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Understanding the help and support that is exchanged between family
members of different generations is of increasing importance, with research
questions in sociology and social policy focusing on both predictors of the
levels of help given and received, and on reciprocity between them. We pro-
pose general latent variable models for analysing such data, when helping
tendencies in each direction are measured by multiple binary indicators of
specific types of help. The model combines two continuous latent variables,
which represent the helping tendencies, with two binary latent class variables
which allow for high proportions of responses where no help of any kind
is given or received. This defines a multivariate version of a zero-inflation
model. The main part of the models is estimated using MCMC methods, with
a bespoke data augmentation algorithm. We apply the models to analyse ex-
changes of help between adult individuals and their noncoresident parents,
using survey data from the UK Household Longitudinal Study.

1. Introduction. In this article we propose and apply latent variable models for the joint
distribution of variables within a dyad of two interacting units. This is motivated by re-
search questions in sociology and social policy about exchanges of help and support between
adult individuals and their noncoresident parents. In all societies such intergenerational trans-
fers have major implications for individual, family, and societal wellbeing (Mason and Lee
(2018)). Transfers between adult children and their parents are an important element of inter-
generational linkages and a means of providing support to those in need (Künemund, Motel-
Lingebiel and Kohli (2005)), especially in a context of shrinking social services (Pickard
(2015)). Increases in life expectancy imply an increase in the volume of help needed by older
people with age-related functional limitations. At the same time, there may be an increased
need for assistance in younger age groups, as a result of delayed transitions to adulthood, pre-
carious employment, and increasingly diverse and complex family life courses (Lesthaeghe
(2014), Henretta, Van Voorhis and Soldo (2018)). Analysis of the factors associated with ex-
changes of support between generations is important in order to anticipate which population
subgroups may be at risk from lack of support in the future, either because of an increased
unmet need for help or a reduced capacity to provide help among potential donors.

We consider two broad research questions on such intergenerational support: what charac-
teristics of individuals and their parents are associated with different levels of help given and
received between them, and what is the extent and nature of reciprocity of these exchanges
(i.e., to what extent do children with a high tendency to give help to parents also have a
high or low tendency to receive help). Previous research suggests that reciprocity, either con-
temporaneous or over the life course, is an important motivating factor in intergenerational
exchanges of support (e.g. Grundy (2005); Silverstein et al. (2002)). For example, studies
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that have analysed contemporaneous reciprocity have found a positive association between
support to parents and the receipt of support by their adult children in the U.S. (Cheng et al.
(2015)) and Britain (Grundy (2005); Steele and Grundy (2021)), and studies that have ex-
amined reciprocity across the lifecourse have found that a higher level of parental support
during childhood is associated with an increased propensity to help parents in later life (e.g.,
Silverstein et al. (2002)). Another reason for considering the extent to which child-parent
exchanges are balanced is that being unable to reciprocate support may have negative con-
sequences for the mental health and wellbeing of older people (e.g., Davey and Eggebeen
(1998)).

Research on intergenerational support is framed by theoretical perspectives from sociol-
ogy, social psychology, and economics (see, e.g., the discussions in Silverstein et al. (2002),
Grundy (2005) and Kalmijn (2014), and references therein). A prominent distinction is be-
tween explanations which focus on altruism and ones which focus on the costs and benefits
of giving support, although these motivations do not need to be mutually exclusive. The the-
ories, in turn, inform considerations of possible explanatory variables for levels of support.
Many of them can be seen as instances of two broad kinds of factors: capacity (financial
and time resources) of the provider of help and the needs of the recipient (Fingerman et al.
(2015)). A wide range of such predictors have been examined for exchanges of support be-
tween generations in different contexts (see the studies cited in this section and references
therein).

Our goal is to improve the methodology of analysing these questions. We consider the
case of Britain, using cross-sectional survey data from the family network module of the
UK Household Longitudinal Study (UKHLS). These data are described in Section 2. They
include 16 questions (“items”) about exchanges of help within the dyad defined by a survey
respondent and their noncoresident parent or parents. Eight of the items indicate whether the
respondent gives each of eight specific types of help to the parents (e.g., helping them with
housework), and eight indicate types of help that they may receive from the parents. These
items are regarded as measures of two latent variables, which we interpret as the general
tendencies to give and to receive help. We thus have “doubly multivariate” data, with two sets
of observed binary items measuring two latent variables. The substantive research questions
correspond to questions about the joint distribution of the latent variables, both on their means
conditional on covariates and on the association between the latent variables.

The analysis of this situation should be handled with an appropriate form of latent variable
modelling. Further, the data have two peculiar features which should be allowed for. First,
they display a multivariate form of zero inflation, where the proportion of respondents who
give a zero response to all eight items for a latent variable (i.e., no help of any kind given or
none received) is larger than can be accounted for by basic models. Second, the signal value
of specific types of help may be different for different types of respondents, especially for
men and women (because of gendered patterns of helping) or for people who live at longer
or shorter distances from their parents (because of different practicalities of different kinds
of help). This can be seen as an instance of nonequivalence of measurement in the items.

We propose a general latent variable modelling framework for the analysis of such data.
Its starting point is a conventional model for two continuous latent variables, given covari-
ates, measured by binary items. Nonequivalence of measurement is represented by letting
the measurement component of the model depend on some covariates. Zero inflation is al-
lowed for by supplementing the bivariate continuous latent variable with a bivariate latent
class variable which accounts for the excess of all-zero responses in one or both of the sets of
items. This specification combines and extends several modelling elements and draws on the
corresponding literatures (we discuss this further in Section 3.2, after the models have been
defined in Section 3.1). Beyond the analysis of exchanges of help between generations, the
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models could also be applied to other questions with comparable doubly multivariate data
elsewhere, for instance, studies of family members’ perceptions of relationship quality in
family psychology or of cooperation between coworkers in organisational behaviour.

We contribute to the literature on intergenerational exchanges of support by addressing
two methodological limitations of previous research: the measurement of support given or
received and estimation of reciprocity of exchanges. Most previous studies using data similar
to those collected in UKHLS have reduced the multivariate data on different types of support
in a given direction to a single binary variable, indicating whether any support was given or
received. Another approach has been to analyse the sum score of the items using linear re-
gression (e.g., Cheng et al. (2015)) which assigns equal weight to each item and ignores zero
inflation. It is common to focus on one direction of exchange only, for example just support
given to elderly parents (e.g., Silverstein et al. (2002)) or to analyse receipt and provision of
support separately. The disadvantage of both approaches is that they preclude investigation
of reciprocity of exchanges, the importance of which has been widely acknowledged. Among
the few studies that have investigated reciprocity, one approach has been to treat helping ten-
dencies as categorical, by using first latent class analysis to identify a typology of exchanges
and then modelling class membership using multinomial regression (Hogan, Eggebeen and
Clogg (1993); Chan (2008)). Another has been to treat them asymmetrically, by including
the receipt of support as a predictor of provision of support and vice versa (Grundy (2005);
Cheng et al. (2015)). A recent study by Steele and Grundy (2021) models bidirectional ex-
changes between adult children and their parents jointly, interpreting the residual correlation
as a measure of reciprocity, but it treats support given and received as a bivariate binary
response.

We estimate the models using a two-step approach where the parameters of the measure-
ment model for the items, given the latent variables, are estimated first, and their values
are then held fixed in the second step where the structural model for the latent variables is
estimated. The second step is carried out using Markov chain Monte Carlo (MCMC) estima-
tion. It was implemented using a tailored algorithm written for these models which is made
available as an R package. This substantially speeds up the estimation, compared to imple-
mentation with general-purpose MCMC packages. The algorithm has a convenient data aug-
mentation structure, which alternates between sampling the latent variables given the model
parameters and the observed data, and sampling the parameters given the observed and la-
tent data. These methods of estimation are described in Section 4 with details of the MCMC
algorithm given in the Appendix.

Our analysis of intergenerational exchanges of help is then described in Section 5. The re-
sults suggest that parents and childen with some characteristics and family circumstances that
are likely to be associated with higher levels of capacity do indeed have a greater tendency to
give help, and those with characteristics associated with higher levels of need have a greater
tendency to receive help. Helping tendencies in the two directions are positively correlated,
conditional on the explanatory variables, suggesting a substantial amount of contemporane-
ous reciprocity in helpfulness between the generations.

2. Data on exchanges of support between generations. We use data from the
UK Household Longitudinal Study (UKHLS), also known as “Understanding Society”
(University of Essex et al. (2018); see Knies (2018) for more information on the study).
This is a longitudinal survey of the members of approximately 40,000 households (at Wave 1
of UKHLS) drawn from the residential population living in private households in the United
Kingdom. UKHLS started in 2009, but it also subsumes the smaller British Household Panel
Survey (BHPS) which began in 1991.

Information on exchanges of help with parents living outside a respondent’s household
was collected in the Family Network module which was administered in 2001, 06, 11/12,
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13/14, and 15/16 (BHSP Waves 11 and 16 and UKHLS Waves 3, 5, and 7). We carry out
cross-sectional analysis which uses only the last of these, Wave 7 (with the exception that the
development and estimation of the measurement models was done using pooled data across
all five waves; this is explained separately in Section 5.1). In this module, respondents with
at least one noncoresident parent were asked whether they “nowadays” gave “regularly or
frequently” the following eight types of help to their parent(s), each with a yes–no response:
“giving them lifts in your car (if you have one)” [referred to as lifts below], “shopping for
them” (shopping), “providing or cooking meals” (meals), “helping with basic personal needs
like dressing, eating, or bathing” (personal care), “washing, ironing, or cleaning” (house-
work), “dealing with personal affairs, e.g., paying bills, writing letters” (personal affairs),
“decorating, gardening, or house repairs’ (diy), and “financial help” (financial). The same
questions were asked about receipt of support from the parents but with the personal care
item replaced by “looking after your children” (childcare).

Although respondents were asked to report on giving parents a lift in their car if they
had one, the recorded variable had only “yes” or “no” responses. We, therefore, used other
survey information to set this item to missing for respondents who did not have access to
a car. Similarly, the childcare item was coded as missing for respondents who did not have
dependent children aged 16 or under. For the item on receiving lifts from parents, we do not
have information about whether the parents have access to a car, so responses of “no” to this
item will include also cases where they do not.

A set of covariates (explanatory variables) was considered to capture factors that may be
associated with help given or received between individuals and their parents. They are gen-
der, age, number of siblings, partnership status, and employment status of the respondent, the
presence and age of children in their family, their household income, age of the oldest non-
coresident parent, whether any parent lived alone, and the travel time between the respondent
and the parent living closest.

These family network data have several limitations which are shared by other large-scale
studies of intergenerational exchanges. First, for practical reasons, data on exchanges with
noncoresident relatives were collected only from the perspective of the survey respondent, in
our case the child. As noted by Chan and Ermisch (2015), studies with matched pair data,
which are collected from both noncoresident parents and children in the same family, are rare
and tend to be for small selective samples. For UKHLS this means that we have rich data on
children but much less information on their parents. Child responses may also suffer from
reporting bias, for example, overreporting of help given and underreporting of help received.
Second, respondents were asked to report on exchanges with both parents collectively. So it
is not possible to distinguish between exchanges with the mother and with the father, even
when they are living apart. Where a respondent had both biological and step/adoptive parents
alive, the recorded responses refer to the ones that the respondent had most contact with. The
data also include some respondents who are siblings to each other and thus refer to the same
parents. This can happen when respondents who are currently adults in their own households
were originally sampled as children in the same household. The number of such cases is small
in our analysis data (635 respondents have a sibling in the dataset), and we do not include a
further adjustment for dependencies among them. The number of siblings that a respondent
has is included in the analysis as a covariate for every respondent.

The sample was first restricted to the 19,052 respondents in UKHLS Wave 7 who were
aged 16 or over and who had at least one noncoresident parent but no coresident parent. Re-
spondents living with a parent were mainly younger individuals who had not left the parental
home; they were excluded because their exchanges with their noncoresident parent are likely
to differ from those of respondents who do not live with either parent. Also excluded were
respondents whose closest parent lived or worked abroad (n = 2590) and those with missing
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TABLE 1
Percentage of respondents giving help to their noncoresident parents and receiving help from the parents, by item

Item Help given to parents Help received from parents

Lifts in car (lifts) 29.1 11.2
Shopping (shopping) 20.8 8.0
Providing or cooking meals (meals) 12.3 14.0
Basic personal needs (personal care) 3.6 –
Looking after children (childcare) – 40.3
Washing, ironing or clearning (housework) 7.7 5.6
Personal affairs (personal affairs) 16.9 2.4
Decorating, gardening or house repairs (diy) 17.9 8.3
Financial help (financial) 6.3 13.1

At least one of the eight kinds of help: 43.3 40.0

Data from UKHLS, Wave 7. Valid percentages, excluding cases with missing data. The sample sizes are
n =14,736 for items on help to parents and n =14,738 for help from parents. Of these, the lifts item is miss-
ing for the 19.0% of respondents who have no access to a car, and childcare is missing for the 52.3% who have
no coresident dependent children.

data on any covariate or on all of the help items (n = 1719). This gives our main analysis
sample of 14,743 respondents. Most of the omissions from missing data (1226 cases) were
due to the indicator of whether either parent lived alone, while nonresponse on the other
covariates and the help items was much rarer.

The percentages of respondents in the analysis sample who reported giving and receiving
each type of help are shown in Table 1 and descriptive statistics and coding for the covariates
in Table 2. Less than half of the respondents report giving (43.3%) or receiving (40.0%) even
one of these kinds of help. This large proportion of all-No responses is a feature that we will
want allow for in modelling these data. The specification and estimation of the models is
described in Sections 3 and 4. We will then return to the analysis of the data in Section 5.

3. Latent variable models for dyadic data. Here, we define, in Section 3.1, the latent
variable models that we propose for analysing dyadic data like those introduced in Section 2.
In Section 3.2 we discuss how different elements of this specification draw on previous liter-
ature. For ease of exposition the dyads and variables are mostly introduced with reference to
their meaning in the application to intergenerational support, but we note that the models are
also applicable to any data with a similar doubly multivariate structure.

3.1. Model specification. Consider data on variables (Xi ,YGi,YRi) for a sample of n

dyads i = 1, . . . , n, where Xi is a q × 1 vector of covariates and YGi = (YG1i , . . . , YGpGi)
′

and YRi = (YR1i , . . . , YRpRi)
′ are two vectors of binary indicator variables (items). In our

application a dyad is composed of an individual (survey respondent) and their noncoresident
parents, and the items are the questions on the pG = pR = 8 specific types of help the respon-
dent gives to the parents (YGi) or receives from the parents (YRi). Each item is coded 1 if
that kind of help is given or received, and 0 if it is not. We treat YGi as multiple indicators of
a latent variable ηGi , which describes an individual’s tendency to give help to their parents,
and YRi as indicators of another latent variable ηRi , which describes the parents’ tendency
to give help to the individual. We take ηGi and ηRi to be continuous variables. The goal is to
estimate their joint distribution and how it depends on the covariates.

Our data contain a substantial number of respondents for whom all of the items in YGi or
YRi are 0 (see Table 1). The frequencies of such all-zero response patterns are higher than
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TABLE 2
Descriptive statistics for the covariates used in the analysis (n = 14,743)

Variable n Percent

Respondent (child) characteristics
Age (years) Mean = 42.7 SD = 11.4

Gender
Female 8489 57.6
Male 6254 42.4

Number of siblings respondent has
0 1383 9.4
1–2 9096 61.7
3 or more 4264 28.9

Partnership status
Partnered 11,255 76.3
Single 3488 23.7

Employment status
Employed 11,423 77.4
Unemployed 583 4.0
Economically inactive 2737 18.6

Annual household income (pounds, log-transformed)∗ Mean = 9.9 SD = 0.7

Age of youngest child
No children 5982 40.6
0–1 years 1264 8.6
2–4 years 1681 11.4
5–10 years 2278 15.5
11–16 years 1707 11.6
>16 years 1831 12.4

Parent characteristics
Age of oldest parent (years) Mean = 71.1 SD = 11.3

At least one parent lives alone
Yes 5586 37.9
No 9157 62.1

Child-parent characteristics
Travel time to nearest parent

One hour or less 10,675 72.4
More than one hour 4068 27.6

∗Equivalized and adjusted for inflation using the Consumer Price Index for the year of interview within the two-
year survey field period.

what would be expected under standard models with continuous latent variables. To allow
for this, we introduce for each of the two sets of items a second, binary latent variable. It
defines two latent classes, denoted by 0 and 1, where class 0 accounts for the excess zeros.
For help to parents, this latent class variable is denoted ξGi . The measurement model for how
YGi measures the latent variables is then specified by

p(YGi = 0|ξGi = 0,Xi) = 1 and(1)

p(YGi |ξGi = 1, ηGi,Xi;φG) ≡ p1(YGi |ηGi,Xi;φG) = ∏
j

p1(YGji |ηGi,Zi;φG),(2)

where p(·|·) denotes a conditional distribution and p1(·|·) that a distribution is also condi-
tional on ξGi = 1, Zi are a subset of Xi , and φG are parameters. When ξGi = 0, a respondent
is thus certain to answer “No” to all the items in YGi . When ξGi = 1, the probabilities of
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the responses depend on the latent helping tendency ηGi and covariates Zi , and the different
items YGji are taken to be conditionally independent of each other; this is a conventional
latent variable model for the binary items, with the extension that the measurement may be
nonequivalent with respect to some covariates Zi . Together, (1) and (2) define a zero-inflation
model where the class ξGi = 0 allows for that part of the probabilities of YGi = 0 which are
not accounted for by the distribution of ηGi and the measurement model, given ηGi .

The measurement model for YRi , given (ξRi, ηRi,Zi), is defined similarly, with parame-
ters φR . We assume that YGi do not depend on (ξRi, ηRi), YRi do not depend on (ξGi, ηGi),
and YGi and YRi are conditionally independent of each other, and define φ = (φG,φR).
Some of the items in YGi and/or YRi may be missing, in which case the products over j in
(2) and the corresponding model for YRi are over only those items which are observed for
that respondent. This implies that these missing data are assumed to be missing at random.
We assume here that there are no missing data in the covariates Xi .

The model for the latent variables, given the explanatory variables, is specified by the
distributions p(ξGi = j, ξRi = k|Xi;ψξ ) ≡ πjk(Xi;ψξ ) and p(ηGi, ηRi |Xi;ψη), where ψ =
(ψξ ,ψη) are parameters, and (ηGi, ηRi) and (ξGi, ξRi) are taken to be independent of each
other, given Xi . We refer to this as the structural model for the latent variables. It will be the
focus of interest for the substantive research questions.

Let Y = (YG,YR) denote all of the observed data on Yi = (YGi,YRi) and X all the Xi .
Define Gi = 1 if YGi �= 0 and Gi = 0 if YGi = 0, and define Ri similarly for YRi . If we take
the observations i to be independent, the log-likelihood for the model is

logp(Y|X;φ,ψ)

=
n∑

i=1

log
[
π11(Xi;ψξ )

∫ ∫
p1(YGi |ηGi,Zi;φG)p1(YRi |ηRi,Zi;φR)

× p(ηGi, ηRi |Xi;ψη) dηGi dηRi

+ (1 − Ri)π10(Xi;ψξ )

∫
p1(YGi |ηGi,Zi;φG)p(ηGi |Xi;ψη) dηGi

+ (1 − Gi)π01(Xi;ψξ )

∫
p1(YRi |ηRi,Zi;φR)p(ηRi |Xi;ψη) dηRi

+ (1 − Gi)(1 − Ri)π00(Xi;ψξ )

]
.(3)

We further specify the structural model for each i = 1, . . . , n as

p(ηGi, ηRi |Xi;ψη) ∼ N

([
β ′

GXi

β ′
RXi

]
,

[
σ 2

G

ρGRσGσR σ 2
R

])
and(4)

log
[
πjk(Xi;ψξ )

π00(Xi;ψξ )

]
= γ ′

jkXi(5)

for j, k = 0,1 with γ 00 = 0, that is, as a bivariate normal linear model for (ηGi, ηRi) and
a multinomial logistic model for (ξGi, ξRi). Thus, here ψη includes (βG,βR,σ 2

G,σ 2
R,ρGR)

in (4), and ψξ includes (γ 01, γ 10, γ 11) in (5). Finally, the measurement models, given the
continuous latent variables, are specified as

(6) logit
[
p1(YGji = 1|ηGi,Zi;φG)

] = τGj + δ′
Gj Zi + (

λGj + ζ ′
Gj Zi

)
ηGi

for j = 1, . . . , pG so that φG consists of all the τ , δ, λ and ζ parameters for YGi , and the
models for the items in YRi are specified similarly, with parameters φR . The baseline pa-
rameters of these models are the intercepts (the τ s) and the loadings of the latent η variables
(the λs). These are then further modified by the covariates if any of the δ or ζ parameters
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are nonzero, in which case the measurement model for that item is nonequivalent with re-
spect to the corresponding variables in Zi . For simplicity, we consider only models where
any nonequivalence in an item affects both the intercept and the loading so that for that item
the elements of δ and ζ corresponding to the same variable in Zi are either both zero or both
nonzero. The motivation and choice of Zi in our application are discussed in Section 5.1.

3.2. Previous literature on the elements of the models. The model in Section 3.1 com-
bines several existing modelling elements and draws on the corresponding literatures. The
starting point is the conventional general framework for latent variable modelling with co-
variates (see, e.g., Skrondal and Rabe-Hesketh (2004) and Bartholomew, Knott and Mous-
taki (2011)). If (ηG,ηR) were the only latent variables, this would be a standard model for
the joint distribution of two continuous latent variables, given covariates X. When, as here,
all the measures Y of the latent variables are binary and the measurement models for them
are logistic models, this is a common instance of what is known, especially in psychometrics
and educational testing, as item response theory (IRT) modelling (see, e.g., de Ayala (2009)
and van der Linden (2016)).

Including covariates Z in a measurement model, as we do in (6), allows the measurement of
a latent variable to be nonequivalent with respect to these covariates. This is also a standard
approach in applications where such nonequivalence may be of concern, such as in cross-
national survey research and other “multigroup” situations, and in many applications of IRT,
where nonequivalence of measurement is commonly known as differential item functioning
(DIF). For overviews of these ideas and methods, see Kankaraš, Vermunt and Moors (2011)
and Millsap (2011).

The least familiar element of the model is the way we allow for the large number of all-zero
responses by adding the latent class variables (ξR, ξR). To motivate this, consider first models
for a single nonnegative variable Y with excess zeros, meaning that the observed probability
P(Y = 0) is greater than can be expected under an assumed distribution p(Y ) for Y . There
are, broadly, three ways of representing this situation, depending on how many of the zero
values are taken to be accounted for by p(Y ): (1) all of them—censoring models where it
is assumed that Y could actually be negative but that all such values are recorded as 0 so
that P(Y = 0) = p(Y ≤ 0), (2) none of them—hurdle models where we model separately
P(Y = 0) and p(Y |Y > 0), or (3) some of them—zero-inflated models where P(Y = 0) =
π + (1 − π)p(Y = 0) with an additional probability parameter π for the proportion of zeros
which is not accounted for by p(Y ) (see, e.g., Tobin (1958), Cragg (1971), Mullahy (1986),
Lambert (1992), and Min and Agresti (2005) for introductions and comparisons of these
possibilities).

We are interested in latent-variable models for multivariate items. Denote for the moment
a generic continuous latent variable by η and its indicators by Y, omitting covariates, so that
the model is specified by p(Y|η)p(η). Suppose that the observed proportion of Y = 0 is so
high that we want to allow for it specially. Here, the basic model for p(Y|η) is, in effect,
already a censoring model in that estimates of its parameters will be determined so that they
accommodate these zeros. This, however, can distort the parameters in a way which leaves
the model as a whole badly specified to account for the nonzero patterns of responses (see
Wall, Park and Moustaki (2015) for a discussion of the biases which can arise when a latent-
variable model is poorly specified in this way). A hurdle model is also unappealing here,
because it would involve conditioning on the observed items Y. This leads us to consider
zero-inflated models, extended to multivariate Y.

These models can be seen as an instance of finite mixture models. The general form of
them is here

∑
g pg(Y|η)pg(η)πg , where πg = P(ξ = g) are probabilities of a latent-class

variable ξ . One type of such models is obtained when pg(Y|η) = p(Y|η), that is, when the
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measurement model is the same in every class g. Then, the model becomes p(Y|η)p∗(η),
where p∗(η) = ∑

g pg(η)πg is a finite mixture distribution. This provides a way of speci-
fying the basic latent variable model with a more flexible distribution for η than is possible
with a single parametric (e.g., normal) distribution. Mixture modelling with this purpose is
discussed by Wall, Guo and Amemiya (2012) and Wall, Park and Moustaki (2015). Here, in
contrast, we particularly need models where the measurement models do depend on the class.
This represents a situation where the latent classes correspond to individuals with different
response styles, that is, different relationships between the latent variable η and its measures
Y. This idea has been used in various contexts of measurement, especially in applications of
psychological and educational testing; see Wall, Park and Moustaki (2015), Huang (2016),
and references therein.

A zero-inflation model for multivariate Y involves two response styles: one where Y = 0
always, and one where Y follows an IRT model given η. This has been proposed for models
where the items are binary (Muthén and Asparouhov (2006); Finkelman et al. (2011); Wall,
Park and Moustaki (2015)), ordinal (Magnus and Liu (2017)), or count variables (Magnus
and Thissen (2017)), sometimes with extensions such as separate classes for all-0 and all-1
response patterns or more than one class for general response patterns. Our model is similar
to the previous ones for binary items (different versions of them use ostensibly different
specifications for η in the all-zero class for ξ , but these are all equivalent). To accommodate
the dyadic data, however, we have extended them to include two latent variables (ηG and ηR)
with separate zero-inflation classes for each of them.

4. Estimation of the models.

4.1. Two-step estimation. We employ a two-step approach to estimate these models.
What this means is that the measurement model is first selected and estimated separately,
and its parameters φ are then fixed at their estimated values for all subsequent exploration
and estimation of the structural model. These two steps for our models are described sepa-
rately in Sections 4.2 and 4.3 below.

This idea of two-step estimation of latent variable models goes back to Burt (1976, 1973),
and the implementation of it has been developed more recently by Xue and Bandeen-Roche
(2002) and Bakk and Kuha (2018). Our motivation for using it here is twofold. First, it sub-
stantially reduces the computational demands compared to the “one-step” method of esti-
mating all parts of the models together. This is beneficial here, where the estimation of even
the structural model alone is demanding. Second, a conceptual advantage of the two-step ap-
proach is that fixing the measurement models in the first step also fixes the exact operational
definition of the latent variables. This then remains fixed in subsequent analyses and do not
change when the specification of the structural model is changed, for example when covari-
ates are added or removed. In our work this extends also to other analyses of intergenerational
exchanges of family support outside this paper, where we also want to keep the definitions of
the latent variables unchanged in this sense.

4.2. Estimation of the measurement models. In the first step of the estimation, the mea-
surement models for YG and YR are estimated separately and conditional on Z alone. This
means that, for YG, we consider the log-likelihood

(7)

logp
(
YG|Z;φG,ψ∗

G

)
=

n∑
i=1

log
[
πG

(
Zi;ψ∗

Gξ

) ∫
p1(YGi |ηGi,Zi;φG)p

(
ηGi |Zi;ψ∗

Gη

)
dηGi

+ (1 − Gi)
(
1 − πG

(
Zi;ψ∗

Gξ

))]
,
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where p1(YGi |ηGi,Zi;φG) is as before. The structural model here consists of πG(Zi;
ψ∗

Gξ ) = P(ξi = 1|Zi;ψ∗
Gξ ) and p(ηGi |Zi;ψ∗

Gη), specified as a binary logistic and a nor-
mal linear model, and ψ∗

G = (ψ∗
Gξ ,ψ

∗
Gη) are the parameters of these models. Here, (7) is

obtained by integrating (3) over p(YR,X∗|Z), where X∗ denotes the variables in X but not
in Z. This is actually only approximately true, because if (4)–(5) holds, given X, then the
structural models, given Z, only are generally not exactly of binary logistic and normal linear
form. We ignore this small approximation and maximize (7) to estimate φG. This step can
be carried out using standard latent variable modelling software such as Mplus. The param-
eters φR are estimated similarly from a model like (7) for YR . Denote these estimates by
φ̃ = (φ̃G, φ̃R). The estimates of ψ∗

G and ψ∗
R from this step are discarded.

4.3. Estimation of the structural models. In the second step of estimation, the structural
models are then estimated, treating the estimated measurement parameters φ̃ from the first
step as known numbers. In other words, the log-likelihood for the second step is (3) but in the
form logp(Y|X; φ̃,ψ) where only ψ are unknown parameters. We omit below the fixed φ̃
from the notation for simplicity. We further write ζ = (ξ ,η), where ξ denotes all the values
of the latent (ξGi, ξRi) for the dyads i in the sample and η all the values of (ηGi, ηRi).

In our analyses this step was carried out in the Bayesian framework and using MCMC
methods of estimation. The estimation algorithm has a data augmentation structure which
alternates between sampling the latent variables and sampling the model parameters:

• Imputation step: Given the observed data (Y,X) and the most recently sampled value of
the parameters ψ , sample a value for the latent variables ζ from the conditional distribution

p(ζ |Y,X,ψ) ∝ p(Y|ζ ,X)p(ζ |X;ψ).

This is further split into sampling ξ from p(ξ |η,Y,X,ψ), using η from the previous iter-
ation, and then η from p(η|ξ ,Y,X,ψ).

• Posterior step: Given the observed data (Y,X) and the most recently sampled value of the
latent variables ζ , sample a value for the parameters ψ from the conditional distribution

p(ψ |Y,X, ζ ) = p(ψ |X, ζ ) ∝ p(ζ |X;ψ)p(ψ),

where p(ψ) = p(ψξ )p(ψη) is the prior distribution of the parameters, taking ψξ and ψη

to be independent a priori. The conditional distribution then further splits into

p(ψ |X, ζ ) = p(ψξ |X, ξ)p(ψη|X,η) ∝ [
p(ξ |X;ψξ )p(ψξ )

][
p(η|X;ψη)p(ψη)

]
which can be sampled separately and in parallel for ψξ and ψη. This does not depend
on the measurement items Y, because they are not in the “Markov blanket” of ψ (in the
directed acyclic graph for the model, Y are not parents, children or co-parents of children
of ψ ). The posterior step thus involves sampling the parameters of two regression models,
given X, a multinomial logistic model for ξ and a bivariate linear model for η, exactly as if
from their posterior distributions if the most recently imputed values of ξ and η were real
observed data.

We note that, since the measurement models are fixed, the structural model is straight-
forwardly identified here. In particular, “label switching,” where the numbering of the latent
classes changes between MCMC iterations, cannot occur.

The details of these steps are described in the Appendix. We wrote bespoke code for them,
implemented in an R package. Because this is designed specifically for these models, it can
achieve substantially higher speeds of estimation than general MCMC packages. The sam-
pling procedure can be tailored to the distributions that are needed here, for some of them
sampling from standard distributions and for others using adaptive rejection sampling which
is enabled by log-concavity of the target distributions. Parts of the sampling within each
MCMC iteration can also be implemented in parallel and using multiple processors.
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5. Analysis of intergenerational exchanges of help.

5.1. Measurement models. We use measurement models which are nonequivalent with
respect to two covariates Z: the gender of the respondent and the distance between where the
respondent and their parents live. It is substantively to be expected, and empirically confirmed
for these data, that the patterns of what kinds of help a person gives and receives may vary
by these covariates. Some types of help are strongly gendered among the generations consid-
ered here, with men and women expressing their helpfulness in different ways and receiving
different kinds of help from their parents. Similarly, for obvious practical reasons a longer
distance between the parties may affect some types of help more than others. This being the
case, the expected levels and patterns of different kinds of help may be different between men
and women and between respondents at different distances from their parents, even for indi-
viduals who actually have a similar latent tendency to give or receive help. The nonequivalent
measurement models allow for this possibility. We thus define Zi = (Zgi,Zdi), where Zgi is
an indicator variable for a female respondent and Zdi an indicator for a respondent who lives
at a distance of an hour or more travel time from their parents.

The measurement models were estimated using more of the UKHLS data than are used for
the second step of estimation, discussed in Section 5.2 below. This was because these models
were intended for use in multiple analyses of the data from the family networks module and
were developed prior to the analysis described here. The models were first explored for data
from the 2001 Wave 11 of BHPS, to identify items for which nonequivalence with respect to
gender and/or distance was substantial enough that it should be allowed for. This selection
was done using a combination of likelihood ratio tests and the AIC and BIC statistics. The
selected models were then reestimated, using pooled data from all the five available waves
of UKHLS/BHPS, to maximize the amount of data which contributed to these estimates.
(Longitudinal observations for a respondent in these pooled data are not independent; ignor-
ing this, however, affects only the standard errors of the parameter estimates which are not
needed for what follows. We have also repeated the estimation of these measurement models
using only the data for the main analysis sample from Wave 7 of UKHLS; this would give
very similar estimated parameters of the measurement model.) The models were estimated
using maximum likelihood estimation with the Mplus 6.12 software (Muthén and Muthén
(2010)). More information about the estimated measurement models is given in the online
Supplementary Material (Kuha, Zhang and Steele (2023)).

The selected measurement models include some nonequivalence in most items, especially
with respect to distance. Of the items on help to parents (YG), financial, lifts, and diy are
nonequivalent with respect to gender and all but personal affairs, personal care, and financial
help with respect to distance. Of the items on help from parents (YR), financial and meals are
nonequivalent with respect to gender and all but personal affairs and financial with respect to
distance. The intercept and loading parameters of personal care, which was fully equivalent
for both ηG and ηR , were fixed at 0 and 1, respectively, in both measurement models to fix
the measurement scales of the two latent variables. For each of ηG and ηR , at least two items
which measure them are equivalent with respect to gender and at least two with respect to
distance. This means that the coefficients of gender and distance in the structural models for
(ηG,ηR) are also identified, separately from the measurement models. However, information
that is available for estimating these associations is clearly reduced, especially for distance for
which the nonequivalent measurement models account for much of the observed association
between distance and the items YG and YR . The associations between other variables in X
and (ηG,ηR) in the structural model are then conditional on gender and distance in this sense,
that is, they refer to the latent variables as they are defined by these measurement models with
this adjustment for nonequivalence.
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FIG. 1. Item response curves for the item diy (decorating, gardening, or house repairs) for help that respondents
give to their parents, for probability of giving help conditional on the latent variable ηG (tendency to give help),
separately for the combinations of gender of the respondent and distance between respondent and their parents.
The dotted vertical line is approximate mean of ηG.

An illustrative example of the estimated measurement models is shown in Figure 1 for the
diy item (decorating, gardening, or house repairs) on help given to the parents. The model for
this item is nonequivalent with respect to both covariates. The plot shows the estimated prob-
abilities of giving such help as a function of the latent tendency of helpfulness ηG, separately
for each combination of gender and distance. Considering the genders, it can be seen that, at
the same level of this tendency, men are more likely to give this kind of help. The nonequiv-
alence with respect to distance shows most clearly in the loading (or “discrimination”) pa-
rameters. These are larger—and the probability curves thus steeper—when a respondent lives
further away from their parents so that giving such help is a more discriminating signal of
helpfulness for such respondents than for those who live near their parents.

Another implication of nonequivalent measurement models, which is less often pointed
out, is that they imply that the marginal associations between different items will also depend
on covariates, here gender and distance. For example, when the measurement loadings are
stronger at a longer distance, as they are for diy and several other items, the associations
between the items are also stronger, both within and between items in YG and YR . This
could arise, for instance, if children who live further from their parents tend to give multiple
types of help on the occasions when they visit the parents.

5.2. Models for help between respondents and their parents. Fixing the parameters of the
measurement models at their estimated values from Section 5.1, we then estimated the struc-
tural models which are our focus of interest. The MCMC algorithm, described in Section 4.3
and the Appendix, was run for two MCMC chains of 110,000 iterations each, from different
starting values. Discarding the first 10,000 iterations of each, conventional convergence diag-
nostics indicated that the chains had converged. The two chains were then combined, so the
estimates are based on 200,000 draws from the posterior distributions of the parameters.
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TABLE 3
Estimated parameters of the linear models for the tendency to give help to (ηG) and to receive help from (ηR )

individuals’ noncoresident parents, from the estimated model for data from Wave 7 of the UK Household
Longitudinal Study described in Section 5.2. The estimates are posterior means from MCMC samples (with

posterior standard deviations in parentheses)

Help to parents Help from parents

Estimate (s.d.) Estimate (s.d.)

Coefficients of explanatory variables (β̂G and β̂R):

Intercept −1.69∗∗∗ (0.34) −3.37∗∗∗ (0.37)

Respondent (child) characteristics
Age (×10 years) 0.04 (0.04) −0.55∗∗∗ (0.06)

Gender
Female (vs. Male) 0.86∗∗∗ (0.05) 0.73∗∗∗ (0.06)

Number of siblings respondent has (vs. 0)
1–2 −0.18∗∗ (0.07) −0.16 (0.10)
3 or more 0.16∗∗ (0.08) −0.48∗∗∗ (0.11)

Partnership status
Partnered (vs. Single) −0.19∗∗∗ (0.06) −0.67∗∗∗ (0.07)

Employment status (vs. Employed)
Unemployed 0.25∗∗ (0.12) 0.45∗∗∗ (0.14)
Economically inactive 0.37∗∗∗ (0.06) 0.25∗∗∗ (0.08)

Household income (log-transformed) −0.08∗∗ (0.03) −0.08∗∗ (0.04)

Age of youngest child in the respondent’s own household (vs. 0–1 years):
No children 0.20∗ (0.10) 0.18∗ (0.10)
0–1 years 0 0
2–4 years −0.05 (0.11) −0.00 (0.10)
5–10 years 0.19∗ (0.11) 0.04 (0.10)
11–16 years 0.13 (0.11) 0.09 (0.13)
> 16 years 0.15 (0.12) −0.13 (0.15)

Parent characteristics
Age of oldest parent (× 10 years) 0.34∗∗∗ (0.04) 0.05 (0.05)

At least one parent lives alone (vs. No) 0.55∗∗∗ (0.05) −0.31∗∗∗ (0.06)

Child-parent characteristics
Travel time to nearest parent

More than one hour (vs. one hour or less) −1.01∗∗∗ (0.08) −0.46∗∗∗ (0.08)

Residual variances ( σ̂ 2
G and σ̂ 2

R ): 2.08∗∗∗ (0.08) 2.45∗∗∗ (0.11)
Residual correlation (ρ̂GR): 0.51∗∗∗ (0.02)

The posterior credible interval excludes zero at level 90% (*), 95% (**) or 99% (***).

The estimated parameters of the bivariate linear model (4) for the continuous latent vari-
ables (ηG,ηR) are shown in Table 3. The coefficients of the multinomial logistic model (5)
for the categorical latent variables (ξG, ξR) are less convenient for interpretation, because
they express comparisons of the probabilities in the joint distribution of the variables, rel-
ative to (ξG, ξR) = (0,0) (these coefficients are given in the Supplementary Material). In-
stead, in Table 4 we summarise this model with a focus on the marginal distributions of
ξG and ξR , using comparisons of fitted probabilities. We first calculated the probabilities
p(ξG = j, ξR = k|Xi;ψξ ) for j, k = 0,1, given selected values of Xi , for each of the
n = 14,743 respondents i and for each of the MCMC draws of ψξ . Table 4 shows these
fitted probabilities, averaged over respondents and parameter draws. It also shows the odds
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TABLE 4
Fitted probabilities of the zero-inflation latent classes (ξG, ξR), from the estimated model described in

Section 5.2, averaged over parameter values in MCMC samples and over covariate values Xi in the sample of
dyads i of a respondent and their parent(s), and odds ratios (OR) calculated from these averages. On the first
row the values of Xi are all as in the observed data, while on the other rows one covariate is set to the same

value for every dyad as indicated, while the rest keep their sample values. The last six columns show the average
marginal probabilities of classes ξG = 1 and ξR = 1 (those who may give or receive help), their differences
between different covariate settings, and standard deviations of these differences across the MCMC samples

Marginal probabilities of helper classes
Covariate
setting

p(ξG = j, ξR = k) [with difference (and its SD)]

(0,0) (0,1) (1,0) (1,1) OR p(ξG = 1) p(ξR = 1)

Sample 0.17 0.10 0.14 0.59 7.4 0.73 0.68

Respondent (child) characteristics
Age

35 years 0.13 0.11 0.09 0.67 8.9 0.76 0.78
45 years 0.22 0.09 0.12 0.56 11.0 0.69 −0.07∗∗∗ (0.01) 0.66 −0.12∗∗∗ (0.02)

Gender
Male 0.20 0.06 0.13 0.61 14.2 0.74 0.67
Female 0.16 0.12 0.15 0.57 5.0 0.72 −0.02 (0.02) 0.69 +0.02 (0.02)

Number of siblings respondent has
0 0.13 0.11 0.16 0.61 4.6 0.76 0.71
1–2 0.16 0.11 0.13 0.60 6.4 0.73 −0.03 (0.02) 0.71 −0.00 (0.02)
3 or more 0.22 0.06 0.16 0.56 13.2 0.72 −0.04∗ (0.03) 0.62 −0.10∗∗∗ (0.03)

Partnership status
Single 0.15 0.12 0.09 0.64 8.6 0.73 0.76
Partnered 0.18 0.09 0.16 0.57 7.2 0.73 −0.00 (0.02) 0.66 −0.10∗∗∗ (0.02)

Employment status
Employed 0.16 0.10 0.13 0.60 7.3 0.74 0.70
Unemployed 0.21 0.08 0.18 0.54 8.1 0.72 −0.02 (0.04) 0.61 −0.09∗∗ (0.04)
Inactive 0.22 0.09 0.16 0.52 8.2 0.69 −0.05 (0.02) 0.61 −0.09∗∗∗ (0.02)

Household income
25th percentile 0.17 0.08 0.14 0.60 8.8 0.74 0.69
75th percentile 0.18 0.11 0.14 0.57 6.2 0.71 −0.03∗∗∗ (0.01) 0.68 −0.01 (0.01)

Age of youngest child in the respondent’s own household
No children 0.21 0.06 0.14 0.59 14.0 0.73 +0.00 (0.03) 0.65 −0.13∗∗∗ (0.04)
0–1 years 0.12 0.15 0.09 0.64 5.7 0.73 0.79
2–4 years 0.11 0.14 0.10 0.66 5.3 0.75 +0.02 (0.04) 0.80 +0.01 (0.05)
5–10 years 0.15 0.15 0.12 0.59 4.9 0.70 −0.03 (0.03) 0.74 −0.05 (0.04)
11–16 years 0.22 0.09 0.20 0.49 60.5 0.69 −0.04 (0.04) 0.58 −0.21∗∗∗ (0.04)
>16 years 0.18 0.07 0.14 0.61 11.2 0.74 +0.01 (0.04) 0.68 −0.11∗∗ (0.05)

Parent characteristics
Age of oldest parent

70 years 0.22 0.10 0.07 0.61 19.3 0.68 0.71
80 years 0.13 0.11 0.16 0.60 4.3 0.76 +0.09∗∗∗ (0.01) 0.71 −0.00 (0.01)

At least one parent lives alone
No 0.20 0.12 0.12 0.56 7.6 0.68 0.69
Yes 0.14 0.05 0.17 0.64 11.7 0.81 +0.13∗∗∗ (0.02) 0.69 +0.00 (0.02)

Child–parent characteristics
Travel time to nearest parent

One hour or less 0.15 0.12 0.16 0.57 4.3 0.73 0.69
More than one hour 0.24 0.04 0.09 0.63 45.2 0.72 −0.02 (0.03) 0.67 −0.02 (0.03)

The posterior credible interval excludes zero at level 90% (*), 95% (**), or 99% (***).
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ratios between ξG and ξR , calculated from these averages, and the average marginal proba-
bilities p(ξG = 1) and p(ξR = 1) that a respondent belongs to the class 1 where they may
give and receive help, respectively. Different choices are considered for the n values of Xi . In
the first row of the table, these are the actual covariate values in the observed sample. On the
other rows, one covariate in turn is fixed at a single value for every respondent, while the rest
are left at their sample values. For example, the second row of the table shows the results for
a hypothetical sample where every respondent is aged 35. For cases with different fixed val-
ues of the same covariate, we also show the differences of the marginal probabilities between
them and posterior standard deviations of these differences over the parameter draws.

As discussed in Section 3, we interpret (ηG,ηR) as continuous latent tendencies to give
and to receive help. Although ξG and of ξR were introduced primarily to account for zero
inflation, on the face of it they can also be interpreted in terms of binary helping tenden-
cies, with class 0 of each being the class of firm “nongivers” or “non-receivers” of help. In
this sense we can interpret both higher conditional means of ηG and ηR , and higher condi-
tional probabilities of class 1 of ξG and of ξR , as indications of higher levels of helpfulness
of the respondent to the parents or vice versa; here, we refer to both of these as “positive
associations” between a covariate and helpfulness. We note first that the average marginal
probability of class 0 is here 0.27 for ξG and 0.32 for ξR . Each of these accounts for about
half of the proportions of all-zero responses to the corresponding items (which were 0.57 and
0.60, respectively, as shown in Table 1).

Considering first the models for help given by respondents to the parents, covariates which
are strongly and positively associated with it in the linear model for ηG are higher age of the
oldest parent, at least one parent living alone, the respondent having no siblings or three or
more siblings, lower household income of the respondent, and the respondent being single
or not employed. Respondents who have no young children at home (i.e., have no children,
or only older children) also tend to help more, although this association is less clear. In the
model for ξG, significant positive associations are also found for age of oldest parent, a parent
living alone and lower household income, and additionally for younger age of the respondent.
Considering then help received from parents, characteristics which are positively associated
with it in the model for ηR are the respondent having a low household income, no siblings or
no children at home, the respondent being younger, single or not employed, and the parents
not living alone. Similar associations are seen in the model for ξR for younger, less wealthy,
and single respondents, and in addition, there is a negative association between help from
parents and the respondent having only older children at home.

For help received from parents, associations with ηR and ξR are in different directions for
employment status and for having no children at home. Respondents who are unemployed
or economically inactive, rather than employed, are more likely to be in the no-help-received
class ξR = 0, but, if they are not in this class, the level of help they do receive (ηR) tends to
be higher. Similarly, respondents with no children at home have higher probability of ξR = 0
but otherwise tend to receive more help. These diverging findings for the categorical and
continuous parts of the model are intriguing, but it is not clear what substantive interpretations
we can draw from them.

Here, we omitted comments about associations involving gender of the respondent and the
distance between them and the nearest parent. As discussed in Section 4.2, the interpretation
for these covariates is somewhat different because they are also included in the measurement
models for the nonequivalent items in YG and YR . This means, in effect, that the estimated
associations for gender and distance in Tables 3 and 4 are informed only by those items which
are equivalent with respect to them. Even so, these associations are strong for ηG and ηR , with
women tending to both give and to receive more help than men, and the level of help in both
directions being lower when children and parents live far apart.
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How, then, should we summarise these results? One way to do so is to think of the covari-
ates as different instances of two broad categories of characteristics: an actor’s (the child’s
or the parents’) capacity to give help and the other actor’s need to receive help. Considering
the models for help received by the respondents from the parents in this light, the lower lev-
els of helpfulness when the parent(s) live alone or when the respondent has siblings may be
taken to reflect the parents’ reduced capacity to help, while the positive associations with the
child being younger, single or not employed, and having a lower household income may be
interpreted as instances of higher need by the child.

Conversely, in the models for help to parents there is a clear positive association between
the parents’ need and help given: older parents and ones who live alone tend to receive more
help from their children. In terms of the children’s capacity to help, the respondent character-
istics, which are positively associated with helping—being single, not being employed, and
not having young children at home—can perhaps be interpreted in these terms if we take “ca-
pacity” to mean “opportunity” in the sense of having fewer other commitments. The finding
that higher household income is negatively associated with helping is likely to be a reflection
of the fact that the types of help covered by these items are, with one exception, practical
rather than financial (it also emphasises the importance of more detailed analysis of forms
of financial help in future studies). When it comes to the number of siblings, respondents
who have one or two siblings tend to help less than those with no siblings which is consistent
with some amount of sharing of helping between the siblings. On the other hand, respondents
who have three or more siblings tend to help their parents about as much as those who have
none. We might perhaps speculate that this could reflect family dynamics and expectations of
helping which are particular to large families. Finally, we also observe a reduction of helping
behaviour for respondents who live with a partner and/or have young children at home. Other
things being equal, such respondents are less likely both to give help to their noncoresident
parents and to receive help from them. We could perhaps think of this situation as one of a
self-contained family unit whose support activities may be more likely to be directed within
the family rather than outside of it.

The models also give estimates of the associations between the levels of help in the two
directions, allowing us to examine reciprocity of support between children and their parents.
These estimated associations are strong and positive. For the categorical part of the model,
the odds ratios between ξG and ξR (which depend on the covariates) are typically between
5 and 10. For the continuous part the conditional correlation between ηG and ηR is 0.51.
This is, in fact, substantially higher than their marginal correlation, estimated from a model
without covariates (not shown here), which is 0.23. This difference is mainly due to the
age variables. The ages of the respondent and their oldest parent are strongly associated,
with a sample correlation of 0.87. If we include either one of them alone in the models,
the conditional correlation between ηG and ηR is already about 0.50, and the age variable
has a strong positive association with help given and a negative one with help received (the
models where both are included, as in Tables 3 and 4, further indicate, more specifically, that
older respondents tend to receive less help and older parents tend to receive more help). The
two age effects thus naturally pull in different directions so that the marginal correlation of
help given and received is somewhat suppressed. If, however, we condition on the ages, that
is, account for the different levels of help we would expect, on average, from children and
parents of given ages, the correlation between them is substantially higher. In this sense the
results suggest a high level of reciprocity in helpfulness between the generations.

6. Conclusions. In this paper we have developed methods for analysing intergenera-
tional help and support that is exhanged between individuals and their noncoresident parents.
This involved specifying latent variable models for data where the help given and received
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are measured by multiple items for different types of help. The models include a multivari-
ate zero inflation component to allow for the fact that a large proportion of people in our
data gave or received no help of any kind. Estimation of the models was done in a two-step
fashion, where the measurement model for the items, given latent helping tendencies, was
estimated and fixed first, before the structural model for the joint distribution of these latent
variables, given explanatory variables, was then estimated. The estimation of the structural
model was carried out using an MCMC algorithm implemented specifically for these models.

We analysed data from the UK Household Longitudinal Study, where the respondents
(the children in the parent-child dyads) are aged around 40, on average, and their parents
around 70. The results of the analysis indicated some characteristics of individuals and their
circumstances which were strong predictors of helping and which we interpreted in terms of
the capacities and needs of the two parties. For example, parents who are older or living alone
had a higher tendency to be receiving help from their children, while children who are single
or have no children of their own had a higher tendency to receive help from their parents—
but also a higher tendency to give help. The levels of help given by the parents and by the
children were positively correlated, suggesting substantial contemporaneous reciprocity of
help between the generations.

The survey data that we have used is extensive and rich in many respects, but it also has
some limitations. In particular, because only one member of the dyad—here the children—
were interviewed, the data on their parents is limited. It would be preferable to survey both
parties directly, but this data collection design is difficult and costly to implement on a large
scale.

The model proposed here is immediately applicable also to other applications with the
same structure, that is “doubly multivariate” data with two sets of observed binary items mea-
suring two latent variables. For example, it could be used to analyse attitudes among couples,
when the interest was also on the concordance between the partners. Further, the model could
be extended in different ways, both for this and for other applications. This would involve, in
essence, combining the kinds of structural models that would be used in each situation if the
variables of interest were directly observed with the kinds of measurement models consid-
ered here when they are latent rather than observed. For example, data where the dyads are
grouped in natural clusters could be accommodated in this way by including random effects
(higher-order latent variables) to allow for within-cluster associations. An important instance
of this is longitudinal data on dyads which will be needed for questions about levels and reci-
procity of intergenerational help over time. Models for longitudinal data can also be specified
in other ways; for example, Steele and Grundy (2021) consider a dynamic (autoregressive)
panel model that allows for unequal spacing between the measurements but simplifying the
analysis in another way by reducing giving and receiving help each to a binary variable.

Another straightforward extension of the model is obtained by allowing multiple latent
variables for each member of the dyad, each measured by their own multiple indicators.
This would be needed, for example, if we wanted to consider different kinds of financial
and practical help separately from each other. It is also possible for the same individuals to
appear in multiple dyads. For some such cases the structural model would be an obvious
extension of the models considered in this paper, for example, if we analysed data where
survey respondents were asked about help that they exchanged with their children as well as
with their parents. In more complex situations, such as for “round-robin” data where each
individual is paired with more than one other individual, the models should include further
role-specific latent variables for “actors” and “partners” (or “givers” and “receivers”) as well
as group (e.g., family) effects. This would define multivariate extensions of different versions
of the social relations model (Kenny and LaVoie (1984); Snijders and Kenny (1999)). Gin
et al. (2020) have recently proposed latent-variable formulations for such situations, and our
measurement models would add to them the element of zero inflation. These combinations
remain to be explored in future research.
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APPENDIX: DETAILS OF THE MCMC ALGORITHM

Here, we describe the details of the tailored MCMC sampling algorithm for the estimation
of the structral model parameters ψ which was outlined in Section 4.3. The algorithm has
been packed into an R (R Core Team (2020)) package which is included in the Supplementary
Material; source code for it is available on Siliang Zhang’s GitHub page at https://github.com/
slzhang-fd/jsem-ukhls. The main part of the algorithm was programmed in C++, where two
techniques are used to speed up the sampling. First, for sampling steps with nonstandard
distributions, adaptive rejection sampling (Gilks and Wild (1992)) is used, exploiting log-
concavity of the posterior density functions. This is used for sampling ψξ and (some of) η,
while ψη and ξ can be drawn very efficiently from standard distributions. Second, parallel
sampling techniques, spread out across multiple processors, are used within each MCMC
iteration when there is no dependence between the quantities being sampled. This can be done
when sampling the latent variables ζ i for different units i and also when sampling the two
subsets of structural parameters ψξ and ψη separately from each other. This parallelisation
is implemented through OpenMP C++ API (Dagum and Menon (1998)).

Let ζ (t) = (ξ (t),η(t)) and ψ (t) = (ψ
(t)
ξ ,ψ (t)

η ) denote the values of the latent variables and
the structural parameters sampled in iteration t = 0,1,2, . . . , where 0 denotes the initial val-
ues. Given ζ (t−1), ψ (t−1) and the observed data (Y,X), the values for the next iteration t are
sampled as follows:

Imputation step. Generating values for the latent variables ζ , given the observed data and
current values of the parameters ψ :

(1) Sampling ξ (t) from p(ξ |η(t−1),Y,X,ψ(t−1)): Draw ξ
(t)
i = (ξ

(t)
Gi , ξ

(t)
Ri ) independently

for i = 1, . . . , n, from multinomial distributions with probabilities

p
(
ξG = j, ξR = k|η(t−1),Yi ,Xi ,ψ

(t−1))
∝ p

(
YGi |ξG = j, η

(t−1)
Gi ,Xi; φ̃G

)
(A1)

× p
(
YRi |ξR = k, η

(t−1)
Ri ,Xi; φ̃R

)
p

(
ξG = j, ξR = k|Xi;ψ (t−1)

ξ

)
for j, k = 0,1, where the structural model for ξ i is specified by (5), the measurement model is
specified as in (1)–(2) for YGi and similarly for YRi , and the parameters of the measurement
models are fixed at their estimated values φ̃G and φ̃R from the first step of the two-step
estimation (as described in Section 4.2) throughout. Note that here the probabilities which
involve ξG = 0 are zero when YGi �= 0, and the ones which involve ξR = 0 are zero when
YRi �= 0. Conversely, when YGi and/or YGi is 0, the imputation assigns such a unit i either
to the corresponding zero-inflation class 0 or to class 1 for the duration of iteration t .

(2) Sampling η(t) from p(η|ξ (t),Y,X,ψ(t−1)): Draw η
(t)
i = (η

(t)
Gi, η

(t)
Ri ) independently for

i = 1, . . . , n, as follows. First, draw η
(t)
Gi from

(A2) p
(
ηG|η(t−1)

Ri , ξ
(t)
i ,Y,X,ψ(t−1)) ∝ p

(
YGi |ξ (t)

Gi , ηG,Xi; φ̃G

)
p

(
ηG|η(t−1)

Ri ,Xi;ψ (t−1)
η

)
and then η

(t)
Ri from

(A3) p
(
ηR|η(t)

Gi, ξ
(t)
i ,Y,X,ψ(t−1)) ∝ p

(
YRi |ξ (t)

Ri , ηR,Xi; φ̃R

)
p

(
ηR|η(t)

Gi,Xi;ψ (t−1)
η

)
,

where the conditional distributions for ηG and ηR on the right-hand sides are the univari-
ate normal distributions implied by (4). When ξ

(t)
Gi = 0, in which case always YGi = 0, the

probability for YGi in (A2) is 1 by (1), and η
(t)
Gi is generated directly from this normal distri-

bution, whereas adaptive rejection sampling is used when ξ
(t)
Gi = 1; the procedure for η

(t)
Ri is

analogous, depending on whether or not YRi is 0.

https://github.com/slzhang-fd/jsem-ukhls
https://github.com/slzhang-fd/jsem-ukhls
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Posterior step. Drawing values for the model parameters ψ from their distributions given
the observed data and current imputed values of the latent variables ζ . These are standard
posterior distributions of the parameters of regression models for ζ given X, the bivariate
linear model (4) for η, and the multinomial logistic model (5) for ξ . These do not depend on
each other, so these sampling steps can be carried out in either order or in parallel.

(3) Sampling ψη from its posterior distribution p(ψη|X,η(t)) ∝ p(η(t)|X;ψη)p(ψη).
These parameters are handled in two blocks, β = (β ′

G,β ′
R)′ = vec(B), where B = [βGβR],

and (σ 2
G,σ 2

R,ρGR), which define the conditional covariance matrix in (4), which we denote

η. Here, we define the notation specifically as X = [X1 . . .Xn]′, ηG = (ηG1, . . . , ηGn)

′,
ηR = (ηG1, . . . , ηRn)

′ and η = [ηGηR]. The bivariate linear model (4) can then be written
as vec(η) ∼ N(vec(XB),
η ⊗ In), where In denotes the n × n identity matrix.

We specify the prior distribution as p(ψη) = p(β)p(
η), where p(β) ∼ N(0, σ 2
β I2q)

with σ 2
β = 100, and p(
η) ∼ W−1(I2,2), an inverse Wishart prior for 
η. This is a “semi-

conjugate” prior for ψη, meaning that conditional on 
η, the posterior distribution of β is
also multivariate normal, and conditional on β the posterior of 
η is inverse Wishart. Specif-
ically, β(t) is then sampled from the distribution

(A4) p
(
β|η(t),X,
(t−1)

η

) ∼ N
(
μ

(t)
β ,V(t)

β

)
,

where

V(t)
β = (

I2q/σ 2
β + (


(t−1)
η

)−1 ⊗ (
X′X

))−1 and(A5)

μ
(t)
β = V(t)

β

((

(t−1)

η

)−1 ⊗ X′)vec(η),(A6)

where ⊗ denotes the Kronecker product and 
(t)
η is sampled from

(A7) p
(

η|β(t),X,η(t)) ∼W−1(

I2 + (
η(t) − XB(t))′(η(t) − XB(t)), n + 2

)
.

(4) Sampling ψ
(t)
ξ = γ (t) = (γ

(t)′
00 ,γ

(t)′
01 ,γ

(t)′
10 ,γ

(t)′
11 )′, where γ

(t)
00 = 0, from the posterior

distribution p(ψξ |X, ξ (t)) ∝ p(ξ (t)|X;ψξ )p(ψξ ). This is done using conditional Gibbs sam-
pling, one parameter at a time. We specify the prior distribution as p(ψξ ) ∼ N(0, σ 2

γ I3q),
with σ 2

γ = 100. Letting γjkr denote the r th element of γ jk , we cycle over all r = 1 . . . , q and

over (j, k) = (0,1), (1,0), (1,1) to draw γ
(t)
jkr from

(A8) p
(
γjkr |γ (t−1)

(jkr) ,X, ξ (t)) ∝
[

n∏
i=1

∏
u,v=0,1 exp(γ

(t−1)′
uvr Xi)

δ
(t)
iuv∑

u,v=0,1 exp(γ
(t−1)′
uvr Xi )

]
p(γjkr),

where γ
(t−1)
uvr are vectors where all the γ -parameters, except for γjkr , are fixed at their most

recently sampled values (from iteration t − 1 or t), γ
(t−1)
(jkr) denotes all of these fixed param-

eter values, δ
(t)
iuv = I (ξ

(t)
Gi = u, ξ

(t)
Ri = v), and p(γjkr) is the prior density of γjkr implied by

p(ψξ ), in our case p(γjkr) ∼ N(0,100). These γ
(t)
jkr are generated using adaptive rejection

sampling.
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SUPPLEMENTARY MATERIAL

Pseudodata and code for data analysis (DOI: 10.1214/22-AOAS1680SUPPA; .zip). The
supplement includes a representative pseudo version of the data and R package and code for
its analysis, together with information about access to the actual data used in the paper.

Additional results (DOI: 10.1214/22-AOAS1680SUPPB; .pdf). The Supplementary Ma-
terial also include a note which gives additional information on two topics: (1) estimated
regression coefficients for the multinomial logistic model from which fitted probabilities are
shown in Table 4 of the paper, and (2) some further information about the estimation of the
measurement model, to supplement the information in Sections 4.2 and 5.1 of the paper.
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