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Abstract: The infinite-dimensional Hilbert sphere S∞ has been widely
employed to model density functions and shapes, extending the finite-
dimensional counterpart. We consider the Fréchet mean as an intrinsic sum-
mary of the central tendency of data lying on S∞. For sound statistical in-
ference, we derive properties of the Fréchet mean on S∞ by establishing its
existence and uniqueness as well as a root-n central limit theorem (CLT) for
the sample version, overcoming obstructions from infinite-dimensionality
and lack of compactness on S∞. Intrinsic CLTs for the estimated tan-
gent vectors and covariance operator are also obtained. Asymptotic and
bootstrap hypothesis tests for the Fréchet mean based on projection and
norm are then proposed and are shown to be consistent. The proposed two-
sample tests are applied to make inference for daily taxi demand patterns
over Manhattan, modeled as densities, of which the square root densities
are analyzed on the Hilbert sphere. Numerical properties of the proposed
hypothesis tests which utilize the spherical geometry are studied in the
real data application and simulations, where we demonstrate that the tests
based on the intrinsic geometry compare favorably to those based on an
extrinsic or flat geometry.
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1. Introduction

We aim to develop statistical theory and inferential methods for analyzing a
sample of random elements taking values on the Hilbert sphere S∞ = {f ∈
H | ‖f‖

H
= 1}, where H is a separable infinite-dimensional Hilbert space with

inner product 〈·, ·〉H and norm ‖·‖
H
. The spherical Hilbert geometry gives rise

to invariance properties and efficient calculation of geometric quantities, for
instance the geodesics, which promotes much of its prevailing applications to
model different data objects:

• Probability distributions supported on a compact interval I is represented
by density functions in Dens(I) = {y : I → R |

∫
I
y(s) ds = 1, y(s) >

0, s ∈ I}. To analyze the densities in a reparametrization-invariant fash-
ion, Srivastava, Jermyn and Joshi (2007) proposed a nonparametric Fisher-
Rao metric with a reparametrization-invariant property, generalizing the
well-known finite-dimensional version (Rao, 1945). The Fisher–Rao metric
is conveniently expressed and calculated through representing the densi-
ties by the corresponding square root densities in X = {x : I → R | x(s) =√
y(s), s ∈ I, y ∈ Dens(I)}, where X is the positive orthant of the Hilbert

sphere S∞ modeled in H = L2(I). The square root density framework has
been widely applied in modeling the orientation distribution functions in
high angular resolution diffusion images (Cheng et al., 2009; Du et al.,
2014) and time-warping functions (Tucker, Wu and Srivastava, 2013; Yu,
Lu and Marron, 2017).

• Plane and space curves such as shape contours and motion trajectories are
often compared in a group action-invariant fashion for pattern recognition.
To compare the shape of curves with the translation and scaling effects
removed, an observed smooth parametrized curve in R

d, d = 2 or 3 is
centered and scaled to have unit length, obtaining a centered-and-scaled

curve in F = {f : [0, 1] → R
d | f(0) = 0,

∫ 1

0
|f ′(s)| ds = 1}. Each f ∈ F

is represented by its square root velocity function (SRVF) (Joshi et al.,
2007) βf : [0, 1] → R

d, βf (s) = |f ′(s)|−1/2f ′(s), s ∈ [0, 1]. Now, the SRVF
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βf lies on the Hilbert sphere S∞ in the Hilbert space H = L2([0, 1],Rd) =
{h : [0, 1] → R

d |
∫
|h(s)|2 ds < ∞}, equipped with the inner product

〈h1, h2〉H =
∫ 1

0
h1(s)

Th2(s) ds for h1, h2 ∈ H. The spherical geometry on
S∞ for the SRVFs induces a special case of the elastic metric (Younes,
1998) on the space of centered-and-scaled curves F , so that the distance
between curves are given by the square root of the minimal energy to
transform between them. This geometry has demonstrated attractive and
interpretable performance in practical curve matching tasks (Su et al.,
2014; Bauer, Eslitzbichler and Grasmair, 2017; Xie et al., 2017; Strait,
Chkrebtii and Kurtek, 2019).

Applications of Hilbert sphere in computer vision, medical imaging, and bi-
ology necessitates hypothesis tests backed by solid theory, but there are so far
no available asymptotic results to support hypothesis tests under an intrinsic
geometry on S∞; see for example Wu and Srivastava (2014); Henning and Sri-
vastava (2016) who applied U-statistics to perform two-sample comparisons.
For random densities, F -tests have been consider by Petersen, Liu and Divani
(2019) under a Wasserstein geometry and Dubey and Müller (2019) under a
more general object-oriented framework, but the latter utilizes an entropy num-
ber condition in the proof which has not been verified on S∞. This provides
motivation for our work, which aims to derive asymptotic distributional results
on S∞, develop consistent hypothesis tests, and showcase applications of the
proposed hypothesis tests to random densities.

Let (M, ρ) be a metric space where ρ : M×M → R is the distance metric.
Consider an M-valued random element X : Ω → M measurable between a
complete probability space (Ω,A, P ) and σ-algebra B(M) induced on M by
ρ. The Fréchet mean (Fréchet, 1948) is a commonly used location descriptor
for non-Euclidean data objects and is termed the intrinsic mean if M is a Rie-
mannian manifold. If there exists a unique minimizer of the Fréchet functional

M(·) = Eρ2(X, ·), (1)

then the minimizer μ = argminp∈M M(p) is called the Fréchet mean of X.
Similarly, for independent realizations X1, . . . , Xn of X, the sample Fréchet
functional is

Mn(·) =
1

n

n∑
i=1

ρ2(Xi, ·), (2)

and the sample Fréchet mean is μ̂ = argminp∈M Mn(p) given existence and
uniqueness. This work focuses on M = S∞ with ρ being the geodesic distance.

When the Riemannian manifold M is finite-dimensional, theory and methods
for the intrinsic Fréchet mean have been well investigated. Extensive study has
characterized the existence and uniqueness (Karcher, 1977; Ziezold, 1977; Le,
2001; Afsari, 2011), consistency (Bhattacharya and Patrangenaru, 2003), and
central limit theorems (CLTs) (Bhattacharya and Patrangenaru, 2005; Bhat-
tacharya and Lin, 2017) for the Fréchet mean on a general finite-dimensional
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M. A slower-than-n1/2 CLT has been studied on the circle (Hotz and Hucke-
mann, 2015) and, more recently, high-dimensional spheres and general Rieman-
nian manifolds (Eltzner and Huckemann, 2019). Various statistical methods for
manifold-valued data have also been considered, for example, confidence in-
tervals (Bhattacharya and Patrangenaru, 2005), hypothesis tests (Huckemann,
2012), regression (Zhu et al., 2009), and principal component analysis (Fletcher
et al., 2004).

Also well-studied are random objects lying in an infinite-dimensional Hilbert
space, which are termed functional data (Wang, Chiou and Müller, 2016).
Thanks to the flat geometry and vector space structure, the definition of the
mean element is straightforward, and the asymptotic theory can be obtained
through extending the multivariate case (Hsing and Eubank, 2015). The Hilbert
mean extends to a class of Hilbert manifolds through the extrinsic (Ellingson,
Patrangenaru and Ruymgaart, 2013) or the transformation method (Petersen
and Müller, 2016) by mapping the original data into a Hilbert space and then
perform analysis there. However, these approaches depend on the embedding or
transformation and does not preserve the intrinsic geometry on S∞, so the the-
ory derived for these methods cannot be applied to obtain an intrinsic analysis
for objects lying on S∞.

Little is known about the theory for the Fréchet mean on curved infinite-
dimensional geometries. In particular, on the Hilbert sphere S∞, the existence
and uniqueness of the Fréchet mean has not been established, and no distribu-
tional results are available for the inference of the intrinsic mean. Difficulties in
deriving these results on S∞ include the lack of compactness and the positive
curvature, which prevents proof techniques developed for a finite-dimensional
manifold (Bhattacharya and Patrangenaru, 2005; Afsari, 2011) or Hilbert space
(Hsing and Eubank, 2015) to be applicable. General results for the convergence
rate of the sample Fréchet mean in abstract settings has been established by
Gouic et al. (2019); Ahidar-Coutrix, Le Gouic and Paris (2019); Schötz (2019).
The latter two works applied empirical process theory under entropy conditions,
which are challenging to verify for the infinite-dimensional positively curved
manifold S∞; no distributional results was established were provided there, and
the uniqueness and existence of the Fréchet mean were assumed.

Our contributions include establishing the uniqueness and existence of the
Fréchet mean on S∞ and its large sample properties, and applying these re-
sults to derive valid hypothesis tests for data objects. We state in Section 3
theoretical properties of the intrinsic data analysis on S∞. The existence and
uniqueness of the intrinsic mean are shown in Theorem 3.1, and large sample
properties of the sample intrinsic mean μ̂ including a strong LLN and a CLT
are stated in Proposition 3.1 and Theorem 3.2, respectively. Theoretical hurdles
in verifying tightness and Lipschitz continuity are overcome by utilizing weak
compactness, Hilbert differential geometry (Lang, 1999), and a careful analysis
of the spherical geometry. The asymptotic covariance of the limiting Gaussian
element in the CLT of μ̂ is shown to be consistently estimated by an empiri-
cal version in Proposition 3.2. To quantify the deviation of data observations
around the intrinsic mean, we formulate intrinsic CLTs for the tangent vectors
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in Corollary 3.2 and the covariance operator in Theorem 3.3 based on parallel
transport. Unlike the case in a flat Hilbert space, additional terms manifest in
the asymptotic covariance of the sample covariance operator due to the curva-
ture of S∞. Results on the covariance will be useful to derive theoretical prop-
erties of principal component analysis (e.g. Tucker, Wu and Srivastava, 2013)
on S∞, though the latter exposition is out of scope of this work.

Asymptotic and bootstrap hypothesis tests for the population means are pro-
posed in Section 4 as a result of the CLTs, with consistent properties of the test
derived in Corollary 4.1–Corollary 4.5. Two test statistics are constructed us-
ing the norm and the projections of the intrinsic sample means expressed on a
chart, respectively, analogous to those developed for functional data (Horváth,
Kokoszka and Reeder, 2013; Aue, Rice and Sönmez, 2018). Simulation studies
in Section 5 demonstrate that the hypothesis tests based on the intrinsic mean
have smaller bias than that based on the extrinsic mean when data are asym-
metrically distributed around the mean. The asymptotics is shown to kick in
with a moderate sample size of 50 despite the infinite-dimensionality. A real
data study of daily taxi demands in Manhattan is presented in Section 6, where
the taxi demands are modeled as densities for which the square roots are ana-
lyzed on S∞. The spherical geometry demonstrates advantage over alternative
geometries in detecting changes in the demand patterns. The proofs of the main
results are deferred to the Appendix.

2. Hilbert sphere geometry

Let H denote a separable Hilbert space with inner product 〈·, ·〉H and induced
norm ‖·‖

H
. The infinite-dimensional Hilbert sphere S∞ is the unit sphere in H

with well-known geometry and explicit expressions for its geometric quantities.
In particular, the tangent space of S∞ at p ∈ S∞ is the subspace TpS∞ =
{v ∈ H | 〈v, p〉H = 0} of H with codimension one. The metric tensor 〈u, v〉p
for tangent vectors u, v ∈ TpS∞ at p ∈ S∞ is induced from and equal to the
H-inner product 〈u, v〉H. The geodesic distance ρ : S∞ × S∞ → R is given
by ρ(f, g) = arccos(〈f, g〉H). The Riemannian exponential map at p ∈ S∞ is

expp : TpS∞ → S∞, expp v = cos(‖v‖p)p + sin(‖v‖p) ‖v‖
−1
p v, a map from a

tangent space to the sphere that preserves the distance to the origin, i.e. ‖v‖p =
ρ(p, expp v). The inverse exponential map, or the logarithm map, at p ∈ S∞ is

defined as logp : S∞\{−p} → TpS∞, logp x = arccos(〈p, x〉p) ‖u‖−1
p u, where −p

is the antipodal point of p and u = x− 〈p, x〉p p. A chart τ : U ⊂ S∞ → G is a
homeomorphism that maps U onto open subset τ(U) of a separable Hilbert space
G for coordinates. We require τ to be smooth, so that τ−1 : τ(U) ⊂ G → H is a
smooth diffeomorphism. For example, τp(·) = logp(·) is a smooth chart defined
on Up = S∞\{−p}, for p ∈ S∞. We refer to Lang (1999) for general background
in Hilbert differential geometry.

For concreteness, we consider in our numerical illustrations the Hilbert space
H = L2(I) = {f : I → R |

∫
I
f(s)2ds < ∞} of (equivalent classes of) square-

integrable functions on a compact Euclidean subset I, while we note that the
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definition of a Hilbert sphere is fully intrinsic through isometry (Lang, 1999).

3. Properties of the Fréchet mean on S∞

3.1. Intrinsic mean

Unlike the case in a Euclidean space, the Fréchet mean for data lying on a
manifold may not exist and may not be unique. A neighborhood condition (A1)
is needed to guarantee the existence and uniqueness of the intrinsic means μ
defined in (1).

(A1) The support U := supp(X) ⊂ S∞ of X satisfies supx,y∈U ρ(x, y) ≤ π/2.

A closely related neighborhood condition, originally posed for a general finite-
dimensional Riemannian manifold but stated here for a d-dimensional sphere Sd

for comparison, is (A2) The support U of X lies in the geodesic ball B(q, r) cen-
tered at some q ∈ Sd with radius r < r∗. With r∗ = π/4, Karcher (1977) showed
the existence and local uniqueness of the Fréchet mean within B(q, r), while Le
(2001) concluded global uniqueness over Sd. Stronger uniqueness results assum-
ing r∗ = π/2 were established by Kendall (1990) for the local uniqueness within
the geodesic ball and by Afsari (2011) for the global uniqueness. The arguments
of Afsari (2011) rely on compactness for showing the existence and uniqueness,
and the uniqueness proof utilizes the Poincaré–Hopf theorem for compact man-
ifolds, which does not apply on the infinite-dimensional Hilbert sphere S∞ due
to a lack of compactness. We interpret the additional concentration required
by (A1) as compared to (A2) with r∗ = π/2 as a compensation for a lack of
compactness on S∞. The next theorem establishes the uniqueness and existence
of the Fréchet mean on S∞.

Theorem 3.1. If (A1) holds, then there exists a unique intrinsic mean μ of X
on S∞. Furthermore, P(ρ(μ,X) < π/2) = 1.

The existence proof is based on the weak compactness of the unit ball in H

by the Banach–Alaoglu theorem (Rudin, 1973) and an analysis of ρ2(x, ·), the
uniqueness result makes use of the convexity of ρ, and the proximity of μ and X
is obtained through a reflection argument used in Afsari (2011). With the well-
definedness of the population and sample intrinsic means μ and μ̂ guaranteed
by Theorem 3.1, we derive the consistency for μ̂ based on M -estimation and
empirical process (see, e.g., van der Vaart and Wellner, 1996).

Proposition 3.1. If (A1) holds, then

ρ(μ̂, μ) = o(1) a.s.

Some notations are needed to state the CLT for μ̂. Let B(E1, E2) be the
Banach space of bounded linear operators between Banach spaces E1 and E2.
For any Hilbert space (F, 〈·, ·〉F), by the Riesz representation theorem, an element
f ∈ F is in one-to-one correspondence with bounded linear functional f∗ :=
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〈f, ·〉F in the dual Hilbert space F
∗ = B(F,R) equipped with inner product

〈f∗, g∗〉F∗ = 〈f, g〉F. Let A∗ denote the adjoint of a linear operator A between
Hilbert spaces. The tensor product ⊗ : F×F → B(F,F) of two elements f, g ∈ F

is defined according to (f ⊗ g)h = 〈f, h〉F g for any h ∈ F. Given a smooth
chart τ : U ⊂ S∞ → G defined on a neighborhood U of μ, we re-express
μ, μ̂, and ρ as μτ = τ(μ), μ̂τ = τ(μ̂), and ρτ : S∞ × G → R, ρτ (x, e) =
ρ(x, τ−1(e)). Let D2 denote the partial (Fréchet) derivative of a multivariate
function w.r.t. the second argument, where the definition of Fréchet derivatives
is reviewed in Appendix A. Set ψτ : S∞ ×G → B(G,R), ψτ (x, e) = D2ρ

2
τ (x, e);

Fτ = E[ψτ (X,μτ ) ⊗ ψτ (X,μτ )] ∈ B(G∗,G∗); and Λτ = E[D2
2ρ

2
τ (X,μτ )] ∈

B(G,B(G,R)); the explicit forms of these quantities are obtained in Appendix E.

Theorem 3.2. Let (U, τ) be a chart of S∞ in a neighborhood of μ. Under (A1),

√
n(μ̂τ − μτ )

L−→ Z

as n → ∞, where Z is a Gaussian random element in G with mean zero and
covariance operator T = (Λ−1

τ )Fτ (Λ
−1
τ )∗ ∈ B(G,G), satisfying

〈h1,T h2〉G = cov(〈Λ−1
τ ψτ (X,μτ ), h1〉G, 〈Λ−1

τ ψτ (X,μτ ), h2〉G)

for h1, h2 ∈ G. The operator Λτ is continuously invertible.

Theorem 3.2 follows from a linearization argument applied to the chart rep-
resentation Mn,τ : G → R, Mn,τ (e) = Mn(τ

−1(e)) of the Fréchet functional
Mn(·) in a neighborhood of μτ , where the uniform convergence of the residual is
obtained due to the simple dependency of the geodesic distance ρ on the inner
product of its arguments. The key difficulty is to verify the Lipschitz continuity
of the criterion function under the infinite-dimensional setup, which is handled
by a careful analysis of the Hilbert sphere geometry. The CLT is intrinsic in the
sense that if η : V → G is another chart defined on a neighborhood V of μ, then√
n[η(μ̂) − η(μ)] converges in law to D(η ◦ τ−1)(μτ )Z where Z is the limiting

Gaussian element under τ .

The asymptotic distribution in Theorem 3.2 must be estimated in inferen-
tial tasks such as hypothesis testing which will be detailed in Section 4. The
next result states that the asymptotic distribution of the limiting Gaussian
element can be estimated consistently. Define T̂ = (Λ̂−1

τ )F̂τ (Λ̂
−1
τ )∗, F̂τ =

n−1
∑n

i=1 ψτ (Xi, μ̂τ ) ⊗ ψτ (Xi, μ̂τ ), and Λ̂τ = n−1
∑n

i=1 D
2
2ρ

2
τ (Xi, μ̂τ ). For an

operator C : E1 → E2 between Banach spaces (E1, ‖·‖E1
) and (E2, ‖·‖E2

), we
let ‖C‖ = sup‖h‖E1

=1 ‖Ch‖E2
denote the operator norm; if E1 = E2 = F for

a Hilbert space (F, 〈·, ·〉F), let ‖C‖1 =
∑∞

j=1〈ej , (C∗C)1/2ej〉F denote the trace
norm, where {ej}∞j=1 is an arbitrary complete orthonormal basis of F.

Proposition 3.2. Under the conditions of Theorem 3.2, as n → ∞,∥∥∥T̂ − T
∥∥∥
1
= o(1) a.s.
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Let Zn and Z be zero-mean Gaussian random elements in G with covariance T̂
and T , respectively. Then, as n → ∞,

Zn
L−→ Z.

3.2. Tangent vectors and the covariance operator

On a nonlinear manifold, the deviation of an observation around the intrin-
sic mean is commonly characterized by the corresponding tangent vector con-
structed from the logarithm map. The tangent vector of X and its empirical
version are respectively defined as

V = logμ X, V̂ = logμ̂ X.

Similarly, let Vi = logμ Xi and V̂i = logμ̂ Xi denote the corresponding quantities
for an observation Xi, i = 1, . . . , n.

Proposition 3.3. If μ is the intrinsic mean of an S∞-valued random variable
X with P(ρ(μ,X) = π) = 0, then EV = 0.

Proposition 3.3 states that the logarithmmap centers the observations around
the intrinsic mean on S∞, a property that has been established on finite-
dimensional Riemannian manifolds (Karcher, 1977; Bhattacharya and Patrange-
naru, 2003).

The tangent space TμS∞ at μ is a Hilbert space with inner product given
by the metric tensor. We obtain first a CLT of μ̂ mapped to the tangent space
TμS∞ as a corollary of Theorem 3.2 by considering τ = logμ(·), in which case
ψτ (X,μτ ) = −2〈V, ·〉μ as will be shown in the proof of Proposition 3.3. Here
Λτ becomes Λ = E[D2

2ρ
2(X,μ)] ∈ B(TμS∞,B(TμS∞,R)), identified with the

TμS∞-valued linear map Λ1 ∈ B(TμS∞, TμS∞), so that Λv = 〈Λ1v, ·〉μ for
v ∈ TμS∞.

Corollary 3.1. Under the conditions of Theorem 3.2,
√
n logμ μ̂ converges in

distribution to a Gaussian random element on TμS∞ with mean zero and co-
variance 4Λ−1

1 E[V ⊗ V ](Λ−1
1 )∗.

The variation of X around the intrinsic mean is summarized by the covari-
ance operator, which is a linear characterization of the intrinsic variation that
has been applied to generalize the principal component analysis to Riemannian
manifolds (Fletcher et al., 2004; Lazar and Lin, 2017). The population and em-
pirical covariance operators are defined as G : TμS∞ → TμS∞, G = E[V ⊗ V ]

and Ĝ : Tμ̂S∞ → Tμ̂S∞, Ĝ = n−1
∑n

i=1 V̂i ⊗ V̂i, respectively, so

Gh = E[〈V, h〉μV ], Ĝg =
1

n

n∑
i=1

〈V̂i, g〉μ̂V̂i

for h ∈ TμS∞ and g ∈ Tμ̂S∞.
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The next result compares the estimated and true tangent vectors and will be
needed to assess the estimation of the covariance operator. Parallel transport
under the Levi-Civita connection on S∞ (Lang, 1999) is applied to compare
tangent vectors on different tangent spaces in an intrinsic manner (Lin and
Yao, 2019). Let P y

x : TxS∞ → TyS∞ denote the parallel transport of tangent
vectors on TxS∞ along the geodesic leaving from x to y on S∞, given that x and
y are not antipodal and thus the geodesic is unique. Write Λx = D2

2ρ
2(x, μ) ∈

B(TμS∞,B(TμS∞,R)) and we identify it with Λx1 ∈ B(TμS∞, TμS∞) such
that Λxv = 〈Λx1v, ·〉μ for any v ∈ TμS∞. Recall that Λ1 is defined before
Corollary 3.1.

Corollary 3.2. If (A1) holds, then v = logμ x and v̂ = logμ̂ x are well defined
for any x ∈ S∞ with ρ(x, μ) < π, the latter almost surely as n → ∞. Moreover,
as n → ∞,

√
n(Pμ

μ̂ v̂ − v)
L−→ Zv,

where Zv is a Gaussian random element in TμS∞ with mean 0 and covariance
Λx1Λ

−1
1 E[V ⊗ V ]Λ−1

1 Λx1.

To derive a central limit theorem for the covariance, operators G and Ĝ are
analyzed as Hilbert–Schmidt operators on the tangent spaces and are compared
through the parallel transport. For x ∈ S∞ lying in a small enough neighborhood
of μ, let Pμ

x : B(TxS∞, TxS∞) → B(TμS∞, TμS∞) be the parallel transport
of operators from x to μ such that for any operator A ∈ B(TxS∞, TxS∞),
Pμ
x (A)v = Pμ

x AP x
μ v for v ∈ TμS∞. For a Hilbert space F, let BHS(F,F) denote

the Hilbert space of Hilbert–Schmidt operators on F equipped with the inner
product

〈F1,F2〉HS =

∞∑
j=1

〈F1ej ,F2ej〉F,

where F1, F2 are operators on F with finite Hilbert–Schmidt norm induced
by this inner product, and {ej}∞j=1 is a complete orthonormal basis of F. For
clarity, let ⊗HS denote the tensor product of elements in BHS(TμS∞, TμS∞).
Define H : TμS∞ → BHS(TμS∞, TμS∞), H(·) = E[ΛX1(·) ⊗ V ] where ΛX1 is
Λx1 at a random x = X.

Theorem 3.3. If (A1) holds, then as n → ∞,

√
n(Pμ

μ̂ Ĝ − G) L−→ ZG

in BHS(TμS∞, TμS∞), where ZG is a Gaussian random element with mean 0
and covariance E[G0 ⊗HS G0], where

G0 = V ⊗ V − G +HΛ−1
1 V + (HΛ−1

1 V )∗.

Theorem 3.3 extends the central limit theorem for the covariance operator
of a Hilbert random element to a random element on the Hilbert sphere. On
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a Hilbert sphere, additional terms involving H appear in the random Hilbert–
Schmidt operator G0 that generates the asymptotic covariance due to the pos-
itive curvature of S∞, as compared to the corresponding result (e.g. Theorem
8.1.2 in Hsing and Eubank, 2015) in a Hilbert space where the parallel trans-
port is simply the identity and G0 = V ⊗ V − G. Theorem 3.3 can be applied
to derive asymptotic theory for the principal component analysis (Tucker, Wu
and Srivastava, 2013; Dai and Müller, 2018; Lin and Yao, 2019) based on Ĝ, an
exposition beyond the scope of this work.

4. Hypothesis tests for the intrinsic mean

4.1. General setup

We obtain here one- and two-sample hypothesis tests of the intrinsic mean as
a result of the CLT in Theorem 3.2; for completeness, a paired-sample test is
formulated in Appendix G. To handle the manifold constraint, these tests make
use of a chart (U, τ) so that test statistics based on the intrinsic mean can be
constructed analogously to those in a Hilbert space (Berkes et al., 2009; Aue,
Rice and Sönmez, 2018).

One-sample test

Given a sample X1, . . . , Xn on S∞ with unknown mean μ, consider the one-
sample hypothesis

H0 : μ = μ0, H1 : μ �= μ0,

for a pre-specified μ0 ∈ S∞. We propose a norm-based and a projection-based
test statistic, defined, respectively, as

T1 = n ‖τ(μ̂)− τ(μ0)‖2G ,

S1 = n

K∑
k=1

〈τ(μ̂)− τ(μ0), φ̂k〉2G
λ̂k

,

where the projection-based test utilizes K < ∞ projections. Here S1 is the em-
pirical estimate of S̃1 = n

∑K
k=1 λ

−1
k 〈τ(μ̂) − τ(μ0), φk〉2G, and the (λk, φk) and

(λ̂k, φ̂k) are, respectively, the eigenvalue–eigenfunction pairs of the true and es-

timated covariance operator T or T̂ of the limiting element Z in Theorem 3.2,
respectively satisfying T φk = λkφk and T̂ φ̂k = λ̂kφ̂k. Note that for infinite-
dimensional data a Hotelling’s T 2-like test statistic cannot be obtained by nor-
malizing the mean with the inverse of its covariance operator, since the resulting
test statistic diverges (Hájek, 1962). A natural choice of chart is τ(·) = logμ0

(·),
under which the norm-based test statistic reduces to T1 = nρ2(μ̂, μ0).

By Slutsky’s theorem and Theorem 3.2, the limiting distribution for T1 is
‖Z‖2

G
and that for S1 is χ2

K . Summarizing,
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Corollary 4.1. If the conditions of Theorem 3.2 hold, then as n → ∞,

T1
L−→

∞∑
k=1

λkWk,

S1
L−→ χ2

K ,

where Wk are i.i.d. χ2
1 random variables.

Two-sample test

The two-sample setting is that we have i.i.d. observations X
[g]
1 , . . . , X

[g]
ng on S∞

for g = 1, 2, where ng is the sample size in Population g and n = n1 + n2 is the
total sample size. Let μg be the unknown intrinsic mean in Population g, which
is estimated by the empirical mean μ̂g. The two-sample hypothesis is

H0 : μ1 = μ2, H1 : μ1 �= μ2.

Under chart τ , let Tg = (Λ−1
gτ )Fgτ (Λ

−1
gτ )

∗ be the asymptotic covariance of τ(μ̂g)

given by Theorem 3.2, where Fgτ = E[ψτ (X
[g]
i , τ(μg))⊗ψτ (X

[g]
i , τ(μg))], Λgτ =

E[D2
2ρ

2
τ (X

[g]
i , τ(μ̂g))], g = 1, 2. Let Tpool = (n/n1)T1+(n/n2)T2 be the pooled

covariance operator, which has eigenvalue–eigenfunction pairs (λk,pool, φk,pool)
satisfying Tpoolφk,pool = λk,poolφk,pool, for k = 1, 2, . . . . The following corollary
of Theorem 3.2 serves as a basis for the two-sample tests.

Corollary 4.2. Suppose that n1, n2 → ∞ and n1/n2 → q for some q ∈ (0, 1).
If H0 is true and the conditions of Theorem 3.2 hold for both populations, then
as n → ∞,

√
n[τ(μ̂1)− τ(μ̂2)]

L−→ Z2,

where Z2 is a Gaussian random element in G with mean 0 and covariance Tpool.

The norm-based and projection-based two-sample test statistics are

T2 = n ‖τ(μ̂1)− τ(μ̂2)‖2G ,

S2 = n
K∑

k=1

〈τ(μ̂1)− τ(μ̂2), φ̂k,pool〉2G
λ̂k,pool

.

Here (λ̂k,pool, φ̂k,pool), k = 1, 2, . . . are the eigenvalue–eigenfunction pairs of the

estimated pooled covariance T̂pool = (n/n1)T̂1 + (n/n2)T̂2, satisfying

T̂poolφ̂k,pool = λ̂k,poolφ̂k,pool for k = 1, 2, . . . ; T̂g = (Λ̂−1
gτ )F̂gτ (Λ̂

−1
gτ )

∗,

F̂gτ = n−1
g

∑ng

i=1 ψτ (X
[g]
i , τ(μ̂g))⊗ ψτ (X

[g]
i , τ(μ̂g)), and

Λ̂gτ = n−1
g

∑ng

i=1 D
2
2ρ

2
τ (X

[g]
i , τ(μ̂g)), g = 1, 2.
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Corollary 4.3. Let W1,W2, . . . be i.i.d. χ2
1 random variables. If the conditions

of Corollary 4.2 hold, then as n → ∞,

T2
L−→

∞∑
k=1

λk,poolWk,

S2
L−→ χ2

K .

4.2. Asymptotic tests

In performing asymptotic tests, the asymptotic null distributions of the norm-
based test statistics involve unknown eigenvalues that need to be estimated. A
natural question is whether the asymptotic p-values can be estimated consis-
tently in light of the infinite sum in the limiting distribution. The answer is
affirmative: In the one-sample scenario, the asymptotic null distribution of T1 is
‖Z‖2

G
, consistently estimated by the distribution of T̂1 := ‖Zn‖2G =

∑∞
k=1 λ̂kWk.

By Proposition 3.2 and the continuous mapping theorem, the limiting distribu-
tions of T1 and T̂1 are the same, so the asymptotic cumulative distribution func-
tion and the quantiles/p-values of T1 can be estimated uniformly consistently
by those of T̂1 in the large sample limit. Although the asymptotic distribution
is non-pivotal, Theorem 3.2 leads to an explicit form of the asymptotic dis-
tribution of the test statistics, enabling efficient implementation. In practice,
quantiles of T̂1 are obtained by Monte Carlo.

For the projection-based tests, the tuning parameter K needs to be chosen in
order to maximally capture the difference in the means. While an optimal choice
may depend on the sample size and the stochastic structure of the data, we
find in our numerical studies that following the Fraction of Variance Explained
(FVE) criterion leads to reasonable test performance; namely, set K = K∗

where

K∗ = min{K ≥ 1 |
∑K

j=1 λ̂j∑∞
k=1 λ̂k

≥ r}, (3)

with a given threshold r ∈ (0, 1). The projection-based tests will be powerful
as long as the mean difference (on the chart) is not orthogonal to the subspace
spanned by the firstK eigenfunctions. Our experience, in agreement with Berkes
et al. (2009); Horváth, Kokoszka and Reeder (2013), suggests that in practice
the mean difference is usually well captured by the first few projections. Even
though the norm-based tests always capture the mean difference, the projection-
based tests can often be more powerful in our numerical studies since they utilize
a pivotal test statistic and focus on the leading components with higher signal-
to-noise ratio. The asymptotic tests in the two- and paired-sample scenarios
follow analogous development.

4.3. Bootstrap tests

Alternative bootstrap tests are proposed to improve finite-sample performance.
The bootstrap tests avoid the computation of the covariance components of the
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norm-based test statistics and enjoy a second order accuracy when using the
pivotal projection-based test statistics (Hall, 1992).

In the one-sample scenario, let X∗
1 , . . . , X

∗
n be a nonparametric bootstrap

sample drawn from X1, . . . , Xn with replacement and μ̂∗ be the bootstrap sam-
ple intrinsic mean. The bootstrap distributions are derived from

T ∗
1 = n ‖τ(μ̂∗)− τ(μ̂)‖2

G
,

S∗
1 = n

K∑
k=1

〈τ(μ̂∗)− τ(μ̂), φ̂∗
k〉2G

λ̂∗
k

,

where the (λ̂∗
k, φ̂

∗
k) are the eigenpairs of T̂ ∗

τ constructed analogously to the sam-

ple covariance T̂τ but with the bootstrap sample. The validity of the bootstrap
test is guaranteed by the following corollary of Theorem 3.2 and the bootstrap
theorem for infinite-dimensional Z-estimators by Wellner and Zhan (1996).

Corollary 4.4. Under the conditions of Theorem 3.2, the bootstrap intrinsic
mean μ̂∗ is consistent for μ. Furthermore, as n → ∞,

√
n[τ(μ̂∗)− τ(μ̂)]

L−→ Z∗,

where Z∗ is a Gaussian random element sharing the same distribution with Z
in Theorem 3.2. Hence, the asymptotic distributions are the same for T ∗

1 and
T1, as well as for S∗

1 and S1.

For the two-sample test, let X
[g]∗
1 , . . . , X

[g]∗
ng be a nonparametric bootstrap

sample of size ng from Population g = 1, 2. Let μ̂∗
g be the intrinsic mean and T̂ ∗

g

the sample covariance operator of the bootstrap sample in Population g, T̂ ∗
pool =

(n/n1)T̂ ∗
1 + (n/n2)T̂ ∗

2 the bootstrap pooled covariance, and (λ̂∗
k,pool, φ̂

∗
k,pool),

k = 1, 2, . . . the eigenpairs of T̂ ∗
pool. The bootstrap versions of for T2 and S2

are, respectively,

T ∗
2 = n ‖[τ(μ̂∗

1)− τ(μ̂1)]− [τ(μ̂∗
2)− τ(μ̂2)]‖2G ,

S∗
2 = n

K∑
k=1

〈[τ(μ̂∗
1)− τ(μ̂1)]− [τ(μ̂∗

2)− τ(μ̂2)], φ̂
∗
k,pool〉2G

λ̂∗
k,pool

,

where the bootstrap statistics are constructed as such to increase power.

Corollary 4.5. Under the conditions of Corollary 4.2, the bootstrap intrinsic
mean μ̂∗

g is consistent for μg, g = 1, 2. Moreover, as n → ∞,

√
n {[τ(μ̂∗

1)− τ(μ̂1)]− [τ(μ̂∗
2)− τ(μ̂2)]} L−→ Z∗

2 ,

where Z∗
2 is a Gaussian random element sharing the same distribution as Z2 in

Corollary 4.2. Hence, the asymptotic distributions are the same for T ∗
2 and T2,

as well as for S∗
2 and S2.
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5. Simulation studies

Simulation studies were performed on S∞ ⊂ H = L2([0, 1]) to demonstrate
the numerical properties of the proposed hypothesis tests. We focus on the
two-sample case here, while analogous results for the one-sample scenario are
included in Appendix H. In the two-sample scenario, we set the intrinsic pop-
ulation mean μ1 to the square root of the Beta(2, 1) density function and

μ2 = expμ1
δv, where δ ∈ [−0.4, 0.4] is the effect size, v = K

−1/2
μ

∑Kμ

k=1 φ1k,
Kμ ∈ {1, 3, 5} is the number of mean components, and the φ1k are orthonormal
functions to be described shortly. Independent observations in Population g =

1, 2 were generated according to X
[g]
i (s) = expμg

{(−1)g−1
∑KX

k=1 ξgikφgk(s)},
s ∈ [0, 1] with KX = 50 components. The kth scores ξgik were i.i.d. real-
valued random variables with mean 0 and variance θk = 3−k, generated from
either the normal distribution or the centered exponential distribution, i.e.
ξgik = ηgik − Eηgik and ηgik follows Exponential(θk) in the latter case, for
i = 1, . . . , ng, g = 1, 2. The orthonormal basis functions φgk were defined as
φgk = Rμg (ψk+1), k = 1, . . . , KX , where {ψj}∞j=1 = {ψ1(s) = 1, ψ2k(s) =

21/2 sin(2kπs), ψ2k−1(s) = 21/2 cos(2(k − 1)πs), s ∈ [0, 1], for k ∈ N} is the
trigonometric basis on [0, 1], and Rq : H → H is the rotation operator from ψ1

to q �= −ψ1 along the shortest geodesic, defined by

Rq(p) = p+ sin(ρq)(〈u, p〉Hq − 〈q, p〉Hu) + (cos(ρq)− 1)(〈q, p〉Hq + 〈u, p〉Hu),

where ρq = ρ(ψ1, q) and u = (ψ1−〈ψ1, q〉Hq)/(1−〈ψ1, q〉2H)1/2. The mean squared

geodesic distance from the observations to the intrinsic mean was
∑KX

k=1 θk =
0.5, and the cumulative FVE by the first J = 1, . . . , 5 components, defined as
FVE(J) =

∑J
j=1 θj/

∑KX

k=1 θk, were 66.7%, 88.9%, 96.3%, 98.8%, and 99.6%,
respectively.

The simulation settings consisted of all combinations of

• sample size ng ∈ {10, 25, 50};
• number of components Kμ ∈ {1, 3, 5} in the mean difference; and
• either symmetric or asymmetric data generated around the mean, corre-

sponding to the normally (norm) or exponentially (exp) distributed ξgik,
respectively.

We compared the proposed asymptotic and bootstrap tests which are intrinsic
to S∞, as well as a norm-based bootstrap test of the extrinsic means (Ellingson,
Patrangenaru and Ruymgaart, 2013) in the ambient spaceH projected back onto
S∞. The number of components K for our projection-based tests were chosen
according to the FVE criterion (3) with threshold r = 0.8, 0.95, or 0.99, which
correspond roughly to K = 2, 3, and 4 projections in our settings, respectively.

With 1000 Monte Carlo iterations each with 499 bootstrap samples, the em-
pirical power curves for the two-sample tests over effect size δ ∈ [−0.4, 0.4] are
displayed in Figure 1, noting that H0 holds if and only if δ = 0. As a visual
aid, dark and light paired colors were used to denote the proposed asymptotic
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and bootstrap tests, respectively. Bootstrap tests were overall more conserva-
tive and had better control of the type I error rate (size) than the asymptotic
tests, which is most apparent for ng = 10 or 25. When ng = 10, the asymptotic
projection-based tests were over-liberal, while the corresponding bootstrap tests
properly controlled the size to be around the nominal level α = 0.05. This can be
attributed to the second-order correctness for the bootstrap tests when the test
statistic is pivotal (Hall, 1992), of which the effect is most prominent in small
samples. The asymptotic and bootstrap tests had almost identical performance
under ng = 50 (3rd and 6th columns, Figure 1), showing that the asymptotics
comes into force under this moderate sample size even if the data lie on an
infinite-dimensional curved manifold S∞.

When ng = 10, the norm-based tests had higher power than the projection-
based tests while controlling the size near the nominal level. In this small-sample
scenario, the norm-based tests avoid estimating the projection directions and
gain stability as compared to the projection-based tests. With ng = 25 or 50, the
projection-based tests were more powerful than the norm-based test when larger
FVE thresholds were chosen to capture mean differences in multiple projections.
Specifically, when Kμ = 3 and 5, the projection-based tests with FVE = 0.95
and 0.99 were the most powerful, respectively. This is due to the fact that
the projection-based tests focus on the mean differences only in the directions
with high signal-to-noise ratios. When Kμ = 1, the norm-based tests and the
projection-based tests with FVE = 0.80 had similar performance and were both
among the best performers.

The extrinsic and intrinsic norm-based tests performed similarly in the sym-
metric scenarios (1st–3rd columns, Figure 1) but rather differently in the asym-
metric scenarios (4th–6th columns, Figure 1). All tests suffered from finite-
sample biases to different extents in the asymmetric scenarios, which is reflected
by the lack of power when δ was slightly below 0. The bias for the proposed
intrinsic methods reduced as ng increased in the asymmetric scenarios, reaching
near-unbiasedness when ng = 50, but the bias for the extrinsic tests remained
even when ng = 50. This underlines the importance of respecting the intrinsic
geometry when data is asymmetrically generated on the manifold.

6. Data application: taxi demands

Understanding the demand in public transportation will provide key insights for
more reliable and economic infrastructures. Modeling taxi demands has been of
increasing interest (Chu and Chen, 2019; Dubey and Müller, 2020) as the pop-
ularity of app-based for-hire vehicle services such as Uber and Lyft increases
and data become available. We analyzed the demand patterns of taxi and other
for-hire vehicles in New York City, which were extracted from a total of 1.1 bil-
lion trips records of for-hire vehicles including the yellow and green cabs, Uber,
Lyft, etc. The trip record data were made public following Freedom of Infor-
mation Law (FOIL) requests, and our analysis was built upon a database com-
piled by Todd Schneider available on https://github.com/toddwschneider/

nyc-taxi-data.

https://github.com/toddwschneider/nyc-taxi-data
https://github.com/toddwschneider/nyc-taxi-data
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Fig 1. Empirical power curves for the two-sample tests. Columns correspond to different generating distributions for the principal components ξgik
and sample sizes ng, and rows correspond to different numbers of components Kμ in the mean difference. The horizontal gray lines indicate the
nominal level α = 0.05. ΠA,r and ΠB,r, projection-based tests with FVE threshold r; L2

A and L2
B, norm-based tests; Ext, the extrinsic bootstrap test.

Subscripts A and B stand for the proposed tests in the asymptotic and bootstrap versions, respectively.
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For the interest of monitoring evolving demand patterns, our goal is to com-
pare the daily taxi demands in the year of 2016 and 2017. The demand pattern
in the ith day of year g ∈ {2016, 2017} is modeled as the spatial density function
Ygi(s), s ∈ Z of the locations where passengers were picked up, where Z de-
notes the collection of taxi zones in Manhattan. To compare the daily demand
patterns in 2016 and 2017 we performed two-sample tests with the daily pick-up
densities Ygi as the observational units. To apply the proposed two-sample tests
on S∞, density Ygi is first transformed into square root density Xgi, obtaining

Xgi(s) =
√

Ygi(s), s ∈ S∞. Since ‖Xgi‖2H =
∫
Z X2

gi(s)ds =
∫
Z Ygi(s)ds = 1,

the Xgi are objects lying on the unit Hilbert sphere S∞. The proposed tests
are then applied on these square root density objects. The average demands in
2016 and 2017 as measured by the intrinsic means of the square root densities
Xgi within each year appear overall similar, as displayed in the left panels of
Figure 2, but there is a substantial decrease in demand concentrated near the
Upper East Side of Manhattan as shown in the right panel of Figure 2. The
different is likely due to the opening of three Second Avenue subway stations
on January 1, 2017.

Fig 2. The sample intrinsic means and their (Euclidean) difference.

We next compared the power of two-sample hypothesis tests under the Hilbert
sphere geometry and the flat geometry. In the former case the random objects
were the square root densities Xgi, and in the latter the observations were the
original densities Ygi. Two scenarios were considered, namely the Equal Mean
scenario where the random objects for both populations were sampled without
replacement from year 2017, representing H0, and the Unequal Mean scenario
where the observations for the two populations were sampled from 2016 and
2017, respectively, representing H1. The number of random samples ng from
each population varied among 10, 15, 20 and 25.

The proposed intrinsic tests and the extrinsic test based on the spherical
geometry were applied on the square root densities Xgi, and an alternative
norm-based bootstrap test was performed on the original densities Ygi. The
number of projections for the projection-based tests were selected according to
the FVE criterion with threshold r = 0.8, 0.9, and 0.95, which corresponds to
K = 3, 5, and 9 components, respectively. The empirical sizes and powers are
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reported in Table 1 for the nominal level α = 0.05, calculated from 2000 Monte
Carlo iterations and 999 bootstrap samples.

Table 1

Proportions of rejected H0 for the taxi demands at the nominal level α = 0.05 with
ng ∈ {10, 15, 20, 25} observations per population. ΠA,r and ΠB,r, projection-based tests with
FVE threshold r; L2

A and L2
B, norm-based tests; Ext, the extrinsic bootstrap test on S∞;

Dens, the bootstrap test using the original densities. Subscripts A and B stand for the
proposed asymptotic and bootstrap tests, respectively.

Equal mean (H0)
ng L2

A ΠA,0.8 ΠA,0.9 ΠA,0.95 L2
B ΠB,0.8 ΠB,0.9 ΠB,0.95 Ext Dens

10 0.073 0.046 0.052 0.063 0.088 0.043 0.042 0.028 0.088 0.09
15 0.062 0.043 0.04 0.05 0.078 0.044 0.038 0.026 0.076 0.076
20 0.057 0.039 0.046 0.047 0.064 0.044 0.044 0.031 0.064 0.064
25 0.044 0.035 0.041 0.04 0.048 0.038 0.034 0.026 0.05 0.052

Unequal mean (H1)
ng L2

A ΠA,0.8 ΠA,0.9 ΠA,0.95 L2
B ΠB,0.8 ΠB,0.9 ΠB,0.95 Ext Dens

10 0.203 0.215 0.596 0.846 0.259 0.215 0.572 0.776 0.259 0.124
15 0.336 0.352 0.868 0.989 0.388 0.36 0.863 0.976 0.394 0.134
20 0.532 0.484 0.975 0.999 0.591 0.5 0.972 0.999 0.59 0.148
25 0.766 0.607 0.993 1 0.805 0.618 0.993 1 0.794 0.173

Under the Equal Mean scenario (H0), the proportion of rejection for all meth-
ods were below 0.1 and approached the nominal level α = 0.05 as ng increased,
indicating that the tests have approximately the correct size. The proposed
norm-based bootstrap test L2

B was slightly more liberal than its asymptotic
version L2

A, while the projection-based bootstrap test ΠB,0.95 was slightly more
conservative than its asymptotic version ΠA,0.95. In the Unequal Mean scenario
(H1), all tests based on the square root densities (our proposed intrinsic tests
and the extrinsic test) outperformed the bootstrap test based on the original
density (last column, Table 1). This highlights that the spherical geometry on
S∞ is more appropriate for detecting small changes in the demand distributions
than a flat geometry for the original densities. The proposed projection-based
tests with FVE threshold r = 0.9 and 0.95 had the highest power for all sample
sizes, outperforming the intrinsic and extrinsic norm-based bootstrap tests.

Appendix A: Fréchet derivatives

The Fréchet derivative reviewed here follows Chapter I in Lang (1999). In this
section, let E, Ej , F be Banach spaces with norms ‖·‖E , ‖·‖Ej

, and ‖·‖F , re-
spectively, for j = 1, . . . , p. Denote B(E,F ) as the space of continuous linear
maps from E into F , which is a Banach space equipped with the operator norm
‖g‖ = sup‖e‖E=1 ‖g(e)‖F for g ∈ B(E,F ). Also let B(E1, . . . , Ep;F ) denote the
Banach space of multilinear maps equipped with the operator norm

‖h‖ = sup
‖e1‖E1

=···=‖ep‖Ep
=1

‖h(e1, . . . , ep)‖F ,
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and write for short B(Ep, F ) = B(E, . . . , E;F ). Repeated linear operator

grep ∈ B(E, B(E, . . . , B(E︸ ︷︷ ︸
p times

, F ) . . . ))

is isometrically identified with a multilinear map gmult ∈ B(Ep, F ), as

gmult(e1, . . . , ep) = grep(e1) . . . (ep).

This identification gives rise to a Banach space isomorphism
B(E, B(E, . . . , B(E,F ) . . . )) � B(Ep, F ) (Proposition 2.4, p7, Lang, 1999); we
use the same notation to denote both maps.

Let f : U ⊂ E → F be a continuous map.

Definition A.1. Function f : U ⊂ E → F is said to be (Fréchet) differentiable
at a point x0 ∈ U if there exists a continuous linear map l of E into F such that
for y ∈ E,

f(x0 + y) = f(x0) + l(y) + ε(y),

where ‖ε(y)‖F → 0 as ‖y‖E → 0. The linear map l is called the (Fréchet)
derivative of f at x0, denoted as Df(x0). If f is differentiable at every point in
U , then the derivative Df is a map

Df : U → B(E,F ).

Definition A.2. Map f : U ⊂ E → F is said to be directional differentiable at
a point x0 ∈ U if there exists a function l : E → F such that

l(y) = lim
t→0

f(x0 + ty)− f(x0)

t

exists for all y ∈ E. The linear map l is called the directional derivative of f at
x0.

If a map f is Fréchet differentiable, then it is also directional differentiable and
the two derivatives match. In what follows, “differentiability” refers to Fréchet
differentiability unless otherwise noted, and the directional differentiation is
used for calculation. Higher order derivatives and partial derivatives are defined
in a recursive manner. Since the derivative Df(x0) is in B(E,F ), a Banach
space, the pth order derivative Dpf is defined as D(Dp−1f), a map of U into
B(E, B(E, . . . , B(E,F ) . . . )) � B(Ep, F ). A map is said to be smooth if the
derivatives of all orders exist. For a bivariate map h : E1 ×E2 → F , the partial
derivative with respect to the first argument at (x0, y0) ∈ U × V ⊂ E1 × E2 is
denoted as D1h(x0, y0), where

D1h : U × V → B(E1, F ), D1h(x0, y0) = Dfy0(x0),

for fy0(x) = h(x, y0). The partial derivative D2h w.r.t. the second argument is
similarly defined.
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Proposition A.1 (Proposition 3.1, page 9 in Lang (1999)). If f : U → V is
differentiable at x0, and g : V → W is differentiable at f(x0), then g ◦ f is
differentiable at x0, and

D(g ◦ f)(x0) = Dg ◦ f(x0)(Df(x0)).

For f : U → B(E,F ) and g : U → B(F,G) defined on an open set U ⊂ E,
denote f · g as the function u �→ f(u) ◦ g(u). The chain rule can be compactly
written as

D(g ◦ f) = Dg ◦ f ·Df.

Appendix B: Proof of Theorem 3.1

Proof. We first show that for any q ∈ S∞ with P(ρ(q,X) > π/2) > 0, there
exists q′ ∈ S∞ such that M(q′) < M(q) and P(ρ(q′, X) ≤ π/2) = 1. Denote
B(b, r) as the open geodesic ball {x ∈ S∞ | ρ(b, x) < r} and B̄(b, r) the closed
geodesic ball {x ∈ S∞ | ρ(b, x) ≤ r} centered at b ∈ S∞ with radius r > 0. Let q
be a point on the sphere satisfying P(ρ(q,X) > π/2) > 0. By (A1), there exists
o in the support of X such that ρ(o, q) > π/2 and P(X ∈ B(o, π/2)) > 0. We
follow the reflection argument used in the proof of Theorem 2.1 in Afsari (2011)
to show that q cannot be a Fréchet mean. Due to the Gauss lemma (Theorem
5.7 in Lang, 1999), there exists a minimal geodesic from o to q which intersects
perpendicularly the boundary of B(o, π/2) at a unique point qc. Let q′ be the
reflection of q along the minimal geodesic into the boundary of B(o, π/2). Let
s be a point in B̄(o, π/2) and α the angle made by geodesic qco and qcs. Any
three points on S∞ and the geodesics between them lie on a 2-dimensional unit
sphere, so the spherical law of cosines applies, which states that for any geodesic
triangle with side lengths a, b, c and angle C for the corner opposite c, one has

cos c = cos a cos b+ sin a sin b cosC. (4)

By (4), α ≤ π/2 for all s ∈ B̄(o, π/2), and thus two applications of (4) on
geodesic triangles Δqqcs and Δq′qcs yield

ρ(q′, s) ≤ ρ(q, s),

where the inequality is strict if and only if s lies in the interior of B̄(o, π/2).
Thus M(q′) < M(q) by construction. Hence, if an intrinsic mean μ exists, it
must satisfy P(ρ(μ,X) ≤ π/2) = 1.

We next show that if μ is a minimizer of M(·) on S∞, then P(ρ(μ,X) =
π/2) = 0. Suppose not, then there exists p in the support of X with ρ(μ, p) =
π/2. By (A1), p can be taken such that P(ρ(p,X) < π/2) > 0, and P(ρ(p,X) ≤
π/2) = 1. Let t �→ γ(t) be a unit-speed minimal geodesic leaving from μ at t = 0
towards p. For any s ∈ B̄(μ, π/2),

d

dt
ρ2(γ(t), s)

∣∣∣∣
t=0

= −2ρ(μ, s) cosαs,
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where αs is the angle made by minimal geodesics μp and μs. Arbitrarily define
cosαs = 0 if s = μ, noting that the former display is immaterial of this definition.
Since μ minimizes M(·), by the dominated convergence theorem (DCT) we have

0 =
d

dt
M(γ(t))

∣∣∣∣
t=0

= −2E[ρ(μ,X) cosαX ]. (5)

However, the construction of p and the spherical law of cosines imply P(cosαX ≥
0) = 1 and P(cosαX > 0) > 0. Since ρ(μ,X) is positive when cosαX > 0, this
leads to a contradiction to (5). Therefore, a necessary condition for μ to be a
minimizer of M(·) is that

P(ρ(μ,X) < π/2) = 1. (6)

We now prove the existence of a minimizer of M(·) on S∞. Let {pn}∞n=1 be
a sequence of points on S∞ such that limn→∞ M(pn) = infp∈S∞ M(p). By the
reflection argument, we can WLOG require P(ρ(pn, X) ≤ π/2) = 1. Expand the
domain of M(·) = E arccos2〈X, ·〉H to the closed unit ball BH(1) = {p ∈ H |
‖p‖

H
≤ 1} in H. The Banach–Alaoglu theorem (e.g., Theorem 3.15 in Rudin,

1973) states that the closed unit ball in the Hilbert space is weakly compact,
so any sequence {an}∞k=1 ⊂ H with ‖an‖H ≤ 1 has a subsequence ank

which
converges to its weak limit a ∈ H with ‖a‖

H
≤ 1, satisfying limk→∞〈ank

, f〉H =
〈a, f〉H for all f ∈ H. Let pnk

be a subsequence of pn converging weakly to p∞ ∈
H. By the weak continuity of M(·) and the DCT, M(p∞) = limk→∞ M(pnk

) =
infp∈S∞ M(p), so for p∞ to be a Fréchet mean it remains to be shown that p∞
lies on S∞. The Portmanteau theorem implies that

P(〈p∞, X〉H ≥ 0) = P( lim
k→∞

〈pnk
, X〉H ≥ 0) ≥ lim sup

k→∞
P(ρ(pnk

, X) ≤ π/2) = 1.

(7)
There exists o1 ∈ S∞ such that P(ρ(o1, X) < 1/2) > 0 and P(ρ(o1, X) ≤ π/2) =
1, so M(o1) < M(0). This implies that p∞ �= 0, and

P(〈p∞, X〉H > 0) > 0. (8)

Take p∗ = p∞/ ‖p∞‖
H

∈ S∞. Due to the monotonicity of arccos(·), equation
(7), and (8), if ‖p∞‖

H
< 1 then one must have M(p∗) < M(p∞), contradicting

to the minimizing property of p∞. Hence, p∞ must have unit norm and thus is
the strong limit of pnk

, and μ = p∞ is a minimizer of M(·) over S∞.
Finally, we establish uniqueness. Suppose μ1 �= μ2 are both minimizers of

M(·) on S∞. Let μ̃ = λμ1 + (1 − λ)μ2 for some λ ∈ (0, 1), which has norm
0 < ‖μ̃‖

H
< 1 by (6). By linearity and (6), 〈μ̃,X〉H is positive with probability

one, and thus

M(μ̃/ ‖μ̃‖
H
) < M(μ̃) = E arccos2〈λμ1 + (1− λ)μ2, X〉H
≤ λE arccos2〈μ1, X〉H + (1− λ)E arccos2〈μ2, X〉H
= inf

p∈S∞
M(p)

by the strict monotonicity and convexity of arccos2(·), leading to a contradiction.
We conclude that μ = p∞ is the unique minimizer of M(·) over S∞.
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Appendix C: Proofs of other results in Section 3.1

Proof of Proposition 3.1. Obtain

sup
p∈S∞

|Mn(p)−M(p)|

= sup
p∈S∞

∣∣∣∣∣ 1n
n∑

i=1

arccos2〈Xi, p〉H − E arccos2〈X, p〉H

∣∣∣∣∣
≤ sup

‖p‖
H
≤1

∣∣∣∣∣ 1n
n∑

i=1

arccos2〈Xi, p〉H − E arccos2〈X, p〉H

∣∣∣∣∣ = o(1) a.s.,

where the last equality is due to the preservation of Glivenko–Cantelli class
(van der Vaart and Wellner, 2000) and that sup‖p‖

H
≤1 |n−1

∑n
i=1〈Xi, p〉H −

E〈X1, p〉H| =
∥∥X̄ − EX1

∥∥
H
= o(1) a.s. by the strong LLN in H (Theorem 2.4,

Bosq, 2000). For ε > 0, let Sε = {p ∈ S∞ | ρ(p, μ) ≥ ε}. The uniqueness of the
minimizer μ of M(·) and the weak limit argument in Theorem 3.1 imply

inf
p∈Sε

M(p)−M(μ) > 0

for any ε > 0, showing the well-separatedness of the minimizer μ of M(·).
The consistency of the sample intrinsic mean μ̂ for μ then follows from applying
standard arguments forM -estimators (Section 3.2 in van der Vaart and Wellner,
1996).

Proof of Theorem 3.2. Under (A1), ρ2τ (X, ·) is smooth on a neighborhood of μτ

with probability one. Write

ψτ : S∞ ×G → B(G,R), ψτ (x, e) = D2ρ
2
τ (x, e),

Ψτ : G → B(G,R), Ψτ (e) = Eψτ (X, e),

Ψn,τ : G → B(G,R), Ψn,τ (e) =
1

n

n∑
i=1

ψτ (Xi, e).

Since μ and μ̂ are minimizers of M(·) and Mn(·), respectively, we have Ψτ (μτ ) =
Ψn,τ (μ̂τ ) = 0, recalling that μτ = τ(μ) and μ̂τ = τ(μ̂). By Taylor’s theorem,

0 =
√
nΨn,τ (μ̂τ )

=
√
nΨn,τ (μτ ) +DΨn,τ (μτ )[

√
n(μ̂τ − μτ )] +Rn, (9)

where Rn is the remainder that satisfies

‖Rn‖ ≤
∥∥√n(μ̂τ − μτ )

∥∥
G
sup
u

‖DΨn,τ (u)−DΨn,τ (μτ )‖ . (10)

Here D denotes the Fréchet derivative, the supremum is taken over all u lying
between μ̂τ and μτ , the norm of Rn is the operator norm in B(G,R) (i.e. the
dual norm), and the last norm is the operator norm in B(G,B(G,R)). By (A1),
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Proposition 3.1, and Lemma E.3 in Appendix E, the supremum term on the
RHS of (10) is op(1) as n → ∞. Thus

‖Rn‖ = op(
∥∥√n(μ̂τ − μτ )

∥∥
G
). (11)

By (9), (11), and the LLN applied to DΨn,τ (μτ ),

(Λτ + op(1))
√
n(μ̂τ − μτ ) = −

√
nΨn,τ (μτ ).

Apply this and the continuity of Λ−1
τ given by Lemma E.2 to find that

√
n(μ̂τ − μτ ) = −Λ−1

τ

√
nΨn,τ (μτ ) + op(1). (12)

By the central limit theorem (Theorem 2.7, Bosq, 2000),

√
nΨn,τ (μτ ) =

1√
n

n∑
i=1

ψτ (Xi, μτ )
L−→ Z0, (13)

where Z0 is a zero-mean Gaussian random element in B(G,R) with covariance
operator Fτ = E[ψτ (X,μτ ) ⊗ ψτ (X,μτ )]. The CLT and the form of the co-
variance operator of

√
n(μ̂τ − μτ ) follow from (12), (13), and the continuous

mapping theorem.

Proof of Proposition 3.2. Recall that Λτ and Fτ are defined before Theorem 3.2,
and Λ̂τ and F̂τ are defined before Proposition 3.2. Let A = (Λ−1

τ )∗Λ−1
τ and

Â = (Λ̂−1
τ )∗Λ̂−1

τ , and denote tr(C) =
∑n

i=1〈Cej , ej〉G as the trace of an operator
C ∈ B(G,G) in an arbitrary complete orthonormal basis {ej}∞j=1 of G. We will
make use of the well-known facts that tr(·) is linear, tr(CD) = tr(DC) for oper-
ators C and D defined on the same Hilbert space, and that the trace norm ‖C‖1
equals the sum of the singular values of C if the sum is finite. Then

|‖T̂ ‖1 − ‖T ‖1| = | tr(T̂ − T )| = | tr(ÂF̂τ −AFτ )|
= | tr((Â − A)Fτ ) + tr(Â(F̂τ −Fτ ))|

≤
∥∥∥(Â − A)Fτ

∥∥∥
1
+

∥∥∥Â(F̂τ −Fτ )
∥∥∥
1

≤
∥∥∥Â − A

∥∥∥ ‖Fτ‖1 +
∥∥∥Â∥∥∥ ∥∥∥F̂τ −Fτ

∥∥∥
1
, (14)

where the first and second inequalities are due to Theorem 3.1 and Theorem 1.6
in Simon (2005), respectively. By the strong LLN (Theorem 2.4, Bosq, 2000)
and continuous mapping theorem,∥∥∥Λ̂−1

τ − Λ−1
τ

∥∥∥ = o(1) a.s., (15)∥∥∥Â − A
∥∥∥ = o(1) a.s., (16)∥∥∥Â∥∥∥ = O(1) a.s., (17)
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where (15) is due to that the inversion operation is continuous at continuously
invertible operator Λτ (Proposition 3.9, p11, Lang, 1999). Since covariance op-
erators are in the trace class (Section 4.5 in Hsing and Eubank, 2015),

‖Fτ‖1 < ∞. (18)

By the triangle inequality

∥∥∥F̂τ −Fτ

∥∥∥
1
≤

∥∥∥∥∥ 1

n

n∑
i=1

[ψτ (Xi, μ̂τ )⊗ ψτ (Xi, μ̂τ )−ψτ (Xi, μτ )⊗ ψτ (Xi, μτ )]

∥∥∥∥∥
1

+

∥∥∥∥∥ 1

n

n∑
i=1

ψτ (Xi, μτ )⊗ ψτ (Xi, μτ )−E[ψτ (X,μτ )⊗ ψτ (X,μτ )]

∥∥∥∥∥
1

.

The second term in the upper bound is o(1) a.s. by the LLN in the Banach
space of trace class operators in the trace norm (Theorem 2.7, Simon, 2005).
The summand operator in the first term of the upper bound has a rank up to
2, so its trace norm is no larger than 2 times its operator norm. By the triangle
inequality, Taylor’s theorem, Proposition 3.1, and Lemma E.3, the first term in
the upper bound is also o(1) a.s. Thus∥∥∥F̂τ −Fτ

∥∥∥
1
= o(1) a.s. (19)

Combining (14) and (15)–(19) we have |‖T̂ ‖1 − ‖T ‖1| = o(1) a.s. The con-
ditions of Theorem 2.19 in Simon (2005) are thus verified, obtaining the first
result. Theorem 2.7.21 in Bogachev (2018) then leads to a proof of the second
statement.

Appendix D: Proofs of the results in Section 3.2

Proof of Proposition 3.3. By the assumption and the spherical geometry, the
tangent vector logμ(X) is well defined with probability one. For any v ∈ TμS∞,
let γ : (−ε, ε) → S∞ be a geodesic starting at γ(0) = μ with initial velocity
γ′(t) = v. By the first variation formula (XI, §1, Lang, 1999), for any s ∈ S∞

with ρ(μ, s) < π,

d

dt
ρ2(γ(t), s)

∣∣∣∣
t=0

= −2〈v, logμ s〉μ. (20)

Since μ is a stationary point of M(·) = Eρ2(·, X), by the DCT,

0 =
d

dt
M(γ(t)) =

d

dt
Eρ2(γ(t), X)

∣∣∣∣
t=0

= −2E〈v, logμ X〉μ.

Thus E logμ X = 0.
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Proof of Corollary 3.2. On a sufficiently small open neighborhood U of μ such
that U ⊂ S∞ \ {−x}, define g = (p �→ logp x) and f : U → TμS∞, f(p) =
Pμ
p g(p), for p ∈ U . Viewing Pμ

p as an operator in the Banach space B(TpS∞,
TμS∞), p �→ Pμ

p is smooth due to the smooth dependency of the ordinary
differential equations defining the parallel transport on the initial conditions.
Combine this and the smoothness of ρ2 when the arguments are not antipodals
we find that f is also smooth. Taylor’s theorem under a normal coordinate
around μ implies that

f(μ̃)− f(μ) = Df(μ) logμ μ̃+O(ρ(μ̃, μ)2) (21)

as ρ(μ̃, μ) → 0, where Df(μ) : TμS∞ → TμS∞ is the differential of f at μ cal-
culated along radial directions. For a tangent vector v ∈ TμS∞, let α : [−ε, ε] →
S∞ be a unit-speed geodesic lying in U with α(0) = μ and α′(0) = v, and denote
fα = f ◦ α and gα = g ◦ α. By Proposition 5.1, p263 in Lang (1999),

fα(t)− fα(0) = P
α(0)
α(t) gα(t)− gα(0) = tDα′gα(0) +O(t2), (22)

where Dα′ is the derivative along the curve α. Let grF denote the gradient
vector field of a function F : S∞ → R defined by 〈grF (x), v〉x = DF (x)v for
v ∈ TxS∞, and analogously let gr2 be the gradient w.r.t. the second argument
of a function. Match up the first derivative terms in (21) and (22) to obtain

Df(μ)v = Dα′gα(0).

For u ∈ TμS∞,

〈Dα′gα(0), u〉μ = −1

2
〈D2 gr2 ρ

2(x, μ)v, u〉μ = −1

2
D2

2ρ
2(x, μ)(v, u),

where the first and second equations are due to (20) and Theorem 1.1, p344 in
Lang (1999), respectively. The previous two displays lead to Df(μ) = Λx1, a
self-adjoint operator. Expansion (21) applied to μ̃ = μ̂ is then written as

√
n(Pμ

μ̂ v̂ − v) =
√
nΛx1 logμ μ̂+ op(1) = n−1/2Λx1Λ

−1
1

n∑
i=1

Vi + op(1), (23)

where the first and the second equations further apply Proposition 3.1 and the
expansion (12) in the proof of Theorem 3.2, respectively. Finally, invoke Slut-
sky’s theorem and the Hilbert space CLT to conclude.

The last op term in the proof of Corollary 3.2 is seen to be uniform in x when
ρ(x, μ) ≤ c for some constant c < π.

Proof of Theorem 3.3. Denote Ṽi = Pμ
μ̂ V̂i ∈ TμS∞, i = 1, . . . , n. Since the paral-

lel transport is a linear isometry, Pμ
μ̂ Ĝ = n−1

∑n
i=1 P

μ
μ̂ (V̂i⊗ V̂i) = n−1

∑n
i=1 Ṽi⊗

Ṽi. Then

√
n(Pμ

μ̂ Ĝ − G) = 1√
n

n∑
i=1

(Vi ⊗ Vi − G)
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+
1√
n

n∑
i=1

(Ṽi − Vi)⊗ Vi +
1√
n

n∑
i=1

Vi ⊗ (Ṽi − Vi)

+
1√
n

n∑
i=1

(Ṽi − Vi)⊗ (Ṽi − Vi). (24)

Let ΛXi1 denote the operator Λx1 evaluated at x = Xi and Hi(·) = ΛXi1(·)⊗Vi

be a bounded linear operator in B(TμS∞,BHS(TμS∞, TμS∞)), i = 1, 2, . . . . By

the one-term Taylor expansion (23),
√
n(Ṽi − Vi) = Hi(Λ

−1
1 n−1/2

∑n
j=1 Vj) +

op(1), where the op(1) term is uniform over i = 1, . . . , n. Since EHi = H where
H is defined before Theorem 3.3, the second term in (24) equals(

1

n

n∑
i=1

Hi

)
(
1√
n

n∑
j=1

Λ−1
1 Vj) + op(1) = H(

1√
n

n∑
j=1

Λ−1
1 Vj) + op(1)

upon applying the LLN. The same argument implies that the third and the last
terms in (24) are [H(n−1/2

∑n
j=1 Λ

−1
1 Vj)]

∗+op(1) and op(1), respectively. Thus,
(24) becomes

√
nPμ

μ̂ (Ĝ − G) = 1√
n

n∑
i=1

[
Vi ⊗ Vi − G +HΛ−1

1 Vi + (HΛ−1
1 Vi)

∗] + op(1),

where the term inside the bracket is a random element in the Hilbert space
BHS(TμS∞, TμS∞) with mean zero by Proposition 3.3 and finite second moment
by the boundedness of S∞. The proof concludes with an application of the CLT
and Slutsky’s theorem.

Appendix E: Differentiating the squared geodesic distance

For a smooth function f : S∞ → R defined on the manifold, let Df denote its
differential, which maps p ∈ S∞ to a linear functional in B(TpS∞,R) according
to Df(p)v = d/dt f(expp tv)|t=0 for v ∈ TpS∞. The Hessian D2f of f maps
p ∈ S∞ to a linear operator in B(TpS∞,B(TpS∞,R)) identified with a bilinear
operator in B(T 2

pS∞,R). As a bilinear operator, D2f(p) is symmetric and is
specified by the “diagonal” values D2f(p)(v, v) = d2/dt2 f(expp tv)|t=0 (p344,
Lang, 1999), v ∈ TpS∞. The differential and Hessian of ρ2 w.r.t. the second
parameter are, for p, q ∈ S∞ ⊂ H and h ∈ TqS∞,

D2ρ
2(p, q)h =

d

dt
ρ2(p, expq th)

∣∣∣∣
t=0

= −2
arccos(〈p, q〉H)〈h, p〉H√

1− 〈p, q〉2
H

,

D2
2ρ

2(p, q)(h, h) =
d2

dt2
ρ2(p, expq th)

∣∣∣∣
t=0

=
−2 arccos(〈p, q〉H) ‖h‖2H 〈p, q〉H(−1 + 〈p, q〉2

H
)

(1− 〈p, q〉2
H
)3/2
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−
2〈h, p〉2

H

(
arccos(〈p, q〉H)〈p, q〉H −

√
1− 〈p, q〉2

H

)
(1− 〈p, q〉2

H
)3/2

=: F (p, q)(h, h), (25)

where F is maps (p, q) ∈ S∞×S∞, ρ(p, q) < π to a symmetric bilinear operator
in B(T 2

q S∞,R), and the quotients are defined through the limit if 〈p, q〉H = 1.
Let τ : U ⊂ S∞ → G be a smooth chart with q ∈ U . For a bivariate function

g, denote g ◦2 f as g(·1, f(·2)), so ρτ = ρ ◦2 τ−1. Applying the chain rule twice,
for qτ = τ(q) and u, v ∈ TqS∞,

D2
2ρ

2
τ (p, qτ ) = D2

2ρ
2(p, q) ·Dτ−1(qτ ) ·Dτ−1(qτ ) +D2ρ

2(p, q) ·D2τ−1(qτ ),
(26)

D2
2ρ

2
τ (p, qτ )(u, v) = D2

2ρ
2(p, q)(Dτ−1(qτ )u,Dτ−1(qτ )v)

+D2ρ
2(p, q)D2τ−1(qτ )(u, v). (27)

Lemma E.1. For all p, q ∈ S∞ with ρ(p, q) ≤ π/2, there exists c ≥ 0 depending

on ρ(p, q) and C > 0 not involving (p, q) such that C ‖h‖2
H

≥ F (p, q)(h, h) ≥
c ‖h‖2

H
. If ρ(p, q) < π/2 then c can be chosen to be strictly positive.

Proof. We analyze F (p, q) defined in (25). Since F (p, q) is bilinear, WLOG sup-
pose ‖h‖

H
= 1. Let a = 〈p, q〉H and b = 〈h, p〉H, which are subject to 0 ≤ a ≤ 1

and −1 ≤ b ≤ 1 under the assumptions. Rewrite

F (p, q)(h, h) =
2a arccos(a)

(1− a2)
1/2

+
2b2

(
−a arccos(a) +

√
1− a2

)
(1− a2)

3/2
=: G(a, b).

Function G(a, b) is quadratic in b and the quadratic coefficient is nonnegative,
so

G(a, b) ≥ G(a, 0) =
2a arccos(a)

(1− a2)
1/2

,

where the RHS is strictly increasing in a. Thus, constant c can be taken as
G(cos(ρ(p, q)), 0), which is nonnegative when ρ(p, q) ≤ π/2 and positive when
ρ(p, q) < π/2. Also,

G(a, b) ≤ G(a, 1) ≤ G(1, 1) = 8/3,

since G(a, 1) is increasing in a for 0 ≤ a ≤ 1, so C can be set as 8/3.

Lemma E.2. Under the conditions of Theorem 3.2, Λτ is continuously invert-
ible.

Proof. First view Λτ as a bilinear operator in B(G2,R). Plug in X for p and μτ

for qτ and take expected value on both sides of (26),

Λτ = ED2
2ρ

2(X,μ) ·Dτ−1(μτ ) ·Dτ−1(μτ ) + ED2ρ
2(X,μ) ·D2τ−1(μτ ). (28)



Hilbert sphere 727

The second term in the last equality vanishes since

ED2ρ
2(X,μ) = DM(μ) = 0, (29)

by the minimizing property of μ and the DCT. By Theorem 3.1 and Lemma E.1,

ED2
2ρ

2(X,μ)(h, h) ≥ c0 ‖h‖2μ (30)

for some constant c0 > 0. By the smoothness of τ−1, there is a constant c1 > 0
such that for any v ∈ G ∥∥Dτ−1(μτ )v

∥∥
μ
≥ c1 ‖v‖G . (31)

Combine (28)–(31) to obtain

inf
‖v‖

G
=1

Λτ (v, v) > 0.

Now work on the repeated linear operator Λτ in B(G,B(G,R)). Identifying
B(G,R) with G, our conclusion drops out by applying Theorem 3.5.4 and The-
orem 3.5.1 in Hsing and Eubank (2015).

Lemma E.3. Under the conditions of Theorem 3.2,

sup
u

sup
ρτ (x,μτ )≤π/2

∥∥D2
2ρ

2
τ (x, u)−D2

2ρ
2
τ (x, μτ )

∥∥ = o(1) a.s.

as n → ∞, where the first supremum is taken over all points u ∈ G lying between
μ̂τ and μτ .

Proof. By the chain rule as in (26) and (27),

D2
2ρ

2
τ (x, u)−D2

2ρ
2
τ (x, μτ )

=
[
D2

2ρ
2(x, τ−1(u)) ·Dτ−1(u) ·Dτ−1(u)−D2

2ρ
2(x, μ) ·D−1τ(μτ ) ·Dτ−1(μτ )

]
+

[
D2ρ

2(x, τ−1(u)) ·D2τ−1(u)−D2ρ
2(x, μτ ) ·D2τ−1(μτ )

]
=

[
D2

2ρ
2(x, τ−1(u)) ·Dτ−1(u) ·Dτ−1(u)−D2

2ρ
2(x, μ) ·Dτ−1(u) ·Dτ−1(u)

]
+

[
D2

2ρ
2(x, μ) ·Dτ−1(u) ·Dτ−1(u)−D2

2ρ
2(x, μ) ·Dτ−1(u) ·Dτ−1(μτ )

]
+

[
D2

2ρ
2(x, μ) ·Dτ−1(u) ·Dτ−1(μτ )−D2

2ρ
2(x, μ) ·Dτ−1(μτ ) ·Dτ−1(μτ )

]
+

[
D2ρ

2(x, τ−1(u)) ·D2τ−1(u)−D2ρ
2(x, μτ ) ·D2τ−1(u)

]
+

[
D2ρ

2(x, μτ ) ·D2τ−1(u)−D2ρ
2(x, μτ ) ·D2τ−1(μτ )

]
.

By triangle inequality and the (bi-)linearity of the Fréchet derivatives,

sup
u

sup
ρτ (x,μτ )≤π/2

∥∥D2
2ρ

2
τ (x, u)−D2

2ρ
2
τ (x, μτ )

∥∥
≤ sup

u
sup

ρτ (x,μτ )≤π/2

∥∥D2
2ρ

2(x, τ−1(u))−D2
2ρ

2(x, μ)
∥∥ sup

u

∥∥Dτ−1(u)
∥∥2



728 X. Dai

+ sup
ρτ (x,μτ )≤π/2

∥∥D2
2ρ

2(x, μ)
∥∥ sup

u

∥∥Dτ−1(u)
∥∥ sup

u

∥∥Dτ−1(u)−Dτ−1(μτ )
∥∥

+ sup
ρτ (x,μτ )≤π/2

∥∥D2
2ρ

2(x, μ)
∥∥ sup

u

∥∥Dτ−1(u)−Dτ−1(μτ )
∥∥ ∥∥Dτ−1(μτ )

∥∥
+ sup

u
sup

ρτ (x,μτ )≤π/2

∥∥D2ρ
2(x, τ−1(u))−D2ρ

2(x, μ)
∥∥ sup

u

∥∥D2τ−1(u)
∥∥

+ sup
ρτ (x,μτ )≤π/2

∥∥D2ρ
2(x, μ)

∥∥ sup
u

∥∥D2τ−1(u)−D2τ−1(μτ )
∥∥ , (32)

where the norms appearing here are appropriate operator norms. By Lemma E.1,
supρτ (x,μτ )≤π/2

∥∥D2ρ
2(x, μ)

∥∥ is finite, and by the triangle inequality

supu
∥∥Dτ−1(u)

∥∥ ≤
∥∥Dτ−1(μτ )

∥∥ + supu
∥∥Dτ−1(u)−Dτ−1(μτ )

∥∥. Thus, to ob-
tain the convergence of (32), it suffices to show that

sup
ρ(x,μ)≤π/2

u

∥∥D2
2ρ

2(x, τ−1(u))−D2
2ρ

2(x, μ)
∥∥ = op(1), (33)

sup
ρ(x,μ)≤π/2

u

∥∥D2ρ
2(x, τ−1(u))−D2ρ

2(x, μ)
∥∥ = op(1), (34)

sup
u

∥∥Dτ−1(u)−Dτ−1(μτ )
∥∥ = op(1), (35)

sup
u

∥∥D2τ−1(u)−D2τ−1(μτ )
∥∥ = op(1). (36)

Equation (35)–(36) are consequences of the smoothness of τ−1 and
Proposition 3.1. Since (33) and (34) can be derived in a similar fashion, we
show the proof for the former only. Viewing D2

2ρ
2 as a mapping from S∞ ×S∞

to B(H2,R), for h ∈ H, ρ(p, qj) ≤ π/2, j = 1, 2, and q1 and q2 sufficiently close,∣∣D2
2ρ

2(p, q1)(h, h)−D2
2ρ

2(p, q2)(h, h)
∣∣ ≤ sup

∥∥D(D2
2ρ

2(p, ·)(h, h))(u)
∥∥ ρ(q1, q2)

(37)
by Taylor’s theorem, where the supremum is taken over all u lying on the
geodesic connecting q1 and q2. The third derivative of ρ2 is, for v ∈ H,

D
[
D2

2ρ
2(p, ·)(h, h)

]
(q)v =

d

dt

[
D2

2ρ
2(p, expq tv)(h, h)

]∣∣∣∣
t=0

= −2(1− 〈p, q〉2H)−5/2〈v, p〉H{
〈h, p〉2H

(
arccos(〈p, q〉H) + 2 arccos(〈p, q〉H)〈p, q〉2H − 3〈p, q〉H

√
1− 〈p, q〉2

H

)

+ ‖h‖2
H
(−1 + 〈p, q〉2H)

(
arccos(〈p, q〉H)− 〈p, q〉H

√
1− 〈p, q〉2

H

)}
.

The formula above depends on p, q, h, and v only through
(〈p, q〉H, 〈v, p〉H, ‖h‖2H , 〈h, p〉H) ∈ R

4. By compactness and continuity,

sup
‖v‖

H
=‖h‖

H
=1

ρ(p,q)≤π/2

∣∣D [
D2

2ρ
2(p, ·)(h, h)

]
(q)v

∣∣ ≤ C0 (38)

for some finite constant C0 > 0. Proposition 3.1, (37), and (38) imply (33).
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Appendix F: Proofs for Corollaries in Section 4

Proof of Corollary 4.2. Under H0 : μ1 = μ2,

√
n[τ(μ̂1)− τ(μ̂2)] =

√
n

n1

√
n1[τ(μ̂1)− τ(μ1)]−

√
n

n2

√
n2[τ(μ̂2)− τ(μ2)]

=

√
n

n1
Z1 −

√
n

n2
Z2,

where Zg is the limiting zero-mean Gaussian random element for n
1/2
g [τ(μ̂g) −

τ(μg)], g = 1, 2. The claim follows from the continuous mapping theorem (The-
orem 1.3.6, van der Vaart and Wellner, 1996).

Proof of Corollary 4.1 and Corollary 4.3. We show the proof for the one-sample
case, while the proof for the two-sample case is analogously derived based on
Corollary 4.2. Let Z be a zero-mean Gaussian element with covariance T . Ap-
plying basis expansion, Z =

∑∞
k=1 ξkφk with probability 1 (Theorem 7.2.7,

Hsing and Eubank, 2015), where the ξk = 〈Z, φk〉G are independent Gaussian

random variables with variance λk. By Parseval’s identity, ‖Z‖2
G
=

∑∞
k=1 ξ

2
k

L
=∑∞

k=1 λkWk, where
L
= denotes equal in distribution. By Theorem 3.2 and the

continuous mapping theorem, we have T1
L−→

∑∞
k=1 λkWk.

By the perturbation theory (Section 5.1 in Hsing and Eubank, 2015),

Theorem 3.2, and the consistency of T̂ for T given in Proposition 3.2, we have

S1 − S̃1 = op(1). Thus the continuous mapping theorem implies that S̃
L−→ χ2

K

and that S1 converges to the same limit.

Proof of Corollary 4.4. The consistency of μ̂∗ to μ is shown analogously to the
proof of Proposition 3.1. The sample intrinsic mean μ̂τ on chart τ is an Z-
estimator since Ψn,τ (μ̂τ ) = 0, targeting μτ which satisfies Ψτ (μτ ) = 0. The-
orem 3.1 of Wellner and Zhan (1996) is then applied to derive the bootstrap
limiting distribution after verifying its conditions: Condition A.1–A.5 in Wellner
and Zhan (1996) are guaranteed by the smoothness of Ψn,τ and Ψτ and (A1);
the bootstrap weights conditions B.1–B.5 are satisfied by the nonparametric
bootstrap weights.

Appendix G: Paired-sample test

The setup is that we make correlated and paired observations

(X
[1]
1 , X

[2]
1 ), . . . , (X

[1]
n , X

[2]
n ), where the two populations have unknown intrinsic

means μ1 and μ2, respectively. The paired-sample hypothesis is

H0 : μ1 = μ2, H1 : μ1 �= μ2.

Let μ̂g be the sample intrinsic mean in Population g = 1, 2. We need the follow-
ing CLT for paired samples.
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Corollary G.1. Suppose the conditions of Theorem 3.2 are satisfied by both
populations. Under H0,

√
n[τ(μ̂1)− τ(μ̂2)]

L−→ Z3,

where Z3 is a zero-mean Gaussian random elements with covariance operator

Tpaired = (Λ−1
1τ )F11(Λ

−1
1τ )

∗ + (Λ−1
2τ )F22(Λ

−1
2τ )

∗ − (Λ−1
1τ )F12(Λ

−1
2τ )

∗

− (Λ−1
2τ )F21(Λ

−1
1τ )

∗,

where Λgτ = ED2
2ρ

2
τ (X

[g]
τ , μτ ), Fgl = E[ψτ (X

[g], μτ ) ⊗ ψτ (X
[l], μτ )], μτ =

τ(μ1) = τ(μ2), for g, l = 1, 2.

Proof of Corollary G.1. Under H0 : μ1 = μ2,
√
n[τ(μ̂1)− τ(μ̂2)] =

√
n[τ(μ̂1)− τ(μ1)]−

√
n[τ(μ̂2)− τ(μ2)],

and by the proof of Theorem 3.2,

√
n[τ(μ̂g)− τ(μg)] = −Λ−1

gτ

1√
n

n∑
i=1

ψτ (X
[g]
i , τ(μg)) + op(1)

for g = 1, 2. By the CLT and the continuous mapping theorem,
√
n[τ(μ̂1) −

τ(μ̂2)] converges to a zero-mean Gaussian random element Z3 in G. Its covari-
ance operator is E[D ⊗D], where

D = Λ−1
1τ ψτ (X

[1]
1 , μτ )− Λ−1

2τ ψτ (X
[2]
1 , μτ ),

which gives the covariance Tpaired as stated.

We estimate Tpaired by the empirical version T̂paired, and let (λ̂k,paired,

φ̂k,paired) denote the kth eigenpair of T̂paired. The paired-sample test statistics
are

T3 = n ‖τ(μ̂1)− τ(μ̂2)‖2G ,

S3 = n

K∑
k=1

〈τ(μ̂1)− τ(μ̂2), φ̂k,paired〉2G
λ̂k,paired

.

By the continuous mapping theorem, the asymptotic distributions of T3 and S3

are
∑∞

k=1 λk,pairedWk and χ2
K , respectively, where the Wk are i.i.d. χ2

1 random
variables. For bootstrapping the paired-sample test statistic, we resample n
paired observations with replacement and obtain bootstrap samples

(X
[1]
1 , X

[2]
1 )∗, . . . , (X

[1]
n , X

[2]
n )∗ and their respective intrinsic means μ̂∗

1 and μ̂∗
2.

Also let T̂ ∗
paired be the bootstrap pooled covariance, and the (λ̂∗

k, φ̂
∗
k) be the

bootstrap eigenpairs. The bootstrap test statistics are

T ∗
3 = n ‖[τ(μ̂∗

1)− τ(μ̂1)]− [τ(μ̂∗
2)− τ(μ̂2)]‖2G ,

S∗
3 = n

K∑
k=1

〈τ(μ̂∗
1)− τ(μ̂∗

2), φ̂
∗
k〉2G

λ̂∗
k

.
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Corollary G.2. Under the conditions of Corollary G.1, the bootstrap intrinsic
mean μ̂∗

g is a consistent estimator of μg, g = 1, 2. Furthermore,

√
n {[τ(μ̂∗

1)− τ(μ̂1)]− [τ(μ̂∗
2)− τ(μ̂2)]} L−→ Z∗

3 ,

where Z∗
3 is a Gaussian random element sharing the same distribution with Z3.

Thus the asymptotic distributions for T ∗
3 and T3 are the same, as well as for S∗

3

and S3.

Appendix H: Additional simulation results for the one-sample test

For the one-sample test, the true intrinsic population mean was μ = expμ0
δv

for δ ∈ [−0.4, 0.4], where μ0 was the square root density of Beta(2, 1), v =

K
−1/2
μ

∑Kμ

k=1 φk, and φk = Rμ(ψk+1), k = 1, . . . ,∞. All other setups were iden-
tical to the two-sample test described in the main text except that the sample
size n ranged among {20, 50, 100},

The empirical power curves for the one-sample tests are displayed in Figure 3.
All three methods had similar performance in the symmetric case (first three
columns, Figure 3) and all controlled the size approximately at the nominal
level α = 0.05. In contrast, when the observations were distributed asymmetri-
cally around the mean (last three columns, Figure 3), the extrinsic method was
biased for all n and had much larger sizes than the nominal level when δ = 0
and smallest empirical powers at δ = 0.05 or 0.1. The biases for the extrinsic
bootstrap test became more apparent and the size increased as n increased. The
proposed intrinsic asymptotic and bootstrap tests performed overall similarly
well. Both intrinsic methods had smaller bias as n increased, which became
almost negligible when n = 50 or 100.
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Le, H. (2001). Locating Fréchet Means with Application to Shape Spaces. Ad-
vances in Applied Probability 33 324–338. MR1842295

Lin, Z. and Yao, F. (2019). Intrinsic Riemannian Functional Data Analysis.
The Annals of Statistics 47 3533–3577. MR4025751

Petersen, A., Liu, X. and Divani, A. A. (2019). Wasserstein F -Tests and
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