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Power Calculations for Replication Studies
Charlotte Micheloud and Leonhard Held

Abstract. The reproducibility crisis has led to an increasing number of
replication studies being conducted. Sample sizes for replication studies are
often calculated using conditional power based on the effect estimate from
the original study. However, this approach is not well suited as it ignores
the uncertainty of the original result. Bayesian methods are used in clinical
trials to incorporate prior information into power calculations. We propose
to adapt this methodology to the replication framework and promote the use
of predictive instead of conditional power in the design of replication stud-
ies. Moreover, we describe how extensions of the methodology to sequential
clinical trials can be tailored to replication studies. Conditional and predic-
tive power calculated at an interim analysis are compared and we argue that
predictive power is a useful tool to decide whether to stop a replication study
prematurely. A recent project on the replicability of social sciences is used to
illustrate the properties of the different methods.

Key words and phrases: Replication studies, conditional power, predictive
power, sequential design, interim analysis, futility stopping.

1. INTRODUCTION

The replicability of research findings is essential for the
credibility of science. However, the scientific world is ex-
periencing a crisis (Begley and Ioannidis, 2015) as the
replicability rate of many fields appears to be alarmingly
low. As a result, large scale replication projects, where
original studies are selected and replicated as closely as
possible to the original procedures, have been conducted
in psychology (Open Science Collaboration, 2015), social
sciences (Camerer et al., 2018) and economics (Camerer
et al., 2016) among others. Replication success is usually
assessed using significance and p-values, compatibility
of effect estimates, subjective assessments of replication
teams and meta-analysis of effect estimates (e.g., in Open
Science Collaboration, 2015). The statistical evaluation of
replication studies is still generating much discussion and
new standards are proposed (e.g., in Patil, Peng and Leek,
2016, Ly et al., 2018, Held, 2020).

Yet before a replication study is analyzed, it needs to
be designed. While the conditions of the replication study
are ideally identical to the original study, the replication
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sample size stands out as an exception and requires further
consideration. Using the same sample size as in the origi-
nal study may lead to a severely underpowered replication
study, even if the effect θ̂o estimated in the original study
is the true, unknown effect size θ (Goodman, 1992). Stan-
dard power calculations using the effect estimate from the
original study as the basis for the replication study are
commonly used.

A major criticism of this method is that the uncertainty
accompanying this original finding is ignored and so the
resulting replication study is likely to be underpowered
(Anderson and Maxwell, 2017). In this paper, we pro-
pose alternatives based on predictive power and adapted
from Bayesian approaches to incorporate prior knowledge
to sample size calculation in clinical trials (Spiegelhalter,
Abrams and Myles, 2004).

In an era where an increasing number of replication
projects are being undertaken, optimal allocation of re-
sources appears to be of particular importance. Adaptive
designs are well suited for this purpose and their relevance
no longer needs to be justified, particularly in clinical tri-
als where continuing a study which should be stopped can
be a matter of life or death. Stopping for futility refers to
the termination of a trial when the data at interim indicate
that it is unlikely to achieve statistical significance at the
end of the trial (Snapinn et al., 2006). In contrast, stopping
for efficacy arises when the data at interim are so convinc-
ing that there is no need to continue collecting more data.
One approach for assessing efficacy and futility is called
stochastic curtailment (Halperin et al., 1982), where the
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conditional power of the study, given the data so far, is
calculated for a range of alternative hypotheses. Instead
of conditional power, predictive power can also be used to
judge if a trial should be continued (Herson, 1979). This
concept has been discussed in depth in Dallow and Fina
(2011) and Rufibach, Burger and Abt (2016), with an em-
phasis on the choice of the prior in the latter.

Lakens (2014) points out that sequential replication
studies could be an alternative to fixed sample size calcu-
lations. This approach has been adopted by Camerer et al.
(2018) in the Social Sciences Replication Project (SSRP),
a large-scale project aiming at evaluating the replicabil-
ity of social science experiments published between 2010
and 2015 in Nature and Science. A two-stage procedure
was used and 21 original studies have been replicated.
However, the sequential approach did not include a power
calculation at interim, only allowed for a premature stop-
ping for efficacy and did not mention any adjustment
on the threshold for significance. We try to fill this gap
by proposing different methods to calculate the interim
power, namely the power of a replication study taking into
account the data from an interim analysis. We argue that
predictive interim power is a useful tool to guide the deci-
sion to stop replication studies where the intended effect
is not present. Our framework only enables power calcu-
lation at a single interim analysis.

This paper is structured as follows: power calculations
for nonsequential (Section 2) and sequential (Section 3)
replication studies are presented, with a focus on compar-
ing conditional and predictive methods. Relevant proper-
ties of these methods are then illustrated using data from
the SSRP in Section 4. We close with some discussion in
Section 5.

2. NONSEQUENTIAL REPLICATION STUDIES

Suppose a study has been conducted in order to es-
timate an unknown effect size θ . We consider the one-
sample case throughout this paper but the results can also
be generalized to the case of two samples. The study pro-
duced a positive effect estimate θ̂o. In order to confirm
this finding, a replication study is planned. Let us assume
that the future data of the replication study are normally
distributed as follows,

Y1, . . . , Ynr

iid
∼ N

(
θ, σ 2)

,

where nr is the replication sample size and σ the known
standard deviation of one observation, assumed to be the
same for original and replication study. In the SSRP, as
well as in most replication projects, power calculations
for the replication studies are based on the original effect
estimate θ̂o. In order to incorporate the uncertainty of θ̂o

we use the following prior:

(1) θ ∼ N
(
θ̂o, σ

2
o = σ 2/no

)
,

centered around θ̂o and with variance inversely pro-
portional to the original sample size no (Spiegelhalter,
Abrams and Myles, 2004). Prior (1) may be too optimistic
in practice, where original effect estimates tend to be ex-
aggerated (Camerer et al., 2018). This issue and possible
solutions are discussed in the next section.

In what follows, the different formulas resulting from
the use of the prior (1) are described. This section is in-
spired by Section 6.5 in Spiegelhalter, Abrams and Myles
(2004) where Bayesian contributions to selecting the sam-
ple size of a clinical trial are studied. We adapt this
methodology to the replication framework and express the
power calculation formulas in terms of unitless quantities
(namely relative sample sizes and test statistics).

2.1 Methods

We differentiate between design and analysis prior,
both having an impact on the power calculation (O’Hagan
and Stevens, 2001), and present the different combina-
tions of priors in Table 1. Detailed derivations of the four
formulas can be found in the Supplementary Material A
(Micheloud and Held, 2022a, Sections 1.1–1.4).

A point prior at θ = θ̂o in the design corresponds to the
concept of conditional power (Spiegelhalter and Freed-
man, 1986). In contrast, the normal design prior (1) is
related to the concept of predictive power, which aver-
ages the conditional power over the possible values of the
true effect according to its design prior distribution. Al-
ternative names in the literature are assurance (O’Hagan,
Stevens and Campbell, 2005), probability of study suc-
cess (Wang et al., 2013) and Bayesian predictive power
(Spiegelhalter, Freedman and Blackburn, 1986). Condi-
tional and predictive power are usually accompanied by a
flat analysis prior, but can also be calculated assuming that
original and replication data are pooled (using the normal

TABLE 1
Methods of power calculations resulting from the different combinations of design and analysis priors

Design

Analysis Point prior θ = θ̂o Normal prior θ ∼ N(θ̂o, σ
2
o )

Flat prior Conditional Predictive
Normal prior θ ∼ N(θ̂o, σ

2
o ) Conditional Bayesian Fully Bayesian
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analysis prior (1)), resulting in the conditional Bayesian
power and the fully Bayesian power, respectively.

In practice, publication bias and the winner’s curse
often lead to overestimated original effect estimates
(Ioannidis, 2008, Button et al., 2013, Anderson and
Maxwell, 2017). Hence, prior (1) might be over-optimistic
and lead to underpowered replication studies. A simple
way to correct for this over-optimism is to multiply the
design prior mean θ̂o in (1) by a factor d between 0 and 1.
The corresponding shrinkage factor s = 1−d can be cho-
sen based on previous replication studies in the same field.
This is the approach considered in the SSRP and we ex-
pand on this in Section 4. More advanced methods using
empirical Bayes based power estimation (Jiang and Yu,
2016) and data-driven shrinkage (Pawel and Held, 2020)
are not considered here.

2.1.1 Conditional power. Conditional power is the
probability that a replication study will lead to a statis-
tically significant conclusion at the two-sided level α,
given that the alternative hypothesis is true (Spiegelhalter,
Abrams and Myles, 2004, Section 2.5). In the context of a
replication study, the alternative hypothesis is represented
by the effect estimate θ̂o from the original study.

Let zα/2 and �[·] respectively denote the α/2-quantile
and the cumulative distribution function of the standard
normal distribution. Conditional power is

CP = �

[
θ̂o

√
nr

σ
+ zα/2

]
.(2)

The required replication sample size nr can be obtained
by rearranging (2).

A key feature of our framework is that all power/sample
size formulas are expressed without absolute effect mea-
sures. Simple mathematical rearrangements produce an
expression which only depends on the original test statis-
tic to = θ̂o/σo = θ̂o

√
no/σ and the variance ratio c =

σ 2
o /σ 2

r which simplifies to the relative sample size c =
nr/no and represents how much the sample size in the
replication study is increased as compared to the one in
the original study. Formula (2) then becomes

CP = �[√cto + zα/2].(3)

This formula highlights an intuitive property of the condi-
tional power: the larger the evidence in the original study
(quantified by to) or the larger the increase in sample size
compared to the original study (represented by c), the
larger the conditional power of the replication study.

2.1.2 Predictive power. In order to incorporate the un-
certainty of θ̂o, the concept of predictive power is dis-
cussed (Spiegelhalter and Freedman, 1986). Its formula
is

PP = �

[√
no

no + nr

(
θ̂o

√
nr

σ
+ zα/2

)]
.(4)

The predictive power (4) tends to the conditional power
(3) as the original sample size no increases. Using the
unitless quantities to and c, the predictive power can be
rewritten as

PP = �

[√
c

c + 1
to +

√
1

c + 1
zα/2

]
.(5)

2.1.3 Fully Bayesian and conditional Bayesian power.
So far two power calculation methods where a flat anal-
ysis prior is used have been considered. This approach
corresponds to the two-trials rule in drug development,
which requires “at least two adequate and well-controlled
studies, each convincing on its own, to establish effective-
ness” (FDA, 1998, p. 3). In practice, this translates to two
studies with a significant p-value and an effect in the in-
tended direction.

An alternative approach for the analysis is to pool origi-
nal and replication data. This is similar to a meta-analysis
of original and replication effect estimates, as done in the
SSRP, for example. However, in order to ensure the same
evidence level as when original and replication studies are
analyzed independently, the corresponding two-sided sig-
nificance level α̃ = α2/2 should be used (Fisher, 1999,
Gibson, 2020).

The fully Bayesian power is calculated using the
prior (1) in both the design and the analysis. Using the
same prior beliefs in both stages is considered as the most
natural approach by some authors (e.g., in O’Hagan and
Stevens, 2001). The corresponding formula is

FBP = �

[√
c + 1

c
to +

√
1

c
zα̃/2

]
.(6)

Note that the fully Bayesian power is also a predictive
power as it incorporates the uncertainty of the original ef-
fect estimate θ̂o.

The last possible combination of design and analysis
priors leads to the conditional Bayesian power:

(7) CBP = �

[
c + 1√

c
to +

√
c + 1

c
zα̃/2

]
.

2.2 Properties

For fixed relative sample size c and two-sided level α,
all four formulas (3), (5), (6) and (7) react to an increase
in original test statistic to with a monotone increase in
power. However, the original result cannot be changed
and it is more realistic to study the power when varying
the relative sample size c for fixed original test statistic
to instead. Consider two original studies with p-values
0.046 and 0.005. These p-values correspond to the origi-
nal studies by Duncan, Sadanand and Davachi (2012) and
Shah, Mullainathan and Shafir (2012) in the SSRP dataset
and are used in the following for illustrative purposes.
Derivations of the properties described in this section can
be found in the Supplementary Material A (Micheloud
and Held, 2022a, Sections 1.5–1.6).
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2.2.1 Conditional vs. predictive power. The power
obtained with predictive methods is always closer to
50% than the power obtained with conditional methods
(Spiegelhalter, Abrams and Myles, 2004, Grouin et al.,
2007, Dallow and Fina, 2011). In practice, power is typi-
cally larger than 50% and this implies that CP (3) is larger
than PP (5); and CBP (7) is larger than FBP (6).

Furthermore, it can be shown that CP and PP are both
equal to 50% if the relative sample size is

(8) c = z2
α/2/t2

o ,

the squared α/2-quantile of the normal distribution di-
vided by the squared test statistic from the original study.
Equation (8) implies that the larger the evidence in the
original study (quantified by to), the smaller the relative
sample size c where CP and PP curves intersect.

This can be observed in Figure 1, where the relative
sample size at the intersection of the CP and PP curves
is closer to zero in the replication of a convincing origi-
nal study (po = 0.005, c = 0.48) than in the replication of
a borderline original study (po = 0.046, c = 0.96). Like-
wise, FBP and CBP are crossing at a power of 50% with
corresponding relative sample size

(9) c = z2
α̃/2/t2

o − 1.

2.2.2 Predictive power cannot always reach 100%.
Unlike CP (3) which always reaches 100% for a suffi-
ciently large replication sample size, PP (5) has an asymp-
tote at 1 −po/2. This means that the more convincing the
original study, the closer to 100% the PP of an infinitely
large replication study is. In a sense, the original result pe-
nalizes the predictive power. However, this penalty is not
very stringent, as replication of an original study with a
two-sided p-value of 0.05 would still be able to reach a PP
of 97.5% for a sufficiently large replication sample size.

This property also applies to the FBP and can be observed
in Figure 1 where the horizontal black line indicates the
asymptote 1 − po/2.

2.2.3 Pooling original and replication studies. For a
borderline significant original study (e.g., po = 0.046 in
Figure 1), FBP (6) and CBP (7) are, respectively, always
smaller than PP (5) and CP (3). In contrast, when the orig-
inal study is more convincing (e.g., po = 0.005 in Fig-
ure 1), FBP is larger than PP (respectively, CBP larger
than CP) for some values of c. However, if po < α̃, the
level required at the end of the replication study (typically
α̃ = 0.00125), FBP and CBP converge to 100% for c → 0,
decrease down to

(10) �
[√

t2
o − z2

α̃/2

]
for increasing c and then increase to 1 − po/2 (FBP) or
100% (CBP). A highly convincing original study will thus
always have FBP and CBP very close to 100% indepen-
dently of the sample size. This implies that a replication
may not be required at all, a clear disadvantage of pool-
ing original and replication studies instead of considering
them independently.

3. SEQUENTIAL REPLICATION STUDIES

In Section 2, power calculations are performed before
any data have been collected in the replication study. This
framework is extended in this section and allows power
(re)calculation at an interim analysis, after some data have
been collected in the replication study already. The in-
terim power is defined as the probability of statistical sig-
nificance at the end of the replication study given the
data collected so far. The incorporation of prior knowl-
edge into interim power has been studied in Spiegelhalter,
Abrams and Myles (2004), Section 6.6, and we adapt this

FIG. 1. CP, PP, FBP and CBP as a function of the relative sample size c for two original studies with po = 0.046 (left) and po = 0.005 (right) at
the two-sided α = 5% level, so α̃ = 0.00125. The vertical grey line corresponds to the intersection of CP and PP curves as calculated in (8), and
the vertical black line to the intersection of FBP and CBP as in (9). The horizontal black line indicates the asymptote 1 − po/2 of PP and FBP.
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approach to the case where prior information refers to a
single original study. Moreover, the power calculation for-
mulas are expressed in terms of unitless quantities (rela-
tive sample sizes and test statistics) in the following. It is
well known from the field of clinical trials that the maxi-
mum sample size (if the trial has not been stopped at in-
terim) increases with the number of planned interim anal-
yses (Matthews, 2006, Section 8.2.1). In order to maintain
a given power, even one interim analysis requires a larger
maximum sample size than for a trial with a fixed size and
the calculation of the replication sample size should take
this into account.

3.1 Methods

In addition to the point prior θ = θ̂o and the normal
prior (1), the new framework enables the specification of
a flat design prior. Table 2 shows the different types of in-
terim power calculations that are investigated in this sec-
tion. Detailed derivations of the three formulas are avail-
able in the Supplementary Material A (Micheloud and
Held, 2022a, Sections 2.1–2.3).

Calculating the interim power to detect the effect esti-
mate from the original study ignores the uncertainty of the
original result. This corresponds to the conditional power
in Table 2. Uncertainty of the original result can be taken
into account when recalculating the power at an interim
analysis, turning the conditional power into a predictive
power. This requires the selection of a prior distribution
for the true effect, which is updated by the data collected
so far in the replication study. The prior distributions dis-
cussed here are the normal prior (1) (leading to the in-
formed predictive power) and a flat prior (leading to the
predictive power). The conditional power is then averaged
with respect to the posterior distribution of the true effect
size, given the data already observed in the replication
study. A pooled analysis of original and replication data
can also be considered in this framework but is omitted
here.

Let θ̂i be the effect estimate at interim and σ 2
i = σ 2/ni

the corresponding variance, with ni the sample size at in-
terim. The sample size that is still to be collected in the
replication study is denoted by nj and the total replica-
tion sample size is thus nr = ni + nj . The interim power
formulas can be shown to only depend on the original and
interim test statistics to and ti = θ̂i/σi , the relative sam-
ple size c = nr/no and the variance ratio f = σ 2

r /σ 2
i =

ni/nr , the fraction of the replication study already com-
pleted.

3.1.1 Conditional power at interim. The conditional
power at interim is the interim power to detect the effect
θ = θ̂o. It can be expressed as

CPi = �

[√
c(1 − f )to +

√
f

1 − f
ti

+
√

1

1 − f
zα/2

]
.

(11)

In the particular case where no data has been collected yet
in the replication study (f = 0), the CPi (11) reduces to
the CP (3). Interim power can also be calculated to de-
tect θ = θ̂i , this is however not recommended (Bauer and
König, 2006, Kunzmann et al., 2020).

3.1.2 Informed predictive power at interim. The in-
formed predictive power at interim is the predictive in-
terim power using the design prior (1). It can be formu-
lated as

IPPi = �

[√
c(1 − f )

(cf + 1)(1 + c)
to

+
√

f (1 + c)

(1 − f )(cf + 1)
ti(12)

+
√

cf + 1

(1 + c)(1 − f )
zα/2

]
.

In the case of f = 0 (no data collected in the replication
study so far), the IPPi (12) reduces to the PP (5). By con-
sidering the original result but also its uncertainty, the pre-
dictive power at interim is a compromise between consid-
ering only the original effect estimate (CPi) and ignoring
the original study completely (PPi).

3.1.3 Predictive power at interim. The predictive
power at interim is the predictive interim power using
a flat design prior. In other words, the results from the
original study are ignored. It is expressed as

PPi = �

[√
1

1 − f
ti +

√
f

1 − f
zα/2

]
.(13)

Note that PPi (13) corresponds to FBP (6) provided that
the original study in FBP formula is considered as the

TABLE 2
Methods of interim power calculations resulting from the different combinations of design and analysis priors

Design

Analysis Point prior θ = θ̂o Normal prior θ ∼ N(θ̂o, σ
2
o ) Flat prior

Flat prior Conditional Informed predictive Predictive
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interim study. This illustrates the dependence of original
and replication studies when a normal prior is used in the
analysis.

3.2 Properties

Theoretical and specific properties of the conditional,
informed predictive and predictive power at interim are
discussed in this section; see Supplementary Material A
(Micheloud and Held, 2022a, Sections 2.4–2.7) for addi-
tional details and derivations.

3.2.1 Conditional vs. predictive power. The power at
interim, as compared to study start, involves two addi-
tional parameters, namely the test statistic ti from the in-
terim analysis and the fraction f of the replication study
already conducted. It is therefore not straightforward to
compare the different methods in terms of which one re-
sults in a larger power. Comparison is facilitated if cer-
tain assumptions are made. Consider any combination of
a significant original result, a nonsignificant interim re-
sult and a replication sample size at least twice as large
as the original sample size. This translates to to > z1−α/2,
ti < z1−α/2 and c ≥ 2 in formulas (11), (12) and (13). Un-
der these assumptions and with f > 0.25, the CPi is al-
ways larger than the IPPi, which is always larger than the
PPi. However, one has to be careful as these conditions
are sufficient, but not necessary for obtaining this order.

3.2.2 Weights given to original and interim results.
Equations (11), (12) and (13) can be expressed as �[x]
where x is a weighted average of to, ti and zα/2 with
weights wo, wi and wα , say. The weights wo and wi de-
pend on the relative sample size c and the fraction f of
the replication study already completed.

In the CPi formula (11), an increase in c leads to a
monotone increase in wo and does not affect wi . In other
words, the weight given to the original result in the CPi
becomes larger if the relative sample size c increases. Fur-
thermore, the larger the fraction f of the replication study
already completed, the less weight is given to the origi-
nal result and conversely, the more weight to the interim
result.

In the IPPi formula (12), an increase in f leads to a
decrease in wo and an increase in wi . Only if the interim
analysis takes place early will the original result have a
greater weight than the interim result in the calculation of
the IPPi.

In the PPi formula (13), no weight is given to the orig-
inal result and the weight wi given to interim results in-
creases when f increases.

3.2.3 A power of 100% cannot always be reached with
the predictive methods. Considering that an interim anal-
ysis has been conducted, ni and ti are fixed, and the only
parameter that can vary is the sample size nj still to be
collected in the replication study. Increasing this sample
size results in an increase of the relative sample size c

and a decrease of the fraction f of the replication study
already completed. If nj is large enough, the CPi (11)
reaches 100%. In contrast, the asymptotes of IPPi (12)
and PPi (13) are penalized by the original and/or interim
results. The larger the evidence in the original study and at
interim (represented by to and ti , respectively), the larger
the asymptote of the IPPi. The asymptote of the PPi, on
the other hand, is 1−pi/2. This last property is explained
in Dallow and Fina (2011), Section 4, and the asymp-
totes can be visualized in Figure 2 for an original study
with po = 0.005 and two hypothetical interim results:

FIG. 2. CPi, IPPi and PPi as a function of the sample size nj still to be collected in the replication study (or equivalently, as a function of the
fraction of the replication study still to be completed (1 − f ) and the relative sample size c) for an original study with po = 0.005 and with two
hypothetical interim p-values pi = 0.04 (left) and pi = 0.5 (right). The two-sided level α is 0.05. Horizontal dashed lines represent the asymptotes
of IPPi and PPi and the horizontal dotted line represents the minimum PPi.
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pi = 0.04 and pi = 0.5. On the left panel, the asymptotes
of CPi, IPPi and PPi are all close to 100% as original and
interim p-values are fairly small. A large increase in in-
terim p-value hardly has an effect on the asymptote of the
IPPi (from 99.98% to 99.5%, right panel) but results in
a dramatic decrease of the asymptote of the PPi and re-
markably, the maximum PPi achievable for a study with
an interim p-value of 0.5 is only 75%.

3.2.4 Nonmonotonicity property of power. If the two-
sided interim p-value is not significant (pi > α), the in-
terim power with all three methods behaves in an expected
way: it increases with increasing sample size nj . How-
ever, this property breaks when pi < α. In this situation,
the power assuming no additional subject to be added
(f = 1) is 100%, declines with increasing nj (decreasing
f ) and then increases. For example, the minimum predic-

tive power at interim can be shown to be �[
√

t2
i − z2

α/2]
which means that the PPi of any replication study with a
significant interim result will never be smaller than 50%.
This property can be observed in Figure 2 (left panel)
where the PPi cannot be smaller than 73%. Dallow and
Fina (2011) explain this characteristic as follows: “Intu-
itively, if the interim results are very good, any additional
subject can be seen as a potential threat, able to damage
the current results rather than a resource providing more
power to our analysis.”

4. APPLICATION

Twenty-one significant original findings were repli-
cated in the SSRP and a two-stage procedure was adopted.
In stage 1, the replication studies had 90% power to de-
tect 75% of the original effect estimate. Data collection
was stopped if a two-sided p-value < 0.05 and an effect
in the same direction as the original effect were found. If
not, data collection was continued in stage 2 to have 90%
power to detect 50% of the original effect estimate for
the first and second data collections pooled. The shrink-
age factor s was chosen to be 0.5 as a previous replication
project in the psychological field (Open Science Collabo-
ration, 2015) found replication effect estimates on average
half the size of the original effect estimates. Stages 1 and
2 can be considered as two steps of a sequential analysis,
with an interim analysis in between. The analysis after
stage 1 will be called the interim analysis while the final
analysis will refer to the analysis based on the pooled data
from stages 1 and 2.

The complete SSRP dataset with extended informa-
tion is available at https://osf.io/pfdyw/. The effects are
given as correlation coefficients, making them easily in-
terpretable and comparable. Moreover, the application of
Fisher’s z transformation z(r) = tanh−1(r) to the corre-
lation coefficients justifies an asymptotic normal distribu-
tion and the standard error of the transformed coefficients

becomes a function of the effective sample size n − 3
only, se(z) = 1/

√
n − 3. In this dataset, original effects

are always positive. A ready-to-use dataset SSRP can be
found in the package ReplicationSuccess, avail-
able at https://r-forge.r-project.org/projects/replication/.

4.1 Descriptive Results

The results are displayed in Figure 3. Twelve studies
were significant at interim with an effect in the correct di-
rection but by mistake only eleven were stopped. Out of
the ten studies that were continued, only two showed a
significant result in the correct direction at the final anal-
ysis. The study that was wrongly continued turned out to
be nonsignificant at the final analysis. The effect of pub-
lication bias is clearly seen: original effect estimates are
larger than the corresponding replication effect estimates
for 19 out of the 21 studies and are on average twice as
large.

4.2 Power Calculations

The methods described in Sections 2 and 3 are used to
calculate the power of the 21 replication studies before the
onset of the study and at the interim analysis. Because our
calculations are based on Fisher’s z-transformed correla-
tion coefficients, the effective sample sizes are used. The
relative sample size is then c = (nr − 3)/(no − 3) and
the fraction f of the replication study already completed
f = (ni − 3)/(nr − 3). A two-sided α = 5% level is used
as in the original paper, so α̃ = 0.00125 in the calculation
of FBP and CBP.

4.2.1 At the replication study start. We computed the
CP, PP, FBP and CBP of the 21 replication studies. The

FIG. 3. Original effect estimate vs. replication effect estimate (on the
correlation scale). Replications which were not pursued in stage 2 are
included with the results from stage 1. Shape and color of the point
indicate whether the study was stopped due to a significant result in
the correct direction at interim (green triangle), was significant in the
correct direction at the final analysis (red circle) or was not signifi-
cant at the final analysis (black square). The diagonal line indicates
replication effect estimates equal to original effect estimates.

https://osf.io/pfdyw/
https://r-forge.r-project.org/projects/replication/
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FIG. 4. CP, PP, FBP and CBP of the 21 studies of the SSRP at level α = 5% (so α̃ = 0.00125 for FBP and CBP) using a shrinkage factor s of
0.25 in the calculations. Each circle represents a study and the lines link the same studies.

replication sample size that we considered in the calcula-
tions is the one used by the authors of the SSRP in stage 1,
ignoring stage 2. To be consistent with the procedures of
the SSRP, a shrinkage factor s of 0.25 was used in the cal-
culations. Results can be found in Figure 4, where some
properties discussed in Section 2.2 are illustrated. CP is
larger than PP for all studies, and similarly CBP is larger
than FBP as expected (see Section 2.2.1). Furthermore, it
can be observed that for some studies FBP is larger than
PP, while it is the opposite for some other studies. This
depends on the p-value po from the original study and
the relative sample size c as explained in Section 2.2.3.
The same applies to CP and CBP but cannot be directly
observed in Figure 4.

4.2.2 At the interim analysis. Replication studies
which did not reach significance after the first data col-
lection were continued. We have selected these stud-
ies and calculated their interim power with the differ-
ent methods (see Table 3). These studies have a sample

size substantially larger in the replication as compared to
the original study (large c). Moreover, the interim anal-
ysis took place in the second quarter of the replication
study (0.3 ≤ f ≤ 0.47) and by selection, they all have
a nonsignificant interim p-value (except the study from
Ackerman, Nocera and Bargh (2010) which was con-
tinued by mistake). Excluding this study, they all ful-
fill the sufficient conditions mentioned in Section 3.2.1
and follow the order CPi > IPPi > PPi. This also holds
for the particular study with a significant interim re-
sult as the corresponding relative sample size c is large
(c = 11.62).

The CPi is remarkably large for all studies, even for
the five studies where the interim effect estimate is in the
opposite direction as the original estimate as the weight
given to the significant original result is consequent due
to the large relative sample size c (see Section 3.2.2). In
contrast, more weight is given to the interim as compared
to the original result in the IPPi formula, making the cor-
responding IPPi values more sensible. If a futility bound-

TABLE 3
CPi, IPPi and PPi of the ten studies that were continued including the original, interim and replication two-sided p-values and effect estimates,

the relative sample size c and the fraction f of the replication study already completed

Original Interim Interim power Replication

Study po ro f pi ri CPi IPPi PPi c pr rr

Duncan 0.005 0.67 0.37 0.29 0.18 100.0 74.6 43.4 7.42 0.00001 0.44
Pyc 0.023 0.38 0.43 0.09 0.15 100.0 85.3 71.0 9.18 0.009 0.15
Ackerman 0.048 0.27 0.43 0.02 0.14 100.0 95.0 90.3 11.69 0.125 0.06
Rand 0.009 0.14 0.47 0.37 0.03 99.8 51.9 27.0 6.27 0.234 0.03
Ramirez 0.000008 0.79 0.30 0.72 −0.08 100.0 61.4 4.2 4.47 0.390 −0.10
Gervais 0.029 0.29 0.42 0.41 −0.05 97.5 1.9 0.3 9.78 0.415 −0.04
Lee 0.013 0.39 0.42 0.45 −0.07 97.7 3.1 0.4 7.65 0.435 −0.05
Sparrow 0.002 0.37 0.44 0.27 0.11 99.7 74.1 40.1 3.50 0.451 0.05
Kidd 0.012 0.27 0.40 0.27 −0.07 98.9 1.6 0.1 8.57 0.467 −0.03
Shah 0.046 0.27 0.45 0.15 −0.09 87.0 0.1 0.0 11.62 0.710 −0.02
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ary between 10% and 30% had been used (as in DeMets
(2006)), four out of the eight studies which failed to repli-
cate at the final analysis would have been stopped at in-
terim based on the IPPi values. Surprisingly, the replica-
tion study of Ramirez and Beilock (2011) presents a rela-
tively large IPPi (61.4%) although the interim result goes
in the opposite direction as the original result. This is due
to the very small original p-value. The PPi of the same
study is considerably smaller (4.2%) since the original re-
sult does not influence the power with this method. Fur-
thermore, six out of eight studies which failed to replicate
at the final analysis would have been stopped at interim
if futility stopping had been decided based on a PPi of
less than 30%. Significant interim results lead to large PPi
values (see Section 3.2.4), and that can observed for the
study that was incorrectly continued.

5. DISCUSSION

Conditional power calculations appear to be the norm in
most replication projects. In this paper, we have drawn at-
tention to notable shortcomings of this approach and out-
lined the rationale and properties of predictive power. We
encourage researchers to abandon conditional methods in
favor of predictive methods which make a better use of
the original study and its uncertainty.

Furthermore, as many replications are being conducted
and only a fraction confirms the original result, we ar-
gue for the necessity of sequentially analyzing the re-
sults. With this in mind, we encourage the initiative from
Camerer et al. (2018) to terminate some replication stud-
ies prematurely based on an interim analysis. However,
their approach only enables efficacy stopping. We propose
to use interim power to judge if a replication study should
be stopped for futility. Interim analyses can help to save
time and resources but also raise new questions with re-
gard to the choice of prior distributions. We have shown
using studies from the SSRP that different design priors
lead to very different power values and by extension to
different decisions. Conditioning the power calculations
at interim on the original results is even more unreason-
able than at the study start and leads to very large power
values given a significant original result, even if interim
results suggest evidence in the opposite direction. We rec-
ommend the use of IPPi and PPi to make futility deci-
sions. A 30% futility boundary is sometimes employed in
clinical trials and has proved to be reasonable in the SSRP.
Efficacy stopping based on interim power is known to in-
flate the type-I error rate (Jennison and Turnbull, 1999,
Chapter 10). We only consider futility stopping as this is-
sue does not apply here (Lachin, 2005).

Some limitations should be noted. First, the paper
discusses power calculations before the onset of the
study and at an interim analysis separately. However, the
planned interim analysis has an impact on power at study

start and sample size adjustments are necessary (Wassmer
and Brannath, 2016, Section 2.1.2). This is nevertheless
rarely done in current replication projects such as SSRP.
Second, while the ICH E9 ‘Statistical Principles for Clin-
ical Trials’ (ICH E9 Expert Working Group, 1999) rec-
ommends blinded interim results, our data at interim are
assumed to be unblinded. This is not a problem for the
one-sample case but becomes an issue when we want to
compare two groups. Such a situation would require an
Independent Data Monitoring Committee to prevent the
replication study from being biased (Kieser and Friede,
2003). Third, the assumption of normally distributed ob-
servations is made.

Further research will focus on extending this frame-
work to multiple interim analyses in a replication study
and to sequentially conducted replication studies. It will
also be of interest to apply the concept of interim power
discussed in Section 3 to the reverse-Bayes assessment of
replication success (Held, 2020).

SOFTWARE

Software for these power calculations can be found
in the R-package ReplicationSuccess, available at
https://r-forge.r-project.org/projects/replication/. An ex-
ample of the usage of this package is given in the Sup-
plementary Material B (Micheloud and Held, 2022b).
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