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Abstract: We consider the estimation of the global mode of a density
under some decay rate condition around the global mode. We show that
the maximum of a histogram, with proper choice of bandwidth, achieves
the minimax rate that we establish for the setting that we consider. This is
based on knowledge of the decay rate. To address the situation where the
decay rate is unknown, we propose a multiscale variant consisting in the
recursive refinement of a histogram. We show that this variant is minimax
adaptive. These methods run in linear time, and we prove in an appendix
that this is best possible: There is no estimation procedure running in
sublinear time that achieves the minimax rate.
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1. Introduction

The global mode of a bounded density f on R
d is simply argmaxx∈Rd f(x),

which we assume here to be a singleton. It is a particularly important param-
eter when the density is assumed to be (strongly) unimodal — in which case
it is simply referred to as the mode. In what follows, we use ‘mode’ to refer to
the global mode, even when the density may have multiple local maxima. The
problem of estimating the mode of a density dates back to Parzen (1962), who
considered a plug-in estimator consisting first in estimating the entire density
by kernel density estimation — a method which had been proposed by Rosen-
blatt (1956) only a few years earlier — and then in locating the mode of that
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density estimate. The problem has received a considerable amount of attention
since then, partly because it is a prototypical example of a nonparametric point
estimation problem — indeed, one does not need to work through a density es-
timator to estimate other location parameters such as the mean or median. We
refer the reader interested in this long and rich history to a recent survey paper
by Chacón (2020), where the estimation of multiple local modes is also discussed
in light of its intimate connection to the problem of clustering (Hartigan, 1975).

Although a number of methods have been proposed in the literature, Parzen’s
approach and its close variants appear to be the most popular and have been
thoroughly studied over the years. Parzen (1962) proved that the estimator was
asymptotically normal under some conditions. These conditions were refined
over the years, including in a paper by Chernoff (1964) who looked at using the
uniform kernel (he calls the resulting kernel density estimator “naive”), which
does not satisfy the conditions imposed in (Parzen, 1962). The asymptotic nor-
mality of the kernel density plug-in estimator was extended to the multivariate
setting by Konakov (1973) and Samanta (1973), and, much later, by Mokkadem
and Pelletier (2003), who also established various laws of the iterated logarithm.

In this paper we study a closely related method which is based on histograms
rather than kernel density estimates. Although the method cannot be said to
be really new, it enjoys a number of desirable properties. In the process of es-
tablishing and discussing these properties, we also consider questions of conver-
gence rates, computational complexity, and parameter tuning (the bandwidth
in Parzen’s method).

1.1. Working assumptions

Our basic assumption is that the underlying density behaves like the power
function with exponent β near its mode and that it is bounded away from its
maximum elsewhere. Specifically, we assume that f has a unique mode at x0,
and that, for some 0 < c0 < C0, h0 > 0 and β > 0,

f(x0)−C0‖x−x0‖β ≤ f(x) ≤ f(x0)− c0‖x−x0‖β , when ‖x−x0‖ ≤ h0, (1)

f(x) ≤ f(x0)− c0h
β
0 , when ‖x− x0‖ ≥ h0. (2)

For convenience, we will also assume that

f has compact support. (3)

1.2. Convergence rates

Rates of convergence are already implied in (Parzen, 1962), and were subse-
quently studied under various assumptions on the underlying density in (Abra-
ham, Biau and Cadre, 2004; Donoho and Liu, 1991; Eddy, 1980; Romano, 1988a;
Vieu, 1996), as well as the other publications on the topic mentioned so far. For
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example, when the density is twice differentiable with bounded second deriva-
tive, Parzen’s estimator with optimal choice of bandwidth achieves the rate
O(n−1/5). This was shown to be minimax optimal by Donoho and Liu (1991)
under the same conditions as ours displayed in Section 1.1. Essentially, the den-
sity is assumed to have a unique global mode and to behave quadratically in
a neighborhood of that mode. See also the lower bound derived by Tsybakov
(1990), although the setting is a little bit different. Romano (1988a) derives
local minimax rates with respect to a neighborhood around the density defined
by densities that are close up to a certain order: if the underlying density is
Cp then the neighborhood consists of densities which are themselves and their
derivatives up to order p − 1 pointwise close in a neighborhood of the mode.
Actual minimax rates are derived by Klemelä (2005) under similar smoothness
assumptions. As it turns out, assuming that the density is log-concave in ad-
dition to twice differentiable does not change the minimax rate of convergence
(Balabdaoui, Rufibach and Wellner, 2009).

Contribution 1. We extend the minimax result of Donoho and Liu (1991)
to the general situation where the density behaves like a power function with
arbitrary exponent β > 0 in a neighborhood of its mode. We complement this by
showing that the methods we propose achieve the minimax rate.

Confidence intervals or regions for the mode are discussed in a number of
publications (Balabdaoui, Rufibach and Wellner, 2009; Doss and Wellner, 2019;
Dümbgen and Walther, 2008; Eckle et al., 2018; Genovese et al., 2016; Romano,
1988b; Rufibach and Walther, 2010) under various settings, and they are at least
implicit in the papers mentioned earlier discussing the asymptotic normality of
the mode, since such an asymptotic limit implies an asymptotically valid confi-
dence region (most often an ellipsoid) when the scale parameters are estimated
by plug-in.

1.3. Computational complexity

The main reason we work with a histogram rather than a kernel density esti-
mator is computational ease: the maximizer of a histogram can be computed in
(average) linear time, both in the dimension and the sample size.

The question of computational complexity has received some attention and
has led to variants such as that of Abraham, Biau and Cadre (2003) who suggest
maximizing a kernel density estimator among the sample points, thus avoiding
a possibly costly grid search. This might also be a motivation behind some
proposals based on nearest neighbors (or spacings in dimension one) as presented
in (Dalenius, 1965; Dasgupta and Kpotufe, 2014; Sager, 1978; Venter, 1967).
Gradient-based estimates such as the mean-shift algorithm of Fukunaga and
Hostetler (1975) and the closely related procedure proposed by Tsybakov (1990)
may also have a computational advantage over a grid search approach depending
on the refinement of the grid and the number of iterates.

Contribution 2. The methods we propose achieve the minimax estimation rate
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while having linear computational complexity. We show that this is best possible
in the sense that no method with sublinear computational complexity can achieve
the minimax rate.

Remark 1. As a reviewer pointed out, unless the number of points is gigantic, in
practice the computational burden of locating a mode is typically not a concern.
This is true unless the operation needs to be repeated many times, perhaps in
the context of a resampling approach used to provide a confidence interval for
the mode.

1.4. Parameter tuning

Parzen’s method requires a choice of bandwidth. Most of the effort in this direc-
tion has been to optimize the accuracy of estimating the density itself and not so
much the mode. For example, one can use cross-validation to choose the band-
width with the intention of minimizing some measure of estimation error for
the density — see (Arlot and Celisse, 2010) and references therein — and then
proceed with Parzen’s approach, meaning compute the kernel density estimate
with this choice of bandwidth and locate the mode of that estimate. However,
in our setting where we impose a condition on the behavior of the density only
in a neighborhood of its mode, it is not at all clear that such an estimator
would achieve the minimax rate. It turns out that it does in a setting where
the density is assumed twice differentiable everywhere and with strictly negative
second derivative at its mode. Balabdaoui, Rufibach and Wellner (2009) operate
under a different global assumption, that the density is log-concave. A maxi-
mum likelihood estimator exists under this so-called ‘shape constraint’ alone,
and its mode is shown to be minimax optimal under the additional assumption
that the density is twice differentiable at its mode. Klemelä (2005) approaches
the problem using (and extending) Lepski’s method to select the kernel density
estimator bandwidth but tailored to the estimation of the mode. The perfor-
mance rate of the corresponding procedure is established and shown to match
the minimax lower bound also derived in the paper for this adaptive setting.
This is done assuming that the density is smooth near its mode.

The problem of selecting a tuning parameter for the estimation of a mode
is otherwise addressed via testing for the significance of modes. This is done in
a number of papers (Chacón and Duong, 2013; Duong et al., 2008; Genovese
et al., 2016; Godtliebsen, Marron and Chaudhuri, 2002; Rufibach and Walther,
2010; Silverman, 1981). This is closely related to the problem of testing for
unimodality. We refer the reader to additional references in (Eckle et al., 2018)
where that connection is made.

Contribution 3. We propose a parameter-free method that operates in linear
time and achieves the non-adaptive minimax rate in our setting. The method is
multiscale in nature and performs some sort of bisection search.

Our approach has antecedents. Indeed, Robertson and Cryer (1974) describe
a method that, in dimension one, iteratively focuses on the shortest interval with
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a certain number of data points, with that number decreasing at a certain rate.
The method is shown to be consistent under some mild conditions. Sager (1979)
considers a multivariate version based on convex sets. The method is shown
to be consistent, and a (suboptimal) rate of convergence is derived in the one-
dimensional setting. Devroye (1979) discusses a method based on kernel density
estimates at various bandwidth sizes. The method is shown to be consistent but
no rate of convergence is provided.

1.5. Content

In Section 2 we consider the situation where the behavior of the density near
its mode is known, meaning that the constants appearing in Section 1.1 are
known. We propose a method based on computing a histogram and locating
the bin with maximum count, whose performance we establish. We also state
a minimax lower bound for this setting, which matches the performance of our
method up to a multiplicative constant. In Section 3 we consider the situation
where the behavior of the density near its mode is as described in Section 1.1,
but the constants introduced there are unknown. We propose a form of recursive
partitioning, which we show achieves the minimax rate established in Section 2,
meaning that the method does as well (up to a multiplicative constant) as an
optimal method with oracle knowledge of the behavior of the density in the
vicinity of its mode.

1.6. Notation

Here and elsewhere in the paper, we work with the supnorm, ‖x‖ := maxi |xi|
when x = (x1, . . . , xd). This is really without loss of generality as we assume
the dimension d to be fixed throughout. (For the problem of estimating a den-
sity mode in the nonparametric setting of (1)-(2) there is a standard curse of
dimensionality.)

2. Known behavior near the mode: monoscale approach

In this section we assume that we know the parameters describing (in fact,
constraining) the behavior of the density, specifically, the constants c0, C0, h0, β
in (1) and (2). (The density f and its mode x0 remain, of course, unknown.)
This assumption is rather unrealistic in practice, but it is a good place to start,
with the question: What would we do, and how well would we do, if we knew
these constants?

With knowledge of these constants, we propose a very simple method, perhaps
the simplest one can think of, which effectively amounts to building a histogram
and returning the bin with the largest count. The method is obviously very
close to a Parzen’s method. The histogram construction is apparently cruder
than its smoother kernel density estimate analog, but both methods achieve the
same performance rate and the histogram has the advantage of being faster to
compute.
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2.1. Method

The method we have in mind is very simple: It amounts to partitioning the space
into bins of equal size and simply returning the location of the bin with the
largest count. We represent a bin by its leftmost point, although other choices
(e.g., midpoint) are possible. The bin size needs to be chosen appropriately,
based on the behavior of the density near its mode, in order to achieve the
minimax rate. The method is compactly described in Algorithm 1. Despite what
is hinted at in the literature, the algorithm clearly runs in O(dn) time if we loop
over the sample rather than loop over the bins.

Algorithm 1 Mono-scale Mode Hunting

Input: point set x1, . . . , xn in R
d (assumed drawn iid from a density), bin size h

Output: a point x̂ (meant to estimate the mode of the underlying density)

Create a sparse array of bin counts, where BinCount(k) for k ∈ Z
d stores the number of

points in the hypercube [kh, (k + 1)h), with all the counts initialized to 0
For i = 1, . . . , n, store ki = floor(xi/h) and update BinCount(ki) ← BinCount(ki) + 1

Identify k̂ := argmaxi=1,...,n BinCount(ki)

Return x̂ := k̂h

We quantify the performance of this method by means of the following prob-
abilistic result.

Theorem 1. There is a constant A > 0 depending on the constants in (1) and
(2) such that the mode estimator returned by Algorithm 1 is within distance Ah
of the true location of the mode with probability at least 1−A exp(−nhd+2β/A).

Proof. Since f is assumed to be compactly supported, it is enough to establish
the result when the bin size h is small, and in particular we may take it sub-
stantially smaller than h0. Also, since 1−A exp(−1/A) < 0 for A large enough,
it suffices to establish the result when nhd+2β ≥ 1, which we assume henceforth.
Below A1, A2, . . . are constants that do not depend on n or h.

Define

pk :=

∫
[kh,(k+1)h)

f(x)dx, k ∈ Z
d,

which is the probability of one draw from f falling in the bin [kh, (k + 1)h).
Also, for a set S ⊂ R

d, let N(S) denote the number of data points in S, namely,
N(S) := #{i : Xi ∈ S}. For S measurable, we have that N(S) is binomial
with parameters n and

∫
S f(x)dx. We also let Nk be short for N([kh, (k+1)h)),

which is the count for bin k.
At the mode. First, let’s consider what happens at the mode. Let k0 =

floor(x0/h) so that [k0h, (k0 + 1)h) is the bin that contains the mode. Based
on (1) and the fact that ‖x− x0‖ ≤ h ≤ h0 for all x in that bin, we have

pk0 =

∫
[k0h,(k0+1)h)

f(x)dx
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≥
∫
[k0h,(k0+1)h)

(f(x0)− C0‖x− x0‖β)dx

= f(x0)h
d − C0

∫
[k0h,(k0+1)h)

‖x− x0‖βdx

≥ f(x0)h
d − C0

∫
[k0h,(k0+1)h)

‖x− k0h‖βdx

= f(x0)h
d − C1h

d+β , where C1 := C0

∫
[0,1)d

‖x‖βdx.

Hence, Nk0 is stochastically larger than the binomial distribution with parame-
ters n and p′k0

:= f(x0)h
d−C1h

d+β , assuming (as we do) that h is small enough
that p′k0

> 0. Applying Bernstein’s inequality, we thus establish

P
(
Nk0 > np′k0

− s
√

nf(x0)hd
)
≥ 1− exp

(
− 1

4 (s
2 ∧ s

√
nf(x0)hd)

)
,

when h is small enough that f(x0)h
d ≤ 1/2. Here by choosing s such that

s
√

nf(x0)hd = C1h
d+βn, and given that we assume that nhd+2β ≥ 1, we find

that

Nk0 > τ := nf(x0)h
d − 2nC1h

d+β , (4)

with probability at least 1− exp(−nhd+2β/A0).
Away from the mode. We now turn to a bin away from the bin containing the

mode. Based on (1)-(2), we have

pk =

∫
[kh,(k+1)h)

f(x)dx

≤
∫
[kh,(k+1)h)

(
f(x0)− c0(‖x− x0‖ ∧ h0)

β
)
dx

= f(x0)h
d − c0

∫
[kh,(k+1)h)

(‖x− x0‖ ∧ h0)
βdx

≤ f(x0)h
d − c0((‖k − k0‖ − 2) ∧ (h0/h))

βhd+β ,

by the triangle inequality. For q ≥ 1 integer, define Kq := {q ∈ Z
d : ‖k − k0‖ =

q + 2}, and note that

pk ≤ f(x0)h
d − c0(q

β ∧ (h0/h)
β)hd+β , ∀k ∈ Kq,

and thatKq has cardinality |Kq| ≤ A1q
d−1. We assume henceforth that h is small

enough that c0(h0/h)
β ≥ 4C1 and restrict ourselves to q ≥ q0 where q0 ≥ 2 is

an integer large enough that c0q
β
0 ≥ 4C1. We now bound the probability that k̂

belongs to some Kq, q ≥ q0. In view of (4), we only need to look at the event

max
q≥q0

max
k∈Kq

Nk > τ.
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Note that we may restrict our attention to q ≤ A2/h, since pk = 0 when kh is
sufficiently large by the fact that f has compact support. We may assume that
A2 ≥ h0. Therefore, take q ≤ A2/h so that pk ≤ f(x0)h

d − c0q
βhd+β . Then, for

k ∈ Kq, since Nk ∼ Bin(n, pk), using Bernstein’s inequality, we derive

P(Nk > τ) = P
(
Nk > npk + τ − npk

)
≤ P

(
Nk − npk > n(c0q

β − 2C1)h
d+β

)
≤ P

(
Nk − npk > n1

2c0q
βhd+β

)
≤ exp

(
−

1
2 (n

1
2c0q

βhd+β)2

npk(1− pk) +
1
3 (n

1
2c0q

βhd+β)

)

≤ exp

(
−

1
2 (n

1
2c0q

βhd+β)2

nf(x0)hd + 1
3 (n

1
2c0(h0/h)βhd+β)

)

≤ exp
(
− q2βnhd+2β/A3

)
.

Using the union bound, we thus obtain

P
(
max
q≥q0

max
k∈Kq

Nk > τ
)
≤

floor(A2/h)∑
q=q0

A1q
d−1 exp

(
− q2βnhd+2β/A3

)

≤
∞∑

q=q0

A1q
d−1 exp

(
− q2βnhd+2β/A3

)

≤
∞∑

q=q0

exp
(
− q2βnhd+2β/A4

)

≤
∫ ∞

q0−1

exp
(
− u2βnhd+2β/A4

)
du

≤
exp

(
− (q0 − 1)2βnhd+2β/A4

)
2β(q0 − 1)2β−1nhd+2β/A4

≤ A5 exp
(
− q2β0 nhd+2β/A5

)
,

using the fact that q0 ≥ 2 and nhd+2β ≥ 1 multiple times. The integral was
bounded using integration by parts.

We thus have that

Nk0 > τ ≥ max
q≥q0

max
k∈Kq

Nk

with probability at least

1− exp(−nhd+2β/A0)−A5 exp
(
− q2β0 nhd+2β/A5

)
,

and from this we conclude.
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2.2. Information bound

Based on the performance bound established in Theorem 1, we can say that
Algorithm 1 achieves the rate O(n−1/(d+2β)), that is,

sup
f∈Fβ

Ef ‖x̂− xf‖ = O(n−1/(d+2β)), (5)

where x̂ is the output of Algorithm 1, xf = x0 is the mode of f , and Fβ ≡
Fβ(c0, C0, h0) is the class of density functions satisfying the properties (1)-(2)-
(3). It turns out that this rate is best possible in a minimax sense. This was
already known for the exponent β = 2 (Donoho and Liu, 1991) — see also (Tsy-
bakov, 1990), where the assumed conditions are a little different. We complete
the picture by establishing this as the minimax rate for any value of β > 0.

Theorem 2. There is a constant A and two densities satisfying the basic prop-
erties (1)-(2)-(3) with modes separated by n−1/(d+2β)/A that cannot be distin-
guished with more accuracy than a probability of error of 1/5, based on a sample
of size n.

Proof. The proof is based on Le Cam’s two-point prior argument for which a
standard reference is (Tsybakov, 2009, Sec 2.2-2.4). The idea is to craft two
densities, both satisfying the basic properties (1)-(2)-(3), that are impossible to
distinguish with a high degree of certainty based on a sample of size n and whose
modes are on the order of � n−1/(d+2β) apart. These densities are denoted by
f1 and f2 below.

Let f1 be a density on R
d, compactly supported, symmetric about the origin

(i.e., even as a function), strictly unimodal (and therefore with a unique mode
at the origin), and such that f1(t) = 1 − ‖t‖β in a neighborhood of the origin.
This implies that there exists h0 ∈ (0, 1) such that f1(t) = 1− ‖t‖β if ‖t‖ ≤ h0,

and f1(t) ≤ 1− hβ
0 if ‖t‖ ≥ h0. Clearly, f1 satisfies the basic properties (1), (2),

and (3).
Denote the origin by 0 and let h = (h, · · · , h) ∈ R

d for any h > 0. We consider
h ≤ h0 below. Define f2 on R

d as follows

f2(t) =

⎧⎪⎨
⎪⎩
f1(t), if t ∈ R

d \ (−h, h),

1− hβ , if t ∈ (−h, h) \ (0, h),
1 + (2d − 1)hβ − 2d+β‖t− h/2‖β , if t ∈ (0, h).

See Figure 1 for an illustration.
Notice that we can also write f2(t) = f1(t) + g(t), where

g(t) =(‖t‖β − hβ) 1{t ∈ (−h, h) \ (0, h)}
+ [‖t‖β + (2d − 1)hβ − 2d+β‖t− h/2‖β ] 1{t ∈ (0, h)}.

Here f2 is indeed a density function because f2 ≥ 0 and
∫
g(x)dx = 0 using the

fact that ∫
(−h,h)

‖x‖βdx =

∫ h

0

sβ(2d)(2s)d−1ds =
d

d+ β
2dhd+β .
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Fig 1. Examples of pairs of functions f1 (solid) and f2 (dashed) for β = 1/2, β = 1,
and β = 2.

Observing that f2 has a unique mode at h/2, below we show that, for all t such
that ‖t− h/2‖ ≤ h0 − h/2,

f2(h/2)− 2d+β‖t− h/2‖β ≤ f2(t) ≤ f2(h/2)− 2−β‖t− h/2‖β . (6)

It is easy to see that (6) holds for t ∈ (−h, h). For t ∈ [h− h0, h0] \ (−h, h), we
have

f2(h/2)− 2d+β‖t− h/2‖β

= (1− ‖2t− h‖β) + (2d − 1)(hβ − ‖2t− h‖β)
≤ 1− ‖t‖β = f2(t),

and

f2(h/2)− 2−β‖t− h/2‖β

= 1 + (2d − 1)hβ − 2−β‖t− h/2‖β

≥ 1 + (2d − 1)hβ − [(h/2)β + ‖t‖β ]
≥ 1− ‖t‖β = f2(t).

The last calculation can also be used to show that f2(t) ≤ f2(h/2)− 2−β(h0 −
h/2)β for all t such that ‖t − h/2‖ ≥ h0 − h/2. Hence f2 also satisfies the
properties (1), (2), and (3).

Define χ2(f2, f1) :=
∫
f2
2 /f1 − 1, which is sometimes called the chi-squared

divergence of f2 with respect to f1. According to (Tsybakov, 2009, Sec 2.2-
2.4), to conclude it suffices to prove that nχ2(f2, f1) becomes arbitrarily small
when nhd+2β is small enough. We prove this by showing below that χ2(f2, f1) =
O(hd+2β). Indeed, elementary calculations yield∫

f2(x)
2

f1(x)
dx− 1

=

∫
g(x)2

f1(x)
dx

≤
∫
(−h,h)

2(‖t‖β − hβ)2

f1(x)
dx+

∫
(0,h)

2[(2d − 1)hβ − 2d+β‖t− h/2‖β ]2
f1(x)

dx

≤ 2d+1hd+2β

1− hβ
0

+

∫
(0,h)

22(d+β)+1[hβ + ‖t− h/2‖β ]2

1− hβ
0

dx
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≤ 22(d+β+3)

1− hβ
0

hd+2β ,

and from this we conclude.

Using (Tsybakov, 2009, Sec 2.2-2.4), it is straightforward to get

lim inf
n→∞

inf
x̂n

sup
f∈Fβ

n1/(d+2β)
Ef ‖x̂n − xf‖ > 0,

where x̂n is an arbitrary mode estimator, and Fβ is defined right below (5).
Theorem 1 and Theorem 2, together, establish n−1/(d+2β) as the minimax rate
for estimating the mode under the conditions (1)-(2)-(3) — where the emphasis
should be on the first one. This extends the result of Donoho and Liu (1991),
who proved this for β = 2 in dimension d = 1. (The method they studied and
showed to be minimax was none other than Parzen’s method with a proper
choice of bandwidth.) It turns out that this is the same rate as under the more
restrictive assumption that the density is twice differentiable with bounded sec-
ond derivative in the vicinity of the mode and with negative definite Hessian at
the mode. This was established by Tsybakov (1990), who went further: If the
density is Hölder-α with α ≥ 2 near its mode, and the Hessian there is negative
definite, then the minimax rate is n−(α−1)/(d+2α), and is achieved by a gradient
ascent method proposed in the same paper. This rate is faster than what it is
in our setting which, under the same assumptions1, still corresponds to β = 2.
This is simply due to the ability to estimate the underlying density to higher
precision — which Tsybakov does by using a kernel of appropriate order. (Tsy-
bakov shows that the rate achieved by the estimator he proposes is minimax
rate-optimal in the context that he considers.)

Computational complexity We thus have established that Algorithm 1,
which runs in linear time, is minimax rate optimal when its tuning parameter
(the bin size h) is properly chosen. Is it possible, however, to do even better in
the sense of designing an algorithm that runs in sublinear time that also achieves
the minimax estimation rate? The answer is ‘No’, and this is general: In a very
broad sense, it is not possible to achieve a minimax rate in sublinear time in an
estimation problem where, as is the case here, that rate is a negative power of
the sample size (perhaps with some poly-logarithmic multiplicative factor). See
the Appendix for details.

3. Unknown behavior near the mode: multiscale approach

Choosing the bin size correctly in Algorithm 1 is very important. It is completely
analogous to choosing the bandwidth to build a histogram or to perform kernel
density estimation. All the methods we are aware of necessitate the tuning of

1The settings — ours and Tsybakov’s — only intersect at β = 2, since Tsybakov assumes
that the Hessian is non-degenerate at the mode.
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parameters whose optimal value, as in our case, depends on the behavior of the
density near its mode.

In the special situation where the density is twice differentiable everywhere
and has a negative definite Hessian at the mode — which necessarily forces
β = 2 — Parzen’s estimate with bandwidth chosen by cross-validation appears
to achieve the minimax rate because (i) the optimal choice of bandwidth is
the same, in order of magnitude, for the problem of density estimation and the
problem of mode estimation; and (ii) a choice of bandwidth based on cross-
validation achieves the optimal rate for the problem of density estimation as
established by Hall (1983) and Stone (1984).

We propose a multiscale method that is able, under some conditions, to zoom
in on the mode without assuming much of the underlying density and achieve
the minimax error rate. Moreover, the method still operates in (expected) linear
time. The method, in principle, still depends on a couple of parameters, but
these can be chosen with much less knowledge of the underlying density. And
by letting these parameters diverge to infinity arbitrarily slowly, the method is,
in effect, parameter-free.

We are not aware of any method that is able to choose these tuning param-
eters automatically while achieving the minimax performance rate, except for
that of Klemelä (2005). In that paper, the general approach advocated by Lep-
ski for selecting tuning parameters is implemented and shown to yield a choice
of bandwidth which leads to an adaptive minimax rate. Indeed, the paper also
derives minimax rates for when the density smoothness at the mode is unknown,
and these rates are different from those when the smoothness at the mode is
known: there is a price to pay. Under the looser conditions that we operate
under, it turns out that there is no price to pay.

3.1. Method

When the parameters in (1)-(2), in particular the exponent β, are unknown, we
adopt a recursive partitioning approach. The resulting method is described in
Algorithm 2 where the bin counts are implicitly computed as in Algorithm 1.

Algorithm 2 Multi-scale Mode Hunting

Input: point set x1, . . . , xn in R
d, scale multiplier b ≥ 2, margin κ ≥ 0

Output: a point x̂ (meant to estimate the mode of the underlying density)

Define the finest scale smax := floor(log(n)/d log b)
Initialize the active set to be Iactive ← {1, . . . , n}
For s = 1, . . . , smax

For k ∈ Z
d identify I(k, s) = {i ∈ Iactive : xi ∈ [kb−s, (k + 1)b−s)}

EndFor
Identify k̂(s) := argmaxk #I(k, s)

Update Iactive ←
⋃
{I(k, s) : ‖k − k̂(s)‖ ≤ κ}

EndFor
Return x̂ := k̂(smax)b−smax
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Proposition 1. Algorithm 2 runs in linear expected time.

Proof. At each scale, the main computational task is to identify the bins where
the sample points that remain active reside. We saw when discussing the com-
putational complexity of Algorithm 1 that doing this can be done in time O(dm)
if there are m active points. At scale s = 1, all points are active, and so
the resulting time complexity is O(dn). At scale s > 1, we expect at most
n
(
f(x0)[(2κ + 1)b−s+1]d ∧ 1

)
� n

(
(κ̄b−s)d ∧ 1

)
active points to process, where

κ̄ := κ ∨ 1, resulting in a complexity of O(dn(κ̄db−ds ∧ 1)) at that scale. Sum-
ming these expected computational costs over s = 1, . . . , smax yields an overall
computational cost bounded by a constant multiple of

dn+
∑
s≥1

dn(κ̄db−ds ∧ 1) � dn
(
log κ̄
log b + 1

)
.

(We have assumed that d is constant, as there is a real curse of dimensionality
in the context that interests us here, but we carried it throughout these com-
putations to display its influence, which can be seen to be rather benign.)

Theorem 3. There is a constant A > 0 depending on the constants in (1)
and (2) such that the mode estimator returned by Algorithm 2 is within dis-
tance tn−1/(d+2β) of the true location of the mode with probability at least
1 − (A/ log b)(κb2/t)d+2β exp(−(t/κb2)d+2β/A) whenever t ≥ 1, b ≥ A, and
κ ≥ A, as well as (κ+ 1)b2/t ≤ n2β/d(d+2β).

The statement is a bit complicated but the core message is simple: if t, b,
and κ are understood as remaining constant while the sample size becomes
large, the estimator is within distance tn−1/(d+2β) with probability at least
1−A′ exp(−td+2β/A′) when t ≥ 1, where this time A′ also depends on b and κ.
Thus, the same result as in (5) still holds if x̂ is the output of Algorithm 2.

Proof. First, by a simple modification of the arguments underlying Theorem 1,
there is a constant A0 which depends on the constants (1) and (2) such that at
scale s, whenever n(b−s)d+2β ≥ 1 and b ≥ A0 as well as κ ≥ A0,

‖k̂(s)− k0(s)‖ ≤ A0, k0(s) := floor(x0b
s),

with probability at least 1−A0 exp(−n(b−s)d+2β/A0). This comes from consider-
ing b−s as playing the role of h and κ as playing the role of q in the proof of Theo-
rem 1, and realizing that restricting the density to [(k̂(s−1)−κ)h, (k̂(s−1)+κ)h)
does not have any substantial effect. In what follows, we assume that b and κ
are indeed sufficiently large that b ≥ A0 and κ ≥ A0.

Second, for x̂ to be within distance δ of x0 it suffices that, ‖k̂(s)−k0(s)‖ ≤ κ
for some s satisfying (κ+ 1)b−s ≤ δ. This is simply because, by design,

‖x̂− k̂(s)b−s‖ ≤ κb−s, ∀s = 1, . . . , smax,

and by definition ‖x0 − k0(s)b
−s‖ ≤ b−s. Therefore, ‖x̂− x0‖ ≤ δ when ‖k̂(s)−

k0(s)‖ ≤ κ for s = 1, . . . , s̄(δ) := ceiling(logb((κ + 1)/δ)), where logb(x) :=
log(x)/ log(b) is the logarithm in base b.
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With these preliminaries, we now proceed by bounding the probability that
‖k̂(s)−k0(s)‖ ≤ κ for s = 1, . . . , s̄(δ) with δ chosen as δ := tn−1/(d+2β) where t >
0. Note that s̄(δ) ≤ smax as our assumptions include (κ+ 1)b2/t ≤ n2β/d(d+2β).
Using the union bound, this probability is

≥ 1−
s̄(δ)∑
s=1

A0 exp(−n(b−s)d+2β/A0)

≥ 1−
∫ s̄(δ)+1

1

A0 exp(−n(b−s)d+2β/A0)ds

= 1−
∫ nb−(d+2β)/A0

nb−(d+2β)(s̄(δ)+1)/A0

A0 exp(−u)
1

u(d+ 2β) log b
du

≥ 1− A0

(d+ 2β) log b

exp(−nb−(d+2β)(s̄(δ)+1)/A0)

nb−(d+2β)(s̄(δ)+1)/A0
.

Some elementary calculations give that

nb−(d+2β)(s̄(δ)+1) ≥ (t/(κ+ 1)b2)d+2β ,

and from this we conclude.

We have thus proved that Algorithm 2 achieves the minimax rate without
knowledge of the exponent β driving the behavior of the density in the vicinity of
its mode as prescribed in (1). The algorithm can thus be said to be ‘adaptive’ in
that sense. This is in contrast with the more structured situation that Tsybakov
(1990) considered. In that situation, Klemelä (2005) showed that there is a cost
to adaptation, although a small one: a poly-logarithmic factor; and Klemelä
proposed a Lepski-type method that he shows to be adaptive minimax rate-
optimal. The fact that there is a cost to adaptation in this other context and
not in ours may be due to the fact that, to be competitive there, a method may
be forced to rely on an accurate estimate of the density (at least around the
mode) to take advantage of the assumed smoothness, and there is a limit to how
well the density can be estimated when its smoothness is unknown.

4. Numerical experiments

We performed some basic numerical experiments to probe our theory. We present
the result of these experiments below, subdivided into d = 1 and d = 2 settings.
Three cases are studied: β = 1/2, β = 1 and β = 2. We compare our main
method, Algorithm 2, with Algorithm 1 with bin size chosen by cross-validation
(Rudemo, 1982). In fact, to make the comparison as fair and meaningful as we
can, Algorithm 1 goes through the exact same histograms as Algorithm 2.

A sensitivity analysis shows that the dependence on the parameters b and
κ is mild. Nevertheless, in an effort to make Algorithm 2 fully automatic, we
implement a stability approach not unlike that advocated for the choice of tuning
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parameters in clustering algorithms (von Luxburg, 2009), and also akin to the
Lepski method proposed in the context of mode estimation by Klemelä (2005).
In detail, we draw multiple subsamples independently and apply Algorithm 2 to
each of these subsamples to get mode estimates. We do so for multiple choices
of b and κ, and each time compute the sum of pairwise distances between the
estimated modes, and we choose the values of these tuning parameters that
minimize that quantity.

Below, in particular in some figures, we let x denote the mode and x̂ its
estimate computed based on Algorithm 1 (with CV) or on Algorithm 2. Note
that x will be at the origin in all our experiments.

4.1. One-dimension setting

We start with the setting where d = 1, and consider the following simple but
emblematic examples of densities:2

Case β =
1

2
: f(t) =

⎧⎪⎨
⎪⎩
1−

√
|t| |t| ≤ 0.5,

5
√
2−4
8 − 9

√
2−12
4 |t| 0.5 ≤ |t| < 4

√
2+7
6 ,

0 otherwise;

(7)

Case β = 1 : f(t) =

{
1− |t| |t| ≤ 1,

0 otherwise;
(8)

Case β = 2 : f(t) =

⎧⎪⎨
⎪⎩
1− t2 |t| ≤ 0.5,
99
24 − 27

4 |t| 0.5 ≤ |t| < 11
18 ,

0 otherwise.

(9)

Sensitivity analysis We first perform a sensitivity analysis to the tuning
parameters b and κ in Algorithm 2. We limit ourselves to the density (8). We
use a sample size of n = 1000 and 500 repeats. The results are shown in Figure 2,
where we report the mean of |x̂−x|/n−1/(d+2β) (over the repeats) as a function
of b and κ. In addition to tracking how much the input of Algorithm 2 depends
on these parameters, we do the same for Algorithm 1. We can see that the
algorithms are not overly sensitive to the choice of these tuning parameters.
That said, the performance deteriorates as b increases, but this is to be expected
since the larger b is, the coarser the histograms — but the faster the procedures.
We also note an upward trend as κ increases, meaning that Algorithm 2 will
lose some performance if the choice of κ is too conservative.

Comparison We then compare Algorithm 1 and Algorithm 2. We do so under
each of the densities above — (7), (8), and (9) — and different values of the

2 As a reviewer pointed out, the mode is at the origin, which may be seen as a little
artificial as this is exactly a bin corner in the histogram constructions that we consider. We
agree, although it is clear that this should not change how the experiments presented here
should be interpreted.
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Fig 2. The means of |x̂ − x|/n−1/(d+2β) over 500 repeats for Algorithm 1 (dashed) and
Algorithm 2 (solid) for different values of b and κ. (Recall that Algorithm 1 does not depend
on κ.) The density is given in (8) (so that β = 1) and the sample size is n = 1000.

Fig 3. The means of |x̂ − x|/n−1/(d+2β) over 500 repeats for Algorithm 1 (blue) and Algo-
rithm 2 (orange) for different values of b and κ. (Recall that Algorithm 1 does not depend on
κ.) The density is given in (8) (so that β = 1) and the sample size is n = 1000.

Fig 4. Boxplots of |x̂−x|/n−1/(d+2β) based on 500 repeats. Here the sample size is n = 10000.

sample size n ∈ {100, 500, 1000, 5000, 10000}. We again use 500 repeats. The
results are reported in Figure 3. Algorithm 2 performs uniformly better than
Algorithm 1. We also show the boxplots for the situation where n = 10000 in
Figure 4.
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4.2. Two-dimension setting

We now move to the setting where d = 2, and consider the following three
examples of densities:3

Case β =
1

2
:

f(t) =

⎧⎪⎪⎨
⎪⎪⎩
1−

√
‖t‖ ‖t‖ ≤ 0.5,

1−
√
2
2

+ 5(2−
√
2)√

465−240
√
2−15

(1− 2‖t‖) 0.5 ≤ |t| <
√

465+240
√
2−5

20
,

0 otherwise;

(10)

Case β = 1 : f(t) =

{
3
4
(1− ‖t‖) ‖t‖ ≤ 1,

0 otherwise;
(11)

Case β = 2 : f(t) =

⎧⎪⎨
⎪⎩
1− ‖t‖2 ‖t‖ ≤ 0.5,
3
√
11+12
4

− 3
√
11+9
2

‖t‖ 0.5 ≤ ‖t‖ <
√
11−1
4

,

0 otherwise.

(12)

Sensitivity analysis As in the setting where d = 1, we perform a similar
sensitivity analysis focusing on the density (11) (so that β = 1) from which we
draw n = 1000 observations. The number of repeats is 500 and we report the
mean of |x̂− x|/n−1/(d+2β) with different values of b and κ in Figure 5.

Fig 5. The means of |x̂ − x|/n−1/(d+2β) over 500 repeats for Algorithm 1 (dashed) and
Algorithm 2 (solid) for different values of b and κ. (Recall that Algorithm 1 does not depend
on κ.) The density is given in (11) (so that β = 1) and the sample size is n = 1000.

Comparison We then compare on Algorithm 1 and Algorithm 2 on samples
of different sizes n ∈ {100, 500, 1000, 5000, 10000} from the three densities dis-
played above — (10), (11), and (12). Each setting is repeated 500 times. The
average errors are reported in Figure 6 and some boxplots are given in Fig-
ure 7 limited to the case where n = 10000. Again, at least in these simulations,
Algorithm 2 is clearly superior to Algorithm 1.

3 As in the one-dimensional case, the mode is at the origin, which is again a little artificial.
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Fig 6. The means of |x̂ − x|/n−1/(d+2β) based on 500 repeats. Here the sample size is n =
10000.

Fig 7. Boxplots of |x̂−x|/n−1/(d+2β) based on 500 repeats. Here the sample size is n = 10000.

Appendix: Minimax rates in sublinear time

We establish here that, under rather general conditions, achieving a minimax
estimation rate in sublinear time is impossible when the minimax rate converges
to zero faster than some negative power of the sample size — a situation that
is quite general indeed, although there are exceptions such as deconvolution
problems (Fan, 1991). The fundamental idea is quite straightforward and is
based on the fact that a sublinear-time algorithm is not even able to ‘look’ at
all observations and thus effectively operates as if on a sample of size sublinear
in the available sample size, so that its performance is under the purview of the
minimax rate corresponding to that smaller sample size. The remainder of this
section is simply devoted to formalizing this discussion.

Remark 2. We focus here on a minimax rate based on the sample size and not
other parameters of the problem such as the dimension. Since there is a real
curse of dimensionality for the problem of estimating of a density mode, we
have assumed the dimension to be fixed throughout, but we do believe that no
algorithm which is sublinear in the dimension can achieve the minimax rate.

Consider a general statistical problem where we have a family of distributions
{Pθ : θ ∈ Θ} on some measurable space X. The dataset consists in a sample,
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X1, . . . , Xn, drawn iid from a distribution in that family, say Pθ0 . Given some
dissimilarity measure on the space, namely L : X×X → R+ measurable, which
plays the role of loss function, the risk of an estimator θ̂ = ϕ(X1, . . . , Xn) at
θ ∈ Θ is defined as

riskn(ϕ, θ) := Eθ

[
L(ϕ(X1, . . . , Xn), θ)

]
,

and its worst-case risk is the supremum of that over the entire parameter space,

riskn(ϕ) := sup
θ∈Θ

riskn(ϕ, θ).

Note that ϕ is a (measurable) function on finite sequences of elements of X

and Eθ above is the expectation with respect to X1, . . . , Xn iid from Pθ. The
minimax risk for this estimation problem is simply the infimum of this quantity
over all estimators,

R(n) := inf
ϕ

riskn(ϕ).

We assume throughout that R(n) < ∞, at least for n large enough, for otherwise
the setting is trivial. In that case, R is non-increasing as a real-valued function
on the positive integers.

Theorem 4. Consider a setting as described above where

lim sup
a→∞

lim sup
n→∞

R(an)/R(n) = 0.

Then riskn(ϕ) � R(n) for any estimator ϕ which can be computed in o(n) time
when applied to a sample of size n.

We assume below that it takes a unit of time to simply register an observation
for further processing.

Proof. Let ϕ be such an estimator and let b(n) denote the time it takes to
compute ϕ on a sample of size n so that b(n) = o(n) by assumption. (We
assume that ϕ is not randomized in what follows, but similar arguments apply
when in the situation where it relies on an exogenous source of randomness.)
Assuming, without loss of generality, that ϕ registers the first observation first,
ϕ is computed as follows: ϕ(x1, . . . , xn) = ψk(xi1 , . . . , xik) where i1 is constant
equal to 1, i2 is a function of x1, etc, and ik is a function of xi1 , xi2 , . . . , xik−1

,
and ψk is a function of k variables. The number of entries taken in, k, need not be
constant, but ignoring some variables as needed, we may take k to be constant,
and we then let ψ denote ψk. And given our assumption on the computational
complexity of ϕ, necessarily, k ≤ b(n). When applied to an iid sample, by
independence, I2 := i2(X1) is independent of X2, . . . , Xn and so I2 is effectively
uniformly distributed on {2, . . . , n}; given I2 = i2, I3 := i3(Xi1 , Xi2) (remember
i1 = 1) is independent of {Xi : i /∈ {i1, i2}} and therefore uniform in [n]\{i1, i2};
etc; and given I2 = i2, . . . , Ik−1 = ik−1, Ik := ik(Xi1 . . . , Xik−1

) is independent
of {Xi : i /∈ {i1, . . . , ik−1}} and therefore uniform in [n]\{i1, . . . , ik−1}. We may
therefore conclude that ϕ(X1, . . . , Xn) has the same law of ψ(X1, . . . , Xk).
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Having established this, we then have

riskn(ϕ, θ) = Eθ

[
L(ϕ(X1, . . . , Xn), θ)

]
= Eθ

[
L(ψ(X1, . . . , Xk), θ)

]
= riskk(ψ, θ), ∀θ,

implying that
riskn(ϕ) ≥ riskk(ψ) ≥ R(k) ≥ R(b(n)).

We then conclude with the fact that R(b(n))/R(n) → ∞ due to the fact that
b(n)/n → 0 and our assumption on R.

Acknowledgments

We are grateful to two anonymous referees for their comments that helped
improve the paper. This work was partially supported by an NSF grant (DMS
1821154).

References

Abraham, C., Biau, G. and Cadre, B. (2003). Simple estimation of the
mode of a multivariate density. Canadian Journal of Statistics 31 23–34.
MR1985502

Abraham, C., Biau, G. and Cadre, B. (2004). On the asymptotic properties
of a simple estimate of the mode. ESAIM: Probability and Statistics 8 1–11.
MR2085601

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for
model selection. Statistics Surveys 4 40–79. MR2602303

Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distri-
bution theory for maximum likelihood estimation of a log-concave density.
Annals of statistics 37 1299. MR2509075

Chacón, J. E. (2020). The modal age of statistics. International Statistical
Review 88 122–141. MR4088013

Chacón, J. E. and Duong, T. (2013). Data-driven density derivative esti-
mation, with applications to nonparametric clustering and bump hunting.
Electronic Journal of Statistics 7 499–532. MR3035264

Chernoff, H. (1964). Estimation of the mode. Annals of the Institute of Sta-
tistical Mathematics 16 31–41. MR0172382

Dalenius, T. (1965). The Mode — A Neglected Statistical Parameter. Journal
of the Royal Statistical Society: Series A 128 110–117. MR0185720

Dasgupta, S. and Kpotufe, S. (2014). Optimal rates for k-NN density and
mode estimation. Advances in Neural Information Processing Systems 3 2555–
2563.

Devroye, L. (1979). Recursive estimation of the mode of a multivariate den-
sity. Canadian Journal of Statistics 7 159–167. MR0570537

https://www.ams.org/mathscinet-getitem?mr=1985502
https://www.ams.org/mathscinet-getitem?mr=2085601
https://www.ams.org/mathscinet-getitem?mr=2602303
https://www.ams.org/mathscinet-getitem?mr=2509075
https://www.ams.org/mathscinet-getitem?mr=4088013
https://www.ams.org/mathscinet-getitem?mr=3035264
https://www.ams.org/mathscinet-getitem?mr=0172382
https://www.ams.org/mathscinet-getitem?mr=0185720
https://www.ams.org/mathscinet-getitem?mr=0570537


2794 E. Arias-Castro et al.

Donoho, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence, II.
Annals of Statistics 19 633–667. MR1105839

Doss, C. R. and Wellner, J. A. (2019). Inference for the mode of a log-
concave density. Annals of Statistics 47 2950–2976. MR3988778
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Klemelä, J. (2005). Adaptive estimation of the mode of a multivariate density.
Journal of Nonparametric Statistics 17 83–105. MR2112688

Konakov, V. D. (1973). On asymptotic normality of the sample mode of
multivariate distributions. Theory of Probability and its Applications 18 836–
842. MR0336874

Mokkadem, A. and Pelletier, M. (2003). The law of the iterated logarithm
for the multivariate kernel mode estimator. ESAIM: Probability and Statistics
7 1–21. MR1956072

Parzen, E. (1962). On Estimation of a Probability Density Function and Mode.
Annals of Mathematical Statistics 33 1065–1076. MR0143282

Robertson, T. and Cryer, J. D. (1974). An iterative procedure for estimat-
ing the mode. Journal of the American Statistical Association 69 1012–1016.
MR0431499

Romano, J. P. (1988a). On Weak Convergence and Optimality of Kernel Den-
sity Estimates of the Mode. Annals of Statistics 16 629–647. MR0947566

https://www.ams.org/mathscinet-getitem?mr=1105839
https://www.ams.org/mathscinet-getitem?mr=3988778
https://www.ams.org/mathscinet-getitem?mr=2435455
https://www.ams.org/mathscinet-getitem?mr=2432459
https://www.ams.org/mathscinet-getitem?mr=3785711
https://www.ams.org/mathscinet-getitem?mr=0572631
https://www.ams.org/mathscinet-getitem?mr=1126324
https://www.ams.org/mathscinet-getitem?mr=0388638
https://www.ams.org/mathscinet-getitem?mr=3453648
https://www.ams.org/mathscinet-getitem?mr=1937281
https://www.ams.org/mathscinet-getitem?mr=0720261
https://www.ams.org/mathscinet-getitem?mr=0405726
https://www.ams.org/mathscinet-getitem?mr=2112688
https://www.ams.org/mathscinet-getitem?mr=0336874
https://www.ams.org/mathscinet-getitem?mr=1956072
https://www.ams.org/mathscinet-getitem?mr=0143282
https://www.ams.org/mathscinet-getitem?mr=0431499
https://www.ams.org/mathscinet-getitem?mr=0947566


Estimation of the global mode of a density 2795

Romano, J. P. (1988b). Bootstrapping the mode. Annals of the Institute of
Statistical Mathematics 40 565–586. MR0964293

Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Den-
sity Function. Annals of Mathematical Statistics 27 832 – 837. MR0079873

Rudemo, M. (1982). Empirical choice of histograms and kernel density estima-
tors. Scandinavian Journal of Statistics 9 65–78. MR0668683

Rufibach, K. and Walther, G. (2010). The block criterion for multiscale
inference about a density, with applications to other multiscale problems.
Journal of Computational and Graphical Statistics 19 175–190. MR2654403

Sager, T. W. (1978). Estimation of a Multivariate Mode. Annals of Statistics
6 802–812. MR0491553

Sager, T. W. (1979). An iterative method for estimating a multivariate mode
and isopleth. Journal of the American Statistical Association 74 329–339.
MR0548023

Samanta, M. (1973). Nonparametric estimation of the mode of a multivariate
density. South African Statistical Journal 7 109–117. MR0331618

Silverman, B. W. (1981). Using kernel density estimates to investigate mul-
timodality. Journal of the Royal Statistical Society: Series B 43 97–99.
MR0610384

Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel
density estimates. Annals of Statistics 12 1285–1297. MR0760688

Tsybakov, A. B. (1990). Recursive estimation of the mode of a multivariate
distribution. Problemy Peredachi Informatsii 26 38–45. MR1051586

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer
Science+Business Media. MR2724359

Venter, J. (1967). On Estimation of the Mode. Annals of Mathematical Statis-
tics 38 1446–1455. MR0216698

Vieu, P. (1996). A note on density mode estimation. Statistics & Probability
Letters 26 297–307. MR1393913

von Luxburg, U. (2009). Clustering Stability: An Overview.Machine Learning
2 235–274.

https://www.ams.org/mathscinet-getitem?mr=0964293
https://www.ams.org/mathscinet-getitem?mr=0079873
https://www.ams.org/mathscinet-getitem?mr=0668683
https://www.ams.org/mathscinet-getitem?mr=2654403
https://www.ams.org/mathscinet-getitem?mr=0491553
https://www.ams.org/mathscinet-getitem?mr=0548023
https://www.ams.org/mathscinet-getitem?mr=0331618
https://www.ams.org/mathscinet-getitem?mr=0610384
https://www.ams.org/mathscinet-getitem?mr=0760688
https://www.ams.org/mathscinet-getitem?mr=1051586
https://www.ams.org/mathscinet-getitem?mr=2724359
https://www.ams.org/mathscinet-getitem?mr=0216698
https://www.ams.org/mathscinet-getitem?mr=1393913

	Introduction
	Working assumptions
	Convergence rates
	Computational complexity
	Parameter tuning
	Content
	Notation

	Known behavior near the mode: monoscale approach
	Method
	Information bound

	Unknown behavior near the mode: multiscale approach
	Method

	Numerical experiments
	One-dimension setting
	Two-dimension setting

	Appendix: Minimax rates in sublinear time
	Acknowledgments
	References

