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We establish a new scale of p-variation estimates for martingale para-
products, martingale transforms and Itô integrals, of relevance in rough paths
theory, stochastic and harmonic analysis. As an application, we introduce
rough semimartingales, a common generalization of classical semimartin-
gales and (controlled) rough paths and their integration theory.

1. Statement of main results.

1.1. Background. Let (�,F, (Ft )t≥0,P) be a filtered probability space. For a two-
parameter process �= (�t,t ′)0≤t≤t ′<∞ and p ∈ (0,∞), the p-variation is defined by

(1.1) V p� := sup
lmax,u0≤···≤ulmax

(
lmax∑
l=1

|�ul−1,ul
|p

)1/p

,

with the �p norm replaced by the �∞ norm in the case p =∞. For a one-parameter process
f = (ft )t≥0, the p-variation is defined by

V pf := V p(δf ), (δf )t,t ′ := ft ′ − ft .

The p-variation is a monotonically decreasing function of p. A classical result about p-
variation is Lépingle’s inequality, which tells that, for a càdlàg martingale g = (gt )t≥0, we
have

(1.2)
∥∥V pg

∥∥
Lq(�) �

∥∥V∞g
∥∥
Lq(�), 2 < p ≤∞,1 ≤ q <∞.

The notation �, along with some other conventions, is explained in Section 1.6. The estimate
(1.2) goes back to [43]. The above version, which includes the endpoint case q = 1, is more
recent [56], Remark 3.5, and is also the special case F ≡ 1, p1 =∞ of Theorem 1.1 below.

We note that V∞g = sup0≤t<t ′ |δgt,t ′ | is, essentially, the martingale maximal function of
(gt − g0)t≥0. For continuous martingales, the estimate (1.2) holds for any 0 < q < ∞, but
this special case does not play a distinguished role in this article. The estimate (1.2) is false
for p = 2 already for the Brownian motion; see [53], Theorem 1, for a precise lower bound
in this case.

The notion of bounded p-variation is important in rough path theory, introduced in [45],
which provides a pathwise meaning to some stochastic differential equations. A systematic
account of this theory for continuous paths can be found in [28], and a version for càdlàg
paths can be found in [29].

In the range p ∈ (2,3), which is the most interesting for martingales, rough path theory
requires bounds on an area term as an input. This area term is usually given by a stochastic
integral, and it is our objective to prove suitable bounds for a wide class of integrands. We
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approach this problem directly by keeping track of p-variation bounds in a construction of
the Itô integral. We will now introduce the discrete approximations that we will use.

An adapted partition π is an increasing sequence of stopping times (πn)n∈N such that
π0 = 0 and limn→∞ πn =∞. For an adapted partition π , we write

(1.3) 	t, π
 := max
{
s ∈ π | s ≤ t

}
, 0 ≤ t <∞.

For càdlàg adapted processes F = (Fs,t )0≤s≤t , g = (gt )t≥0 and an adapted partition π , we
consider the following approximation to the Itô integral:

(1.4) �π(F,g)t,t ′ :=
∑

	t,π
≤πj<t ′
F	t,π
,πj

(gπj+1∧t ′ − gπj∨t ), 0 ≤ t ≤ t ′ <∞.

The sum (1.4) can be viewed as a Riemann–Stieltjes integral

(1.5) �π(F,g)t,t ′ =
∫
(t,t ′]

F
(π)
t,u− dgu,

where F (π) is another adapted process, which is a discretized version of the process F , given
by

(1.6) F
(π)
s,t := F	s,π
,	t,π
.

An important special case arises when F = δf are the increments of a one-parameter process
(ft ), in which case we write

�π(f,g) :=�π(δf,g).

Also, we have (δf )(π) = δ(f (π)) with f
(π)
t := f	t,π
.

Another classical result about p-variation concerns the (deterministic, pointwise) existence
of the Riemann–Stieltjes type integral

(1.7) �(f,g)= lim
π

�π(f, g),

called the Young integral, provided V p1f , V pg are finite, p1 > 0, p > 0 and 1/p1+1/p > 1.
Although this result goes back to [55], Section 10, the above version is only explicitly stated
in [29], Theorem 2.2.

If g is a martingale, then V pg <∞ (locally in time) for any 2 < p by Lépingle’s inequality
(1.2), and so Young’s condition becomes 0 < p1 < 2. Under this condition, for 1/r = 1/p1 +
1/p, we have

(1.8) V r�π(f, g)�
(
V p1f

)(
V pg

)
,

and the same estimate holds for the limit � in (1.7).

1.2. Itô integral. Our first main result extends the estimate (1.8) to the case of Itô in-
tegrals with integrands whose variation exponent is p1 ≥ 2. The pathwise estimate (1.8) be-
comes false in this regime, and we have to substitute it with a moment estimate (which follows
directly from (1.8), Hölder’s and Lépingle’s inequalities in the case p1 < 2). Moreover, we
replace the increment process δf by a general two-parameter process F ; the motivation for
doing so is explained below.

THEOREM 1.1. Let 0 < q1 ≤∞, 1 ≤ q0 < ∞, imax ∈ N and 0 < r,p1,pi,0, pi,1 ≤∞
with i ∈ {1, . . . , imax}. Suppose

(1.9) 1/r < min
(
1/p1 + 1/2, min

1≤i≤imax
1/pi,1 + 1/pi,0

)
, 1/q = 1/q0 + 1/q1.
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Let (Fs,t )s≤t be a càdlàg adapted process and (gt ) a càdlàg martingale. Suppose that there
exist càdlàg adapted processes F i , F̃ i , i ∈ {1, . . . , imax}, such that

(1.10) Fs,u − Ft,u =
imax∑
i=1

F i
s,t F̃

i
t,u, s ≤ t ≤ u.

Then the following holds:

(i) For every adapted partition π , we have the estimate∥∥V r�π(F,g)
∥∥
Lq �

∥∥V p1F (π)
∥∥
Lq1

∥∥V∞g
∥∥
Lq0

+
imax∑
i=1

∥∥V pi,1F i,(π) · V pi,0�π (
F̃ i , g

)∥∥
Lq .

(1.11)

(ii) For every i ∈ {1, . . . , imax}, let qi,0, qi,1 ∈ [q,∞] with 1/q = 1/qi,0 + 1/qi,1, and
suppose that

F i = lim
π

F i,(π) in Lqi,1
(
V pi,1

)
,(1.12)

�
(
F̃ i , g

) = lim
π

�π (
F̃ i , g

)
exists in Lqi,0

(
V pi,0

)
,(1.13)

and F̃ i ∈ Lq1(V∞). Suppose that the right-hand side of (1.15) is finite. Then

(1.14) �(F,g) := lim
π

�π(F,g)

exists in Lq(�,V r), satisfies the bound∥∥V r�(F,g)
∥∥
Lq �

∥∥V p1F
∥∥
Lq1

∥∥V∞g
∥∥
Lq0

+
imax∑
i=1

∥∥V pi,1F i · V pi,0�
(
F̃ i , g

)∥∥
Lq ,

(1.15)

and, for any 0 ≤ t ≤ t ′ ≤ t ′′ <∞, Chen’s relation

(1.16) �(F,g)t,t ′′ =�(F,g)t,t ′ +�(F,g)t ′,t ′′ +
imax∑
i=1

F i
t,t ′�

(
F̃ i , g

)
t ′,t ′′ .

The limit (1.14) is the Itô integral, which can also be denoted by

(1.17) �(F,g)t,t ′ =
∫
(t,t ′]

Ft,u− dgu.

The hypothesis (1.12) is easily verified if F i satisfies a structural hypothesis similar to (1.10)
for F ; see Lemma 4.1. The hypothesis (1.13) can typically be obtained by recursive appli-
cation of Theorem 1.1 with F̃ i in place of F , if F̃ i are in some sense of lower complexity
than F . Most prominently, if F is some component of a rough path, then all F̃ i can be taken
to be lower level components of that path.

1.2.1. Relation to previous works. In the case F ≡ 1, we have �π(F,g) = δg for any
adapted partition π . Moreover, the right-hand side of (1.10) is an empty sum in this case,
so that Theorem 1.1 boils down to Lépingle’s inequality (1.2). Our argument has its roots
in the approach to Lépingle’s inequality given in [3, 51]; we also refer to [56] for a short
self-contained exposition of this case.
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If F = δf are the differences of a càdlàg process f , then

Fs,u − Ft,u = (δf )s,t · 1 = Fs,t · F̃t,u

with F̃s,t ≡ 1. The convergence hypotheses (1.12) and (1.13) are witnessed by the stopping
construction in Lemma 4.1. Since �(F̃ , g)= δg and by Lépingle’s inequality (1.2) for g, the
estimate (1.15) becomes

(1.18)
∥∥V r�(δf,g)

∥∥
Lq �

∥∥V p1(δf )
∥∥
Lq1

∥∥V∞g
∥∥
Lq0 .

In the special case q1 =∞, the existence of the limit (1.14) refines the Lq convergence of
discrete approximations to the Itô integral [2], Theorem 2.6.

If f is also a martingale, 1 ≤ q1 <∞, and r > 1, then taking p1 = 2+ and using Lépingle
inequality (1.2) for f , the estimate (1.18) implies

(1.19)
∥∥V r�(δf,g)

∥∥
Lq �

∥∥V∞f
∥∥
Lq1

∥∥V∞g
∥∥
Lq0 .

In this case, the object �(δf,g) is analogous to so-called paraproducts in harmonic analysis.
For paraproducts, an estimate of the form (1.19) was first proved in [19], motivated by an
application of rough path theory in time-frequency analysis [20], Corollary 1.2.

The estimate (1.19) is of interest because it shows that for a (multidimensional) martingale
X, the pair (X,�(X,X)) is almost surely a rough path. For continuous martingales, the
estimate (1.19) was proved in [23] (in the diagonal case q0 = q1). For càdlàg martingales,
the estimate (1.19) was proved in [5] (in the diagonal case q0 = q1) and in [41] (for general
q0, q1 > 1).

For nonmartingale integrands f , the estimate (1.18) is new. One of the motivations for
considering this case is the construction of joint rough path lifts of rough paths and martin-
gales (see Theorem 1.3 below), which underlies our notion of rough semimartingale. Another
motivation (see, e.g., [9] and [28], Chapter 14) is the analytic stability of Itô integrals of the
form

∫
ϕ(f )dg, with sufficiently regular ϕ, as a function of f . A weaker version of the esti-

mate (1.18), which does not respect the Hölder scaling condition on q , was proved in the case
q0 = q1 = 2 in [15], Proposition 3.13, and used to establish invariance principles of random
walks in random environments in rough path topology.

Although of no direct interest in rough paths, we note that the case p1 =∞, r = 2+ of
(1.18) is a consequence of Lépingle’s inequality applied to the martingales (

∫ t
0 fu− dgu)t and

g. However, the approach via Theorem 1.1 is still preferable in this case, since it provides a
construction of the Itô integral

∫
fu− dgu that naturally comes with variation norm estimates.

We further elaborate on this point of view in Section 4.2, where we deduce the classical
convergence results for discrete approximations to the Itô integral with respect to càdlàg
local martingales (Mloc) from Theorem 1.1. At this point, the ability to take q0 = 1, missing
in [41], is important; see Lemma 4.4.

The estimate (1.15) for processes F that are not of the increment form is useful for the
construction of Itô branched rough paths; see Section 3.4. For instance, if f ∈ Lq1(V p1)

with p1 ≥ 4, then the information
∫

δf− dg is not sufficient for rough path theory, and
more stochastic building blocks have to be included. Theorem 1.1 shows, for instance, that∫
(δf−)2 dg has variational exponent r = 1/(2/p1 + 1/2)−. Note that one can choose r < 1

iff p1 < 4 which, in that case, reflects redundancy of
∫
(δf−)2 dg from a rough integration

perspective. In harmonic analysis, analogues of such integrals are known as multilinear para-
products; see, for example, [48, 49].

Another setting in which two-parameter integrands F are useful is that of controlled rough
integration, introduced in [31]. The easiest situation is as follows. Let X, Y , Y ′ be càdlàg
adapted processes and g a càdlàg martingale. We interpret Y ′ as the Gubinelli derivative of Y

with respect to X, so that the remainder term is given by

(1.20) R ≡ δY − Y ′δX : ⇐⇒ Rs,t ≡ δYs,t − Y ′
sδXs,t .
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Then

(1.21) Rs,u −Rt,u = δY ′
s,t δXt,u +Rs,t · 1,

and Theorem 1.1 implies the estimate∥∥V r�(R,g)
∥∥
q �

∥∥V r2Y ′ · V 1/(1/r1+1/2)�(δX,g)
∥∥
q +

∥∥V 1/(1/r1+1/r2)R
∥∥
q1

∥∥V∞g
∥∥
q0

.

When the �r norm implicit in the left-hand side of this estimate is computed for a given par-
tition π , this estimate can be interpreted as a bound for the error in a discrete approximation
of the controlled integral

∫
Ydg.

Such integrands also appear in stochastic numerics; see, for example, [40], Chapter 5, [30]
or [39], Lemma 4.2..

1.2.2. Further variants. Theorem 1.1 continues to hold with all processes being Hilbert
spaces valued, upon replacing all products by tensor products, and the bounds do not depend
on the dimensions of the Hilbert spaces.

The limiting variational estimate (1.15) has a precise analogue in Hölder topology, given
in Appendix A, which extends and quantifies some previous constructions notably Diehl et al.
[18] and [25], Chapter 13, (with g taken as Brownian motion). To wit, in these references the
Hölder regularity is obtained by some variation of Kolmogorov’s criterion (or Besov–Hölder
embedding); the resulting (1/q)+-loss on the Hölder exponent (integrability parameter q) is
avoided in Theorem A.1.

1.3. Rough integrators. The second main result concerns integrals formally given by

�(g,Y)t,t ′ ≡
∫
(t,t ′]

(δg)t,u− dYu,

where g is a martingale and Y is a suitable (rough) càdlàg process. When V p1Y ∈ Lq1(�)

for some p1 < 2, using Young’s inequality pathwise, with p0 > 2 such that 1/p0 + 1/p1 >

max(1,1/r), followed by Hölder’s inequality (with q , q0, q1 as in Theorem 1.1) and Lépin-
gle’s estimate (applied to ‖V p0g‖Lq0 ), we see

(1.22)
∥∥V r�(g,Y)

∥∥
Lq(�) �

∥∥V p1Y
∥∥
Lq1 (�)

∥∥V∞g
∥∥
Lq0 (�).

When p1 ≥ 2, pathwise arguments fail. Instead, we will define �(g,Y) using integration
by parts. We start with the summation by parts formula for the discretized paraproduct (1.4)
associated to an adapted partition π of [0, T ]:

(YT − Y0)(gT − g0)−�π(Y,g)0,T

=�π(g,Y )0,T + ∑
πj<T

(YT∧πj+1 − Yπj
)(gT∧πj+1 − gπj

).

Under the assumptions of Theorem 1.1, we can pass to the limit along π on the left-hand
side, and hence also on the right-hand side. We would like to interpret the limits of the two
summands on the right-hand side as as

∫
g− dY = �(g,Y) = limπ �π(g,Y) and a covaria-

tion bracket [Y,g] = limπ [Y,g]π , respectively. However, these summands do not in general
individually converge along π . We give an example in which these two limits do not exist.

EXAMPLE 1.2. Let g = B be a standard Brownian motion and Yt = BH
t := ∫ t

0 (t −
s)H−1/2 dB a fractional Brownian motion (fBm) of Hurst parameter H ∈ (0,1/2). Then Yt

has locally bounded p1-variation for any p1 > 1/H (and no better). For T = 1 and a partition
π including T , by Itô isometry, we have

E
∑

πj<1

(
BH

πj+1− −BH
πj

)
(Bπj+1 −Bπj

)� E
∑
j

|πj − πj−1|H+1/2,
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which is divergent in the rough regime H < 1/2. (In other words, the Itô integral
∫

BH dB

has infinite Itô–Stratonovich correction; see [25], Chapters 14 and 15, for a discussion of this
example from a general renormalization perspective.) As a consequence, limπ �π(B,BH)

does not exist.

The problem in this example is correlation. One way of ruling out such situations is to
take Y = X deterministic (or independent of g), which is why independence of components
is a common assumption for Gaussian rough paths [24].1 We use a more flexible structural
assumption to overcome this problem, namely, we assume that the (adapted) process Y is
controlled by a deterministic reference path X, in a sense based on [31].

THEOREM 1.3. Let q , q0, q1 be as in Theorem 1.1, 0 < r ≤ ∞, and 0 < p̂1 < 2 ≤
p1 ≤∞ with 1/r < 1/2+ 1/p1. Let X be a deterministic càdlàg path, Y = (Y,Y ′) a càdlàg
adapted process, and g a càdlàg martingale. Assume that

V∞g ∈ Lq0, MY ′ := sup
t

∣∣Y ′
t

∣∣ ∈ Lq1, X ∈ V p1, V p̂1RY ∈Lq1,

where

(1.23) RY
s,t :=R

Y,X
s,t := Yt − Ys − Y ′

s(Xt −Xs), 0 ≤ s ≤ t <∞.

Then there exists a process (�(g,Y)t,t ′)0≤t≤t ′<∞ with the following properties:

1. It is a u.c.p. limit along deterministic partitions of discretized paraproducts:

(1.24) �(g,Y)0,T = u. c.p. -lim
d-mesh(π)→0

�π(g,Y )0,T =:
∫ T

0
(δg)0,t− dYt .

2. We have Chen’s relation

(1.25) �(g,Y)t,t ′′ =�(g,Y)t,t ′ +�(g,Y)t ′,t ′′ + (gt ′ − gt )(Yt ′′ − Yt ′).

3. We have the bound

(1.26)
∥∥V r�(g,Y)

∥∥
Lq(�) �

(
V p1X

∥∥MY ′∥∥
Lq1 (�) +

∥∥V p̂1RY∥∥
Lq1 (�)

)∥∥V∞g
∥∥
Lq0 (�).

Theorem 1.3 is proved in Section 5.3. The construction of �(g,Y) is based on the afore-
mentioned integration by parts identity in combination with constructing quadratic covari-
ation, given as (u.c.p.) limit of [Y,g]π (see Definition 5.2), for every local martingale g,
identified explicitly in Theorem 5.4 as

(1.27)
∑
s≤t

�XsY
′
s−�gs +

∑
s≤t

�RY
s �gs =: [Y, g]t .

Note that [Y, g] implicitly depends on X. Moreover, in general, [Y,Y ]π does not converge.
Again, several remarks are in order.

• The exponent p1 quantifies the variational regularity of both X and Y . The assumption
p1 ≥ 2 is not essential. Indeed, as noted above, when p1 < 2 one can use (pathwise) Young,
Hölder and Lépingle to get the estimate (1.22), from which (1.26), if so desired, is an easy
consequence.

• The assumption p̂1 < 2 reflects the “length” of the expansion Yt ≈ Ys + Y ′
s(Xt − Xs),

familiar from controlled rough path theory (think: p̂1 = p1/2) although we do not need to
control any variation norm of Y ′ here: Theorem 1.3 is a stochastic result, and not based on
pathwise (sewing) arguments. It is then clear that the condition on p̂1 could be relaxed by
suitable higher-order “controllness” assumptions, but we have not pursued this further.

1For an independent Brownian B⊥, existence of
∫

B⊥ dBH = lim�(B⊥,BH )π holds in L2(�).
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• The special case of deterministic Y = X corresponds to (Y,Y ′) = (X,1), RY = 0. Take
q1 =∞ and 1 ≤ q0 = q <∞, so that (1.26) simplifies to

(1.28)
∥∥V r�(g,X)

∥∥
Lq0 (�) �

(
V p1X

)∥∥V∞g
∥∥
Lq0 (�).

In case of random X, but independent of g, this estimate can be used upon conditioning on
X, and immediately gives∥∥V r�(g,X)

∥∥
Lq0 (�) �

∥∥V p1X
∥∥
Lq0 (�)

∥∥V∞g
∥∥
Lq0 (�).

The better integrability of the left-hand side, compared to (1.26), is a consequence of inde-
pendence.

• U.c.p. convergence as mesh(π)→ 0 (with nondeterministic partitions π ) in (1.24) fails in
general for the two-parameter processes �π(g,Y)t,t ′ . In fact, it already fails in the simpler
situation of Corollary 4.5, which deals with mesh convergence of discrete approximations
to Itô integrals.

1.4. Rough semimartingales. Recall that a classical semimartingale Z = g+Y , possibly
vector valued, is the sum of a càdlàg local martingale g and càdlàg adapted Y ∈ V 1

loc. This
was generalized, at least in the continuous setting, to Dirichlet processes [22], where the
finite variation condition on Y is replaced by vanishing quadratic variation. In a similar spirit,
we can define Young semimartingales (YSM) as processes Z = g + Y , as above, but now
with Y ∈ V 2−

loc , meaning V
p
loc for p ∈ [1,2). Although this decomposition need not be unique,

for any two Young semimartingales Z, Z̄, the paraproduct �(Z, Z̄)t,t ′ = ∫
(δZ)t,u− dZ̄u is

easily seen to be well defined, essentially as consequence of Itô and Young integration, with
pathwise estimates obtained by combining Young and Lépingle, exactly as was done for
(1.22). Examples of suitable V 2−

loc processes include fractional Brownian motion with Hurst
parameter H > 1/2 and α-stable Lévy processes, α < 2; see [37, 46] for some general results.

Both Dirichlet processes and Young semimartingales face a seemingly fundamental barrier
at p = 2. Yet, Theorems 1.1 and 1.3 provide us with a way of going beyond—the key idea is
to postulate a deterministic reference path X. (This assumption appears naturally, e.g., under
partial conditioning of driving noise; cf. Corollary 1.10.)

DEFINITION 1.4. Let p ∈ [2,3). Let X be a càdlàg adapted process, with values in some
Hilbert space H̃ and X ∈ V

p
loc almost surely. We call a pair of càdlàg adapted processes Y =

(Y,Y ′) with values in some Hilbert space H and in the operator space L(H̃ ,H), respectively,
an X-controlled p-rough process if Y,Y ′ ∈ V

p
loc and RY,X ∈ V

p/2
loc , almost surely.

Recall that RY,X was defined in (1.23).

DEFINITION 1.5. Let p ∈ [2,3) and X ∈ V
p
loc be a càdlàg deterministic path. We define

an X-controlled p-rough semimartingale (RSM) to be a càdlàg adapted process of the form(
g + Y,Y ′) :�× [0,∞)→H ⊕L(H̃ ,H),

where g is a càdlàg local martingale and Y = (Y,Y ′) is an X-controlled p-rough càdlàg
adapted process.

A trivial example of X-controlled p-RSM is given by (g +X, Id) for some deterministic
càdlàg path X ∈ V

p
loc, p < 3, as may be supplied by a typical realization of another martingale.

The following can be seen as RSM version of the Doob–Meyer decomposition for special
semimartingales.
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THEOREM 1.6. Let (gi + Yi, Y
′
i ) be Xi-controlled RSMs, i = 1,2, with g1 + Y1 = g2 +

Y2. Assume Yi(ω, t) is previsible for i = 1,2 and Y1(ω,0)= Y2(ω,0). Then Y1 = Y2.

PROOF. From (1.27), using crucially the existence of the reference path Xi , the quadratic
covariation

[Yi, ḡ] = u. c.p. -lim
d-mesh(π)→0

[Yi, ḡ]π

exists and vanishes for every continuous local martingale ḡ. (This shows that gi + Yi is a
weak Dirichlet process in the sense of [8, 21].) The difference Y1 − Y2 =: ḡ is a previsible
local martingale, hence a continuous local martingale. But then

u. c.p. -lim
d-mesh(π)→0

[Y1 − Y2, Y1 − Y2]π = u. c.p. -lim
d-mesh(π)→0

[Y1, ḡ]π − [Y2, ḡ]π = 0.

This shows that Y1 − Y2 is a continuous martingale with vanishing quadratic variation (cf.
(5.15)), starting at zero, hence identically equal to zero. �

Similar to controlled rough paths, the notion of RSM is most fruitful when paired with
rough paths. Recall [27, 45] (see also [54] and [6] for a recent review (with applications
to homogenization)), that a càdlàg p-rough path with p ∈ (2,3) can be viewed as a pair of
càdlàg processes X = (X,X) = ((Xt), (Xs,t )) with values in a Banach space B and a tensor
product space B ⊗B , with V pX, V p/2

X (locally in time) finite and subject to Chen relation
Xt,t ′′ = Xt,t ′ + Xt ′,t ′′ + (δX)t,t ′(δX)t ′,t ′′ . Recall further that càdlàg X-controlled p-rough
paths can be integrated against X and, more generally, other càdlàg X-controlled p-rough
paths, ∫

(0,T ]
δY dȲ = lim

mesh(π)→0
�π(Y, Ȳ)0,T ,

�π(Y, Ȳ)T ,T ′ = ∑
πj≤T

δY0,πj
δȲπj ,πj+1∧T + Y ′

πj
Ȳ ′

πj
Xπj ,πj+1∧T .

(1.29)

The statement with mesh convergence above is from [29], Proposition 2.6; the proof in fact
also shows that the convergence is locally uniform in T . Convergence of càdlàg rough in-
tegrals in the net sense was proved in [27], Theorem 34, (with Ȳ = X, Ȳ ′ = 1; see [25],
Remark 4.12, for the general case), extending the Hölder continuous case in [31].

THEOREM 1.7. Let p ∈ [2,3), X = (X,X) be a càdlàg p-rough path. For any two rough
semimartingales W = (g + Y,Y ′), W̄ = (ḡ + Ȳ , Ȳ ′), the following holds:

1. The paraproduct

(1.30) �(W,W̄)t,t ′ :=
∫
(t,t ′]

δ(g + Y)t,u− dḡu +
∫
(t,t ′]

(δg)t,u− dȲu +
∫
(t,t ′]

(δY)t,u− dȲu

is well defined, in the sense that it does not depend on the decomposition of W. The summands
on the right-hand side of (1.30) are defined as follows: the first one is an Itô integral, the
second is

∫
δg dȲ :=�(g, Ȳ) and the third is a rough integral.

2. The enhanced paraproduct(
�(W,W̄)0,t , δ(g + Y)0,t Ȳ

′
t

)
defines another rough semimartingale, with local martingale component given by the Itô
integral

∫
(0,t] δ(g + Y)0,u− dḡu.
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3. The following process is almost surely a càdlàg p-rough path:

W := (
g + Y,�(W,W)

)
,

where �(W,W) is given by Part 1 with W̄ = W.

Theorem 1.7 will be proved in Section 5.2. Quantitative estimates for the terms on the
right-hand side of (1.30) are provided by Theorem 1.1, Theorem 1.3 and (càdlàg) rough
integration theory, respectively.

The extra structure (in form of Y ′) of RSM is crucial for validity of Theorem 1.7, for
the simple reason that there is no (sensible) construction of

∫
Y− dȲ for Y , Ȳ of finite p-

variation, p ≥ 2, even in case of vanishing 2-variation paths. (This remark also shows that
there does not exist a paraproduct for general Dirichlet processes, leave alone weak Dirichlet
processes.)

With notation as in Definition 1.5, a pair (Y, g) ∈ H1 ⊕ H2 =: H becomes a RSM upon
writing (

Y

g

)
=

((
0
g

)
+

(
Y

0

)
,

(
Y ′
0

))
,

write J (Y, g) for the resulting p-rough path. A simple yet important special case is (Y,Y ′)=
(X, Id). As a special case, a pair (X, g) then automatically gives rise to a p-rough path
J (X, g), as (Itô) joint rough path lift of (g,X). See also Theorem 6.8 for a consistency
results between pathwise rough and rough semimartingale integration. We spell out some
estimates for the (Itô) joint rough path, straightforward consequences of Theorems 1.1 and
1.3.

THEOREM 1.8. Let X = (X,X) be a càdlàg p-rough path over Rm, p ∈ (2,3), and g an
R

n-valued martingale with V∞g ∈ Lq0 , for some 1 ≤ q0 <∞. Then, a.s., the map

(1.31) J : (X, g(ω)
) �→ ((

X

g

)
,

(
X �(g,X)

�(X,g) �(g,g)

))
= (

Xg(ω),Xg(ω)
)
.

Takes values in the space of càdlàg p-rough paths over R
m+n, with q0-integrable homoge-

neous rough path norm, given by

V
p
homXg := V pXg + (

V p/2
X

g)1/2 ∈ Lq0 .

Moreover, J is locally Lipschitz continuous in the sense that∥∥V p(
X

g1
1 −X

g2
2

)∥∥
Lq0 � V p(X1 −X2)+

∥∥V∞(g1 − g2)
∥∥
Lq0 ,

and ∥∥V p/2(
�(X1, g1)−�(X2, g2)

)∥∥
Lq0 +

∥∥V p/2(
�(g1,X1)−�(g2,X2)

)∥∥
Lq0

�
(
V pX1

)∥∥V∞(g1 − g2)
∥∥
Lq0 + V p(X1 −X2)

∥∥V∞g2
∥∥
Lq0 ,∥∥V p/2(

�(g1, g1)−�(g2, g2)
)∥∥

Lq0/2

�
(∥∥V∞g1

∥∥
Lq0 +

∥∥V∞g2
∥∥
Lq0

)∥∥V∞(g1 − g2)
∥∥
Lq0

In particular, the map (X, g) �→ J (X, g) =: X̄ = (X̄, X̄) is continuous (and uniformly so on
bounded sets), with respect to homogeneous Lq0 rough paths metric∥∥V p

hom(X̄1 − X̄2)
∥∥
Lq0 ∼

∥∥V p(X̄1 − X̄2)
∥∥
Lq0 +

∥∥(
V p/2(X̄1 − X̄2)

)1/2∥∥
Lq0 .
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1.5. Differential equations. In Theorem 1.7, we gave a canonical construction of a (ran-
dom) p-rough path W associated to any rough semimartingale W = (g + Y,Y ′) in sense of
Definition 1.5. The parameter p ∈ (2,3) and the reference path X are kept fixed. In particular,
rough semimartingales can drive differential equations,

(1.32) dZ = σ
(
Z−)

dW : ⇐⇒ dZ = σ
(
Z−)

dW,

understood for a.e. realization of W = W(ω) as rough differential equation (by nature, multi-
dimensional). This should be contrasted with SDEs driven by weak Dirichlet processes [10],
essentially restricted to scalar drivers.2 Results from (deterministic) rough path theory [29],
Theorem 3.8, provide a unique solution Z = Z(W,Z0) of the initial value problem for (1.32)
provided that σ ∈ Lip3, although a look at the proof reveals that σ ∈ Lipp+ is sufficient, as
is the classical case for continuous rough paths; see, for example, [12, 28, 31, 45]. The con-
struction assures that Zt = Zt(W(ω),Z0(ω)) defines an adapted (càdlàg) process provided
that the initial datum Z0 is F0-measurable. When (Y,Y ′)= 0, W is nothing but the Itô rough
path lift of the càdlàg local martingale g, as previously constructed in [5], and yields (a ro-
bust version of) the classical Itô solution, as found in textbooks such as, for example, [52],
on stochastic differential equations. It convenes to replace σ by (σ,μ) and consider

(1.33) dZ = σ
(
Z−)

dX +μ
(
Z−)

dg : ⇐⇒ dZ = (σ,μ)
(
Z−)

dJ (X, g).

Several authors have studied, later used, such “mixed” differential equations, often with
g = B , a multidimensional Brownian motion, and X replaced by an independent fractional
Brownian BH motion with H > 1/2; see [33], [35] and references therein. In this case, the
left-hand side of (1.33) makes sense in mixed Young Itô sense (and could accordingly be
phrased in terms of Young semimartingales). From the perspective of [24], it suffices to con-
struct (BH ,B) jointly as Gaussian rough paths, which is possible for H > 1/4. Equation
(1.33), in case when g is a Brownian motion B and X a geometric Hölder rough path, was
treated in [11] as flow transformed Itô SDE, in [17, 18], in the right-hand side sense of (1.33).
(In absence of jumps, the situation is much simplified in that (X,B) is constructed by a Kol-
mogorov type criterion for rough paths; see [25], Chapter 12, for a review.) Last but not
least, we mention the work [26] that takes a different perspective on the problem of mixed
differential equations,

dZ = σ(Z)dX +μ(Z)dB,

but with Brownian noise B . The conceptual main point in this work is to introduce a notion of
stochastic controlled rough paths inspired by Khoa Lê’s stochastic sewing [42], which allows
for a direct strong solution theory, under a mere Lipschitz condition on μ, further allowing
for progressive dependence on the past. In turn, it seems difficult to extend the methods of
[26] such as to cover the case of general càdlàg g ∈Mloc in (1.33).

A remark on the subtlety of (1.33) is in order: the formal expression on the left suggests
that Z is a rough semimartingale with local martingale component given by the (well-defined)
Itô integral

∫
μ(Z−)dg. However, from a rough path perspective, Z is constructed as an

(X,g)-controlled rough path. Knowing only X, this is insufficient to define
∫

σ(Z−)dX by
(pathwise) rough integration.

The next theorem, which is proved in Section 6, shows that the left-hand side of (1.33)
has, thanks to stochastic cancellations, a bona fide integral meaning after all.

2This restriction is easy to understand since every deterministic continuous path is a weak Dirichlet process. In
general, this is not sufficient to drive a differential equation in a unique way, which is the raison d’être of rough
path theory.
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THEOREM 1.9. Let σ,μ ∈ Lipp+, so that (1.33) admits a unique solution process in
RDE sense, given by

(1.34) Zt(ω) := Zt

(
X,Z0(ω);ω) := Zt

(
J (X, g)(ω),Z0(ω)

)
,

adapted for F0-measurable Z0. Then (Z,σ (Z)) is a rough semimartingale with decomposi-
tion Z =M + Y with local martingale component M = ∫ ·

0 μ(Z−)dg and Y given by

Yt = u. c.p. -lim
d-mesh(π)→0

∑
j :πj<t

(
σ(Zπj

)Xπj ,πj+1∧t + (
(Dσ)σ

)
(Zπj

)Xπj ,πj+1∧t

) = ∫ t

0
σ

(
Z−

s

)
dXs .

The next result asserts, loosely speaking, that an Itô SDE solution, conditioned on (an
independent) part of the driving noise, is a.s. a rough semimartingale. (This can be seen as
major extension of the rather trivial fact B(ω)+X is a rough semimartingale (in ω) for a.e.
typical realization of X = B⊥(ω′), for independent Brownian motions B , B⊥.)

COROLLARY 1.10. Assume g = g(ω) and X = X(ω′) are independent local martin-
gales, defined on some filtered product space (�̄, F̄)= (�,F)× (�′,F ′). Let σ , μ be as in
Theorem 1.9 and write Z̃(Z0;ω,ω′) for the unique F̄ -adapted solution of the Itô SDE

(1.35) dZ̃ = σ
(
Z̃−)

dX +μ
(
Z̃−)

dg

with F̄0-measurable initial data Z0 = Z0(ω,ω′). With the Itô rough path lift of X,

X
(
ω′) = (X,X)

(
ω′) = (X

(
ω′),�(X,X)

(
ω′)

and rough semimartingale Z as in (1.34) we have, for a.e. ω and a.e. ω′,

(1.36) Z̃
(
Z0;ω,ω′) = Z

(
X

(
ω′),Z0

(
ω,ω′);ω)

.

PROOF. In view of uniqueness of the Itô solution, it suffices to show that the right-hand
side of (1.36) is an Itô solution of (1.35). By Theorem 1.9, it suffices to show that

u. c.p. -lim
d-mesh(π)→0

∑
j :πj<t

(
(Dσ)σ

)
(Z̃πj

)Xπj ,πj+1∧t = 0

on �̄, where Z̃ denotes the right-hand side of (1.36). This follows from Lemma 6.1. �

We note that μt(ω
′,A) := P(Zt (X(ω′),Z0(·,ω′) ∈A) gives a regular conditional distribu-

tion (r.c.p.) of Z̃t given X. This is of interest in filtering theory [1, 4, 11, 14] where X (resp.,
Z̃) are viewed as observation (resp., signal) process.3

It is not difficult to envision future uses of rough semimartingales. With surely nonex-
haustive pointers to the literature, [4, 7, 16, 44] we can mention specifically rough BSDEs,
McKean–Vlasov mean field, controlled stochastic differential equations, mean field game
modeling in presence of common (a.k.a. environmental) noise, modeled by σ(Z−)dX, as in
(1.33), whereas the martingale component μ(Z−, . . .)dg therein can now include all the extra
structure not, or not easily, treatable by (rough) pathwise methods.

3With extra notational effort, but no use of abstract results, the r.c.p. of (Z̃, σ (Z̃)) given X is expressed terms
of the distribution of the rough semimartingale (Z,σ (Z)).
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1.6. Notation and conventions. We write A � B if there is a constant C <∞, depending
only on Lebesgue exponents and variational exponents, denoted by letters q and p, r , respec-
tively, such that A ≤ CB . This dependence is sometimes emphasized by subscripts such as
�q . In particular, the constant C never depends on the filtered probability space �, the pro-
cesses F , or the martingales g. We write A∼ B if A� B and B �A. We denote equivalence
by definition by “: ⇐⇒ .”

We call a two-parameter process (Fs,t )s≤t adapted if Fs,t is Ft -measurable for every s ≤ t .
We call a two-parameter process (Fs,t )s≤t càdlàg if the limits

Fs,t = lim
s′→s,s′≥s,
t ′→t,t ′≥t

Fs′,t ′, Fs−,t := lim
s′→s,s′<s,
t ′→t,t ′≥t

Fs′,t ′,

Fs,t− := lim
s′→s,s′≥s,
t ′→t,t ′<t

Fs′,t ′, Fs−,t− := lim
s′→s,s′<s,
t ′→t,t ′<t

Fs′,t ′

exist. The existence of joint limits is important in Lemma 4.1.
Now we define the convergence modes that we consider. The set of adapted partitions

is a directed set with respect to the inclusion relation π ′ ⊆ π : ⇐⇒ {π ′
n | n ∈ N} ⊆ {πn |

n ∈ N} a.s.. If (xπ) is a net in some metric space indexed by this directed set, we write
limπ xπ for its net limit (if it exists), that is,

(1.37) lim
π

xπ = x iff (∀ε > 0)(∃π0)(∀π ⊇ π0)d(xπ , x) < ε.

The mesh of an adapted partition π is defined by mesh(π) := supj‖πj − πj−1‖∞. We write

(1.38) lim
mesh(π)→0

xπ = x iff (∀ε > 0)(∃δ > 0)
(∀π : mesh(π) < δ

)
d(xπ , x) < ε.

Finally, limd-mesh(π)→0 is defined as in (1.38), but with all partitions π being deterministic.
On the space of random processes indexed by R≥0 with values in some metric space, the

topology of uniform convergence in probability (u.c.p.) can be defined by the neighborhood
base of a process f , indexed by T , ε > 0, consisting of the sets

(1.39)
{
f̃ | P

{
sup

0≤t ′≤T

d(f̃t ′, ft ′) > ε
}

< ε
}
.

The u.c.p. topology is metrizable, for example, it is induced by the metric

(1.40) d(f, f̃ ) := ∑
T≥0

2−T
E

(
1 − 1/

(
1 + sup

0≤t ′≤T

d(f̃t ′, ft ′)
))

.

If the limit in (1.38) is taken with respect to the u.c.p. topology, we indicate this by writing
u. c.p. -lim in place of lim.

2. Vector-valued estimates in discrete time. The main result of this section, Theo-
rem 2.9, is a bound for discrete time versions of the Itô integral. Its main advantage over
the previous result [41], Proposition 3.1, is that the integrands F (k) are allowed to be arbi-
trary two-parameter processes, rather than martingale differences. The connection of Theo-
rem 2.9 with variation norm estimates will be established in Corollary 3.5. All processes in
this section are in discrete time, that is, the time variables are in N.

We begin this section by recalling several known results. We abbreviate ‖·‖q := ‖·‖Lq(�).
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2.1. Davis decomposition. For a scalar-valued process (fn), we denote the martingale
maximal function and its stopped version by

Mf := sup
n
|fn|, Mtf := sup

n≤t
|fn|,

and the martingale square function and its stopped version by

Sf := �2
n|dfn|, Sft := �2

n|dfn|1n≤t .

Here and later,

dgj := gj − gj−1.

We denote �p norms by

�
p
k ak :=

(∑
k∈N

|ak|p
)1/p

.

In order to simplify notation, we only consider martingales g with g0 = 0.

THEOREM 2.1 (Davis decomposition, cf. [13]). Let (fn)
∞
n=0 be a martingale with values

in a Banach space X. Suppose that f0 = 0 and fn ∈ L1(� → X,Fn) for all n. Then there
is a decomposition fn = f

pred
n + f bv

n into martingales adapted to the same filtration with

f
pred
0 = 0 such that the differences of f pred have predictable majorants:

(2.1)
∥∥df pred

n

∥∥
X ≤ 2 sup

n′<n

‖dfn′‖X

and f bv has bounded variation, in an integral sense for every q ∈ [1,∞):

(2.2)
∥∥∥∥ ∑
n′≤n

∥∥df bv
n′

∥∥
X

∥∥∥∥
Lq

≤ (q + 1)
∥∥∥sup
n′≤n

‖dfn′‖X

∥∥∥
Lq

.

We include a proof that gives slightly better constants than the usual one.

PROOF. Abbreviate Mdfn := supn′≤n‖dfn′‖X . For n≥ 1, let

gn := min
(

1,
Mdfn−1

‖dfn‖X

)
dfn, hn := dfn − gn = max

(
0,1 − Mdfn−1

‖dfn‖X

)
dfn.

Then, by definition,

‖gn‖X ≤Mdfn−1,

and, by positivity of conditional expectation, also∥∥E(
gn |Fn−1

)∥∥
X ≤ E

(‖gn‖X |Fn−1
) ≤ E

(
Mdfn−1 |Fn−1

) =Mdfn−1.

This implies (2.1) for

f pred
n :=

n∑
n′=1

(
gn′ −E

(
gn′ |Fn′−1

))
.

Furthermore, we have the telescoping bound

‖hn‖X = max
(
0,‖dfn‖X −Mdfn−1

) =Mdfn −Mdfn−1.
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This implies ∑
n′≤n

‖hn′‖X ≤Mdfn.

By the dual Doob’s inequality ([36], Proposition 3.2.8), this implies∥∥∥∥ ∑
n′≤n

∥∥E(
hn′ |Fn′−1

)∥∥
X

∥∥∥∥
Lq

≤
∥∥∥∥ ∑
n′≤n

E
(‖hn′‖X |Fn′−1

)∥∥∥∥
Lq

≤ q

∥∥∥∥ ∑
n′≤n

‖hn′‖X

∥∥∥∥
Lq

≤ q‖Mdfn‖Lq .

The last two estimates imply (2.2) for

f bv
n :=

n∑
n′=1

(
hn′ −E

(
hn′ |Fn′−1

))
.

�

LEMMA 2.2. Let 1 ≤ q < ∞, X be a Banach function space, elements of which are
R-valued maps x(·), and (fn) a martingale with values in X. Then for f pred given by Theo-
rem 2.1 we have ∥∥∥∥Sf pred∥∥

X

∥∥
Lq ≤ (q + 2)

∥∥‖Sf ‖X

∥∥
Lq ,

where the square function is given by

‖Sf ‖X := ∥∥�2
n

(
dfn(·))∥∥X

REMARK 2.3. We will apply Lemma 2.2 this with X = �r , that is, r-summable series,
viewed as maps from N→R, with the usual Banach structure.

PROOF OF LEMMA 2.2. Using (2.2), we estimate∥∥∥∥Sf pred∥∥
X

∥∥
Lq ≤ ∥∥‖Sf ‖X

∥∥
Lq + ∥∥∥∥Sf bv∥∥

X

∥∥
Lq

≤ ∥∥‖Sf ‖X

∥∥
Lq +

∥∥∥∥
∥∥∥∥∑

n

∣∣df bv
n

∣∣∥∥∥∥
X

∥∥∥∥
Lq

≤ ∥∥‖Sf ‖X

∥∥
Lq +

∥∥∥∥∑
n

∥∥df bv
n

∥∥
X

∥∥∥∥
Lq

≤ ∥∥‖Sf ‖X

∥∥
Lq + (q + 1)

∥∥∥sup
n
‖dfn‖X

∥∥∥
Lq

≤ (q + 2)
∥∥‖Sf ‖X

∥∥
Lq . �

2.2. Vector-valued BDG inequality. We recall the weighted Burkholder–Davis–Gundy
inequality.

LEMMA 2.4 ([50]). Let (fn) be a martingale with respect to a filtration (Fn) and w a
positive random variable. Then

E(Mf ·w)≤ 16(
√

2 + 1)E(Sf ·Mw),

where Mw = supnE(w |Fn).

REMARK 2.5. The proof of Lemma 2.4 given in [50] also works for martingales with
values in a real Hilbert space.
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LEMMA 2.6. Let h(k) = (h
(k)
n ), k ∈ N, be martingales with respect to some fixed filtra-

tion. Let 1 ≤ q <∞ and 1 ≤ r <∞. Then we have

(2.3)
∥∥Mh(k)

∥∥
Lq(�r

k)
�q,r

∥∥Sh(k)
∥∥
Lq(�r

k)
.

PROOF. First, we consider the case 1 < q <∞.
Take positive functions with ‖w(k)‖

Lq′ (�r′
k )

= 1. Then, by Lemma 2.4, we have

E

(∑
k

(
Mh(k))w(k)

)
�

∑
k

E
(
Sh(k)Mw(k))

≤ ∥∥Sh(k)
∥∥
Lq(�r

k)

∥∥Mw(k)
∥∥
Lq′ (�r′

k )
,

where q ′, r ′ are Hölder conjugates, that is, 1 = 1/q + 1/q ′ = 1/r + 1/r ′.
By the vector-valued Doob’s inequality [36], Theorem 3.2.7, we have∥∥Mw(k)

∥∥
Lq′ (�r′

k )
�

∥∥w(k)
∥∥
Lq′ (�r′

k )
= 1.

By duality between Lq(�r
k) and Lq ′(�r ′

k ), this implies the claim (2.3).
Now we consider q = 1. The case r = 1 follows from the usual BDG inequality, so we

may assume 1 < r <∞.
Decompose h = hpred + hbv as in Theorem 2.1 with X = �r . The contribution of hbv to

(2.3) is easy to estimate. In order to estimate the contribution of hpred, for λ > 0, define the
stopping time

τ := inf
{
t | ∥∥Sh

pred
t

∥∥
�r > λ or ‖Sht‖�r > λ

}
.

We claim that

(2.4)
∥∥Shpred

τ

∥∥
�r ≤ ∥∥Shpred∥∥

�r ∧ 5λ.

Indeed, the first bound is trivial, and the second bound is only nonvoid if 0 < τ < ∞. In the
latter case, by (2.1), we have∥∥Shpred

τ

∥∥
�r ≤ ∥∥Sh

pred
τ−1

∥∥
�r + ∥∥hpred

τ − h
pred
τ−1

∥∥
�r ≤ λ+ 4 sup

n′<τ

‖hn′ − hn′−1‖�r ≤ 5λ.

Also, {∥∥Mhpred∥∥
�r > λ

} ⊆ {∥∥Mhpred
τ

∥∥
�r > λ

}∪ {τ <∞}
⊆ {∥∥Mhpred

τ

∥∥
�r > λ

}∪ {‖Sh‖�r > λ
}∪ {∥∥Shpred∥∥

�r > λ
}

By the layer cake formula,

∥∥Mhpred∥∥
L1(�r ) =

∫ ∞
0

P
{∥∥Mhpred∥∥

�r > λ
}

dλ

≤
∫ ∞

0
P

{∥∥Mhpred
τ

∥∥
�r > λ

}
dλ+

∫ ∞
0

P
{∥∥Shpred∥∥

�r > λ
}

dλ

+
∫ ∞

0
P

{‖Sh‖�r > λ
}

dλ=: I + II + III.

The term III is the claimed right-hand side of the estimate (2.3), again by the layer cake
formula. By Lemma 2.2, we have

II = ∥∥∥∥Shpred∥∥
�r

∥∥
L1 �

∥∥‖Sh‖�r

∥∥
L1 .
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Using the already known Lr(�r) case of Lemma 2.6 and (2.4), we bound the first term by

I �
∫ ∞

0
λ−r

∥∥Shpred
τ

∥∥r
Lr (�r ) dλ

≤
∫ ∞

0
λ−r

∥∥∥∥Shpred∥∥
�r ∧ 5λ

∥∥r
Lr dλ

= E

∫ ∞
0

min
(
λ−r

∥∥Shpred∥∥r
�r ,5r) dλ

� E
∥∥Shpred∥∥

�r = II,

and we reuse the previously established estimate for II. �

REMARK 2.7. Lépingle’s inequality (1.2) can be obtained from Lemma 2.6 and Corol-
lary 3.3. In fact, Corollary 3.3 simplifies for processes � that are of difference form (see [56],
Corollary 2.4), so that the vector-valued bound (2.3) is not necessary to show (1.2).

2.3. Vector-valued maximal paraproduct estimate. For an adapted process (Fs,t ) and a
martingale (gn), we define

(2.5) �s,t (F, g) := ∑
s<j≤t

Fs,j−1 dgj =
∑

s≤j<t

Fs,j (gj+1 − gj ).

Note that �(F,g)s,· only depends on (Fs,·).

PROPOSITION 2.8. Let 0 < q , q1 ≤ ∞, 1 ≤ q0, r , r0 < ∞, 1 ≤ r1 ≤ ∞. Assume
1/q = 1/q0 + 1/q1 and 1/r = 1/r0 + 1/r1. Then, for any martingales (g

(k)
n )n, any adapted

sequences (F
(k)
s,t )s≤t , and any stopping times τ ′k ≤ τk with k ∈ Z, we have

(2.6)
∥∥∥�r

k sup
τ ′k≤t≤τk

∣∣�(
F (k), g(k))

τ ′k,t
∣∣∥∥∥

q
≤ Cq0,q1,r0,r1

∥∥∥�r1
k sup

τ ′k≤t<τk

∣∣F (k)

τ ′k,t
∣∣∥∥∥

q1

∥∥�r0
k Sg

(k)

τ ′k,τk

∥∥
q0

,

where Sgs,t := (
∑t

j=s+1|dgj |2)1/2.

PROOF OF PROPOSITION 2.8. We may replace each g(k) by the martingale

(2.7) g̃(k)
n := g

(k)
n∧τk

− g
(k)

n∧τ ′k
without changing the value of either side of (2.6).

Consider first q ≥ 1. For each k, the sequence

h
(k)
t :=

{
0 t < τ ′k,
�

(
F (k), g(k))

τ ′k,t
t ≥ τ ′k,

is a martingale. We may also assume Fτ ′k,t = 0 if t /∈ [τ ′k, τk). By Lemma 2.6, we can estimate

LHS(2.6) �
∥∥�r

k

∣∣Sh(k)
∣∣∥∥

q

= ∥∥�r
k�

2
j

∣∣F (k)

τ ′k,j−1 dg
(k)
j

∣∣∥∥
q

≤ ∥∥�r
kMF (k)�2

j

∣∣dg
(k)
j

∣∣∥∥
q

≤ ∥∥�r1
k MF (k)

∥∥
q1

∥∥�r0
k Sg(k)

∥∥
q0

.

Here and later, we abbreviate MF(k) := supj |F (k)

τ ′k,j
|.
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Consider now q < 1. Multiplying F = (F (k))k∈Z by some scalar and g = (g(k))k∈Z by
some other scalar, we may assume

(2.8)
∥∥�r1

k MF (k)
∥∥
q1
= ∥∥�r0

k Sg(k)
∥∥
q0
= 1,

and we have to show ∥∥∥�r
k sup

τ ′k≤t≤τk

∣∣�(
F (k), g(k))

τ ′k,t
∣∣∥∥∥

q
� 1.

We use the Davis decomposition g = gpred + gbv (Theorem 2.1 with X = �r0 ). The contri-
bution of the bounded variation part is estimated as follows:

∥∥∥�r
k sup

τ ′k≤t≤τk

∣∣�(
F (k), g(k),bv)

τ ′k,t
∣∣∥∥∥

q

≤
∥∥∥∥�r

k

∑
j

∣∣F (k)

τ ′k,j−1

∣∣ · ∣∣dg
(k),bv
j

∣∣∥∥∥∥
q

≤ ∥∥�r1
k MF (k)

∥∥
q1

∥∥∥∥�r0
k

(∑
j

∣∣dg
(k),bv
j

∣∣)∥∥∥∥
q0

≤ ∥∥�r1
k MF (k)

∥∥
q1

∥∥∥∥∑
j

�
r0
k

∣∣dg
(k),bv
j

∣∣∥∥∥∥
q0

�
∥∥�r1

k MF (k)
∥∥
q1

∥∥∥sup
j

�
r0
k

∣∣dg
(k)
j

∣∣∥∥∥
q0

≤ ∥∥�r1
k MF (k)

∥∥
q1

∥∥�r0
k Sg(k)

∥∥
q0

,

where we used (2.2) in the penultimate step.
It remains to consider the part gpred with predictable bounds for jumps. By the layer cake

formula, we have
∥∥∥�r

k sup
τ ′k≤t≤τk

∣∣�(
F (k), g(k),pred)

τ ′k,t
∣∣∥∥∥q

q

=
∫ ∞

0
P

{
�r
k sup

τ ′k≤t≤τk

∣∣�(
F (k), g(k),pred)

τ ′k,t
∣∣ > λ1/q

}
dλ.

(2.9)

Fix some λ > 0 and define a stopping time

(2.10) τ := inf
{
t | �r0

k Sg
(k)
t > λ1/q0 or �

r0
k Sg

(k),pred
t > λ1/q0 or �

r1
k sup

0<j≤t

∣∣F (k)

τ ′k,j
∣∣ > λ1/q1

}
.

Define stopped martingales g̃
(k)
t := g

(k),pred
t∧τ and adapted processes

F̃
(k)
t,t ′ := F

(k)
t,t ′∧τ−1.

Then, on the set {τ =∞}, we have

�
(
F (k), g(k),pred)

τ ′k,t
=�

(
F̃ (k), g̃(k))

τ ′k,t
for all k, t.



414 P. K. FRIZ AND P. ZORIN-KRANICH

Hence, {
�r
k sup

τ ′k≤t≤τk

∣∣�(
F (k), g(k),pred)

τ ′k,t
∣∣ > λ1/q

}

⊂
{
�r
k sup

τ ′k≤t≤τk

∣∣�(
F̃ (k), g̃(k))

τ ′k,t
∣∣ > λ1/q

}

∪ {
�
r0
k Sg(k) > λ1/q0

}∪ {
�
r0
k Sg(k),pred > λ1/q0

}
∪ {

�
r1
k MF (k) > λ1/q1

}
(2.11)

The contributions of the latter three terms to (2.9) are � 1 by (2.8) and Lemma 2.2. It remains
to handle the first term.

By construction, we have �
r1
k MF̃ (k) ≤ λ1/q1 , and due to (2.1) we also have �

r0
k Sg̃(k) ≤

3λ1/q0 . Choose an arbitrary exponent q̃ with q0 < q̃ < ∞. By the already known case of the
proposition with (q0, q1) replaced by (q̃,∞), we obtain

P

{
�r
k sup

τ ′k≤t≤τk

∣∣�(
F̃ (k), g̃(k))

τ ′k,t
∣∣ > λ1/q

}

≤ λ−q̃/q
∥∥∥�r

k sup
τ ′k≤t≤τk

∣∣�(
F̃ (k), g̃(k))

τ ′k,t
∣∣∥∥∥q̃

q̃

�q̃ λ−q̃/q
∥∥�r1

k MF̃ (k)
∥∥q̃
∞

∥∥�r0
k Sg̃(k)

∥∥q̃

q̃

≤ λ−q̃/q0
∥∥�r0

k Sg(k),pred ∧ 3λ1/q0
∥∥q̃

q̃
.

(2.12)

This estimate no longer depends on the stopping time τ . Integrating the right-hand side of
(2.12) in λ, we obtain∫ ∞

0
λ−q̃/q0

∥∥�r0
k Sg(k),pred ∧ 3λ1/q0

∥∥q̃

q̃
dλ= E

∫ ∞
0

(
λ−q̃/q0

(
�
r0
k Sg(k),pred)q̃ ∧ 3q̃)

dλ

∼ E
(
�
r0
k Sg(k),pred)q0

∼ 1,

where we used q̃ > q0, Lemma 2.2 with X = �r0 , and the assumption (2.8). �

Next, we deduce a version of Proposition 2.8 that involves a two-parameter supremum of
the kind that appears in Corollary 3.3. Recall the definition of second-order increments of a
two-parameter process (Fs,t ):

(2.13) (δF )s,t,u := Fs,u − Fs,t − Ft,u, s < t < u.

For a fixed s, we define

(2.14) (δsF )t,u := Fs,u − Ft,u, s < t < u.

THEOREM 2.9. In the situation of Proposition 2.8, we have∥∥∥�r
k sup

τ ′k≤s<t≤τk

∣∣�s,t

(
F (k), g(k))∣∣∥∥∥

q

≤
∥∥∥�r

k sup
τ ′k≤s<t≤τk

∣∣�s,t

(
δτ ′kF

(k), g(k))∣∣∥∥∥
q

+Cq0,q1,r0,r1

∥∥∥�r1
k sup

τ ′k≤t<τk

∣∣F (k)

τ ′k,t
∣∣∥∥∥

q1

∥∥�r0
k Sg

(k)

τ ′k,τk

∥∥
q0

,

(2.15)

where (Sgs,t )
2 = ∑

s<j≤t |dgj |2.
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PROOF. For s ≤ t ≤ u, the sums (2.5) satisfy the relation

δ�(F,g)s,t,u =�s,u(F,g)−�s,t (F, g)−�t,u(F,g)

= ∑
t<j≤u

(Fs,j−1 − Ft,j−1) dgj

=�(δsF,g)t,u.

(2.16)

Therefore, we can estimate∣∣�s,t (F, g)
∣∣ ≤ ∣∣�τ ′k,t (F, g)

∣∣+ ∣∣�τ ′k,s(F, g)
∣∣+ ∣∣�(δτ ′kF, g)s,t

∣∣.
The contribution of the first two terms is bounded by Proposition 2.8. The contribution of the
last term to the left-hand side of (2.15) is that left-hand side with F replaced by δτ ′kF . �

We will use Theorem 2.9 with τ ′k = τk−1, where (τk) is an adapted partition, g(k) = g, and
F (k) = F . It is most useful in presence of a structural hypothesis on δF of the kind introduced
in [32], Lemma 3.1.

COROLLARY 2.10. Let q , q0, q1, r , r1 be as in Proposition 2.8 with r0 = 2. Let (Fs,t )

be an adapted process such that

(2.17) δsFt,u =
imax∑
i=1

F i
s,t F̃

i
t,u

with adapted processes F i , F̃ i , g a martingale and (τk) an adapted partition. Then we have

∥∥∥�r
k sup

τk−1≤s<t≤τk

∣∣�(F,g)s,t
∣∣∥∥∥

q
�

imax∑
i=1

∥∥∥�r
k

(
sup

τk−1≤s<t≤τk

∣∣F i
τk−1,s

∣∣ · ∣∣�(
F̃ i , g

)
s,t

∣∣)∥∥∥
q

+
∥∥∥�r1

k sup
τk−1≤t<τk

|Fτk−1,t |
∥∥∥
q1
‖Sg‖q0 .

(2.18)

2.4. Branched rough paths. In this section, we iterate Corollary 2.10 by applying it re-
cursively to each term �(F̃ i, g) on the right-hand side of (2.18). The algebraic framework
for this iteration is provided by the theory of branched rough paths introduced in [32]; see
also [34]. We recall the relevant notation from [32]. We fix a finite set of labels L. The set of
(finite) trees with vertices labeled by the elements of L is denoted by TL. A forest is a finite
unordered tuple of trees in TL, in which repetition is allowed. The set of all forests is denoted
by FL. The free commutative R-algebra generated by the trees TL is denoted by ATL. It can
be identified with the free R-vector space generated by FL.

A branched rough path is an algebra homomorphism4

F :ATL → C2,

where C2 is the algebra of càdlàg functions on the simplex {(s, t) | s < t}, that satisfies the
generalized Chen relation

(2.19) δF f = F�(f)−1⊗f−f⊗1, f ∈ATL.

On the right-hand side, we use the extension of F to an algebra homomorphism ATL ⊗
ATL → C3 defined by F f⊗f′ = F fF f′ , where we use the product C2 × C2 → C3 given by

4In discrete time, we do not need a regularity assumption. Suitable bounded p-variation assumptions are of
course needed to transfer our results to continuous time.
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(FG)stu = FstGtu. The coproduct � : ATL → ATL ⊗ ATL is an algebra homomorphism
acting on forests by

(2.20) �(f)= ∑
(b,r)∈Cut f

b⊗ r,

where the sum goes over the multiset of all admissible cuts, that is, partitions of trees in
the forest f into (possibly empty) initial trees collected in the forest r (for “roots”) and final
trees collected in the forest b (for “branches”). Our convention for cuts is different from [32],
equation (3), in that we allow roots and branches to be empty.

THEOREM 2.11. Let q ∈ (0,∞), q0 ∈ [1,∞) and for each tree t ∈ TL, let qt ∈ (0,∞].
Let r ∈ [1,∞) and for each tree t ∈ TL, let rt ∈ [1,∞]. Let f ∈ FL be a forest and let F be
the set of all forests f′ that are the disjoint unions of arbitrary partitions of trees in f into
subtrees. Assume that, for each f′ ∈ F, we have

1/q = 1/q0 +
∑
t∈f′

1/qt, 1/r = 1/2 +∑
t∈f′

1/rt.

Let F be an adapted family of branched rough paths, g a martingale and τ an adapted
partition. Then we have

(2.21)
∥∥∥�r

k sup
τk−1≤s<t≤τk

∣∣�s,t

(
F f, g

)∣∣∥∥∥
q
�

∑
f′∈F

(∏
t∈f′

∥∥∥�rt
k sup

τk−1≤t<τk

∣∣F t
τk−1,t

∣∣∥∥∥
qt

)
‖Sg‖q0 .

PROOF. We use strong induction on the degree of the forest f, that is, the total number
of vertices in its trees. Let f be given and suppose that the claim is known for all forests
with strictly smaller degree. By the generalized Chen relation (2.19) and the definition of the
coproduct (2.20), we have

(2.22) δsF
f
t,u =

∑
(b,r)∈Cut(f),b�=0

F b
s,tF

r
t,u.

We apply Corollary 2.10 with r1 = rf, q1 = qf, where 1/rf = ∑
t∈f 1/rt and 1/qf =∑

t∈f 1/qt. Then the second term on the right-hand side of (2.18) corresponds to the sum-
mand f′ = f in (2.21).

It remains to estimate the first term on the right-hand side of (2.18). For a fixed cut (b, r),
we have ∥∥∥�r

k sup
τk−1≤s<t≤τk

∣∣F b
τk−1,s

∣∣∣∣�(
F r, g

)
s,t

∣∣∥∥∥
q

≤ ∏
t′∈b

∥∥∥�rt′
k sup

τk−1≤s<τk

∣∣F t′
τk−1,s

∣∣∥∥∥
qt′

·
∥∥∥�r̃

k sup
τk−1≤s<t≤τk

∣∣�(
F r, g

)
s,t

∣∣∥∥∥
q̃
,

where

1/q̃ = 1/q − ∑
t′∈b

1/qt′, 1/r̃ = 1/r − ∑
t′∈b

1/rt′ .

The latter norm can be estimated by the inductive hypothesis, since deg r < deg f. �

EXAMPLE 2.12 (Vector-valued BDG inequality). The vector-valued BDG inequality 2.6
is the case of the empty forest f in Theorem 2.11. In this case, we have F f ≡ 1, so that

�
(
F f, g

) = δg.

Therefore, the estimate (2.21) becomes (2.3).
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EXAMPLE 2.13 (Differences). Suppose that F = δf . This corresponds to the forest f
consisting of the single tree . In this case, F= {f}, and Theorem 2.11 gives∥∥∥�r

k sup
τk−1≤s<t≤τk

∣∣�(F,g)s,t
∣∣∥∥∥

q
≤ Cq0,q1,r1

∥∥∥�r1
k sup

τk−1≤t<τk

|δfτk−1,t |
∥∥∥
q1
‖Sg‖q0 .

EXAMPLE 2.14 (Product of differences). More generally, suppose that

(2.23) F = ∏
j

δf (j).

This corresponds to the forest f being . In this case, we also have F = {f} and (2.21)
with 1/r = 1/2 +∑

j 1/rj , 1/q = 1/q0 +∑
j 1/qj becomes

(2.24)
∥∥∥∥�r

k sup
τk−1≤s<t≤τk

∣∣∣∣�s,t

(∏
j

δf (j), g

)∣∣∣∣
∥∥∥∥
q

�
∏
j

∥∥∥�rj
k sup

τk−1≤t<τk

∣∣δf (j)
τk−1,t

∣∣∥∥∥
qj

· ‖Sg‖q0 .

EXAMPLE 2.15 (Second level of a rough path). Suppose that F = X, where X is the

second level of a rough path. This corresponds to the forest f consisting of the single tree .
The family F then consists of the two forests

Suppose also, for simplicity, ra = rb = 2r1 and qa = qb = 2q1. In this case, Theorem 2.11
gives the estimate∥∥∥�r

k sup
τk−1≤s<t≤τk

∣∣�s,t (X, g)
∣∣∥∥∥

q
�

∥∥∥�r1
k sup

τk−1≤t<τk

∣∣X(k)
τk−1,t

∣∣∥∥∥
q1
‖Sg‖q0 .

+
∥∥∥�2r1

k sup
τk−1≤t<τk

|δXτk−1,t |
∥∥∥2

2q1
‖Sg‖q0 .

EXAMPLE 2.16 (A bushy tree). Suppose that forest f consisting of the single tree .
The family F then consists of the four forests:

3. Variational estimates in discrete time. In this section, we will estimate V r�(F,g)

in open ranges r > ρ. There is a dichotomy depending on the value of the threshold ρ. For
ρ < 1, we will use the sewing lemma; see Section 3.2. The main new results of this article are
in the range ρ ≥ 1. In this range, pathwise estimates are insufficient, and we have to rely on
the cancellation provided by the martingale g. By the construction in Section 3.1, variation
norm estimates in this range follow directly from the vector-valued estimates in Section 2.
All processes in this section are in discrete time, that is, the time variables are in N.

3.1. Stopping time construction. In this section, we will bound r-variation by square
function-like objects. For Lépingle’s inequality, this idea was introduced in [3, 51]. It was
first applied to a (real variable) paraproduct in [19]. The stopping time argument in [3, 51]
involves a real interpolation step that was made increasingly more explicit in [38, 47]. We use
different stopping times, which better capture the structure of the process at hand and avoid
the real interpolation step. For Lépingle’s inequality, similar stopping times were introduced
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in [56]. One of the advantages of the present construction is that it allows us to remove a
restriction on the integrability parameters (q0 > 1) from [41].

For an adapted process (�s,t )s≤t , let

�∗
n′′ := sup

0≤n<n′≤n′′
|�n,n′ |, �∗ :=�∗∞.

LEMMA 3.1. For any discrete time adapted process (�s,t )s<t , there exist sequences of
stopping times τ

(m)
j , increasing in j ≥ 0 for each m ∈N, such that for every 0 < ρ < r < ∞

we have

sup
lmax,

u0<···<ulmax

lmax∑
l=1

|�ul−1,ul
|r

≤ (�∗)r

1 − 2−r
+ 2ρ

∞∑
m=0

(
2−m�∗)r−ρ

∞∑
j=1

(
sup

τ
(m)
j−1≤t<τ

(m)
j

|�
t,τ

(m)
j

|
)ρ

.

(3.1)

PROOF OF LEMMA 3.1. For m ∈N, define stopping times

τ
(m)
0 := 0,

and then, for j ≥ 0, allowing values in N∪ {∞},
(3.2) τ

(m)
j+1 := inf

{
t > τ

(m)
j | sup

τ
(m)
j ≤t ′<t

|�t ′,t |> 2−m−1�∗
t

}
.

Fix ω ∈ � and let (ul)
lmax
l=0 be a finite strictly increasing sequence. Consider 0 < ρ < r < ∞

and split

(3.3)
lmax∑
l=1

|�ul−1,ul
|r =

∞∑
m=0

∑
l∈L(m)

|�ul−1,ul
|r ,

where

(3.4) L(m) := {
l ∈ {

1, . . . , lmax
} | 2−m−1�∗

ul
< |�ul−1,ul

| ≤ 2−m�∗
ul

}
.

In (3.3), we only omitted vanishing summands, since |�ul−1,ul
| ≤ �∗

ul
. Let also L′(m) :=

L(m) \ {supL(m)}. Using (3.4), we obtain

(3.5)
lmax∑
l=1

|�ul−1,ul
|r ≤

∞∑
m=0

(
2−m�∗)r−ρ

∑
l∈L′(m)

|�ul−1,ul
|ρ +

∞∑
m=0

(
2−m�∗)r .

CLAIM 3.2. For every l ∈ L(m), there exists j s.t. τ
(m)
j ∈ (ul−1, ul].

PROOF OF THE CLAIM. Let j be maximal with τ
(m)
j ≤ ul−1. Since l ∈ L(m), by defini-

tion (3.4), we have

|�ul−1,ul
|> 2−m−1�∗

ul
.

By the definition of stopping times (3.2), we obtain τ
(m)
j+1 ≤ ul . �
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Fix m. For each l ∈ L′(m), let j (l) be the largest j such that τ
(m)
j ∈ (ul−1, ul]. Then all

j (l) are distinct, and since l �= maxL(m), the claim shows that τ
(m)
j (l)+1 <∞. Furthermore, by

(3.4), the monotonicity of t �→�∗
t , and the definition (3.2) of stopping times, we have

(3.6) |�ul−1,ul
| ≤ 2−m�∗

ul
≤ 2−m�∗

τ
(m)
j (l)+1

≤ 2 sup
τ

(m)
j (l)≤t ′<τ

(m)
j (l)+1

|�
t ′,τ (m)

j (l)+1
|

by the definition of τ
(m)
j (l) . Since all j (l) are distinct, this implies

∑
l∈L′(m)

|�ul−1,ul
|ρ ≤ 2ρ

∞∑
j=1

sup
τ

(m)
j−1≤t ′<τ

(m)
j

|�
t ′,τ (m)

j

|ρ.

Substituting this into (3.5), we conclude the proof of Lemma 3.1. �

COROLLARY 3.3. Let (�s,t )s≤t be an adapted process with �t,t = 0 for all t . Then, for
every 0 < ρ < r <∞ and q ∈ (0,∞], we have

(3.7)
∥∥V r�

∥∥
Lq � sup

τ

∥∥∥∥∥
( ∞∑

j=1

(
sup

τj−1≤t<t ′≤τj

|�t,t ′ |
)ρ

)1/ρ∥∥∥∥∥
Lq

,

where the supremum is taken over all adapted partitions τ .

PROOF. By the monotone convergence theorem, we can restrict the times in the definition
of V r to a finite set, and then apply Lemma 3.1.

The term �∗ is of the form on the right-hand side of (3.7) with τ1 =∞. Therefore, the
claim follows from the triangle inequality in Lq (if q ≥ 1), q-convexity of Lq (if q < 1) and
Hölder’s inequality. �

3.2. Sewing lemma. In this section, we apply the sewing lemma to the processes
�(F,g).

LEMMA 3.4. Let F , F i , F̃ i , i ∈ {i, . . . , imax}, be two-parameter processes such that
Fs,s = 0 and (2.17) holds. Let gt be a one-parameter process. Let ρ < 1 and 1/ρ = 1/pi,0 +
1/pi,1 for every i. Then we have

(3.8) V ρ�(F,g)�
imax∑
i=1

V pi,1F i · V pi,0�
(
F̃ i , g

)
.

PROOF. We will use the sewing lemma ([29], Theorem 2.5) with

�s,t :=�(F,g)s,t .

By definition (2.5) and the hypothesis Fs,s = 0, we have �j,j+1 = 0, so that

�(F,g)s,t =�s,t −
t−1∑
j=s

�j,j+1.

Moreover, from Chen’s relation (2.16), we obtain

(δ�)s,t,u =
∑

t≤j<u

(δsFt,j )δgj,j+1 =
imax∑
i=1

F i
s,t�

(
F̃ i , g

)
t,u.
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We may assume that none of the summands in (2.17) vanish identically and that all norms on
the right-hand side of (3.8) are finite. In this case, the functions

ωi(s, t) := sup
lmax,s≤u0≤···≤ulmax≤t

lmax∑
l=1

∣∣F i
ul−1,ul

∣∣pi,1,

ω̃i(t, u) := sup
lmax,s≤u0≤···≤ulmax≤t

lmax∑
l=1

∣∣�(
F̃ i , g

)
ul−1,ul

∣∣pi,0

are controls (i.e., superadditive functions mapping ordered pairs of times to positive real
numbers), and we have

∣∣(δ�)s,t,u
∣∣ ≤ imax∑

i=1

ωi(s, t)
1/pi,1ω̃i(t, u)1/pi,0,

which is exactly the hypothesis of the sewing lemma [29], Theorem 2.5. The sewing lemma
implies

∣∣�(F,g)s,t
∣∣ =

∣∣∣∣∣�s,t −
t−1∑
j=s

�j,j+1

∣∣∣∣∣ �
imax∑
i=1

ωi(s, t)
1/pi,1ω̃i(s, t)

1/pi,0 .

This implies the claim (3.8). �

3.3. Discrete sums corresponding to Itô integrals. Here, we combine the results in Sec-
tions 3.1 and 3.2 into a statement that holds for arbitrary variational exponents r .

COROLLARY 3.5. Let 0 < q1 ≤∞, 1 ≤ q0 <∞, and 0 < r , p1 ≤∞. Let 1/q = 1/q0 +
1/q1 and assume 1/r < 1/p1 + 1/2. Let (Fs,t ) be an adapted process such that (2.17) holds,
g a martingale and (τk) an adapted partition. Assume that 1/r < 1/pi,0 + 1/pi,1 for every i.
Then we have ∥∥V r�(F,g)

∥∥
q

�
∥∥V p1F

∥∥
q1
‖Sg‖q0 +

imax∑
i=1

∥∥V pi,1F i · V pi,0�
(
F̃ i , g

)∥∥
q .

(3.9)

PROOF. Define ρ by 1/ρ = 1/p1 + 1/2. Consider first the case ρ ≥ 1. By Corollary 3.3
with 1 ≤ ρ < r <∞, it suffices to estimate the terms∥∥∥�ρ

j sup
τj−1≤t<t ′≤τj

∣∣�(F,g)t,t ′
∣∣∥∥∥

Lq(�)
,

uniformly in the adapted partition τ . They are bounded by Corollary 2.10.
Consider now the case ρ < 1. Note that p1 < ∞, so that Fs,s = 0 for all s by definition

(1.1). The claim now follows from Lemma 3.4, even without the last term in (3.9). �

3.4. Discrete sums arising in Itô integration of branched rough paths. One can obtain
estimates for �(F,g), with F being a component of a branched rough path, by iterating
Corollary 3.5. However, this would involve potentially applying Corollary 3.3 at every step
of the iteration, resulting in unnecessary losses. It is in fact more efficient to iterate vector-
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valued, rather than variational, estimates, which we have already done in Theorem 2.11. Here,
we indicate the consequences that Theorem 2.11 has for variation norm estimates.

COROLLARY 3.6. Let q ∈ (0,∞), q0 ∈ [1,∞) and for each tree t ∈ TL let qt ∈ (0,∞].
Let ρ ∈ (0,∞) and for each tree t ∈ TL let rt ∈ [1,∞]. Let f ∈ FL be a forest and let F be
the set of all forests f′ that are the disjoint unions of arbitrary partitions of trees in f into
subtrees. Assume that, for each f′ ∈ F, we have

1/q = 1/q0 +
∑
t∈f′

1/qt,

1/ρ = 1/2 +∑
t∈f′

1/rt.

Let F be an adapted family of branched rough paths and g a martingale. Then, for every
r > ρ, we have

(3.10)
∥∥V r�

(
F f, g

)∥∥
q �

∑
f′∈F

(∏
t∈f′

∥∥V rtF t
∥∥
qt

)
‖Sg‖q0 .

PROOF. Consider first the case ρ ≥ 1. By Corollary 3.3, it suffices to estimate

(3.11)
∥∥∥�ρ

k sup
τk−1≤t<t ′≤τk

∣∣�(
F f, g

)
t,t ′

∣∣∥∥∥
q
,

uniformly in the adapted partition τ . This is the content of Theorem 2.11.
In the case ρ < 1, we may also assume r < 1, and we induct on deg f. Since ρ < 1, the

forest f cannot be empty, and it follows from the definition of a branched rough path that
F

f
s,s = 0. Suppose that the result is known for all forests with smaller degree.
By Lemma 3.4, the generalized Chen relation (2.22) and Hölder’s inequality, we obtain

the pointwise estimate

(3.12) V r�
(
F f, g

)
�

∑
(b,r)∈Cut(f),b�=0

V r(b)F b · V r̃(r)�
(
F r, g

)
t,u,

where for every cut (b, r) of f we set

1/r(b)= ∑
t∈b

1/rt,

1/r = 1/r(b)+ 1/r̃(r).

By Hölder’s inequality, we estimate the Lq norm of the (b, r)-summand on the right-hand
side of (3.12) by

(3.13)
∥∥V r(b)F b

∥∥
q(b)

∥∥V r̃(r)�
(
F r, g

)
t,u

∥∥
q̃(r),

where

1/q(b)= ∑
t∈b

1/qt,

1/q̃(r)= 1/q − 1/q(b)= 1/q0 +
∑
t∈r

1/qt.

In the first term in (3.13), we use F b = ∏
t∈b F t, so that∥∥V r(b)F b

∥∥
q(b) ≤

∏
t∈b

∥∥V rtF t
∥∥
qt

.

In the second term in (3.13), we can use the inductive hypothesis because deg r < deg f. �
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4. Estimates for the Itô integral.

4.1. Itô integral.

PROOF OF THEOREM 1.1, PART 1. Since �π(F,g)t,t ′ is càdlàg in both t and t ′, we have

V r�π(F,g)= lim
n→∞ sup

lmax,u0<···<ulmax ,ul∈π(n)

(
lmax∑
l=1

∣∣�π(F,g)ul−1,ul

∣∣r)1/r

,

where π(n) = π ∪ 2−n
N. By the monotone convergence theorem, it suffices to consider a

fixed π(n), as long as the bound does not depend on n.
For any adapted partitions π ⊆ π ′, we have

�π(F,g)t,t ′ =
∑

k:	t,π
≤πk<t ′
F	t,π
,πk

(gπk+1∧t ′ − gπk∨t )

= ∑
k:	t,π
≤πk<t ′

F	t,π
,πk

∑
l:πk∨	t,π ′
≤π ′

l <πk+1∧t ′
(gπ ′

l+1∧t ′ − gπ ′
l∨t )

= ∑
k:	t,π
≤πk<t ′

∑
l:πk∨	t,π ′
≤π ′

l <πk+1∧t ′
F	t,π
,	π ′

l ,π
(gπ ′
l+1∧t ′ − gπ ′

l∨t )

= ∑
l:	t,π ′
≤π ′

l <t ′
F

(π)

	t,π ′
,π ′
l
(gπ ′

l+1∧t ′ − gπ ′
l∨t )

=�π ′(
F (π), g

)
t,t ′,

(4.1)

where F (π) is given by (1.6). Define discrete time processes F
(π)
π ′ , gπ ′ by(

F
(π)
π ′

)
j,j ′ = F

(π)

π ′
j ,π ′

j ′
, (gπ ′)j = gπ ′

j
.

Then we have

�π(F,g)π ′
j ,π ′

j ′
=�π ′(

F (π), g
)
π ′

j ,π ′
j ′

= ∑
l:	π ′

j ,π ′
≤π ′
l <π ′

j ′

F
(π)

	π ′
j ,π ′
,π ′

l
(gπ ′

l+1∧π ′
j ′
− gπ ′

l∨π ′
j
)

= ∑
l:j≤l<j ′

F
(π)

π ′
j ,π ′

l
(gπ ′

l+1
− gπ ′

l
)

=�
(
F

(π)
π ′ , gπ ′

)
j,j ′,

where the last line is the discrete time paraproduct defined in (2.5). Therefore, the required
bound follows from Corollary 3.5, since it follows from (1.10) that

(4.2) F (π)
s,u − F

(π)
t,u =

imax∑
i=1

F
i,(π)
s,t F̃

i,(π)
t,u .

�

LEMMA 4.1. Let F , F i , F̃ i be càdlàg adapted processes such that (1.10) holds and
F i

t,t = 0 for all i, t . Suppose that V p1F ∈ Lq1 for some p1, q1 ∈ (0,∞] and V∞F̃ i ∈ Lq1 for
every i. Then, for every p̃1 ∈ (p1,∞)∪ {∞}, we have

lim
π

∥∥V p̃1
(
F − F (π))∥∥

Lq1 = 0.
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PROOF. We have V p1F (π) ≤ V p1F and by Hölder’s inequality,

V p̃1
(
F − F (π)) ≤ V p1

(
F − F (π))1−θ

V∞(
F − F (π))θ

with some θ ∈ (0,1], so it suffices to consider p̃1 =∞.
Let ε > 0 and define a sequence of stopping times recursively, starting with π0 := 0, by

πj+1 := π
(F)
j+1 ∧ min

i∈{1,...,imax}
π

(i)
j+1,

π
(F)
j+1 := infT (F )

j+1, T (F )
j+1 =

{
t > πj | sup

s≤πj

|Fs,t − Fs,πj
| ≥ ε

}
,

π
(i)
j+1 := infT (i)

j+1, T (i)
j+1 =

{
t > πj | sup

πj≤s≤t

∣∣F i
s,t

∣∣ ≥ ε
}
.

(4.3)

We now verify that this indeed defines an adapted partition. In order to verify that πj+1 is

a stopping time, we show that π
(F)
j+1 and π

(i)
j+1 are hitting times, that is, the above infima

are either +∞ or minima. Suppose first T := π
(F)
j+1 < ∞. Then there exist sequences (sk),

(tk) such that sk ≤ πj and tk ≥ T with tk → T and |Fsk,tk − Fsk,πj
| ≥ ε − 1/k. Passing to a

subsequence, we may assume that the sequence (sk) is monotonic and converges to some s ≤
πj . By the càdlàg hypothesis, this implies |Fs±,T −Fs±,πj

| ≥ ε, where the sign ± depends on
whether (sk) is monotonically increasing or decreasing. Using the càdlàg hypothesis again,
this implies T ∈ T (F )

j+1. Hence, π
(F)
j+1 is a hitting time.

Suppose next T := π
(i)
j+1 <∞. Then there exist sequences (sk), (tk) such that πj ≤ sk ≤ tk

and tk ≥ T with tk → T and |F i
sk,tk

| ≥ ε − 1/k. Passing to a subsequence, we may assume
that the sequence (sk) is monotonic and converges to some s ∈ [πj ,T ]. By the càdlàg hypoth-
esis, this implies |F i

s±,T | ≥ ε, where the sign ± depends on whether (sk) is monotonically

increasing or decreasing. Using the càdlàg hypothesis again, this implies T ∈ T (i)
j+1 (here we

use F i
πj ,πj

= 0 to conclude T > πj ). Hence, π
(i)
j+1 is a hitting time.

The above discussion shows in particular that πj+1 > πj . To see that limj→∞ πj =∞,
suppose for a contradiction that limj→∞ πj = T < ∞. Let tj := πj+1. Then, either there

exists a subsequence J ⊆ N with tj = π
(F)
j+1 → T for j ∈ J , or an i ∈ {1, . . . , imax} and a

subsequence J ⊆N with tj = π
(i)
j+1 → T for j ∈ J .

Consider first the case tj = π
(F)
j+1 for j ∈ J . Then, for j ∈ J , there exist sj ≤ πj

such that |Fsj ,tj − Fsj ,πj
| ≥ ε − 1/j . Passing to a subsequence, we may assume that

(sj )j∈J is monotonic and converges to some s ≤ T . By the càdlàg hypothesis, this implies
|Fs±,T−−Fs±,T−| ≥ ε, where the sign ± depends on whether (sk) is monotonically increas-
ing or decreasing, a contradiction.

Consider next the case tj = π
(i)
j+1 for j ∈ J . Then, for j ∈ J , there exist sj ∈ [πj , tj )

such that |F i
sj ,tj

| ≥ ε − 1/j . Since the sequence (πj )j∈N is strictly monotonically increasing
and converges to T , we have sj → T− and tj → T− for j ∈ J . By the càdlàg hypothesis,

this implies |F (i)
T−,T−| ≥ ε. On the other hand, by the hypothesis F i

t,t = 0 and the càdlàg
hypothesis, we have F i

T−,T− = 0, a contradiction.
Thus we have shown that π is indeed an adapted partition. By (1.10), for any adapted

partition π ′ ⊇ π and s ≤ t , we have∣∣Fs,t − F
(π ′)
s,t

∣∣ ≤ |Fs,t − F	s,π ′
,t | + |F	s,π ′
,t − F	s,π ′
,	t,π ′
|

≤
imax∑
i=1

∣∣F i
	s,π ′
,s

∣∣∣∣F̃ i
s,t

∣∣
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+ |F	s,π ′
,t − F	s,π ′
,	t,π
| + |F	s,π ′
,	t,π ′
 − F	s,π ′
,	t,π
|

≤
imax∑
i=1

ε · V∞F̃ i + 2ε.
�

REMARK 4.2. Some structural condition (such as (1.10)) on the two-parameter process
F is necessary in Lemma 4.1. Even if F is deterministic, continuous and vanishes on the
diagonal, F (π) does not necessarily converge to F uniformly. To see this, let φ : R→ [0,1]
be a smooth function such that φ = 0 on (−∞,0] and φ = 1 on [1,∞). Let F(s, t) :=
φ(st)φ(t − s). Then, for any partition π with πj →∞, for s ∈ (0, π1), we have

F(s,πj )− F (π)(s,πj )= F(s,πj )− F(0, πj )→ 1 as j →∞.

In the above example, F is not uniformly continuous. Convergence can also fail for uniformly
continuous in time processes if their samples are not equicontinuous. To see this, let � =
(0,1) with the Lebesgue measure, Ft the trivial σ -algebra for t < 1/3 and the Lebesgue σ -
algebra for t ≥ 1/3. Let F(s, t) := φ(2sφ(3t − 1)/ω)φ(3(t − s)), where ω ∈� and 0 ≤ s ≤
t ≤ 1. For any 0 ≤ s ≤ t ≤ 1/3, we have F(s, t) = 0, so this process is indeed measurable
with respect to the given filtration. For any adapted partition π , there is an 0 < s0 ≤ 1/3 such
that s0 ≤ π1(ω) for a.e. ω ∈�. Let 0 < s < s0 and t ≥ 2/3. Then

F(s, t)− F(0, t)= φ(2s/ω)− φ(0)= 1 for ω < 2s,

so that ‖V∞(F − F (π))‖L∞ = 1.

PROOF OF THEOREM 1.1, PART 2. By the Cauchy criterion for net convergence, the
existence of the limit (1.14) will follow if we can show that

(4.4) lim
π

sup
π ′⊇π

∥∥V r(�π(F,g)−�π ′
(F,g)

)∥∥
Lq = 0.

To this end, we use that, by (4.1), we have

�π(F,g)−�π ′
(F,g)=�π ′(

F (π) − F (π ′), g
)
.

It follows from (4.2) that(
F (π)

s,u − F (π ′)
s,u

)− (
F

(π)
t,u − F

(π ′)
t,u

)

=
imax∑
i=1

F
i,(π)
s,t F̃

i,(π)
t,u −

imax∑
i=1

F
i,(π ′)
s,t F̃

i,(π ′)
t,u

=
imax∑
i=1

(
F

i,(π)
s,t − F

i,(π ′)
s,t

)
F̃

i,(π)
t,u +

imax∑
i=1

F
i,(π ′)
s,t

(
F̃

i,(π)
t,u − F̃

i,(π ′)
t,u

)
.

Let p̃1 ∈ (p1,∞] ∪ {∞} be such that 1/r < 1/p̃1 + 1/2. By Part 1 of Theorem 1.1 with F

replaced by F (π) − F (π ′), we obtain∥∥�π ′(
F (π) − F (π ′), g

)∥∥
Lq

�
∥∥V p̃1

(
F (π) − F (π ′))(π ′)∥∥

Lq1

∥∥V∞g
∥∥
Lq0

+
imax∑
i=1

∥∥V pi,1
(
F i,(π) − F i,(π ′))(π ′) · V pi,0�π ′(

F̃ i,(π), g
)∥∥

Lq

+
imax∑
i=1

∥∥V pi,1
(
F i,(π ′))(π ′) · V pi,0�π ′(

F̃ i,(π) − F̃ i,(π ′), g
)∥∥

Lq .
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The first line converges to 0 by Lemma 4.1. The second and third line converge to 0 by the
hypotheses (1.12) and (1.13), respectively.

In order to show the Chen relation (1.16), we first show that the corresponding relation
holds pointwise for the discretized paraproducts �π . Indeed, by definition (1.4), we have

�π(F,g)t,t ′′ −�π(F,g)t,t ′ −�π(F,g)t ′,t ′′

= ∑
	t,π
≤πj<t ′′

F	t,π
,πj
(gπj+1∧t ′′ − gπj∨t )

− ∑
	t,π
≤πj<t ′

F	t,π
,πj
(gπj+1∧t ′ − gπj∨t )

− ∑
	t ′,π
≤πj<t ′′

F	t ′,π
,πj
(gπj+1∧t ′′ − gπj∨t ′)(4.5)

= ∑
	t,π
≤πj<t ′

F	t,π
,πj
(gπj+1∧t ′′ − gπj+1∧t ′)

+ ∑
t ′≤πj<t ′′

(F	t,π
,πj
− F	t ′,π
,πj

)(gπj+1∧t ′′ − gπj
)

− ∑
πj<t ′<πj+1

F	t ′,π
,πj
(gπj+1∧t ′′ − gπj∨t ′).

All summands except possibly the one with πj < t ′ < πj+1 in the first sum vanish, and it
follows that

(4.5) = ∑
	t ′,π
≤πj<t ′′

(F	t,π
,πj
− F	t ′,π
,πj

)(gπj+1∧t ′′ − gπj∨t ′)

(by (1.10)) = ∑
	t ′,π
≤πj<t ′′

imax∑
i=1

F i
	t,π
,	t ′,π
F̃

i
	t ′,π
,πj

(gπj+1∧t ′′ − gπj∨t ′)

(by (1.4)) =
imax∑
i=1

F
i,(π)
t,t ′ �π (

F̃ i , g
)
t ′,t ′′ .

By the hypotheses (1.12) and (1.13) and the already known conclusion (1.14), we can take
net limits along adapted partitions π on both sides of this equality. This yields (1.16). �

4.2. Mesh convergence. Theorem 1.1 can be used to recover the classical results about
uniform convergence of probability of discrete approximations to the Itô integral. We begin
with the simpler case of continuous integrands.

COROLLARY 4.3. In the situation of part 2 of Theorem 1.1, suppose that F = δf ,
q0, q1 < ∞, and the process f has a.s. continuous paths. Then convergence in (1.14) holds
in the stronger sense that

(4.6) �(δf,g)= lim
mesh(π)→0

�π(δf,g)

in Lq(V p), where π ranges over adapted partitions.

PROOF. In view of the uniform bound in part 1 of Theorem 1.1, it suffices to consider a
bounded time interval. On such an interval, the paths of f are uniformly continuous. There-
fore, F (π) → F uniformly as mesh(π) → 0. Since F (π) are also uniformly bounded in
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Lq1(V p1), we have F (π) → F in Lq1(V p̃1) for any p̃1 ∈ (p1,∞) ∪ {∞}. We can choose
p̃1 such that 1/r < 1/p̃1 + 1/2. It remains to apply the estimate (1.15) with p1 replaced by
p̃1 to

�(F,g)−�π(F,g)=�
(
F − F (π), g

)
. �

Next, we recover the convergence result for discrete approximations to the Itô integral in
the presence of jumps. Recall that a local martingale is a stochastic process g = (gt )t∈R≥0

such that there exists an adapted partition τ such that, for every k ∈N, we have:

1. for every t ∈R≥0, gt∧τk
∈L1(�), and

2. the stopped process gτk := (gt∧τk
)t is a martingale.

Any adapted partition as above is called a localizing sequence for g.

LEMMA 4.4. Let g be a càdlàg local martingale. Then there exists a localizing sequence
(τk) for g such that, for every k, we have gτk ∈ L1(V∞).

PROOF. Let (τ̃k) be a localizing sequence for g. Define

τk := τ̃k ∧ k ∧ inf
{
t | |gt | ≥ k

}
.

Then

V∞gτk ≤ k + |gτk
|.

The first summand is in L∞ ⊂ L1. For the second summand, we have

E|gτk
| = E

∣∣gτ̃k
τk

∣∣ ≤ E
∣∣gτ̃k

k

∣∣ <∞. �

Now, we can recover the existence of Itô integrals.

COROLLARY 4.5. Let f be a càdlàg adapted process and g a càdlàg local martingale.
Then there exists the limit

(4.7) �(f,g)0,· = u. c.p. -lim
mesh(π)→0

�π(f,g)0,·.

Note that the two-parameter supremum

sup
0≤t≤t ′≤T

∣∣�π(f,g)t,t ′ −�(f,g)t,t ′
∣∣

does not converge to 0 if f has jumps. Indeed by Chen’s relation, it is bounded below by a
multiple of

sup
0≤t≤T

∣∣δ(
f − f (π))

0,t δgt,T

∣∣ = sup
0≤t≤T

∣∣(ft − f	t,π
)δgt,T

∣∣,
and the difference (ft − f	t,π
) does not converge to 0 if f has jumps.

PROOF OF COROLLARY 4.5. We may assume without loss of generality that f0 = 0 and
g0 = 0. Let (τ̃k) be a localizing sequence for g given by Lemma 4.4. Then

τk := τ̃k ∧ inf
{
t | |ft |> k

}
is also a localizing sequence. Fix T > 0 and ε > 0. For a sufficiently large k, we will have

P{τk ≤ T }< ε/10.
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Replacing g by gτk and f by (ft∧τk−)t , we may assume that g ∈ L1(V∞) and f ∈ L∞(V∞).
By part 2 of Theorem 1.1 with q = 1 and any r > 2, there exists an adapted partition π◦

such that, for every adapted partition π ′ ⊇ π◦, we have∥∥V r(�π ′
(f, g)−�(f,g)

)∥∥
Lq(�) < (ε/10)1+1/q .

In particular, for every adapted partition π ′ ⊇ π◦, we have

P�π ′ < ε/10, �π ′ :=
{

sup
0≤t≤T

∣∣�π ′
(f, g)0,t −�(f,g)0,t

∣∣ > ε/10
}
.

Since V∞f is finite a.s., there exists A <∞ such that

P�2 < ε/10, �2 :=
{

sup
t≤T

|ft |> A
}

< ε/10.

Since limj→∞ π◦
j =∞ a.s., there exists J ∈N such that

P�3 < ε/10, �3 := {
π◦

J < T
}
.

Since gt is right continuous in t and measurable on �, there exists δ > 0 such that

P�4 < ε/10, �4 :=
{

sup
j≤J

sup
0≤s≤2δ

|gπ◦
j +s − gπ◦

j
|> ε/(10AJ)

}

and

P�5 < ε/10, �5 :=
{
min
j≤J

∣∣π◦
j+1 − π◦

j

∣∣ ≤ δ
}
.

We will show that this δ works for (4.7).
Let π be an adapted partition with mesh(π) < δ. Let π ′ := π ∪π◦; this is another adapted

partition. For every π ′
l ∈ π◦ \ π and π ′

l < t ′, we will use the identity

fπ ′
l−1

(gπ ′
l∧t ′ − gπ ′

l−1
)+ fπ ′

l
(gπ ′

l+1∧t ′ − gπ ′
l
)

= fπ ′
l−1

(gπ ′
l+1∧t ′ − gπ ′

l−1
)+ (fπ ′

l
− fπ ′

l−1
)(gπ ′

l+1∧t ′ − gπ ′
l
).

(4.8)

Now, if ω ∈ � \ �5, then π ′
l−1, π

′
l+1 /∈ π◦ in the situation of (4.8). Therefore, the first term

on the right-hand side of (4.8) appears in �π . Therefore, for every t ′ ≤ T , we have∣∣�π ′
(f, g)0,t ′ −�π(f,g)0,t ′

∣∣
=

∣∣∣∣ ∑
l:π ′

l∈π◦\π and π ′
l <t ′

(fπ ′
l
− fπ ′

l−1
)(gπ ′

l+1∧t ′ − gπ ′
l
)

∣∣∣∣
≤

(
2 sup

t≤T

|ft |
) ∑

l:π ′
l∈π◦\π and π ′

l <t ′
|gπ ′

l+1∧t ′ − gπ ′
l
|.

If ω /∈�2 ∪�3 ∪�4, then this implies∣∣�π ′
(f, g)0,t ′ −�π(f,g)0,t ′

∣∣ ≤ (2A)
∑

l:π ′
l∈π◦\π and π ′

l <t ′
ε/(10AJ)

≤ (2A)J · ε/(10AJ)

= ε/5.

Hence, for every ω ∈� \ (�π ′ ∪�2 ∪�3 ∪�4 ∪�5), we obtain

sup
0≤t ′≤T

∣∣�π(f,g)0,t ′ −�(f,g)0,t ′
∣∣ < ε. �
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5. Quadratic covariation of a controlled process and a martingale.

5.1. Variation norm estimate. The main difficulty in defining [Y,g] for an X-controlled
process Y and a martingale g is to handle the contribution of the jumps of X. This is done by
the following result.

THEOREM 5.1. Let 0 < q , q1 ≤∞, 1 ≤ q0 <∞ with 1/q = 1/q0 + 1/q1. Let (gt )t≥0 be
a càdlàg martingale and (Y ′)t≥0 a càdlàg adapted process. Let I ⊂ (0,∞) be a countable
subset and (�t)t∈I a (deterministic) sequence. Consider the process

(5.1) Bt,t ′ :=
∑

j∈I∩(t,t ′]
Y ′

j−�jδgj−,j .

Then, for every p1 ∈ [2,∞] and 1/r < 1/2 + 1/p1, with MY ′ = supt |Y ′
t |,

(5.2)
∥∥V rB

∥∥
Lq �

∥∥MY ′∥∥
Lq1

(∑
j∈I

|�j |p1

)1/p1
∥∥∥∥
(∑

j∈I

|δgj−,j |2
)1/2∥∥∥∥

Lq0
.

PROOF. We will first show that the estimate (5.2) holds for finite sets I . This will imme-
diately imply that the series (5.1) converges unconditionally in Lq(V r) and that its limit also
satisfies the estimate (5.2).

When I is finite, we may assume that we are in discrete time, which corresponds to the case
I = {1, . . . ,N} and Y ′, g being constant on intervals [n,n+ 1) for n ∈ N. By Corollary 3.3,
it suffices to estimate the Lq norm of

(5.3)
∥∥∥∥ sup
τk−1≤t<t ′≤τk

∣∣∣∣ ∑
t<j≤t ′

Y ′
j−1�j dgj

∣∣∣∣
∥∥∥∥
Lq(�

ρ
k )

,

where (τk)k in an increasing sequence of stopping times and 1/ρ = 1/2 + 1/p1.
Now we use that �j is deterministic, so that Y ′

j−1�j is Fj−1-measurable. In the case
q ≥ 1, this allows us to directly apply the vector-valued BDG inequality (Lemma 2.6) to the
martingales h

(k)
n = ∑

j≤n 1τk−1<j≤τk
Y ′

j−1�j dgj .
In order to treat general q , by the quasi-triangle inequality in Lq , we split

(5.3) �q

∥∥∥∥ sup
τk−1≤t<t ′≤τk

∣∣∣∣ ∑
t<j≤t ′

Y ′
t �j dgj

∣∣∣∣
∥∥∥∥
Lq(�

ρ
k )

(5.4)

+
∥∥∥∥ sup
τk−1≤t<t ′≤τk

∣∣∣∣ ∑
t<j≤t ′

(
Y ′

j−1 − Y ′
t

)
�j dgj

∣∣∣∣
∥∥∥∥
Lq(�

ρ
k )

.(5.5)

In the former term, by Hölder’s inequality, the vector-valued BDG inequality (Lemma 2.6)
applied to the martingales h

(k)
n = ∑

j≤n 1τk−1<j≤τk
�j dgj , the fact that ρ ≤ 2, and again

Hölder’s inequality, we have

(5.4) ≤ ∥∥MY ′∥∥
Lq1

∥∥∥∥ sup
τk−1≤t<t ′≤τk

∣∣∣∣ ∑
t<j≤t ′

�j dgj

∣∣∣∣
∥∥∥∥
Lq0 (�

ρ
k )

�
∥∥MY ′∥∥

Lq1

∥∥∥∥
( ∑

τk−1<j≤τk

|�j dgj |2
)1/2∥∥∥∥

Lq0 (�
ρ
k )

≤ ∥∥MY ′∥∥
Lq1

∥∥∥∥
(∑

j

|�j dgj |ρ
)1/ρ∥∥∥∥

Lq0

≤ ∥∥MY ′∥∥
Lq1

(∑
j

|�j |p1

)1/p1
∥∥∥∥
(∑

j

|dgj |2
)1/2∥∥∥∥

Lq0
.
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In the latter term, by the vector-valued paraproduct estimate (Proposition 2.8 with r1 =∞
and r = r0 = ρ), we have

(5.5) �
∥∥∥sup

k

sup
τk−1<j≤τk

∣∣Y ′
j−1 − Y ′

τk−1

∣∣∥∥∥
Lq1

∥∥∥∥
( ∑

τk−1<j≤τk

|�j dgj |2
)1/2∥∥∥∥

Lq0 (�
ρ
k )

.

This can be estimated similarly as (5.4). �

5.2. Discretization of quadratic covariation.

DEFINITION 5.2. Let g = (gt )t≥0 be a càdlàg local martingale. For adapted càdlàg pro-
cesses Y , Z and a deterministic partition π , define

(5.6) Z • [Y,g]πT := ∑
πj<T

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T .

In the case Z ≡ 1, we omit “Z•” from the notation.

It is well known that limπ [Y,g]π need not make sense for general processes Y , but does
make sense, for example, if Y is also a martingale. In our case, the process Y will be the
first component of a controlled process Y. In order to pass to a limit in (5.6), we will need a
localizing sequence for Y.

LEMMA 5.3. Let 1 ≤ p̂1, p1 ≤ ∞. Let X ∈ V
p1
loc be a deterministic càdlàg path. Let

Y = (Y,Y ′) be a càdlàg adapted process such that Y ∈ V
p1
loc and RY,X ∈ V

p̂1
loc almost surely

and Y ′
0 ∈ L∞. Then there exists a localizing sequence (τk) such that, for every k, the process

Ỹ = (Ỹ , Ỹ ′), defined by

Ỹt = Yt∧τj−, Ỹ ′
t =

{
Y ′

t if t < τj ,

0 if t ≥ τj ,

satisfies Ỹ ∈ L∞(V p1), MY ′ ∈ L∞, and RỸ,X̃ ∈ L∞(V p̂1), where X̃t :=Xt∧k .

PROOF. Without loss of generality, |Y ′
0| ≤ 1/2. Let

τk := k ∧ min
{
t | max

(
V

p1
[0,t]Y, sup

s∈[0,t]
∣∣Y ′

s

∣∣,V p̂1
[0,t]R

Y,X
)
≥ k

}
.

At this point, we have used the fact that the functions t �→ V
p1
[0,t]Y and t �→ V

p̂1
[0,t]RY,X are

right continuous if X, Y , Y ′ are càdlàg, so that the above minimum in fact exists. For the
former function, this is verified, for example, in [29], Lemma 7.1; the argument for the latter
function is similar.

Then, for any t ≤ t ′, we have

(5.7) R
Ỹ,X̃
t,t ′ =

⎧⎪⎪⎨
⎪⎪⎩

R
Y,X
t,t ′ if t ≤ t ′ < τk,

0 if τk ≤ t ≤ t ′,
δYt,τk− − Y ′

t δXt,t ′∧k, if t < τk ≤ t ′.

The latter case can only appear once in any �p̂1 norm in the definition of V p̂1RỸ,X̃ . Therefore,

V p̂1RỸ,X̃ ≤ V
p̂1
[0,τk)

RY,X + 2k + kV ∞[0,k]X

is a bounded function. �
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THEOREM 5.4. Let p̂1 < 2 ≤ p1 and X ∈ V
p1
loc a deterministic càdlàg path. Suppose that

Y = (Y,Y ′) and Z are càdlàg adapted processes, g a càdlàg local martingale and RY,X ∈
V

p̂1
loc almost surely. Then

(5.8) Z • [Y, g] := u. c.p. -lim
d-mesh(π)→0

Z • [Y,g]π

exists, and we have

(5.9) Z • [Y, g]t =
∑
s≤t

Zs−�XsY
′
s−�gs +

∑
s≤t

Zs−�RY
s �gs,

where �gs := δgs−,s and �RY
s := RY

s−,s . Moreover, for any 1/r < 1/2 + 1/p1, we have
Z • [Y, g] ∈ V r

loc.

REMARK 5.5. The case needed for the construction of the square bracket in Theorem 1.3
is Z ≡ 1. General processes Z are needed in the consistency result, Theorem 6.8.

PROOF. Since (5.6) and (5.9) are linear in Y, we may assume |Y ′
0| ≤ 1 upon replacing Y

by Y/max(1, |Y ′
0|). Similarly, we may assume |Z0| ≤ 1.

Using the localizing sequence τk = min{t | |Zt |> k} and replacing Z by (Zt∧τk−)t , we may
assume that Z is uniformly bounded. Using the localizing sequence given by Lemma 4.4,
we may assume g ∈ L1(V∞). Using the localizing sequence given by Lemma 5.3, we may
assume that X ∈ V p1 , Y ∈ L∞(V p1), and RY,X ∈ L∞(V p̂1). Overall, we may assume

(5.10) g ∈ L1V∞, X ∈ V p1, MY ′, MZ ∈ L∞, RY,X ∈L∞(
V p̂1

)
.

Assuming (5.10), the first sum in (5.9) now makes sense by Theorem 5.1 and is in V r
loc for

any 1/r < 1/2+ 1/p1. The second sum in (5.9) almost surely converges absolutely for every
t , and in particular defines a process with almost surely V 1

loc paths.
Now, still assuming (5.10), we will show that the limit (5.8) exists and coincides with (5.9).
Fix T > 0. Let A≥ 1 be such that supt≤T |Xt |< A and the set

�1 :=
{

sup
t≤T

(|Yt | ∨
∣∣Y ′

t

∣∣∨ |gt | ∨ |Zt |) < A
}

has probability ≥ 1 − ε.
Let JX := {s | |�Xs |> ε/(2A)} and JY (ω) := {s | |�Ys | > ε/2}. Let N < ∞ be such that

|JX| ≤N and

�4 := {|JY |< N
}

has probability ≥ 1 − ε.
Let δ be such that

sup
t≤t ′≤T :|t ′−t |≤δ,(t,t ′]∩JX=∅

|δXt,t ′ |< ε/A,

sup
t∈(JX∪JY )∩[0,T ]

sup
0<s≤δ

|Xt− −Xt−s |< ε/(10AN),

sup
t∈(JX∪JY )∩[0,T ]

sup
0<s≤δ

|Xt+s −Xt |< ε/(10AN),

and the sets

�5 :=
{

sup
t∈(JX∪JY )∩[0,T ]

sup
0<s≤δ

(|δYt−s,t−| ∨
∣∣δY ′

t−s,t−
∣∣∨ |δgt−s,t−|) < ε/

(
100A2N

)}
,
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�6 :=
{

sup
t∈(JX∪JY )∩[0,T ]

sup
0<s≤δ

(|δYt,t+s | ∨ |δgt,t+s |) < ε/
(
100A2N

)}
,

�7 :=
{

inf
s,t∈(JX∪JY )∩[0,T ],s �=t

|s − t |> δ
}
,

�8 :=
{

sup
t≤t ′≤T :|t ′−t |≤δ,(t,t ′]∩JY=∅

|δYt,t ′ |< ε
}
,

have probability ≥ 1 − ε. Let π be a deterministic partition with mesh(π) < δ.
The basic idea to handle the main term is the following. Suppose ω ∈ �1 ∩ · · · ∩ �8 and

s ∈ JX ∪ JY (ω). Suppose πj < s ≤ πj+1 ∧ T . Then

|Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T −Zs−�Ys�gs |

≤ |Zπj
−Zs−| · |δYπj ,πj+1∧T δgπj ,πj+1∧T |

+ |Zs−| · |δYπj ,πj+1∧T −�Ys | · |δgπj ,πj+1∧T |
+ |Zs−�Ys | · |δgπj ,πj+1∧T −�gs |

= |Zπj
−Zs−| · |δYπj ,πj+1∧T δgπj ,πj+1∧T |

+ |Zs−| · |δYπj ,s− + δYs,πj+1∧T | · |δgπj ,πj+1∧T |
+ |Zs−�Ys | · |δgπj ,s− + δgs,πj+1∧T |

≤ 3 · (2A)2 · 2ε/
(
100A2N

)
≤ ε/(4N).

In case s ∈ JY (ω) \ JX , we similarly estimate
∣∣Zs−Y ′

s−�Xs�gs −Zπj
Y ′

πj
δXπj ,πj+1∧T δgπj ,πj+1∧T

∣∣
≤ |Zs− −Zπj

| · ∣∣Y ′
s−�Xs�gs

∣∣+ |Zπj
| · ∣∣Y ′

s− − Y ′
πj

∣∣ · |�Xs�gs |
+ ∣∣Zπj

Y ′
πj

∣∣ · |�Xs − δXπj ,πj+1∧T | · |�gs |
+ ∣∣Zπj

Y ′
πj

δXπj ,πj+1∧T

∣∣ · |�gs − δgπj ,πj+1∧T |
� ε/N.

Since ω ∈�4, these errors contribute O(ε) to the sum over j . Hence, we obtain∣∣∣∣ ∑
πj<T

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T − ∑

s≤T

Zs−�Ys�gs

∣∣∣∣
≤

∣∣∣∣ ∑
πj<T

(πj ,πj+1]∩JX �=∅

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T − ∑

s≤T ,s∈JX

Zs−�Ys�gs

∣∣∣∣

+
∣∣∣∣ ∑

πj<T

(πj ,πj+1]∩JX=∅

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T − ∑

s≤T ,s /∈JX

Zs−�Ys�gs

∣∣∣∣

≤ |JX|ε/(10N)+
∣∣∣∣ ∑
s≤T ,s /∈JX

Zs−Y ′
s−�Xs�gs

∣∣∣∣
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+
∣∣∣∣ ∑

πj<T

(πj ,πj+1]∩JX=∅

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T − ∑

s≤T ,s /∈JX

Zs−�Rs�gs

∣∣∣∣.

The last line is estimated by∑
s≤T ,s /∈(JX∪JY )

|Zs−�Rs�gs | +
∣∣∣∣ ∑

πj<T

(πj ,πj+1]∩(JX∪JY )=∅

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T

+ ∑
πj<T

(πj ,πj+1]∩(JY \JX) �=∅

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T − ∑

s≤T ,s∈(JY \JX)

Zs−�Rs�gs

∣∣∣∣

= ∑
s≤T ,s /∈(JX∪JY )

|Zs−�Rs�gs | +
∣∣∣∣ ∑

πj<T

(πj ,πj+1]∩(JX∪JY )=∅

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T

+ ∑
πj<T

(πj ,πj+1]∩(JY \JX) �=∅

Zπj
Y ′

πj
δXπj ,πj+1∧T δgπj ,πj+1∧T

∣∣∣∣+O(ε)

= ∑
s≤T ,s /∈(JX∪JY )

|Zs−�Rs�gs | +
∣∣∣∣ ∑

πj<T

(πj ,πj+1]∩(JX∪JY )=∅

Zπj
Rπj ,πj+1∧T δgπj ,πj+1∧T

+ ∑
πj<T

(πj ,πj+1]∩JX=∅

Zπj
Y ′

πj
δXπj ,πj+1∧T δgπj ,πj+1∧T

∣∣∣∣+O(ε)

≤ ∑
s≤T ,s /∈(JX∪JY )

|Zs−�Rs�gs | +
∑

πj<T

(πj ,πj+1]∩(JX∪JY )=∅

|Zπj
Rπj ,πj+1∧T δgπj ,πj+1∧T |

+
∣∣∣∣ ∑

πj<T

(πj ,πj+1]∩JX=∅

Zπj
Y ′

πj
δXπj ,πj+1∧T δgπj ,πj+1∧T

∣∣∣∣+O(ε).

These estimates are uniform in T , so we obtain

sup
T≤T0

∣∣∣∣ ∑
πj<T

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T − ∑

s≤T

Zs−�Ys�gs

∣∣∣∣
≤ sup

T≤T0

∣∣∣∣ ∑
s≤T ,s /∈JX

Zs−Y ′
s−�Xs�gs

∣∣∣∣+ ∑
s≤T0,s /∈(JX∪JY )

|Zs−�Rs�gs |

+ ∑
πj<T0

(πj ,πj+1]∩(JX∪JY )=∅

|Zπj
Rπj ,πj+1∧T δgπj ,πj+1∧T |

+ sup
T≤T0

∣∣∣∣ ∑
πj+1≤T

(πj ,πj+1]∩JX=∅

Zπj
Y ′

πj
δXπj ,πj+1δgπj ,πj+1

∣∣∣∣

+ sup
j :πj+1≤T0,

(πj ,πj+1]∩JX=∅

sup
T ∈(πj ,πj+1)

∣∣Zπj
Y ′

πj
δXπj ,T δgπj ,T

∣∣+O(ε).



ROUGH SEMIMARTINGALES 433

The contribution of the sums involving Y ′ is O(ε) in the space Lq(V r) for any r > 2 by
Theorem 5.1, since |�Xs | =O(ε) and δXπj ,πj+1 =O(ε) in all summands. The contribution
of the supremum involving Y ′ is easy to bound, again because δX =O(ε) there.

The contribution of the sums involving R is bounded by(∑
j

|R...|2
)1/2(∑

j

|δg...|2
)1/2

≤
(
sup
j

|R...|
)1−p̂1/2(

V p̂1R
)p̂1/2

(∑
j

|δg...|2
)1/2

.

Using that |R...| = O(ε) in all these terms and the BDG inequality to estimate the square
function of g, we see that the contribution of these terms is O(ε1−p̂1/2) in Lq . �

PROOF OF THEOREM 1.7. By Corollary 4.5, Theorem 5.4 and (1.29), we have

�(W,W̄)0,· = u. c.p. -lim
d-mesh(π)→0

( ∑
πj<t

δW0,πj
δW̄πj ,πj+1∧t + Y ′

πj
Ȳ ′

πj
Xπj ,πj+1∧t

)
t

.

This expression does not depend on the decompositions of W , W̄ , hence �(W,W̄) is well
defined.

In order to see that �(W,W̄) has locally bounded p/2-variation, we localize as in (5.10),
also making sure that Y ′, Ȳ ′ ∈ L∞(V p) by a minor variation of that argument. With these
finite moments assumptions, boundedness of the p/2-variation is given by Theorems 1.1 and
1.3 as well as the sewing lemma. �

5.3. Integration by parts. The following estimate will be used for boundary terms.

LEMMA 5.6. Let 0 < q0, q1 ≤ ∞ and 1/q = 1/q0 + 1/q1. Let 0 < p0, p1 ≤ ∞ and
1/r < 1/p0 + 1/p1. Let f , g be càdlàg adapted processes. Then∥∥V r(δft,t ′δgt,t ′)

∥∥
Lq

≤ sup
τ

∥∥∥ sup
τk−1≤t<τk

|ft − fτk
|
∥∥∥
Lq1 (�p1 )

∥∥∥ sup
τk−1≤t<τk

|gt − gτk
|
∥∥∥
Lq0 (�p0 )

,

where the supremum is taken over adapted partitions τ .

PROOF. This is a direct consequence of Corollary 3.3 with 1/r < 1/ρ = 1/p0 + 1/p1
and Hölder’s inequality. �

COROLLARY 5.7. Let 1 ≤ q0 < ∞, 0 < q1 ≤∞, and 1/q = 1/q0 + 1/q1. Let 0 < p1 ≤
∞ and 1/r < 1/2 + 1/p1. Let f be a càdlàg adapted process and g a càdlàg martingale.
Then

(5.11)
∥∥V r(δft,t ′δgt,t ′)

∥∥
Lq �

∥∥V p1f
∥∥
Lq1

∥∥V∞g
∥∥
Lq0 .

PROOF. We apply Lemma 5.6 with p0 = 2. The resulting Lq0(�2) norm can be estimated,
after discretization, using first the vector-valued and then the scalar-valued BDG inequality.
�

PROOF OF THEOREM 1.3. For any adapted partition π and any càdlàg processes f , g,
we have the summation by parts identity

(5.12) �π(f,g)0,T +�π(g,f )0,T + [f,g]πT = (fT − f0)(gT − g0).

Define

(5.13) �(g,Y) := δgδY −�(Y,g)− δ[Y, g].
Convergence (1.24) then follows from Corollary 4.5 and Theorem 5.4.
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Chen’s relation (1.25) follows from Chen’s relation (1.16) for �(Y,g).
The variation norm bound (1.26) follows from Corollary 5.7, part 2 of Theorem 1.1 and

Theorem 5.1 applied to the respective terms. �

5.4. Quadratic covariation of two martingales. In this section, we recall a few facts about
quadratic covariation needed in Section 6 and explain how they fit into the approach to Itô
integration provided by Theorem 1.1.

Let f , g be càdlàg martingales. One way to define the quadratic covariation process of f ,
g is by

(5.14) [f,g]t := δf0,t δg0,t −�(f,g)0,t −�(g,f )0,t .

Corollary 4.5 and the summation by parts identity (5.12) then recover the description of the
quadratic covariation in terms of discrete brackets:

[f,g]t = u. c.p. -lim
mesh(π)→0

δf0,t δg0,t −�π(f,g)0,t −�π(g,f )0,t

= u. c.p. -lim
mesh(π)→0

[f,g]π0,t .
(5.15)

In particular, in the case g = f , the function t �→ [g]t := [g,g]t is a.s. monotonically in-
creasing and locally bounded. Passing to the limit in the vector-valued BDG inequality,
Lemma 2.6, we obtain the estimate

(5.16)
∥∥V∞h(k)

∥∥
Lq(�r

k)
�q,r

∥∥[
h(k)]1/2∥∥

Lq(�r
k)

,

where h(k) are càdlàg martingales, [h] = [h]∞ = limt→∞[h,h]t , and the hypotheses on the
exponents q , r are the same as in Lemma 2.6.

Finally, we recall the (almost sure, pathwise) Itô isometry

(5.17)
[
�(f,g)s,·

]
t =

∫
(s,t]

|fu− − fs |2 d[g]u,

where the integral is taken in the Riemann–Stieltjes sense.

6. Consistency of rough and stochastic integration. Let g be a càdlàg local martingale
and g = (g,�(g,g)) the p-rough path lift (with p ∈ (2,3)) provided by Theorem 1.1 with
F = δg. It is well known that, for any g-controlled p-rough adapted process A = (A,A′), the
Itô integral and the rough integral coincide almost surely:

(6.1)
∫

Au− dgu =
∫

Au− dgu;
see, for example, [25], Proposition 5.1, for the case of Brownian motion and references given
there for historical information. We begin with a generalization of this fact, in which one of
the copies of g is replaced by a further process Y and Z plays the role of A′.

LEMMA 6.1. Let g be a càdlàg local martingale and Y , Z càdlàg adapted processes.
Then, along adapted partitions π , we have

(6.2) u. c.p. -lim
mesh(π)→0

( ∑
πj<T

Zπj
�(Y,g)πj ,πj+1∧T

)
T

= 0.

Lemma 6.1 generalizes [5], Lemma 4.35, where additional structural hypotheses are made
on Y , Z.
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REMARK 6.2. Lemma 6.1 is the main ingredient in showing consistency results such as
(6.1). Indeed, the difference between the discrete approximations of the two sides of (6.1)
is precisely the sum in (6.2). More generally, one can replace the rough lift g by a rough
semimartingale g+ g̃, where g̃ is independent from g, and the controlled process A by another
process that is a g-controlled rough semimartingale conditionally on each path of g.

PROOF OF LEMMA 6.1. Without loss of generality, Y0 = 0. Multiplying Z by an F0-
measurable time-independent function, we may also assume |Z0| ≤ 1. Similarly to (5.10),
we may assume

g ∈ L1V∞, MY,MZ ∈L∞.

By the BDG inequality and Itô isometry (5.17), we have

E sup
T

∣∣∣∣ ∑
πj<T

Zπj
�(Y,g)πj ,πj+1∧T

∣∣∣∣ ∼ E

[∑
j

Zπj
�(Y,g)πj ,πj+1

]1/2

= E

(∑
j

∫
(πj ,πj+1]

|Zπj
δYπj ,u−|2 d[g]u

)1/2

� E

(∫
(0,T ]

|δY	u−,π
,u−|2 d[g]u
)1/2

.

We will use the dominated convergence theorem to show that this converges to 0. First, we
note that ∫

(0,T ]
|δY	u−,π
,u−|2 d[g]u ≤ (

V∞Y
)2

δ[g]0,T ,

which gives us the integrable pointwise upper bound. It remains to show that, almost surely,

(6.3) lim
δ→0

sup
mesh(π)≤δ

∫
(0,T ]

|δY	u−,π
,u−|2 d[g]u = 0.

The supremum over all partitions with a given bound on mesh is necessary here, since the ana-
logue of the dominated convergence theorem is false for nets. To see (6.3), take ω ∈ � such
that the function u �→ [g]u is monotonically increasing and bounded on [0, T ] (this is true
a.s.). Let ε > 0 be arbitrary. By the càdlàg property of Y , there are finitely many points (sk)

such that |�Ysk | ≥ ε, and there exists δ > 0 such that V∞Y |(sk−ε,sk) < ε, V∞Y |[sk,sk+ε] < ε,
and for every interval J such that sk /∈ J for all k we have V∞Y |J < ε. It follows that, for
every partition (π) with mesh(π) < δ, we have∫

(0,T ]
|δY	u−,π
,u−|2 d[g]u � ε2

∫
(0,T ]

d[g]u +
∑
k

|�Ysk |2
∫
(sk,sk+δ)

d[g]u.

≤ ε2
∫
(0,T ]

d[g]u +
∑
k

|�Ysk |2δ[g]sk+,sk+δ.

(6.4)

The first term is clearly arbitrarily small, and the second term also becomes arbitrarily small
as δ decreases because the sum is finite and u �→ [g]u is monotonic. �

LEMMA 6.3. Let p̂1 < 2 ≤ p1. Let X ∈ V
p1
loc be a deterministic càdlàg path. Suppose

that Y = (Y,Y ′) is a càdlàg adapted process, Z a càdlàg adapted process, g a càdlàg local

martingale, RY,X ∈ V
p̂1
loc a.s.. Then

u. c.p. -lim
d-mesh(π)→0

( ∑
πj<T

Zπj
�(g,Y)πj ,πj+1∧T

)
T

= 0.
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REMARK 6.4. If Y is a càdlàg process with a.s. locally bounded 1-variation, then one
can take X = 0, Y ′ = 0 in Lemma 6.3.

PROOF. By definition (5.13), we have∑
πj<T

Zπj
�(g,Y)πj ,πj+1∧T = ∑

πj<T

Zπj
δYπj ,πj+1∧T δgπj ,πj+1∧T

− ∑
πj<T

Zπj
[Y, g]πj ,πj+1∧T − ∑

πj<T

Zπj
�(Y,g)πj ,πj+1∧T .

The last term on the right-hand side converges to zero by Lemma 6.1.
The first term on the right-hand side is, by Definition 5.2, equal to Z • [Y,g]π . By Theo-

rem 5.4, it converges to Z • [Y, g].
The middle term equals Z(π) • [Y, g]. This also converges to Z • [Y, g] as mesh(π) → 0

by an argument similar to (6.4). �

If (g + Y,Y ′) is an X-controlled p-RSM, p ∈ (2,3), then Z = (Z,Z′) with

(6.5) Z = g + Y, Z′
t (δX, δg)= Y ′

t δX + δg

is easily seen to be an (X,g)-controlled p-rough process. Indeed, g ∈ V
p
loc almost surely by

Lemma 4.4 and Lépingle’s inequality (1.2). It remains to observe that

R
Z,(X,g)
s,t = δZs,t −Z′

t (δXs,t , δgs,t )

= δgs,t + δYs,t − Y ′
t δXs,t − δgs,t

=R
Y,X
s,t .

The converse implication is more subtle, because the g component of the Gubinelli derivative
of a (X,g)-controlled process need not be the identity.

THEOREM 6.5. Let p ∈ (2,3) and X ∈ V
p
loc be a deterministic càdlàg path. Let g be a

càdlàg local martingale. Let Z = (Z,Z′) be an adapted càdlàg (X,g)-controlled p-rough
process.

Then (Z,Z′(·,0)) is an X-controlled p-RSM:
(
Z,Z′(·,0)

) = (
g̃ + Ỹ , Ỹ ′),

with the local martingale part given by

(6.6) g̃T :=�
(
Z′(0, ·), g)

0,T

and Gubinelli derivative

(6.7) Ỹ ′
T := Z′

T (·,0).

PROOF OF THEOREM 6.5. With the local martingale component defined by (6.6), the
controlled rough component will be defined by

ỸT := ZT − g̃T .
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It follows from Lépingle’s inequality (1.2) and localization, Lemma 4.4, that Ỹ ∈ V
p
loc almost

surely. It remains to show that RỸ,X ∈ V
p/2
loc almost surely. To this end, with s < t , we write

R
Ỹ,X
s,t = Ỹt − Ỹs −Z′

s(Xt −Xs,0)

=Zt −Zs −�
(
Z′(0, ·), g)

0,t +�
(
Z′(0, ·), g)

0,s −Z′
s(Xt −Xs,0)

= (
Zt −Zs −Z′

s(Xt −Xs,gt − gs)
)

−�
(
Z′(0, ·), g)

0,t +�
(
Z′(0, ·), g)

0,s +Z′
s(0, gt − gs)

=R
Z,(X,g)
s,t −�

(
Z′(0, ·), g)

s,t .

(6.8)

The former term is in V
p/2
loc by the hypothesis. The latter term is in V

p/2
loc by Theorem 1.1 and

localization similar to Lemma 5.3. �

COROLLARY 6.6. Let p ∈ (2,3). If (g+Y,Y ′) is an X-controlled, p-rough semimartin-
gale and σ ∈ C2, then (σ (g+Y ),Dσ ◦Y ′) is also an X-controlled p-rough semimartingale.

PROOF. By (6.5), g+Y can be lifted to an (X,g)-controlled p-rough process. The com-
position of this process with σ is again an (X,g)-controlled p-rough path (see, e.g., [29],
Remark 4.15), to which we can apply Theorem 6.5. �

REMARK 6.7. Theorem 6.5 has an analog for classical semimartingales. Let g be a
càdlàg local martingale and Z = (Z,Z′) a càdlàg adapted process such that RZ,g ∈ V 1

loc and
Z′ ∈ V 2

loc. Then Z must be a semimartingale. Indeed, let

g̃T :=�
(
Z′, g

)
T , YT := ZT − g̃T , Y ′

T := 0.

Then, by the same calculation as in (6.8), we have

δYs,t =R
Y,0
s,t =−�

(
Z′, g

)
s,t .

It follows from the �1-valued estimate in Corollary 2.10 that Y ∈ V 1
loc, so that Z is a semi-

martingale.

THEOREM 6.8. Let p ∈ (2,3) and X = (X,X) be a deterministic càdlàg p-rough path.
Let g be a càdlàg local martingale. Let Z = (Z,Z′) be an adapted càdlàg (X,g)-controlled
p-rough process. Then ∫

Z dJ (X, g)=�
(
Z, (X,g)

)
,

where the left-hand side is the pathwise rough integral and the right-hand side is the RSM
integral.

PROOF. The right-hand side makes sense by Theorem 6.5. Expanding the definitions, we
see that the difference between the two sides vanishes by Lemma 6.1 and Lemma 6.3. �

PROOF OF THEOREM 1.9. RDE theory yields a solution (Z, (σ,μ)(Z)) as (X,g)-
controlled p-rough process. By Theorem 6.5, we see that (Z,σ (Z)) is an X-controlled p-
RSM, as is (σ (Z),Dσ(Z) ◦ σ(Z)) by Corollary 6.6. To see the stated decomposition into
local martingale and rough drift part, we write the RDE solution as integral equation, ob-
tained as mesh-limit of local approximations given by

δZs,t
∼= f0(Zs)(δX)s,t + f00(Zs)Xs,t + f1(Zs)(δg)s,t

+ f01(Zs)�(X,g)s,t + f10(Zs)�(g,X)s,t + f11(Zs)�(g,g)s,t
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where f0 = σ , f1 = μ, f00 =Dσ ◦ σ and so on. (Our assumptions on σ , μ imply that all the
fij ’s are bounded.) It follows from Lemma 6.1 and 6.3 that convergence still takes place when
f01, f10, f11 are set to zero, provided we restrict ourselves to the mesh limit of deterministic
partitions. What remains are Itô left-point sums, with f1-terms, and u.c.p. Itô limit M =∫

μ(Z−)dg. All of these entail convergence of sum with the remaining terms (f0 and f00),
as given in the statement. Alternatively, though equivalently, we can view

∫
σ(Z−)dX as the

integral of a rough semimartingale against (0 + X, Id), trivially another X-controlled rough
semimartingale, hence rely on Theorem 1.7. �

APPENDIX A: HÖLDER ESTIMATES FOR MARTINGALE TRANSFORMS

For a two-parameter process �= (�t,t ′)0≤t<t ′≤T and α ∈ [0,∞), we set

Hα� := sup
0≤t<t ′≤T

|�t,t ′ |
|t ′ − t |α .

The following result is a Hölder version of the variational estimates of Theorem 1.1. It
improves upon the estimate given by Kolmogorov’s theorem by eliminating the loss of 1/q

in the Hölder exponent.

THEOREM A.1. In the situation of Theorem 1.1, part 2, suppose that all processes have
a.s. continuous paths and restrict the time parameter to a finite interval, t ∈ [0,1]. Let

0 ≤ γ < α + β = αi + βi

with α,β,αi, βi ≥ 0. Then we have

∥∥Hγ �(F,g)
∥∥
Lq �

∥∥HβF
∥∥
Lq1

∥∥Hα(Sg)
∥∥
Lq0 +

imax∑
i=1

∥∥HαiF i ·Hβi�
(
F̃ i, g

)∥∥
Lq

PROOF. We abbreviate X :=�(F,g).
Consider the deterministic partitions τ (n) = 2−n

N, τ̃ (n) = {0,1} ∪ (2−n
N+ 2−n−1). Let

Kn := sup
j∈N

sup
τ

(n)
j−1≤t≤t ′≤τ

(n)
j

|Xt,t ′ |,

and define K̃n analogously with τ̃ (n) in place of τ (n). Then we have

sup
|t−t ′|≤2−n−1

|Xt,t ′ | ≤Kn + K̃n, sup
|t−t ′|≤1

|Xt,t ′ | ≤K0.

It follows that

sup
|t−t ′|≤2−n−1

∣∣t − t ′
∣∣−γ |Xt,t ′ |� 2nγ

Kn + 2nγ
K̃n.

Therefore,

Hγ
X� max

n∈N 2γ n(Kn + K̃n).

It follows that

∥∥Hγ
X

∥∥q
Lq �

∞∑
n=0

(
2γ n‖Kn‖Lq

)q + ∞∑
n=0

(
2γ n‖K̃n‖Lq

)q
.
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The two sums are similar, so we only consider the first one. Let 1 < r < ∞ be such that
γ + 1/r < α + β . By Theorem 2.9, which passes to the continuous time case, we have

2γ n‖Kn‖Lq ≤ 2γ n
∥∥∥�r

j sup
τ

(n)
j−1≤t≤t ′≤τ

(n)
j

|Xt,t ′ |
∥∥∥
Lq

� 2γ n
imax∑
i=1

∥∥∥�r
k

(
sup

τ
(n)
k−1≤s<t≤τ

(n)
k

∣∣F i

τ
(n)
k−1,s

∣∣ · ∣∣�(
F̃ i , g

)
s,t

∣∣)∥∥∥
q

+ 2γ n
∥∥∥�2r

k sup
τ

(n)
k−1≤s<t≤τ

(n)
k

|Fs,t |
∥∥∥
q1

∥∥�2rSg
τ

(n)
k−1,τ

(n)
k

∥∥
q0

≤ 2γ n
imax∑
i=1

∥∥HβiF i ·Hαi�
(
F̃ i , g

) · �r
k

∣∣τ (n)
k−1 − τ

(n)
k

∣∣αi+βi
∥∥
q

+ 2γ n
∥∥HβF · �2r

k

∣∣τ (n)
k−1 − τ

(n)
k

∣∣β∥∥
q1

∥∥Hα(Sg)�2r
∣∣τ (n)

k−1 − τ
(n)
k

∣∣α∥∥
q0

�
imax∑
i=1

2(γ+1/r−αi−βi)n
∥∥HβiF i ·Hαi�

(
F̃ i , g

)∥∥
q

+ 2(γ+1/r−α−β)n
∥∥HβF

∥∥
q1

∥∥Hα(Sg)
∥∥
q0

.

By the choice of r , this is summable in n. �
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