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For a pair consisting of a gene tree and a species tree, the ancestral con-
figurations at a species-tree internal node are the distinct sets of gene lin-
eages that can be present at that node. The enumeration of root ancestral
configurations—ancestral configurations at the species-tree root—assists in
describing the complexity of gene-tree probability calculations in evolution-
ary biology. Assuming that the gene tree and species tree match in topology,
we study the distribution of the number of root ancestral configurations of a
random labeled tree topology under the uniform and Yule–Harding models.
We employ analytic combinatorics, considering ancestral configurations in
the context of additive tree parameters and using singularity analysis to eval-
uate asymptotic growth of the coefficients of generating functions. For both
models, we obtain asymptotic lognormal distributions for the number of root
ancestral configurations. For Yule–Harding random trees, we also obtain the
asymptotic mean (∼1.425n) and variance (∼2.045n) of the number of root
ancestral configurations, paralleling previous results for the uniform model
(mean (4/3)n, variance ∼1.822n). A methodological innovation is that to ob-
tain the Yule–Harding asymptotic variance, singularity analysis is conducted
from the Riccati differential equation that the generating function satisfies—
without possessing the generating function itself.

1. Introduction. In the study of combinatorial properties of species trees (trees that de-
scribe evolutionary relationships among species) and gene trees (trees that describe evolu-
tionary relationships among gene lineages for members of the species), one useful concept is
that of an ancestral configuration. Given a gene tree, a species tree and a node of the species
tree, an ancestral configuration is a list of the gene lineages that are present at the node of the
species tree (Figure 1). Looking backward in time, or from the leaves of trees to the root, the
fact that gene lineages only find their common ancestors once their associated species have
found common ancestors produces conditions describing which ancestral configurations are
present at a species tree node. These conditions enable the enumeration of the configura-
tions. Ancestral configurations appear in recursive evaluations of the probabilities of gene
tree topologies conditional on species tree topologies [46], so that enumerations of ancestral
configurations assist in assessing the complexity of the computation.

When the node at which an ancestral configuration is considered is the root node of the
species tree, ancestral configurations are termed root ancestral configurations, or root con-
figurations for short. For matching gene trees and species trees—that is, if the species tree
and gene tree have the same labeled topology—the number of root configurations is greater
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than or equal to the number of ancestral configurations for any other species tree node. This
property can be used to show that as the number of leaves increases, the total number of an-
cestral configurations for the gene tree and species tree—the sum of the number of ancestral
configurations across all species tree nodes—has the same exponential growth as the number
of root configurations ([14], Section 2.3.2). Hence, it suffices for investigations of the expo-
nential growth of the total number of ancestral configurations for matching gene trees and
species trees to focus on root configurations.

Disanto and Rosenberg [14] studied the number of root configurations for matching gene
trees and species trees, considering the number of root configurations of families of increas-
ingly large trees. They characterized the labeled tree topologies with the largest number of
root configurations among trees with n leaves, showing that this number of root configura-
tions lies between k

n−1/4
0 − 1 and kn

0 − 1, where k0 is a constant approximately equal to
1.5028 ([14], Proposition 4). They then studied the number of root configurations in trees
selected uniformly at random from the set of labeled topologies with n leaves. Using tech-
niques of analytic combinatorics, they showed that the mean number of root configurations
grows with (4/3)n, and the variance with ∼ 1.8215n ([14], Propositions 5 and 6).

Here, we extend these results on the distribution of the number of root configurations under
a model imposing a uniform distribution on the set of labeled topologies. We review back-
ground results in Section 2. In Section 3, we describe correspondences between classes of
trees, which we use in Section 4 to obtain an asymptotic normal distribution for the logarithm
of the number of root configurations under the uniform model—and find that its mean, ap-
proximately 0.272n, generates exponential growth e0.272n ≈ 1.313n. In Section 5, we obtain
similar results under the Yule–Harding model, including the asymptotic mean and variance
of the number of root configurations and the asymptotic distribution of its logarithm. This set
of computations also makes use of a correspondence between tree classes. The calculation of
the asymptotic variance additionally employs a novel approach, in which asymptotic growth
of the coefficients of a generating function that solves a Riccati equation is obtained without
having the exact form of the generating function itself. We discuss the results in Section 6.

2. Preliminaries. We study ancestral configurations for rooted binary leaf-labeled trees.
In Section 2.1, we introduce results on various classes of trees. In Section 2.2, we discuss
the Yule–Harding distribution on labeled topologies. In Section 2.3, we recall properties of
generating functions and analytic combinatorics. Following Wu [46], in Section 2.4 we define
ancestral configurations, and we review enumerative results from Disanto and Rosenberg
[14]. In Section 2.5, we relate ancestral configurations to additive tree parameters, which
have been widely studied in the literature [27, 45].

2.1. Classes of trees. We will need to consider many classes of trees: labeled topologies,
unlabeled topologies, ordered unlabeled topologies, labeled histories, unlabeled histories and
ordered unlabeled histories. Many terms in the setting of evolutionary trees can be connected
to concepts from settings that do not have a biological context [1, 4, 7]; our terminology
generally follows that typical of mathematical studies of evolutionary trees [39].

2.1.1. Labeled topologies. We refer to a bifurcating rooted tree t with |t | = n labeled
leaves as a labeled topology of size |t | = n, or a “tree” for short (Figure 1A); these trees are
sometimes called phylogenetic trees or Schröder trees. They are unordered or nonplane in
the sense that if left–right positions of two child nodes are exchanged in a labeled topology,
then the same labeled topology is obtained. For the set {a, b, c, . . .} of possible labels for the
leaves of a tree, we impose an alphabetical linear order a ≺ b ≺ c ≺ . . . The leaf labels of a
tree of size n are the first n labels in the order ≺.
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FIG. 1. A gene tree and species tree with matching labeled topology t . (A) A tree t of size 6, characterized by its
shape and leaf labels. For convenience, we label the internal nodes of t , by g, h, i, j , k in this case, identifying each
lineage (edge) by its immediate descendant node. For example, lineage h results from coalescence of lineages c

and d . (B) A possible realization R1 of the gene tree in (A) (dotted lines) in the matching species tree (solid lines).
The ancestral configurations at species tree nodes j and k are {g, c, d} and {g,h, i}, respectively. (C) A different
realization R2 of the gene tree in (A) in the species tree. At species tree nodes j and k, the configurations are
{a, b,h} and {j, e, f }, respectively. The figure is modified from Figure 1 of Disanto and Rosenberg [14] and
Figure 1 of Disanto and Rosenberg [15].

We denote by Tn the set of trees of size n, with T = ⋃∞
n=1 Tn denoting the set of all trees.

The number of trees of size n ≥ 2 is |Tn| = (2n − 3)!! = 1 × 3 × 5 × · · · × (2n − 3) [19], or
for n ≥ 1,

(1) |Tn| = (2n − 2)!
2n−1(n − 1)! = (2n)!

2n(2n − 1)n! .

The exponential generating function for |Tn| is

T (z) = ∑
t∈T

z|t |

|t |! =
∞∑

n=1

|Tn|zn

n! = z + z2

2
+ 3z3

6
+ 15z4

24
+ · · · ,

given by Flajolet and Sedgewick ([23], Example II.19),

(2) T (z) = 1 − √
1 − 2z.

2.1.2. Ordered unlabeled topologies. An orientation of an unlabeled topology t is a
plane embedding of t in which subtrees descending from the internal nodes of t are consid-
ered with a left–right orientation. For instance, the unlabeled topology underlying the labeled
topology depicted in Figure 1A has exactly two different orientations, which are depicted in
Figure 2A. An orientation of an unlabeled topology is called an ordered unlabeled topology,
or a plane unlabeled topology. The set of all possible ordered unlabeled topologies of size n

is enumerated by the Catalan number Cn−1 ([38], Exercise 6.19d), where

(3) Cn = 1

n + 1

(
2n

n

)
.

The ordinary generating function is

C(z) =
∞∑

n=0

Cnz
n = 1 − √

1 − 4z

2z
.

With the leaves and associated incident edges stripped away so that only the tree connecting
the internal nodes remains, an ordered unlabeled topology is also called a Catalan tree or
pruned binary tree, for example, by Wagner [45] (see also Flajolet and Sedgewick [23],
Example I.13).
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FIG. 2. Ordered unlabeled topologies and histories. (A) The two orientations of the unlabeled topology that
underlies the labeled topology of Figure 1A. (B) The four orientations of the unlabeled history underlying the
labeled history in Figure 3A.

2.1.3. Labeled histories. A labeled history is a labeled topology together with a tempo-
ral (linear) ordering of its internal nodes (Figure 3). Like a labeled topology, a labeled history
is left–right unordered, or nonplane: if the left–right positions of two child nodes are inter-
changed in a labeled history, then the same labeled history is obtained. If t is a labeled history
of size n, then we represent the time ordering of its n − 1 bifurcations by bijectively associ-
ating each internal node of t with an integer label in the interval [1, n − 1]. The labeling is
increasing in the sense that each internal node other than the root has a larger label than its
parent node.

For a given label set of size n, the set of labeled histories is denoted Hn. Its cardinality is
([39], page 46)

(4) |Hn| = n!(n − 1)!
2n−1 .

2.1.4. Ordered unlabeled histories. By removing leaf labels of a labeled history t , we
obtain the unlabeled history underlying t . As we did for unlabeled topologies, we define an
orientation of an unlabeled history t as a plane embedding of t in which child nodes are
considered with a left–right orientation. Figure 2B shows the orientations of the unlabeled
history underlying the labeled history of Figure 3A. We call each object so oriented an or-
dered unlabeled history, or a plane unlabeled history. The ordered unlabeled histories of size
n are enumerated by Fn−1 ([39], page 47),

(5) Fn = n!.
Ordered unlabeled histories are also called binary increasing trees [3, 45] or ranked oriented
trees [39].

2.2. The Yule–Harding distribution. Different labeled histories can share the same un-
derlying labeled topology. For example, the labeled histories of Figure 3 have the underlying

FIG. 3. Labeled histories. (A) The labeled history of the labeled gene tree topology depicted in Figure 1B. The
temporal ordering of the coalescence events in the gene tree is determined by the integer labeling of the internal
nodes of the associated labeled topology. (B) The labeled history of the labeled gene tree topology depicted in
Figure 1C.
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labeled topology depicted in Figure 1A. The number of labeled histories of size n with the
same labeled topology t is

(6)
(n − 1)!∏n

r=3(r − 1)dr (t)
,

where dr(t) is the number of internal nodes of t from which exactly r leaves descend ([39],
page 46). Equation (6) also appears as the so-called “shape functional” of binary search trees
[20].

By summing the probability 1/|Hn| of each uniformly distributed labeled history of size
n with a given underlying labeled topology, the uniform distribution over the set Hn induces
the Yule–Harding (or Yule) distribution over the set Tn of labeled topologies [6, 7, 17, 18, 25,
31, 32, 40, 48]. The probability of a labeled topology t is

(7) PYH(t) = 2n−1

n!∏n
r=3(r − 1)dr (t)

.

Under this distribution, among all labeled topologies with size n, those with the largest num-
ber of labeled histories have the highest probability. For balanced labeled topologies, the
product in the denominator of equation (7) tends to be smaller than for unbalanced topolo-
gies, resulting in a greater probability.

2.3. Asymptotic growth and analytic combinatorics. Our study concerns the growth of
increasing sequences. A sequence of nonnegative numbers an is said to have exponential
growth kn or, equivalently, to be of exponential order k, if an = kns(n), where s is subex-
ponential, that is, lim supn→∞[s(n)1/n] = 1. Sequence an grows exponentially in n if its
exponential order exceeds 1.

If (an) has exponential order ka and (bn) has exponential order kb < ka , then the sequence
of ratios bn/an converges to 0 exponentially fast as (kb/ka)

n. If sequences an and bn have
the same exponential order, then we write an 
� bn. If in addition the ratio bn/an converges
to 1, then we write an ∼ bn and say that (an) and (bn) have the same asymptotic growth.

Some results make use of techniques of analytic combinatorics (Flajolet and Sedgewick
[23], Sections IV and VI). In particular, the entries of a sequence of integers (an)n≥0 can
be interpreted as coefficients of the power series expansion A(z) = ∑∞

n=0 anz
n at z = 0 of

a function A(z), the generating function of the sequence. Considering z as a complex vari-
able, the behavior of A(z) near its singularities—the points in the complex plane where A(z)

is not analytic—can provide information on the growth of its coefficients. Under suitable
conditions, a correspondence exists between the expansions Aα(z), α ∈ S, of the generating
function A(z) near singularities in its set S of dominant singularities—that is, its singulari-
ties of smallest modulus—and the asymptotic growth of the coefficients an. In the simplest
case, if α is the only dominant singularity of A(z), then the nth coefficient an of A(z) has
asymptotic growth [zn]Aα(z), that is, the nth coefficient of Aα(z) (Theorem VI.4 of Flajolet
and Sedgewick [23]). In symbols,

an ∼ [
zn]

Aα(z).

The exponential order of sequence (an) is the inverse of the modulus of the dominant singu-
larity α of A(z) (Theorem IV.7 of Flajolet and Sedgewick [23]). That is,

an 
� α−n.

As an example, sequence |Tn|/n!, with |Tn| as in equation (1), has exponential order 2 be-
cause α = 1

2 is the only dominant singularity of the associated generating function in equation
(2). Thus, as n → ∞, |Tn|/n! increases with a subexponential multiple of 2n.
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2.4. Ancestral configurations for matching gene trees and species trees. In this section,
following Disanto and Rosenberg [14], we review features of the objects on which our study
focuses: the ancestral configurations of a gene tree G in a species tree S.

2.4.1. Gene trees and species trees. A species tree is a tree of evolutionary relationships
among a set of species. A gene tree is a tree of evolutionary relationships among individual
genetic lines of descent, or lineages, at a specific genomic site. Gene trees and species trees
are typically viewed as objects evolving forward in time, from the root to the leaves, or
backward in time, from the leaves to the root. They consist of both a labeled topology and a
set of edge lengths, positive values that describe the lengths of time separating pairs of nodes.

In studies of gene trees and species trees, the leaf label set of a gene tree G is often taken
to be a subset of the leaf label set of a species tree S, so that a gene tree evolves conditionally
on the species tree. Here, because we consider only the combinatorial structure of gene trees
and species trees, we are not concerned with numerical values of edge lengths. Hence, it
is convenient to identify a gene tree or a species tree with its associated labeled topology;
for ease of understanding, however, it is still said that a gene tree or species tree “has” a
labeled topology rather than that it “is” a labeled topology. Because we are concerned with
ancestor–descendant relationships, it is also convenient to retain a perspective that gene trees
and species trees unfold over time.

We here examine the case that the leaf label sets of G and S are bijectively associated. In
other words, a single genetic lineage is sampled from each species corresponding to a leaf
of the species tree. We further restrict attention to the case in which G and S have the same
labeled topology, so that the gene tree and species tree are said to be matching. With the
perspective that a gene tree unfolds over time conditionally on a species tree, an instance of
the evolutionary process that produces gene tree G on species tree S is a realization of G

on S.
Looking backward in time, the lineages of G are traced back past nodes of S until the root

of G is reached; at a given point in time, a lineage of G is associated with a label that contains
information about which leaves descend from it. For convenience, a node of a gene tree or
species tree is associated with its immediate ancestral edge, so that a node and its immediate
ancestral edge are assigned the same label.

2.4.2. Ancestral configurations. An ancestral configuration can be viewed as a certain
function of a realization of G on S, with G and S representing a gene tree and a species tree,
respectively, and of a node of S. Suppose R is a realization of a gene tree G on a species
tree S, where G = S = t (Figure 1). Looking backward in time, for node η of S, consider the
set C(η,R) of genetic lineages—edges of G—that are present in S at the point in time just
before node η is reached.

The set C(η,R) is the ancestral configuration of G at node η of S. For example, for
tree t in Figure 1A, with the realization R1 of gene tree G = t in the species tree S = t

in Figure 1B, just before the root node k, the gene lineages present in the species tree are
lineages g, h and i. Hence, at species tree node k, the ancestral configuration is the set of
gene lineages C(k,R1) = {g,h, i}. Similarly, the ancestral configuration of the gene tree at
species tree node j is C(j,R1) = {g, c, d}. In Figure 1C, with a different realization R2 of the
same gene tree, the ancestral configuration at the species tree root k is C(k,R2) = {j, e, f }.
The ancestral configuration at node j is C(j,R2) = {a, b,h}.

Let �(G,S) be the set of realizations of gene tree G = t in species tree S = t . For a given
node η of t , considering all possible elements R ∈ �(G,S), the set of ancestral configurations
is

(8) C(η) = {
C(η,R) : R ∈ �(G,S)

}
.
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The associated number of ancestral configurations is

(9) cη = ∣∣C(η)
∣∣.

The quantity cη counts the ways the lineages of G can reach the timepoint right be-
fore node η in S, considering all possible realizations of gene tree G in species tree S.
Choosing t as in Figure 1A, we have C(g) = {{a, b}}, C(h) = {{c, d}}, C(i) = {{e, f }},
C(j) = {{a, b, c, d}, {g, c, d}, {a, b,h}, {g,h}}, and

(10)
C(k) = {{j, i}, {j, e, f }, {g,h, i}, {g,h, e, f }, {a, b,h, i}, {a, b,h, e, f },

{g, c, d, i}, {g, c, d, e, f }, {a, b, c, d, i}, {a, b, c, d, e, f }}.
For different realizations R1,R2 ∈ �(G,S) and an internal node η, it need not be true that
C(η,R1) 
= C(η,R2).

We say that a leaf or a 1-leaf tree has no ancestral configurations. The definition of an
ancestral configuration at node η, by considering the timepoint right before node η in the
species tree, excludes the case in which all gene tree lineages descended from gene tree node
η have coalesced at species tree node η. Thus, {η} /∈ C(η).

Because we consider the case of G = S = t , the set C(η) and the quantity cη in equations
(8) and (9) depend only on node η and tree t . We use the term configurations at node η of t

to denote elements of C(η).

2.4.3. Root and total configurations. Our focus is on configurations at the root of t . Let
N(t) be the set of nodes of a tree t , including both leaf nodes and internal nodes. With |t |
leaf nodes and |t | − 1 internal nodes in t , |N(t)| = 2|t | − 1. Define the total number of
configurations in t by

c = ∑
η∈N(t)

cη.

Let cr be the number of configurations at the root r of t , or root configurations for short.
Because cr ≥ cη for each node η of t , we have

(11) cr ≤ c ≤ (
2|t | − 1

)
cr .

Quantities c and cr are equal up to a factor that is at most polynomial in |t |, and they have
the same exponential order when measured across families of trees of increasing size.

Selecting a tree of size n at random from the set of labeled topologies, inequality (11) gives
En[cr ] ≤ En[c] ≤ 2nEn[cr ] and En[c2

r ] ≤ En[c2] ≤ 4n2
En[c2

r ]. In expectation E and variance
V, exponential growth for total configurations follows that for root configurations:

En[c] 
� En[cr ],(12)

En

[
c2] 
� En

[
c2
r

]
,(13)

Vn[c] = En

[
c2] −En[c]2 
� En

[
c2
r

] −En[cr ]2 = Vn[cr ].(14)

Equation (14) follows from the fact that the exponential growth of En[c2] is faster than that
of En[c]2, as can be demonstrated from results in the next section (equations (17) and (19)),
and the exponential growth of En[c2

r ] is faster than that of En[cr ]2 (equations (16) and (18));
we then have Vn[c] ∼ En[c2] and Vn[cr ] ∼ En[c2

r ], and equation (14) follows from equation
(13).
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FIG. 4. The number of ancestral configurations at the internal nodes of three labeled topologies of size n = 15.
(A, B) Two labeled topologies in which the number of root configurations is the mean number cr = 135 of root
configurations calculated across the set of representative labelings of the unlabeled topologies of size 15. In this
set, the labeled topologies in (A) and (B) have respectively the largest number 61776 and smallest number 14400
of labeled histories. (C) The labeled topology with 15 leaves that has the most root configurations (416) and the
most labeled histories (2745600).

2.4.4. Known results. We recall some results of Disanto and Rosenberg [14] on the num-
ber of configurations possessed by a tree.

(i) For a given tree t with |t | > 1, let r denote the root node of t , with rL and rR being
the two child nodes of r . The number cr of possible configurations at r can be recursively
computed as

(15) cr = (crL + 1)(crR + 1),

where we set cr = 0 if |t | = 1. Figure 4 illustrates the application of equation (15) succes-
sively from the leaves to the root of each of three labeled topologies of size n = 15.

(ii) Consider a representative labeling of each unlabeled topology of size n. Among these
trees, the largest number of root configurations and the largest total number of configura-
tions have exponential order k0, where k0 ≈ 1.5028. The smallest number of root config-
urations and the smallest total number of configurations have polynomial growth with the
tree size n. Furthermore, consider the balanced family of unlabeled topologies defined recur-
sively by |t1| = 1 and tn = (td , tn−d), where d denotes the power of 2 nearest to n

2 . Among
the unlabeled topologies with n leaves, tn has the largest number of root configurations. The
maximally asymmetric caterpillar unlabeled topology has the smallest number of root con-
figurations.

(iii) For a labeled topology of given size n selected uniformly at random, the mean number
of root configurations cr and the mean total number of configurations c grow asymptotically
like

En[cr ] ∼
√

3

2

(
4

3

)n

,(16)

En[c] 
�
(

4

3

)n

.(17)

The variances of cr and c satisfy the asymptotic relations

Vn[cr ] ∼
√

7(11 − √
2)

34

[
4

7(8
√

2 − 11)

]n

,(18)

Vn[c] 
�
[

4

7(8
√

2 − 11)

]n

.(19)
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2.5. Additive tree parameters and root configurations. A quantity F(t) that can be com-
puted for trees t and whose value can be calculated as

F(t) = F(tL) + F(tR) + f (t),

where tL and tR are the two root subtrees of t , is called an additive tree parameter with
toll function f (t) [21, 27, 45]. Additive tree parameters and toll functions have been widely
investigated ([27], Remark 1.16). We make use of results from Wagner [45]. For various
tree families, Wagner [45] showed that an additive tree parameter F(t) is asymptotically
normally distributed if the toll function f (t) is bounded and the mean of |f (t)|, considered
over uniformly distributed trees of fixed size, goes to 0 exponentially fast as the tree size
increases.

For a tree t , consider the quantity log(cr + 1), that is, the natural logarithm of one more
than the number of root configurations of t . From equation (15), a simple calculation yields
for |t | ≥ 2,

(20) log(cr + 1) = log(crL + 1) + log(crR + 1) + log
(

1 + 1

cr

)
.

In equation (20), if we set

F(t) = log
[
cr(t) + 1

]
,

then the associated toll function is given for |t | ≥ 2 by

f (t) = log
[
1 + 1

cr(t)

]
.

We set f (t) = F(t) = log(1) = 0 if |t | = 1. We can therefore consider root configurations in
the context of additive tree parameters.

3. Equivalences for the distribution of the number of root configurations. We prove
a series of equivalences needed for analyzing distributional properties of the number of root
configurations. In Section 3.1, we show that the distribution of the number of root config-
urations over uniformly distributed labeled topologies or labeled histories can be analyzed
by considering equivalently the distribution of the number of root configurations over uni-
formly distributed ordered unlabeled topologies or ordered unlabeled histories, respectively.
In Section 3.2, we obtain a correspondence between antichains of pruned binary trees and
root configurations of ordered unlabeled topologies.

3.1. Equivalences with ordered unlabeled topologies and histories. Distributional prop-
erties of a tree parameter defined over the set of labeled topologies can in some cases be
investigated by studying the same parameter over a different tree family. In particular, if the
tree parameter under consideration depends only on tree topology, then its distribution can be
equivalently analyzed over a different tree set taken under a probability model that induces or
is induced by the probability model assumed for labeled topologies. In this direction, Blum et
al. [4] derived a general framework for analyzing tree parameters of labeled topologies under
a variety of probabilistic models defined over binary search trees.

In this section, we obtain results analogous to those of Blum et al. [4]. We show that
the number of root configurations—or any other tree parameter that depends only on the
branching structure of the tree—has the same distribution when considered over uniformly
distributed labeled topologies or over uniformly distributed ordered unlabeled topologies of
the same size (Lemma 3.1). Similarly, the number of root configurations has the same dis-
tribution over uniformly distributed labeled histories of size n as for uniformly distributed
ordered unlabeled histories of size n (Lemma 3.3).
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Moreover, because the uniform distribution over the set of labeled histories of size n in-
duces the Yule–Harding distribution over the set of labeled topologies of size n (Section 2.2),
as a direct consequence of Lemma 3.3 we have that the number of root configurations has
the same distribution when considered over Yule–Harding-distributed labeled topologies or
over uniformly distributed ordered unlabeled histories (Lemma 3.4). By using these facts,
Propositions 3.2 and 3.5 give recursive formulas for the probabilities under the uniform and
Yule–Harding probability models, respectively, that a random labeled topology of size n has
cr = ρ root configurations.

LEMMA 3.1. The distribution of the number of root configurations over labeled topolo-
gies of size n selected uniformly at random matches the distribution of the number of root
configurations over ordered unlabeled topologies of size n selected uniformly at random.

PROOF. First, we note that the number of root configurations of a labeled topology or
ordered unlabeled topology depends only on the underlying unlabeled topology. Thus, to
prove the claim, it suffices to show that for each unlabeled topology t of size n, we have

(21)
or(t)

Cn−1
= lab(t)

|Tn| ,

where or(t) and lab(t) are the number of orientations of t and the number of leaf labelings
of t , respectively. Note from equations (3) and (1) that or(t)/Cn−1 and lab(t)/|Tn| give the
probability of the unlabeled topology t induced by the uniform distribution over the set of
ordered unlabeled topologies and labeled topologies of n leaves, respectively.

By using Cn−1 = (2n−2
n−1

)
/n and |Tn| = (2n − 2)!/[2n−1(n − 1)!] from equations (3) and

(1), equation (21) can be rewritten

lab(t) = or(t)
n!

2n−1 ,

which we demonstrate by induction on the size of t . Let tL and tR be the two root subtrees of
t , with sizes |tL| = L and |tR| = R. Thus, for n ≥ 2,

lab(t) = lab(tL) lab(tR)

(
n

L

)
1

1 + δtL=tR

,(22)

or(t) = or(tL)or(tR)
2

1 + δtL=tR

,(23)

where δtL=tR = 1 if tL = tR , and δtL=tR = 0 otherwise. If we insert lab(tL) = or(tL)L!/2L−1

and lab(tR) = or(tR)R!/2R−1 into equation (22), then we find

lab(t) = or(tL)or(tR)
L!R!
2n−2

(
n

L

)
1

1 + δtL=tR

= or(tL)or(tR)
n!

2n−1

2

1 + δtL=tR

= or(t)
n!

2n−1 ,

as desired. �

The proof shows that the ratio of orderings to labelings for an unlabeled topology is in-
dependent of the unlabeled topology. Hence, because the number of root configurations of
a labeled topology or ordered unlabeled topology depends only on the underlying unlabeled
topology, the probability that a labeled topology chosen uniformly at random has ρ root con-
figurations equals the probability that an ordered unlabeled topology chosen uniformly at
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random has ρ root configurations. We use Lemma 3.1 to calculate the probability that a la-
beled topology of size n selected under the uniform distribution has ρ root configurations
as the probability that an ordered unlabeled topology of size n selected under the uniform
distribution has ρ root configurations.

PROPOSITION 3.2. Let Rn be the random variable that represents the number of root
configurations in an ordered unlabeled topology of size n selected uniformly at random. (i) We
have R1 = 0, and for n ≥ 2,

(24) Rn
d= (RIn + 1)

(
R∗

n−In
+ 1

)
,

where In is distributed over the interval [1, n − 1] with Catalan probability P[In = j ] =
Cj−1Cn−j−1/Cn−1, R∗

j is an independent copy of Rj for each j ∈ [1, n − 1], and both Rj

and R∗
j are independent of Ij for j ∈ [1, n − 1]. Furthermore, (ii) the probability that a

random labeled topology of size n selected under the uniform distribution has cr = ρ root
configurations can be calculated as P[cr = ρ] = P[Rn = ρ], where P[Rn = ρ] has recursive
formula

(25) P[Rn = ρ] = ∑
d∈Div(ρ)

n−1∑
j=1

P[In = j ]P[Rj = d − 1]P
[
Rn−j = ρ

d
− 1

]
,

where Div(ρ) denotes the set of positive integers that divide ρ, P[In = j ] = Cj−1Cn−j−1/

Cn−1 and P[Rn = 0] = δn,1.

PROOF. The recurrence in equation (24) follows from equation (15). Observe that for
a random uniform ordered unlabeled topology t of n leaves, the probability that the left (or
right) root subtree of t has size In = j is given by P[In = j ] = Cj−1Cn−j−1/Cn−1, where
Cj−1, Cn−j−1 and Cn−1 give the numbers of ordered unlabeled topologies of size j , n − j

and n, respectively (Section 2.1.2). This establishes (i).
For (ii), equation (25) is a direct consequence of Lemma 3.1 and equation (24). �

We now consider the equivalence between uniformly distributed labeled histories and uni-
formly distributed ordered unlabeled histories.

LEMMA 3.3. The distribution of the number of root configurations over labeled histo-
ries of size n selected uniformly at random matches the distribution of the number of root
configurations over ordered unlabeled histories of size n selected uniformly at random.

PROOF. The proof is similar to that of Lemma 3.1: we show that for each unlabeled
history t of size n, we have

(26)
or(t)

Fn−1
= lab(t)

|Hn| ,

where or(t) and lab(t) are the number of orientations of t and the number of leaf labelings of
t , respectively. In other words, we prove that the uniform distribution over the set of ordered
unlabeled histories of size n and the uniform distribution over the set of labeled histories of
size n both induce the same probability distribution over the set of unlabeled histories of n

leaves. The same property has already been shown by Lambert and Stadler ([28], page 116)
following a slightly different approach.

Using Fn−1 = (n − 1)! and |Hn| = n!(n − 1)!/2n−1 from equations (5) and (4), equation
(26) can be rewritten

lab(t) = or(t)
n!

2n−1 ,
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which we verify by induction on |t |. Let tL and tR denote the two root subtrees of t , with
sizes |tL| = L and |tR| = R. Hence, for n ≥ 2 we have

lab(t) = lab(tL) lab(tR)

(
n

L

)
,(27)

or(t) = 2 or(tL)or(tR).(28)

By setting lab(tL) = or(tL)L!/2L−1 and lab(tR) = or(tR)R!/2R−1 in equation (27), we find

lab(t) = or(tL)or(tR)
L!R!
2n−2

(
n

L

)

= or(tL)or(tR)
2n!

2n−1 = or(t)
n!

2n−1 ,

as desired. �

Next, we describe implications of Lemma 3.3 for Yule–Harding-distributed labeled topolo-
gies.

LEMMA 3.4. The distribution of the number of root configurations over labeled topolo-
gies of size n selected according to the Yule–Harding distribution matches the distribution
of the number of root configurations over ordered unlabeled histories of size n selected uni-
formly at random.

PROOF. The equivalence follows from Lemma 3.3 and the fact that the uniform distri-
bution over labeled histories of size n induces the Yule–Harding distribution on the set of
labeled topologies of size n (Section 2.2). �

By Lemma 3.4, we can calculate the probability that a labeled topology of size n selected
under the Yule–Harding distribution has ρ root configurations as the probability that a random
uniform ordered unlabeled history of size n has ρ root configurations. In particular, we have
the following proposition.

PROPOSITION 3.5. Let Rn be the random variable that represents the number of root
configurations in an ordered unlabeled history of size n selected uniformly at random. (i) We
have R1 = 0, and for n ≥ 2,

(29) Rn
d= (RIn + 1)

(
R∗

n−In
+ 1

)
,

where In is uniformly distributed over the interval [1, n − 1], R∗
j is an independent copy of

Rj for each j ∈ [1, n − 1], and both Rj and R∗
j are independent of Ij for j ∈ [1, n − 1].

Furthermore, (ii) the probability that a random labeled topology of size n selected under the
Yule–Harding distribution has cr = ρ root configurations can be calculated as P[cr = ρ] =
P[Rn = ρ], where P[Rn = ρ] has recursive formula

(30) P[Rn = ρ] = ∑
d∈Div(ρ)

n−1∑
j=1

P[In = j ]P[Rj = d − 1]P
[
Rn−j = ρ

d
− 1

]
,

where Div(ρ) denotes the set of positive integers that divide ρ, P[In = j ] = 1
n−1 and P[Rn =

0] = δn,1.
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PROOF. The formula in equation (29) follows directly from equation (15) when we ob-
serve that, for a random uniform ordered unlabeled history t of n leaves, the probability that
the left (or right) root subtree of t has size In = j is

P[In = j ] = Fj−1Fn−j−1
(n−2
j−1

)
Fn−1

= 1

n − 1
.

Equation (30) is a direct consequence of Lemma 3.4 and equation (29). �

3.2. Equivalences with antichains of pruned binary trees. To use results of Wagner [45]
to obtain probability distributions for root configurations, we must translate between root
configurations for labeled topologies and nonempty antichains for pruned binary trees.

A pruned binary tree is an ordered unlabeled topology in which the external branches—
those terminating in a leaf—have been removed. If a node of the initial ordered unlabeled
topology has one incident external branch, then pruning renders the node of the pruned bi-
nary tree with only one immediate descendant; a node with two incident external branches
is pruned to possess no immediate descendants. To illustrate the pruning operation, consider
the ordered unlabeled topology depicted on the left of Figure 2A and assign arbitrary labels
to all its nodes, as in Figure 1A. The leaf labels of the pruned binary tree resulting from this
process can be described by the Newick format ((g,h), i). Note that pruned binary trees have
their left–right orientation induced by the overlying ordered unlabeled topology.

If t is an ordered unlabeled topology of size n and t̃ is its associated pruned binary tree
of n − 1 nodes, then we can consider t̃ as the Hasse diagram of a partially ordered set with
ground set given by the nodes of t̃—the internal nodes of t—and order relation determined
by the descendant–ancestor relationship in t̃ . An antichain of t̃ is a subset of its nodes such
that no two elements in the subset are comparable by the order relation. For instance, the
two-element antichains of pruned binary tree ((g,h), i) in Figure 1A are {g,h}, {g, i}, {h, i}
and {j, i}.

The nonempty antichains of the pruned binary tree t̃ bijectively correspond to the root
configurations of the overlying ordered unlabeled topology t : omitting leaves from a root
configuration of t yields an antichain of t̃ , and adding leaves to an antichain of t̃ so that
each leaf of t is either represented or has one of its ancestral nodes represented yields a root
configuration of t .

For instance, consider the set in equation (10) of the root configurations of the ordered
unlabeled topology in Figure 1A. By omitting leaves from each configuration, we obtain the
antichains of t̃ : {{j, i}, {j}, {g,h, i}, {g,h}, {h, i}, {h}, {g, i}, {g}, {i},∅}

.

We make a substitution of the empty antichain ∅ that emerges from the root configuration
consisting of all the leaves by the antichain {k} consisting only of the root of t̃ ; we have then
bijectively paired all root configurations of t and all nonempty antichains of t̃ . Using this
correspondence, we have the next result.

LEMMA 3.6. The distribution of the number of root configurations over labeled topolo-
gies of size n selected uniformly at random matches the distribution of the number of
nonempty antichains over the set of (n − 1)-node pruned binary trees selected uniformly
at random.

PROOF. By Lemma 3.1, the number of root configurations has the same distribution
when considered over uniformly distributed labeled topologies of size n or over uniformly
distributed ordered unlabeled topologies of size n. By the correspondence between antichains
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of pruned binary trees with n − 1 nodes and root configurations of associated ordered unla-
beled topologies of size n, the distribution of the number of root configurations over uni-
formly distributed ordered unlabeled topologies of size n matches the distribution of the
number of nonempty antichains over uniformly distributed pruned binary trees with n − 1
nodes. �

4. Root configurations under the uniform distribution on labeled topologies. Disanto
and Rosenberg [14] determined the mean and variance of the number of root configurations
for uniformly distributed labeled topologies of size n (Section 2.4.4). In this section, we use
the correspondence with antichains given in Section 3.2 to show that the logarithm of the
number of root configurations for uniformly distributed labeled topologies of size n, suitably
rescaled, converges to a normal distribution.

Wagner ([45], Section 2.3.2) studied the number a(t) of nonempty antichains of a ran-
domly selected pruned binary tree t of given size. For a pruned binary tree of n nodes selected
uniformly at random, he considered loga(t), showing that (loga − En[loga])/√Vn[loga]
converges to a standard normal distribution as n → ∞, where En[loga] ∼ μn and
Vn[loga] ∼ σ 2n, with constants (μ,σ 2) ≈ (0.272,0.034).

By Lemma 3.6, Wagner’s variable loga asymptotically has the same distribution as the
variable log cr considered over uniformly distributed labeled topologies of size n + 1. We
thus have the following result.

PROPOSITION 4.1. The logarithm of the number of root configurations in a la-
beled topology of size n selected uniformly at random, rescaled as (log cr − En[log cr ])/√
Vn[log cr ], converges to a standard normal distribution, where En[log cr ] ∼ μn and

Vn[log cr ] ∼ σ 2n, (μ,σ 2) ≈ (0.272,0.034).

The result gives an asymptotic lognormal distribution for the number of root configura-
tions of a labeled topology of size n selected uniformly at random. Although we do not
expect eEn[log cr ] and eσn[log cr ] to agree with En[cr ] and σn[cr ], for the mean we see that in
the n → ∞ limit, eEn[log cr ] ≈ e0.272n ≈ 1.313n, numerically close to the exponential growth
of En[cr ], or (4/3)n (equation (16)). For the standard deviation, eσn[log cr ] ≈ e

√
0.034n ≈

1.202n is not as close to the exponential growth of σn[cr ] from equation (18), which gives

[2/

√
7(8

√
2 − 11)]n ≈ 1.350n.

For fixed n, we can compute the exact distribution of cr and log cr under a uniform distri-
bution across labeled topologies of size n, as described in Proposition 3.2(ii). Figure 5 shows
the cumulative distribution P[log cr ≤ E[log cr ] + yσ [log cr ]] as a function of y, when la-
beled topologies are selected uniformly at random among the 2.13 × 1014 labeled topologies
with 15 leaves. To obtain the distribution, we can count root configurations for arbitrary la-
belings of each of the 4850 unlabeled topologies with 15 leaves, and then count labelings for
each unlabeled topology ([39], page 47). Already for small tree size, the figure shows that
the exact cumulative distribution is close to the cumulative distribution of a Gaussian random
variable with mean 0 and variance 1.

5. Root configurations under the Yule–Harding distribution on labeled topologies.
We next study distributional properties of the number of root configurations for labeled
topologies selected under the Yule–Harding probability model. Section 2.2 noted that this
model assigns higher probability to trees with a high degree of balance compared to that
assigned by the uniform model; Section 2.4.4 noted that balanced trees have high numbers
of root configurations relative to unbalanced trees. We therefore find that the mean num-
ber of root configurations for labeled topologies of size n grows exponentially faster under
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FIG. 5. Cumulative distribution of the natural logarithm of the number of root configurations for uniformly
distributed labeled topologies of size n = 15 (dotted line). Each dot has its abscissa determined by a value of y

ranging in the interval y ∈ [−3,3] in steps of 0.1. Given y, the quantity plotted is the probability that a labeled
topology with n = 15 chosen uniformly at random has a number of root configurations less than or equal to
exp(E[log cr ] + yσ [log cr ]), where E[log cr ] and σ [log cr ] are respectively the mean and standard deviation of
the logarithm of the number of root configurations for uniformly distributed labeled topologies with n = 15 leaves
(Proposition 4.1). The solid line is the cumulative distribution of a Gaussian random variable with mean 0 and
variance 1.

the Yule–Harding model than under the uniform model. The variance of the number of root
configurations also has faster growth.

Note that in the main results of the section—Propositions 5.2, 5.4 and 5.5—expectations
En and variances Vn are taken with respect to the Yule–Harding distribution.

5.1. Lognormal distribution of the number of root configurations. We begin the analysis
of the number of root configurations under the Yule–Harding distribution by showing that the
logarithm of the number of root configurations of a Yule–Harding random labeled topology
of size n, when suitably rescaled, converges to a standard normal distribution.

The results in this section are obtained by considering root configurations over ordered un-
labeled histories of given size selected under the uniform distribution. Owing to Lemma 3.4,
we can demonstrate that the number of root configurations in a Yule–Harding random labeled
topology of size n asymptotically follows a lognormal distribution by showing that the num-
ber of root configurations is asymptotically lognormally distributed when considered over
the set of uniformly distributed ordered unlabeled histories of n leaves. We use a result of
Wagner [45] for additive tree parameters of ordered unlabeled histories. We first must verify
a technical condition for the mean of the random variable log(1 + 1/cr), considered over
uniformly distributed ordered unlabeled histories. This verification proceeds by considering
cherry nodes [31], internal nodes whose two immediate descendant nodes are leaves.

LEMMA 5.1. For uniformly distributed ordered unlabeled histories of size n, the mean
value En[log(1 + 1/cr)] of the random variable log(1 + 1/cr) converges to 0 exponentially
fast as n increases. In particular,

(31) En

[
log

(
1 + 1

cr

)]
=O

(
0.9n)

.

PROOF. To show that En[log(1 + 1/cr)] has exponential growth O(0.9n) for an ordered
unlabeled history t of size n selected uniformly at random, we consider the mean value
En[2−ch] of the random variable 2−ch—where ch is the number of cherries in t . We claim
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that

(32) En

[
2−ch] = O

(
0.9n)

.

For a tree t with |t | ≥ 3, cr(t) ≥ 2ch(t), as each cherry node generates a pair of ances-
tral configurations: the configuration corresponding to the node, and the configuration cor-
responding to its pair of leaves. At the root node, a root configuration can be obtained by
choosing ancestral configurations at each of the cherry nodes and augmenting the configura-
tion with leaves that do not descend from cherry nodes.

Noting log(1 + x) ≤ x for x > 0, for each ordered unlabeled history t with size |t | ≥ 3, we
have

log
[
1 + 1

cr(t)

]
≤ 1

cr(t)
≤ 2−ch(t).

By taking expectations, we see that equation (32) implies equation (31):

En

[
log

(
1 + 1

cr

)]
≤ En

[
2−ch]

.

It remains to verify equation (32). In their Theorem 2, Disanto and Wiehe [18] studied
the generating function F(x, z) counting the number of unlabeled histories t of size n with
a given number of cherries, where each unlabeled history t is weighted by its probability
2n−1−ch(t)/(n − 1)! under the Yule–Harding distribution:

F(x, z) = ∑
t

2n−1−ch(t)

(n − 1)! xch(t)zn.

The sum proceeds over unlabeled histories (“ranked trees” in Disanto and Wiehe [18]). The
coefficient of xhzn in F(x, z) gives the probability of h cherries in unlabeled histories of
size n under the Yule–Harding distribution, or equivalently, the probability of h cherries in
ordered unlabeled histories of size n selected uniformly at random. Hence, the expectation
En[2−ch] is obtained from the coefficient of zn in F(1

2 , z). From Disanto and Wiehe [18],

F

(
1

2
, z

)
= f (z) = zez

√
2 − z

(
√

2 − 2)ez
√

2 + 2 + √
2
.

By Theorem IV.7 of Flajolet and Sedgewick [23] (see also Section 2.3), En[2−ch] grows
exponentially like [zn]f (z) 
� α−n, where α is the dominant singularity of f (z). The value
of α is the solution of smallest modulus of the equation (

√
2 − 2)ez

√
2 + 2 + √

2 = 0, whose
left-hand side is the denominator of f (z). Because

α = 1√
2

log
(

2 + √
2

2 − √
2

)
=

√
2 log(3 + 2

√
2)

2
≈ 1.246,

α−1 ≈ 0.802, and thus, conservatively, En[2−ch] = O(0.9n). Hence, En[log(1 + 1
cr

)] also
decays to 0 as O(0.9n). �

Considering as in Section 2.5 the additive tree parameter F(t) = log[cr(t) + 1], by
Lemma 5.1 we have demonstrated that the associated toll function f (t) = log[1 + 1/cr(t)]
satisfies

(33)

∑
t f (t)

Fn−1
= En

[
log

(
1 + 1

cr

)]
= O

(
0.9n)

,

where the sum proceeds over all (n − 1)! ordered unlabeled histories t of size n (equation
(5)). Equation (33), together with the fact that f (t) is bounded because cr(t) ≥ 1 for |t | ≥ 2,
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show that the hypotheses of Theorem 4.2 of Wagner [45] are satisfied. By applying the the-
orem, we can conclude that for an ordered unlabeled history t of size n selected uniformly
at random, the standardized version of the random variable F(t) = log[cr(t) + 1] converges
asymptotically to a normal distribution with mean 0 and variance 1. By the same theorem,
the mean and variance of F(t) = log[cr(t) + 1] grow respectively like μn and σ 2n, for two
constants

μ = ∑
t

2f (t)

(|t | + 1)! ≈ 0.351,(34)

σ 2 = ∑
t

2f (t)[2F(t) − f (t)]
(|t | + 1)! − μ2 + ∑

t1

∑
t2

4f (t1)f (t2)

(|t1| + 1)!(|t2| + 1)!

×
[
(|t1| − 1)(|t2| − 1)

|t1| + |t2| − 1
− |t1| − |t2| + 2 + (|t1| − 1)(|t2| − 1)

(|t1| + |t2|)(|t1| + |t2| + 1)
(35)

+ (|t1| − 1)2(|t2| − 1)2

(|t1| + |t2| − 1)(|t1| + |t2|)(|t1| + |t2| + 1)

]

≈ 0.008.

Note that the sums in equations (34) and (35) are defined over all ordered unlabeled his-
tories, but that the approximations have been calculated by disregarding histories of size
strictly larger than 15 and 12 in the sums for μ and σ 2, respectively. The equivalence of
Lemma 3.4 between the distribution of the number of root configurations over uniformly dis-
tributed ordered unlabeled histories and the distribution of the number of root configurations
over Yule–Harding distributed labeled topologies, coupled with the fact that the difference
log(cr + 1) − log cr = log(1 + 1/cr) is small, finally yields the following proposition.

PROPOSITION 5.2. The logarithm of the number of root configurations in a labeled
topology of size n selected under the Yule–Harding distribution, rescaled as (log cr −
En[log cr ])/√Vn[log cr ], converges to a standard normal distribution, where En[log cr ] ∼
μn and Vn[log cr ] ∼ σ 2n for (μ,σ 2) ≈ (0.351,0.008).

For fixed n, we can compute the exact distribution of cr (and log cr ) under the Yule–
Harding distribution across all labeled topologies of size n as in Proposition 3.5(ii). Similar
to the computations in Figure 5, we can weight the counts of root configurations for unlabeled
topologies by their Yule–Harding probabilities ([39], page 47). Figure 6 shows the cumula-
tive distribution P[log cr ≤ E[log cr ] + yσ [log cr ]] plotted as a function of y, when labeled
topologies of size n = 15 are selected under the Yule–Harding distribution. The distribution is
close to the cumulative distribution of a Gaussian random variable with mean 0 and variance
1.

5.2. Mean number of root configurations. In Section 5.1, we have analyzed distributional
properties of the logarithm of the number of root configurations considered over labeled
topologies of given size selected under the Yule–Harding distribution. In this section, we
study the mean number of root configurations under the Yule–Harding distribution.

From Lemma 3.4, the mean number of root configurations in a random labeled topology of
size n selected under the Yule–Harding distribution is also the mean number of root config-
urations in a uniform random ordered unlabeled history of n leaves. To calculate this mean,
we use the distributional recurrence in Proposition 3.5 for the variable Rn, and by applying
generating functions and singularity analysis, we obtain the following result.
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FIG. 6. Cumulative distribution of the natural logarithm of the number of root configurations for labeled topolo-
gies of size n = 15 considered under the Yule–Harding distribution (dotted line). Each dot has its abscissa de-
termined by a value of y ranging in the interval y ∈ [−3,3] in steps of 0.1. Given y, the quantity plotted is the
probability that a labeled topology with n = 15 chosen at random under the Yule–Harding distribution has a
number of root configurations less than or equal to exp(E[log cr ] + yσ [log cr ]), where E[log cr ] and σ [log cr ]
are respectively the mean and the standard deviation of the logarithm of the number of root configurations for
Yule–Harding distributed labeled topologies of n = 15 leaves (Proposition 5.2). The solid line is the cumulative
distribution of a Gaussian random variable with mean 0 and variance 1.

PROPOSITION 5.3. The mean number of root configurations in an ordered unlabeled
history of size n selected uniformly at random satisfies the asymptotic relation E[Rn] ∼ kn

e ,

where ke = 1/(1 − e−2π
√

3/9).

PROOF. Set en ≡ E[Rn]. Then E[RInR
∗
n−In

] = ∑n−1
j=1 P[In = j ]E[RjR

∗
n−j ] = 1

n−1 ×∑n−1
j=1 E[Rj ]E[R∗

n−j ]. Proposition 3.5 yields for n ≥ 2 the recurrence

(36) en = 1 + 1

n − 1

n−1∑
j=1

ej en−j + 2

n − 1

n−1∑
j=1

ej ,

with initial condition e1 = 0.
Defining the generating function

(37) E(z) ≡
∞∑

n=1

enz
n = z2 + 2z3 + 10

3
z4 + 31

6
z5 + · · · ,

the recurrence in eqution (36) translates into the Riccati differential equation

(38) zE′(z) = E(z)2 + 1 + z

1 − z
E(z) + z2

(1 − z)2 ,

with initial condition E(0) = 0. To obtain the differential equation, we have multiplied
both sides of equation (36) by (n − 1)zn, summed for n ≥ 1, and then used the facts
that

∑∞
n=1(n − 1)enz

n = zE′(z) − E(z),
∑∞

n=1(n − 1)zn = z2[1/(1 − z)]′ = z2/(1 − z)2,∑∞
n=1(

∑n−1
j=1 ej en−j )z

n = E(z)2 and
∑∞

n=1(
∑n−1

j=1 ej )z
n = E(z)[1/(1 − z) − 1].

Solving the differential equation yields

(39) E(z) = 2z sin(
√

3
2 log(1 − z))

(z − 1)[√3 cos(
√

3
2 log(1 − z)) + sin(

√
3

2 log(1 − z))]
.
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E(z) has infinitely many singularities. The singularity of E(z) with smallest modulus occurs
at z = α ≡ 1 − e−2π

√
3/9 ≈ 0.702. The singularity of smallest modulus is obtained by setting

to 0 the factor

(40)
√

3 cos
[√

3

2
log(1 − z)

]
+ sin

[√
3

2
log(1 − z)

]

appearing in the denominator of equation (39). The expansion of E(z) at its dominant singu-
larity z = α looks like

E(z)
z→α∼ 1

1 − z
α

,

which can be obtained by plugging the Taylor expansion −√
3e+2π

√
3/9(z − α) of the factor

(40) in the denominator of equation (39). By Theorem VI.4 of Flajolet and Sedgewick [23]
(see also Section 2.3), we finally obtain

[
zn]

E(z) ∼ [
zn]( 1

1 − z
α

)
= α−n,

as n → ∞. �

The next proposition follows immediately from Proposition 5.3 and Lemma 3.4.

PROPOSITION 5.4. The mean number of root configurations in a labeled topology of size
n selected at random under the Yule–Harding distribution has asymptotic growth En[cr ] ∼
kn
e , where ke = 1/(1 − e−2π

√
3/9) ≈ 1.42538682. Furthermore, the mean total number of

configurations has asymptotic growth En[c] 
� En[cr ].

For small tree size (n ≤ 20), Figure 7 plots the mean number of root configurations for
a random tree of size n selected under the Yule–Harding distribution as a function of the
corresponding mean under the uniform distribution. The plot provides a numerical visualiza-
tion of the similar behavior of the numbers of root configurations under the Yule–Harding
and uniform distributions. The mean is greater for the Yule–Harding distribution, but the two
quantities are highly correlated, with Pearson’s correlation coefficient approximately 0.995.

FIG. 7. Mean number of root configurations of labeled topologies of size n under the Yule–Harding and uniform
distributions, for 2 ≤ n ≤ 20. Values for the uniform distribution are computed from the power series expansion
of equation (33) of Disanto and Rosenberg [14]; values for Yule–Harding are computed from the power series
expansion of equation (39).
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5.3. Variance of the number of root configurations. In this section, we analyze the
asymptotic growth of the variance of the number of root configurations under the Yule–
Harding distribution. In particular, by using Lemma 3.4, we study the variance of the number
of root configurations in a uniform random ordered unlabeled history of size n.

Following Section 5.2 and squaring equation (29), we obtain a recurrence for sn ≡ E[R2
n].

For n ≥ 2,

(41)

sn = 1 + 1

n − 1

n−1∑
j=1

sj sn−j + 2

n − 1

n−1∑
j=1

sj + 4

n − 1

n−1∑
j=1

sj en−j

+ 4

n − 1

n−1∑
j=1

ej en−j + 4

n − 1

n−1∑
j=1

ej ,

with initial condition s1 = 0.
Starting from this recurrence, a symbolic calculation similar to that used to derive equa-

tion (38) shows that the generating function S(z) ≡ ∑∞
n=1 snz

n = z2 + 4z3 + 34
3 z4 + 55

2 z5 . . .

satisfies the Riccati differential equation

(42) zS′(z) = S(z)2 − S(z)

[
1 + z

z − 1
− 4E(z)

]
+ [z − 2(z − 1)E(z)]2

(z − 1)2 .

This equation can be written

(43) S′(z) = g2(z)S(z)2 + g1(z)S(z) + g0(z)

by setting

(
g2(z), g1(z), g0(z)

) ≡
(

1

z
,

(
4E(z) − 1 + z

z − 1

)
1

z
,
[z − 2(z − 1)E(z)]2

z(z − 1)2

)
.

By substituting U(z) ≡ exp[∫ z
0 S(x)/(−x)dx], we obtain S(z) = −zU ′(z)/U(z), and

equation (43) can be rewritten as a second-order linear differential equation equation

(44) U ′′(z) −
(
g1(z) + g′

2(z)

g2(z)

)
U ′(z) + g2(z)g0(z)U(z) = 0.

The coefficients of equation (44) are analytic functions for |z| < 0.702, with a removable sin-
gularity at z = 0 as the expansion (37) of E(z) starts with a quadratic nonzero term. Using ex-
istence results for the solutions of second-order ordinary differential equations, U(z) must be
analytic for |z| < 0.702, the constant being the radius of convergence of E(z) as determined
in the proof of Proposition 5.3. Therefore, also U ′(z) is analytic for |z| < 0.702, and thus
S(z) is a meromorphic function on this domain, being a quotient of two analytic functions.
To analyze the singularities of a meromorphic function, one must locate the possible roots of
its denominator function. In our case, the set of singularities of S(z) consists of the roots of
U(z). In particular, by studying in the Appendix the function U(z) in B ≡ {z ∈ C : |z| ≤ 1

2},
we find that S(z) has a unique dominant singularity α ≈ 0.4889986317, the unique and sim-
ple root of U(z) within B (Proposition A.6).

As a consequence, we can write U(z) = (z − α)Ũ(z), with Ũ (α) 
= 0 and U ′(α) =
(−α)Ũ(α) 
= 0. Therefore, for z → α the generating function S(z) admits the expansion

S(z) = −zU ′(z)
U(z)

z→α∼ (−α)[U ′(α) + U ′′(α)(z − α) + · · · ]
U(α) + U ′(α)(z − α) + · · ·

z→α∼ (−α)U ′(α)

U ′(α)(z − α)

= −α

z − α
= 1

1 − z
α

.
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FIG. 8. Variance of the number of root configurations of labeled topologies of size n under the Yule–Harding
and uniform distributions, for 2 ≤ n ≤ 20. Values for the uniform distribution are computed from the power series
expansion of equation (39) of Disanto and Rosenberg [14]; values for Yule–Harding are computed from equations
(41) and (36).

From Theorem VI.4 of Flajolet and Sedgewick [23] (see also Section 2.3), we can thus re-
cover the asymptotic growth of the associated coefficients

(45) E
[
R2

n

] = [
zn]

S(z) ∼ [
zn]( 1

1 − z
α

)
= α−n,

and hence derive the asymptotic growth of the variance V[Rn]. In particular, we have the
following result.

PROPOSITION 5.5. The variance of the number of root configurations in a labeled topol-
ogy of size n selected at random under the Yule–Harding distribution has asymptotic growth
Vn[cr ] ∼ kn

v , where kv ≈ 2.0449954971. Furthermore, the variance of the total number of
configurations has asymptotic growth Vn[c] 
�Vn[cr ].

PROOF. For uniformly distributed ordered unlabeled histories of size n, equation (45)
yields E[R2

n] ∼ kn
v , kv ≡ 1/α ≈ 2.0449954971. From Proposition 5.3, E[Rn]2 ∼ (k2

e )
n, with

k2
e ≈ 2.03. Because kv > k2

e , as n → ∞ we obtain

V[Rn] = E
[
R2

n

] −E[Rn]2 ∼ kn
v .

By Lemma 3.4, the variance of the variable Rn is the variance of the number of root con-
figurations considered over labeled topologies of n leaves selected under the Yule–Harding
distribution. �

As we did for the mean, we numerically visualize the similarity in variance of the number
of root configurations for trees of size n selected at random under the Yule–Harding and uni-
form distributions. For small tree size (n ≤ 20), we plot in Figure 8 the variance of the number
of root configurations for a random tree of size n selected under the Yule–Harding distribu-
tion as a function of the variance of the number of root configurations for a random uniform
tree of the same size. As was true of the mean, the Yule–Harding and uniform distributions
on labeled topologies give correlated variances (correlation coefficient 0.997).

6. Discussion. Considering gene trees and species trees with a matching labeled topol-
ogy G = S = t , we have studied distributional properties of the number cr of root ancestral
configurations for labeled topologies t of fixed size under two probability models, the uniform
model and the Yule–Harding model (Table 1). We have made use of techniques of analytic
combinatorics, relying on equivalences across tree types (Section 3) and making particular
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TABLE 1
Distributional properties of the number of root and total configurations

Results Uniform model Yule–Harding model

Root Mean En[cr ] ∼ 1.225 · 1.333n Equation (16) En[cr ] ∼ 1.425n Proposition 5.4
configurations Variance Vn[cr ] ∼ 1.405 · 1.822n Equation (18) Vn[cr ] ∼ 2.045n Proposition 5.5

Lognormal En[log cr ] ∼ 0.272 · n Proposition 4.1 En[log cr ] ∼ 0.351 · n Proposition 5.2
distribution Vn[log cr ] ∼ 0.034 · n Proposition 4.1 Vn[log cr ] ∼ 0.008 · n Proposition 5.2

Total Mean En[c] 
� 1.333n Equation (17) En[c] 
� 1.425n Proposition 5.4
configurations Variance Vn[c] 
� 1.822n Equation (19) Vn[c] 
� 2.045n Proposition 5.5

use of results of Wagner [45] on distributional properties of additive tree parameters for sev-
eral families of trees.

Extending results of Disanto and Rosenberg [14], for the uniform model we have shown
that the logarithm of the number of root configurations, when standardized, converges asymp-
totically to a standard normal distribution (Proposition 4.1). Under the Yule–Harding dis-
tribution, as is the case for uniformly distributed labeled topologies, the logarithm of the
number of root configurations, when standardized, converges to a standard normal distribu-
tion (Proposition 5.2). The study produces the first results on asymptotic distributions under
the uniform or Yule–Harding models for ancestral configurations, and further, for any of the
recently studied combinatorial quantities that require consideration of both gene trees and
species trees—ancestral configurations [14, 46], coalescent histories [2, 8, 11–13, 26, 33–35,
42], compact coalescent histories [16, 47], deep coalescence costs [29, 30, 41, 43, 44], history
classes [36], nonequivalent ancestral configurations [15, 46] and ranked histories [9, 10, 37].

We have also determined the asymptotic growth of the mean and the variance of the
number of root configurations, finding that under the Yule–Harding model, En[cr ] ∼ 1.425n

(Proposition 5.4) and Vn[cr ] ∼ 2.045n (Proposition 5.5). As En[c] 
� En[cr ] and Vn[c] 
�
Vn[cr ], we also recover the exponential growth rate of the mean and the variance of the total
number of configurations under the Yule–Harding model. These results were obtained by use
of recursions to obtain Riccati differential equations for generating functions (equations (38)
and (42)). For the case of the mean, the Riccati equation was solvable (equation (39)); for
the variance, although the equation was not solvable, the asymptotic growth was nevertheless
possible to obtain. Our method introduced for this case has potential for broader application,
as many problems involving various types of trees and other combinatorial structures can lead
to related Riccati equations [5, 22, 24].

Both the mean and the variance across labeled topologies of the number of ancestral con-
figurations are empirically highly correlated between the uniform and Yule–Harding models
(Figures 7 and 8). Alongside the results of Disanto and Rosenberg [14] for the uniform case,
the larger values for Yule–Harding (Table 1) suggest a role for tree balance in predicting the
number of root configurations. By considering a representative labeling for each unlabeled
topology of size n = 15, in Figure 9 we plot on a logarithmic scale the number of root config-
urations as a function of the number of labeled histories, the latter calculated with equation
(6). The numerical illustration in the figure shows that empirically, the two quantities are cor-
related: highly balanced labeled topologies—which tend to have larger numbers of labeled
histories (Section 2.2)—in general have larger numbers of root configurations.

In particular, the largest number of root configurations is possessed by the balanced la-
beled topology depicted in Figure 4C, which also has the largest number of labeled histo-
ries, 2,745,600. The trend in this example is confirmed by our asymptotic results. Under the
Yule–Harding probability model, which gives more weight to balanced labeled topologies
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FIG. 9. Natural logarithm of the number of root configurations and natural logarithm of the number of labeled
histories for a representative labeling of each unlabeled topology of size n = 15. The number of points plotted
is 4850, the number of unlabeled topologies with n = 15 leaves. The Pearson correlation is approximately 0.987
(0.784 without log scaling).

than does the uniform model, the mean number of root configurations and the mean total
number of configurations grow exponentially faster than under the uniform distribution (Ta-
ble 1). This differing behavior also accords with the proof of Disanto and Rosenberg [14] that
balanced and caterpillar trees respectively possess the largest and smallest numbers of root
configurations for fixed tree size (Section 2.4.3).

Several directions and extensions naturally arise from our work. First, we focused on root
rather than total configurations; although some results for total configurations follow quickly
(Table 1), we did not consider total configurations in detail. Second, we assumed that the
gene tree and species tree had the same labeled topology, and we did not study nonmatching
gene trees and species trees. The nonmatching case merits further analysis, as a nonmatching
gene tree labeled topology can have more root and total configurations than the topology
that matches the species tree [14]. Third, ancestral configurations can be considered up to
an equivalence relationship that accounts for symmetries in gene trees [46]. The resulting
equivalence classes—the nonequivalent ancestral configurations—are used for calculating
probabilities of gene trees in STELLS [46], with computational complexity that depends
on the number of these classes. Some investigation of this number has been carried out by
Disanto and Rosenberg [15] for uniformly distributed matching gene trees and species trees.
It would be of interest to see whether the techniques we have used could derive distributional
properties of the number of nonequivalent ancestral configurations under the uniform and
Yule–Harding probability models.

APPENDIX. THE FUNCTION U(z) HAS A UNIQUE AND SIMPLE ROOT OF
SMALLEST MODULUS

In this Appendix, we prove that the function U(z) ≡ ∑∞
n=0 unz

n, which is analytic in the
region |z| < 0.702 and there satisfies the differential equation (44), has a unique and simple
root α of smallest modulus. We also calculate the first ten digits of α ≈ 0.4889986317. The
calculation is performed without first solving the differential equation to obtain the function
U(z).

We start in Lemma A.1 by providing a recurrence for un, which is then used to find an up-
per bound of |un| in Lemma A.3. Next, we consider the set B ≡ {z ∈ C : |z| ≤ 1

2} in the com-
plex plane and decompose U(z) into a sum U(z) = U1(z)+U2(z), where U1(z) = ∑100

n=0 unz
n

is a polynomial and U2(z) = ∑∞
n=101 unz

n. The bound for |un| in Lemma A.3 yields a bound
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for |U1(z)| (Lemma A.4), which in turn implies that |U1(z)| > |U2(z)| if z ∈ ∂B. Hence, by
Rouché’s theorem we have that inside B, the function U(z) has the same number of roots—
considered with their multiplicity—as the polynomial U1(z). Lemma A.5 shows that U1(z)

has a unique and simple root inside B, and in Proposition A.6 we conclude the proof of our
claim by finding an approximation of the unique and simple root α of U(z) inside B—which
turns out to be very close to the root of U1(z) inside B.

In U(z) = ∑∞
n=0 unz

n, we have un ≡ [zn]U(z). From equation (44), we derive a recurrence
for un. Recall that en gives the mean number of root configurations in an ordered unlabeled
history of size n ≥ 1.

LEMMA A.1. For n ≥ 2, we have

(46)

un = 1

n(n − 1)

n−1∑
k=0

(3n − k − 3)uk − 4

n(n − 1)

n−1∑
k=0

(n − 2k − 1)en−kuk

+ 4

n(n − 1)

n−1∑
k=0

(
n−k−1∑
j=0

ej

)
uk,

with u0 = 1 and u1 = 0.

PROOF. First, notice that for n ≥ 0, the coefficient of zn in each term of equation (44)
can be written as

[zn]U ′′(z) = (n + 2)(n + 1)un+2,

−[
zn](

g1 + g′
2

g2

)
U ′(z) = −

n∑
k=0

(n − k + 1)(4ek+1 + 2)un−k+1,

[
zn]

g2g0U(z) =
n∑

k=0

[
(k + 1) + 4

k∑
j=0

ej+1 + 4
k+2∑
j=0

ej ek−j+2

]
un−k,

where for convenience we set e0 = 0.
Making a substitution to the index of summation, we have

− 4
n∑

k=0

(n − k + 1)ek+1un−k+1 = −4
n+1∑
k=0

ken−k+2uk.

Hence, the sum for −[zn](g1 + g′
2/g2)U

′(z) can be simplified as

− [
zn](

g1 + g′
2

g2

)
U ′(z) = −4

n+1∑
k=0

ken−k+2uk − 2
n∑

k=0

(n − k + 1)un−k+1.

The second sum in this equation together with the first sum
∑n

k=0(k+1)un−k of [zn]g2g0U(z)

give

− 2
n∑

k=0

(n − k + 1)un−k+1 +
n∑

k=0

(k + 1)un−k =
n+1∑
k=0

(n − 3k + 1)uk.

Furthermore, by setting n = k + 2 in equation (36), the inner sums of [zn]g2g0U(z) can be
rewritten as

4
k∑

j=0

ej+1 + 4
k+1∑
j=0

ej ek−j+2 = 4(k + 1)ek+2 − 4(k + 1) − 4
k+1∑
j=1

ej .
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Hence, the coefficient of zn in equation (44) becomes

(n + 2)(n + 1)un+2 − 4
n+1∑
k=0

ken−k+2uk +
n+1∑
k=0

(n − 3k + 1)uk

+
n∑

k=0

[
4(k + 1)ek+2 − 4(k + 1) − 4

k+1∑
j=1

ej

]
un−k.

In this expression, we make two substitutions:

n∑
k=0

4(k + 1)ek+2un−k =
n+1∑
k=0

4(n − k + 1)en−k+2uk,

n+1∑
k=0

(n − 3k + 1)uk − 4
n∑

k=0

(k + 1)un−k =
n+1∑
k=0

(n − 3k + 1)uk − 4
n∑

k=0

(n − k + 1)uk

=
n+1∑
k=0

(−3n + k − 3)uk,

obtaining

(n + 2)(n + 1)un+2 − 4
n+1∑
k=0

ken−k+2uk +
n+1∑
k=0

4(n − k + 1)en−k+2uk

+
n+1∑
k=0

(−3n + k − 3)uk +
n∑

k=0

(
−4

k+1∑
j=1

ej

)
un−k,

and thus

(n + 2)(n + 1)un+2 +
n+1∑
k=0

4(n − 2k + 1)en−k+2uk

+
n+1∑
k=0

(−3n + k − 3)uk +
n∑

k=0

(
−4

k+1∑
j=1

ej

)
un−k.

Finally, because e0 = 0, in this expression we can substitute

n∑
k=0

(
−4

k+1∑
j=1

ej

)
un−k =

n∑
k=0

(
−4

k+1∑
j=0

ej

)
un−k =

n∑
k=0

(
−4

n−k+1∑
j=0

ej

)
uk

=
n+1∑
k=0

(
−4

n−k+1∑
j=0

ej

)
uk,

obtaining for n ≥ 0,

(n + 2)(n + 1)un+2 +
n+1∑
k=0

4(n − 2k + 1)en−k+2uk

−
n+1∑
k=0

(3n − k + 3)uk − 4
n+1∑
k=0

(
n−k+1∑
j=0

ej

)
uk = 0,
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which rescaled is recurrence (46). The initial conditions u0 = 1 and u1 = 0, follow from the
fact that U(0) = 1 and U ′(0) = 0 as U(z) = exp[∫ z

0 S(x)/(−x)dx]. �

In Lemma A.3, we use the recurrence to find an upper bound for |un|. First, we need an
upper bound for en.

LEMMA A.2. For n ≥ 0, we have en ≤ ( 9
10)(3

2)n.

PROOF. Using the recurrence (36), with the help of computing software we have shown
that the inequality holds for 0 ≤ n ≤ 41. We proceed by induction. Suppose the inequality
holds for all k < n with n > 41. By equation (36),

en ≤ 1 + 81

100(n − 1)

n−1∑
j=1

(
3

2

)n

+ 9

5(n − 1)

n−1∑
j=1

(
3

2

)j

= 1 + 81

100

(
3

2

)n

+ 18

5(n − 1)

(
3

2

)n

− 27

5(n − 1)

= 9

10

(
3

2

)n

− 9

10

(
1

10
− 4

n − 1

)(
3

2

)n

− 27

5(n − 1)
+ 1.

In the last step, we can see that a positive number is subtracted from 9
10(3

2)n for n > 41, as

9

10

(
1

10
− 4

n − 1

)(
3

2

)n

+ 27

5(n − 1)
− 1 >

9

10

1

400

(
3

2

)42
− 1 > 0.

Thus, the claim is proved. �

LEMMA A.3. For n ≥ 0, we have |un| ≤ (9
5)n.

PROOF. Using recurrence (46), computing software verifies the inequality for 0 ≤ n ≤
25. We proceed by induction. Suppose that the inequality holds for all k < n with n > 25. For
simplicity of computation, instead of the bound in Lemma A.2, we use the more conservative
(3

2)n as a bound for en. With equation (46), we get

|un| ≤ 3

n

n−1∑
k=0

(
9

5

)k

+ 4

n

n−1∑
k=0

(
3

2

)n−k(9

5

)k

+ 4

n(n − 1)

n−1∑
k=0

(
n−k−1∑
j=0

(
3

2

)j
)(

9

5

)k

= 15

4n

(
9

5

)n

− 15

4n
+ 20

n

(
9

5

)n

− 20

n

(
3

2

)n

+ 30

n(n − 1)

(
9

5

)n

− 40

n(n − 1)

(
3

2

)n

+ 10

n(n − 1)

= 5(19n + 5)

4n(n − 1)

(
9

5

)n

− 20(n + 1)

n(n − 1)

(
3

2

)n

− 5(3n − 11)

4n(n − 1)
.

In the last step, we have |un| ≤ (9
5)n, as for n > 25, the following two inequalities hold:

5(19n + 5)

4n(n − 1)
≤ 1,

−20(n + 1)

n(n − 1)

(
3

2

)n

− 5(3n − 11)

4n(n − 1)
≤ 0.

Thus, the claim is proved. �
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We now consider the set B ≡ {z ∈ C : |z| ≤ 1
2}, and the partition U(z) = ∑∞

k=0 ukz
k =

U1(z)+U2(z), U1(z) ≡ ∑100
k=0 ukz

k and U2(z) ≡ ∑∞
k=101 ukz

k . Using the bound for |un| from
Lemma A.3, for each z ∈ B we have

(47)
∣∣U2(z)

∣∣ ≤
∞∑

k=101

|uk||z|k ≤
∞∑

k=101

(
9

5

)k(1

2

)k

= 10
(

9

10

)101
≈ 0.0002390525900.

Next, we need a lower bound for |U1(z)|.

LEMMA A.4. We have minz∈∂B |U1(z)| ≥ 3
1000 .

PROOF. We obtain the result by considering a function

G(t) ≡
[100∑

k=0

uk cos(kt)

(
1

2

)k
]2

+
[100∑

k=0

uk sin(kt)

(
1

2

)k
]2

.

G(t) has period 2π , with G(π − t) = G(π + t), if t ∈ [0, π]. For |z| ∈ ∂B, we can write
z = 1

2 [cos t + i sin t] for t ∈ [0,2π), and thus

∣∣U1(z)
∣∣ =

∣∣∣∣∣
100∑
k=0

uk

[(
1

2

)
[cos t + i sin t]

]k
∣∣∣∣∣

=
∣∣∣∣∣

100∑
k=0

uk cos(kt)

(
1

2

)k

+ i

100∑
k=0

uk sin(kt)

(
1

2

)k
∣∣∣∣∣ = √

G(t).

By using the bound in Lemma A.3, we have the following inequality:

(48)

∣∣G′(t)
∣∣ =

∣∣∣∣∣2
[100∑

k=0

uk cos(kt)

(
1

2

)k
][

−
100∑
k=0

kuk sin(kt)

(
1

2

)k
]

+ 2

[100∑
k=0

uk sin(kt)

(
1

2

)k
][100∑

k=0

kuk cos(kt)

(
1

2

)k
]∣∣∣∣∣

≤ 2

∣∣∣∣∣
100∑
k=0

uk cos(kt)

(
1

2

)k
∣∣∣∣∣
∣∣∣∣∣

100∑
k=0

kuk sin(kt)

(
1

2

)k
∣∣∣∣∣

+ 2

∣∣∣∣∣
100∑
k=0

uk sin(kt)

(
1

2

)k
∣∣∣∣∣
∣∣∣∣∣

100∑
k=0

kuk cos(kt)

(
1

2

)k
∣∣∣∣∣

≤ 2

[100∑
k=0

|uk|
∣∣cos(kt)

∣∣(1

2

)k
][100∑

k=0

k|uk|
∣∣sin(kt)

∣∣(1

2

)k
]

+ 2

[100∑
k=0

|uk|
∣∣sin(kt)

∣∣(1

2

)k
][100∑

k=0

k|uk|
∣∣cos(kt)

∣∣(1

2

)k
]

≤ 4

[100∑
k=0

(
9

10

)k
][100∑

k=0

k

(
9

10

)k
]

≈ 3598.862135.

We set I = { kπ
1,000,000 : k ∈ Z,0 ≤ k ≤ 1,000,000}. A numerical calculation shows that

(49) min
t∈I G(t) = G(0) ≈ 0.01949528529.
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With these preparations complete, we prove our claim by showing that

(50) min
t∈[0,π ]G(t) ≥ 9

1,000,000
.

We prove equation (50) by contradiction. Suppose there exists t0 ∈ [0, π] such that G(t0) <
9

1,000,000 . Then we can find t1 ∈ I such that

(51) |t1 − t0| ≤ π

2,000,000
.

By the mean value theorem, we can find c ∈ (t0, t1) such that G(t1)−G(t0) = G′(c)(t1 − t0).
From equations (48) and (51),

(52)
1800π

1,000,000
≥ ∣∣G′(c)(t1 − t0)

∣∣ = ∣∣G(t1) − G(t0)
∣∣ ≥ G(t1) − G(t0).

However, because t1 ∈ I , by equation (49), we have

G(t1) − G(t0) ≥ G(0) − G(t0) ≥ 1

100
− 9

1,000,000
= 9991

1,000,000
.

This result contradicts the upper bound in equation (52). Thus, equation (50) holds and the
claim has been proven. �

Next, we study the root of U1(z) inside B.

LEMMA A.5. The polynomial U1(z) has a unique (simple) root β inside B, with β ≈
0.4889986317.

PROOF. First, by the intermediate value theorem, there exists a real root β with 0 < β <
1
2 , as we can numerically compute U1(0)U1(

1
2) < 0 for the polynomial U1(z). Thus, we must

prove

U1(z)

z − β
= U1(z) − U1(β)

z − β
=

100∑
k=0

uk

zk − βk

z − β

=
100∑
k=0

uk

k−1∑

=0

βk−1−
z
 =
99∑


=0

( 100∑
k=
+1

ukβ
k−1−


)
z


satisfies |U1(z)/(z − β)| > 0 in B.
To do so, we first use the bisection method for root-finding to numerically approximate β

by

β̃ = 1,101,127,027,820,569

2,251,799,813,685,248
≈ 0.4889986317,

with the approximation error

(53) |β − β̃| ≤ 1

250 .

Then we define the polynomial

Q(z) ≡
99∑


=0

a
z

 with a
 ≡

100∑
k=
+1

ukβ̃
k−1−
,
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through which we can write

U1(z)

z − β
= Q(z) + (β − β̃)R(z),

R(z) ≡
99∑


=0

( 100∑
k=
+1

uk

βk−1−
 − β̃k−1−


β − β̃

)
z
 =

99∑

=0

( 100∑
k=
+2

uk

k−2−
∑
j=0

βj β̃k−2−
−j

)
z
.

Note that on B,

(54)

∣∣R(z)
∣∣ ≤

99∑

=0

100∑
k=
+2

k−2−
∑
j=0

|uk||β|j |β̃|k−2−
−j |z|


≤
99∑


=0

100∑
k=
+2

k−2−
∑
j=0

(
9

5

)k(1

2

)k−2
≈ 3234.224489,

where we used the bound for |un| from Lemma A.3 and the fact that β, β̃, |z| ≤ 1
2 .

Next, let us consider the function

S(r, θ) ≡
99∑


=0

a
r

 cos(
θ)

defined over the rectangle (r, θ) ∈ [0, 1
2 ] × [0, π], where S(r, θ) = �(Q(z)) if z =

r[cos(±θ) + i sin(±θ)] ∈ B. We need the following bound for the gradient of S:

(55)

|∇S| =
∣∣∣∣∣
( 99∑


=0


a
r

−1 cos(
θ),

99∑

=0

−
a
r

 sin(
θ)

)∣∣∣∣∣
=

∣∣∣∣∣
99∑


=0

(

a
r


−1 cos(
θ),−
a
r

 sin(
θ)

)∣∣∣∣∣
=

∣∣∣∣∣
99∑


=0


a
r

−1(

cos(
θ),−r sin(
θ)
)∣∣∣∣∣ ≤

99∑

=0


|a
||r|
−1∣∣(cos(
θ),−r sin(
θ)
)∣∣

≤
99∑


=0


|a
||r|
−1 ≤
99∑


=0


|a
|
(

1

2

)
−1
≈ 89.628949.

Here, we have made use of |r| < 1
2 and for |r| < 1,

√
cos2 x + r2 sin2 x ≤

√
cos2 x + sin2 x =

1.
A numerical calculation shows that over the grid I ≡ {( k

2000 ,
jπ

1000) : (k, j) ∈ Z
2,0 ≤ k, j ≤

1000}, we have

(56) min
(r,θ)∈I

∣∣S(r, θ)
∣∣ =

∣∣∣∣S
(

1

2
,

502π

1000

)∣∣∣∣ ≈ 0.9518894218.

We now show—with a similar method to that used to prove Lemma A.4—that

(57) min
(r,θ)∈[0, 1

2 ]×[0,π ]
∣∣S(r, θ)

∣∣ ≥ 3235

250 .

Suppose for contradiction that there exists z0 = (r0, θ0) ∈ [0, 1
2 ] × [0, π] such that

|S(r0, θ0)| < 3235/250. Then let us take z1 = (r1, θ1) ∈ I such that

(58) |z1 − z0| <
√

1

16
+ π2

4

(
1

1000

)
≤ 1

500
.



ROOT ANCESTRAL CONFIGURATIONS 4455

By the mean value theorem, there exists a point (r, θ) on the line segment from (r0, θ0) to
(r1, θ1) such that

∇S(r, θ) · (z1 − z0) = S(r1, θ1) − S(r0, θ0),

where · is the inner product of R2. By using the Cauchy–Schwarz inequality together with
(55), (56) and (58), the assumption |S(r0, θ0)| < 3235/250 would thus give

90

500
≥ ∣∣∇S(r, θ)

∣∣|z1 − z0| ≥
∣∣∇S(r, θ) · (z1 − z0)

∣∣ = ∣∣S(r1, θ1) − S(r0, θ0)
∣∣

≥ ∣∣S(r1, θ1)
∣∣ − ∣∣S(r0, θ0)

∣∣ ≥ 9

10
− 3235

250 > 0.89,

which is a contradiction. Hence, equation (57) holds.
Finally, because for z ∈ B we have∣∣Q(z)

∣∣ ≥ ∣∣�(
Q(z)

)∣∣ ≥ min
(r,θ)∈[0, 1

2 ]×[0,π ]
∣∣S(r, θ)

∣∣,
by using equations (53), (54) and (57), it follows that in B,∣∣∣∣U1(z)

z − β

∣∣∣∣ = ∣∣Q(z) + (β − β̃)R(z)
∣∣ ≥ ∣∣∣∣Q(z)

∣∣ − ∣∣(β̃ − β)R(z)
∣∣∣∣ ≥ 3235

250 − ∣∣(β̃ − β)
∣∣∣∣R(z)

∣∣
≥ 3235

250 − |R(z)|
250 >

3235

250 − 3234.224489 . . .

250 > 0.

This concludes the proof. �

Combining Lemmas A.4 and A.5 with the inequality in equation (47), we obtain the fol-
lowing proposition.

PROPOSITION A.6. The function U(z) has a unique (simple) root α inside B, where
α ≈ 0.4889986317.

PROOF. For the decomposition U(z) = U1(z) + U2(z), equation (47) together with
Lemma A.4 gives for z ∈ ∂B,

∣∣U1(z)
∣∣ ≥ 3

1000
> 0.00025 >

∣∣U2(z)
∣∣.

Hence, from Rouché’s theorem, inside B the function U(z) has the same number of roots
(considered with multiplicity) as polynomial U1(z). From Lemma A.5, we know that U1(z)

has one (simple) root inside B.
The only remaining step is the numerical computation of α, whose first ten digits turn out

to coincide with the constant β found in Lemma A.5 as the root of U1(z) inside B. We again
decompose U(z):

U(z) =
∞∑

k=0

ukz
k =

500∑
k=0

ukz
k +

∞∑
k=501

ukz
k = Ũ1(z) + Ũ2(z).

Note that from our bound for |uk| (Lemma A.3), for each z ∈ B we have

(59)
∣∣Ũ2(z)

∣∣ ≤
∞∑

k=501

|uk||z|k ≤
∞∑

k=501

(
9

5

)k(1

2

)k

= 10
(

9

10

)501
≤ 10−21.
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Let us now consider

α′ = 550,563,513,910,285

1,125,899,906,842,624
≈ 0.48899863172938484723,

α′′ = 1,101,127,027,820,571

2,251,799,813,685,248
≈ 0.48899863172938529132.

These values were chosen using the bisection method such that

Ũ1
(
α′) = 2.708185805 . . . · 10−16 and Ũ1

(
α′′) = −4.953373282 . . . · 10−15.

From the bound of |Ũ2(z)| in equation (59), it is clear that U(α′) > 0 and U(α′′) < 0. Let α

be the unique root of U(z) in B, which by the intermediate value theorem must be a real root
in (α′, α′′), and let ε ≡ α − α′ ≤ 10−14. Note that

1

α′ − 1

α
= ε

α′(α′ + ε)
≤ ε

(α′)2 ≤ 5 · 10−14.

Thus, we can use

α′ = 0.48899863172938484723,(
α′)−1 = 2.0449954971518340953

to approximate α and α−1, respectively. �
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