
Electronic Journal of Statistics
Vol. 16 (2022) 737–784
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1948

Estimating individualized treatment

rules for treatments with hierarchical

structure∗

Yiwei Fan and Xiaoling Lu

Center for Applied Statistics, School of Statistics, Renmin University of China, China

Junlong Zhao

School of Statistics, Beijing Normal University, China

Haoda Fu

Advanced Analytics and Data Sciences, Eli Lilly and Company, U.S.A.

Yufeng Liu†

Department of Statistics and Operations Research, Department of Genetics,
Department of Biostatistics, Carolina Center for Genome Sciences, Lineberger

Comprehensive Cancer Center, University of North Carolina at Chapel Hill, U.S.A.
e-mail: yfliu@email.unc.edu

Abstract: Precision medicine is an increasingly important area of re-
search. Due to the heterogeneity of individual characteristics, patients may
respond differently to treatments. One of the most important goals for
precision medicine is to develop individualized treatment rules (ITRs) in-
volving patients’ characteristics directly. As an interesting topic in clinical
research, many statistical methods have been developed in recent years
to find optimal ITRs. For binary treatments, outcome weighted learning
(OWL) was proposed to find a decision function of patient characteristics
maximizing the expected clinical outcome. Treatments with hierarchical
structure are commonly seen in practice. In hierarchical scenarios, how to
estimate ITRs is still unclear. We propose a new framework named hier-
archical outcome-weighted angle-based learning (HOAL) to estimate ITRs
for treatments with hierarchical structure. Statistical properties including
Fisher consistency and convergence rates of the proposed method are pre-
sented. Simulations and an application to a type 2 diabetes study under
linear and nonlinear learning show the highly competitive performance of
our proposed procedure in both numerical accuracy and computational ef-
ficiency.
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1. Introduction

Precision medicine has received a lot of attention in recent years, originated from
the fact that treatment effects manifest heterogeneously among patients due to
individual characteristics. Specifically, a treatment that is effective for some
patients may fail for others. For instance, in lung cancer, only people having
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a mutation in the gene EGFR respond to the treatment with tyrosine kinase
inhibitors [20]. Similarly, in heart thickening, only people with mutations in the
gene GLA respond positively to the enzyme replacement therapy [16]. Thus, one
of the most important goals for precision medicine is to develop individualized
treatment rules (ITRs) involving patients’ characteristics directly.

Many methods have been proposed to design ITRs using statistical tools in
the literature, mainly focusing on binary treatments. There is a large body of
literature in developing ITRs, by first learning a regression model of outcomes
using covariates and then assigning the treatment with the best estimated out-
come for a patient given covariates based on this regression model [18, 24].
Instead of directly optimizing the decision rule, these methods obtain ITRs
indirectly through the estimated regression model. Qian and Murphy [23] pro-
posed to first estimate the conditional expectation of the response containing
a 0–1 loss function and then maximize it to build ITRs. This approach highly
depends on whether or not the assumed model is correctly specified.

Besides the indirect methods, there exist direct methods in estimating ITRs.
Zhao et al. [37] developed outcome weighted learning (OWL) by treating the
ITR problem as a weighted classification problem, where misclassification errors
are weighted by clinical outcomes. The 0–1 loss function in Qian and Murphy
[23] is replaced by a surrogate hinge loss, and thus the corresponding optimiza-
tion problem becomes feasible. This approach presented an important idea to
use statistical machine learning tools to directly estimate ITRs by maximizing
clinical outcomes. Zhou et al. [38] and Liu et al. [15] proposed residual weighted
learning, weighting misclassification errors by residuals of the outcome from a
regression model on clinical covariates to improve finite sample performance of
Zhao et al. [37]. By estimating residuals with generalized linear models, it can
deal with different types of outcomes, such as continuous, binary and count
data. Under the OWL framework, Chen et al. [5] proposed a data duplication
technique with a piecewise convex loss function to estimate ITRs with ordinal
treatments, and Zhang et al. [36] estimated optimal ITRs for nominal multicat-
egory treatments, together with variable selection via an l1 penalty.

Treatments with hierarchical structure are commonly seen in practice. For
instance, Pelletier [21] presented the classes of oral diabetic drugs in a tree struc-
ture, and Kasi, Ansell and Gertz [12] showed the hierarchy of treatment options
for Waldenström Macroglobulinemia, a type of non-Hodgkin lymphoma. Despite
the success of OWL in estimating ITRs, how to extend it to the hierarchical
setting is still not fully explored. In this paper, we propose a statistical learning
framework to deal with ITR estimation in hierarchical treatment scenarios. The
hierarchy of treatments can be defined as a graph. A directed edge from node u
to node u′ means u is a parent of u′ and u′ is a child of u. A node without any
child is referred to a leaf. Each leaf node represents a treatment and we assume
any patient is assigned to one treatment. Moreover, we assume each node has at
most one parent, where the hierarchy is called a tree structure, and each node
either is a leaf or has at least two children.

In the literature of hierarchical classification, applying a flat classifier to the
leaf nodes, which ignores the hierarchy, is the simplest method. One popular
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alternative approach is to sequentially train a multicategory classifier at each
parent node [6] or a binary classifier at each node [4], and then predict labels by
the top–down strategy. Such an approach suffers from a small training set for
each classifier and can be suboptimal. Some other methods have been developed
to incorporate hierarchical information in learning classification rules including
imposing inequality constraints [30] and designing cost-sensitive learning [8]. A
detailed survey of hierarchical classification can be found in Silla and Freitas
[28].

Besides the methods mentioned above, several methods on label embedding
have been developed for hierarchical classification [3, 29], which map nodes into
a set of points in the Euclidean space, such that the Euclidean distances among
these points mimic the dissimilarities among the nodes. Recently, Fan et al. [9]
has pointed out that the classical label embedding fails to keep the hierarchy
well and can be inefficient because of the high dimension of the embedded space.
To overcome these drawbacks, Fan et al. [9] proposed a label embedding method,
which keeps the hierarchy exactly and reduces the dimension of the embedded
space to mleaf−1 with mleaf being the number of leaf nodes. Despite this method
has great advantages in hierarchical classification, how to utilize it in OWL to
estimate ITRs for hierarchical treatments remains unclear.

In this paper, we propose a new framework named hierarchical outcome-
weighted angle-based learning (HOAL) to solve this problem. We show that for
hierarchical treatments, maximizing the expected clinical outcome is equivalent
to minimizing a weighted piecewise hierarchical zero–one loss. To assign treat-
ments, we first embed nodes on the hierarchical tree into a series of points in
R

K where K = mleaf − 1. Then we map the covariates of each patient into a
vector in R

K by a learning function and follow the top–down strategy by the
angle between this vector and the embedded points.

There are several key contributions in this paper. Firstly, we propose HOAL
to estimate ITRs in hierarchical treatment scenarios. The top–down strategy
is adopted to assign treatments and an associated hierarchy margin is defined
to compare treatment paths on the tree structure. Secondly, we design a linear
loss function, under which a closed form solution is derived for both linear and
nonlinear learning. Thus, our method can be very computationally efficient.
Thirdly, the theoretical properties of the estimators are established.

The remaining of this paper is organized as follows. In Section 2, we review
OWL and explain how to extend OWL to hierarchical cases via label embed-
ding. We then introduce a special linear loss function, under which a closed
form solution is desired. In Section 3, statistical theories of Fisher consistency
and convergence rate are presented. Simulations and real data analysis using
both linear and nonlinear learners are conducted in Sections 4 and 5. Section 6
concludes the paper.

2. Methodology

In this section, we first briefly review the framework of OWL and then explain
how to extend it to hierarchical treatment scenarios. Furthermore, to reduce
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computation, we design a linear loss, under which the estimator has a closed
form for both linear and nonlinear learning.

2.1. Individualized treatment rule and outcome weighted learning

In individualized treatments, denote X ∈ X as the p-dimensional covariate
vector for a patient, A ∈ A as the corresponding treatment, and R ∈ R as the
observed outcome, called the “reward”. The ITR is a map D : X → A which
assigns treatment D(X) to a patient with covariates X. Assuming a larger R
is desirable, an optimal ITR is a rule that maximizes the expected reward if
implemented. Denote the distribution of (X, A,R) as P and the expectation
with respect to P is denoted by E. The likelihood of (X, A,R) under P is then

p0(x) Pr(a|x)p1(r|x, a), (2.1)

where p0 is the unknown density of X, Pr(a|x) is the probability of receiving
treatment a for a patient with covariates x, and p1 is the unknown density of R
conditional on (X, A). For any given ITR D, denote PD as the distribution of
(X, A,R) given that A = D(X), that is, the treatments are chosen according
to the rule D, and denote ED as the expectation with respect to PD. Then the
likelihood of (X, A,R) under PD is

p0(x)I(a = D(x))p1(r|x, a), (2.2)

where I(·) is the indicator function. Under the assumption that Pr(a|x) > 0 for
any a ∈ A, by (2.1) and (2.2), for any subset S ⊂ X×A×R, we have PD(S ) = 0
when P (S ) = 0. Thus, PD is absolutely continuous with respect to P . By the
Radon–Nikodym theorem, the Radon–Nikodym derivative dPD/dP exists and
dPD/dP = I(a = D(x))/Pr(a|x) by (2.1) and (2.2). Thus, the expected reward
given ITR D is [23]

V(D)
�
= ED(R) =

∫
RdPD =

∫
R
dPD

dP
dP =

∫
R
I(A = D(X))

Pr(A|X)
dP.

This expectation is called the value function associated with D. One important
goal of ITR is to find the optimal D∗ that maximizes V(D), which is equivalent
to defining D∗ as

D∗(X) = argmin
D

{
E

(
R · I(A �= D(X))

Pr(A|X)

)}
. (2.3)

For nonnegative rewards, Zhao et al. [37] proposed OWL, utilizing the hinge
loss as a convex surrogate loss for the 0–1 loss I(·). Then, (2.3) can be viewed as
a weighted classification problem. In practice, when there are negative rewards,
one can replace R by R+ ρ for any constant ρ to ensure nonnegativeness, while
such a constant shift process for the rewards may lead to suboptimal estimates
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[5]. To better handle the case with negative rewards, Chen et al. [5] proposed
the following formulation,

D∗(X)

= argmin
D

E

[
|R|

Pr(A|X)
{I(R ≥ 0)I(A �= D(X)) + I(R < 0)I(A = D(X))}

]
.

(2.4)

Note that (2.4) is equivalent to (2.3) as the term R · I(R < 0)/Pr(A|X) is free
of D(X) [5]. The loss in (2.4) has two parts by the sign of R. For nonnegative
rewards, we penalize the inequality to A. For negative rewards, we encourage
the optimal ITR to move away from A. Interestingly, (2.4) can also be viewed
as a weighted misclassification error, for which we weigh each misclassification
event by |R|/Pr(A|X).

2.2. Outcome weighted learning for hierarchical treatments

In this subsection, we discuss how to extend OWL to hierarchical treatment
scenarios. The hierarchy of treatments is described by a tree, where each leaf
represents a treatment. There are mleaf leaf nodes accordingly to mleaf treat-
ments with a hierarchical structure among them.

We first introduce some notations. For a node, denote its parent, children,
ancestors, offsprings, and siblings respectively as Par(·), Chi(·), Anc(·), Off(·),
and Sib(·). The total number of layers of the tree is denoted as k. The root
node at the first layer is denoted as T1, which is meaningless. Moreover, T1,j2

is the child of T1 with index j2 = 1, 2, . . . , N1 at the second layer from left to
right, where N1 is the number of children for T1. In general, for 3 ≤ m ≤ k,
T1,j2,...,jm−1,jm is the child of T1,j2,...,jm−1 with index jm = 1, 2, . . . , N1,j2,...,jm−1

at the m-th layer from left to right, where N1,j2,...,jm−1 is the number of children
for T1,j2,...,jm−1 . For example, FIG 1 (left panel) presents a hierarchical structure
with three layers. At the first layer, the root node is denoted by T1. The number
of children for T1 is denoted by N1, which takes the value 2. These two children
for T1, which are located at the second layer, are denoted by T1,1 and T1,2.
Furthermore, the number of children for T1,1 is denoted by N1,1, taking the
value 2. In particular, T1,1 has two children at the third layer denoted by T1,1,1

and T1,1,2.
Denote the collection of all nodes except for the root as

T =

k⋃
m=2

Tm =

k⋃
m=2

{Tj1,j2,...,jm : j1 ≡ 1, js = 1, . . . , Nj1,...,js−1 , s = 2, . . . ,m },

where Tm is the set of nodes at the m-th layer. In hierarchical treatment sce-
narios, the treatment space A is a set of paths, where each path, denoted by A,
is from the root to a leaf on the tree. Specifically, A = {A(1), . . . , A(L(A))} ∈ A,
where A(m) ∈ Chi(A(m−1)) ⊂ Tm indicates the node at the m-th layer for m =
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Fig 1. The hierarchical structure (left panel), the embedded points for the standard multicat-
egory classification considering only leaf nodes (middle panel) and the embedded points for
hierarchical classification (right panel) of an illustrative example.

2, . . . ,L(A) and L(A) is the layer where the leaf locates. The ITR D : X → A
assigns a patient with covariates X to a treatment path D(X) on the tree with
length L(D). Note that A = D(X) if and only if L(A) = L(D) and A(m) = D(m)

for m = 2, . . . ,L(A).
Although there are many methods proposed to estimate ITR for binary and

multicategory treatments, the extension to hierarchical treatments is nontrivial.
To obtain the optimal ITR for hierarchical treatments, we propose hierarchi-
cal outcome-weighted angle-based learning. We adopt angle-based hierarchical
classification to incorporate the hierarchical structure among treatments. Angle-
based hierarchical classification first maps nodes into a set of points in the Eu-
clidean space. Let ξj1,j2,...,jm be the embedded point associated with Tj1,j2,...,jm .
Denote

E =
k⋃

m=2

Em =
k⋃

m=2

{ξj1,j2,...,jm : j1 ≡ 1, js = 1, . . . , Nj1,j2,...,js−1 , s = 2, . . . ,m },

where Em is the set of points at the m-th layer. A desired embedding approach
is to embed nodes into points in a low-dimensional space while keeping the
hierarchical properties exactly. To achieve these two goals, Fan et al. [9] proposed
a new label embedding method, which is summarized as follows.

To construct points in hierarchical classification, Fan et al. [9] first introduced
an algorithm to embed nodes in a standard q-class multicategory classification
problem. Algorithm S1 in the Appendix gives the detailed procedure. The em-
bedded points form a simplex in R

q−1, which is centered at the origin. Since
the sum of the embedded points is a zero-vector, there is no need to include
the explicit sum-to-zero constraint, which is required in the regular simulta-
neous multicategory classification [34]. Hence, the computational costs can be
greatly reduced. Take FIG 1 as an illustrative example. If we consider only leaf
nodes T1,2, T1,1,1 and T1,1,2, it is a standard 3-class multicategory classification
problem. We start from two points −1 and 1 in R. Then we extend these two
points into R

2 as (−1, 0)� and (1, 0)�. Furthermore, we construct the third
point (0,

√
3)� satisfying the equal pairwise distance requirement. So far, these
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three points form an equilateral triangle centered at (0,
√
3/3)�. After that,

we centralize these points as (−1,−
√
3/3)�, (1,−

√
3/3)� and (0, 2

√
3/3)�. Fi-

nally, given length L, we scale them and obtain ξ1,1,1 = (−L
√
3/2,−L/2)�,

ξ1,1,2 = (L
√
3/2,−L/2)� and ξ1,2 = (0, L)�. The embedded points are shown

in the middle panel of FIG 1. However, the distance between each pair of points
is same, violating the rule that ξ1,1,1 and ξ1,1,2 should be closer.

In hierarchical scenarios, the embedded points are located in R
K with K =

mleaf − 1. We begin from constructing points for the nodes at the second layer
by applying Algorithm S1 with a given length in a subspace of RK . For children
nodes at the m-th (m ≥ 3) layer, we inherit the coordinates from their parents
as the first part and construct the points by applying Algorithm S1 in another
subspace of RK as the second part. The two parts are then concatenated. The
details are referred to Algorithm S2 in the Appendix. As shown in Proposition
S1 in the Appendix, the embedded points satisfy hierarchical and symmetric (H.
S.) properties such that the Euclidean distance between the embedded points
can exactly mimic the dissimilarities between the nodes. Another advantage is
that the dimension of embedded points is K = mleaf − 1, which is the same as
the one required for standard multicategory classification considering only leaf
nodes [13, 34]. Thus, this method enjoys the advantages of both aspects, keeping
the hierarchy exactly and involving a low-dimensional label space. Denoting the
length of the embedded points for the nodes at the (m+1)-th layer by L(m), we
set L(m+1) = L(m)/δ in Algorithm S2, where δ > 1 is the down-scaling constant.
To satisfy H. S. properties, it is required that δ2 ≥ 2

√
2 + 2 in Proposition S1.

We set L(1) = 1 and δ =
√
5 as suggested by Fan et al. [9]. For the example

shown in FIG 1, we begin from the second layer and construct two points −1
and 1 by Algorithm S1 given L(1) = 1. Then we extend these two points into R

2

by setting ξ1,1 = (−1, 0)� and ξ1,2 = (1, 0)� for T1,1 and T1,2. Furthermore, for
T1,1, we construct points for its children T1,1,1 and T1,1,2. We inherit the first
coordinate of ξ1,1, and apply Algorithm S1 to construct −1/

√
5 and 1/

√
5 given

L(2) = L(1)/δ = 1/
√
5 as the second coordinates of ξ1,1,1 and ξ1,1,2. Therefore,

we have ξ1,1,1 = (−1,−1/
√
5)� and ξ1,1,2 = (−1, 1/

√
5)�. The embedded points

are shown in the right panel of FIG 1, which keep the hierarchical structure.
The distance between ξ1,1,1 and ξ1,1,2 is much smaller than the distance between
ξ1,1,1 and ξ1,2. Moreover, the distance between ξ1,1,1 and ξ1,2 is equal to the
distance between ξ1,1,2 and ξ1,2. Indeed, ξ1,1,1, ξ1,1,2 and ξ1,2 form an isosceles
triangle.

After label embedding, we map the covariates of each patient into a vector
in R

K by some decision function f : X → R
K . Denote Df (x) ∈ A as the

ITR associated with f . We determine Df (x) by the following top–down strat-
egy, the most commonly used strategy in hierarchical scenarios [4, 31]. For any
treatment path A ∈ A and m = 2, . . . ,L(A), let ξm(A) be the embedded point
corresponding to A at the m-th layer and Em(A) be the set of paths, where the
m-th element of each path is one of the siblings of the m-th element of A. For
any m = 2, . . . , k, assuming x has been assigned to a node at the (m − 1)-th
layer, the top–down strategy assigns x to its child node, of which the corre-
sponding embedded point has the largest inner product with f(x) among all
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children.

Definition 1 (top–down strategy). Let D(1)
f (x) ≡ T1. Suppose x has been

assigned with D(m−1)
f (x) at the (m− 1)-th layer, then x is assigned to D(m)

f (x)

at the m-th layer, if D(m)
f (x) ∈ Chi(D(m−1)

f (x)) and

〈f(x), ξm(Df (x))〉 > 〈f(x), ξm(Ã)〉, (2.5)

for any Ã ∈ Em(Df (x)) = {A : A(m) �= D(m)
f (x), A(m) ∈ Chi(D(m−1)

f (x))},
where 〈·, ·〉 is the inner product between two vectors.

As ξm(Ã) depends only on Ã(m), it is possible that there are multiple Ã with
the same node at the m-th layer. If this is the case, by taking only one of them
as the representative and denoting the set of representatives as [Em(Df (x))],

we only need to require that (2.5) holds for any Ã ∈ [Em(Df (x))]. Taking the
hierarchical tree shown in FIG 1 as an example, for a learning function f , let

D(1)
f (x) ≡ T1. At the second layer, x is assigned to T1,2 if 〈f , ξ1,2〉 > 〈f , ξ2(Ã)〉

for any Ã ∈ E2(Df (x)) with E2(Df (x)) = {{T1, T1,1, T1,1,1}, {T1, T1,1, T1,1,2}}.
Note that {T1, T1,1, T1,1,1} and {T1, T1,1, T1,1,2} have the same node T1,1 at the
second layer, thus it is sufficient to take only one of them as the representative.
Let [E2(Df (x))] = {{T1, T1,1, T1,1,1}} or [E2(Df (x))] = {{T1, T1,1, T1,1,2}}. To
assign x to T1,2, we only need to require 〈f , ξ1,2〉 > 〈f , ξ2(Ã)〉 for any Ã ∈
[E2(Df (x))]. Otherwise, x is assigned to T1,1. Suppose that x has been assigned

to T1,1, then at the third layer, x is assigned to T1,1,1 if 〈f , ξ1,1,1〉 > 〈f , ξ3(Ã)〉
for any Ã ∈ E3(Df (x)) with E3(Df (x)) = {{T1, T1,1, T1,1,2}}. Otherwise, x is
assigned to T1,1,2.

By the top–down strategy, any ITR D(x) can always be represented as Df (x)
for some decision function f . For example, let f(x) = ξL(D)(D(x)), which is
the embedded point corresponding to the leaf node of D(x). One can verify
that Df (x) = D(x) according to the top–down strategy. Moreover, note that
A = Df is equivalent to a series of inequalities

〈f(X), ξm(A)〉 − 〈f(X), ξm(Ã)〉 ≥ 0, Ã ∈ [Em(A)],m = 2, . . . ,L(A). (2.6)

Define the hierarchy margin M(f(X), A) as

M(f(X), A) = min
m=2,...,L(A)

{〈f(X), ξm(A)〉 − max
Ã∈[Em(A)]

〈f(X), ξm(Ã)〉}

= min
m,Ã∈[Em(A)]

{〈f(X), ξm(A)〉 − 〈f(X), ξm(Ã)〉}.

It can be seen that (2.6) holds if and only ifM(f(X), A) ≥ 0. Therefore, we have
I(A = Df (X)) = I(M(f(X), A) ≥ 0) and I(A �= Df (X)) = I(M(f(X), A) <
0). For any ITR D = Df associated with some decision function f , based on
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(2.4), we have the following optimization problem

f̄(X) = arginf
f

E

[
|R|

Pr(A|X)
{I(R ≥ 0)I(M(f(X), A) < 0)+

I(R < 0)I(M(f(X), A) ≥ 0)}
]
,

(2.7)

where f̄ is the Bayes rule. Recall the optimization problem (2.4), which aims to
find the optimal ITR. For simplicity, let

C(D) = E

[
|R|

Pr(A|X)
{I(R ≥ 0)I(A �= D(X)) + I(R < 0)I(A = D(X))}

]
.

Proposition 1 shows that the associated ITR Df̄ yielded by f̄ is a minimizer of
C(D). The proof is given in the Appendix. Therefore, solving the optimization
problem (2.4) is equivalent to solving (2.7).

Proposition 1. The associated ITR Df̄ yielded by f̄ according to the top–down
strategy is a minimizer of C(D).

Remark 1. Since 〈f , ξm(A)〉 ≥ 〈f , ξm(Ã)〉 ⇔ 〈ρf , ξm(A)〉 ≥ 〈ρf , ξm(Ã)〉 for
any ρ > 0, the minimizer f̄ of R(f) is not unique. Here f is identifiable up
to a scale. To learn the optimal ITR, only the direction of f is required. We
emphasize that the aim is to learn the optimal ITR rather than the optimal
decision function. To ensure identifiability of f , we can impose a constraint on
the norm of f (e.g., ‖f‖ = 1 with ‖ · ‖ being the l2 norm).

Let {(xi, ai, ri)}ni=1 be the observations of (X, A,R) with n being the sample
size, the empirical loss is

1

n

n∑
i=1

|ri|
Pr(ai|xi)

{I(ri ≥ 0)I(M(f(xi), ai) < 0)+ I(ri < 0)I(M(f(xi), ai) ≥ 0)},

which is hard to minimize because of the discontinuity of the 0–1 loss. Applying
a surrogate loss �, the objective function can be formulated as

1

n

n∑
i=1

|ri|
Pr(ai|xi)

{I(ri ≥ 0)�(M(f(xi), ai)) + I(ri < 0)�(−M(f(xi), ai))}

=
1

n

n∑
i=1

|ri|
Pr(ai|xi)

�ri(M(f(xi), ai)),

(2.8)

where �ri(u) = �(u) if ri ≥ 0 and �ri(u) = �(−u) if ri < 0. As the partial
derivative of the hierarchy margin M(f(xi, ai)) is discontinuous, solving (2.8)
is still difficult. We overcome this challenge by replacing the term

|ri|�ri(M(f(xi), ai))/Pr(ai|xi),
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with its additive formulation

L(ai)∑
m=2

∑
ã∈[Em(ai)]

|ri|�ri((ξm(ai)− ξm(ã))�f(xi))/Pr(a
(m)
i |xi),

where Pr(a
(m)
i |xi) is the propensity score, defined as

∑
A∈A:A(m)=a

(m)
i

Pr(A|xi).

For each observation, at the m-th layer, we compare ξm(ai)
�f(xi) with the

remaining components ξm(ã)�f(xi). The hierarchy margin M(f(xi), ai) con-
siders the minimum pairwise difference, while after replacement, the additive
formulation considers the sum of all pairwise differences. The spirit is similar to
that in Zhang [33]. In Subsection 3.1, we show that after replacement, the the-
oretical minimizer leads to the same ITR as the Bayes rule f̄ , which guarantees
the rationality of this replacement. Furthermore, to avoid overfitting, we add
a penalty term to control the complexity of the learning function. Specifically,
instead of minimizing (2.8), we aim to solve the following optimization problem,

argmin
f∈F

1

n

n∑
i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

|ri|
Pr(a

(m)
i |xi)

�ri((ξm(ai)− ξm(ã))�f(xi)) + λJ(f),

(2.9)

or equivalently,

argmin
f∈F

1

n

n∑
i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

|ri|
Pr(a

(m)
i |xi)

�ri((ξm(ai)− ξm(ã))�f(xi))

s.t. J(f) ≤ sλ,

where F is the functional space (e.g. the set of linear functions for linear learn-
ing), J(f) is the penalty term, and λ, sλ are tuning parameters. The minimizer

of (2.9) is denoted as f̂λ.

Remark 2. In the next subsection, we introduce the special linear loss �(u) =
−u to reduce computation. For the linear loss, a restriction E(‖f‖2) ≤ 1 is
required in (2.9) to keep consistency with the theoretical assumptions. In this
case, we restrict F on the set {f : E(‖f‖2) ≤ 1}. The restricted optimization
problem is difficult to solve and has the same solution as the unrestricted one
when λ is large. Therefore, for more efficient computation, we consider only the
unrestricted optimization problem in implementation.

2.3. Linear loss functions

To reduce computation, we adopt the linear loss �(u) = −u [25, 9], where a
closed form estimator can be derived for both linear and nonlinear learning.

We first consider the linear learning function f(X) = CX + b, where C ∈
R

K×p, b ∈ R
K . The regularization term is chosen as J(f) = ‖C‖2F + λ′‖b‖2,
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where ‖ · ‖F represents the Frobenius norm and ‖ · ‖ is the l2 norm [7, 35]. As
shown in the Appendix, the problem (2.9) has a closed form solution,

Ĉlin,λ = −B1/(2λ), b̂lin,λ,λ′ = −b̃1/(2λλ
′), (2.10)

where B1 = n−1
∑n

i=1

∑L(ai)
m=2

∑
ã∈[Em(ai)]

wi,m(ξm(ã)− ξm(ai))x
�
i and

b̃1 = n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

wi,m(ξm(ã)− ξm(ai)), (2.11)

with wi,m = ri/Pr(a
(m)
i |xi). Note that for two siblings ξj1,j2,...,jm , ξj1,j2,...,j′m

and any ρ > 0, we have

〈ξj1,j2,...,jm ,f〉 ≤ 〈ξj1,j2,...,j′m ,f〉 ⇔ 〈ξj1,j2,...,jm , ρf〉 ≤ 〈ξj1,j2,...,j′m , ρf〉.

Thus, the value of ρ does not affect the assigned nodes following the top–down
strategy. Since the estimator under the linear loss is proportional to λ−1, we
simply set λ = 1 and denote the corresponding solution as Ĉlin and b̂lin,λ′ .
Thus, only the tuning parameter λ′ needs to be tuned.

The linear loss uses the same weight for all observations. It awards the cor-
rectly assigned instances and is unbounded, thus may be not robust. The plot of
the linear loss is shown in FIG 2. For any observation with (ξm(ai)−ξm(ã))�f <
0, the predicted treatment is away from its current received treatment ai. The
smaller (ξm(ai)−ξm(ã))�f is, the larger distant it is from ai and the more likely
it is an outlier. On the other hand, for observations with (ξm(ai)−ξm(ã))�f > 0,

it is assigned to a
(m)
i by f . The linear loss awards these instances and when

(ξm(ai)−ξm(ã))�f is large, the classifier tends to be strongly affected by them
because the linear loss is unbounded. To alleviate the impact of outliers and
restrict awards of correctly assigned instances, we assign them smaller weights
[32]. Specifically, we design an adaptive weighted linear loss and the optimization
problem is

argmin
1

n

n∑
i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

|ri|
Pr(a

(m)
i |xi)

μi,m,ã�ri((ξm(ai)− ξm(ã))�f(xi))+

λ‖C‖2F + λλ′‖b‖2,
(2.12)

where μi,m,ã = 1/(1 + |(ξm(ai) − ξm(ã))�(Ĉlinxi + b̂lin,λ′)|γ) is the adaptive
weight and γ can be chosen via validation. Our motivation of the adaptive
weight comes from the form of the linear loss �(u) = −u. We consider the
weight function 1/(1 + |u|), which is decreasing when |u| is increasing [32]. The
plot of the weight function is shown in FIG 2. Using the estimators from the
linear loss, μi,m,ã assigns a smaller weight for any observation with a larger

|(ξm(ai) − ξm(ã))�(Ĉlinxi + b̂lin,λ′)|, which matches with our goal. To further
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Fig 2. Plot of the linear loss −u, the weight function 1/(1 + |u|), and the target function
−u/(1 + |u|).

understand the weight function, we display the function −u/(1 + |u|) in FIG 2,
which can be viewed as the target loss through our weighted learning. It can be
seen that −u/(1 + |u|) is bounded between −1 and 1.

The estimator under the weighted linear loss also has a closed form. The
proof is similar to that of the linear loss and is omitted. Setting λ = 1, the
solution of (2.12) is Ĉada = −B2/2, b̂ada,λ′ = −b̃2/(2λ

′), where

B2 = n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

w̃i,m,ã(ξm(ã)− ξm(ai))x
�
i ,

and

b̃2 = n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

w̃i,m,ã(ξm(ã)− ξm(ai)),

with w̃i,m,ã = wi,mμi,m,ã.
Next, we consider nonlinear learning. Define a kernel h(·, ·) : X ×X → R that

is continuous, symmetric, and positive semidefinite. Let

f(X) = Z(h(X,x1), . . . , h(X,xn))
� + b,

where Z ∈ R
K×n and b ∈ R

K . Set J(f) = tr(ZHZ�) + λ′‖b‖2 with H =
(h(xi,xj))

n
i,j=1.

Similarly, the kernel estimator under the linear loss has a closed form. For
λ = 1, we have Ẑlin = −B3H−1/2, b̂lin,λ′ = −b̃1/(2λ

′), where

B3 = n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

wi,m(ξm(ã)− ξm(ai))(h(xi,x1), . . . , h(xi,xn)),
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and b̃1 is defined in (2.11).
For λ = 1, the solution under the adaptive weighted linear loss in the kernel

space is Ẑada = −B4H−1/2, b̂ada,λ′ = −b̃3/(2λ
′), where

B4 = n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

w˜ i,m,ã(ξm(ã)− ξm(ai))(h(xi,x1), . . . , h(xi,xn)),

and

b̃3 = n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

w˜ i,m,ã(ξm(ã)− ξm(ai)),

with w˜ i,m,ã = wi,m/(1 + |(ξm(ai) − ξm(ã))�{Ẑlin(h(xi,x1), . . . , h(xi,xn))
� +

b̂lin,λ′}|γ).
As a comparison, we also apply the hinge loss, �(u) = (1−u)+ for both linear

and nonlinear learning functions. The optimization problem can be written as

argmin
f∈F

1

n

n∑
i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

|ri|
Pr(a

(m)
i |xi)

{
I(ri ≥ 0)(1− (ξm(ai)− ξm(ã))�f(xi))+

+I(ri < 0)(1 + (ξm(ai)− ξm(ã))�f(xi))+
}
+ λJ(f),

where J(f) = ‖C‖2F+λ′‖b‖2 in linear learning and J(f) = tr(ZHZ�)+λ′‖b‖2
in kernel learning. This optimization problem can be solved by the regular dual
quadratic program.

3. Statistical theory

In this section, we first establish Fisher consistency of the estimated ITRs by
our proposed method, and then study the convergence rate of the excess risk.

3.1. Fisher consistency

Given x ∈ X and a ∈ A, denote the expected reward as R(x, a) = E[R|X =
x, A = a]. Define the positive part as R+(x, a) = E[R · I(R ≥ 0)|X = x, A = a]
and the negative part as R−(x, a) = E[R · I(R < 0)|X = x, A = a]. Note
that R(x, a) = R+(x, a) + R−(x, a). Before proceeding, we give the following
proposition to specify the optimal ITR D∗(x).

Proposition 2. The optimal ITR D∗(x) defined in (2.4) satisfies D∗(x) =
argmaxa∈A R(x, a).

By (2.7), define the generalization error as

R(f) = E

[
|R|

Pr(A|X)
{I(R ≥ 0)I(M(f(X), A) < 0)+
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I(R < 0)I(M(f(X), A) ≥ 0)}
]
.

The minimizer of R(f), also called the Bayes rule, is denoted by f̄ yielding the
optimal ITR D∗(x) under the top–down strategy as shown in Proposition 1,
that is, D∗(x) = Df̄ (x). Let Z = (X, A,R). For a surrogate loss �, denote

V (f , Z) =

L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X)),

where �R(u) = �(u) if R ≥ 0 and �R(u) = �(−u) if R < 0. Define the risk as

RV (f) = E

⎡⎣L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X))

⎤⎦ .
The theoretical minimizer of RV (f) is denoted as f∗ = arginff RV (f).

Fisher consistency, which is also referred as classification-calibration [2] or
infinite-sample consistency [33], is a fundamental requirement of a (weighted)
classification method. It requires that the ITRs corresponding to f∗ and f̄
following the top–down strategy are same, that is, Df∗(x) = Df̄ (x). Denote

the expected reward given x and a(m) at the m-th layer as Rm(x, a(m)) =
E[R|X = x, A(m) = a(m)]. Correspondingly, the positive part is R+

m(x, a(m)) =
E[R · I(R ≥ 0)|X = x, A(m) = a(m)] and the negative part is R−

m(x, a(m)) =
E[R · I(R < 0)|X = x, A(m) = a(m)]. We first give the following assumptions.

Assumption 1. For a patient with covariates x, denote by D∗(x) the optimal
path. Assume that D∗(x) is the dominating path on the tree satisfying for any
m = 2, . . . ,L(D∗(x)),

D∗(m)(x) = argmax
Tj1,...,jm∈Chi(D∗(m−1)(x))

Rm(x, Tj1,...,jm).

Assumption 2. For a patient with covariates x, denote by D∗(x) the optimal
path. Assume that

D∗(m)(x) = argmax
Tj1,...,jm∈Chi(D∗(m−1)(x))

R−
m(x, Tj1,...,jm), m = 2, . . . ,L(D∗(x)).

Assumption 1 states that at any layer, the corresponding node D∗(m)(x)
is optimal among all candidates, the children of D∗(m−1)(x). Assumption 1 is
natural in order to utilize hierarchical information. Assumption 2 requires that
at any layer, R−

m(x,D∗(m)(x)) is the largest among the children of D∗(m−1)(x).
It is reasonable in practice that adverse effects of the optimal treatment should
be small on average.

Theorem 1. Under Assumptions 1 and 2, it holds that Df∗(x) = Df̄ (x) if (i)
�(u) is differentiable with �′(u) < 0 for any u; (ii) �′(u) is nondecreasing in u.
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Theorem 1 gives the conditions of a surrogate loss to achieve Fisher consis-
tency. The linear loss and commonly used loss functions such as the exponential
loss �(u) = e−u and the deviance loss �(u) = log(1+exp(−u)) satisfy conditions
in Theorem 1, and thus lead to Fisher consistency. In this case, the hinge loss
does not satisfy the conditions in Theorem 1. Liu, Zhang and Wu [14] proposed
a set of large-margin unified machine loss functions satisfying the conditions in
Theorem 1, which take the hinge loss as a limit.

Remark 3. As shown in the Appendix, for the linear loss, we define f∗ =
arginff :E(‖f‖2)≤1 RV (f) to avoid the infinite case. We prove in the Appendix
that under this definition, it also holds that Df∗(x) = Df̄ (x) for the linear loss.

Remark 4. For a surrogate loss function �(u), denote the minimizer of

E [|R|/Pr(A|X)�R(M(f(X), A))] ,

by fM . We also establish Fisher consistency for fM in Theorem S1 in the Ap-
pendix. However, as argued in Section 2, for efficient computation, we use the
additive formulation.

3.2. Convergence rate of excess risk

In this subsection, we show that our method can achieve a fast convergence rate
of excess risk under mild conditions. Recall that the expectation risk is

RV (f) = E

⎡⎣L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X))

⎤⎦ ,
and f∗ = arginff RV (f). In addition, recall the Bayes rule f̄ = arginff R(f),
which yields the optimal ITR D∗(X) under the top–down strategy. By Fisher
consistency, f∗ leads to the same decision rule as f̄ . Thus, R(f̄) = R(f∗).
To quantify the performance of any f ∈ F with F being the set of candidate
functions, define the excess �-risk as eV (f ,f

∗) = RV (f) −RV (f
∗), measuring

the difference in terms of the expectation risk. As shown in Subsection 2.2, we
have C(Df ) − C(D∗) = R(f) −R(f∗), where Df is the ITR associated with f
by the top–down strategy. Hence, it is sufficient to define the excess risk as the
difference of the generalization error, that is, e(f ,f∗) = R(f)−R(f∗).

Note that f : X → R
K , where K = mleaf − 1. For any loss �, recall

V (f , Z) =

L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X)),

with Z = (X, A,R). Denote the truncated version as V T̃ (f , Z) = T̃ ∧ V (f , Z),

where T̃ is a truncation constant. Let eV T̃ (f ,f
∗) = E[V T̃ (f , Z) − V (f∗, Z)].

We introduce the following assumptions similar to Wang, Shen and Pan [31]
and give the result of the convergence rate.
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Assumption 3. There exist constants 0 < α ≤ ∞ and c1 > 0 such that for
any small ε > 0,

sup
{f∈F :e

V T̃ (f ,f∗)≤ε}
|e(f ,f∗)| ≤ c1ε

α.

Assumption 4. There exist constants β ≥ 0 and c2 > 0 such that for any
small ε > 0,

sup
{f∈F :e

V T̃ (f ,f∗)≤ε}
Var(V T̃ (f , Z)− V (f∗, Z)) ≤ c2ε

β .

Assumption 3 controls the excess risk |e(f ,f∗)| in the neighborhood of f∗ and
describes a first moment relationship of the excess risk between f and f∗. As-
sumption 4 describes a variance condition. Now, we define a complexity measure
of a function space G. Given ε > 0, denote {(gli, gui )} as an ε-bracketing set of G if
for any g ∈ G, there exists an i such that gli ≤ g ≤ gui and [E(‖gui −gli‖2)]1/2 ≤ ε.
Define the metric entropy with bracketing HB(ε,G) as the logarithm of the car-
dinality of the smallest ε-bracketing set for G.

Let f0 = f∗ if f∗ ∈ F , otherwise f0 ∈ F is an approximation to f∗ such that
eV (f0,f

∗) ≤ ε2n/4, where εn is defined in the following Assumption 5. Define

FV (t) = {V T̃ (f , Z) − V (f0, Z) : f ∈ F , J(f) ≤ J0t}, where J(f) = ‖f‖2 for
the linear learner or J(f) = 〈f ,f〉h for the nonlinear learner with 〈·, ·〉h being
the inner product of h, and J0 = max{J(f0), 1}. The following assumption
measures the complexity of the function space FV (t).

Assumption 5. For some constants ci > 0, i = 3, 4, 5, there exists εn > 0 such
that supt≥1 φ(εn, t) ≤ c3n

1/2, where

φ(εn, t) =

∫ c
1/2
4 L̃β/2

c5L̃

H1/2
B (u,FV (t))du/L̃,

with L̃ = L̃(εn, λ, t) = min{ε2n + λJ0(t/2− 1), 1}.

The following Theorem 2 gives the bound of the excess risk e(f̂λ,f
∗) between

f̂λ and f∗, where f̂λ ∈ F is the minimizer of the optimization problem (2.9).

Theorem 2. Under Assumptions 3–5, there exists a constant c6 such that,

P (e(f̂λ,f
∗) ≥ c1δ

2α
n ) ≤ 3.5 exp(−c6n(λJ0)

2−min(β,1)),

provided that λ−1 ≥ 2δ−2
n J0, where δ2n = min{ε2n + 2eV (f0,f

∗), 1}.

Corollary 1. Under the assumptions in Theorem 2, |e(f̂λ,f
∗)| = Op(δ

2α
n )

provided that n(λJ0)
2−min{β,1} is bounded away from 0 when n → ∞.

The conclusion of Theorem 2 is similar to that of Wang, Shen and Pan [31].
In the Appendix, we verify Assumptions 3–5 under mild conditions. It is shown
that β = 1 in Assumption 4 for the linear loss and loss functions that are
twice continuously differentiable with �′′(u) > 0. For Assumption 5, the explicit
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expression of HB(ε,FV (t)) is given. Finally, it should be pointed out that there
is no general result about α in Assumption 3 as it depends on f∗ and the
distribution of (X, A,R). We give a specific example in the Appendix, showing
the value of α and deriving the convergence rate by Corollary 1.

Theorem 2 and Corollary 1 are established when the propensity score is
known. When the propensity score is unknown, let π̂(A(m)|X) be an estimator
of Pr(A(m)|X). Define

V π̂(f , Z) =

L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
π̂(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X)),

and f̂ π̂
λ = argminf∈F n−1

∑n
i=1 V

π̂(f , zi) + λJ(f). To establish the asymptotic

theory for f̂ π̂
λ , the following assumptions are required.

Assumption 6. Assume the following conditions are satisfied,
(1) |R| is bounded by a constant MR > 0.
(2) There exists MA,Mπ > 0 such that Pr(A(m)|X) ≥ MA and π̂(A(m)|X) ≥
Mπ for any A ∈ A, m = 2, . . . ,L(A) and X ∈ X .

(3) The loss function �(u) is Lipschitz with a constant γ̃. Specifically, for any
u1, u2 that are bounded by a finite value, it holds that |�(u1)−�(u2)| ≤ γ̃|u1−u2|.

Assumption 7. There exists sn > 0 such that δ−2
n sn = o(1) and |π̂(A(m)|X)−

Pr(A(m)|X)| = Op(sn) with δ2n = min{ε2n + 2eV (f0,f
∗), 1}.

Assumption 6 assumes that the outcomes are bounded, which is reasonable in
practice. We also assume that the propensity scores are bounded away from 0,
which is a key assumption to build connections between observed and potential
data in causal inference. Moreover, the loss function is assumed to be Lipschitz.
Assumption 7 clarifies the convergence rate of the estimator π̂. Theorem 3 below
shows that the convergence rate in Corollary 1 still holds for f̂ π̂

λ , where the proof
is given in the Appendix.

Theorem 3. Under Assumptions 3–7, it holds that |e(f̂ π̂
λ ,f

∗)| = Op(δ
2α
n ) pro-

vided that n(λJ0)
2−min{β,1} is bounded away from 0 as n → ∞ with δ2n =

min{ε2n + 2eV (f0,f
∗), 1}.

4. Simulation study

In this section, we conduct simulations under hierarchical treatment scenarios
using both linear and nonlinear learners to evaluate the performance of our
method. Denote the proposed HOAL under three loss functions as HOALlin

(linear loss), HOALwl (weighted linear loss), and HOALhinge (hinge loss). For
comparisons, we adapt several existing methods to hierarchical scenarios. Specif-
ically, we consider (1) the multicategory outcome-weighted margin-based learn-
ing (MOML) [36], which is a flat approach involving only leaf nodes and ignoring
the hierarchical structure; (2) the sequential multicategory outcome-weighted
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margin-based learning (SMOML), sequentially applying MOML for each par-
ent node; (3) the sequential binary outcome-weighted learning (SBOWL), which
sequentially applies binary OWL [37] for each node in the hierarchical tree.

4.1. Evaluation metrics

We first introduce several evaluation metrics. Two types of criteria are consid-
ered. The first is to evaluate the misclassification rates of the estimated optimal
ITRs D̂(X) from the true optimal ITRs, including the 0–1 loss, symmetric loss,
and two hierarchical losses. The second is to evaluate the value function using
the estimated optimal ITRs. Smaller values are preferred for the first type of
criteria and larger values are preferred for the second type.

Note that paths on the tree may have different lengths, depending on the
layer where the leaf node locates. For simplicity of comparison, we introduce
the following notations. Let |T | = q, representing the total number of nodes on
the tree except for the root. Sort the nodes in T by layers from top to bottom,
and the nodes at the same layer from left to right. Denote the sorted nodes
as {T(1), T(2), . . . , T(q)} and the root node is denoted as T(0). For a path from
the root to a leaf on the tree, we transform it into a binary vector, denoted as
Q(·) ∈ Rq, of which the j-th coordinate indicates whether the j-th node is on
the path.

The 0–1 misclassification rate [3] is defined as

�0–1 = I(Q(D̂(X)) �= Q(D(X))),

which equals to 0 if the whole path is the same, and 1 otherwise. The symmetric
misclassification rate [30] penalizes errors at each node, defined as

�Δ = q−1

q∑
j=1

I(Q(D̂(X))j �= Q(D(X))j),

where Q(·)j is the j-th coordinate of Q(·). The hierarchical misclassification
rate [30] views the mistakes made at higher layers being more important than
those at lower layers, defined as

�H=

q∑
j=1

vT(j)
I({Q(D̂(X))j �=Q(D(X))j}∧{Q(D̂(X))s=Q(D(X))s, ∀s < j}).

The coefficients 0 ≤ vT(j)
≤ 1, j = 1, . . . , q are used for down-scaling. There

are two popular choices for vT(j)
. Specifically, denote �H as �H(sib) when vT(0)

=
1, vT(j)

= vPar(T(j))/|Sib(T(j))|, j = 1, . . . , q with |Sib(T(j))| being the number of

siblings of T(j), and denote �H as �H(sub) when vT(j)
= q−1|subtree(T(j))|, j =

1, . . . , q with |subtree(T(j))| being the size of the subtree rooted by T(j).
Murphy, Der Laan and Robins [19] proposed the estimated value function

for D̂(X). According to our formulation in hierarchical scenarios, the empirical
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value function is defined as

P
∗

⎡⎣L(A)∑
m=2

R · I(A(m) = D̂(m)(X))

Pr(A(m)|X)

⎤⎦ /P∗

⎡⎣L(A)∑
m=2

I(A(m) = D̂(m)(X))

Pr(A(m)|X)

⎤⎦ ,
where P

∗ denotes the empirical average of the testing dataset.

4.2. Simulations

In our simulations, we consider four examples, where the first two utilize linear
learner and the last two apply nonlinear learner. As for nonlinear scenarios, we
utilize Gaussian kernels, that is, h(x,x′) = exp(−τn‖x− x′‖2), where τn is the
kernel bandwidth. In Examples 1 and 3, we simulate data from a randomized
trial. That is, treatment assignments are independent of any patient’s covariates.
In Examples 2 and 4, we consider observational studies, where the assignment
of the treatment depends on covariates. We use multinomial logistic regression
to estimate the propensity score.

In each example, we generate samples and split them into the training set,
the validation set and the test set with their sizes denoted as n, nvl and nte,
respectively. In the following simulations, we set the ratio n : nvl : nte = 1 : 1 : 2.
We first learn f on the training set and choose the best tuning parameter based
on the validation set. Then we apply the estimated learner on the test set to
compute the evaluation metrics. The tuning parameters λ, λ′ and γ are chosen
from {10−2+4k/10, k = 0, 1, . . . , 10}. Let τn = 1/(2σ2

n), where σn is chosen from
{10−2+2k/5, k = 0, 1, . . . , 5}. Moreover, to reduce the computational cost, we set
λ′ = 1 for HOALhinge.

Example 1 (linear). We consider a tree of k layers. There are three nodes
at the second layer and each nonleaf node at the m-th layer (m ≥ 2) has
two children. The tree is shown in FIG 3 (left), where the digits stand for
the labels. Note that all leaves locate at the k-th layer. The optimal path D∗

is generated by a discrete uniform distribution in the set of all paths on the
tree. Moreover, X|D∗ ∼ N(t(D∗), 0.1Ip×p), where t(D∗) is a zero vector of
length p = q except for the D∗(m)-th element being 1/

√
m− 1,m = 2, . . . , k.

For example, if D∗ = {0, 1, 4}, t(D∗) = (1, 0, 0, 1/
√
2, 0, . . . , 0)�. The assigned

A is generated similar to D∗ by following a discrete uniform distribution in
the set of all paths on the tree. The reward R ∼ N(μ(X, A,D∗), 1), where
μ(X, A,D∗) = X�(1�


p/2�,−1�
p−
p/2�)

� + 5 · I(A = D∗). We set n = 500 and
k = 3, 4, respectively. Note that p = 9 for k = 3 and p = 21 for k = 4.

Example 2 (linear). We consider a tree of 3 layers with leaf nodes locating
at different layers. The tree is shown in FIG 3 (right), where the digits stand for
the labels. The optimal path D∗ is generated by a discrete uniform distribution
in the set of all paths on the tree. Moreover, X|D∗ ∼ N(t(D∗), 0.1Ip×p), where
t(D∗) is a zero vector of length p = q+ p̃ except for the D∗(m)-th element being
1/

√
m− 1 for m = 2, . . . ,L(D∗). Note that we add additional p̃ covariates as

random noises. The assignment of the treatment is based on a multinomial
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Fig 3. Structures of Examples 1 (left) and 2 (right) where digits represent labels of nodes.

distribution with

Pr(A = {0, 3}|X) = 1/M̃, Pr(A = {0, 1, 4}|X) = exp (0.1X1 − 0.2X2)/M̃,

Pr(A = {0, 1, 5}|X) = exp (0.1X1 + 0.2X2)/M̃,

Pr(A = {0, 2, 6}|X) = exp (0.1X1 − 0.1X2)/M̃,

Pr(A = {0, 2, 7}|X) = exp (0.1X1 + 0.1X2)/M̃,

and M̃ = 1+exp (0.1X1 − 0.2X2)+exp (0.1X1 + 0.2X2)+exp (0.1X1 − 0.1X2)+
exp (0.1X1 + 0.1X2). The reward R ∼ N(μ(X, A,D∗), 1), where μ(X, A,D∗) =
X�(1�


p/2�,−1�
p−
p/2�,0p̃)

� + 5 · I(A = D∗). We set n = 500 and p̃ = 5, 10,
respectively. Note that p = 12 for p̃ = 5 and p = 17 for p̃ = 10.

Example 3 (nonlinear). The setup is the same as that of Example 1, except
for t(D∗) = 2 sin(ξk(D∗)), where ξk(D∗) is the embedded point for the leaf node
D∗(k). Furthermore, we randomly choose 50% samples with D∗(2) = 1 to set
t(D∗) = −2 sin(ξk(D∗)). Let n = 300 and k = 3, 4, respectively. Note that p = 9
for k = 3 and p = 21 for k = 4.

Example 4 (nonlinear). The setup is the same as that of Example 2,
except for t(D∗) = 2 sin(ξL(D∗)(D∗)), where ξL(D∗)(D∗) is the embedded point

for the leaf node D∗(L(D∗)). Furthermore, we randomly choose 50% samples
with D∗(2) = 1 to set t(D∗) = −2 sin(ξL(D∗)(D∗)). Let n = 300 and p̃ = 5, 10,
respectively. Note that p = 12 for p̃ = 5 and p = 17 for p̃ = 10.

Tables 1 and 2 display the average results of the five evaluation metrics and
the running time (seconds) over 100 replications for Examples 1 and 2 using
linear learners. In Example 1, we consider a randomized trial with a homo-
geneous tree. All hierarchical methods, SMOML, SBOWL, HOALlin, HOALwl

and HOALhinge outperform the flat approach, MOML, which considers only leaf
nodes. Furthermore, the proposed HOAL under three different loss functions has
advantages over other existing methods in all evaluation metrics. HOALwl pro-
vides more robust improvements, while HOALlin achieves comparable results.
When the hierarchical tree goes deeper as the number of layers k increases from
3 to 4, the hierarchical structure becomes more complex and the advantages of
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Table 1

Average results as well as standard deviations for Example 1 over 100 replications. The best
value in each column is boldfaced.

�0-1 �Δ �H(sib) �H(sub) Value Time (s)

Example 1 k = 3, n = 500
MOML 0.2340.006 0.0750.002 0.0560.002 0.0490.002 3.7120.03 2.036
SMOML 0.1640.004 0.0490.001 0.0370.001 0.0300.001 3.9870.024 1.709
SBOWL 0.1680.004 0.0500.001 0.0380.001 0.0310.001 3.9670.022 3.639
HOALlin 0.1620.005 0.0430.001 0.0320.001 0.0250.001 3.9990.024 0.702
HOALwl 0.1410.007 0.0360.001 0.0270.001 0.0210.001 4.0820.02 1.032
HOALhinge 0.1410.004 0.0390.001 0.0290.001 0.0230.001 4.0630.022 24.798

Example 1 k = 4, n = 500
MOML 0.7440.006 0.1670.002 0.1800.003 0.1700.003 2.2550.035 5.375
SMOML 0.7200.007 0.1530.002 0.1640.003 0.1530.003 2.4150.033 4.036
SBOWL 0.7160.007 0.1510.003 0.1600.003 0.1490.003 2.4480.037 8.342
HOALlin 0.6050.006 0.1100.002 0.1120.002 0.0990.002 2.8450.034 0.999
HOALwl 0.6060.006 0.1110.002 0.1130.002 0.1000.002 2.8300.035 1.529
HOALhinge 0.6170.006 0.1130.002 0.1150.002 0.1020.002 2.7570.038 58.456

Table 2

Average results as well as standard deviations for Example 2 over 100 replications. The best
value in each column is boldfaced.

�0-1 �Δ �H(sib) �H(sub) Value Time (s)

Example 2 p̃ = 5, n = 500
MOML 0.1830.005 0.0690.002 0.0450.001 0.0500.002 3.7660.024 1.958
SMOML 0.1430.004 0.0530.002 0.0340.001 0.0380.001 3.9560.017 1.758
SBOWL 0.1440.003 0.0520.001 0.0340.001 0.0370.001 3.9230.016 3.678
HOALlin 0.1370.003 0.0480.001 0.0320.001 0.0350.001 3.9980.015 0.672
HOALwl 0.1210.002 0.0430.001 0.0280.001 0.0310.001 4.0490.016 1.015
HOALhinge 0.1180.002 0.0410.001 0.0270.001 0.0290.001 4.040.015 25.336

Example 2 p̃ = 10, n = 500
MOML 0.2210.005 0.0840.002 0.0550.001 0.0620.002 3.6450.022 2.054
SMOML 0.1710.003 0.0630.001 0.0410.001 0.0460.001 3.8780.018 2.074
SBOWL 0.1770.003 0.0640.001 0.0420.001 0.0470.001 3.8230.016 4.231
HOALlin 0.1650.003 0.0590.001 0.0390.001 0.0430.001 3.9210.017 0.67
HOALwl 0.1530.003 0.0540.001 0.0360.001 0.0400.001 3.9640.016 1.001
HOALhinge 0.1520.003 0.0540.001 0.0360.001 0.0390.001 3.9390.016 31.441

our method become clearer. This implies that HOAL can produce stable esti-
mation in complex hierarchical scenarios. As for the running time, HOALlin is
the fastest, followed by HOALwl, SMOML, MOML, SBOWL and HOALhinge.
Thus, our method achieves great improvements in prediction accuracy and is
computationally efficient under the (weighted) linear loss, where a closed form
solution is available. In Example 2, we consider an observational study with a
heterogeneous tree and add additional random noises. Again, all hierarchical
methods perform better than the flat approach and our method outperforms
other existing methods in most evaluation metrics. HOALwl and HOALhinge

achieve the best performance and HOALlin provides comparable results. The
results imply that the proposed method is robust in an observational study
when random noises are included. Furthermore, the pattern of the running time
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is similar to that of Example 1. When nonlinear learning is applied, the average
results of the five evaluation metrics and the running time (seconds) over 100
replications for Examples 3 and 4 are shown in Tables 3 and 4. In Example 3, our
method outperforms other methods in all cases. All the methods become worse
when the tree gets bigger, while HOAL can still produce better results. HOALwl

is the best one in all evaluation metrics. As for the running time, HOALlin is
the fastest, followed by HOALwl, SMOML, SBOWL, MOML and HOALhinge.
In Example 4, we consider the effect of additional random noises in an obser-
vational study. Our method under the weighted linear loss and the hinge loss
still has great advantages over other methods, while HOALlin is not good since
the linear loss is not that robust to outliers. Note that in these two examples,
for nonlinear learning, our method under the (weighted) linear loss shows great
advantages in computation.

Table 3

Average results as well as standard deviations for Example 3 over 100 replications. The best
value in each column is boldfaced.

�0-1 �Δ �H(sib) �H(sub) Value Time (s)

Example 3 k = 3, n = 300
MOML 0.2630.013 0.0950.003 0.0700.002 0.0660.002 3.8510.036 163.619
SMOML 0.2030.008 0.0810.003 0.0600.003 0.0580.003 4.0010.036 54.061
SBOWL 0.1910.008 0.0740.003 0.0550.003 0.0530.003 4.0500.033 86.863
HOALlin 0.1910.017 0.0560.003 0.0420.002 0.0400.002 4.2260.033 2.026
HOALwl 0.1690.011 0.0500.003 0.0370.002 0.0350.002 4.2770.032 3.160
HOALhinge 0.1730.012 0.0610.003 0.0450.002 0.0420.002 4.1290.035 254.995

Example 3 k = 4, n = 300
MOML 0.7770.005 0.1850.002 0.2050.002 0.1980.002 1.6000.035 551.337
SMOML 0.7680.006 0.1810.002 0.2000.003 0.1920.003 1.7130.038 58.672
SBOWL 0.7750.007 0.1830.003 0.2020.003 0.1930.003 1.6650.039 100.524
HOALlin 0.7250.007 0.1680.003 0.1840.003 0.1770.003 1.7890.043 2.787
HOALwl 0.7130.007 0.1570.002 0.1720.003 0.1640.003 1.8260.041 4.519
HOALhinge 0.7410.006 0.1660.002 0.1810.003 0.1700.003 1.7750.041 543.331

4.3. Sensitive study

For embedding nodes in Algorithm S2, we define a down-scaling constant δ
such that L(m+1) = L(m)/δ, where L(m) is the length of the embedded points
at the m-th layer. As suggested by Fan et al. [9], we use δ =

√
5 in above

simulations. Next we perform a sensitive study to investigate the performance
of our method HOAL relative to the value of δ. For illustration, we report the
results of HOALhinge with δ being 0.1, 1, 2,

√
5, 2.5, 3.

FIG 4 shows the plot of average results of �0–1 over 100 replications in Exam-
ples 1–4 with K = 3 and p̃ = 5, respectively, versus different values of δ using
HOALhinge. The other evaluation metrics show the similar pattern and thus are
omitted here. It can be seen that when δ < 1, the performance of HOALhinge is
relatively poor since it violates the basic requirement that the length of the em-
bedded points should be decreasing along the tree. For δ = 1, the result is still
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Table 4

Average results as well as standard deviations for Example 4 over 100 replications. The best
value in each column is boldfaced.

�0-1 �Δ �H(sib) �H(sub) Value Time (s)

Example 4 p̃ = 5, n = 300
MOML 0.3790.009 0.1660.003 0.1060.002 0.1310.002 3.0360.034 102.037
SMOML 0.3330.007 0.1500.003 0.0990.002 0.1220.003 3.2170.036 47.171
SBOWL 0.3280.007 0.1430.003 0.0940.002 0.1150.003 3.2480.036 76.654
HOALlin 0.3450.009 0.1490.003 0.1020.002 0.1280.003 3.2870.034 1.865
HOALwl 0.3310.018 0.1210.003 0.0800.002 0.0990.002 3.4500.029 3.053
HOALhinge 0.3180.009 0.1350.003 0.0900.002 0.1090.002 3.3310.032 197.455

Example 4 p̃ = 10, n = 300
MOML 0.4630.006 0.2090.003 0.1350.002 0.1660.002 2.6310.035 99.149
SMOML 0.4430.007 0.2000.004 0.1310.002 0.1610.003 2.7830.041 43.238
SBOWL 0.4380.008 0.1980.004 0.1290.002 0.1580.003 2.8050.037 68.957
HOALlin 0.4630.008 0.2100.005 0.1410.003 0.1760.004 2.7460.048 2.045
HOALwl 0.4120.009 0.1810.003 0.1190.002 0.1460.003 2.9600.04 3.311
HOALhinge 0.4160.006 0.1840.003 0.1220.002 0.1490.002 2.9000.041 200.726

Fig 4. Plot of average results of �0–1 over 100 replications versus different values of δ using
HOALhinge.

somewhat inferior since it equally treats the nodes at different layers and does
not utilize the hierarchical structure sufficiently. Moreover, for δ = 2,

√
5, 2.5,

the performance of HOALhinge has a low volatility and is not sensitive to the
value of δ. When δ becomes larger, that is, δ = 3, �0–1 increases slightly. Note
that the theoretical analysis requires δ2 ≥ 2

√
2 + 2 to satisfy the hierarchical

properties. Based on this sensitive study, we recommend to set δ =
√
5.

5. Application to a type 2 diabetes study

We apply HOAL to a type 2 diabetes mellitus (T2DM) observational study to
evaluate its performance in real data applications. The study population com-
prises T2DM patients during 2012-2013, from clinical practice research datalink
(CPRD) [10]. Treatment exposures will focus on first-line injectables, which are
first categorized to two groups and further into subgroups, naturally following
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Fig 5. Hierarchical structure of the treatments in T2DM.

a hierarchical structure as shown in FIG 5. The tree has four layers. There are
two nodes, insulin and glucagon-like peptide-1 (GLP-1) receptor agonists alone
at the second layer, which are two important medications for patients with type
2 diabetes [17]. Moreover, there are different types of insulin. The node insulin
then has three children, long-acting insulin alone, intermediate-acting insulin
along, and insulin regimens including a short-acting insulin at the third layer.
The node, long-acting insulin alone, has two children at the fourth layer, Detemir
and Glargine.

As the goal of the treatment is to decrease HbA1c (%), the negative value
of HbA1c change is chosen as the reward. Several covariates are considered, in-
cluding demographics such as gender, age, and ethnicity, clinical factors such as
high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol
(LDL), baseline HbA1c and smoking status. There are 1,138 patients satisfying
aforementioned requirements and around 17% patients have complete observa-
tions. We use the same procedure in Chen et al. [5] to handle the missing data.
After data preprocessing, we have 229 observations and involve five covariates
including gender, age, HDL, LDL and baseline HbA1c.

To compute the propensity score, we fit a multinomial logistic regression
model between the assigned path and the covariates. After estimating Pr(A|X),
let Pr(A(m)|X) =

∑
A∈A:A(m)∈A Pr(A|X). We apply HOAL under three losses

to this study and compare with MOML, SMOML, and SBOWL. Linear learn-
ing and nonlinear learning using Gaussian kernels are considered. The tuning
parameters λ, λ′ and γ are chosen from {10−2+4k/10, k = 0, 1, . . . , 10}, and σn is
chosen from {10−2+2k/5, k = 0, 1, . . . , 5}. Moreover, to reduce the computational
cost, we set λ′ = 1 for HOALhinge. We use the 5-fold cross-validation to estimate
the empirical value function. Specifically, we repeat the 5-fold cross-validation
100 times. In each replication, we randomly split the whole data into 5 folds.
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Each fold is used exactly once as a testing set to compute the empirical value
function with the remaining 4 folds as training data. The results of the empirical
value function based on five different folds are then averaged to produce a single
estimation. The average results of the estimations and running time (seconds)
over 100 replications are shown in Table 5.

As a comparison, we also compute the value function with the originally as-
signed treatments, which is 1.815. From Table 5, our method under the weighted
linear loss and the hinge loss outperforms other methods in both linear and
nonlinear cases, which implies that our method benefits from the hierarchical
information in this study. HOALwl using linear learning is the best. Considering
the running time (seconds), HOALlin is the fastest and HOALwl is comparable
in computational efficiency. As for the optimal ITRs following the top–down
strategy, we present the average proportions of treatment assignments over 100
replications by HOALwl using linear learning. It assigns around 60% patients
into the insulin group and the rest 40% patients into the GLP-1 receptor ago-
nists alone group at the second layer. At the third layer, around 46% patients
are assigned into the insulin regimens including a short acting insulin group
and around 10% into the intermediate-acting insulin alone group. The rest 4%
patients are assigned into the long-acting insulin alone group, where 3% pa-
tients are assigned to the Glargine group and only 1% patients are assigned into
the Detemir group. This result is consistent with the literature, which shows
that the short-acting insulin and the GLP-1 have the benefit of reducing HbA1c
[11, 1]. We also note that the prandial insulin is associated with greater risks
of hypoglycemia and weight gain, while GLP-1 has slightly added benefits re-
garding bodyweight, hypoglycemia, and lipoproteins. Though the primary goal
in this study here is the reduction of HbA1c, more composite metrics including
HbA1c change, hypo events, and weight gain can be evaluated.

Table 5

Average empirical value function results as well as standard deviations and running time
using 5-fold cross-validation over 100 replications for the T2DM dataset. The best value in

each column is boldfaced.

Linear Gaussian
Value Time (s) Value Time (s)

MOML 2.7110.011 0.619 2.7210.013 56.615
SMOML 2.8890.017 0.622 2.8880.018 27.862
SBOWL 2.5800.014 1.265 2.7060.015 50.565
HOALlin 3.0770.016 0.163 2.8000.018 1.166
HOALwl 3.3490.016 0.218 2.9480.017 1.575
HOALhinge 3.0160.017 4.111 3.0540.017 89.696

6. Discussion

In this paper, we study the estimation of optimal ITRs for treatments with hi-
erarchical structure. We propose a new framework named hierarchical outcome-
weighted angle-based learning (HOAL) to utilize the angle-based hierarchical
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classification method in OWL. By designing a linear loss function, a closed form
solution can be derived, thus our method is computationally efficient. Statistical
properties including Fisher consistency and convergence rate are studied. Simu-
lations and a real data application demonstrate the advantage of our proposed
method in both accuracy and computational efficiency.

There are several extensions can be considered. For example, sparse penalties
can be used to select important variables. Furthermore, the proposed method
can be integrated with the residual weighted learning [38, 15]. Our current focus
is on continuous responses, it will be interesting to extend the method to handle
other types of outcome such as binary and censored outcomes [22].

Appendix A: Conclusions and algorithms in Section 2

A.1. H. S. properties

For Ti1,...,im at the m-th layer and Tj1,...,jl at the l-th layer, where i1 = j1 ≡ 1
and 1 ≤ m, l ≤ k, define Ii1,...,im;j1,...,jl as the layer at which the latest common
ancestor of Ti1,...,im and Tj1,...,jl locates, that is,

Ii1,...,im;j1,...,jl = max {t : (i1, . . . , it) = (j1, . . . , jt), 1 ≤ t ≤ min{m, l}} .

Proposition S1. For δ2 ≥ 2
√
2 + 2, it holds that

(1) (Hierarchical property) For any two pairs of points {ξi1,...,im , ξi′1,...,i′m̃} and
{ξj1,...,jl , ξj′1,...,j′l̃}, if Ii1,...,im;i′1,...,i

′
m̃
< Ij1,...,jl;j′1,...,j′l̃

, then

‖ξi1,...,im − ξi′1,...,i′m̃‖ > ‖ξj1,...,jl − ξj′1,...,j′l̃
‖.

(2) (Symmetric property) For any two pairs of points {ξi1,...,im , ξi′1,...,i′m̃} and
{ξi1,...,im , ξj′1,...,j′m̃}, if Ii1,...,im;i′1,...,i

′
m̃
= Ii1,...,im;j′1,...,j

′
m̃
, then

‖ξi1,...,im − ξi′1,...,i′m̃‖ = ‖ξi1,...,im − ξj′1,...,j′m̃‖.

A.2. Algorithm to embed nodes in a standard q-class multicategory
classification problem

Denote ei as the coordinate bases in R
m, which is a zero vector except for the

i-th coordinate being 1. For U = (u1, . . . , um)�, denote U (s) as the subvector
consisting of the first s ≤ m coordinates of U , that is, U (s) = (u1, . . . , us)

�.
Denote the embedded q points for a standard q-class multicategory classification
problem in R

q−1 with the given length L as ξi, i = 1, . . . , q.
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Algorithm S1 : Label embedding for the standard q-class multicate-
gory classification

1: Initialization: Set ξ
(1)
1 = 1, ξ

(1)
2 = −1.

2: Iteration: For m = 2, . . . , q − 1, repeat the following Steps (1) and (2).

(1) Set ξ
(m)
i = ((ξ

(m−1)
i )�, 0)� ∈ R

m, i = 1, . . . ,m.

(2) ξ
(m)
m+1 = m−1

∑m
i=1 ξ

(m)
i + ame

(m)
m , where am =

√
22 − d2m−1 with dm−1 =

‖m−1
∑m

i=1 ξ
(m−1)
i − ξ

(m−1)
m ‖ and em is the coordinate base in R

m.
3: Centralization: Let ξi ← ξi − q−1

∑q
j=1 ξj , i = 1, . . . , q.

4: Scaling: ξi ← L‖ξi‖−1ξi for i = 1, . . . , q.

A.3. Algorithm to embed nodes in hierarchical classification

Algorithm S2 : Label embedding for hierarchical classification

1: Initialization: Initialize any ξj1,j2,...,jm ∈ R
K being a zero vector. For m = 2, let D2 =

Nj1 − 1. Construct subvectors {ξ(D2)
j1,j2

∈ R
D2 , j2 = 1, . . . , Nj1} based on Algorithm S1

with a given norm L(1).
2: Iteration: Repeat the following Steps (1)–(3) for m = 3, . . . , k.

(1) Sort all nonleaf nodes in Tm−1 from left to right and rename them as

T
(m−1)
1 , . . . , T

(m−1)
nm−1

, where nm−1 is the number of nonleaf nodes at the (m − 1)-

th layer. There exists some (j′2, . . . , j
′
m−1) such that T

(m−1)
i = Tj′1,...,j

′
m−1

for any

1 ≤ i ≤ nm−1 with children {Tj′1,...,j
′
m−1,jm

, jm = 1, . . . , Nj′1,...,j
′
m−1

} at the m-th layer

where Nj′1,...,j
′
m−1

≥ 2 according to the assumption that each node either is a leaf or has

at least two children. Let dm,i = Nj′1,...,j
′
m−1

− 1.

(2) Let L(m−1) = L(m−2)/δ with δ being the down-scaling constant given

in advance. Given some 1 ≤ i ≤ nm−1, for Chi(T
(m−1)
i ), construct

Nj′1,...,j
′
m−1

points denoted as {ηj′1,...,j
′
m−1,jm

, jm = 1, . . . , Nj′1,...,j
′
m−1

}
based on Algorithm S1 with the given norm L(m−1) in the subspace

span
{
ej ∈ R

K : Dm−1 + 1 +
∑i−1

s=0 dm,s ≤ j ≤ Dm−1 +
∑i

s=0 dm,s

}
, where

dm,0 = 0 and ej ’s are the coordinate bases in R
K . Let ξj′1,...,j

′
m−1,jm

=

ξj′1,...,j
′
m−1

+ ηj′1,...,j
′
m−1,jm

, jm = 1, . . . , Nj′1,...,j
′
m−1

.

(3) Repeat Step (2) for all nm−1 nonleaf nodes in Tm−1. Let Dm = Dm−1+
∑nm−1

i=1 dm,i.

Appendix B: Proof of conclusions in Section 2

B.1. Proof of Proposition 1.

Proof of Proposition 1. We prove this by contradiction. Let

R(f) = E

[
|R|

Pr(A|X)
{I(R ≥ 0)I(M(f(X), A) < 0)+

I(R < 0)I(M(f(X), A) ≥ 0)}
]
.
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Suppose C(D∗) < C(Df̄ ). For D∗, let f ′(X) = ξL(D∗)(D∗(X)), which is the
embedded point corresponding to the leaf node of D∗(X). It can be seen that for
anym ≥ 2, the embedded point ξm(D∗) of (D∗)(m) has the largest inner product
with f ′ among all child nodes of (D∗)(m−1). Thus, by the top–down strategy,
we have Df ′ = D∗. Moreover, since I(A = Df (x)) = I(M(f(X), A) ≥ 0) and
I(A �= Df (x)) = I(M(f(X), A) < 0), for any f , we have C(Df ) = R(f). It
holds that

R(f̄) = C(Df̄ )
(i)
> C(D∗)

(ii)
= C(Df ′) = R(f ′), (SB.1)

where (i) is derived by the assumption C(D∗) < C(Df̄ ) and (ii) is from Df ′ = D∗.

Since f̄ is the minimizer of R(f), (SB.1) leads to a contradiction. Hence, we
have C(D∗) = C(Df̄ ). That is, Df̄ (X) is a minimizer of C(D). This completes
the proof.

B.2. Proof of (2.10)

Proof of (2.10). We prove that for linear learning, the estimator under the linear
loss has a closed form.

It holds that

Ĉlin,λ, b̂lin,λ,λ′

= argmin
1

n

n∑
i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

ri

Pr(a
(m)
i |xi)

(ξm(ã)− ξm(ai))
�(Cxi + b)+

λ‖C‖2F + λλ′‖b‖2

= argmin
1

n

n∑
i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

tr

(
ri

Pr(a
(m)
i |xi)

(Cxi + b)(ξm(ã)− ξm(ai))
�

)
+

λ‖C‖2F + λλ′‖b‖2

= argmintr(CB�
1 + bb̃�1 ) + λ‖C‖2F + λλ′‖b‖2,

where

B1 =n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

wi,m(ξm(ã)− ξm(ai))x
�
i ,

b̃1 =n−1
n∑

i=1

L(ai)∑
m=2

∑
ã∈[Em(ai)]

wi,m(ξm(ã)− ξm(ai)),

with wi,m = ri/Pr(a
(m)
i |xi). Thus, the solution of Ĉlin,λ, b̂lin,λ,λ′ has the closed

form,
Ĉlin,λ = −B1/(2λ), b̂lin,λ,λ′ = −b̃1/(2λλ

′).
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Appendix C: Proof of conclusions in Section 3

C.1. Proof of Proposition 2

Proof of Proposition 2. For each x ∈ X ,

E

[
|R|

Pr(A|X = x)
{I(R ≥ 0)I(A �= D(x)) + I(R < 0)I(A = D(x))}|X = x

]
=
∑
a

E [|R|{I(R ≥ 0)I(a �= D(x)) + I(R < 0)I(a = D(x))}|X = x, A = a]

=
∑
a

[R+(x, a)I(a �= D(x))−R−(x, a)I(a = D(x))].

We prove the conclusion by a contradiction. Suppose D∗(x) �= argmaxa R(x, a)
and denote a∗ = argmaxa R(x, a). It holds that∑

a

[R+(x, a)I(a �= D∗(x))−R−(x, a)I(a = D∗(x))]−∑
a

[R+(x, a)I(a �= a∗)−R−(x, a)I(a = a∗)]

=R+(x, a∗)−R−(x,D∗(x))−R+(x,D∗(x)) +R−(x, a∗)

=R(x, a∗)−R(x,D∗(x)) > 0,

which leads to a contradiction that D∗(x) is optimal. Thus, we have D∗(x) =
argmaxa R(x, a). This completes the proof.

C.2. Proof of Theorem 1

Proof of Theorem 1. For any a ∈ A and m = 2, . . . ,L(a), denote ηm(a) =
ξm(a)− ξm−1(a). We have

f∗ =arginf
f

E

⎡⎣L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|x)�R((ξm(A)− ξm(Ã))�f(x))|X = x

⎤⎦
=arginf

f

∑
a∈A

L(a)∑
m=2

∑
ã∈[Em(a)]

E

[
|R|Pr(a|x)
Pr(a(m)|x) �R((ξm(a)− ξm(ã))�f(x))|x, a

]

=arginf
f

∑
a∈A

L(a)∑
m=2

∑
ã∈[Em(a)]

Pr(a|x)
Pr(a(m)|x) [R

+(x, a)�((ηm(a)− ηm(ã))�f(x))−

R−(x, a)�((ηm(ã)− ηm(a))�f(x))]

= arginf
f

k∑
m=2

N1∑
j2=1

. . .

Nj1,...,jm−1∑
jm=1

∑
j′m �=jm

[R+
m(x, Tj1,...,jm)�((ηj1,...,jm−

ηj1,...,j′m)�f(x))−R−
m(x, Tj1,...,jm)�((ηj1,...,j′m − ηj1,...,jm)�f(x))].
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To show Fisher consistency, according to the top–down strategy defined in Def-
inition 1, by Assumption 1, it is sufficient to show for any m = 2, . . . ,L(D∗(x))
and any ã ∈ [Em(D∗(x))],

〈ξm(D∗(x)),f∗(x)〉 > 〈ξm(ã),f∗(x)〉

which equals to

〈ηm(D∗(x)),f∗(x)〉 > 〈ηm(ã),f∗(x)〉,

based on the construction of points.

We prove this by contradiction. Suppose that there exists some l such that

a′ = argmax
ã∈[El(D∗(x))]

〈ηl(ã),f
∗(x)〉,

and

〈ηl(D∗(x)),f∗(x)〉 < 〈ηl(a
′),f∗(x)〉. (SC.1)

Denote D∗(l)(x) = Ti1,...,il and a′ (l) = Ti1,...,il−1,i′l
. By Lemma S3 in the Ap-

pendix of Fan et al. [9], for any ε > 0, there exists some κ > 0 such that

〈κ(ηi1,...,il − ηi1,...,il−1,i′l
),ηi1,...,il)〉 = ε,

〈κ(ηi1,...,il − ηi1,...,il−1,i′l
),ηi1,...,il−1,i′l

〉 = −ε.

Let f̃∗ = f∗ + κ(ηi1,...,il − ηi1,...,il−1,i′l
). It holds that for any ηj1,...,jm ,

〈ηj1,...,jm , f̃∗ − f∗〉 =

⎧⎪⎨⎪⎩
ε, m = l, (j1, . . . , jm) = (i1, . . . , il),

−ε, m = l, (j1, . . . , jm) = (i1, . . . , il−1, i
′
l),

0, otherwise.

For simplicity, denote Λj1,...,jm,j′m = ηj1,...,jm − ηj1,...,j′m Then we have

RV (f̃∗)−RV (f
∗)

=

k∑
m=2

N1∑
j2=1

. . .

Nj1,...,jm−1∑
jm=1

∑
j′m �=jm

[R+
m(x, Tj1,...,jm)�(Λ�

j1,...,jm,j′m
f̃∗(x))−

R−
m(x, Tj1,...,jm)�(Λ�

j1,...,j′m,jm f̃∗(x))−R+
m(x, Tj1,...,jm)�(Λ�

j1,...,jm,j′m
f∗(x))+

R−
m(x, Tj1,...,jm)�(Λ�

j1,...,j′m,jmf∗(x))]

=

N1∑
j2=1

. . .

Nj1,...,jl−1∑
jl=1

∑
j′l �=jl

R+
l (x, Tj1,...,jl)[Λ

�
j1,...,jl,j′l

(f̃∗ − f∗)�′(Λ�
j1,...,jl,j′l

f∗(x))]

−R−
l (x, Tj1,...,jl)[Λ

�
j1,...,j′l ,jl

(f̃∗ − f∗)�′(Λ�
j1,...,j′l ,jl

f∗(x))] + o(2ε).
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Define

B1

=

N1∑
j2=1

. . .

Nj1,...,jl−1∑
jl=1

∑
j′l �=jl

R+
l (x, Tj1,...,jl)η

�
j1,...,jl

(f̃∗ − f∗)�′(Λ�
j1,...,jl,j′l

f∗(x))

=
∑
j′l �=il

R+
l (x, Ti1,...,il)η

�
i1,...,il

(f̃∗ − f∗)�′(Λ�
i1,...,il,j′l

f∗(x))+

∑
j′l �=i′l

R+
l (x, Ti1,...,il−1,i′l

)η�
i1,...,il−1,i′l

(f̃∗ − f∗)�′(Λ�
i1,...,i′l,j

′
l
f∗(x))

=
∑
j′l �=il

εR+
l (x, Ti1,...,il)�

′(Λ�
i1,...,il,j′l

f∗(x))−

∑
j′l �=i′l

εR+
l (x, Ti1,...,il−1,i′l

)�′(Λ�
i1,...,i′l,j

′
l
f∗(x)),

and

B2

=

N1∑
j2=1

. . .

Nj1,...,jl−1∑
jl=1

∑
j′l �=jl

R+
l (x, Tj1,...,jl)η

�
j1,...,j′l

(f̃∗ − f∗)�′(Λ�
j1,...,jl,j′l

f∗(x))

=εR+
l (x, Ti1,...,i′l

)�′(Λ�
i1,...,i′l,il

f∗(x))− εR+
l (x, Ti1,...,il)�

′(Λ�
i1,...,il,i′l

f∗(x))

+
∑

jl �=il,i′l

∑
j′l �=jl

R+
l (x, Ti1,...,jl)ε[�

′(Λ�
i1,...,jl,il

f∗(x))− �′(Λ�
i1,...,jl,i′l

f∗(x))]

≥εR+
l (x, Ti1,...,i′l

)�′(Λ�
i1,...,i′l,il

f∗(x))− εR+
l (x, Ti1,...,il)�

′(Λ�
i1,...,il,i′l

f∗(x))

≥ε�′(0)[R+
l (x, Ti1,...,il−1,i′l

)−R+
l (x, Ti1,...,il)].

The last two inequalities are derived from (SC.1),

η�
i1,...,il

f∗ < η�
i1,...,il−1,i′l

f∗,

and �′(u) is nondecreasing.
Define

B3

=

N1∑
j2=1

. . .

Nj1,...,jl−1∑
jl=1

∑
j′l �=jl

R−
l (x, Tj1,...,jl)η

�
j1,...,j′l

(f̃∗ − f∗)�′(Λ�
j1,...,j′l ,jl

f∗(x))

=εR−
l (x, Ti1,...,i′l

)�′(Λ�
i1,...,il,i′l

f∗(x))− εR−
l (x, Ti1,...,il)�

′(Λ�
i1,...,i′l,il

f∗(x))

+
∑

jl �=il,i′l

∑
j′l �=jl

R−
l (x, Ti1,...,jl)ε[�

′(Λ�
i1,...,il,jl

f∗(x))− �′(Λ�
i1,...,i′l,jl

f∗(x))]

≥εR−
l (x, Ti1,...,i′l

)�′(Λ�
i1,...,il,i′l

f∗(x))− εR−
l (x, Ti1,...,il)�

′(Λ�
i1,...,i′l,il

f∗(x))

≥ε�′(0)[R−
l (x, Ti1,...,il−1,i′l

)−R−
l (x, Ti1,...,il)].
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The last two inequalities are derived from (SC.1),

η�
i1,...,il

f∗ < η�
i1,...,il−1,i′l

f∗,

and �′(u) is nondecreasing.
Define

B4

=

N1∑
j2=1

. . .

Nj1,...,jl−1∑
jl=1

∑
j′l �=jl

R−
l (x, Tj1,...,jl)η

�
j1,...,jl

(f̃∗ − f∗)�′(Λ�
j1,...,j′l ,jl

f∗(x)))

=
∑
j′l �=il

εR−
l (x, Ti1,...,il)�

′(Λ�
i1,...,j′l ,il

f∗(x))−

∑
j′l �=i′l

εR−
l (x, Ti1,...,il−1,i′l

)�′(Λ�
i1,...,j′l,i

′
l
f∗(x)).

Thus, we have

B1 +B4

=
∑
j′l �=il

ε[R+
l (x, Ti1,...,il)�

′(Λ�
i1,...,il,j′l

f∗(x))+R−
l (x, Ti1,...,il)�

′(Λ�
i1,...,j′l ,il

f∗(x))]−

∑
j′l �=i′l

ε[R+
l (x, Ti1,...,i′l

)�′(Λ�
i1,...,i′l,j

′
l
f∗(x))+R−

l (x, Ti1,...,i′l
)�′(Λ�

i1,...,j′l,i
′
l
f∗(x))]

=
∑

j′l �=il,i′l

ε[R+
l (x, Ti1,...,il)�

′(Λ�
i1,...,il,j′l

f∗(x))−R+
l (x, Ti1,...,i′l

)�′(Λ�
i1,...,i′l,j

′
l
f∗(x))+

R−
l (x, Ti1,...,il)�

′(Λ�
i1,...,j′l ,il

f∗(x))−R−
l (x, Ti1,...,il−1,i′l

)�′(Λ�
i1,...,j′l ,i

′
l
f∗(x))]+

ε[R+
l (x, Ti1,...,il)�

′(Λ�
i1,...,il,i′l

f∗(x))−R+
l (x, Ti1,...,il−1,i′l

)�′(Λ�
i1,...,i′l,il

f∗(x))+

R−
l (x, Ti1,...,il)�

′(Λ�
i1,...,i′l,il

f∗(x))−R−
l (x, Ti1,...,il−1,i′l

)�′(Λ�
i1,...,il,i′l

f∗(x))]

(i)

≤
∑

j′l �=il,i′l

ε[(R+
l (x, Ti1,...,il)−R+

l (x, Ti1,...,il−1,i′l
))�′(Λ�

i1,...,i′l,j
′
l
f∗(x))+

(R−
l (x, Ti1,...,il)−R−

l (x, Ti1,...,il−1,i′l
))�′(Λ�

i1,...,j′l,i
′
l
f∗(x))]+

ε�′(0)[R+
l (x, Ti1,...,il)−R+

l (x, Ti1,...,i′l
) +R−

l (x, Ti1,...,il)−R−
l (x, Ti1,...,i′l

)]

=
∑

j′l �=il,i′l

ε[(Rl(x, Ti1,...,il)−Rl(x, Ti1,...,il−1,i′l
))�′(Λ�

i1,...,i′l,j
′
l
f∗(x))+

(R−
l (x, Ti1,...,il)−R−

l (x, Ti1,...,il−1,i′l
))(�′(Λ�

i1,...,j′l ,i
′
l
f∗(x))−

�′(Λ�
i1,...,i′l,j

′
l
f∗(x)))] + ε�′(0)[Rl(x, Ti1,...,il)−Rl(x, Ti1,...,il−1,i′l

)]

<0,

where the inequality (i) is derived from

η�
i1,...,il

f∗ < η�
i1,...,il−1,i′l

f∗,
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and �′(u) is nondecreasing, and the last inequality is derived from Assumption
1, Assumption 2, the definition of a′, �′(u) < 0 and �′(u) is nondecreasing.
Furthermore,

B2 +B3

≥ε�′(0)[R+
l (x, Ti1,...,i′l

)−R+
l (x, Ti1,...,il) +R−

l (x, Ti1,...,i′l
)−R−

l (x, Ti1,...,il)]

=ε�′(0)[Rl(x, Ti1,...,il−1,i′l
)−Rl(x, Ti1,...,il)] > 0.

Hence, we have
B1 −B2 −B3 +B4 < 0,

which leads to a contradiction of the optimality of f∗.
This completes the proof.

C.3. Proof of the conclusion in Remark 3

Proof of Remark 3. For the linear loss, we have

E

⎡⎣L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|x)�R((ξm(A)− ξm(Ã))�f(x))|X = x

⎤⎦
=−

k∑
m=2

N1∑
j2=1

. . .

Nj1,...,jm−1∑
jm=1

∑
j′m �=jm

[R+
m(x, Tj1,...,jm)+

R−
m(x, Tj1,...,jm)](ηj1,...,jm − ηj1,...,j′m)�f(x)

=−
k∑

m=2

N1∑
j2=1

. . .

Nj1,...,jm−1∑
jm=1

∑
j′m �=jm

Rm(x, Tj1,...,jm)(ηj1,...,jm − ηj1,...,j′m)�f(x)

=−
k∑

m=2

N1∑
j2=1

. . .

Nj1,...,jm−1∑
jm=1

|Chi(ηj1,...,jm−1)|Rm(x, Tj1,...,jm)η�
j1,...,jmf(x)

=− V �
0 f(x),

where

V0 =
k∑

m=2

N1∑
j2=1

. . .

Nj1,...,jm−1∑
jm=1

|Chi(ηj1,...,jm−1)|Rm(x, Tj1,...,jm)ηj1,...,jm .

It can be verified that E(‖V0‖2) = 0 leads to the trivial case. Thus, it is
reasonable to assume E(‖V0‖2) > 0. The minimizer is of the form

f∗ = lim
ρ→∞

ρV0.

Note that all learners in {ρV0 : ρ > 0} lead to the same result. Therefore, we
define

f∗ = arginf
f :E(‖f‖2)≤1

RV (f) = V0/[E(‖V0‖2)]1/2
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with ρ = [E(‖V0‖2)]−1/2 > 0.
Then for any two siblings Ti1,...,il−1,il , Ti1,...,il−1,i′l

, if

Rl(x, Ti1,...,il−1,il) > Rl(x, Ti1,...,il−1,i′l
),

it holds that

η�
i1,...,il−1,il

f∗

=
1

[E(‖V0‖2)]1/2

Ni1,...,il−1∑
jl=1

|Chi(ηi1,...,il−1
)|Rl(x, Ti1,...,il−1,jl)η

�
i1,...,il

ηi1,...,il−1,jl

=
1

[E(‖V0‖2)]1/2
|Chi(ηi1,...,il−1

)|
[ ∑

jl �=il,i′l

Rl(x, Ti1,...,il−1,jl)η
�
i1,...,il

ηi1,...,il−1,jl

+Rl(x, Ti1,...,il)η
�
i1,...,il

ηi1,...,il−1,il +Rl(x, Ti1,...,i′l
)η�

i1,...,il
ηi1,...,il−1,i′l

]

>
1

[E(‖V0‖2)]1/2
|Chi(ηi1,...,il−1

)|
[ ∑

jl �=il,i′l

Rl(x, Ti1,...,il−1,jl)η
�
i1,...,i′l

ηi1,...,il−1,jl

+Rl(x, Ti1,...,il)η
�
i1,...,i′l

ηi1,...,il−1,il +Rl(x, Ti1,...,i′l
)η�

i1,...,i′l
ηi1,...,il−1,i′l

]
=η�

i1,...,il−1,i′l
f∗.

Thus, it is also Fisher consistent.
This completes the proof.

C.4. Proof of the conclusion in Remark 4

Theorem S1. Assuming maxa∈A R(x, a) ≥ 0, it holds that DfM
(x) = Df̄ (x)

for any nonincreasing and convex surrogate loss �(u).

Proof of Theorem S1. We prove that the minimizer fM of

E [|R|/Pr(A|X)�R(M(f(X), A))]

satisfies DfM
= Df̄ . We prove this by contradiction. Given x, let DfM

= aM

and M(fM (x), aM ) = M̂ . By the top–down strategy, we have that M̂ ≥ 0. For

any a �= aM , there exists 2 ≤ l ≤ k such that a(l) and a
(l)
M are siblings. Therefore,

we have

M(fM (x), a) ≤ 〈fM (x), ξl(a)〉 − 〈fM (x), ξl(aM )〉 ≤ −M(fM (x), aM ) = −M̂.

Let Df̄ = ā and assume aM �= ā. For any Ti1,...,il ∈ ā and Ti1,...,i′l
∈

Sib(Ti1,...,il), there exists κi1,...,il such that 〈ηi1,...,il −ηi1,...,i′l
, κi1,...,ilηi1,...,il〉 =
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M̂ . Let f̃(x) =
∑

Ti1,...,il
∈ā κi1,...,ilηi1,...,il . One can verify M(f̃(x), ā) = M̂ . For

any a �= ā, there exists la such that a(la) and ā(la) are siblings. Thus, we have

M(f̃(x), a) = 〈f̃(x), ξla(a)〉 − 〈f̃(x), ξla(ā)〉 = −M̂.

For any a �= aM , ā, there exists κa < 0 such that 〈κaηla(a), ξla(a) − ξla(ā)〉 =
M(fM (x), a) + M̂ . Let f̃ ′(x) = f̃(x) +

∑
a �=aM ,ā κaηla(a). It holds that

M(f̃ ′(x), a) =

⎧⎪⎨⎪⎩
−M̂, a = aM ,

M̂ , a = ā,

M(fM (x), a), a �= aM , ā.

Hence, we have

E

[
|R|

Pr(A|x)�R(M(fM , A))|X = x

]
− E

[
|R|

Pr(A|x)�R(M(f̃ ′, A))|X = x

]
={R+(x, aM )�(M(fM , aM ))−R−(x, aM )�(−M(fM , aM ))

+R+(x, ā)�(M(fM , ā))−R−(x, ā)�(−M(fM , ā))}
− {R+(x, aM )�(M(f̃ ′, aM ))−R−(x, aM )�(−M(f̃ ′, aM ))

+R+(x, ā)�(M(f̃ ′, ā))−R−(x, ā)�(−M(f̃ ′, ā))}
={R+(x, aM )�(M̂)−R−(x, aM )�(−M̂)

+R+(x, ā)�(M(fM , ā))−R−(x, ā)�(−M(fM , ā))}
−{R+(x, aM )�(−M̂)−R−(x, aM )�(M̂) +R+(x, ā)�(M̂)−R−(x, ā)�(−M̂)}

={R+(x, aM )−R−(x, ā)}�(M̂)− {R−(x, aM )−R+(x, ā)}�(−M̂)

− {R+(x, aM )−R−(x, ā)}�(−M̂) + {R−(x, aM )−R+(x, ā)}�(M̂)

+R+(x, ā){�(M(fM , ā))− �(−M̂)} −R−(x, ā){�(−M(fM , ā))− �(M̂)}
={R+(x, aM )−R−(x, ā)}{�(M̂)− �(−M̂)}
− {R−(x, aM )−R+(x, ā)}{�(−M̂)− �(M̂)}
+R+(x, ā){�(M(fM , ā))− �(−M̂)} −R−(x, ā){�(−M(fM , ā))− �(M̂)}

(i)
>{R+(x, ā)−R−(x, aM )}{�(M̂)− �(−M̂) + �(−M̂)− �(M̂)}

+R+(x, ā){�(M(fM , ā))− �(−M̂)} −R−(x, ā){�(−M(fM , ā))− �(M̂)}
(ii)

≥ 0,

where (i) is derived from R(x, ā) > R(x, aM ) and (ii) is derived from the
assumption R(x, ā) ≥ 0 and the fact �(−t− u)− �(−t) ≥ �(t)− �(t+ u) when �
is convex.

This completes the proof.
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C.5. Verification of Assumptions 3–5

In this subsection, we verify Assumptions 3–5 under Assumption 6, thus the
specific convergence rate can be derived based on Corollary 1.

Assumption 3 depends on f∗ and the distribution of (X, A,R). There is no
general result about α. We give an example to show the value of α in that case
later. As for Assumption 4, we have the following Proposition S2. Define the
positive part of the reward R as R+ = R · I(R ≥ 0) and the negative part as
R− = R · I(R < 0).

Proposition S2. Under Assumption 6, it holds that β = 1 for the linear loss
with the restriction E(‖f‖2) ≤ 1 and loss functions that are twice continuously
differentiable with �′′(u) > 0 in Assumption 4.

Proof of Proposition S2. Note that

|V T̃ (f , Z)− V (f∗, Z)|

≤
L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|X)

|�R((ξm(A)− ξm(Ã))�f(X))−

�R((ξm(A)− ξm(Ã))�f∗(X))|

≤
L(A)∑
m=2

∑
Ã∈[Em(A)]

1

Pr(A(m)|X)
|R+�((ξm(A)− ξm(Ã))�f(X))−

R−�((ξm(Ã)− ξm(A))�f(X))−
R+�((ξm(A)− ξm(Ã))�f∗(X)) +R−�((ξm(Ã)− ξm(A))�f∗(X))|

≤
L(A)∑
m=2

∑
Ã∈[Em(A)]

1

Pr(A(m)|X)
[|R+γ̃(ξm(A)− ξm(Ã))�(f − f∗)|+

|R−γ̃(ξm(A)− ξm(Ã))�(f − f∗)|]

≤
L(A)∑
m=2

∑
Ã∈[Em(A)]

γ̃

Pr(A(m)|X)
(|R+|+ |R−|)‖ξm(A)− ξm(Ã)‖‖f − f∗‖

≤
L(A)∑
m=2

∑
Ã∈[Em(A)]

4γ̃MRL
(m)

MA
‖f − f∗‖ ≤ 4γ̃(k − 1)NSibMRL

(1)

MA
‖f − f∗‖,

where NSib denotes the maximum number of sibling nodes on the tree. Define

M1 = 4γ̃(k−1)NSibMRL
(1)/MA, then we have |V T̃ (f , Z)−V (f∗, Z)| ≤ M1‖f−

f∗‖. Furthermore, it holds that

Var(V T̃ (f , Z)− V (f∗, Z)) ≤ M2
1E(‖f − f∗‖2). (SC.2)

(1) We first show that β = 1 for the linear loss. For �(u) = −u, by the proof
of Remark 3, the minimizer f∗ = arginff :E(‖f‖2)≤1 RV (f) = V0/[E(‖V0‖2)]1/2.
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Then

eV (f ,f
∗) =E[eV |X=x(f ,f

∗)] = E[V �
0 (f∗ − f)]

=E{[E(‖V0‖2)]1/2(f∗)�(f∗ − f)}
(i)

≥2−1[E(‖V0‖2)]1/2E[(f∗ − f)�(f∗ − f)] = 2−1κ1E[‖f∗ − f‖2],

where (i) is derived from E(‖f‖2) ≤ E(‖f∗‖2) = 1 and κ1 = [E(‖V0‖2)]1/2.
From (SC.2), one can verify

sup
{f∈F :eV (f ,f∗)≤ε}

Var(V T̃ (f , Z)− V (f∗, Z))

≤ sup
{f∈F :E[‖f−f∗‖2]≤2κ−1

1 ε}
Var(V T̃ (f , Z)− V (f∗, Z)) ≤ 2κ−1

1 M2
1 ε.

Thus, we have

sup
{f∈F :e

V T̃ (f ,f∗)≤ε}
Var(V T̃ (f , Z)− V (f∗, Z)) ≤ c2ε

β ≤ 2κ−1
1 M2

1 ε.

Then Assumption 4 is satisfied with β = 1.
(2) For a loss function �(u), which is twice continuously differentiable with

�′′(u) > 0,

eV |X=x(f ,f
∗)

=E

⎡⎣L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|x)�R((ξm(A)− ξm(Ã))�f(x))|X = x

⎤⎦−
E

⎡⎣L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|x)�R((ξm(A)− ξm(Ã))�f∗(x))|X = x

⎤⎦
=
∑
a∈A

L(a)∑
m=2

∑
ã∈[Em(a)]

Pr(a|x)
Pr(a(m)|x) [R

+(x, a)�((ηm(a)− ηm(ã))�f(x))−

R−(x, a)�((ηm(ã)− ηm(a))�f(x))−R+(x, a)�((ηm(a)− ηm(ã))�f∗(x))+

R−(x, a)�((ηm(ã)− ηm(a))�f∗(x))]

≥
∑
a∈A

L(a)∑
m=2

∑
ã∈[Em(a)]

Pr(a|x)
Pr(a(m)|x) [R

+(x, a){�′((ηm(a)− ηm(ã))�f∗)(ηm(a)−

ηm(ã))�(f − f∗) + �′′(κ2(x))((ηm(a)− ηm(ã))�(f − f∗))2}−
R−(x, a){�′((ηm(ã)− ηm(a))�f∗)(ηm(ã)− ηm(a))�(f − f∗)+

�′′(κ3(x))((ηm(ã)− ηm(a))�(f − f∗))2}],

where κ2(x) is bounded by (ηm(a)− ηm(ã))�f and (ηm(a)− ηm(ã))�f∗, and
κ3(x) is bounded by (ηm(ã)− ηm(a))�f and (ηm(ã)− ηm(a))�f∗.
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Now, let us consider the first order optimality. It holds that the partial deriva-
tive of

E

⎡⎣L(A)∑
m=2

∑
Ã∈[Em(A)]

(|R|/Pr(A(m)|x))�R((ξm(A)− ξm(Ã))�f(x))|X = x

⎤⎦
with respect to f is a zero vector of length K − 1 at f∗, because we assume �
is differentiable and f∗ is the minimizer. Thus, we have

∑
a∈A

L(a)∑
m=2

∑
ã∈[Em(a)]

Pr(a|x)
Pr(a(m)|x){R

+(x, a)�′((ηm(a)− ηm(ã))�f∗)(ηm(a)− ηm(ã))−

R−(x, a)�′((ηm(ã)− ηm(a))�f∗)(ηm(ã)− ηm(a))} = 0K−1.

Then

eV |X=x(f ,f
∗)

≥
∑
a∈A

L(a)∑
m=2

∑
ã∈[Em(a)]

Pr(a|x)
Pr(a(m)|x) [R

+(x, a)�′′(κ2(x)){(ηm(a)− ηm(ã))�(f − f∗)}2−

R−(x, a)�′′(κ3(x)){(ηm(ã)− ηm(a))�(f − f∗)}2]

=(f − f∗)�

[∑
a∈A

L(a)∑
m=2

∑
ã∈[Em(a)]

Pr(a|x)(R+(x, a)�′′(κ2(x))−R−(x, a)�′′(κ3(x)))

Pr(a(m)|x)

(ηm(ã)− ηm(a))(ηm(ã)− ηm(a))�

]
(f − f∗)

=(f − f∗)�Σ(f − f∗),

where Σ depending on x is defined accordingly. Taking expectations on both
sides leads to

eV (f ,f
∗) = E[eV |X=x(f ,f

∗)] = E[(f − f∗)�Σ(f − f∗)].

We now prove Σ is positive definite. Note that for any ηm(a) and its sibling
ηm(ã), {(ηm(a) − ηm(ã)), ã ∈ [Em(a)]} are linearly independent in the corre-
sponding subspace. Thus, for all nodes ηm(a) and its siblings ηm(ã), the follow-
ing equations

ζ�(ηm(a)− ηm(ã)) = 0, ã ∈ [Em(a)],m = 2, . . . ,L(a), a ∈ A,

have exactly one solution ζ = 0K−1. Then for any ζ ∈ R
K\{0K−1}, there exists

at least one node ηm(a) and one of its siblings ηm(ã) such that

ζ�(ηm(a)− ηm(ã))(ηm(a)− ηm(ã))�ζ > 0.
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By Assumption 6, one can verify

Pr(a|x)(R+(x, a)�′′(κ2(x))−R−(x, a)�′′(κ3(x)))/Pr(a
(m)|x)

is finite and positive. Thus, we have ζ�Σζ > 0 and Σ is positive definite. Then
there exists some κ4 > 0 [34] such that

eV (f ,f
∗) ≥ κ4E[‖f − f∗‖2].

From (SC.2), one can verify

sup
{f∈F :eV (f ,f∗)≤ε}

Var(V T̃ (f , Z)− V (f∗, Z))

≤ sup
{f∈F :E[‖f−f∗‖2]≤κ−1

4 ε}
Var(V T̃ (f , Z)− V (f∗, Z)) ≤ κ−1

4 M2
1 ε.

Thus, we have

sup
{f∈F :e

V T̃ (f ,f∗)≤ε}
Var(V T̃ (f , Z)− V (f∗, Z)) ≤ c2ε

β ≤ κ−1
4 M2

1 ε.

Therefore, Assumption 4 is satisfied with β = 1. This completes the proof.

To verify Assumption 5, the following lemma gives the explicit expression of
HB(ε,FV (t)) for any ε > 0.

Lemma S1. Under Assumption 6, it holds that

HB(ε,FV (t)) ≤ c8HB(ε/(c7c8), F̃(1)),

where c7 = M−1
A MR[4γ̃L

(m)(J0t)
1/2 + |�(0)|], c8 = maxA∈A

∑L(A)
m=2

∣∣Sib(A(m))
∣∣

and F̃(1) = {f : f ∈ R, |f | ≤ 1}.
Proof of Lemma S1. Note that

FV (t) = {V T̃ (f , Z)− V (f0, Z) : f ∈ F , J(f) ≤ J0t},

where J0 = max{J(f0), 1} and

V T̃ (f , Z) = T̃ ∧
L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X)).

Note that J(f) ≤ J0t implies that ‖f‖ ≤ (J0t)
1/2 for linear learning and for

nonlinear learning with the Gaussian kernel.
According to our embedding algorithm, we have∣∣∣∣ |R|
Pr(A(m)|X)

�R((ξm(A)−ξm(Ã))�f(X))

∣∣∣∣
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=
1

Pr(A(m)|X)

∣∣∣R+�((ξm(A)−ξm(Ã))�f(X))−R−�((ξm(Ã)−ξm(A))�f(X))
∣∣∣

=
1

Pr(A(m)|X)

∣∣∣R+[�((ξm(A)−ξm(Ã))�f(X))−�(0)]−

R−[�((ξm(Ã)−ξm(A))�f(X))−�(0)]+R+�(0)−R−�(0)
∣∣∣

≤ 1

Pr(A(m)|X)
[R+γ̃|(ξm(A)−ξm(Ã))�f(X)|−

R−γ̃|(ξm(A)−ξm(Ã))�f(X)|+|R�(0)|]
≤M−1

A [4MRγ̃L
(m)(J0t)

1/2+MR|�(0)|]
=M−1

A MR[4γ̃L
(m)(J0t)

1/2+|�(0)|].

Define c7 = M−1
A MR[4γ̃L

(m)(J0t)
1/2 + |�(0)|]. Then it holds that{

|R|
Pr(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X)) : J(f) ≤ J0t

}
⊆{f : f ∈ R, |f | ≤ c7} := F̃(c7).

For any set F1 of functions, define T̃ ∧F1 = {T̃ ∧ f : f ∈ F1}. For any two sets
of functions F1 and F2, denote F1 ⊕ F2 = {f1 + f2 : f1 ∈ F1, f2 ∈ F2}. Then
one can see that{

V T̃ (f , Z) : J(f) ≤ J0t
}

=

⎧⎨⎩T̃ ∧
L(A)∑
m=2

∑
Ã∈[Em(A)]

|R|
Pr(A(m)|X)

�R((ξm(A)− ξm(Ã))�f(X)) : J(f) ≤ J0t

⎫⎬⎭
⊆
⋃
A∈A

L(A)⊕
m=2

⊕
Ã∈[Em(A)]

{
T̃ ∧ F̃(c7)

}
:= B.

(SC.3)

First, we construct an ε-bracketing set Π = {(f l
i , f

u
i )} for F̃(1), that is,

E[|f l
i −fu

i |2]1/2 ≤ ε. For any constant κ > 0, define κΠ = {(κf l
i , κf

u
i )}. One can

see that κΠ is a κε-bracketing set of F̃(κ). Define T̃ ∧Π = {(T̃ ∧f l
i , T̃ ∧fu

i )}. For
any Π1 = {(f1,l

i , f1,u
i )} and Π2 = {(f2,l

i , f2,u
i )}, we define Π1 ⊕ Π2 = {(f1,l

i +

f2,l
j , f1,u

i + f2,u
j )}. Then one can verify that

Ξ =
⋃
A∈A

L(A)⊕
m=2

⊕
Ã∈[Em(A)]

T̃ ∧ (c7Π)

is a c7c8ε-bracketing set of B with c8 = maxA∈A
∑L(A)

m=2

∣∣Sib(A(m))
∣∣. In fact, any
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function g in B can be written as

g = T̃ ∧
L(A)∑
m=2

∑
Ã∈[Em(A)]

f̃m,Ã,

for some A ∈ A and f̃m,Ã ∈ F̃(c7). Let

gu = T̃ ∧
L(A)∑
m=2

∑
Ã∈[Em(A)]

f̃u
m,Ã

, gl = T̃ ∧
L(A)∑
m=2

∑
Ã∈[Em(A)]

f̃ l
m,Ã

,

where (f̃ l
m,Ã

, f̃u
m,Ã

) ∈ c7Π such that f̃ l
m,Ã

≤ f̃m,Ã ≤ f̃u
m,Ã

. One can verify that

gl ≤ g ≤ gu and that

|gu − gl| ≤
L(A)∑
m=2

∑
Ã∈[Em(A)]

|f̃ l
m,Ã

− f̃u
m,Ã

|.

Thus, we have

E
[
|gu − gl|2

]
≤

L(A)∑
m=2

∑
Ã∈[Em(A)]

E
[
|f̃ l

m,Ã
− f̃u

m,Ã
|2
]
≤ c7c8ε,

where c8 = maxA∈A
∑L(A)

m=2

∣∣Sib(A(m))
∣∣. Therefore, Ξ is a c7c8ε-bracketing set

of B. The cardinality |Ξ| ≤ |Π|c8 , that is

HB(c7c8ε,B) ≤ c8HB(ε, F̃(1)).

Thus, we have

HB(ε,FV (t)) ≤ HB(ε,B) ≤ c8HB(ε/(c7c8), F̃(1)).

This completes the proof.

To compute α, we consider a specific hierarchical structure shown as FIG
S1, which is a binary tree of 3 layers. The corresponding embedded points are
shown as follows,⎛⎜⎜⎝

ξ1,1 ξ1,2 ξ1,1,1 ξ1,1,2 ξ1,2,1 ξ1,2,2
−1 1 −1 −1 1 1

0 0 −
√
5/5

√
5/5 0 0

0 0 0 0 −
√
5/5

√
5/5

⎞⎟⎟⎠ .

Let X = (X(1), X(2), X(3))�, where X(1), X(2), X(3) are predictors. Assume
the marginal distribution of X is non-zero only on the embedded points ξ1,1,1,
ξ1,1,2, ξ1,2,1, ξ1,2,2 such that

P (X = ξ1,1,1) = P (X = ξ1,1,2) = P (X = ξ1,2,1) = P (X = ξ1,2,2) = 1/4.
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Fig S1. The hierarchical structure for the illustrative example.

Consider the random trials, where

Pr(A = {T1, T1,1, T1,1,1}|X) = Pr(A = {T1, T1,1, T1,1,2}|X)

=Pr(A = {T1, T1,2, T1,2,1}|X) = Pr(A = {T1, T1,2, T1,2,2}|X) = 1/4.

The conditional distribution of R is given by

P (R ≤ r|A = {T1, T1,1, T1,1,1},X = ξ1,1,1) = r/2, 0 ≤ r ≤ 2

P (R ≤ r|A = {T1, T1,1, T1,1,1},X = ξ1,1,2) = P (R ≤ r|A = {T1, T1,1, T1,1,1},
X = ξ1,2,1) = P (R ≤ r|A = {T1, T1,1, T1,1,1},X = ξ1,2,2) = r, 0 ≤ r ≤ 1

P (R ≤ r|A = {T1, T1,1, T1,1,2},X = ξ1,1,2) = r/2, 0 ≤ r ≤ 2

P (R ≤ r|A = {T1, T1,1, T1,1,2},X = ξ1,1,1) = P (R ≤ r|A = {T1, T1,1, T1,1,2},
X = ξ1,2,1) = P (R ≤ r|A = {T1, T1,1, T1,1,2},X = ξ1,2,2) = r, 0 ≤ r ≤ 1

P (R ≤ r|A = {T1, T1,1, T1,2,1},X = ξ1,2,1) = r/2, 0 ≤ r ≤ 2

P (R ≤ r|A = {T1, T1,1, T1,2,1},X = ξ1,1,1) = P (R ≤ r|A = {T1, T1,1, T1,2,1},
X = ξ1,1,2) = P (R ≤ r|A = {T1, T1,1, T1,2,1},X = ξ1,2,2) = r, 0 ≤ r ≤ 1

P (R ≤ r|A = {T1, T1,1, T1,2,2},X = ξ1,2,2) = r/2, 0 ≤ r ≤ 2

P (R ≤ r|A = {T1, T1,1, T1,2,2},X = ξ1,1,1) = P (R ≤ r|A = {T1, T1,1, T1,2,2},
X = ξ1,1,2) = P (R ≤ r|A = {T1, T1,1, T1,2,2},X = ξ1,2,1) = r, 0 ≤ r ≤ 1.

We consider linear learning for this example. One can verify the optimal
minimizer is f∗ = (f∗

1 , f
∗
2 , f

∗
3 )

� with f∗
j = X(j) for j = 1, 2, 3. Let f = ((1 +

Δ1)X
(1)+Δ2, (1+Δ3)X

(2)+Δ4, (1+Δ5)X
(3)+Δ6)

�. For |Δi| < (
√
5−1)/4, i =

1, . . . , 6, we have e(f ,f∗) = 0. Then it holds that

|e(f ,f∗)| = |R(f)−R(f∗)| ≤ MRM
−1
A (

√
5 + 1) sup

i=1,...,6
(|Δi|).

Note that E[‖f − f∗‖2] ≥ (2/5)
∑6

i=1 Δ
2
i ≥ ((3 −

√
5)M−2

R M2
A/20)|e(f ,f∗)|2.

By the proof of Proposition S2, eV (f ,f
∗) ≥ (2κ1)

−1E[‖f −f∗‖2] for the linear
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loss and eV (f ,f
∗) ≥ κ4E[‖f−f∗‖2] for the loss functions that are twice contin-

uously differentiable with �′′(u) > 0. Thus, under the conditions of Proposition
S2, there exists some constant c1 such that |e(f ,f∗)|2 ≤ (c1)

2eV (f ,f
∗). Then

sup
{f∈F :e

V T̃ (f ,f∗)≤ε}
|e(f ,f∗)| ≤ c1ε

1/2.

Therefore, Assumption 3 is satisfied with α = 1/2.
Combining with β = 1 from Proposition S2, we then verify Assumption 5.

From Wang, Shen and Pan [31], HB(ε, F̃(1)) ≤ O(log(1/ε)). Thus, by Lemma
S1, HB(ε,FV (t)) ≤ O(c8 log(c7c8/ε)). By the definitions of φ(εn, t) and L̃ in
Assumption 5, it follows that supt≥1 φ(εn, t) ≤ O((c8 log(c7c8/εn))

1/2/εn), and

consequently that εn = (c8n
−1 logn)1/2. Moreover, for this example, one can

compute that c8 = k − 1, where k is the number of layers. By Theorem 2 and
Corollary 1, we have |e(f̂λ,f

∗)| = Op(εn) = Op((kn
−1 logn)1/2).

C.6. Proof of Theorem 2

Proof of Theorem 2. Under Assumptions 3–5, the proof is immediate from The-
orem 1 in Shen and Wang [26].

C.7. Proof of Theorem 3.

Proof of Theorem 3. To bound P (|e(f̂ π̂
λ ,f

∗)| ≥ c1δ
2α
n ), we first establish a

connection between e(f̂ π̂
λ ,f

∗) and eV T̃ (f̂
π̂
λ ,f

∗). Under Assumptions 6 and 7,
we have

n−1
n∑

i=1

V π̂(f , zi) = n−1
n∑

i=1

V (f , zi) +Op(sn).

By the definition of f̂ π̂
λ ,f0 and Assumption 3, it holds that{

|e(f̂ π̂
λ , f

∗)|≥c1δ
2α
n

}
⊂
{
e
V T̃ (f̂

π̂
λ , f

∗)≥δ2n

}
⊂

⎧⎨⎩ sup
{f∈F:e

V T̃
(f ,f∗)≥δ2n}

n−1
n∑

i=1

[V π̂(f0, zi)−V π̂(f , zi)+λ(J(f0)−J(f))]≥0

⎫⎬⎭
⊂

⎧⎨⎩ sup
{f∈F:e

V T̃
(f ,f∗)≥δ2n}

n−1
n∑

i=1

[V (f0, zi)−V (f , zi)+λ(J(f0)−J(f))]+Op(sn)≥0

⎫⎬⎭
⊂

⎧⎨⎩ sup
{f∈F:e

V T̃
(f ,f∗)≥δ2n}

n−1
n∑

i=1

[V (f0, zi)−V T̃ (f , zi)+λ(J(f0)−J(f))]+Op(sn)≥0

⎫⎬⎭ .

Let Dn = n−1
∑n

i=1[V (f0, zi)− V T̃ (f , zi) + λ(J(f0)− J(f))] and

I ≡ P ∗

(
sup

{f∈F :e
V T̃ (f ,f∗)≥δ2n}

Dn ≥ −δ2n/4

)
,
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where P ∗ is the outer probability. Let Uij = {f ∈ F : 2i−1δ2n ≤ eV T̃ (f ,f
∗) ≤

2iδ2n, 2
j−1J0 ≤ J(f) < 2jJ0} and Ui0 = {f ∈ F : 2i−1δ2n ≤ eV T̃ (f ,f

∗) ≤
2iδ2n, J(f) < J0} for i, j = 1, 2, . . .. We then consider a sequence of empirical
processes on {Uij , i = 1, 2, . . . , j = 0, 1, . . .}. Let I = I1 + I2, where

I1 =
∑
i,j≥1

P ∗

(
sup

f∈Uij

Dn ≥ −δ2n/4

)
, I2 =

∞∑
i=1

P ∗

(
sup

f∈Ui0

Dn ≥ −δ2n/4

)
.

Let M(i, j) = 2i−1δ2n + λ2j−1J0. Based on the fact that eV (f0,f
∗) < δ2n/2,

λJ0 ≤ δ2n/2, |V (f0, Z) − V T̃ (f , Z)| ≤ 2T̃ and Assumptions 4–5, by Theorem 3
of Shen and Wong [27] with M = 3n1/2M(i, j)/4, v = 4c2M(i, j)β , ε = 9/10, we
have that for i, j = 1, 2, . . .,

P ∗

(
sup

f∈Uij

Dn ≥ −δ2n/4

)
≤ P ∗

(
sup

f∈Uij

Dn ≥ −M(i, j)/4

)

≤P ∗

(
sup

f∈Uij

Dn − E{(V (f0, Z)− V T̃ (f , Z)) + λ(J(f0)− J(f))} ≥ 3M(i, j)/4

)

≤3 exp

{
− (1− ε)M2

2(4v +MT̃n−1/2/3)

}
= 3 exp

{
− 9nM(i, j)2/160

2(16c2M(i, j)β +M(i, j)T̃ /4)

}
.

Thus, it holds that

I1 ≤
∑
i,j≥1

3 exp

{
− 9nM(i, j)2/160

2(16c2M(i, j)β +M(i, j)T̃ /4)

}

≤
∑
i,j≥1

3 exp
{
−c6nM(i, j)2−min(β,1)

}
≤
∑
i,j≥1

3 exp
{
−c6n(2

i−1δ2n + (2j−1 − 1)λJ0)
2−min(β,1)

}
≤3 exp(−c6n(λJ0)

2−min(β,1))/{1− exp(−c6n(λJ0)
2−min(β,1))}2,

where c6 is a positive generic constant. Similarly, I2 can be bounded. Then we
have

I ≤ I1 + I2 ≤ 6 exp(−c6n(λJ0)
2−min(β,1))/{1− exp(−c6n(λJ0)

2−min(β,1))}2,

and consequently,

I ≤ I1/2 ≤ 3.5 exp(−c6n(λJ0)
2−min(β,1)).

Let Bn = Op(sn), where δ
−2
n sn = o(1). When n(λJ0)

2−min{β,1} is bounded away
from 0 as n → ∞, for any ε̃ > 0, there exists Ne such that for any n > Ne,

P (|e(f̂ π̂
λ ,f

∗)| ≥ c1δ
2α
n ) ≤ I + P

(
|Bn| > δ2n/4

)
< ε̃,

which implies |e(f̂ π̂
λ ,f

∗)| = Op(δ
2α
n ). This completes the proof.
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