

]

is finite for every t > 0 which is due to (6.28). With this we may take k → ∞ in (6.30), then

lim
k→∞Ex

[
f
(
Xk

t

) ∫ t

0

〈
�h(x)

s ,dBs

〉] = Ex

[
f (Xt)

∫ t

0

〈
�h(x)

s ,dBs

〉
1{t<ζ }

]
and, consequently,∫

Dm

Ex

[
f (Xt)

∫ t

0

〈
�h(x)

s ,dBs

〉
1{t<ζ }

]
ψ(x)dx =

∫
Dm

Ex

[
f (Xt)1{t<ζ }

]
div(V ψ)(x)dx.

Since m is arbitrary, so it follows that for all test vector fields V ∈ C∞
c (M;T M) and test

functions ψ ∈ C∞
c (M),∫

M
Ex

[
f (Xt)

∫ t

0

〈
�h(x)

s ,dBs

〉
1{t<ζ }

]
ψ(x)dx =

∫
M

Ptf (x)div(V ψ)(x)dx,

which means that the weak (distributional) gradient ∇Ptf exists

〈∇Ptf (x),V (x)
〉
TxM = Ex

[
f (Xt)

∫ t

0

〈
�h(x)

s ,dBs

〉
1{t<ζ }

]
, x ∈ M.

According to the same arguments in the proof of Lemma A.2 in the Appendix, the functional
x �→ Ex

[
f (Xt)

∫ t
0
〈
�

h(x)
s ,dBs

〉
1{t<ζ }

]
is continuous. So we have verified that the distribu-

tional derivative ∇Ptf exists and is continuous, then ∇Ptf is the classical gradient and
expression (6.24) holds. �

Now we present an estimate for the difference between the gradients of logarithmic heat
kernels. Note that, for every x, y ∈ K ⊂ Bo(2m − 2) ⊂ Dm, we could view ∇x logp(t, x, y)

and ∇x logp
M̃m

(t, x, y) as vectors in TxM so that∣∣∇x logp(t, x, y) − ∇x logp
M̃m

(t, x, y)
∣∣
TxM

is well defined.
Let ∂ be the cemetery point. We make the convention that p(t, ∂, y) = 0 for all t .

PROPOSITION 6.6. Suppose that K is a compact subset of M and L > 1 is a positive
number. Then, for every suficiently large m, we could find a number t0(K,L,m), depending
on K , L, m, such that, for every 0 < t ≤ t0,

(6.31) sup
x,y∈K

∣∣∇x logp(t, x, y) − ∇x logp
M̃m

(t, x, y)
∣∣
TxM ≤ C(m)e−L

t ,

where C(m) is a positive constant which may depend on m.

PROOF. Let us fix points x, y ∈ K and a unit vector v ∈ TxM . Let m be a natural number
such that Bo(2m − 2) ⊃ K . Let t > 0 be fixed.

By (6.24), where �h = h′(t) + 1
2 ricUt (h(t)), we have, for every f ∈ Cc(M),

〈∇Ptf (x), v
〉
TxM = 2

t
Ex

[∫ t
2

0

〈
lm(s)U−1

0 v,dBs

〉
f (Xt)1{t<ζ }

]

−Ex

[∫ t
2

0

〈(
t − 2s

t

)
l′m(s)U−1

0 v,dBs

〉
f (Xt)1{t<ζ }

]

− 1

2
Ex

[∫ t
2

0

〈
ricUt

((
t − 2s

t

)
lm(s)U−1

0 v

)
,dBs

〉
f (Xt)1{t<ζ }

]
.
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Since f has compact support, the indicator function 1{t<ζ } can be removed. Taking the con-
ditional expectation on σ(Xt), we obtain, for all x ∈ M and almost everywhere y ∈ M (with
respect to volume measure on M),

(6.32)

t
〈∇x logp(t, x, y), v

〉
TxM

= t
〈∇xp(t, x, y), v〉TxM

p(t, x, y)
= 2Ex

[
1{t<ζ }

∫ t
2

0

〈
lm(s)U−1

0 v,dBs

〉∣∣∣Xt = y

]

− tEx

[
1{t<ζ }

∫ t
2

0

〈(
t − 2s

t

)
l′m(s)U−1

0 v,dBs

〉∣∣∣Xt = y

]

− t

2
Ex

[
1{t<ζ }

∫ t
2

0

〈
ricUt

(
t − 2s

t

)
lm(s)U−1

0 v,dBs

〉∣∣∣Xt = y

]

= Ex

[
1{t<ζ }

∫ t
2

0
gm(s)

〈
U−1

0 v,dBs

〉∣∣∣Xt = y

]
,

where

gm(s) := 2lm(s) − t

(
t − 2s

t

)
l′m(s) − t

2
ricUt

(
t − 2s

t

)
lm(s).

Thus,

(6.33)

t
〈∇x logp(t, x, y), v

〉
TxM = Ex

[
1{t<ζ }

∫ t
2

0
gm(s)

〈
U−1

0 v,dBs

〉∣∣∣Xt = y

]

= Ex

[∫ t
2

0
gm(s)

〈
U−1

0 v,dBs

〉p( t
2 ,X t

2
, y)

p(t, x, y)
1{ t

2 <ζ }
]

= Ex

[∫ t
2

0
gm(s)

〈
U−1

0 v,dBs

〉p( t
2 ,X t

2
, y)

p(t, x, y)

]
.

We have used the property that for p( t
2 ,X t

2
, y) = 0 whenever t

2 ≥ ζ(x).
Based on the heat kernel estimates in the previous lemmas, by the proof of Lemma A.2 we

know immediately

x �→ Ex

[∫ t
2

0
gm(s)

〈
U−1

0 v,dBs

〉p( t
2 ,X t

2
, y)

p(t, x, y)

]

is continuous. So the expression above is true for all x, y ∈ M .
Since l′m(s,Xm· ) = l′m(s,X·) and lm(s,Xm· ) = lm(s,X·) for s < τm and Xs = Xm

s , applying
the same arguments above to M̃m, we have

(6.34)
〈
t∇ logp

M̃m
(t, x, y), v

〉
TxM = Ex

[∫ t
2

0
gm(s)

〈
U−1

0 v,dBs

〉pM̃m
( t

2 ,Xm
t
2
, y)

p
M̃m

(t, x, y)

]
.

To apply Lemma 6.4, it remains to make moment estimates for
∫ t

0 g(s)〈v,U0 dBs〉. For any
m ∈ N large enough and q > 0, (6.27) implies that condition (6.12) in Lemma 6.4 holds for
the process ϒt = ricUt and we could apply (6.21) and (6.13) to conclude the estimates. �

We are now in a position to proceed to prove the gradient estimates for logp(t, x, y).

THEOREM 6.7. The following statements hold:
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(1) Suppose x, y ∈ M and x /∈ CutM(y), then

(6.35) lim
t↓0

t∇x logp(t, x, y) = −∇x

(
d2(x, y)

2

)
.

Here, the convergence is uniformly in x on any compact subset of M \ CutM(y).
(2) Let K be a compact subset of M . Then there exists a positive constant C(K), which

may depend on K , such that

(6.36)
∣∣∇x logp(t, x, y)

∣∣
TxM ≤ C(K)

(
d(x, y)

t
+ 1√

t

)
, x, y ∈ K, t ∈ (0,1].

PROOF. In the proof the constant C (which depends on K̃ or K) may change from line
to line. For every m ∈ N with K ⊂ Bo(2m − 2) ⊂ Dm, we have

(6.37)
t∇x logp(t, x, y)

= t∇x logp
M̃m

(t, x, y) + (
t∇x logp(t, x, y) − t∇x logp

M̃m
(t, x, y)

)
.

For each compact set K̃ ⊂ M \ CutM(y), by (6.31) we could choose a m0 ∈ N large enough
such that K̃ ⊂ Bo(2m0 − 2) ⊂ Dm0 and

lim
t↓0

sup
x∈K̃

∣∣t∇x logp(t, x, y) − t∇x logp
M̃m0

(t, x, y)
∣∣
TxM = 0.

At the same time, since M̃m0 is compact and K̃ is outside of the cut locus Cut
M̃m

(y), we have

lim
t↓0

sup
x∈K̃

∣∣∣∣t∇x logp
M̃m0

(t, x, y) + ∇x

(
d2(x, y)

2

)∣∣∣∣
TxM

= lim
t↓0

sup
x∈K̃

∣∣∣∣t∇x logp
M̃m0

(t, x, y) + ∇x

(d2
M̃m0

(x, y)

2

)∣∣∣∣
TxM̃m0

= 0.

In the first step, we used that d
M̃m0

(x, y) = d(x, y) for x, y ∈ K̃ , while the second step is due

to Corollary 2.29 from Malliavin and Stroock [59] (see also Bismut [12] and Norris [62]).
Plugging this into (6.37) with m = m0, then we have shown (6.35).

Given a compact set K ⊂ M and a constant L > 1, based on (6.31), there exists a suf-
ficiently large natural number m0 such that K ⊂ Bo(2m0 − 2) ⊂ Dm0 and t0 ∈ (0,1) such
that

(6.38) sup
x,y∈K

∣∣∇x logp(t, x, y) − ∇x logp
M̃m0

(t, x, y)
∣∣
TxM ≤ Ce−L

t , ∀t ∈ (0, t0].

Since M̃m0 is compact, we can apply Hsu [43], Theorem 5.5.3, or Sheu [64] to show that, for
all x, y ∈ K and t ∈ (0,1],

(6.39)

∣∣∇x logp
M̃m0

(t, x, y)
∣∣
TxM ≤ C(K)

(d
M̃m0

(x, y)

t
+ 1√

t

)

= C(K)

(
d(x, y)

t
+ 1√

t

)
.

Combining (6.38) and (6.39) into (6.37) with m = m0, we immediately find (6.36) holds for
all t ∈ (0, t0].

Also note that, for all x, y ∈ K and for all t ∈ [t0,1],∣∣∇x logp(t, x, y)
∣∣
TxM ≤ C(K, t0) ≤ C

(
d(x, y)

t
+ 1√

t

)
.

By now we have completed the proof of (6.36). �
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REMARK.

(1) The gradient estimate (6.36) was proved in [43, 64, 66] for a complete manifold with
Ricci curvature bounded from below by a constant C0. In that case the constant C(K) in
(6.36) in uniform and only depends on C0, see also [49] for the case of the estimates for heat
kernel associated with the Witten Laplacian operator.

(2) By carefully tracking the proof, we know the constant C(K) from (6.36) depends only
on C1(m0), infx∈Dm0

‖Ricx‖ and supx∈Dm0
Ex

∫ 1
0 |l′m0

(s)|2 ds, where C1(m0) is the positive
constant such that

∣∣∇x logp
M̃m0

(t, x, y)
∣∣
TxM ≤ C1(m0)

(d
M̃m0

(x, y)

t
+ 1√

t

)

= C1(m0)

(
d(x, y)

t
+ 1√

t

)
.

6.3. Proof of Theorem 3.1 and the main theorem: Hessian estimates. Now we can prove
the claim for the second order gradient of logarithmic heat kernel. In Proposition 4.4 we have
established a second order gradient formula for Ptf on a compact manifold. In its proof we
exchanged the differential and the integral operators several times which may not hold if M

is not compact. So it is not trivial to extend Proposition 4.4 to a noncompact manifold.
To prove Theorem 3.1, we begin with comparing the terms in ∇2P k

t and ∇2Pt .

LEMMA 6.8. Given a point x ∈ M and a vector v ∈ TxM , suppose that m is suf-
ficiently large so x ∈ Dm and k > m. Let {Uk

t }t≥0 be the horizontal Brownian motion
on M̃k , as defined in (6.2). Set Xk

t = π(Uk
t ) and P k

t f (x) = Ex[f (Xk
t )]. Let h(s) =

( t−2s
t

)+lm(s,X·)U−1
0 v, and define

(6.40) I

(
t

2
,X·, v

)
:=

(∫ t
2

0

〈
�h

s ,dBs

〉)2
−

∫ t
2

0

〈
�h

s ,dBs

〉− ∫ t
2

0

∣∣�h
s

∣∣2 ds.

Let I ( t
2 ,Xk· , v) be defined with the corresponding terms in M̃k . Then we have

(6.41) I

(
t

2
,Xk· , v

)
= I

(
t

2
,X·, v

)
=

(∫ t

0

〈
�h

s ,dBs

〉)2
−

∫ t

0

〈
�h

s ,dBs

〉− ∫ t

0

∣∣�h
s

∣∣2 ds.

Furthermore, it holds that

(6.42) sup
x∈Dm,v∈TxM,|v|=1

Ex

[∣∣∣∣I
(

t

2
,X·, v

)∣∣∣∣2
]

< ∞, ∀t > 0.

PROOF. Let �h,k
s , �h,k

s , �h,k
s be the corresponding terms of �h

s , �h
s , �h

s defined on M̃k .
By (6.26) we have

(6.43) �h,k
s = h′(s) + ricM̃k

Uk
s

(
h(s)

) = h′(s) + ricUs

(
h(s)

) = �h
s , ∀k > m.

Still based on (3.2), (3.3) and the same arguments for (6.43), we can obtain that

�h,k
s = �h

s , �h,k
s = �h

s , ∀k > m.

Therefore, the term I ( t
2 ,Xk· , v) in (6.40) is independent of k, and the required identity (6.41)

holds. Finally, (6.42) immediately follows from the moment estimates (5.3) for l′m and the
same arguments for (6.27). �
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Proof of Theorem 3.1. The idea of the proof is similar to that of Lemma 6.5. For con-
venience of the reader, here we provide a detailed proof. Let m0 ∈ N satisfy that x ∈
Dm0+1, then for every k > m > m0 it holds that Bo(2m − 2) ⊂ Dm ⊂ Dk . Let h(s) =
( t−2s

t
)+lm(s,X·)U−1

0 v = ( t−2s
t

)+lm(s,Xk· )U−1
0 v. We can apply (4.12) in Proposition 4.4 to

the compact manifold M̃k to obtain that, for every k > m,

(6.44)

〈∇2P k
t f (x), v ⊗ v

〉
TxM⊗TxM

= Ex

[
f
(
Xk

t

)((∫ t

0

〈
�h,k

s ,dBs

〉)2
−

∫ t

0

〈
�h,k

s ,dBs

〉− ∫ t

0

∣∣�h,k
s

∣∣2 ds

)]

= Ex

[
f
(
Xk

t

)
I

(
t

2
,Xk· , v

)]
= Ex

[
f
(
Xk

t

)
I

(
t

2
,X·, v

)]
,

where the process �h,k
s , �h,k

s are defined by (3.2), (3.3) on M̃k , and in the last step we have
applied (6.41).

According to (6.40) and integration by parts formula (on compact manifold M̃k), for any
ψ ∈ C∞

c (M), V ∈ C∞
c (M;T M) with suppψ ∪ suppV ⊂ Dm we have

(6.45)

∫
M
Ex

[
f
(
Xk

t

)
I

(
t

2
,X·,V (x)

)]
ψ(x)dx

=
∫
M

〈∇2P k
t f (x),V (x) ⊗ V (x)

〉
TxM⊗TxMψ(x)dx

=
∫
M̃k

〈∇2P k
t f (x),V (x) ⊗ V (x)

〉
TxM⊗TxMψ(x)dx

=
∫
M̃k

Ex

[
f
(
Xk

t

)]
�(ψ,V )(x)dx =

∫
M
Ex

[
f
(
Xk

t

)]
�(ψ,V )(x)dx.

Here, we denote the gradient operator and Riemannian volume measure on both M and M̃k

by ∇ and dx, and we set

�(ψ,V )(x) := div
(
div(V ψ)V

)
(x) + div(ψ∇V V )(x)

= ψ(x)
(
div(∇V V ) + (divV )2 + 〈V,∇ divV 〉TxM

)
(x)

+ 2
〈∇ψ,∇V V + (divV )V

〉
TxM(x) + 〈∇2ψ(x),V (x) ⊗ V (x)

〉
TxM⊗TxM.

The second and last step above follow from the properties that Riemannian volume measure
dx, and the second order gradient operator ∇2 on M are the same as that on M̃k , when they
are restricted on Dm, the third equality is due to the integration by parts formula. Meanwhile,
note that Xt = Xk

t if t < τk , for every x ∈ Dm it holds

lim
k→∞

∣∣∣∣Ex

[
f
(
Xk

t

)
I

(
t

2
,X·,V (x)

)]
−Ex

[
f (Xt)I

(
t

2
,X·,V (x)

)
1{t<ζ }

]∣∣∣∣
≤ lim

k→∞Ex

[∣∣f (
Xk

t

)− f (Xt)1{t<ζ }
∣∣∣∣∣∣I

(
t

2
,X·,V (x)

)∣∣∣∣
]

≤ lim
k→∞

√
Ex

[∣∣f (
Xk

t

)− f (Xt)1{t<ζ }
∣∣2]

√
Ex

[∣∣∣∣I
(

t

2
,X·,V (x)

)∣∣∣∣2
]

≤ lim
k→∞

√
2C‖f ‖∞

√
Px(τk ≤ t < ζ ) = 0,

where the last inequality is due to (6.42).
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Putting this into (6.45), letting k → ∞, we see that, for every ψ ∈ C∞
c (M) and V ∈

C∞(M;T M) with suppψ ∪ suppV ⊂ Dm,∫
Dm

Ex

[
f (Xt)I

(
t

2
,X·,V (x)

)
1{t<ζ }

]
ψ(x)dx =

∫
Dm

Ex

[
f (Xt)1{t<ζ }

]
�(ψ,V )(x)dx,

which implies the weak (distributional) second order gradient ∇2Ptf exists on Dm and

(6.46)
〈∇2Ptf (x), v ⊗ v

〉
TxM⊗TxM = Ex

[
f (Xt)I

(
t

2
,X·, v

)
1{t<ζ }

]
, x ∈ Dm,v ∈ TxM.

As shown by Lemma A.2 in the Appendix, the functional x �→ Ex[f (Xt)I ( t
2 ,X·,

V (x))1{t<ζ }] is continuous. Now the distributional derivative ∇2Ptf exists and is contin-
uous, then ∇2Ptf is the classical second order gradient on Dm, and expression (3.4) holds.

PROPOSITION 6.9. Suppose that K is a compact subset of M and L > 1 is a positive
constant. Then, for any sufficiently large m, we could find a t0(K,L,m) such that, for any
t ∈ (0, t0],
(6.47) sup

x,y∈K

∣∣t∇2
x logp(t, x, y) − t∇2

x logp
M̃m

(t, x, y)
∣∣
TxM⊗TxM ≤ C(m)e−L

t ,

where C(m) is a positive constant which may depend on m.

PROOF. Let us fix x, y ∈ K and a unit vector v ∈ TxM with |v| = 1. Suppose that m ∈N

such that K ⊂ Bo(2m − 2) ⊂ Dm. Then by (3.4) we have

〈∇2Ptf (x), v ⊗ v
〉
TxM⊗TxM = Ex

[
f (Xt)I

(
t

2
,X·, v

)
1{t<ζ }

]
,

where I ( t
2 ,X·, v) is defined by (6.40) with h(s) := ( t−2s

t
)+lm(s,X·)U−1

0 v.
By this representation and following the same arguments of (6.33) and (6.34), we obtain

〈∇2
xp(t, x, y), v ⊗ v〉TxM⊗TxM

p(t, x, y)
= Ex

[
I

(
t

2
,X·, v

)p( t
2 ,X t

2
, y)

p(t, x, y)

]
,

〈∇2
xp

M̃m
(t, x, y), v ⊗ v〉TxM⊗TxM

p
M̃m

(t, x, y)
= Ex

[
I

(
t

2
,X·, v

)p
M̃m

( t
2 ,Xm

t
2
, y)

p
M̃m

(t, x, y)

]
.

Based on above expression and following the same arguments in the proof of Proposition 6.6
(especially applying (6.13) and (6.21)–(6.23)), we could find a m0(K,L) ∈ N such that, for
all m ≥ m0, there exists a t0(K,L,m) > 0 such that

(6.48) sup
x,y∈K

∣∣∣∣∇
2
xp(t, x, y)

p(t, x, y)
− ∇2

xp
M̃m

(t, x, y)

p
M̃m

(t, x, y)

∣∣∣∣
TxM⊗TxM

≤ C(m)e−L
t , t ∈ (0, t0].

Meanwhile, we have〈∇2
x logp(t, x, y), v ⊗ v

〉
TxM⊗TxM

= 〈∇2
xp(t, x, y), v ⊗ v〉TxM⊗TxM

p(t, x, y)
−

( 〈∇xp(t, x, y), v〉TxM

p(t, x, y)

)2
,

and the similar expression holds for 〈∇2
x logp

M̃m
(t, x, y), v ⊗ v〉TxM⊗TxM . Together with

(6.31) and (6.48), this yields (6.47) and concludes the proof. �

With (6.47) we are in the position to prove the second part of the main theorem on the
short time and asymptotic second order gradient estimates.
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THEOREM 6.10. The following statements hold:

(1) Suppose y ∈ M and K̃ ⊂ M \ CutM(y) is a compact set, then

(6.49) lim
t↓0

sup
x∈K̃

∣∣∣∣t∇2
x logp(t, x, y) + ∇2

x

(
d2(x, y)

2

)∣∣∣∣
TxM⊗TxM

= 0.

(2) For any y ∈ M and δ < i(y) there exist positive constants t0 and C1 such that

(6.50)
∣∣t∇2

x logp(t, x, y) + ITxM

∣∣
TxM⊗TxM ≤ C1

(
d(x, y) + √

t
)
, x ∈ By(δ), t ∈ (0, t0],

where ITxM is the identical map on TxM .
(3) Suppose K ⊂ M is a compact subset of M , then there exists a positive constant C2(K)

such that

(6.51)
∣∣∇2

x logp(t, x, y)
∣∣
TxM⊗TxM ≤ C2

(
d2(x, y)

t2 + 1

t

)
, x, y ∈ K, t ∈ (0,1].

PROOF. By Malliavin and Stroock [59], Corollary 2.29, Gong and Ma [36], Theorem 3.1,
and Stroock [66] (or Sheu [64]), we know (6.49)–(6.51) hold when M is compact. Then, using
the estimates (6.47) and following the same procedure as in the proof of Theorem 6.7, we can
verify that (6.49)–(6.51) hold for any complete Riemannian manifold. �

APPENDIX: APPROXIMATION PROCEDURE

Let (M,g) and Dm ⊂ M be the same terms in Section 5.

LEMMA A.1. For every m ∈ Z+, there exists a (smooth) compact Riemannian manifold
(M̃m, g̃m) such that (Dm,g) is isometrically embedded into (M̃m, g̃m) as an open set. In
particular, if y, x ∈ Dm and x /∈ cuty(M), then x /∈ cuty(M̃m).

PROOF. Let Gm = Dm+1, recall that ∂Gm is a connected smooth n−1-dimensional sub-
manifold of M . Hence, Gm is an n-dimensional manifold with smooth boundary; then there
exist an atlas of local charts {(Vi,ψi)}Ni=1 of Gm such that:

(1)
⋃N

i=1 Vi = Gm;
(2) For i = 1, . . . ,N1 ≤ N , these are charts for the interior. So Vi ∩ ∂Gm = ∅, and ψi :

Vi → Bn := {z ∈ Rn; |z| < 1} is a smooth diffeomorphsim for all 1 ≤ i ≤ N1;
(3) For all i > N1, Vi ∩ ∂Gm �=∅,

ψi : Vi → Bn,+ := {
z = (z1, . . . , zn) ∈ Rn; |z| < 1, z1 ≥ 0

}
is a smooth diffeomorphsim and ψi(Vi ∩ ∂Gm) = ∂Bn,+.

By the Whitney embedding theorem, we could embed M into a (ambient) Euclidean space
Rp . Let Ĝm be an identical copy of Gm in Rp , endowed with the local charts {(V̂i , ψ̂i)}Ni=1

(which is also an identical copy of {(Vi,ψi)}Ni=1). We define h : ∂Gm → ∂Ĝm by h(x) :=
ψ̂−1

i (ψi(x)), if x ∈ Vi ∩ ∂Gm, h is well defined and is a smooth diffeomorphism.
We glue the boundary of Gm and G̃m together to get M̃m := (Gm � Ĝm)/ ∼, where ∼ is

an equivalent relation such that x ∼ y if and only if h(x) = y, x ∈ ∂Gm, y ∈ ∂Ĝm. Then M̃m

is a smooth compact manifold without boundary. In fact, {(Ui,φi)}N+N1
i=1 = {(Vi,ψi)}N1

i=1 ∪
{(V̂i, ψ̂i)}N1

i=1 ∪ {(Ṽi , ψ̃i)}Ni=N1+1 is a local charts of M̃m. Here, Ṽi = (Vi � V̂i)/ ∼ for every
N1 < i ≤ N and

ψ̃i(x) =
{
ψi(x), if x ∈ Vi,

S
(
ψ̂i(x)

)
, if x ∈ V̂i ,
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where S : Rn → Rn is a map such that Sx = (−x1, x2, . . . , xn) for all x = (x1, x2, . . . , xn) ∈
Rn. It is easy to see ψ̃i : Ṽi → Bn, N1 < i ≤ N is a smooth diffeomorphsim, and the transition
map between different local charts on {(Ui,φi)}N+N1

i=1 is smooth.
We construct a smooth Riemannian metric g̃m on M̃m to ensure that g̃m(z) = g(z) for

every z ∈ Dm. For the open set Dm ⊂ Gm ⊂ M̃m, by the standard procedure (via the finite
local charts) we could construct a function χm : M̃m → [0,1] such that suppχm ⊂ Gm and
χm(x) = 1 for every x ∈ Dm. Note that Gm could also be viewed as an open subset of M̃m,
so ĝm(x) := g(x)χm(x), x ∈ M̃m is well defined on M̃m. Fixing a smooth Riemannian metric
g0

m on M̃m, which exists, we set

g̃m(x) := g(x)χm(x) + g0
m(x)

(
1 − χm(x)

)
, x ∈ M̃m.

It is easy to see g̃m is a smooth Riemannian metric on M̃m and g̃m(x) = g(x) for each x ∈ Dm.
By now we have completed the proof. �

Let I (t,X·, v) be as defined in (6.40).

LEMMA A.2. For every fixed f ∈ C∞
c (M), V ∈ C∞(M;T M) with compact supports

and t > 0, the function

F(x) := E

[
f
(
Xx

t

)
I

(
t

2
,Xx· ,V (x)

)
1{t<ζ(x)}

]
, x ∈ M

is continuous.

PROOF. Let ζ(x) denote the explosion time of the solution Xx
t to (3.1) with the initial

value x. Let U be a frame at x. Then the explosion time of the horizontal Brownian motion
agree with ξ(x) almost surely. So we use ξ for the explosion time of both. Furthermore,
by Elworthy [28] there exist a maximal solution flow {Ut(·,ω)}0≤t<ζ(·,ω) to (3.1) such that
Ut(u,ω) is the solution of (3.1) with initial value u ∈ OM, and there is a null set � such that,
for all ω /∈ �:

(1) For each t > 0, set �t(ω) := {u ∈ OM : t < ζ(u,ω)}, Then �t is open in OM (i.e.,
ζ(·,ω) : OM → R+ is lower semicontinuous), and Ut(·,ω) : �t(ω) → OM is a C∞ diffeo-
morphism onto its image.

(2) For each fixed u ∈ OM with π(u) = x, there exists a null set �(u), depending on u,
such that ζ(u,ω) = ζ(Xx· ) for each ω /∈ �(u) ∪ �.

Fix a point x0 ∈ M . For each sequence {xk}∞k=1 with limk→∞ xk = x0, we take a sequence
{uk}∞k=1 and U0 in OM such that π(uk) = xk , π(U0) = x0 and limk→∞ uk = u0 in OM.
Set �̃ := (

⋃∞
k=0 �(uk)) ∪ �. For each k and ω /∈ �̃, ζ(Uk,ω) = ζ(xk,ω). By the lower

semicontinuity of ζ , ζ(x0) ≤ lim infk→∞ ζ(xk), hence, uk ∈ �t(ω) for each t < ζ(x0) when
k is large enough. By the property (1) above, we have immediately

lim
k→∞Ut(uk,ω)1{t<ζ(xk)} = Ut(u0,ω)1{t<ζ(x0)}, ω /∈ �̃, t > 0.

Combing this with the definition �(s,X·, v) and the expression (5.4) of lm, we see that

(A.1) lim
k→∞�

(
s,Xxk· ,V (xk)

) = �
(
s,Xx0· ,V (x0)

)
, s > 0.

Let h(s,X·,V (x)) := ( t−2s
t

∨0) · lm(s,X·) ·u0(x)−1V (x), where u0(·) is a smooth section
of OM with π(u0(x)) = x. We only need to demonstrate the proof for one of the term in
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I (t,Xx· , v), for this we set

w(x) := E

[
f
(
Xx

t

)(∫ t
2

0

〈
�
(
s,Xx· ,V (x)

)
,dBs

〉)
1{t<ζ(x)}

]

=: E
[
f
(
Xx

t

)(∫ t
2

0

〈(
h′(s) + 1

2
ricUs h(s)

)
,dBs

〉)
1{t<ζ(x)}

]
.

For simplicity, we only prove the continuity for the function x → w(x), the continuity prop-
erty for the other terms in F(x) could be verified similarly.

According to (5.3), we obtain

sup
k>0

E

[∣∣∣∣
∫ t

2

0

〈
�
(
s,Xxk· ,V (xk)

)
,dBs

〉∣∣∣∣4
]

< ∞.

Based on this and (A.1), we have

lim
k→∞E

[∣∣∣∣
∫ t

2

0

〈
�
(
s,Xxk· ,V (xk)

)
,dBs

〉− ∫ t
2

0

〈
�
(
s,Xx0· ,V (x0)

)
,dBs

〉∣∣∣∣2
]

= 0.

Similarly from (A.1), we arrive at

lim
k→∞E

[∣∣f (
X

xk
t

)
1{t<ζ(xk)} − f

(
X

x0
t

)
1{t<ζ(x0)}

∣∣2] = 0.

Therefore, by Cauchy–Schwarz inequality

lim
k→∞

∣∣w(xk) − w(x0)
∣∣2

≤ 2‖f ‖2∞ lim
k→∞E

[∣∣∣∣
∫ t

2

0

〈
�
(
s,Xxk· ,V (xk)

)
,dBs

〉− ∫ t
2

0

〈
�
(
s,Xx0· ,V (x0)

)
,dBs

〉∣∣∣∣2
]

+ 2 sup
k>0

E

[∣∣∣∣
∫ t

2

0

〈
�
(
s,Xxk· ,V (xk)

)
,dBs

〉∣∣∣∣4
]

· lim
k→∞E

[∣∣f (
X

xk
t

)
1{t<ζ(xk)} − f

(
X

x0
t

)
1{t<ζ(x0)}

∣∣2]
= 0.

Since {xk}∞k=1 is arbitrarily chosen, w(·) is continuous at x0 ∈ M . Again, x0 is arbitrary, so
w(·) is continuous on M . This completes the proof for the lemma. �
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