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cludes a nonstationary version of the Matérn covariance function as well
as isotropic Matérn covariance function. Smoothness estimators are con-
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1. Introduction

Let X(t), t € R% be a Gaussian random field with covariance function K (x,y)
= Cov{X(x), X(y)}. Motivated by regression and spatial modeling, Paciorek
[22], Paciorek and Schervish [23] propose a nonstationary version of the Matérn
covariance function given by

o? Yy + X, —1/2
K E 1/4 ) 1/4‘ X y ‘
P(Xa Y> Qv— 1F( ) ‘ | ‘ y‘ 9
X (24/1Qx,y)" K (24/vQx,y ), vx,y € RY, (1)
where v, 02 are positive constants, &, (.) is the modified Bessel function of the

second kind ([3], page 222), ¥y, Xy are d x d symmetric positive definite matrices

and ST
Qx,y = (X_Y)/(%) (X_y)'

If ¥y = 4va™21, ¥x € RY, for some positive constant «, then (1) reduces to the
isotropic Matérn covariance function

o?(alx - yl)”

KM(X7Y) = 2,,,11—‘(1/)

Ko(allx—yll),  ¥xy €R%

where ||.|| denotes the Euclidean norm, cf. Stein [24]. Let Z, = {1,2,...} and
G, : [0,00) — R be such that G,,(0) = 0 and for s > 0,

s iy g7y,
Guls) = { s log(s), ifveZy.

Writing v(.) as the digamma function and

Y+ X, 71/2
02y = OBy 14| 22

; , )

we observe that
Jk k
KP Xay = Ox
( yzk,nz 1(’L—V)

0%y = Gori(VQxy)
,F(V) sin?,yw) P KD(k + 1+ v) iftvegZy, (3)

and

202 vk (V/VQx
oty = () Gt

El(k 4+ v)!
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k=0

— 1

v —
+

(v VQx,y)% (4)

k
k!

N | =

v+kr+k
%} itvez,.

LD STk +1) + v+ k+1)] TOET

2
k=0

Motivated by (3) and (4), this article considers the following class of nonsta-
tionary Gaussian random fields of which (1) is a special case. Let d € Z4 and
X(t), t € R% be a nonstationary Gaussian random field with mean function
m(t) = EX(t) and covariance function of the form

K(x,y) = po(x,y) + pu(x,¥),  Vx,y €R% (5)

where v > 0 is a constant, pg(.,.) is a smooth function satisfying Condition 2 in
Section 2,

pu(x,¥) = B, (x,¥)Gu {V/ (x - y) Alx,y)(x — )}, (6)

Bu(x,y) # 0 and A(x,y) = (4, x(X,¥))1<jk<d I8 a d x d symmetric positive
definite matrix Vx,y € R%.
If K = Kp, then p,(x,y) = .(x,y)G.(1/vQx,y) Where

—mos /L) (v + 1)sin(vn)], if v &€ Zy,
Bulxy) = { 2(-1)" oz, /(v — 1), ifve Z:

If K = Ky, then p,(x,y) = 5,G.(a||x — y||/2) where

3, = { —7o?/[C(w)[(v + 1)sin(vr)], ifv & Zy,
v 2(=1)* o2 /(v - 1)1, ifveZz,.

pv(X,y) is analogous to the principal irregular term of the isotropic Matérn
covariance function K (cf. Stein [24]). p,(x,y) in (6) may not be positive def-
inite. The significance of p, (x,y) is that it will be the asymptotically dominant
term that remains after the ‘filtering process’ by appropriate quadratic varia-
tions. Proposition 3 shows that v can be regarded as the smoothness parameter.

The aim of this article is to estimate v in (5) using a sample of observations
X(t1),...,X(t,) where the design sites t;,1 < i < n, are irregularly spaced
on a sufficiently smooth curve v : [0,L] — R? for some constant L > 0. In
particular, t; = v(¢;), 0 <t; < L.

Selecting the design sites on a (1-dimensional) curve in R is commonly called
curved line transect sampling. This is a generalization of the usual line transect
sampling (cf. Chapter 17 of Thompson [27]). Hiby and Krishna [12] presented
convincing arguments for the use of curved line transect sampling by replacing
the straight line in line transect sampling by a curve. Constantine and Hall
[8] wrote that “in a variety of practical problems often data are only available
through one-dimensional line transect ‘samples’ of the surface”. Adler and Pyke
[1] considered first-order quadratic variations using design sites on a curve in
[0,1]? when the underlying Gaussian random field is in some sense ‘like’ Brow-
nian motion on R?. Loh [20] discussed second-order quadratic variations from
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a sample of Gaussian random field observations taken along a smooth curve in
R2. However supporting theory behind curved line transect sampling appears to
be rather underdeveloped; possibly because the theoretical extension from line
transect to curved line transect is non-trivial. We hope to work out a theoretical
justification for curved line transect in the setting of this article.

Even though the likelihood is Gaussian, likelihood methods (such as maxi-
mum likelihood estimation) appear to be analytically intractable under fixed-
domain asymptotics. The latter asymptotics imply that as sample size n — oo,
the n sites get to be increasingly dense in a compact set in R%. In this article,
the dependence among all the observations X (t1),..., X (t,) remains strong as
sample size n — oo. Furthermore since | X (t;) — X (t;)| — 0 as ||t; —t;|| — O, the
n X n covariance matrix of the observations tends to a singular matrix and its
determinant tends to 0. This is exacerbated by the t;’s being irregularly spaced.
All these indicate that any theoretical analysis of the MLE for v is a formidable
(or even intractable) task with respect to fixed-domain asymptotics. Indeed as
far as we know, the consistency of the MLE for v is still an open problem.

This article is motivated by [20] where the idea of using higher-order quadratic
variations Vp, 8 € {1,2},¢ € Z,, for constructing smoothness estimators is
proposed for irregularly spaced data. However [20] considers stationary, isotropic
Gaussian random fields whereas this article is concerned with nonstationary
Gaussian random fields. Convergence rates are not available in [20] whereas
upper bounds to the convergence rate of the proposed smoothness estimators
are established here. The results in this article complement those in [21] with
regard to the estimation of the smoothness parameter of an isotropic Gaussian
random field with a Matérn covariance function. The difference lies in the choice
of the design sites. While this article is concerned with design sites chosen on a
curve, [21] chooses design sites randomly on [0, 1]¢. Consequently, if d > 2, the
results of [21] are not applicable to this article.

Quadratic variations started with [19] and is currently a rather active field;
some examples being [1, 2, 5, 17]. However most higher-order quadratic varia-
tions in the literature use data on a regular grid in R%; cf. [7, 15] and references
cited therein.

The estimation of the smoothness parameter v of a stationary Gaussian ran-
dom field has been addressed in the literature under various conditions by many
authors. [14] proposes a semiparametric method of estimating v using irregularly
spaced observations. The estimates in [14] appear to be analytically intractable
under fixed-domain asymptotics. Furthermore in the simulations, [14] uses 200
independent realizations of a Gaussian random field, whereas this article is con-
cerned with estimating v based on observations from one realization of the
underlying Gaussian random field.

In the case of equally spaced data on an interval of the real line, [10] con-
siders a box-counting estimator while [8, 16] study estimators based on process
increments. [8, 10, 16] all assume that v € (0,1). Another example of equally
spaced data on an interval is [15] where higher-order quadratic variations are
used to construct a consistent estimate for v given that v € (D, D + 1) for some
known integer D. In contrast, this article assumes that ¥ > 0 and a known
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upper bound for v is not required.

Finally, [6] considers smoothness estimation for a class of locally stationary
Gaussian processes using irregularly spaced data observed on a compact interval
in R. Assuming that the smoothness parameter v ¢ Z, [6] proposes estimators
for |v],v— || and proved, in the almost sure sense, a O(n~/2log”(n)) conver-
gence rate for estimating v — || where a > 0 is some constant. The design sites
in [6] are deterministic like those in [20] and do not apply to random designs.

The remainder of this article is organized as follows. Section 2 contains re-
marks on notation and preliminary technical results that are needed in the
sequel.

For § € {1,2} and ¢ € Z, Section 3 presents the construction of the fth-order
quadratic variations Vg , for stratified design sites. Theorem 1 proves a number
of fixed-domain asymptotic results on Vp,. These results are needed for the
construction of the smoothness estimators for v in this section. Two estimators
Uy, ¢ and 7, are proposed. Theorems 2 and 3 prove the strong consistency of 7, ¢
and 7, and establish upper bounds to the convergence rate of these estimators.
In particular under mild conditions, E|#, — v| = O(n~/3) as n — .

Section 4 adapts the results on stratified design in Section 3 to random design,
i.e. the t;’s are i.i.d. random variables on the curve segment 7 : [0, L] — R

Section 5 considers the case where the design sites tq,...,t, are deterministic
points on the curve segment v : [0, L] — R? whose relative spacing between
each other is governed by a nonrandom strictly increasing mapping ¢ € C?(R).
Two estimators ﬁfz , and 72 for v are proposed. Theorems 6 and 7 prove the
strong consistency of ﬁf, , and 7P and establish convergence rate upper bounds
of these estimators. In particular under mild conditions, E|#P — v| = O(n~1/?)
as n — oo.

Section 6 presents Monte Carlo simulations to study the finite sample accu-
racy of the smoothness estimators 2, and 72. Since the random design can be
reduced to a stratified design, the simulations are carried out only for stratified
design and deterministic design.

Appendices A to F contain the proofs of all the results in this article.

2. Some preliminary results

For a function f:R*¥ = R, k € Z,, we write

(u . ) 8u1+---+uk
Jlre (g o my) = mf(xlwka)

if the latter exists whose value does not depend on the order of differentiation,
where u1, ..., u; are nonnegative integers. For M € Z,, let C*(S) be the set
of functions f : S — R that are M times continuously differentiable (i.e. all
Mth-order partial derivatives of f exist and are continuous). |.] and [.] denote
the greatest integer function and least integer function respectively. a, =< b,
means 0 < liminf, . a,/b, < limsup,_, . a,/b, < oo and a, ~ b, means
lim, o0 @ /b, = 1. If A is a matrix, then A’ is its transpose and if A is a
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square matrix, |A| denotes its determinant. For z,y € R, Ay = min{z, y} and
x Vy = max{x,y}. Conditions 1 and 2 below will be needed in the sequel.

Condition 1. X (t), t € RY is a Gaussian random field with covariance function
K(.,.) as in (5) and mean function m(t) = EX(t) where m(.) € CN(R?) for
some integer N > 2v + 6. O
Condition 2. 8,(.,.) € CN(R??), A4;,(.,.) € CVN(R?*?), V1 < j,k < d, and
po(x,y) in (5) satisfies po(.,.) € CI?*IT1(R??) for some integer N > 2v + 6. Let
D c R? be an arbitrary compact set and uy,...,ug, v1,...,v4 be nonnegative
integers with M = Z?zl(ui + v;). For any M < N, there exists a constant
Cwy,p > 0 such that

|p(()“1""’“d’vl""’vd)(x, VI <Cup,itM/2<v+lorM/72=v+1¢7Z,,

for all x,y € D and

‘p(()uh..wudml,.‘.md)(X,y)|
< J Cupfllog(llx—yl)|+ 1}, f M/2=v+1eZy,
= | Cuplx—y|**>M, if M/2>v+1,
for all x,y € D satisfying x # y. O

Proposition 1. Condition 2 is satisfied for the covariance function Kp(.,.)
in (1) if each entry of the matriz Yy, as a function of x, is in CN(RY). In
particular, Condition 2 holds for an isotropic Matérn covariance function.

This article assumes that the observations of X are taken along a fixed curve
v in R? and that +(.) satisfies Condition 3 below.

Condition 3. The curve v : R — R? is a simple C'N-curve parametrized by its
arc length for some integer N > 2v 4 6. In particular,

(i) v(s) # () if s # 1,

(i) writing v(t) = (y1(t),...,7a(t))" and its kth derivative by ) (t) =
A @), .. A1), we have YD ()] = 1 for t € R and v;(.) € CN(R),

o

1,...,d.
Condition 3 implies that
d
1 2
ST Py =0, vieR, (7)
j=1

and given any constant L > 0, there exists another constant C, > 0 such that
Iv(s) = 7Ol = Culs 1], Vs,t € 0, L] @)

We observe that X (y(¢)), t € R, is a 1-dimensional Gaussian random field with
covariance function

K(z,y) = K(y(z),7(y)),
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= po(z,y) + pu(x,y), Vz,y € R, 9)

where po(2,y) = po(1(x),¥(y)) and p, (z,) = p, (v(x), 7(y)). This “dimension
reduction” observation motivates many of the proofs in this article. The moti-

vation for V > 2v + 6 in Conditions 1 to 3 is to ensure that the smoothness of
the random fields X (.) and X (vy(.)) are determined by the principal irregular
term p,(.,.) in (6).

Proposition 2. Suppose Conditions 1 to 3 are satisfied. Let u,v € Zy, M =
u+v and po(x,y), K(x,y) be as in (9). Then we have po(x,y) € CMI1+1(R?)
and for M < N,

|I~((u,v)(x,y)|§CM’L, ifM/2<vorM/2=v¢&Zy, (10)
for all z,y € [0, L] and
(K@) (2, 4)| < Car ol log(lv(x) = vyl + 1}, if M/2 =v € Zy,
T Cunliv(e) = ()P, ifMJ2 > v,

for all x,y € [0, L] such that x # y, where Cprr, > 0 is a constant.

(11)

We end this section with Proposition 3 below on the smoothness of the Gaus-
sian random fields X (.) and X (y(.)).

Definition 1. Following Section 3.1 of [9], two random fields X and Y; defined
on a common probability space and indexed by a common set T" are said to be
equivalent versions of each other if for every fixed t € T, P(Xy = Y;) = 1.

Proposition 3. Suppose Conditions 1 to 3 are satisfied. Then the following
statements hold.

(i) X(y(t)), t € R, has jth-order mean square derivative if and only if j < v.

(ii) For any bounded open interval Ty C R, X (v(t)) when restricted to t € Ty
has an equivalent version which possesses, with probability 1, a wal(Tl)
sample path

(iii) X(t), t € R, has all jth-order mean square partial derivatives if and only
if j <wv.

(iv) For any bounded open set T C R%, X (t) when restricted to t € T has an
equivalent version which possesses, with probability 1, a CM*I(T) sample
path.

3. Stratified design

Sections 3 and 4 assume that the curve segment ~ : [0, L] — R? is known. Let the
observed sample be X (y(tn,1)), ..., X (Y(tn,n)) where 0 < t, 1 < ... <tpn, < L.
For brevity, we write t; = ¢,,; and X (v(tn,;)) = X;. Let d; ; = ||v(t:) — v(&))]l
be the Euclidean distance between (¢;) and ~(t;). We consider the following
stratified design where t; satisfies

(t—1+4+6;)L

= (12
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0<6; <1,i=1,...,n. In this section, the §;’s are assumed to be (nonrandom)
constants though they can vary with n.

3.1. Higher-order quadratic variations

This section introduces a new class of higher-order quadratic variations that are
needed in the construction of smoothness estimators for v. This is accomplished
by using these higher-order quadratic variations to filter out the asymptotic
contributions of v. Let w, be a positive integer such that w, =< n¢ for some
constant £ € (0,1). Define for £ € Z and 6 € {1,2},

2!

otk = [o<j<ejrn(@iitewonor = dijitew,05) =0t

¢
V@in == Z a9,£;i,kXi+wn0k7 Vi = ].7 ey — wn%,
k=0
and the (th-order quadratic variation based on Xi,..., X, to be
n—wny 6l
Voo = Z (Vo Xi)?. (13)

i=1

The properties of Vp, depend crucially on Lemma 1 and this lemma is the
motivation for using the term “/th-order” for Vjp ,.

Lemma 1. Let 0 € {1,2}, w,,l € Z4 such that w,0¢ < n — 1. Then for
i,7€{Ll,...,n—w,0¢}

¢
S i g = {2' 0.t
k=0 ) qu )

and

¢ l
> > 0450k 00055 (o, ks — it 0k,)"
k1=0k2=0

B 0, Vg=0,...,20—1,
=Dy e =2t
where we use the convention 0° = 1.

Lemma 1 goes back to at least [26]; see also Section 1.2.3, problem 33, of [18].
For t > 0, define

n/t, ifv<t-1/2,
(n/t)log™*(n/t), ifv=10-1/2,

qr = < (n/t)*=%, ifve(t—1/2,0),
log(n/t), ifv=2¢,

1, ifv>4,
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n/t, ifv<e—-1/4,
(71/1f)log71(n/t)}7 ifv=+~0—-1/4,
G20 = (n/t)Ht, if ve(l—1/4,0),
log?(n/t), ifv=2¢,
1, ifv>4,
(n/t)?, ifv<e—-1/2,
(n/t)?log (n/t), ifv=10-1/2,
g = S (n/t)¥—, ifve(t—1/2,0), (14)
log?(n/t), ifv=2¢,
1, ifv>4.

Denote the (n — w,0¢) x 1 vector

li
X X, .
(Ve,z 1,.”,Ve,e ] wn€£> 1fz/§£,
Yy VEVa . VEVa e
= /
Vo e X1 Vo eXn—wnoe .
( NI NG ) ifv>4¢.

Let 4 =EY, ¥ = (3ij) (n-wn00)x (n—wno0) = E{(Y = p)(Y — )’} and S5 =
(124.51) (n—wn60) x (n—wnoe)) - Denote [|.|[2 and ||.|| r as the spectral norm and Frobe-
nious norm of matrices respectively. Then

Voo /EVy, ifv <4,

15
‘/(97(/’11 ifV>f7 ( )

VYZEZ+MWﬂZ+ZEV%+uw{

where Z ~ N,,_, 00(0,I). Theorem 1 is crucial to the construction of the esti-
mators for v in Section 3.2.

Theorem 1. Suppose Conditions 1 to 3 hold. Let 6 € {1,2}, Vy, be as in (13)
and

¥() = HOOYAGOAORO0, Ve (- Lte)
v — _1\k1+k2 t t _
O () (1) cutia = ),

for some constant € > 0.

(a) Suppose v < {. Then

nze—zy 1 v L
EVp, = 3_——15¢lA B, (1(5),7(5)) U (s)ds

wTQf*Ql’(QL)2Z72V

+O{n + (wﬂ)%—mﬂrl}

+{0wwﬂ%P“”*% ifvé Ly,
O(n(n/w,)?=2*"1log(n/wy)), ifv € Zy,
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= n(n/wn)%q”

9

and Vg ¢/EVp ¢ — 1 almost surely as n — oo uniformly over ¢; € [0,1),1 <
1 <n.
(b) Suppose v =~L. Then

L
EVpy = (1) @0nlog(-L) / By (v(s).7(s)) ¥ (s)ds + O(n)

Wn
= nlog(n),

Var(Vy ¢ /EVy ) = O{log_2(n)} and Vg ¢/EVy ¢ — 1 in probability as n —
oo uniformly over §; € [0,1),1 <i <n.
(c) Suppose v > £. Then
E‘/@,K =n,
Var(Vy ¢/EVg ) < 1 and V1 ¢/Vay — 1 almost surely as n — oo uniformly
over 6; € [0,1),1 <4 <n.

(d)
[Savslle = Olars,)s  IBIF =0(as,),  w'Eu=0(gg,),
and for all s > 0, there exist constants C,C7 such that

P(Y'Y —EY'Y)|>s) < 2exp{—Cmin(qu,$ ¢2.,5)} (16)
+ min{1, Clsflq;iiz exp(—Cs2q3,wn)},

uniformly over §; € [0,1),1 <i < n.

3.2. Estimating the smoothness parameter v

Motivated by Theorem 1(a), we shall now proceed to construct a consistent
estimator 7, ¢ for the smoothness parameter v assuming v < ¢ for some known
{ € Z. After that, we introduce the estimator #,, which no longer relies on the
known upper bound ¢ of v. Let ¥, » be such that

‘/1 Z22&"’£_2é 2 Vl Z22y*—2€ 2
B (S
T {7

Then
log(Va,e/Vi,e) 0}
21log(2) '

Theorem 2. Suppose Conditions 1 to 3 hold. Then

Uy ¢ = max {€ +

v almost surely if v < ¥,
Upe — { £ in probability if v =1{,
¢ almost surely if v > ¢,
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and

O(w,,®) + O(wn/n) ifv<l—1/4,
O(wp?) + O{(wn/n)log(n)} if v=10—1/4,
E{(7ne—1)*} =4 O(w,” )+ Ofwa/m) ) ifv € (E=1/4,0),
{log™*(n)} ifv="{,

(1) ifv >4,

S O

as n — oo uniformly over 6; € [0,1),1 < i <mn.

Theorem 2 shows that 7, ¢ is a strongly consistent estimator for v provided
v < £. We now propose the estimator ©,, which is of more practical interest as
its computation does not require a known upper bound for v. I, is motivated
by a construction in [6]. Let M,, be a positive integer such that M,, = o(n/w,)

and M,, — oo as n — oo. Define for £ =1,..., M, the events
N -1 n \1/2 n

©c = {fne<l-1/430{n" Vi = (—) /" log(—)},
-1

Q0 = [e5ney, (18)
j=1
My,

QO = @ja
j=1

and £y = j if Q; occurs where j € {0,..., M,}. {y is well defined integer-valued
random variable as €, ..., 2y, form a partition of the sample space. Define 7,
as Up¢, Where 0y, g = M,.

Theorem 3. Suppose Conditions 1 to 8 hold. Then ,, — v almost surely and

E|o, — v = O{(wn/n)"? + w; '},

as n — oo uniformly over §; € [0,1),1 <i < n. By taking w, < n'/3, we obtain

E|o, — v] = O(n~Y/3)

as n — 0.

The O(.)’s in Section 3 are uniform over §; € [0,1),1 < ¢ < n. Hence the
theorems in this section hold when the d;’s are random and are independent of
X()).

4. Random design

Let ¢1,...,t, be a sequence of i.i.d. random variables where ¢; has probability
density function p(t), t € [0, L], satisfying infycjo,z)p(t) = po > 0 for some
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unknown pg. We assume that ¢, ...,t, are independent of the Gaussian random
field X (.). Set n, = [#Q(n)j for any constant 7 > 1. Then
= (i—1)L iL = = (i—1)L iL
(U AtoeE0 ) < $oe((o ¢ (5021
U N #E=2=0) < (N1 ¢ 2220
1<i<ng j=1 i=1 7j=1
polL
< 1 _ Y A\n
< o )
2
< " poLlog (n))n
log™(n) n
nl—poLlog(n)
log®(n)

and

ip( U ﬁ{tj ¢ [%’%)}) < X pl-pollog(n) e

2
1<i<ng j=1 n—2 log”(n)

It follows from the Borel-Cantelli lemma that with probability 1, there exists
a (random) integer Ny such that for n > Ny, every interval [(i — 1)L/n,iL/n)
contains at least one t; € {t1,...,t,}.

We propose the following estimator for v. Let 7 be the smallest real number
greater than or equal to 1 such that

(i—1)L iL

ns n

{tlavtn}ﬂ[ )%Qv V].S’LSTL{—

Denote t; € [(i —1)L/nz,iL/n:) as t(i) such that

Hi) = (1—1 +51)L’
n:
where 0 < §; < 1 and the ¢;’s are random variables independent of X (.). If
there are more that one ¢;’s in [(i — 1)L/n+,iL/n:), we choose any one of these
t;’s to be t(i). It follows from the above argument that 7 = 1 for sufficiently
large n almost surely. Now this random design reduces to the stratified design
of Section 3 where the observed sample is

,— 1)L <L
XG0y e (2R By <o),
ns ns
We note that the effective sample size correspondingly reduces from n to n; <
n/log?(n). Let o2 be as D, in Section 3 but based on the sample X (y(t(1))),

s X(y(E(n4)))-

Theorem 4. Suppose Conditions 1 to 3 hold. Then 175”% — v asn — oo almost
surely and
Elpy. —v| = O{(wn, /n2)"? + w13,

ne
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) 1/3
as n — co. By taking w,, =< n/ , we have

E|ﬁRﬂ —v| = O(n_1/3 1og2/3(n))

ns

as n — o0.

5. Deterministic design

This section introduces a class of deterministic designs governed by a mapping
¢ € C*(R). Suppose t,1,...,tnn satisfies

Condition 4. For n > 2, t,,; = ¢(L(i —1)/(n — 1)), i = 1,...,n, where
¢ € C*(R) is a nonrandom function and satisfies ©(0) = 0, ¢(L) = L and
ming<s<z M (s) > 0. O

Condition 4 implies that 0 = ¢, 1 < ... <ty , = L and there exist constants
Cs,0 and Cs 1 such that

0<C50/n < 1;}2271(75”,#1 —tni) < 1§r7¥1ga§71(tn,i+1 —tn,i) < Cs1/n.

The observed sample is X (y(t5.1)), - .., X (V(tn,n)). For brevity, we write t; = ¢, ;
and X (y(tn;)) = X;. For £ € Z and 6 € {1,2}, define

- 2!
ag.eik = , Vk=0,...,¢,
Hogjg&j;ﬁk(di,zﬁrek - di,i+0j)
¢
Vo Xi = Zae,é;i,kXi+0k» Vi=1,...,n—0¢,
k=0

and the (th-order quadratic variation based on Xq,..., X, to be

n—0¢
Vo= > (VorXi)®. (19)

i=1

We observe that 1797@ = V¢ in (13) when w,, = 1. Denote the (n —6¢) x 1 vector

S = ’
Vg, e X1 Vo eXn— :
~ ( L, - ”) ifv<é,
Y = 1/]EV9,£ ~\/IEVM ,
Vo,eX1 Vo,eXn—o¢ :
( N ) ifv>¢.

Let = EY, % = (ii,j)(n_gz)x(n_eg) = E{(Y — i)Y — i)'} and S =
(134,51) (n—60) x (n—p¢))- Then
Fry =  Vou/BVoe v <L,
Vu/n if v> /.
Theorems 5, 6 and 7 below are analogous to Theorems 1, 2 and 3, respectively.

The proofs of Theorems 5 to 7 are similar to (though simpler than) the proofs
of Theorems 1 to 3 and hence are omitted.
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Theorem 5. Suppose Conditions 1 to 4 hold. Let 6 € {1,2}, ‘79,4 be as in (19).
(a) Suppose v < L. Then

2,”12472l/+1]_1'Z (V)
92@—2VL2€—2V

L
></O Bl (($)), 7 () ()1 {o ) (s)} 2 ds > 0,

E(V,0)

and ‘7976/E‘79’g — 1 almost surely as n — oo.
(b) Suppose v = L. Then

EVp,c ~ (—1)“1(213)!711%(”)/0 Bu{(#(s)),1(0(s)) ¥ {p(s)}]"ds > 0,

Var(%7g/E‘79,g) = O{log *(n)} and ‘275/%7( — 1 in probability as n — oco.
(c) Suppose v > L. Then
E‘/ﬂl =n,

Var(f/@l/E%)g) =1 and ‘71,@/17274 — 1 almost surely as n — oo.
(d) Let g;1, j =1,2,3, be as in (14). Then

[Zavsllz = Olar1), 1% =0(a21),  E'Ei=0(431),
and there exist constants C,C1 > 0 such that for all s > 0

P(Y'Y —E(Y'Y)|>s) < 2exp{—Cmin(q15s,q215°)}
+min{17C’18_1q3_j/2 exp(—Csq31)}.

Theorem 6. Suppose Conditions 1 to 4 hold. Let ﬁfj be such that

€1l2293272€ 2 . ﬁil22y*—2z 2
(R oy (B2 )

ﬁéx vr 20 Vo
Then
v almost surely if v < ¢,
19,?7@ — < £ in probability if v =1¢,
£ almost surely if v > £,
and
O(n™1) ifv<t—1/4,
O{n~tlog(n)} ifv=1~0—1/4,
E(@F, —v)? =< O(n*—4) ifve(l—1/4,0),
O{log™2(n)}  ifv =21,
0(1) ifv >4,

as n — o0.
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Let Mn = |log(n)]. Define for £ =1, ... ,Mn, the events

1
Q = ﬂ{”_lffl,j < /nlogn} N {n='Vi, > v/nlogn},
j=1

M,
Q = ﬂ{n_lVl,j < +/nlogn}.
j=1
Set ly = g if ﬁj occurs for j € {0,. .. ,Mn} and 0P = ﬁDZ where 02, = M,,.
n,to ’

D

. — v almost

Theorem 7. Suppose Conditions 1 to 4 are satisfied. Then ¥
surely and B[0P — v| = O(n="?) as n — oo.

We remark that v(¢) and ¢(¢), 0 < ¢ < L, need not be known explicitly
in the computation of ‘7975, ’97?,4 and 27; only the bijection ® : {1,...,n} —
{X1,...,X,} is required. [20], page 2775, presents an algorithm for recovering
the true ®(.) when n is sufficiently large.

6. Simulation study

Following a suggestion by the referee, Figure 1 illustrates what a Gaussian
random field on a curve looks like. The left column presents a random field
on a quarter circle y(t) = (cos(t), sin(t)) for ¢ € [0,7/4] in R? and and the right
column presents a helix (t) = (cos(t/v/2),sin(t/v/2),t/v/2) for t € [0,47/2] in
R3. From top to bottom, the random fields are simulated from stratified design,
random design and deterministic design respectively as Gaussian random field
with mean 0 and Matérn covariance function Kj; with 02,a =1 and v = 0.1.
For stratified design, J;’s are independent uniform random variables, for the
random design, the location sampling distribution is a uniform distribution on
the corresponding curve and for the deterministic design, ¢(s) = s(s+1)3/(7/2+
1)3 for the curve in R? and ¢(s) = s(s + 1)2/(47v2 + 1)? for the curve in
R3. We observe that as the curve traces from upper left to bottom right for
the curve in R? and from top to the bottom for the curve in R3, the points
of the deterministically sampled random fields get closer and closer to each
other gradually, the points of the stratified design keep neither too close nor
too separated from each other and the spacings of the random design are most
irregular.

Since Section 4 shows that the random design can be reduced to stratified
design, Monte Carlo simulations are carried out only for the stratified design
and the deterministic design. This section assumes that

(i) X(t), t € RY be a Gaussian random field with mean function m(.) and
covariance function Kp(.,.) as in (1),

(i) w, = 2V [n'/3] and M,, = |log(n)],

(iii) the observed sample is X1, ..., X,,.

That w, =< n'/3 follows from Theorem 3. Simulations indicate that the es-
timators are not too affected by the value of M, as long as M, is sufficiently
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e 2-D Random fields on curves 3-D
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Fic 1. Random fields on curve of different sampling designs where each dot is a sample point
of the random field whose value is displayed via the color.

large. The optimal choices of w,, and M,, are not addressed in this article but
are left to future work.

Let ,,, 72 be as in Sections 3, 5 respectively. Experiments 1, 2, 3 are con-
ducted to study the finite sample accuracy of 7, and Experiments 4, 5, 6 are
conducted to study the finite sample accuracy of 2. For each experiment, we
carry out ten sets of simulations with sample sizes n = 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000 with 400 Monte Carlo repetitions each time. The es-
timated mean absolute errors and their standard errors of the estimators are
computed. The results of Experiments 1 to 3 are reported in Tables 1, 2, 3 re-
spectively and the results of Experiments 4 to 6 are reported in Tables 4, 5, 6
respectively.

In summary, 7, and 72 perform well in this simulation study with .2 sig-
nificantly more accurate than 2, if v is not close to 0. This is consistent with
the convergence rates O(n='/3),0(n='/2) of i, v2 as reported in Theorems 3,
7 respectively.

In Figure 2, we plot logarithm of mean absolute error (MAE) versus log(n)
for Experiments 1-6 when the true smoothness parameter » = 0.5 and use linear
regression to gauge their relationship. We observe that the slopes of the fitted
regression lines of the stratified design experiments (Experiments 1-3) are close
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to —1/3 and those of the deterministic design experiments (Experiments 4-6)
are close to —1/2 which are in line with the theoretical convergence rates.

EXPERIMENT 1. Set d =1 and v = 0.1, 0.2, 0.5, 1.0, 1.2, 1.5, 2, 2.2, 2.5. The
other parameters in (1) are 02 = exp(1), ¥; = 1 + cos?(t) and m(t) = sin(t).
Fori=1,...,n, X; = X(t;) where t; = (i — 1+ ¢;)/n with J;’s i.i.d. random
variables uniformly distributed in [0, 1).

EXPERIMENT 2. Set d = 2 and v = 0.1, 0.2, 0.5, 1.0, 1.2, 1.5, 2, 2.2, 2.5.
The curve is y(t) = (cost,sint)’ and for ¢ = 1,...,n, X; = X(v(¢;)) where
t; = (i — 14 6;)L/n with §;’s i.i.d. random variables uniformly distributed in
[0,1) and L = 7/2. The other parameters in (1) are 0? = exp(1), m(y(t)) =
sin[{y1(¢)}? — {72(¢)}?] and X, ) = HA, ) H', where

B < sin(27/5)2/v/5  sin(4r/5)2/v/5 )
~ \sin(47/5)2/v/5  sin(87/5)2/V5 )’

and
Ay = diag(1 + cos®(v1(t) + 7/4), 1 + cos® (a(t) + 7/2)).

EXPERIMENT 3. Set d =3 and v = 0.1, 0.2, 0.5, 1.0, 1.2, 1.5, 2, 2.2, 2.5. The
curve is y(t) = (cos(t/v/2),sin(t/v/2),t/v/2) and fori = 1,...,n, X; = X (v(t;))
where t; = (i—1+9;)L/n with ¢;’s i.i.d. random variables uniformly distributed
in [0,1) and L = 4v/27. The other parameters in (1) are 02 = exp(1), m(y(t)) =
sin[{71(t)}? — {72(t)}?] cos{v3(t)} and X, ;) = HA, ) H', where

sin(27/7)2/V/7  sin(4w/7)2/V/7  sin(67/7)2/V/7

H = sin(4n/7)2/V/7  sin(87/7)2/V/7  sin(127/7)2/V7 |,
sin(67/7)2/V/7 sin(127/7)2/\/7 sin(187/7)2/\/7
Ay = ding(1+cos®((t) + 5), 1+ cos(12(t) + 5), 1+ cos?(y(t) + 3) ).

EXPERIMENT 4. Set d =1 and v = 0.1, 0.2, 0.5, 1.0, 1.2, 1.5, 2, 2.2, 2.5. The
other parameters in (1) are as in Experiment 1. For i = 1,...,n, X; = X (&)
where t; = p{(i — 1)/(n — 1)} with ¢(s) = s(s+ 1)/2 for s € [0, 1].

EXPERIMENT 5. Set d =2 and v = 0.1, 0.2, 0.5, 1.0, 1.2, 1.5, 2, 2.2, 2.5. The
curve is y(t) = (cost,sint) and ¢(s) = s(s+1)/(L+1) for 0 < s < L =7/2.
The other parameters in (1) are as in Experiment 2. X; = X(v(¢;)) where
ti=p(L(i—1)/(n—1)),i=1,...,n.

EXPERIMENT 6. Set d = 3 and v = 0.1, 0.2, 0.5, 1.0, 1.2, 1.5, 2, 2.2, 2.5,
The curve is v(t) = (cos(t/v/2),sin(t/v/2),t/v/2)" and ¢(s) = s(s +1)/(L + 1)
for 0 < s < L = 4v/2n. The other parameters in (1) are as in Experiment 3.
X =X(y(t;)) where t; = o(L(i —1)/(n—1)),i=1,...,n.

As noted in [20], simulating a Gaussian process on [0, 1] accurately when n
and v are large is a difficult problem; cf. [25, 29]. This is especially so when the
data are irregularly spaced. This is the reason for setting the upper limit for the
value of v to be 2.5 in Experiments 1 to 6.
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TABLE 1

Mean absolute error of Un for Exzperiment 1 (standard error within parentheses)

E|on — v|
v n = 100 n = 200 n = 300 n = 400 n = 500
0.1 | 0.072(0.002) 0.060(0.002) 0.051(0.002) 0.044(0.002)  0.045(0.002)
0.2 | 0.098(0.003) 0.076(0.003) 0.063(0.002) 0.057(0.002)  0.046(0.002)
0.5 | 0.098(0.004) 0.083(0.003) 0.070(0.003) 0.063(0.003)  0.057(0.002)
1 0.176(0.007)  0.129(0.005)  0.109(0.005)  0.102(0.004)  0.100(0.004)
1.2 | 0.169(0.007) 0.125(0.005) 0.106(0.004) 0.095(0.004)  0.087(0.003)
1.5 | 0.159(0.007) 0.109(0.004) 0.092(0.004) 0.094(0.004)  0.076(0.003)
2 0.275(0.008)  0.193(0.006)  0.155(0.006)  0.151(0.006) 0.115(0.004)
2.2 | 0.258(0.010) 0.167(0.007)  0.129(0.005) 0.113(0.005)  0.103(0.004)
2.5 | 0.229(0.011) 0.138(0.006)  0.108(0.004) 0.113(0.004) 0.087(0.003)
v n = 600 n = 700 n = 800 n = 900 n = 1000
0.1 | 0.039(0.001) 0.038(0.001) 0.038(0.001) 0.037(0.001)  0.031(0.001)
0.2 | 0.047(0.002) 0.045(0.002)  0.042(0.002) 0.042(0.002)  0.037(0.001)
0.5 | 0.055(0.002) 0.050(0.002) 0.050(0.002) 0.050(0.002)  0.044(0.002)
1 0.085(0.003)  0.084(0.003)  0.079(0.003)  0.079(0.003)  0.079(0.003)
1.2 | 0.084(0.003) 0.079(0.003) 0.081(0.003) 0.074(0.003)  0.069(0.003)
1.5 | 0.079(0.003) 0.069(0.003) 0.064(0.002) 0.058(0.002)  0.060(0.002)
2 0.121(0.005)  0.104(0.004)  0.107(0.004)  0.094(0.004)  0.089(0.003)
2.2 | 0.102(0.004) 0.086(0.003) 0.088(0.003) 0.084(0.004) 0.078(0.003)
2.5 | 0.089(0.004) 0.082(0.003) 0.075(0.003) 0.074(0.003)  0.072(0.003)
TABLE 2

Mean absolute error of Un for Exzperiment 2 (standard error within parentheses)

E|on — v|
v n = 100 n = 200 n = 300 n = 400 n = 500
0.1 | 0.072(0.002) 0.059(0.002) 0.051(0.002) 0.045(0.002)  0.044(0.002)
0.2 | 0.087(0.003) 0.073(0.003) 0.062(0.002) 0.060(0.002)  0.049(0.002)
0.5 | 0.110(0.005) 0.082(0.003) 0.071(0.003) 0.063(0.003)  0.055(0.002)
1 0.193(0.007)  0.136(0.005)  0.118(0.004)  0.109(0.004)  0.100(0.004)
1.2 | 0.178(0.007) 0.125(0.005) 0.111(0.004) 0.103(0.004)  0.090(0.004)
1.5 | 0.187(0.007) 0.131(0.005) 0.107(0.004) 0.095(0.004)  0.082(0.003)
2 0.356(0.008)  0.250(0.007)  0.211(0.006)  0.190(0.006)  0.159(0.005)
2.2 | 0.373(0.011) 0.216(0.010) 0.171(0.007) 0.142(0.007)  0.111(0.005)
2.5 | 0.396(0.016) 0.197(0.009) 0.171(0.008)  0.141(0.006) 0.116(0.005)
v n = 600 n = 700 n = 800 n = 900 n = 1000
0.1 | 0.043(0.002) 0.037(0.001) 0.036(0.001) 0.033(0.001) 0.032(0.001)
0.2 | 0.048(0.002) 0.044(0.002) 0.045(0.002) 0.043(0.002) 0.041(0.002)
0.5 | 0.054(0.002) 0.053(0.002) 0.052(0.002) 0.047(0.002) 0.045(0.002)
1 0.091(0.004)  0.090(0.004)  0.084(0.003)  0.083(0.003)  0.077(0.003)
1.2 | 0.086(0.003) 0.077(0.003) 0.079(0.003) 0.080(0.003)  0.070(0.003)
1.5 | 0.079(0.003) 0.075(0.003) 0.076(0.003) 0.067(0.003)  0.067(0.002)
2 0.154(0.006)  0.125(0.005)  0.120(0.005)  0.108(0.004)  0.098(0.004)
2.2 | 0.104(0.004)  0.099(0.004) 0.106(0.004) 0.092(0.003)  0.082(0.003)
2.5 | 0.107(0.004) 0.099(0.004)  0.098(0.004) 0.084(0.004)  0.083(0.003)
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TABLE 3
Mean absolute error of Uy, for Experiment 3 (standard error within parentheses)
E|Dn — v|
v n = 100 n = 200 n = 300 n = 400 n = 500
0.1 | 0.238(0.008) 0.117(0.004) 0.068(0.003) 0.049(0.002) 0.044(0.002)
0.2 | 0.212(0.008) 0.131(0.005) 0.097(0.003)  0.082(0.003)  0.053(0.002)
0.5 | 0.174(0.006) 0.134(0.005) 0.111(0.004) 0.118(0.004)  0.094(0.004)
1 0.345(0.011)  0.242(0.008)  0.209(0.007)  0.201(0.006)  0.166(0.006)
1.2 | 0.468(0.013) 0.374(0.009) 0.324(0.008) 0.284(0.007)  0.223(0.006)
1.5 | 0.665(0.014) 0.572(0.009) 0.502(0.008) 0.460(0.007)  0.373(0.006)
2 1.022(0.018)  0.945(0.008)  0.851(0.007) 0.785(0.006)  0.682(0.005)
2.2 | 1.201(0.018) 1.102(0.008)  0.995(0.007)  0.938(0.006)  0.834(0.005)
2.5 | 1.444(0.019) 1.353(0.008) 1.233(0.006) 1.166(0.006) 1.062(0.004)
v n = 600 n = 700 n = 800 n = 900 n = 1000
0.1 | 0.039(0.001) 0.038(0.001) 0.037(0.001) 0.032(0.001) 0.032(0.001)
0.2 | 0.051(0.002) 0.045(0.002)  0.044(0.002)  0.041(0.002) 0.039(0.001)
0.5 | 0.104(0.004) 0.092(0.004) 0.084(0.003)  0.080(0.003)  0.083(0.003)
1 0.155(0.006)  0.138(0.005)  0.127(0.005) 0.128(0.004) 0.111(0.004)
1.2 | 0.216(0.006)  0.189(0.005) 0.186(0.005) 0.180(0.005)  0.152(0.005)
1.5 | 0.368(0.005) 0.322(0.005) 0.321(0.005) 0.283(0.005)  0.253(0.004)
2 0.661(0.005)  0.608(0.004) 0.601(0.004) 0.558(0.004) 0.531(0.003)
2.2 | 0.816(0.005) 0.747(0.004) 0.738(0.004) 0.702(0.004) 0.655(0.003)
2.5 1.042(0.004)  0.969(0.004)  0.964(0.003)  0.920(0.003)  0.875(0.003)
TABLE 4
Mean absolute error of 1)}3 for Experiment 4 (standard error within parentheses)
EloD — v

v n = 100 n = 200 n = 300 n = 400 n = 500
0.1 | 0.071(0.002) 0.059(0.002) 0.048(0.002) 0.046(0.002) 0.041(0.002)
0.2 | 0.081(0.003) 0.057(0.002) 0.046(0.002) 0.041(0.002) 0.033(0.001)
0.5 | 0.058(0.002) 0.040(0.002) 0.034(0.001) 0.029(0.001)  0.025(0.001)
1 0.100(0.004)  0.072(0.003)  0.059(0.002)  0.049(0.002)  0.046(0.002)
1.2 | 0.081(0.003) 0.059(0.002) 0.051(0.002) 0.040(0.002)  0.040(0.002)
1.5 | 0.071(0.003)  0.049(0.002) 0.037(0.001) 0.033(0.001)  0.028(0.001)
2 0.121(0.005)  0.073(0.003)  0.062(0.002)  0.050(0.002)  0.046(0.002)
2.2 | 0.096(0.004) 0.059(0.002) 0.052(0.002) 0.044(0.002)  0.046(0.002)
2.5 | 0.089(0.004) 0.058(0.002) 0.046(0.002) 0.056(0.002)  0.116(0.004)
v n = 600 n = 700 n = 800 n = 900 n = 1000
0.1 | 0.036(0.001) 0.032(0.001) 0.029(0.001) 0.029(0.001) 0.028(0.001)
0.2 | 0.034(0.001) 0.030(0.001) 0.030(0.001) 0.028(0.001) 0.026(0.001)
0.5 | 0.026(0.001) 0.023(0.001) 0.021(0.001) 0.020(0.001) 0.018(0.001)
1 0.041(0.002)  0.040(0.001) 0.036(0.001) 0.032(0.001) 0.030(0.001)
1.2 | 0.033(0.001) 0.032(0.001) 0.029(0.001) 0.027(0.001) 0.023(0.001)
1.5 | 0.026(0.001) 0.025(0.001) 0.022(0.001) 0.021(0.001) 0.021(0.001)
2 0.040(0.002)  0.038(0.001) 0.038(0.001)  0.044(0.002)  0.049(0.002)
2.2 | 0.048(0.002) 0.062(0.002) 0.055(0.002) 0.053(0.002) 0.085(0.003)
2.5 | 0.106(0.003) 0.248(0.004) 0.425(0.006) 0.791(0.008)  0.980(0.007)
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TABLE 5
Mean absolute error of #2 for Experiment 5 (standard error within parentheses)
E[oD — v
v n = 100 n = 200 n = 300 n = 400 n = 500
0.1 | 0.077(0.002) 0.063(0.002) 0.056(0.002 0.048(0.002)  0.043(0.002)
0.2 | 0.083(0.003) 0.066(0.002) 0.049(0.002 0.039(0.001)  0.039(0.002)
0.5 | 0.066(0.003) 0.047(0.002)  0.038(0.001 0.031(0.001)  0.029(0.001)
1 0.117(0.005)  0.089(0.004) 0.071(0.003) 0.064(0.002) 0.056(0.002)
1.2 | 0.107(0.004) 0.074(0.003) 0.062(0.002) 0.049(0.002)  0.043(0.002)
1.5 | 0.083(0.003) 0.055(0.002) 0.044(0.002) 0.039(0.001)  0.034(0.001)
2 0.148(0.005)  0.101(0.004) 0.074(0.003) 0.070(0.003)  0.057(0.002)
2.2 | 0.134(0.005) 0.087(0.003) 0.072(0.003) 0.053(0.002) 0.051(0.002)
2.5 | 0.105(0.004) 0.070(0.003) 0.050(0.002) 0.050(0.002)  0.058(0.002)
v n = 600 n = 700 n = 800 n = 900 n = 1000
0.1 | 0.036(0.001) 0.036(0.001) 0.035(0.001 0.033(0.001)  0.032(0.001)
0.2 | 0.037(0.001) 0.034(0.001) 0.030(0.001 0.030(0.001)  0.027(0.001)
0.5 | 0.027(0.001) 0.023(0.001) 0.023(0.001 0.021(0.001)  0.021(0.001)
1 0.050(0.002)  0.045(0.002)  0.044(0.002 0.038(0.001)  0.037(0.001)
1.2 | 0.042(0.001) 0.040(0.001) 0.037(0.001 0.034(0.001)  0.031(0.001)
1.5 | 0.031(0.001) 0.029(0.001)  0.025(0.001 0.026(0.001)  0.023(0.001)
2 0.054(0.002)  0.050(0.002)  0.047(0.002 0.044(0.002)  0.046(0.002)
2.2 | 0.049(0.002) 0.048(0.002)  0.048(0.002 0.054(0.002)  0.067(0.002)
2.5 | 0.058(0.002) 0.103(0.004) 0.067(0.002 0.090(0.002)  0.140(0.003)
TABLE 6
Mean absolute error of DY for Experiment 6 (standard error within parentheses)
EloD — v

v n = 100 n = 200 n = 300 n = 400 n = 500
0.1 | 0.116(0.004) 0.097(0.003) 0.091(0.003 0.085(0.003)  0.079(0.003)
0.2 | 0.138(0.004) 0.108(0.004)  0.092(0.003 0.088(0.003)  0.078(0.003)
0.5 | 0.115(0.005) 0.075(0.003)  0.060(0.002 0.048(0.002)  0.042(0.002)
1 0.316(0.013)  0.222(0.010)  0.187(0.007 0.150(0.006)  0.136(0.005)
1.2 | 0.258(0.010) 0.154(0.006)  0.122(0.005 0.111(0.005)  0.100(0.004)
1.5 | 0.220(0.007) 0.125(0.004)  0.092(0.003 0.070(0.003)  0.060(0.002)
2 0.447(0.006)  0.313(0.004)  0.240(0.005 0.184(0.005)  0.152(0.006)
2.2 | 0.584(0.006) 0.334(0.009) 0.168(0.007 0.130(0.005)  0.111(0.004)
2.5 | 0.762(0.011)  0.214(0.008)  0.133(0.005 0.108(0.004)  0.086(0.003)
v n = 600 n = 700 n = 800 n = 900 n = 1000
0.1 | 0.076(0.002) 0.071(0.002) 0.069(0.002 0.069(0.002)  0.064(0.002)
0.2 | 0.077(0.003) 0.071(0.003) 0.070(0.003 0.063(0.002)  0.061(0.002)
0.5 | 0.036(0.001) 0.038(0.002) 0.033(0.001 0.032(0.001)  0.031(0.001)
1 0.131(0.005)  0.114(0.005)  0.106(0.004 0.098(0.004)  0.097(0.004)
1.2 | 0.091(0.004) 0.081(0.003) 0.074(0.003 0.066(0.003)  0.067(0.002)
1.5 | 0.054(0.002) 0.048(0.002)  0.046(0.002 0.043(0.002)  0.038(0.002)
2 0.130(0.005)  0.118(0.005)  0.109(0.004 0.109(0.004)  0.101(0.004)
2.2 | 0.103(0.004) 0.091(0.004) 0.085(0.003 0.077(0.003)  0.072(0.003)
2.5 | 0.079(0.003) 0.075(0.002)  0.063(0.002 0.062(0.002)  0.078(0.003)
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F1G 2. Blue dots depict Logarithm of MAE versus log(n) for Exzperiments 1-6 with the true
smoothness parameter v = 0.5 and the red lines are the fitted regression lines of the blue dots.
The slopes of the fitted regression lines of the stratified design experiments (Experiments 1-3)
are close to —1/3 and those of the deterministic design experiments (Ezperiments 4-6) are

close to —1/2.

Appendix A: Lemma 2 and Lemma 3

Lemma 2. Let f: R? — R be a k+1 times continuously differentiable function
in a neighborhood of the line segment joining the points a,x € R?. Then

Let tl, ce
Qi = (Y(t:i) — v(t;)) Ay (t:), v(t5)) (v(ti) = v(t5)),

fx) =

>

w1 +uz2<k

£ a)

uﬂuz!

(k+ 1) (z1 —a1)" (z2 — az)"?

(z1 —a1)" (v2 — az)"

>

uytus=k+1

ullug!

1
></ (1 — )k flunv2) (a4 ¢(x — a))dt.
0

,tn, be as in (12). Define

where A(.,.) is the matrix in (6).



6092 J. Wen et al.

Lemma 3. Let M > 1 be an arbitrary but fized integer and k, ki1, ko be integers
such that 0 < k < M, 0 < k1 < ko < M. Suppose (12) and Condition 3
hold. Then we have the following approximations as n — oo uniformly over
1<i<n—kyandd; €[0,1),1 <j<n.

ditusnkrsitwnks = Qisitwnks — disitw, by + Olwpn™), (21)
wp (ke — k1)L -~ a s

Aitonkitwonks = % +O0(n 1) + O(wan ‘3), (22)

Qitwnkrsitonks = Qoo krivwnka 7 E)Y A (), v ()Y (t:)
+O0(wpn™?), (23)

and for any 1 <1< N,
tivwnk —ti = diirw, e+ O Fit)d oy +o(whn™h), (24)

where QHwnkNJmnb is as in (20) and f;(t;), j = 3,...,1, are polynomials of
YO (t), u=1,...,1

Proof. Using Taylor’s expansion, it follows from Condition 3 that

2
lerwnkl yitwn ko

= Z{'YJ itwnki) ’Yj(ti-&-wn,kz)}z

- 77 (k)
- Z{ i) Citwnky = titwaks) + . 9 (istwnhs — ti+wnkz)2

Jj=1

+O(w2n*3)}2

1
= [Z{ () z z+wnk1 _ti+wnk2)2

1 2 _
+Zv§- V)7 () bty — tivanka)® + Owin™)

= (tivwnks = titwnka)® + O(wpn™),
where the last equality follows from (7). Taking square root, we have
Qig by itwnks = (Fitwnky — tigw,ky) + OWin™), (25)
as n — oo. Setting k1 = 0 in (25), we have

disivwnky, = (titw,ky —ti) +O0(w
disitwnks = (titw,ky —ti) +O(w
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which together with (25) implies (21). (22) follows from (12) and (25) by ob-
serving that

Qigwnkritonks = (bitwnks = titw, k) +O0win™?),
. {L(’L + wpks — 1+ 6i+wnk2) _ L(’L +wpk1 — 1+ 6i+wnk1) }
n n

+0(w3n™3)

_ M{l + 0w} + O(win™3).

— win(b; k)L + 0™ ) +0(win™?),

as n — oo. (23) follows from the observation that
Qitw, k1 itwn ks
= {V(tivwnks) = YEitwnka) VAV Gitwonkn ) Y (Eitrwnka)
XV (titwnky) = V(Eitwnks)
= {7 ) Eirwars = tivwana) + Olwpn™ ) Y {A( (), (1)) + Olwan ™)}
XAy D () (biraoes = tivewnia) + Olwin ™)}
= (tirwnks = tirwnin) I/ D )Y AV (#), 110y (8) + O(win ™),

as n — oco. To show (24), we observe that

Givoe = [7tigw,r) = ()]

d
— Z{’Ya‘ (titwnk) — 75 ()}

- Z{Z%u) i) 7”“" o )" +o(wy,n ")}

j=1 u=1
u v 14w *ti utv
= ZZ{Z% N A SIS
u=1v=1 U
t; k_t,)u-&-v
— ti w. _ti 2 (u) ti (U) ti (7,4»4,,;"—2
(titwnk ) +1<§<l<7 (t:), v\ (ts)) —
>4
+o(whtn=I=hy, (26)

where (x,y) is the inner product of vectors x and y. From (26), we have

di,iernk
t; k_t,)u+v
= tirwnr = ta)° W) (2,), ) 1,y Liteonk = £:)"T°
{( e ) +1<§<1<7 (t2), 7 (6)) ulv!
ato>4
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1/2
+o(wﬁfln*l*1)}

= (titwnk —ti)

(bipeon ks — ) T071

ulv!

t )u+v—2

t k_t,)u+v—2
) @)(¢,). ) (2, Fitewnk — ti
x{ DI O
u_—H;ZZ
1 u v
= (ti+wnk—ti)+§ Z (Y (i), 7™ (k)
1<u,v<l
utv>4
+o(wpn™")
1 (w) @) (g 1y Fitw,k — i
—Stia—t){ 3 M)AV )
1<u,v<l
u+v>4

ulv!

(titeonk — ti)"TV72

1 u v
o tirai =t Y )0 (w)
1<u,v<l
utv>4

= (titwnk — ti) + o(whn™")

(t

ulv!

—2
itk — i)"Y

l
+ 3 it — ) D (), (1)
j=1 1<u,v<l
utv>4

J
+0(w2_1n_l+1)}
1

= (titw,k —ti) + o(wnn_l)

(t

ulv!

l
+Y et —t{ X 00 0)
j=1 1<u,v<l
utv>4

2
itwnk — ti)4TY }J

ulv!

)

where c¢; are constants originating from the coefficients of the Taylor expansion

of the function x +— +/1 4+ x. This further yields

titw,k — ti
11
= dijitw,k +o(w,n™")

l
=D eiltironn — ) D2 00,2 00)
j=1 1<u,v<l
utv>4

l
= diitwnk + Y 95(t:) (tipwnk — i) + o(whn™"),
=3

(titwnk — ti) " T02

ulv!

}j

(27)
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where g;(t;), j =3,...,1, are polynomlals of Y (t;),w = 1,...,1. By iteratively

replacing titw, & — ti BY di itw,k + Ej:3 95 (t:) titaon ks — 1)1 + (wﬁln—l) in (27),
we obtain

tivawnk —ti = diiyw,e + O fi(t)d o, +o(whn™),
=3

as n — oo. This proves Lemma 3. U
Appendix B: Proofs of Propositions 1 to 3
Proof of Proposition 1

Let x = (21,...,24),y = (y1,...,y4)’. We observe that when v ¢ Z,,
Kp(x,y) in (3) can be written as in (5) with

VeQk
pley) = *yz TG
71'0,2(7 0 Vk+VQi€(:H/
T(v) sinb(,wr) — KT (k+1 _T_ )’ (28)
7T0>2c, vy
ﬁll(xvy) = _F(V) sin)(,wr) F(l“-l/)’ (29)
Y +X N1
Axy) = (P (30)
Qly = GAVE-y)VAxy) -y}
When v € Zy, Kp(x,y) in (4) can be written as in (5) with
202 ©  k+vk+v
polx,y) = (Vg_x’i')'{(—l)”“ log(\/vQry) Z'(k—%
' =1 " :
v+1
i ;) V' Q, log(v)
S _ ! 2k
T e Nz
k=0
1)y e’} Vk+yQ§:H/
kzzo Pk +1) +w(u+k+1)]m
2 2
ﬂu(xay) = (l/_aixl’;’!y!(*l)lﬂrllju, (31)
Y +X N1
A(Xay) = ( ;_ y) 5 (32)

Lylog(vQxy) = G {V(x—y)AXy)x—y)}
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In both of the above cases,

Tae + Ty | L
Qxy x=y)(Z57) x-),

S + Dy |12
o, = |Ex|1/4|gy|1/4‘Ty o2, (33)

The latter is as in (2). We observe that

S+ By\l 2
( 2 ) _|2x+zy|“4(x’y>’

where A(x,y) is the adjugate of (Xx + Xy ). The (4, j)th entry of A(x,y) is the
(4,%)th cofactor of (X4 + X,) and is therefore a polynomial of the entries of the
matrix (Ex + Xy ). Then Qxy = 2|Sx + Xy | 1 (x — y) AX, y)(x — y).

In the following, we let D C R?? be an arbitrary compact set and Dy =
D\{(x,y) : x = y}. We note that there exist ¥min, D, ¥max,p > 0 such that

'(/}mimD”X - y||2 S (X - y)/A(Xv y)(X - y) S 1bmaux,D”X - y||2

for all (x,y) € D, where ¢min,p,¥max,p can be chosen as the positive lower
bound of the smallest eigenvalue of A(x,y) and upper bound of the largest
eigenvalue of A(x,y) respectively. For a € [0, 00), define

fa(xy) = |EX|1/4|Ey|1/4’Ex+Ey _“_1/27
Qxy) = x-y)Axy)(x-y),
Qa(xy) = {Qx¥)}%
th(xvy) = ga(X7Y){Q(X7Y)}a'
We observe that
Q(Xay) = Z Ph,lz (xll - yll)(xZZ - ylz)v
1<ly,l2<d
QQ(X, Y> = fa(X, Y>{ Z Pll,lz (:I:ll - yll)(xb - ylz)}a7
1<l1.la<d

where P, ;, is a polynomial of entries of ¥x and X,.

Since Y is positive definite and N times continuously differentiable over R,
there exist positive constants Cp and Cp such that Cp < IZk], [Zy], [Ex+Ey| <
Cp for all (x,y) € D. Let Cpr,p be a positive constant depending on M and D
whose value may be different from line to line. Then, we can see that, for any
positive integer M < N such that Zgzl(ui +v;) =M,

jglenravivd) ()| < Oyt Va€ [0,00), (x,y) € D.
Applying similar arguments that prove p,(.,.) € C?*1=1(R?) in Proposition

3, it is not difficult to show that po(.,.) € C?*1T1(R??). The details are omitted
here.
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Next we compute appropriate bounds on the partial derivatives of pp(x,y).
We observe that the leading term in QEJ“"“’“d’”“'“’””(x, y) has the same order
as that of Q&ul’“"ud’vl"”’vd)(x, y), which satisfies

< C’]OL‘;)FEI,HX —y|?*M VY(x,y) € Dy ifa¢Zand2a < M, (34)
- C’Z‘f‘/[‘ffl, V(x,y) € D ifa€Zor2a > M,
where the constant Cys p is independent of o. Consequently,
Q((th...,ud,vl,...,’ud)(X’y)
CZO\‘/["L,%)HX —yl?*M V(x,y) € Dy if a¢Zand 2a < M, (35)
- C’]‘f‘f[l, V(x,y) € D if € Z or 2a > M.

When v ¢ Z., we observe from (28) that pg(x,y) can be expressed as

(oo}

pO(va) = ZCka(X7Y) + Zékgk-ﬂl(xa Y)a

k=0 k=1

where cg, ¢, are constant coefficients such that for any M and compact D,
o lex|CFFL and Yooy |&x|CF Y both converge. Taking derivatives, we ob-
tain

|p(()u1’~~-,ud7v1w-,vd)(X7 y)l
< Z |CkHQ§€“1 ,,,, Ua,V15ee, vd)(x, y)|+ Z \ék||Q§€7ﬁ;~»-’ud,v1,m’vd)(X,y)|
k=0 k=1
CM,D V(X,y)ED ifM/QSV—I—l,
~ | Cuplx—y|* M V(x,y)€ Dy if M/2>v+1.

When v € Z,, we have

po(,y) =Y crQi(6y) + Y & Qi (%, y) log{Q(x,y)} — log(|Zx + Ty |)].

k=0 k=1

Let 2k (X,y) = Qriv(x,y)log{Q(x,y)}. By applying similar arguments
leading to (34) and (35), it follows that

|g(u1 ,,,,, U V1 yeeny ’L)d)(
k+v

Ciih V(x,y)eD if M/2 <k+4v
< Oy pllog(lx—yl)+1} V(x,y)€ Dy it M/2=k+v, (36)
kvl —y|2H+0=M Y(x,y) € Dy if M/2>k+v,

Since k+v is an integer and X is positive definite and M times continuously dif-
ferentiable, the partial derivatives of the term Qj and Q. (x,y)log(|Xx+Xy|)
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up to Mth-order are bounded by C fj}) and C ]’;jg respectively for all (x,y) € D.
Moreover for any M and compact D, Y ;2 |01€|C’1]T/1Jf11j and Y27, |&k|C’JkaB both
converge when v € Z . Thus we have

’---audyvl’---avd)(

0" x,y)|
Cup Y(x,y)eD it M/2<v+1,
< {Cumpllog(x—yl) +1} V(x,y) € Dy if M/2=v+1,
Cuplx—yl** M V(x,y) € Do if M/2> v+ 1.

This shows that the po(x,y) part of Kp(x,y) in (1) satisfies the bound in
Condition 2. The N times continuously differentiability conditions on 8, (.,.)
and A(.,.) follows from (29), (30), (31), (32) and (33). This proves Proposition
1. O
Proof of Proposition 2

Differentiating po(z,y) using the chain rule, we observe that ﬁéu’v) (z,y) can

be expressed as a polynomial in the indeterminates p[(f“v)('y(gc)7 ~(y)) and
v B (z), yF)(y) for u+v = 1,...,M, k = 1,...,M. From the assumption
that «(.) is an N times differentiable simple curve, it follows that ~*)(z),
k =1,...,M, are all bounded uniformly for € [0, L]. Therefore, the con-
clusion that po(.,.) € C?*1H+1(R?) follows directly from Condition 2 and the
chain rule.

To show the required bounds on K (“’”)(:r,y), it suffices to show the same
bounds on ﬁ,(ju’v)(x, y) when xz—y is close to 0. When v ¢ Z , the desired bounds
follow from (42) and (8) that |z —y| is of the same order as ||y(z) —v(y)| when
x—y — 0. When v € Z,, the first bound of (12) and the first bound of (13)
follow from (44), and the second bound of (13) follows from similar arguments
leading to (44) and the observation that when M/2 > v, the leading term no
longer has log terms and is of the same order as |z —y|?* = (and thus is of the
same order as ||y(z) — v(y)||?*~M). This proves Proposition 2. O
Proof of Proposition 3

We show in the order (i) — (iii) — (iv) — (ii). Since N is large, it suffices to
consider the Gaussian random field X (t) —m(t). Therefore, we assume without
loss of generality in the following that E{X (t)} = 0 for all t € R%.

PROOF OF (i). We observe from Lemma 7 that to prove (i), it suffices to show
that K(.,.) € CM*1-1(R?) and

lim (hl)—l{f%(fﬂ—lm—”(t tht+1) — KI-L=D (¢ 4 b )
(h,1)—(0,0)

KRR g ) o K(fummfl)(t,ﬂ} (37)

does not exist for any ¢ € R. We recall that po(z,y) = po(y(x),v(y)) and
pu(w,y) = pu(v(z),7(y)). According to the differentiability assumption of po in

Condition 2, to show K (.,.) € CI?171(R?) and (37) does not exist, it suffices
to show that 5, (.,.) € C**I=1(R?) and

lim h—2{ﬁgﬂ—1vfﬂ—1>(t + hyt 4 h) — pPI=E =D (¢ bt
h—0



Smoothness estimation 6099
ALY (g ¢ g ) 4 pYILID g ¢ )} (38)

does not exist. In particular, we shall prove that (38) diverges to either —oo
or +00. The proof for v < 1 is straightforward and we assume v > 1 in the
following. First, we introduce some notation. Let z,y € R and define

v, = {YW@)}Y AN (@), v(@)y (),
Q=Qry) = {v(x) Y)Y A(y(z), y(w){v(z) —v(y)},
Bi=0y) = Br(@)(y))

Be = Bu(y(x),7(2)).

We observe that ﬁ ,Q € CN(R?) by assumption and ¥, > 0 for all 2 € R since
7™M (z) is a unit length vector and A(y(z),v(x)) is a positive definite matrix.
In the following, we focus on a bounded open set, say U C R, and derive some
asymptotic results on the partial derivatives of p, when x,y are close together
in U. Then, by saying © —y — 0, we mean x — y tends to 0 with z, y restricted
to U and x # y. All the o(.), O(.) terms below are uniform for all z,y in U as
x —y — 0. We observe that as x —y — 0,

Q = Vi(z—y)’+o(lz -y,
QM = 2{yW (@)Y A(v(x),v(y){v(x) —7(v)}
Hy(z) =) Y AT (v(@), v ) {v(z) — v(v)}

= 24D @)} A(y(x), y(2)y D (2) (@ — y) + o(|x — y])

= 2V, (z —y) +o(lz —y),
QY = —2W,(x —y)+ oz —yl),
QWY = 20, +0(1)
QP = 20, +o(1),
Q™Y = 20, +0(1),
QUMY = 0(1), V3<u+v<N. (39)

CASE 1. Suppose v ¢ Z,. We see that p,(.,.) is N times continuously dif-
ferentiable at every point (x,y) for « # y. Differentiating p, (x,y) for x # y, we
obtain

P Oey) = vpQUTIQUMY 4

O (z,y) = vpQTQOY + .-

ﬁlgl,l)(x’y) _ (u—l)BQ” 2Q(10 Q(o 1)+V/8~QV—1Q(1 SN
Py = v =1DBQTHRUIY +vBQUTIQEY 4

PP @y) = v -1 HQOVY +vpQ QY + -

ﬁ(f’l)(x,y) _ V(V—l)ﬁQ" 2Q(2O Q(01 —|—21/(V—1)ﬁ@” 2Q(10 Q (1,1)

+y(v = D = 2)pQ"H{QUIPQOY 4.
ey = v -1DFQUPQUIQOY +2v(v ~ 15U QMY
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+r(v — 1) (v — 2)BQV QOO +
P (w,y) = vv—1)(v—2)(v-3)Q" {QMV}*{Q"M}?
+4V(l/ o 1)(1/ o 2) Qu 3Q(1 O)Q(l ,1) Q(O 1)
+r(v —1)(v —2)BQV QM 0}2Q0?)
+o(v = 1)(v - 2)5QV 2 QPO{Q V)
+V(l/ _ 1)BQV—2Q(2,O)Q(O,2)
+ov(v — 1)BQHQMIP 4+ . (40)

where ... represents the negligible terms as x — y — 0. ~

We observe from (39) that as z —y — 0, |p,(z,y)| < |z — y|*” since |f] < 1,
Q = |z — y|?, each first-order partial derivative of @ has the same order as
|z — y| and each second and higher-order partial derivative has the same order
as 1. From this observation and (40), we conclude that when a differentiation
with respect to either z or y occurs on one of the terms @, Q1% Q1 the
order of the resulting term decreases by |z — y| but if the differentiation occurs
on B or Q) with u 4+ v > 2, then the resulting term has the same order as
the original term. For example, when we are differentiating v8Q* Q1) with
respect to z, we have

|2u

9 1 50v-100
A QU
VB(l,O)QV*lQ(l,l)+V(V71)3@1/72@(1,0)@(1,1)+VBQV*1Q(2,1).(41)

The three terms in the right hand side of (41) are of order |z — y|?¥~2,
|z — y[?¥=3 and |z — y|*~2 respectively. This indicates that as z — y — 0,

VB(l,O)QV—lQ(l,l) and VBQI/—lQ(Q,l)

are negligible compared to
v(v = 1FQV2QUIQMY.

This shows that for any u,v € Z; such that u +v < N as ¢ —y — 0, the

leading terms of p( ’ )(x, y) are those for which the differentiation only occurred

on Q,QM9 QO This implies that for any u,v € Z such that u +v < N,

~ u—+v

~(u,v) _ v
Pv (x,y) Bal‘uava +.o

as ¢ —y — 0, where ... represents the negligible terms. If we continue differen-
tiating p,(x,y), x # y, we observe from (39) that

e (@, y)

— COBQv—u—v{2u+v\Iﬂ;+v(x _ y)u+v + O(|l‘ _ y|u+v)}
+613Qu—u—v+1{2u+v—l\111;+v—1(x _ y)u+v—2 + O(|$ _ y‘u—kv—l)}
+026~Qu—u—v+2{2u+v—2\Iﬂ;+v—2(x _ y)u+v—4 + O(|{E _ y‘u+v—2)}
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b Ol 2 QYT T2 {2Ru+v)/zw g [(u+0)/2]
x (2 — y)utv=2lwro)/2) 4 o1y y|u+v—2\_(u+v)/2j)}

+o(|lz —y[*77Y)

_ Lutv)/2]

= p Z [ck2“+v_kQV—u—v+k\I,g+v—k(m _ y)u+v—2k]

k=0

+ O(|$ _ y|21/7u771) (42)
3 [(utv)/2]
Blz —y|* vy ok

= W{ kz_o cp2vtY +0(1)}, Yu,v € Zy,u+v < N,

as x —y — 0, where ¢, ... » Cl(utv)/2) are constant coefficients depending on v

only. In particular, the term

[ (u+v)/2]

Z Ck2u+v—k

k=0

can be evaluated explicitly by specifying the matrix A and the curve y(¢) in @
to special values. Considering the case where the dimension d = 1, let A be the
identity matrix and (t) be the identity map. Then differentiating Q¥ at (x,y)
with x > y, we obtain

au+v u+v—1

8u+v 5 oy
l/: _ V: _1 v 2 _ _ V—=u—7v
5y Y = oy @~ v = (1] II e B =y,
which implies that
L(u+v)/2] utv—1
3 ck2u+v—k:(_1)v{ 11 (2u—k)}. (43)
k=0 k=0

Next we shall prove that p,(.,.) € C**1-1(R?). We observe from (42) that

~(u,v)

2
ov (xyy) = 0as x —y — 0 given u + v < [2v] — 1. Therefore, to show
v)

(u,

pu(.,.) € CTY1=1(R?), we only need to show j,"" (z,z) exists and equals to 0.
We use induction to show the result. Observe that

lim pv(z, 2+ h) — pu(z,2) — lim pv(z + h,x) — py(z,2)
h—0 h h—0 h

= lim h™'3{Q(z + h,2)}” = lim h™H{By + o(1)H{Wzh? + o(h?)}" = 0.

(u,v)

Now suppose p, " (z, x) exists and equals to 0. We verify that the same holds

for ﬁ,(,uﬂ’v)(x, x) and ﬁf,u’v+1)(m, x) provided u+v < [2v] — 2. We observe from

(42) and (43) that

. ﬁl(/um)(x + h’a Qf) B ﬁl(/u7v) (l‘, Jf)
lim
h—0 h




6102 J. Wen et al.

B A TV oy “ﬁ‘l(Qy_k)+0<1)} —o.

h—>0 hutv

For pl(,u erl)( x), the result follows similarly. This completes the proof that

o (z, 1) exists and equals to 0 when u + v < [2v] — 1. Since z can be any
real number, f,(.,.) € CM*1=1(R?) follows.

Now we show (38) diverges to oo, where 0o can be either +00 or —oco depend-
ing on v. By using the result 50 (z,2) = 0 for all z € R and u+v < [2v] — 1,
we obtain

h~ { pU =L =D ot 4 h) — pV I I=D (4 4t
_p~(m—1,m—1)(t t+h)+ﬁ,(f”]_1’[”w_1)(t,t)}
— _9hp 2 (fl’] Lv]1-1) (t—|—h,t)
2[v]-3
6 h V-
e T

k=0

as h — 0 since v ¢ Z
CASE 2. Suppose v € Z,. Then for any u,v € Z4 such that u 4+ v < 2v, we

observe that
~ u—+v

0
Py(/uv)(x,y) :B(WQV) log@Q+ ...,

as x —y — 0, where ... represents negligible terms. Using arguments similar to
the v ¢ Z case, we observe that

) (2, y)
2v T — v u+v !
_ Bl - y(lx i0§)(1|ﬁv yhvy { H (2v — (1)}, (44)

as £ —y — 0. The final result follows from the same remaining steps as for the
v & Z, case. This completes the proof of (i).

PROOF OF (iii). The result follows from choosing the curve v(t) in (i) to be
each axis of RY.

PROOF OF (iv). We observe from Corollary 1.15(b) of [4] that X (t) has an
equivalent version with a continuous path on 7" provided

C

Var{X(t + h) — X(t)} < —| og Hh”|r

(45)

for all t and h = (hq, ..., hq)" with ||h|| sufficiently small. Here r > 3 and C' > 0
are constants. One can see that (45) is equivalent to

C

K(t+ht+h)—2K(t+ht)+K(t,t) < ——.
| log ||

(46)
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Let a = (a1,...,a24)" where the a;’s are nonnegative integers and |a| =
2d
Yot a;. We define

K®(xy) = o K(x.y)
xX,y)= X, Y)
[T, 00z
where z; = z; and y; = zj44, j = 1,...,d. Denote ; = (0,...,1,...,0)" as the

ith standard basis of R* for i =1,...,2d.

CASE 1. Suppose v > 1. Let X;(t), denote the first-order mean square partial
derivative of X (t) in the direction of e;. First, we check that for any bounded
open set T C R%, X;(t) when restricted on T has an equivalent version X;(t)
which possesses, Wlth probability 1, a continuous sample path. From Lemma 7,
we observe that the covariance function of X;(t) is K (®itei+a)(x,y). It follows
from the condition po(x,y) € CI?*1+1(R?) that

p(()e11+ei+d)<t +ht+h)— 2K6e1,+ei+d)< t+ht)+ (e7+ez+d)(t’ t)
_ p(()ei+el+d) (t + h, t -+ h) . p(06i+ei+d)(t’ t+ h)

—pe7 O (6 4 Iy t) + po(t, t)

1 d
- /Z pleitertaten) g 4 g h,t + h)hy,ds,
/Z (ecteiraten) (4 4 g h t)hyds,

- / Z{pé“e"*”e“)(t+s1h,t+h>

(67 +el+d+eu)( t+ Slh7 t) }hudsl

= / / Z Z (e; +el+d+eu+e’u+d)(t + s1h,t + Sgh)h hydsi1dss

u=1v=1
= O(||hl*) (47)

as ||h|| — 0 uniformly for all t € T.

For p(el+e’+d) we see that the leading term of ,o(e +e”"’)( y) has the same
order as
[x —y[|*2 ifvé¢Z,,
Ix =yl ?{log(llx — yl|) + 1} if v € Zy.
Consequently,

p(uei+97‘,+d,)(t 4 h, t+ h) . 2p(yei+ei+d)(t =+ h,t) + p59i+9i+d)(t7 t)

O(1)|[h>=2 ifv¢Zy,
{0(1)Ilh|2”2{10g(|h||) +1} ifvezy, )
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as ||h|| — O uniformly for all t € T

(47) and (48) show that K (¢i-®i+4) satisfies (46), which means that on T', X;(t)
has an equivalent version Xz(t) which possesses, with probability 1, a continuous
sample path. Denote t = (t1,...,tq)". In the following, e; is understood to be
the ith standard basis of R2¢ or R? provided no ambiguity occurs. We have

el - X0

Let r € T. We have from Cauchy-Schwarz inequality that as h — 0,

Elx (0%, (t) — X0 X0 heé) — X(t) ‘

S\/W\/EH)Q(QX(t—’_he}i)_X(t)}Q}%(),

which implies

BX@Xi () = Jime{xX i) X
_ gy Kb+ heyr) - K(tr)
e h
= K(el)(t’ I‘). (49)

Using the arguments of (47) and (48), one can easily verify that on T', X (t)
has an equivalent version, say X(t), possessing, with probability 1, a continuous
sample path.

Let r1 be such that (s,to,...,tq) € T for all s € [rq,t1]. Define

t1 .
}q(t):X(Tth...,td)—l—/ Xi(s,ta, ..., tq)ds.

T1

It is clear that on T, with probability 1, the sample path of Y7 (t) has continuous
partial derivative in the direction of e;. Meanwhile, using (49) and Fubini’s
theorem, we have

t1
E{X(t)yl(t)} = K(t —tie; + ’I”1el,t) + / K(el)(t —tier + sel,t)ds
= K(t,t). (50)

In the same way,
E[{Y1(t)}’] = K(t,t). (51)

Tt then follows from (50) and (51) that
E[{X(t) - Y1(t)}*] = E{X (£)}*] + E[{Y1(£)}*] - 2E{X(t)Y1(t)} = 0. (52)
(52) implies for any fixed t € T,

P{X(t)=Yi(t)} = 1.
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If we define analogously Y;(t) for i = 2,...,d, using similar arguments we can
conclude that for any fixedt € T

P{X() = Yi(t) = - = Ya(t)} = L.

Since Y;(t), i = 1,...,d are continuous with probability 1 in T, it follows
that

P {0i(t) = = Ya(t)}] = 1. (53)
teT

(53) shows that on T each of Y1 (t),...,Yy(t) is an equivalent version of X (t)
possessing, with probability 1, continuous first-order partial derivatives in all
directions ey, ..., eq.

Applying the arguments above inductively, we conclude that restricted to
T, X (t) has an equivalent version possessing, with probability 1, a C*1=1(T)
sample path.

CASE 2. Suppose that v < 1. It is easy to verify that X (t) is mean square
continuous and when restricted on 7" has an equivalent version possessing, with
probability 1, a continuous sample path.

PROOF OF (ii). Since X (v(t)) is the Gaussian random field X (t) restricted

to the CN-curve ~(t), (ii) follows directly from (iv). This proves Proposition 3.
O

Appendix C: Proof of Theorem 1

(a) By using (24), Lemma 1, Lemma 2 and Lemma 3, we obtain

n—wn,bl £ 0
E E E aezzklaeh ko PO (it 0k » Ligwn 0k )
1

~(u1,u2)

n—wny ? ¢
tit;
_ z pIPIUMRIIR (D DL
P N — i uz<[20] e
2] +1
X (tigwnok, — )" (Ligw, ok, — )" + Z ([27] + 1)

wylus!
uitus=[2v]+1 152

X (titwnoky — )" (Litw, 06, — i)™

1
x/ (1= 8) 2550 2 Lt 63) + $(tiwnon, — tis tivanohs *ti)}ds}
0
n— w,LOZ l ﬁ(gu17u2)(ti7ti)
)SUD DD SUTTHIITN I SR L
i=1 k1=0ko=0 ur+ue<[2v] 182
AN

X{di,iernOkl + Z fj (tl it Ok: + 0( E/\N Z/\N)}Tn
=3
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(AN
X{di i, 0k, + Z i) iy on, + o(wi M= AN )y
=3

([2v] +1)
’ 2 W(t”‘”ne’ﬁ = )" (tivw, ok, — i)™
urtuz=[2v]+1

1
X / (1= )P0 D L4, 13) + 5(tiaonor, — is bieonons — tz‘)}dS}
0

_ O(n(ﬂ)ze—(zu]q) + O<n(£)2€—2(€/\N)), (54)

Wn Wn,
as n — oo since in the second last equality, the first o(w’ N n =N is indepen-
dent of ky and the second o(w? " Nn= V) is independent of k1. Next, it follows

from Lemma 3 and (20) that when v ¢ Z

n—wnpll ¢

0
D0 DD a0k 0,00k 80 (VEivwnon, ) Y (Eitesns)

i=1  k1=0ka—=0
X Gy (\/ Qitawnbky itwnks)

n—wy, 64

= 2 ) Y sk 06k B (v(t:), 7 () + Olwan ")}

i=1 0<ki<ko<{

v
XQi+wn0k1,i+wn0k2

n—wy, 64

= 2 ) ) sk 0ik B (v(t),1(8)

i=1 0<ki<ko<{

{8,001 0,00 U (1) + O ™)} + O(n(=—)* 2 71)

n—wy, 64

§ Z 4

(k1 —7)6L _ _
0<ky <ka <t Hogjgz,j;ékl {% +O0(n~1) + O(wyn 3)}
0!

wn (k2—3)0 _ _
Mo<j<ern, {7( 2 4 O(n) + Owin 3)}

« [{—“"(’” - FUOL L o1 + 0(w;°;n—3)}2

+O(n<wﬁn>26—2y—1)

X

U(t;) + O(win*)} Y

n—wny, 04

= 2 ) Bt) () () (2
2!

ok ot Logi<ejin (k1 —3) + Olwn') + O(win=2)}

X
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!
g [o<j<e,jzr, (k2 — ) + O(wn') + O(w2n—2)}
X [(kQ — k1) + O(w, ') + O(wyn™ 1)} Y + O(n(ﬂ)%*bfl)

Wn

m 20— 2VH[ n—wnbl

= w2 SO (k) + O((=-)* )

26 2v HL 20— 21/ Wn,
n
9] 20—2v—1
+O(n( o))

2n2€—2y+1 HZ (V)

L
- W / By (1(5),7(5)) W (s)ds

FO((Z) 72 +0(n(=—)* "), asn— . (55)

Wn Wn
When v € Z, it follows from Lemma 1 and Lemma 3 that

n—wy 64

Z Z Z 0,0;i3k1 00,635k Bu (VY (it 0k )s Y (it 0k2))

i=1 k1=0ky=0

X Gy (v Qiteon ks itwnbkz)

n—wy,0¥¢

= 23 S anin i {8 (1), 1(t) + Olwan ™))

i=1 0<ki<ko<l

X QY o, 0kr it 0z 108(V/ Qiteon, k1 ik, 0k2)

n—wy,6l

= 2 Z Z g, 6513k, 40,335k Bu (7 (), 7 (t:))

=1 0<ki<ks<l
X{dZ oy, 0 i, 0k P (1) + O(wWin ™)}

_ N\ op oy n

X 10g{d?+wn0k1,i+wn9k2\I/(ti) +O0(win™?)} + O(n(w—)% =1 log(w—))
n—wy6l

= 2 > BV AT () D 0 kisks W0 tsiska i 0k bk

0<ki<ka<l
+0() + Owin ) PU(L:) + Ofwin™)|

+0(n<§n>”—2"-1 log(~-))

(ko — k1)OL
xlog |:{OJ (kgnkl)e

Wn,
n—wy,06L
- 9 Z ﬂy )) V( ) Z AQ L35k Q0 €505k
0<k1<ko<l
5 k‘ —k 9 B _ 2v
X{%—i—O(n Y+ O@win™)} log(ks — k)

n—wny 64

¢
+ Z Bu(v(t:), v(t:)) ¥ (t:) Z Z @9, 6;i5k1 00, sk
i=1

k1=0ko=0
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wrpOL

${dita,os = dita,on, + O(win ™)} log [(=)?w(t,) |
+O(( )213 2u+1) —i—O(n(i)%_Q”_llog(ﬁ))
TL wn wn

n—wny,6l

- 2 Z Bu(v(ti),v(t:)
X Z {

0<k1<ka<t Hoggz,#m

i
w (k1—=§)0L +O(n1) + O(wf’ln—?’)}

n

2!
HOSjSZ,j?ékQ {M + O(n_l) + O(w%n‘g)}
X{Wn(kg — k1)0L
n

X

£OM™) + Owin™) ) W (1) los(ks — k)

n n n
oO((— 20—2v+1 9] B 2Z72u711 Y
FO((Z P2 1) 4 Ol 22 log( 1)

m 20— 2VH£ n—wn 04

:W26uz ))V()

+O((wn)2z 2u+1) —i—O(n(—)%_g”_llog(ﬁ))

Wn Wn
2n2572u+1 HZ (l/)

L
= S |, PO B

+O(( n)” 2041) 4 O (n(—)22 " og(—)). (56)

Wn Wn
as n — oo. It follows from (54) (55) and (56) that

n—wy,06l

Z Z Z 0,050 k100,01 ks K (tict o 0kr > tickeon 08>

=1 k1=0ko=0
2n2Z72u+1He(V)

L
- G | G w s)as

+O{n 2@ 2(4AN) (= n )25—2u+1}

Wn
(n n/w )=l ifvéZ,y, (57)
O(n(n/wy)*=2*"1log(n/wy)), ifv e Zy,
as n — oo. Writing m(t) = m(y(t)) and using (24), Lemma 1 and Lemma 3, we
obtain
n—wy 64l

Y4 V4
> a0k 00,010V (Eireo, 080UV (Eiao, 082)

J4 )4
= DD a0t @0tk Eirr, 00, )it 082)
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n—wnbl ( 4 IAN—-1 ﬁl(])(t)
= Z Z Z a@,é;i,klaﬁ,l;i7k2{ Z = (titwn ok, — ti)

|
i=1 k1=0ky=0 j=0 J:

1 itwn 0k .
+m/ (titwnor — )" e )(s)ds}
',

IANN—=1 . (i
) (.

m tz j

X -|( )(ti+wn9k2 —t;)’
=
1 titwnoko LAN—1 5 (LAN)

+m / (titwnoks — S) m (5)ds
n—cw, 04

= E E E Q9,051,k1 0,633,k

i=1 k1=0k2=0

IAN—-1 . NN
m(])( t;) (AN, —EAN\Yj
X E ] {dz itwnOks T E fw z z 'L+w”0k1 + 0( n )}

7=0 w=3

1 fitenoky EAN—1_~ (EAN
FOAN - / (tipwnon, — 5) N Tl >(5)d5}
U

IAN—1 _ (: (AN
(4)
m v, )
X{ § j( ){dHernOka § Juw(ts) 'LerwnHkg o(wy, 0 MN)}J

7=0 w=3
1 titwn6ko L
S, e = O e}
= Ofn(Z-)~2(MVy, (58)

as n — oo. Consequently, it follows from (57) and (58) that

Wn 4 14
E‘/@f = Z Z Z Qg 05,k ael;i,kQ{K(W(tiernOkl)?’Y(ti+wn0k2))
i=1 1=0k2=0

Fm(Y(titwnok, )Y (titw, 0k, ))}
n2Z72IJ+1 v L
- W | 8666w (s

+O{?’l+ )22 21/+1}

_|_ O(n(n/wn)26721j71)3 lf v ¢ Z+ﬂ (59)
O(n(n/wy)?=2*"log(n/wy)), ifv e Zy,
as n — oo since N > 2v + 6 (Condition 1). To conclude that
221, () [F i}
WL)() [ s v sas > 0 (60)
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we need only verify that

2n2€—2u+1 HZ (l/)
w’?f—QV(gL)2Z72V

L
/0 B (4(5),1(5)) ¥ (5)ds £ 0 (61)

because EVp , > 0. We observe that 3,(x,y) # 0 for all x,y € R? implies that
B, (x,y) does not change sign, namely, it is either positive or negative for all
x,y € R From the definition of ¥ and that A(x,y) is positive definite for all
x,y € R, we conclude that ¥(s) > 0 for all s € [0, L]. All these results together
with Hy(v) # 0 (see Section E) imply that (61) is true. Recall the notation
introduced in equation (15). To prove that Vp/EVp, — 1 as n — oo almost
surely, it suffices to show that

Z'SZ+p'p—1 (62)

and
WYz 4 7' 2 0 (63)

as n — oo almost surely. We observe from (15) that
EZ'SZ =BV o/EVyy —E(W S 2) —B(Z'SV2p) —plp=1—p'p. (64)

Applying the Hanson-Wright inequality [11], it follows from (64) that there
exists some constant C' > 0 such that

IP’(|Z’ZZ—IE(Z’EZ)| Zs) = P(\Z’zz+u’ﬂ—1| zs) (65)
2
S 2€Xp{—0min<m,||;w>}, VS>O

We shall now evaluate the orders of ||S,ps||2 and [|S||%. We observe from Lemma
2 that

£

l
DD 0.0 k100,00 K (Y (irr050)s Y (Eireon0ms)
k1=0ko=0

¢ ¥4
:E E 0,51k 00,05, ko B (Bt o, 0k1 5 Ej o 0k)

k1=0ko=0
¢ ¢
_ (titwnoks — )" (tjtwn ok, — )"
= E E g, ;i,ky O8,6;5, k> E o]
k1=0 ka=0 w1 +uz<(20)AN—1 1

x Kuu2)(t, ¢5)

> {20 AN} (tivwnor — )" (Ejtw, ok, — 1)

+ luo!
UpUQ:

(66)
ul +u2:(2€)/\N

1
. / (1= &) BN (8 85) + (o, ors — bis bt hs — tj)}ds]'
0
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Consequently it follows from (7), (8), (24), (66), Condition 3, Lemma 1 and
Proposition 2 that

1 i—wp0l—w,—1

E(Va.r) Z ’ Z Z Q0,6;1,k100,0;5,ko

k1=0 k2=0

X K(Y(titw, o), V(tjwnekg))‘

1 i—wp0l—w, —1

=5V Z ) Z Z 0,030k, 00,035, ko

’ k1=0ko=0

(titwnoks — )" (tjqwaons — )" =
<X Hemth ) Lt Rl (1, 1)

w1 +uz <(20) AN -1

n T {20 AN (tivw,om — )" (Ejrw, ok, — )"

Ul!UQ!

uitus=(20)AN

1

x / (1 — 5)@ONN=YR () (1, 40 b Sty 0k — tirtjrwn ks — tj)}ds} ‘
0
1 i—wp0l—w,—1

5Ty Z ) Z Z 0,030k, 00,0, ko

k1=0ko=0

(AN _
« |: Z {di,i+wn0k1 + Zw 3fw( ’L) i,i4wp 0k + 0( Z/\N ZAN)}ul

U1!'LL2!
’U,1+’LL2§(2€)/\N71

LAN
X {dj,j—&-wnél@ + Z fw(tj ]J+wn9k2 + O( (AN 7Z/\N)}u2K(u1 u2)(t t. )

n Z {20 AN (tivw,or — )" (Ejrw, ok, — )"

uﬂuz!
uitus=(20)AN

1
« / (1 o s)(2£)/\N71K(u1,u2){(ti,tj) + S(ti—i-wn@h — ti7tj+w»,7,9k2 — t])}d5:|
0
T—wn 0l—w, —1
O(1) ! ! " \20—2(¢ ¥
el S O((— ANy | (wrsuz) (¢ ¢
kg X 1 X o R b, )

: Wn
j=1 uiFus<(20)AN -1

¢
+ Z Z Z O{(£)247(2£)/\N}

Wn,
k1 =0 k=0 u1 +us=(20) AN

1
X / (1 — ) @O () (g, 40 4+ 5(tiy ks — Lis w0k — tj)}|d5}
0

O(l) i—wn0l—w,—1 N \or_on
Emg X (X O

° Wn
j=1 uyHus<(20)AN-—1
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X ||fy(tz) ( )”21/ Uy — u2+0{( 24 (20)AN) } Z Z/ 2@ AN -1

k1=0 k=0

X |ly(ti + s(tivwnon, —ti)) — V(5 + (1w, 0, — tj))HQ"_(%)ANdS}

O{(nwy )2 —2AN)} FmemEpon =t Ez: Ee:
< E(Vp.e) = Pt
X {(ti+wn9k1 - tj+wn«9k2) A (tl — tj)}QV*(Qf)/\N
. O{(n w2~ 2ONNY
E(Vo,e)

T— Wy l—w, —1

y Z Z Z [ i —j 4+ wn0(k1 — k2) 4 iy, ok — 04w, oks) L

j=1 k1 =0 ka=0 n
A (i—j+6 — @-)Lru—(%)AN
n

O{(n/wn)%—(%)/\N} i—wn0—w, —1 (z w0 — 1)L)2V7(2€)AN

B E(VG,E) = n
L
<O{( )(25)/\N 21/}/ 2V—(2OAN g
wn /N
O(wp,/n), if 2v < (20) AN — 1,

=4 O{(wn/n)log(n/wy,)}, if 2v=(20) AN —1, (67)

Of (wy /n)EONN=2% = if 20 > (20) AN — 1,

as n — oo uniformly over w,0¢ 4+ w, + 2 <1i < n — w,0¢. Similarly,

n—wy6¢

> |2 (68)

J=itwn 00w, +1
O(wn /n), if 2v < (20) AN — 1,
= O{(wn/n)log(njwy,)}, if 2v=(20) AN —1,
Of(wy/m)PONN=2v} - if 21 > (20) AN — 1,

as n — oo uniformly over 1 < i <n — w,0¢ —w, — 1. Also, one can show that
for any constant ¢ > 0,

Wn,
> [Zisl = O(=1), (69)
1<j<n—0¢0:]i—j|<cwn

as n — oo uniformly over 1 <4 < n — w,0¢. Consequently using (67), (68) and
(69), it follows from [13] that

i—wp0l—w,—1
< >
[Zabsll2 < 1<£2§1XM{ > 1%0,]
=
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(t4wp 004w, )N (n—w, 00) n—wy, 064
+ > 2,51 + > i }
j=(—wn0l—wy)V1 Jj=itw, 00+w,+1
O(wn /n), if 2v < (20) AN — 1,

O{(wn/n)log(n/wy)}, if 2v=(20) AN —1,
O (wn /m)BONN=2v1 = if 21 > (20) AN — 1,

< O(dra,), (70)

as n — oo since N > 2v + 6 (Condition 1). Next we observe that

n—w, 64 Wn0l+w, n—wnbl—j Wi 00+w, n—w, 08¢
Z 2 + Z Z El si+g + Z Z Zl i—J
i=1 j=1 i=1+j
= O(wp/n), (71)

as n — oo. Using (24), (66), Proposition 2 and Condition 3, it follows analo-
gously to (67) that

n—wy0f i—wp0l—w, —1
> >, =
i=wy 00+wn+2 j=1
1 n—wny 040 i—wn0l—w, —1 n
_ 20—2(¢AN)
—FoE 2 > o )
EBVoY e 1D “n
X > | K unu2) (15 |+Z Zaemklaeukz
w1 Fus<(20)AN -1 k1=0 k2=0
S {(20) AN}Htitwnom — )" (jwnor, — ;)"

ul!uQ!
w1 tus=(20) AN

1 ~ 2
X / (1 — )OI w2 (4 40) 4 8(tigw, 0k, — tis bjten ks — tj)}dé’}
0

O{(n/wn)“_(‘w“@m} n—wy,0o¥¢ i—wp0l—w, —1

N {E(Va,e) }? Z

i=wn 0l+wn+2 j=1

X { Z (t; — ;)2 e

u1+u2§(2€)/\N—1

4 4
2
+ 30D Ativwnor = bitw,ons) A (i — tj)}QV_(%)AN}

k1=0 k=0

- O{(n/wn)4€7(4€)/\(2N)} n—w, 04 i—wm%z—wn—l( (Z - wngg)L)4u—(4£)/\(2N)
B {E(Ve,0)}?

L
<o{( myOAEN)- 4U}/ S—(4DAERN) g

wn /N

n
1=wn 0l+w, +2 j=1
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O(wp/n), if 2v < (20) AN —1/2,
=4 O{(wn/n)log(n/wy,)}, if2v=(20) AN —1/2, (72)
Of (wy /n)AONENI=4Y i 2 > (20) AN — 1/2,

as n — oo. Hence we conclude from (71) and (72) that

n—wy, 64l Wn 0l+wy, n—wn,0l—7 Wn0l+wy, n—w, 00
2
HE”F = E Z + E : E Zz Z+]+ E E Ezz 7
i=1 i=1 i=14+j
n—2w,,,0€—wn—1 n—wy, 64l n—wy 64l i—wp0l—w,—1
2 2
+ D > T+ ) >, =
=1 J=itwn 0l+w,+1 i=wn 0l+w,+2 Jj=1

O(wp /n), it 2v < (20) AN —1/2,

= < O{(wn/n)log(n/wy,)}, if2v=(20) AN —1/2,
Of (wn /m)UONCNI=4Y = if 2 > (20) AN — 1/2,

< Olgzs,): (73)

as n — oo since N > 2v + 6 (Condition 1). (62) follows from (65), (70), (73)
and Borel-Cantelli lemma.
To prove (63), we observe from (58) and (59) that

n—wny,6l

pu = ]EV9 ; > Z Z 0,634,k1 Q0,831 M (it o, 001 )T (L it 0, 002)

i=1 k1=0ky=0

= O{(W_)QK—Q(E/\N)—QK—i-Qu}

_ O{(("ﬁ)Q(Z/\N)—m/}, (74)
n
as n — oo. Then it follows from (74) that

WS < g pl| Saps |2

O{ (wy /m) 120NN =2 if 2v < (20) AN — 1,
= < O0{(wn /n )EF2UAN)=@OAN 100 (n fwy,) }, if 20 = (20) AN — 1,
O{ (wy /m) 2NN FEOAN =4V if 2v > (20) AN — 1,
S O(QB,WW,)? (75)

as n — oo since N > 2v 4+ 6 (Condition 1). Let Z be the standard normal
random variable. We observe that there exists a constant C' > 0 such that for
large n, we have

BZ'SV?u >s) = P(u'sVZ] > s)

- 2/;;#) } Vs > 0.(76)

A
=
=}
—
—
Q
I
t\
™
=
o
»
e}
/N



Smoothness estimation 6115

Then it follows from (75), (76) that

P(Y'Y — 1] > s)

< P(Z'SZ—1—ppl = 5)+B(u'S?2) = 2)
S 52
< 2exp{ — C'min (7, —)}
[Zabsll2” 1217
2
+ min {1, Cs /WS pexp ( — 2:@”)} (77)

< 2exp(—Cmin(qy ., 8, q2.0,5°)) +min{l,Cys~* s, w/ exp(—Cs%q3., )}
By applying Borel-Cantelli lemma, we get that
Vg’g/EVb’g =YY =1

as n — oo almost surely. The proof of (a) is complete.
(b) Suppose v = £. First we prove that

L
BV = (<1 20m1os( ) [ A (940 ¥ (s)ds +0). (79

as n — oo. Applying (54), (58), Lemma 3 and Proposition 2, we obtain

n—wy,0o¢

¢
EVoe = E E Q6,05 ky 09,3, ks
=1 1=0 ko=0
X{K( itwn Ok Lidtwn0ky ) + m(ti+wn0k1)m(ti+wn9k2)}
n—wy 64 4

= E E 9,031, k1 09,03, k3 PO (Liten, 0y > Lidteo, O3
i=1  k1=0 ko=0

n—wy, 64

+ E E a&,[;i,klaﬂ,f;i,kgﬂu(’V(tiernle)a’y(ti%»wn&kg))
i=1 0<ki,k2<tl
k1#k2

X{d12+wn9k1,i+wn0k2 (t:) + O(wpn™)}"

x log{ \/di2+wn9k1,i+wnok2‘1’(ti) + O(wpn=3)} + O(n)
n—wy 604

= Z Z 0,53,k 00,51,k B (Y (), Y (t:))

i=1  0<kika<t
k1#ka

XA ok ity 0k @ (6)108(dies, 0y i, 0ky) + O(n)

n—wny 64

Z Z 9,04k, 00,030, ko B (V(Li), V()

i=1 0<ky, ko<t
k1#k2
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Wn ke — k1|0L

X (i iy, 0k — Diius,0k,)"" W (t5) log {'2—nl‘} +O(n)

n—wnbl € ¢
= > Z Z g, 51,k @0, 51,2 Bu (V(8:), (L))

i=1  k1—=0ka—0
X (i it 0ky — Disitoon ks ) 0¥ (£)
n—wy,0¢
x log )+2 Y > a0k @000 B (Y(t:), Y(E))
=1 0<k1<ka<t
X (i iy, 0k — diiw,ok,)”" W (t:) log(ky — k1) + O(n)
n—wy 64l
= (- ) (20) 'IOg Z Bu(y(t:),v(t:))¥¥ (t:) + O(n)
Wn, v
= (-1 20mlog() / B0 (1(),7(5)) ¥ (s)ds + O(n),
0
as n — oo. We note that
L
n
(‘UZH(%)!nlOg(w—)/O B (v(s),7(s))[W(s)]"ds > 0 (79)

follows from similar arguments for the case when v < ¢; see (60). This proves
(78). To evaluate Var(Vy ¢/EVp ¢), we observe that

n—wny,06l
Var{ Z (Vo,eX:)?}
ni:j“%
Var{ Z {(Va,eXi—Ve,em(ti))z

i1
+2V0,0X; Vg eria(t;) — (Vo,ei(t;))? H

n—wy, 04

Var| > {(VouXi = Vom(t:) + 20,0 XiVon(ts) }]
n z;:@@ n—wy,6l
Var{ > (VoiX;— Vosm(t:)’} +4Var{ Y VXV rm(t:)}
i=1 i=1

Nn—wn 0l n—w, 64

14 Z Z [Cov{(VggX Vo,emn(t:)?, Vo, X; Vet )}}

=1 Jj=1
n—wy,06l
Var{ Z (Vo X; —V97(77~’l(ti))2}
i=1

Nn—wyn 0l n—w, 0t

+4 Z Z Vo zm Vg gm( -)COV(Vg,zXZ-,Vg’sz)
i=
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Nn—wyn 0l n—w, 04

+4 Z Z Vg om(t;)
i=1 =1

X [COV{(Ve,gXZ‘ — Ve’gﬁ’b(ti)f7 (VQ’ZXJ‘ — Vg}e’rh(tj))}}
n—wnplln—w,6f 2
= 2 Z > {Z ZaefzklaOZ]kgK(ti+wn0k17tj+wn6k2)} (80)
=1  k1=0ke=0

n—wn 0l n—w,6f

+4 Z Z Vo,0rin(ti) Vo emlt)

xE E 9,031,k 09,035, keo I (tipeon, 01 5 Lo, O ) -
k1=0ko=0

We shall prove that
Nn—wn 0l n—w, 64

£t 2
Z > {Z > aa,e;i,klae,e;j,sz(tHwnekl7fj+wnek2)} = 0(n?),
j=1 k1=0 ko=0
(81)
as n — oo. It follows from Lemmas 1, 2, Condition 2, Proposition 2 and (24)
that

¢ ¢

g E @9 053, k1 00,035,k PO (titan 0kr » Ljtw 0k )

k1=0 k2=0

-y (Firwuots = 10)" (Ejasaon, —15)"

i+wn 0k 7 J4wn O0ka J

= DY asiksik ) 5

— — U1-U2:

k1=0ko=0 ultus<20—1

2€t —t; ul ts —t'u2
Xﬁéuhuz)(ti’tj) + Z (titw, ok, i) (J+wn9k2 ])

uplusg!
uyuo=2¢ 142

1
X / (1= )25 2 (b, 1) + 5(tianons — iy iranor, — tj)}dS}
0

‘ ¢ ~(u1,u2)
tisti
- Z Z aeve;ivklae,e;‘ﬁk@{ E /’07(13)

uplug!
k1 =0 k2=0 w1 4ua<20—1 142

${diivwnom + Y fu(t) Ao o, + 0(whn ™)™

¢
X{di7i+wn9k¢2 + Z f’w (tl i z+w"9k:2 ( )}u2

w=3

- 20(titw, ok = ti)" (tjtw, 0k, — )"
u1!u2!

uy+uo=2¢

1
X / (1= 82735 2 (b 1) + 5(ivr ok, — b b gaoks — tj)}ds}
0
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= 0(1), (82)
as n — oo uniformly over all 7,5 € {1,...,n — w,0¢}. Define
Sto= {(,5):1<i<j<n—wyblj—i>w,00+1},
Sy = {(i,5): 1<j<i<n—w,bli—j>w,00+1},
Sy = {(4,7) 11 <4, <n—wybl, i — j| < w00}

Using Lemma 3, we have

4 L
S 0.k 00,00 B (Y (titeo 081 ) Y (Ej o 082))

k1=0 k2=0

X Gy (V/ Qitwonbky,j+wnbhs)
= Z 9,631k, 06,635,k { B (V(£i), 7 (£5)) + O(wpn ™)}

0<ky,k2<¢
itwn 0k #j+wn ko

X{d?+wn0k1,j+wn9k2q}(ti) +O0(Ww3n=3)
x 1og{d? ., ory jrwnor, Y () + O(wpn ™)}
n
= O(log(w—))7 (83)

as n — oo uniformly over all (4, j) € S3. It follows from (82) and (83) that for
(i,4) € Ss
¢t
Z Z aG,E;i,klae,[;j,kgk(twrwné‘kl7tj+wn6k2)
k1=0 ko=0
¢

E 0, 51,k1 00,0;, k> {ﬁo(tz‘wwm s+, 0k,)
0 k=0

I
M-~

k1
B0 (Y (Eiteon 081 ) ¥ (o 0k2)) G (V/ Qi 08y 0 0k )}

= O(log(win)), (84)

as n — oo uniformly over all (4, j) € Ss. Thus it follows from (84) that

14 4 _ 2
> { > au;uklae,f;j,sz(tiernekl7tj+wnekz)} = O(nlogQ(wﬁ)%

(i,j)€Ss  k1=0ko=0 "
(85)
as n — co. Now we consider the case when (4, j) € S;. Using (8), Lemmas 1 to
3, Conditions 2, 3, and Proposition 2, we have

¢ ¢ )
E {E E a@,é;i,klae,f;j,kZK(tierneklatj+w"0k2)}

(i,7)€S1  k1=0k2=0
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y4 y4
= § [ § § a9 0.k, 00,055,k

(i,7)€S1  k1=0k2=0

Z (ti+wn9k1 - ti)ul (tj+wn9k2 - tj)u2

X
ul!u2!

urtus<20—1

. 20) (tiseo 0k, — )" (Ejeo ok — £5)2
Bt )+ Y (20) (titwn ok u1)'u2('a+ W0k — )

u+us=2¢4

1
[ PR (b1) 4 Sltis, o — o, — ) )]
0

00 i,
N Z [Z Z a97f;i,k1a6,£;j7k2{ Z W

(4,J)€S1  k1=0k2=0 uy+us<20—1

2

x{di7i+wn9k1 + Z fw(tl 1 7,+wn9k1 + 0(w n- )}ul
w=3

X{diitw, 0k, + Z Fu() i1 oy + 0(wrn ™)}

n Z 20(tivw,on, — ti)" (tjrw, 06, — ;)"
uqlug!

u+us=2¢

1
X[ RO (t85) st tstianons — 1))}
0

SEDSRCURT0D 5 ol iy NIERES

(i,j)eSl k1=0 ko=0 ui+us=2¢

2

~ 2
XK 2 (85 1) + S(Eiawn ok — tistjwnoky — tj)}ldS}

4 4
S S touln (s + sltrw,on — 1))

<
(i,j)€S1  k1=0k2=0
2
—(ti + 5(tie, 00, — ti))||):|
0 e )
= Z [ Z Z log{(tj+wn9k2 - ti+wn6k1) A (tj - tl)}}
(i,j)€S1  k1=0ko=0
| — 9 —wpbl)L
< 01) T logrTizenbOL)

n
(1,4)€51

n—wnpbl—1 n—w,0¢

IR SIRTIE s

n
i=1 Jj=ttwn00+1
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n—wy,0f—1

o) Z / log?(s

O(n?),

(86)

as n — oo. For (i,7) € S, by using the same arguments, the same order O(n?)
applies, which combined with (85) and (86) proves (81). For the second term in
(80), we observe that

n—wn0ln—w, ¢

4 Z Z V@gm V@gm( )

XE E 0,031k, 00,0,k B (Lt 0k 5 Ljteo,, 0k»)
k1=0ko=0

4 Z V@gm Vggm( )
(Z7J)€Sl

XY > 060k @6,k K (Biio, 0k s Lo 00
k1=0ko=0

+4 Z V@}gm(ti)V@g?’h(tj)
(4,5)€S2

XYY 0,00 k1 00,05k K (Fipon 0> L 4o, 0k)
k1=0 k=0

+4 Z Voo (t:) Ve em(t;)
(4,)€Ss

><§ E Q0,031,k1 00,035, ko I (Eiteon, 01 > Lt ks ) -
k1=0 ko=0

Using (58) and (84), we obtain

IN

4 Z Vg gm Vg gm(t )

(4,5)€S3

X Z Z a,0:4,k1 00,05, ko K (i, 0k1 > Uit 0ks)
k1=0 ko=0

4 Z \V“m V@gm( )|
(1,4)€S3

X Z Z 0,51k 00,65, ko B (tig o, 081 > Lj e 0ks )
k1=0 ko=0

O(nlog(wﬁ)),

n
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as n — co. When (7, ) € S, using Lemmas 1, 2, and Proposition 2, we have

Q9,653,k109,0;5,k2

¢ ¢
‘ E g 0,04, k1 00,035,k I (Lickeon, 0k1 + Tt 0ks)
k1=0ko=0
‘ ¢ ¢
k1=0ko=0

Z (ti+wn0k1 - ti)ul (tj+wn9k2 - tj)uz
ul!ug!

X

urtus<20—1

. 20)(t; — )Yt — t)u2
xK(ul,UQ)(ti’ tj) + Z (20)(titw, 08 uz)'u2(' Jtwn ks J)
1:U2:

uyt+us=2¢

1
x/ (1= )" T K02 (5, 15) + $(tivwnor, — tor b, on, — tj)}ds]
0

L 4 -~
K (u1,u2) tit
= ‘ S ae,z;i,klae,z;j,kz[ > S U]

uplug!
k1=0 k=0 w1 +ua<20—1 152

X{diyi"rwnekl =+ Z fw (tl i Z—Q—wﬂekl + O(W n- )}UI

w=3

X{di7i+wn9k2 + Z fw (tl 7 z+w"9k2 + 0 UJ n- )}uz
w=3

- (20)(titw, 08 — )" (tjrw, ok, — )"
u1!u2!

u+uo=2¢

1
></ (1= ) LK) L (4, 85) + 8(tigaw,omy — tir tirwnoks — tj)}dSH
0

< o+ o) Yy ¥ / 9"
k1=0 ko=0 u1 +us=2¢
)R {1, 65) + 5(tiranor, — tis b sanon, — t)|ds
4 4
< o> > ‘log(llv(tj + 8tk — 1))
k1=0k2=0
(s + 5(tiswom, — )]
i —w,00)L

= O(l)‘log[%]’ (89)

as n — oo uniformly over all (4, j) € Si. It follows from (89) that

4 Z V@zm Vggm( )
(4,5)€S1
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X E E Q0 053,51 00,05,k I (Lo, 0k1 + oo Ok
k1=0 k=0

< 4> | Veum(ti)Veeml(t))]
(7'7])651
X‘ Z Z 0,631, 00,055, ks T (Fict o 0k s -t Ohs)
k1=0k>=0
n—wnbl—1 n—w,00 . .
< < j—1—wpbl)L
som S el 4]
=1 Jj=itwnbf+1
n—wy,0l—1
= 0O(1) Z / |log(s)|ds
= 0(n?), (90)

as n — oo. Similarly, we have

4 Z Vo gm Vg zm(t )

(1,7)ES2

XY 0,000 00045 ks K (Eipar 05 Eiraonon) = O(n?), (91)
k1=0 ko=0

as n — oo. We conclude from (79), (87), (88), (90) and (91) that

Var{zn UJvLaZ(V97[Xi)2} — 0(10g_2(£))

Ver(Vo./EVos) = (EVr 1 5

as n — 00. The convergence of Vp o/EVp ¢ to 1 in probability then follows from
Chebyshev’s inequality. We observe that

n—wyn 0l n—w,0f

IS = G X X

=1 =1

4 2
X{ > E aw;i,klao,e;j,sz(tiwnekl,tj+wnek2)}

k1=0ko=0

O(log_2(£)).

n

Hence we have that || Zapsl2 < || Z]lr = O(log_l(n)). Also,

n—wn,bl ¢

o = ]EVH Z Z Z 0,031, k1 00,51, ko M (Lt o, 0k )T (Lo, 0k5)

i=1 k1=0ko=0

= o(log—l(wi)). (92)

n
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Then it follows similarly to (77) that

P(Y'Y —1]>5) < 2exp{—Cmin(qu,5,q2.0,5°)}
+ min{1, C'ls_lq?:l/2 exp(—Cs%q3., )}

Wn,

This completes the proof of (b).

(c) Suppose v > £. We shall prove that Vy ,/n, 6 € {1,2}, converge to the
same positive (random) limit with probability 1 as n — oo. Consider the interval
(=&, L + ¢) for some small constant € > 0. It follows from Proposition 3 that
X (7(.)) has an equivalent version possessing, with probability 1, a [v] —1 times
continuously differentiable sample path on (—&, L + ¢). Let X\ (t) denote the
jth derivative of such an equivalent version of X (y(¢)) for j = 1,...,¢. We shall
first prove a Lipschitz property of X (t) for t € (—¢, L + ¢). Since the mean
function m(t) = EX(t) is assumed to be in CN(R?), it suffices to work with
X (t) —m(t). Hence we shall, without loss of generality, assume that m(t) = 0.

We observe from the proof of Proposition 3(iii) that X()(t) is continuous
ont € (—&,L +¢€) and is an equivalent version of the ¢th-order mean square
derivative of X (y(t)). Consequently, it follows from Lemma 7 in Section F that
the covariance function of X (t) is K9 (x,y). Thus

A6t + ot + B) = 250 (14 hut) + 5670 (1, 1)|

1 1
h2/ / ’,35“1’“1)@ 4 siht SQh)’dsldSQ
0 0

< Ch?, (93)

IN

for all h such that |h| > 0 is small and ¢ € [0, L], where C' > 0 is a constant.
For p,(.,.), we observe in the proof of Proposition 3(i) that the leading term
“(&Z)
of oy (x,y) has the same order as
o — 22t ity ¢ 2.,
|z =y {[log(lo —y)| + 1} if v € Zy.

Thus we conclude that
[0+ byt + B) = 2550t 4 1) + 5O (8, )

h21/72f if 7,
= ‘ |2 —2¢ 1 v Ly (94)
Clh>=2{|log(|h])| + 1} if v € Zy,

for all h such that || > 0 is small and ¢ € [0, L], where C' > 0 is a constant.

Applying the result on page 186 of [9], (93) and (94) show that for any
e < (v—20) A1, XO(t) can be chosen such that its sample path is Lipschitz
continuous of order €. In particular, with probability 1, there exist constants
C,§ > 0 (may be random) such that if |h| < 0,

IXO(t 4 h) —XO(t)| < C|h°,
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for all ¢,¢t + h € [0, L]. We extend the definitions of f,,(¢) in (24) by f1(t) =1
and fa(t) =0 for any ¢ € (—¢, L +¢). Using Taylor expansion, (24) and Lemma
1, we have with probability 1

= Zaé),é;ukX(’Y(ti-&-WnGk))

@ (¢ .
= Zaaezk{zx ‘( )(ti+wn9k—ti)j

jl

1 fieonon =1y (£
+m/ (ti+wn9k — S) a X( )(S)ds}
-1

X (@) (¢ .
= Z ap ¢;i k{ Z ( >{d’b i+wn bk + Z f’w Z 2 7,+wn9k: + O(W'fzn_e)}]

1 t“’“"ek 1-1(0)
+(€_1)'/ (ti.ﬁ,_wngk — 5) X (S)ds

£—1
= g a9£zk{

j=1

X(J)

X Z Juy (i) -+ fu; (ti)d 21+ww9k+0(wzn )
( )

w1++w]:Z
Wi ,...,w, >1

1 titwy Ok =1y (¢
+m/ (ti—i-wnek _8) X )(S)dS}
“Jt
=1 (s
XU (t;)
= K'ZT Z fwl(ti)"'fwj(ti)
= P i Ty
W, wi>1
¢ Q,
+XO(t; Z ”Zk (tivwnor — ti)"
k=0

1

tz+wn9k
x / (it — )X O (5) = XO(2)}ds + o(1)
t

i

-1
. £
= Zx(j)(tz) Z ﬁfwl(ti)"'fwj(ti)
j=1 wy - Fw; =~
Wi ,...,w; >1

4
1
X O () D a0 g5k 5y {diias,on + Olwin ™)}
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J4
1

titwy Ok
x / (tigew, o0 — ) THXO(s) = XO(t;)Yds + o(1)

ti
LX),

_ ’jf” ST a8+ fu () + 0(1), (95)
j=1 wy+-Fwj=~

Wi, wi>1

as n — oo. Hence it follows from (95) that with probability 1,

n W
n—wy, 04
= ot Y (Ve X ()}
=1
n—wy 6l l X(J) ; 2
= pn! Z {K!Z j!(t) Z fwl(ti)...fwj(ti)+0(1)}
=1 7j=1 wy 4 Fw; =~

W1 ,..,w, >1

— /OL {g! ze: X(j?!(s) Z Fur(8) -+ fu, (s)} 2ds,

w1++wj=é
Wi, wi>1

as n — oo. Since fi(t),..., fe(t) are all bounded, using the arguments in the
proof of Proposition 3 (see Section B), it is not difficult to verify that

X
p Z XU (¢) Z Fun(8) -+ Fu, (£)

!
J wy+-Fwj =~
Wi ,...,ws >1

is a Gaussian process with mean 0 and bounded variance for all ¢ € [0, L]. Since
the limit is the same for both 8 = 1,2, it follows that

Vie/Vay—1

almost surely as n — oo provided

/OL [e!j

with probability 1. Now, the final task is to verify (96). Define

L

U (s
2 ]|( ) Z f’U’l (S) ' "f’wj (S)] 2d$ > 0, (96)

wy+-Fwj=~
w1 ,...,w; >1

=1

Z fwl(s)"'fwj(s)'

wy+-Fwi=~
wl,...,wjzl

7!

L XU (s
Y(s):élzx |( )
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Suppose the probability that (96) is true is strictly less than 1. Then from
the sample path continuity of Y'(s) on [0, L], it follows that

]P’( N (¥(s) = 0}) - ]P’(/L{Y(s)}st - 0) > 0.
s€[0,L] 0

Consequently it follows that for every fixed sg € [0, L]

P(Y(so) - o) > IP( N (Y(s) = o}) >0,

s€[0,L]

which implies that P(Y(sg) = 0) = 1 because Y (sg) is a Gaussian random
variable. Since this holds for every sy € [0, L] and that the sample path of Y(s)
is continuous on [0, L], we have

1@( N {Y(s):O}):l.

s€[0,L]

Consequently with probability 1, we obtain

Do fw®)fu,(8)  VEE[0,L] (97)

w4 Fwj =L
wl,...,wj21

-1 ;
X(J)(t)
O(4) = —
XO@)=-0>" i
j=1

For simplicity of notation, we denote

GO = =5 3 - fu®

Tl
j w1++w]=€

Wi, wi>1

It follows from the definitions of fy,,..., fu, that ¢;(t) € CN=4(0,L). From
the proof of Proposition 3 in Section B, the mean square derivatives of X(1)(¢),
ooy XEED(1) coincide with their sample path derivatives which are X®)(t),
..., XO(t) respectively. Using (97), it follows that X(©)(t) is mean square differ-
entiable on (0, L). Denote X9 (¢) be the mean square derivative of X((t). One
can verify that the product rule in mean square sense applies and yields

—1
XO(t) =3 {S XD (8) + ¢ (1)XTFD (1)} (98)
j=1

Plugging (97) into (98), we can inductively differentiate X(©)(t) in the mean
square sense N — ¢ times. However this contradicts Proposition 3 which asserts
that X(¢) can be differentiated in mean square at most [v] —1 times. This proves
that (96) must be true with probability 1. Now we show that

EVhe < n. (99)
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By Fatou’s Lemma, it follows that

liminfn 'EVp, > Ehmmf(n Wa.0) > 0. (100)

n—oo
Also, we observe that

n—

€

n 64
]EVe,z =

L L
E E Gflklaeflk‘z

X {f((tiwnakl stitwn0ky) + M (titw, 0k, )m(tiwnakg)}
= O(n)a

HM

(101)
as n — oo. Thus (99) follows from (100) and (101). Next we prove the result

Var(Vp,e/EVp,e) < 1 (102)
by contradiction. We observe that

Var(Vy r)
N—wnyn 0 n—w, 04 2
= 2 E > { E E g, e,k 40, e,J,sz(tiwneklatj+wn9k2)}
Jj=1 k1=0 ko=0

n—wn0ln—w, 00

+4 Z Z V@gm V@gm( )

¢ ¢
XN 0.0k W00 00 K (Fipan 00 s o)
k1=0ko=0
n—wnbfn—w,00 2
= 2 E E { E E ag,¢;4,k, 00,05, kgK(ti+wn6k17tj+wn9k:2)}
j=1 k1=0 k2=0

n—wyn 0l n—w,0f

+4E Z Z Vggm V”m( -)(Vg’eXiVQ,sz)

n—wy6ln— wneé 2
= 2 E E { E g ag,¢;i,k, 00,05, kgK(ti+wn6k17tj+wn0k2)}
j=1 k1=0 ka=0
n—wny,06l 2
+4E< E Vg,inV97gT~TL(ti))
i=1
n—wnyn 0l n—w, 64

2 Z Z {Z Zaeuklaee,J,sz(tiankl,tj+wn9k2)}2

Jj=1 k1=0 ko=0

Y

n—wn0ln—w, 6 [N((ulﬂu)(ti t)
)
= 2 E E {E E 9,651,k 00,05,k E —
e Ul!UQ!
j=1 k1=0 k2=0 ug,ug>1

w1 +ug <20
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Y4 4
2
< w00 )" (O Fults) s 00,)" > +o(1)}
w=1 w=1
n—wyn 0l n—w, 04

y4 J4 b
K (unuz) (g ¢
SIED VD IR D D) R D
J=1 k1=0ks=0 152

u1,uz>1
w1 +ug <20
Vi Y4 14 4
x Z Z Z Z Jur (i) -+ fu,, (t0)
wy=1 Wy =1 wyy+1=1 Wauq +ug =1

Wit Wy, W +F Wy 2
Xfwu1+1 (tl) e fwu1+u2 (ti)di,il-q-unekl ! dj,j-ll-t;l,,ﬂb T+ 0(1)}

n—wn 0l n—w,6¢ b
n n (gl)ZK(ul,’Ua)(t,“tj)
- 2 {
u1+7u2<28

2
XN ) g () a8 fun o ()}
W1t Wy =L
Woyy +1+ F Wy ug =~
W1,y Wag fug =1

+o(n

= 2n/ / ([!)2[}(%,“2)(81782)
u1!u2!

u1, U2>1
u1tus <20

X Z fw1(51)"'fwu1 (s1)

Wit Wy =L
Wayy +1+ F Wy ug =~
Wiy Wuq +ug >1

< g (52) - Fay g (52) } dsadss + o(n?). (103)

It is straightforward to see that Var(Vp,) = O(n?) and thus it follows from
(99) that Var(Vy ¢/EVy ) = O(1). To show liminf,_,., Var(Vy ¢/EVy ) > 0, we
show that the integral in (103) is strictly positive. It suffices to prove that the
integrand is not identically 0 since the integrand is a continuous function. We
note that if the integrand is identically 0,

Z (02K u17u2)(81 59)
wyua>1 Ul!UQ!
ul—i:urz;%

X Z fwl(sl)"'fwul (Sl)fwul+1(82)...fwu1+u2(82)

Wi+t wy =
Waq +1+ + Wy fug =~
W1y Wy fug 21

i QK(ul’uQ) 81,82
¥

U1!UQ!

wy,uz>1
ut+us <24
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X Z fw1(31)"'fwu1 (Sl)fwul+1(32)"'fwu1+u2 (82)

w1t F Wy =4
Waq 1+ F Wy fug =~
Wiy, Wug+ug >1

This implies that the 2(-th partial derivative of K (.,.) can be expressed as a
linear combination of its lower order partial derivatives. Hence due to the differ-
entiability of K(., ), it can be further differentiated iteratively. This contradicts
to the fact that K(.,.) is at most |2v] times differentiable. Therefore, the in-
tegral in (103) is strictly positive and the proof of (102) is done. We further
observe that

n—wy06l

1
=— Z Z Z 0,651,k1 00,651, ko M (Lit a0k, )T Eiteo, 08, ) = O(1).

=1 k1=0ko=0
To evaluate ||X||%, we observe that
n—wy, 0l n—w., 04
2
> 2 T
=1 =1

n—wyn 0l n—w, 64

= Z > { Z Z 6,451,k 09,055, sz(ti+wnek17tj+wn9k2)}2

] 1 k1—0 k2—0

1117

n—wndln—w, 00
= n2 Z Z o
- 0(1).

It thus follows that

[Zabsllz < 1ZlF = O(1),  p'Sp < p/pl|Ell2 < ' pl|Z]lF = O(1).
Using Hanson-Wright inequality, we have for sufficiently large n,
P(|Y'Y —EY'Y| > s)
= P(Z'SZ+ Z'SY?u+ 'SZ ~EZ'SZ| > )
P(2'SZ —EZ'SZ| > %) + P25 2] > Z)

IN

2

s s
2exp{ — C'min (—, —)}
[Eansll2" 12]1%
2

+ min {1, Cis™ /WS pexp ( — 2;ZM)}

< 2exp{—Cmin(q ., 5,q2.,5°)} +min{l, Cls_lq;,i{f exp(—Csq3.,)},

IA

for all s > 0. The proof of (¢) is complete.
The result in (d) can be directly read from (a), (b) and (c). This completes
the proof of Theorem 1. O
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Appendix D: Proofs of Lemmas 4 to 6 and Theorems 2 to 4

Define Wg = Vg’g/]EVaz.

Lemma 4. Suppose v < £ and Conditions 1 to 3 hold. For any j € Z,, there
exists a constant C; > 0 such that

Vo,e
{(EVM

Proof. We recall the notation from (15) that for v < ¢
We=Y'Y =2'SZ+ /S22 + 2"+ i/p

_1)2j}§0 (qlwn+q2u;'n+q3wn) Vo € {1,2}.

with

X Xn—w !
v — (Ve,e 1 Vo ,Lee) 7

VEVo T VEVe
Z ~ anwTLOZ(Oa I)a H= EY and ¥ = (Zi,j)(n—wrﬂf)x(n—w,,,@() = E{(Y - LL)(Y -
©)'}. Let C; be a generic constant that depends on j which can take different
values at different locations. We observe from the proof of Theorem 1(a) and
(b) that for j € Z,

E{(Ws — 1)/}
= /0 P(|Wp — 1|7 > s)ds

= / P(|Wy — 1| > s/ ds
0

IN

/ {IP’(|Z’EZ bl — 1] > @D j2) L P2 7] > sl/(2j)/4)}ds
0
2/ exp { — Cmin(qlwn31/(27')7 quwnsl/j)}ds

0

Rl 1 t2
2 e dtd
- / /1/<zj>/4 NZITHIM eXp( W grsy) s

= C/ ’ exp Cmin(qunS,(Jz,wnSQ)}dS

IN

(4t)? t2
2 -
+ / / \/27r,u’2u exp(~ W
= C/ exp C(Q1,wn8)}ds

———)dsdt

JrCJ/ §%° exp{ 7O(q2,wn/$2)}d$
0

) 00 42j t2j t2 d
+ — t
0o V2rp'Xp b 2//2#)

o o L
= Cilt1u, + @i, T0,)-
This proves Lemma 4. O
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Lemma 5. Suppose v < £ and Conditions 1 to 3 hold. For any j € Z,, there
exists a constant C; > 0 such that

.V Y . .
Eflog” (pro)} < Cilar ) +axl, +al,). VO E{1,2)

Proof. We observe that
Elog™ (Wp)
: 1 , 1
= E{log (Wy)Z(IWy — 1] < )} + E{log® (W) Z(Wy — 1] > 1))

sup logzj(m) —|—E{10g2j(W9)I(W9 > §)}

<
z€[1/2,3/2] 2
, 1
+E{log® (W)Z(0 < Wy < 5)}
) ) ) 1
< sup  log¥ (z) + E{(Wy — 1)} + E{log® (W,)Z(0 < Wy < )t

z€[1/2,3/2]
(104)

Recall from (15) that
Wy = (5Y°Z + 1) (22 + ).

We write ¥ = HAH' where A is a diagonal matrix and H is an orthogonal
matrix. Then it follows that Wy is identically distributed as

Wy = (AY2Z + H' 1) (A2 Z 4+ H' ).

Hence we have

—_

E{log® (Wy)Z(0 < Wy < 3)} = E{log® (Wy)Z(0 < Wy < 1)}

Let Ay > -+ > Ap_u, 00 denote the descending eigenvalues of X, write Z =
(Z1y. oy Zn—w,pe) and define

!

fi= (i1, fin-w,00) = H'p.
Then we have
Wo= > N2Zi+ ) > (N2 + i)
i=1
We observe that when 0 < Wy < 1/2, log(Wy) < 0 and hence

- - 1 -
0 > log(Wp)Z(0 < Wy < =) > log{(A\1/*Zy + 11)*}Z(0 < Wy < =).

—_

[\
[\
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Consequently it follows that for any j € Z,

[
—

Elog® (Wg)Z(0 < Wy < =) E|log® {(\/*Z) + j11)*}Z(0 < Wp <

IA

2

DO |

< Elog®{(\* 2 + in)?}.

Now we establish lower and upper bounds for A\; and an upper bound for fi;.
Since Y. “nfl ), = =E> " N\ Z2 = BZ'SZ =1 — p'p, it follows from (74)
and (92) that

1 1—p'p

— < PR oy <,

2n T n—w,0/¢ !

i< jfp=p'p=o(1), (105)

for all large n. Let C; denote a generic constant that can take different values
at different locations. Consequently using (105), we obtain

EIOng{()&le + f1)?}

[ o) e { - g

= /OOO log2j(m2) Tom exp{ - %}dw
+/_Ooolog2j(x2)\/2;lr7)\lexp{ x_'ul }

[t P

g

:

Cor ) 2 ) )
<22J/12J d 221/123
< | log (w)m T+ | log (z)
(= m)? C(t+m)?
X[eXp{ 2 }+eXp{ 2 }d"”
1
< G C; —1
o \/_—’_ / o \/27’(’)\1
(z — [n)* (x + fu)
<o { ~ LI b e { - ET B Y as
[e%e) 2
< C\F+c/ Y20 4 iy — 1) — {—%}dw
+C/ — iy —1)% exp %}
< Cjvn+Cj.

Then it follows from (104) and Lemma 4 that for all large n,
Elog® (Wp) < Cjv/n. (106)
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Next, we improve the bound (106). Recall that
. . 1 , 1
Elog™ (Wy) = Eflog™ (Wo)Z(|Ws — 1] < 5)} + E{log™ (W) Z(|Wp — 1] > 2)}.

We observe from (16) that there exists some constant C,Cy > 0 such that
for all large n

1 . . _
P(|Wp—1| > 5) < 2exp(—Cmin(q1 w, , 42,0, )) +min{1, Clq3731{12 exp(—Cyqs,w, ) }-

Suppose v < . Applying Cauchy-Schwartz inequality and (106), it follows
that

4 1 - 1
BlIog® (Wo)T(W — 11 = 1)) < |/ (Blog¥ W)} (W 11> 1))
< G exp(~Cmin(qi,w, , 42,0, ) +Cj min{n/*, 0/ 1g; L/ exp(—Cgs.0,) }-
(107)

Suppose v = (. Applying Holder’s inequality and (106), we can choose a
sufficiently large number r > 1 such that for some constant € > 0,

E{log® (W)Z(Wo — 1] 2 7))

< {Elog (Wy) /" {(B(Wy — 1] > )}/
< 0@ exp ( _Cr-1) min(qy,,, Q2,wn))
0y min{nV/ @), p1/@n) =D/ o ( B @ qs,wn)}
= ;) exp ( _cr=1) 10g(£))
O flog( ")y~ exp (- T o2 1)
_ o), ' T )

for all large n.
By mean value theorem, there exists some ¢ € (1/2,3/2) such that

E{log® (Wy)Z(Wy — 1] < 5)}

< E{[(WG -1) - 2—i2(W9 — 1)2}2j1(|W9 -1 < %)}
< B{[|Wo — 1]+ 2(Wp — DX T(|Wy — 1] < %)}
< E{(Wo - 1) [L+2[Wp — 1[¥I(|Wp — 1] < %)}
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< 2YE(W, —1)¥

< Cilard, + 4k, +450,)- (109)
The last inequality follows from Lemma 4. Then the desired result follows from

(107), (108), (109) and the fact that (107) (or (108) if v = £) is negligible
compared to (109) as n — co. This proves Lemma 5. O

Lemma 6. Let Q; be as in (18). There exist constants Cy,Co > 0 such that for
n sufficiently large,

Cy exp{—Cy(n/w,)?log(n/w,)} if 1 <e<v,
() < Cy exp{—Cy(n/w,)?" 1= log(njw,)} if £ =[v] >v>[v] —1/4,
| Cyexp{—Ca(n/wy)} ife=[vl+1Lv<|v]—1/4,
Cy exp{—Ca(n/wn)} if e {0,[v]+2,...,M,}.

Proof. CASE 1. Suppose that 1 < ¢ < v. We observe from Theorem 1(c) and
(16) that for sufficiently large n,

P(Qy) < P(n_1V1752(£)1/210g(§))

n n
< P(nHVig—EVig > (—)?log(—) —n 'EVi )

Wn Wn

1 n n
< P(nt -E > —(—)Y2og(—
< P Vie —BVil 2 5 () log(7-))
n n
< CleXp{—C’g(—w )1/210g(w—)}. (110)

CASE 2. Suppose { = v. We observe from Theorem 1(b) and (d) that for
sufficiently large n,

PQ) < P{Vie>n(-

n
w—)l/QIOg(w—)}
Vi n(n/wn)"/? 1og(n/wn)
R L > _
P{‘]EVM 1= EVLg 1}
= Crexp{~Ca(=-)'"?log(—)}. (111)

Wn, n

IA

CASE 3. Suppose £ > [v] + 2. We observe from Theorem 1(a) that

EV1, 141

N 22|’1f\+272u7
EVa 141
as n — oo. This implies that for sufficiently large n,

EVi 1141 < 22[vi+2-2v
EVo 41— 212
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Consequently, it follows from (17) and Theorem 1(d) that there exist constants
C,Cy > 0 such that for sufficiently large n,

P(@n, 1141 > [v] +3/4)
IOg(VYQ,(V]+1/V1,[V]+1) 1

= ]P) —_—
( 21og(2) ” 4>
Vo
— ]P)( 27[ —‘+1 > 271/2)
V141
— Va +1 S 2_1/2]EV1,[V]+1 Vi+1
EVa 1141 EVa 1141 EVi o141
< B Vo r1+1 >2_1/2EV1,M+1 i+ Vin+ >2
- EVa 1141 EVa 1 EVipger EVip 3
V1,141 2
+]P> R Sl B S —_
(]EVLMH 3)
< Vo 41 S 22_1/2EV1,[VH1 p V1,141 < g)
- EVor+1r 3 EVa 1141 EVirg+r — 3
Vor+1 _ 2.4 _ i+ 2
< P2 Zo2fvltl-2vy o p _LIVIFL o 2
- EVa e 3 ) (]EVLMH 3
< p Vo 141 S é)—&-P( Vi+1 2
- EVo 41 3 EVifg4r — 3
Va [v1+1 ! Vi1 1
< ]P”——l‘>—+]P’ 1>
( EVa 1141 3) ( EVi 141 3)
< Cexp{—Ci(n/wy)}. (112)

It follows from (18), (112) and Theorem 1(a) that there exist constants C, Cy, C2
> 0 such that for sufficiently large n,

P() < P(OF,141)
~ _ n n
< P(anu]-‘rl > (V—| + 3/4) +]P>(Tl 1‘/17(1/]-&-1 < (w_)l/Q log(w_))
= P(ﬁny(u'|+1 > |—V-| + 3/4)
pp{ ity ol Ploglnjin)
EVi 41 EVi g
n
< Cexp{-Ci(—)}
Wn
Vl [v]+1 n(n/wn)l/z log(n/wn)
P —"——1 —1
+ {EVLMH DI FE T }
n
< Cexp{-Ci(—)}
Wn

Vi N Nov—2[v]— n
py LML g oy ()2 23205 ) 1
{1 < e os(-) — 1}



6136 J. Wen et al.
Vi1 1
+P|=—=—— -1 > =
)+ Rlgl L —11> 5)
n
Cy eXp{—Cz(w—)}' (113)

n

< Cexp{—Cy(

n
Wn

IN

CASE 4. Suppose £ = 0. The bound (113) also applies to P(€)y) because

M,

P(90) = P(() ©F) < P(6%,,,1): (114)
=1

CASE 5. Suppose £ = [v] + 1 and v < [v] — 1/4. We observe that

P(Qr141) < P(OF,) (115)

. 1 B n n
S Plon) > [Vl = )+ P Vi < ( )'/?log(—)).

a Wn, Wn

It follows from (16) and Theorem 1(a) that there exist constants C, Cy,Cy > 0
such that for sufficiently large n,

_ n n
P(n™" Vi < ()2 log(—))
n

Wn,

1/2
< P(# _1< n(n/wnI)EV IOg(n/wn) B 1)
1,[v] 1,[v]

‘/vl7 v n3/2 log’I’L
< Pl -1y 1- 8

Vl,(zﬂ wn, EVL(U]

Vi N 9, o n
< P(|—2Y 1> 1 — O(—)2VIH1/2 g —
< Hlgy,, 119G £(;,))

Vl [v] 1
< Plm—7—-11>=
B (|EV17’—D-‘ | - 2)
< Crexp(—Ca(njwy)). (116)

We observe from Theorem 1(a) that

EVi

N 22[1/‘\ —21/’
EVQ, ry"

as n — oo. Writing 6 = 2[v] — 2v — 1/2, we have 6 > 0 and

EVi 1 > 98/2+1/2
EVay ~ ’

for sufficiently large n. Next we observe from (17) and Theorem 1(d) that there
exist constants C,C7 > 0 such that for sufficiently large n,

1

P(l}n,ﬁ/] > [V—| - Z)
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log(Va, 1,1/ V1, 101) 1

= K 210g(2) 7
Vol oo
= P(—2 >271/2
(Vl,m )
_ p20 o g1 BV Vi
EVa, 1 EVa iy BV
< P Varl | g-172BV01 Vi 7 Vi > 9-0/4)
EVa,n EVa, 1) BVi iy EVi g
Vi
HP(]EX;J 1 < 2—5/4)
1.[v]
Va1 —5/40-172 EV1 11 Vi -
< P(e > 270 P ) (i < 270
EVa 1 EVa, BV
1% 1%
< IP)( 2,[v] >276/426/2)+]P>( 1,[v] §275/4)

EVa 1 EVi

Vo, 5 Vi, _
< P(=—=PL 5 20/4) 4 p(——YL < 9—0/4
(EVQJV] > 20+ (EVLM B )

Va, 1 5 Vi 5
< P (’7—1‘>2/4—1 +P "7—1(21—2 /4
( EVa 11 )+ B EVi )
< Cexp(=Ci(njwy)). (117)

It follows from (115), (116) and (117) that for sufficiently large n,
P(Qr741) < Cexp(—=Ci(n/wy)). (118)

CASE 6. Suppose £ = [v] > v > [v] —1/4. We have from (18) and Theorem
1(b) that there exist constants C, Cy, Cy > 0 such that for sufficiently large n,

_ n n
PQp) < B{n Wi 2 ()2 log(—) }

Wn

1/2
_ IP’{ Vil 1> n(n/wy,)'/*log(n/w,) 1}
]Evl,[l/‘\ EVL[V"

Vi n
< Pq|=—=2— —1] > Clog(—
- {lEVL(,,] | = Og(wn)}
< Crexp{—Ca(n/w,)*"1"*" log(n/wn,)}. (119)

Lemma 6 follows immediately from (110), (111), (113), (114), (118) and (119).
O

Proof of Theorem 2
Define
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Then T'(v*) > —1 almost surely for every n and i, ¢ satisfies that

1og2 @{T( )+1}}+e. (120)

ﬁn,f
We observe from Theorem 1 and the definition of 7, ¢, that as n — oo,

22v=2¢ almost surely if v < £,

Va,e/Vie — ¢ 1 in probability ifv=2¢,
1 almost surely ifv>4¢,

and
0 almost surely if v # ¢,

T(0y )| < min{|T()|,|T )|} —
7m0l < @)L, T} {0 in probability if v = £.
It then follows from (120) and continuous mapping theorem (cf. Theorem 2.3

of [28]) that as n — oo

v almost surely if v < £,

Upe — 4 £ in probability if v =/,

¢ almost surely if v > /.

Now we proceed to evaluate the convergence rates. Let

log(Va,e/ Vi ¢)

Une =t 21og(2)
We observe that
5 0 if f/:b,e <0,
T o, i 0,20,
and hence
E{(Pne —v)?} <E{(D; , — v)?}.
Define EV:
§=1 28) _2(v — £)log(2).
o8(gp) — 20/~ Olox(2)

CASE 1. Suppose v < £. It follows from Theorem 1(a) and (b) that

O(wi ) + O((wn /) NE=20) il > v ¢ 7y,
0 =14 0(w, ) + O ((wn/n)log(n)) ite>veZs, (121)
( ) if ¢ =v,
as n — oo. Writing Wy = Vy ¢/EVy 4, it follows from (121) and Lemma 5 that

o log(Va,¢) —log(V1, 2
B, -} = B(e BRI )
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log(W3) — log(W; 1 EVa e \2
= E(e - el 2>log Qg( ) 2l0g 2 Og(]EVl:@))
_ IE(log(Wg) —log(W7) ) )2

2log2 2log?2
_ Elog(Wo) +logWi))
- 21og?(2) 21og?(2)
< Elog®(Ws) + Elog?(W)) N 52
N log?(2) 210g?(2)
2
< Cilard, + o, +a5w,) + ﬁze)

O(w,?) + O(wn/n) ifv<t—-1/4,
 JO(w;?) 4+ O(wpn~tog(wn/n)) ifv=10—1/4,
) Ow;? ) O ((wn/n)*=4) if ve(0—1/4,0),

O(lo - ) ifv=21{,

as n — oo since N > 2v + 6 (Condition 1).
CASE 2. Suppose v > £. We observe that for t > 0

Va,e
P(|log(—==)| >t
(1 g(VM)L )
_ Vae 2,0
= Plog(y~) > 1) + Pllog(3,) < —1)
1,4 1,6
1%
= P2 s oy p (2L < ot
Vie 1,0
Voo o+ Vie _ _ipo 2.0 o ¢+ Vg 42
= P(2L >, M < P2 > et TLE S
(VI,Z_ n = )+ B 1,£_e n )
Vo _ Vie 2,0 _
Pﬂ>t_7< t/2 P Rt S ot LS emt/2
+(V27[_6,n_ )+ (VN_ - )
< ]P)(V17Z < 7t/2)+]P>(Vv275 2615/2)
n n
1% V;
—HE”(%’ZS ‘t/2)+P(%zet/2). (122)

It follows from (16) that there exist constants ¢,Cy,Cs > 0 such that for
0e{l,2},{<vandanyt>0

P(n~ 'V, > €'/?)
= P '(Vou —EVyy) > e/? —n"'EVpy)
IP’(n_l\VfM —EVp,| > ell? — c)
C1 exp(—Comin{0V (/2 — ¢), (0 V (e/? — ¢))?}). (123)

IA A
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Next, we derive the bound for P(n='Vj, < e~*/2). Recall the notation

X X
Y = (V” L Yo el (124)

Vn Vn
n Wy, = Y'Y =2ZSZ+Z'SV2u4 187 + il p, (125)

where u =EY, ¥ = (5;;) = E{(Y —p)(Y — )’} and Z ~ Ny,_q,0¢(0, ). From
(124) and (125), we obtain

]P)(n_l‘/b,ﬁ S e—t/2) _ P((Zl/2Z+M)/(21/2Z+M) S e—t/2).

Suppose the orthogonal decomposition of ¥ is given as HAH' where H and A
are the matrices of eigenvectors and eigenvalues respectively. Then we have

(21/2Z+ILL)/(21/2Z+'LL) — (A1/2H/Z+H//,L),(Al/zH/Z—FH//J)

Since H'Z and Z have the same distribution, we may rewrite H'Z, H'j as
Z, u respectively. Denoting the set of eigenvalues of ¥ in descending order as
(Ay. ooy An—w,00), we have that

n—wy6l
(W22 p) (W22 1) = 3 (N2 ),
i=1
where Z; and p; are the i-th component of the vectors Z and pu respectively for
i=1,...,n—w,0l We observe from Theorem 1(c) that

n—wny, 64
Z (N +13)
=1
n—wy,6fl
2 Z (A7 + 207

i=1

¢
—_

X
—_

(126)

Next we shall show that
liminf \; > 0. (127)

n—oo

Suppose (127) does not hold. In the following, we write A\; as A;, and p;
as fi;n to exhibit the explicit dependence of A; and p; on n. We let {ny} be a
subsequence of {n} such that limy_,o, A1, — 0. Then it follows that

ny—04 ny—0¢
Z ()‘zz,nk + 2)‘i,nkﬂ’i2,nk) < 2/\1,nk Z ()\Zynk + :u‘z2,nk) =0
i=1 i=1

as k — oo, which contradicts with (126). Using (127), we observe that for large
n,

P(n_l‘/e,z < e—t/2) _ P{(AI/QZ+#)/(A1/2Z+N) < e—t/2}
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1/2 _
P{N 21+ m)? < e7*/?)

]P;(_eft/él < )\}/2Z1 T < eft/4)
Cet/4, (128)

ININ A

Consequently, it follows from (122), (123) and (128) that

AN
Q
—
9]
|
S
~
>
—
—
[\v)
o
=

0

Finally it follows from (129) that

~ 2 ~ 2 1 2.0 2
E(@yn s —v)° < E(yn’e —v)* = E(E —v+ m log( )) =0(1),

and the proof of Theorem 2 is complete. O

Proof of Theorem 3
CASE 1. Suppose v > [v] — 1/4. We observe that

E|D, — v|
My,

= S Bl - VT
£=0

v
= E(lone — vIZ{Q0}) + D Elon,e — vIT{})

=1
M,

+ Y B, — vIT{u})

(=[v]+1
< E(|ﬁn7€0 - V|I{QO}) + E(|ﬁn,[u]+1 - V|)

[v] M,

+ Y EllDng —VIT{UN + Y Elldng —vIT{})  (130)
=1 L=[v]+2

It follows from Lemma 6 that there exist some constants Cq,Cy, C3 > 0 such
that

S (s, — v <Y (Bl — 0P T{)VE@)

(=[v]+2 (=[v]+2
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o 1
< Z (= 1 —v) vV v]exp{—Ca(n/wp)}.
{=[v]+2
< O3M?Zexp{—Ca(njwp)}. (131)

Using Lemma 6 and Theorem 2, we have

[v]
> (|0, — vIT{})

(=1
[v]

< Z” I/ng—V 2,\/P Qz
< Croxp(=Ca(o)loa(Z-)) + () P log ™ ()T{[v] = )

n

+C1 exp(— 02( )W 2”10g( ))z{( 1> v} (132)

Using Lemma 6 again, we have for sufficiently large n,

E(on s~ VIT{2}) < \/El@ne —»)2T{20}]v/P()
(M, + v)Cy exp{—Cs(n/wy,)}. (133)

IN

We conclude from (130), (131), (132), (133) and Theorem 2 that as n — oo,
N Wn —
Eli, — ] = ()Y + 0(w, ).

CASE 2. Suppose v < [v] — 1/4. We observe that

E|oy, — v|
M,
= > E(Dng, —vIT{Q))
=0
[v]
= E(|one —vIT{Q}) + > E(|ome — vIT{Q})
=1
+ Z E(|0m 0, — v[Z{Q0})
{=[v]+1
< E(|ome — vIZ{Q0}) + E(|Dn, 1) — )
[v]—1 M,
+ Z E(mn,fo - V|I{Qf}) + Z E(wn,zo - V|I{Ql})7
=1 =[v]+1

and the result follows similarly. Finally, we shall prove the almost sure conver-
gence of 7. We claim that as n — oo, almost surely, the index ¢y equals either
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[v] when v < [v] —1/4 or [v] +1 when v > [v] — 1/4. Then the desired result
follows from Theorem 2. We consider the case when v > [v] — 1/4. To verify
the latter, it suffices to prove that

( U ﬂ {lo=[v]+ 1})
j=ln=j
or equivalently,
(ﬁ U U 2)=r(Ute#m+11) =0
J=1n=j £[v]+1 j=1n=j

since {to ;éfﬂ +1}=9¢, :Ue;é[y]ﬂ . We observe that U:;O:j U1 e
is a decreasing sequence of sets as j increases. Consequently using Lemma 6, we
obtain

(AU U @)

<3 Y
J=1n=j t£[v]+1 Jmree I r0<£< M,
0Z )41
L= n n
< Jim Z;{clexp{—cz<a>1/2log<w—n>}
o log( - exp{~Co( - )}} —0.
The case v < [v] — 1/4 follows in a similar manner. O

Proof of Theorem 4
We observe that

Eloy, —v| = E[og —v|Z(7 = D]+ E[o;, —v|Z(7 # 1)]

= E[o;, —v||f = UP(? = 1) + E[2,}, —v[|7 # 1P(7 # 1)

< O{(E)'2 +wry + (M + v)B(G # 1)
1
w 1—poL log(n)

< O{(My2 L - (M, +

< OIC ) 4 ()™
Wniy1/2 -1

= {2 gy,

as n — oo. O

Appendix E: Proof that H,(v) is non-zero

Let Hy(v), with v < £, be as in Part (a) of Theorem 1. This section proves that
Hy(v) # 0. Consider the function F : (0,00) — R where

_1) 1w if v
F(x) = (—1)LuJ+1Gu(\/5) = {(l(i)l)”l v log(z) ii v i ?:’
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Suppose v ¢ Z,. We observe that

Lv]

()P @) = { [] 0 - w ot
u=0
Suppose v € Z,. We observe that
v+1 .
y y y v+ 1\ @t @
1) +1 po( +1)(3;) = Z(-1)? +2Z( ; )da:”“ j(gj )%(logx)

We define

v+1
= Z(—1)t2 Z (U+ 1) . Vll)!xj_l(—l)j_l(j — Dz~

J j
v+1
_ 1( 2w+, —12(”"’1) 1)’
2
v+1
%( 127+, {Z<1/+1) A—l}
7=0
v!
= o

I I
plt) = {mﬂ = ity ¢z,

%! ifV€Z+.

It can be readily verified by elementary calculus that for all x > 0

(= 1)+ (L) () — / e~ p(t)dt. (134)
0

For some small number € > 0, denote F.(z) = F(x + ¢). Then applying Taylor
expansion, integration by parts and (134), we obtain

vl L)
F27(0
FE(I) o l'( )l‘l
1=0 ’
1 x
— [ (z—s)EFD (5)ds
]! /0
1 x
— | (z— S)LVJ F(LVJ+1)(8 +¢)ds
v]! /0
o / x<:v — )W~y / e et pyatds
]t Jo 0
(-1

lv]! 0 0
(_1)\_”]_,'_1 /oo e—(w+8)t /xt v
vIedSo(t)dsdt
[v]! ot g e
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(_1)\_1/]—&-1 oo e—(w-i—e)t

o A
[VJ j
J

S S !

o —(z+e)t L J lv]+1—j
e xt ( 1) lv|—j
/0 7{1 ety (at) }p(t)dt

(wt)lV)- J} (t)dt

v|+1 _
ok 2 (] i)
oo —et V] lv]—
¢ —xt (—at) ’
= o t)dt
/0 Tl (7] - j)! Jott)
0 tL”J""l = ]' '
Define + = v/—1 and
|
ck = o —, Vk=0,...,¢

Hocjcojun(k =)

Using (135), Fourier representation of e~(h2=kD)*t and Lemma 1, we have

14

14
Z Z Ck10k2F8{(k2 - kl)z}

k1=0k2=0

= ZZ%%Z (ke = )
k‘l 0k52 0 =
[v] 2417
N2 {*(kZ 7k1) t}j
+ Z Z Ck16k2/ ij+1 k) *Zfl}p(t)dt
k1=0 k2=0 =0 "
et L ka—k1)2t
B / I+t DD erene TR p(t)dt
0 k1=0 ka—0
/oo ¢ ¢ V2t V2t 2
_ kiyV2—thayV2e=y" /20 ) (1) dt
(e [T 8 S et b ),
o tIF \ﬁ Ok, —Okz 0
[ (e [ 1 e
_ crpeFYV2t|Zemy dy)/’(t)dt > 0.
v]|+1
o tlIH \ﬁ - 2o

The last inequality follows from the observation for any ¢t > 0 the integrand of
the inner integral is nonnegative and not constantly 0 which implies that the
inner integral, as a continuous function of ¢, is always strictly positive for all
t> 0.
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Letting € — 07T, it follows from monotone convergence theorem that

L 4
Z Z cklckzF{(kQ - kl)z}
k1=0ko=0
_ / T (= / h |zl:cke’ky‘/§|26_y2/2dy) p(t)dt > 0. (136)
o tlv]+1 21 o pors ’
Since
)4 £
Hg(V) = C,, Z Z CklckzF{(kg - k1)2},
k1=0k2=0
where
o _feneny gz,
T (1)t if veZy,
that Hy(v) is non-zero follows from (136). O

Appendix F: Lemma 7 (if and only if condition for mean square
differentiability)

This section investigates conditions on the covariance function which gives rise
to mean square differentiability of random fields.

Definition 2. A sequence of random variables X1, Xo,... in Ly (E|X;|? < oo
for all ¢ = 1,2,...) is said to converge in mean square sense to some random
variable X if

E(| X, —X*) =0

as n — oQ.

Lemma 7. Let X(t) be a real-valued random field on R with constant mean
0 and covariance function K(x,y). Then X (t) is mean square differentiable at
t € R if and only if

‘m K(t+h,t+l) —K(t,t+l) —K(t+h,t) +K(t,t)
(h,1)—(0,0) hl

(137)

exists. A sufficient condition for (137) to exist is that either %K(m,y) or
%K(m,.y) exists in a neighborhood of (t,t) and is continuous at (t,t). More-
over, let X(t) denote the mean square derivative of X(t) provided it exists. Then
EX(t) =0 for all t € R and the covariance function of X (t) is KV (z,y).
Proof. For simplicity of notation, let Xj(t) = {X (¢ + h) — X(t)}/h. Suppose

Xn(t) converges in mean square sense as h — 0 to a random field X (), i.e.

lim E[{ X}, (t) — X (t)}?] = 0.

h—0
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Then it follows from Cauchy-Schwartz inequality that

E{XA(6)X, (1)} — E{X ()}
<E|X5 (1) X (t) — Xn(t) X (t) + Xn(t) X (t) — {X(t)}?]
<E|Xa(){Xi(t) — X (1)} + E[{X0(t) - X(0)}X (1)
<VEXnOPIVERX (1) — X(012] + ELXa() - X021 ELX(0)}2]
=0 (138)

as (h,1) — (0,0). (138) and

K(t+ht+1) = K(t+h,t) — K(t,t +1) + K(t,1)

EX0(0X:(0)) = -

imply that (137) exists. This completes the proof of the “only if” part.
To prove the “if” part, that is, Xp(t) converges in mean square sense as
h — 0, from the completeness of the Lo space, it suffices to show that

o EXA(0 = X)) =0, (139)

We observe that

E[{Xx(t) — Xi(t)}7]
K(t+ht+h)—2K(t+ h,t)+ K(tt)

h2
+K(t+l,t+l) — 2K (t+1,t) + K(t,t)
l2
K(t+ht+1)— K(t+ht)— K(t,t+1)+ K(t,t)

-2

= . (140)

Then (139) follows from (140) and the assumption that (137) exists.

Suppose h,l are small enough and %K (z,y) exists in a neighborhood of
(t,t) and is continuous at (¢,t). Define A(x) = K(x,t + 1) — K(x,t). Since
9K (7,y) exists in a neighborhood of (t,t), A(z) is differentiable in a neighbor-
hood of ¢. Hence by the mean value theorem, there exists some 6; € (0, 1) such
that

K(t+ht+1)— K(t+ht)— K(t,t+1)+ K(t,t)

hl
_ LAl - A,
1 h
1dA
1 0K K
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Define B(y) = %%(t + 01h,y). Since gj—é‘;(x,y) exists in a neighborhood of
(t,t), B(y) is differentiable in a neighborhood of t. It follows from the mean
value theorem and (141) that there exists some 6 € (0,1) such that

K(t+ht+1)—K(t+ht)— Kt t+1)+ K(t,t)
hi

B(t +1) — B(t)

l
dB
= t+ 65l
dy( +020)
?K
= t+61h,t+ 051 142
D20y (L +01h,t + 0a1). (142)
The existence of (137) follows from the (142) and the continuity of
%K(z,y) at (t,t). If agawK(:c,y) exists in a neighborhood of (¢,t) and is
continuous at (t,t), the result follows similarly.
Next, we calculate the mean function and covariance function of X (¢). It
follows that for ¢, z,y € R

EX(0)] < lim {[E{X(t) - X0()}] + [EXa(1)]} =0, (143)

and

X @XW)} -BX@X0Y
[E{X0(2)Xi(y) — X (@)X (5) + Xn(2)X(y) — X (@)X (5)}]
EIXn(@){Xi(y) - X ()} + Bl{Xa(2) - X(@)}X(9)]

VEX @ PIVERX () - X))

+\/E[{Xh(x) - X(x)}Q]\/lEHX(y)}Q]
L0 (144)

IN

IN

as (h,1) — (0,0). We conclude from (143) and (144) that

Cov{X(z),X(y)} = lim X =KoY :
ov(X(@). X)) = fim = E(X()Xi() (2,9)
This proves Lemma 7. 0
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