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Abstract: We present a new method for robust high-dimensional linear
regression when the scale parameter of the additive errors is unknown. The
proposed estimator is based on a penalized Huber M -estimator, for which
theoretical bounds on the estimation error have recently been proposed in
high-dimensional statistics literature. However, the variance of the error
term in the linear model is intricately connected to the optimal parameter
used to define the shape of the Huber loss. Our main idea is to use an
adaptive technique, based on Lepski’s method, to overcome the difficulties
of solving a joint nonconvex optimization problem with respect to the lo-
cation and scale parameters. Furthermore, by including a weight term in
the definition of the M -estimator, our consistency results hold even when
the covariates are heavy-tailed. We then derive asymptotic normality of a
one-step estimator constructed from the penalized Huber estimator, which
can be used to construct confidence regions for subsets of coordinates. The
one-step estimator is shown to be semiparametrically efficient when the co-
variates are sub-exponential. Our results substantially generalize previous
work on high-dimensional inference, derived under sub-Gaussian assump-
tions on both the covariate and error distributions.
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1. Introduction

Robust statistics, in its classical form, is a mature and established field [37,
57, 32]. Recently, notions from robust statistics such as ε-contamination and
influence functions have surfaced in theoretical computer science and machine
learning [20, 48]. The use of the Huber loss in place of a squared error loss to
encourage robustness has long been adopted in engineering fields, as well [25].

In statistics, a small but growing body of work concerns analyzing high-
dimensional analogs of classical robust estimators [47, 78, 56, 10, 53, 23, 70,
71, 27]. The basic premise is that although it is relatively straightforward to
devise reasonable high-dimensional estimators, theoretical analysis may become
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somewhat trickier in high dimensions [2]. Furthermore, special care must be
taken when optimizing such objective functions over a high-dimensional space
[1].

Our previous work [53] developed a theory for robust high-dimensional linear
regression estimators using penalized M -estimation. The main contribution was
to show that global optima of �1-penalized M -estimators enjoy the same rates
of convergence as minimizers of the Lasso program, when the M -estimation loss
function is convex and has a bounded derivative—without requiring a Gaus-
sian or sub-Gaussian assumption on the additive errors. In fact, we also estab-
lished that local optima of penalized M -estimators with a nonconvex, bounded-
derivative loss are statistically consistent within a constant-radius region of the
global optimum, and such local optima may be obtained via a two-step process
initialized using a global optimum of the �1-penalized Huber loss.

However, a drawback of Loh [53], as well as other related work on penalized
M -estimation [23, 71], is that the theoretically optimal choice of the parame-
ter involved in defining the Huber loss depends critically on the scale of the
additive errors. This should not be surprising, given that similar complications
were recognized in low-dimensional settings for location estimation, when prior
knowledge of the scale was unavailable [36]. The “adaptive” methods proposed
for low-dimensional robust regression [39, 34] are mostly heuristic suggestions
involving, e.g., computing the Huber regression estimate over a grid of values
and choosing the parameter that minimizes a surrogate for asymptotic vari-
ance. Even in low dimensions, a theoretical gap has remained in terms of how
to rigorously calibrate the Huber loss function in a finite-sample setting.

In this paper, we introduce a new solution to the problem of adaptively
choosing the scale parameter of a robust M -estimator. The key tool is Lepski’s
method, and the key observation is that whenever the Huber loss parameter
is larger than the true scale parameter of the additive errors, it is possible to
derive �1- and �2-error bounds on the global optimum that increase linearly
with the choice of Huber parameter. This allows us to apply Lepski’s method
to obtain an estimator that behaves comparably well to the oracle estimator.
Importantly, our method bypasses the hard optimization problem of jointly
estimating the location and scale. We note that Lepski’s method could also be
invoked in the low-dimensional, unpenalized setting to rigorously obtain robust
regression estimators without needing to optimize a nonconvex problem in an
ad hoc manner. In addition to relaxing the usual sub-Gaussian distributional
assumptions on the additive errors to a finite variance requirement, we also
show how to introduce a weight function to downweight leverage points, thus
allowing our theory to be applied to a broader range of heavy-tailed covariate
distributions, as well.

We further explain how our estimation results can be used to construct con-
fidence intervals for coordinates of the regression vector when the covariates are
sub-exponential. Our approach builds directly on recent literature from high-
dimensional inference [75, 43], where confidence regions are derived based on
asymptotic normality of one-step corrections of an �1-penalized M -estimator.
However, as the success of these methods relies on suitable nonasymptotic error
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bounds on the initial estimator, our results on the �1-penalized Huber esti-
mator fill a gap by providing an appropriate initial estimator which can be
used for a wider range of error distributions. One-step estimators themselves
originate from classical robust statistics [7], as a method for improving the ef-
ficiency of initial (and more computationally tractable) M -estimators. In the
same way, whereas the �1-penalized Huber estimator may suffer from a loss
of efficiency—especially when weight functions are introduced to tame the co-
variate distribution—we show that our proposed one-step estimators enjoy the
property of semiparametric efficiency, thus implying optimality of the resulting
confidence regions.

Related work: Other proposals for regression with heavy-tailed errors in-
clude work by Hsu and Sabato [35], Minsker [58], and Lugosi and Mendelson [55].
However, many of these methods focus on situations where the covariates are
well-behaved, and all of them assume knowledge of an upper bound on the error
variance. In contrast, our method produces consistent estimators under much
milder assumptions on the covariates, and encompasses situations where prelim-
inary scale estimates are notoriously difficult to obtain. Nonetheless, a benefit
of the methods introduced in the aforementioned papers is that they can also
be shown to be robust in situations where a constant fraction of the data is
adversarially contaminated [46, 19, 51, 18, 15, 67, 62, 3].

Another important related work is by Chichignoud et al. [17], who suggest an
adaptive method for tuning parameter selection in the Lasso based on Lepski’s
method. However, the main focus in that paper is in obtaining near-optimal
bounds on the �∞-error. Importantly, the objective function still involves a
least-squares loss as in the classical Lasso, whereas our objective functions are
designed for robust regression and have the corresponding parameter linked to
the regularization parameter involved in the �1-norm.

On the topic of inference, Belloni et al. [6] introduced a different method for
constructing confidence intervals in high-dimensional regression settings based
on a one-step correction to �1-penalized M -estimators. Although this approach
is somewhat orthogonal to ours, one benefit of Belloni et al. [6] is that the
method can be applied to a broader class of M -estimators than ours, since
the smoothness conditions on the loss function are not as stringent. On the
other hand, our approach has benefits in terms of semiparametric efficiency for
estimation of multiple target parameters (cf. Remark 8 in Section 4.3 below).

Finally, we mention another recent proposal for calibrating the tuning pa-
rameter in high-dimensional penalized Huber regression [80]. This is a some-
what heuristic method based on iteratively solving the empirical version of
a system of equations which, at the population level, has a unique solution
equal to the theoretically optimal parameter. We end by noting that although
several alternative tuning-free approaches for high-dimensional regression have
been proposed, e.g., based on penalized quantile regression [11, 79, 77, 22], the
square root Lasso [5], or the Wilcoxon loss from nonparametric statistics [81],
to the best of our knowledge, these alternative approaches also require stronger
assumptions on the covariate distributions than we impose in our paper. It is
unclear whether the analysis in these papers could be extended to settings where
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weights are introduced to dampen the effect of outliers.
Notation: For a vector v ∈ R

p, we write supp(v) ⊆ {1, . . . , p} to denote the
support of v, and for an arbitrary subset S ⊆ {1, . . . , p}, we write vS ∈ RS to
denote the vector v restricted to S. For a matrixM , we write |||M |||q to denote the
�q-operator norm, and we write ‖M‖max to denote the elementwise �∞-norm.
We write vec(M) to denote the vectorized version of the matrix. Let R+ denote
the positive reals.

We use the notation c, C ′, c0, etc., to denote universal positive constants,
where we may use the same notation to refer to different constants as we move
between results. We use the abbreviation “w.h.p.” to refer to an event occurring
with probability tending to 1 as the problem parameters n, p → ∞. We use the
standard big-O notation, so that two functions f(n) and g(n) satisfy f = O(g)
if there exist a constant C and an integer n0 such that f(n) ≤ Cg(n) for all
n ≥ n0. We also write f � g, and we define f � g (equivalently, f = Ω(g))
analogously. Finally, for sequences of random variables {Xn} and {Yn}, we write
Xn = OP (Yn) to denote boundedness in probability, i.e., for any ε > 0, there

exist a constant Bε and an integer nε such that P
(∣∣∣Xn

Yn

∣∣∣ > Bε

)
< ε for all n ≥ nε.

We write Xn = oP (Yn) to mean that Xn

Yn

P→ 1. We write f(n) = polylog(n) when
f(n) = g(logn), for some polynomial function g.

2. Background and problem setup

We begin by describing the regression model to be studied in our paper. We
also discuss several previously existing proposals in the literature.

2.1. Model and assumptions

Consider observations {(xi, yi)}ni=1 from the linear model

yi = xT
i β

∗ + εi, (2.1)

where β∗ ∈ R
p is the unknown regression parameter vector. We will also assume

that ‖β∗‖0 ≤ k, where k < n 
 p, and denote S := supp(β∗).
We will work in a random design setting, where the xi’s and εi’s are i.i.d.

draws from covariate and error distributions, such that xi ⊥⊥ εi and E[εi] =
E[xi] = 0. Our results could be adapted to the fixed design setting in a fairly
straightforward manner; however, we are primarily interested in a setting where
the distribution of the covariates is heavy-tailed, leading to high-leverage points.
We will denote the covariance matrix of the xi’s by Σx. We will also assume that
cmin ≤ λmin(Σx) ≤ λmax(Σx) ≤ cmax, for some constants cmin, cmax ∈ (0,∞).

Turning to the error distribution, we will assume throughout the paper that
σ∗ :=

√
Var(εi) is finite. We will assume that the distribution of εi is symmet-

ric, as is customary in classical robust statistics to ensure consistency of regres-
sion M -estimators. Note, however, that this is not a major limitation of our
work—we could first postprocess the data to obtain the transformed dataset
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y2i−y2i−1√

2
, x2i−x2i−1√

2

)}�n/2�
i=1

and then run the regression algorithm on these

points.

We will introduce additional assumptions on the distributions of the εi’s and
xi’s in Assumptions 1, 2, and 3 later. Recall the following standard definitions
of sub-Gaussian and sub-exponential distributions [76], which will be used in
the sequel:

Definition 1. We say that a random variable X is sub-Gaussian with parameter
σ > 0 if

P(|X| ≥ t) ≤ 2 exp

(
−t2

σ2

)
,

for all t ≥ 0. We say that a random vector X ∈ R
p is sub-Gaussian with

parameter σ if vTX is a sub-Gaussian random variable with parameter σ, for
any unit vector v ∈ R

p.

Definition 2. We say that a random variable X is sub-exponential with param-
eter σ > 0 if

P(|X| ≥ t) ≤ 2 exp

(
−t

σ

)
,

for all t ≥ 0.

2.2. Previous work

We now briefly describe several previously proposed methods for robust linear
regression in high dimensions. We focus on methods that have been devised to
handle outliers in the covariates, since our proposed algorithm is provably con-
sistent when the covariate distribution is heavy-tailed, as well. (For additional
related work, see the references cited in the introduction.)

The sparse least trimmed squares (LTS) estimator [1] aims to optimize the
objective

β̂ ∈ argmin
β

{
1

h

h∑
i=1

r2(i) + λ‖β‖1

}
,

where the r2(i)’s are the sorted residuals {(yi − xT
i β)

2}ni=1 in ascending order,
and h ≤ n is a truncation parameter. This is an �1-penalized version of the
least trimmed squares estimator [65]. Although sparse LTS has been shown to
perform well in simulations, only a heuristic algorithm has been proposed for
optimizing the objective, and statistical guarantees for both global and local
optima are absent from the literature.

The S-Bridge estimator [56, 70] is defined via the objective function

β̂ ∈ argmin
β

{
s2(r(β)) + λ‖β‖rr

}
,
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where r > 0, and s(r(β)) is a robust scale estimator based on the residuals
{yi − xT

i β}ni=1. The MM -Bridge estimator is defined by

β̂ ∈ argmin
β

{
1

n

n∑
i=1

ρ

(
ri(β)

s(r(β̂1))

)
+ λ‖β‖rr

}
,

where ρ is a robust loss function and β̂1 is an initial estimate of β∗; for r = 1,
this method is also known as the MM -Lasso. Smucler and Yohai [70] derived
the asymptotic consistency of global optima when the loss function ρ is of a
redescending type, meaning that ρ′ is eventually equal to 0. However, the results
are asymptotic, and again, no guarantees are provided for the performance of
local optima, which may result from the optimization algorithm proposed by
the authors. Penalized S-estimators are further analyzed in Freue et al. [27].

Our work builds upon Loh [53], which studied local and global optima of
penalized M -estimators. The main contribution in that work is a rigorous non-
asymptotic analysis of global optima in the convex case, as well as an analysis
of certain consistent local optima when the objective function is nonconvex.
However, the success of the methods proposed in that paper require the param-
eter of the Huber loss to be chosen correctly, i.e., upper-bounding an expression
involving moments and tails of the error distribution. Since this information
would generally be unknown a priori, the question of how to choose the Huber
parameter in an adaptive manner remained unanswered.

Finally, we mention methods based on joint estimation of location and scale.
One natural approach is to jointly minimize the objective function

(β̂, σ̂) ∈ argmin
β,σ

{
1

n

n∑
i=1

�

(
yi − xT

i β

σ

)}

(or a high-dimensional analog thereof). However, even when the loss function is
convex, this leads to a highly nonconvex objective. Iteratively optimizing with
respect to β and σ motivates the MM -estimator [83], but theoretical guarantees
in terms of both statistical consistency and convergence of the optimization
algorithm are largely absent from the literature. Huber [37] also proposed the
concomitant estimator:

(β̂, σ̂) ∈ argmin
β,σ

{
1

n

n∑
i=1

�

(
yi − xT

i β

σ

)
σ + aσ

}
, (2.2)

where a is an appropriate constant to ensure Fisher consistency. The key insight
is that if � is a convex function, the loss function Ln(β, σ) appearing in the
objective (2.2) is also jointly convex in (β, σ). However, the choice of the correct
constant a to provide consistency is somewhat intricate. A small calculation
shows that if we denote L(β, σ) = E [Ln(β, σ)], we have∇L(β∗, σ∗) = 0 provided

a = E

[
�′
( εi
σ∗

) εi
σ∗ − �

( εi
σ∗

)]
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holds. Thus, some prior knowledge of the distribution of εi is required to choose
a appropriately. In contrast, our method results in a consistent estimate of β∗

whenever εi has a symmetric distribution. Another important issue is that if
� is nonconvex—as is recommended to deal with high-leverage points in the
covariates—Huber’s estimator (2.2) would no longer be jointly convex, leading
to a more tricky analysis of local optima in the (β, σ) parameter space.

3. Adaptive scale estimation

Consider the Huber loss function

�τ (u) =

{
u2

2 , if |u| ≤ τ,

τ |u| − τ2

2 , if |u| > τ,

defined with respect to a parameter τ > 0. Importantly, the Huber loss is
differentiable, and ‖�′τ‖∞ ≤ τ . We also define a weight function w : Rp → R+,
with characteristics which will be described later. We will study the behavior of
the �1-regularized Huber estimator

β̂τ ∈ argmin
β

{
1

n

n∑
i=1

�τ
(
(xT

i β − yi)w(xi)
)
+ λτ‖β‖1

}
. (3.1)

The idea of downweighting individual terms as a function of the covariates
is a classical idea from robust linear regression, where various authors studied
M -estimators of the form 1

n

∑n
i=1 v(xi)�

(
(xT

i β − yi)w(xi)
)
, or more generally,

1
n

∑n
i=1 η(xi, x

T
i β − yi) (see Hampel [32, Chapter 6.3] and the references cited

therein). The motivation for introducing weights in classical settings was to
guarantee infinitesimal robustness of the regression estimator by ensuring that
the influence function stayed bounded even when the covariates were contam-
inated. Although our choice to introduce weights only within the individual
arguments of the loss function terms does not exactly coincide with the more
popular framework of Mallows or Schweppe weights from classical robust statis-
tics, one should keep in mind that the central study in our analysis is somewhat
different (concerning robustness to heavy tails in the covariate distribution,
rather than a study of influence or other notions of sensitivity). Nonetheless,
the idea of downweighting individual arguments can also be found in the paper
by Krasker [49]. See Remark 1 for more connections between suitable choices of
weight functions for our theory to hold and classical choices of weight functions
from robust statistics.

For our theory, we will assume that the weight function satisfies the following
properties:

Assumption 1. Assume that

(i) w(xi)xi is sub-Gaussian with parameter b′,
(ii) ‖w‖∞ ≤ 1, and
(iii) λmin

(
E
[
w2(xi)xix

T
i

])
≥ c′min, for some constant c′min > 0.
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Note that the conditions of Assumption 1 involve both the weight function
and the distribution of the xi’s. As noted in Section 3.1 below, when the xi’s
are well-behaved (e.g., sub-Gaussian), we may set w ≡ 1, somewhat simplify-
ing the analysis. However, we do not in general assume that the xi’s follow a
sub-Gaussian distribution—Assumption 1 can be satisfied by arbitrarily heavy-
tailed distributions, as long as the weight function is chosen appropriately (cf.
Example 2 below).

The proof of the following theorem, based on arguments developed in Loh [53],
is contained in Appendix B. Recall that σ∗ denotes the standard deviation of
the error distribution, and is assumed to be finite.

Theorem 1. Suppose the weight function satisfies Assumption 1. Suppose the
Huber parameter satisfies τ ≥ cτσ

∗, the regularization parameter is chosen to

be λ = 2c0

√
log p
n , and the sample size satisfies n � k log p. Then the estimate

β̂τ from �1-penalized Huber regression with parameter τ satisfies

‖β̂τ − β∗‖2 ≤ Cτ

√
k log p

n
, and

‖β̂τ − β∗‖1 ≤ 4
√
k‖β̂τ − β∗‖2,

with probability at least 1− c1p
−c2 , where the ci’s are universal constants.

Importantly, the choice of λ = 2c0

√
log p
n in Theorem 1 depends only on a

universal constant c0. This is in contrast to the usual Lasso, which requires the
tuning parameter λ to be proportional to the unknown quantity σ∗.

We also comment on the requirement that τ ≥ cτσ
∗, where cτ is an appro-

priately defined constant. We will provide a method in the next subsection for
adaptively choosing τ without prior knowledge of σ∗, with a guarantee that
the estimator obtained from our procedure is at least as good as the estima-
tor obtained by taking the theoretically optimal choice τ = cτσ

∗. However,
suppose momentarily that we are able to set the Huber parameter τ equal to
cτσ

∗, and consider for the sake of illustration that the εi’s are drawn from a
mixture distribution (1 − ζ)F + ζG, where F and G are both zero-mean sub-
Gaussian distributions with sub-Gaussian parameters σF ≤ σG, and ζ is the
mixing probability. Standard results on sub-Gaussian distributions imply that
the mixture distribution is also sub-Gaussian, with parameter bounded by σG.

Thus, Lasso theory implies that ‖β̂Lasso−β∗‖2 � σG

√
k log p

n . On the other hand,

the variance of the mixture distribution is a weighted combination of the vari-
ances of F and G, hence is bounded by a constant multiple of (1− ζ)σ2

F + ζσ2
G.

If ζ is close to 0, the result of Theorem 1 translates into the �2-error bound

‖β̂τ − β∗‖2 � τσF

√
k log p

n on the �1-penalized Huber estimator. If σF 
 σG,

this can lead to significant gains in the estimation error in comparison to the
Lasso.
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3.1. Examples

We now explore the applicability of Theorem 1 in some specific examples. In
particular, we will discuss combinations of weight functions and covariate dis-
tributions under which the conditions of Assumption 1 are satisfied.

Example 1 (Sub-Gaussian distributions). When the distribution of xi is sub-
Gaussian, we can simply choose w ≡ 1; i.e., we do not need to downweight any
of the terms in the objective (3.1) in order to obtain the desired error bounds.
Indeed, the vanilla form of Huber regression is known to perform well when
leverage points are not present. In particular, the distribution of w(xi)xi is sub-
Gaussian, and provided λmin(Σx) ≥ cmin > 0, we have λmin

(
E
[
w2(xi)xix

T
i

])
≥

cmin, as well.

Example 2 (Spherically symmetric distributions). Now assume that the distri-

bution of xi is spherically symmetric, meaning xi
d
= RU , where U is uniformly

distributed on the unit sphere and R is a scalar random variable. Then Σx is a
multiple of the identity; for this illustration, assume Σx = I for simplicity. We
present families of distributions such that

w(x) = min

{
1,

b
√
p

‖x‖2

}
(3.2)

will satisfy the desired properties for sufficiently large p, where b > 0 is a con-
stant which does not depend on p.

We first verify Assumption 1(i). Recall that
√
p xi

‖xi‖2
, which is uniformly

distributed on the surface of the sphere of radius
√
p, is sub-Gaussian with pa-

rameter σ = Θ(1) [76, Theorem 3.4.5]. Hence, for a unit vector v ∈ R
p, we

have

P(|w(xi)x
T
i v| ≥ t)

= P
(
|vTxi| ≥ t, ‖xi‖2 ≤ b

√
p
)
+ P

(
b
√
p
|vTxi|
‖xi‖2

≥ t, ‖xi‖2 > b
√
p

)
≤ P

(
|vTxi|
‖xi‖2

≥ t

b
√
p

)
+ P

(
|vTxi|
‖xi‖2

≥ t

b
√
p

)
≤ 4 exp

(
−t2

σ2b2

)
,

from which it follows that w(xi)xi is sub-Gaussian with parameter Θ(b) (cf.
Definition 1).

Next, note that for any unit vector v ∈ R
p, we have

vTE
[
w2(xi)xix

T
i

]
v

= vTE
[
xix

T
i 1 {‖xi‖2 ≤ b

√
p}
]
v + vTE

[
b2p

xix
T
i

‖xi‖22
1 {‖xi‖2 > b

√
p}
]
v

≥ vTE

[
b2p

xix
T
i

‖xi‖22
1 {‖xi‖2 > b

√
p}
]
v
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= vTE

[
b2p

xix
T
i

‖xi‖22

]
v − vTE

[
b2p

xix
T
i

‖xi‖22
1 {‖xi‖2 ≤ b

√
p}
]
v

≥ vTE

[
b2p

xix
T
i

‖xi‖22

]
v −

√√√√E

[(
b2p(xT

i v)
2

‖xi‖22

)2
]
P (‖xi‖22 ≤ b2p), (3.3)

using the Cauchy-Schwarz inequality in the last line.
Since the covariance matrix of the uniform spherically distributed vector√
p xi

‖xi‖2
is the identity [24, Theorem 2.7], the first term on the right-hand side

of inequality (3.3) is equal to b2. For the second term, we use additional proper-
ties of moments of spherically symmetric distributions. By Lemma 17, we can
compute

lim
p→∞

E

[(
p(xT

i v)
2

‖xi‖22

)2
]
= 3.

We now study conditions for which

P
(
‖xi‖22 ≤ b2p

)
≤ 1

12
, (3.4)

in which case inequality (3.3) implies that

λmin

(
E
[
w2(xi)xix

T
i

])
≥ b2

2
,

giving Assumption 1(iii). Note that

P
(
‖xi‖22 ≤ b2p

)
= P

⎛⎝1

p

p∑
j=1

x2
ij ≤ b2

⎞⎠ .

If xi ∼ N(0, I), this inequality will certainly hold for any b < 1 for sufficiently
large p, since the xij’s are i.i.d. and the empirical average concentrates. More
generally, Guédon and Milman [31] established a similar concentration inequal-
ity when xi is a log-concave distribution, with later generalizations to distribu-
tions with heavier tails [26].

In the aforementioned cases, the left-hand side of inequality (3.4) actually
tends to 0 as p → ∞. However, we only need the expression to be upper-bounded
by a constant. Inequality (3.4) can be rewritten as

P
(
R2 ≤ b2p

)
≤ 1

12
, (3.5)

where we recall that E[R2] = p due to the assumed isotropy condition. Theo-
rem 2.9 of Fang et al. [24] provides the density function for R, from which the
condition (3.4) can further be verified for sufficiently small b for various classes
of distributions. Note that this line of argument allows the random variable R,
and consequently also xi, to be arbitrarily heavy-tailed, as long as it possesses a
finite second moment.
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Finally, note that while Example 2 is stated for spherically symmetric dis-
tributions, a similar weight assignment would work if the xi’s were elliptically
symmetric, instead, i.e., Bxi is spherically symmetric for a well-conditioned
matrix B ∈ R

p×p. In this case, we could define the weight function w(x) =

min
{
1,

b
√
p

‖Bx‖2

}
and follow nearly identical derivations as above. Thus, in prac-

tice, one might choose to define the weights according to w(xi) = min
{
1,

√
p

‖Θ̂xi‖2

}
, where Θ̂ is an estimate of Σ−1.

Remark 1. The choice of weight function (3.2) is a special case of the family
of weight functions studied in classical robust regression literature [32, Chapter

6.3], where wB(x) = min
{
1, 1

‖Bx‖2

}
for B ∈ R

p×p. Optimal choices of B have

accordingly been derived to satisfy various criteria, e.g., maximum efficiency
subject to bounds on the gross-error sensitivity and/or local-shift sensitivity,
in which case the choice of parameters is implicitly derived from the desired
upper bounds. Note, however, that since we are only interested in obtaining high-
probability error bounds of the correct order, we do not need as fine-grained a
characterization of the matrix B as in the classical setting. Thus, our discussion
in Example 2 above, which specifies that B � 1√

p , is sufficient for our purposes.

See also Krasker and Welsch [50] and Huber [38].

3.2. Lepski’s method

We now discuss Lepski’s method [52, 9, 14, 59]. Consider τmin and τmax such
that τmin ≤ cτσ

∗ ≤ τmax. Let τj = τmin2
j , and define

J = {j ≥ 1 : τmin ≤ τj < 2τmax}.

Note that |J | ≤ log2

(
2τmax

τmin

)
.

Let β̂(j) denote the output of the regression procedure with τ = τj , and define

j∗ = min

{
j ∈ J : ∀i > j s.t. i ∈ J , ‖β̂(i) − β̂(j)‖2 ≤ 2Cτi

√
k log p

n

and ‖β̂(i) − β̂(j)‖1 ≤ 8Cτik

√
log p

n

}
. (3.6)

(We define j∗ = ∞ if no such indices exist, but we will show that j∗ < ∞, w.h.p.)
Thus, to compute j∗, we perform pairwise comparisons of regression estimates
obtained over the gridding of the interval [τmin, 2τmax].

Note that if our goal were simply to obtain �2-consistency, we could apply
Lepski’s method where j∗ is defined only with respect to comparisons involving
the �2-error. However, we will need �1-error bounds for the one-step derivations
later, so we include both deviations in the screening process here. We then have
the following result:
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Theorem 2. Under the same conditions as Theorem 1, with probability at least

1− log2

(
4τmax

τmin

)
cp−c′ ,

we have

‖β̂(j∗) − β∗‖2 ≤ 6Ccτσ
∗
√

k log p

n
, and ‖β̂(j∗) − β∗‖1 ≤ 24Ccτσ

∗k

√
log p

n
.

The proof follows from straightforward algebraic manipulations and is con-
tained in Appendix C.

Note that Lepski’s method does not correspond to a standard grid search
over τ , which would be more reminiscent of the adaptive robust estimation
procedures described in the introduction. Indeed, for each candidate value of τ ,
we perform a type of guided comparison between different values of τ , rather
than simply choosing the value of τ that gives rise to the smallest value of some
objective function. Furthermore, the output of a Lepski-type procedure does not
necessarily correspond to the β̂τ arising from the “optimal” choice of τ � σ∗.
Rather, we are guaranteed that the �1- and �2-error of our final estimate is
comparable to the error of the estimator generated using the optimal parameter.
In contrast, the adaptive procedures appearing in robust statistics literature
suggest a method for choosing the optimal σ by minimizing an approximation
of the variance of the estimator thus produced.

Remark 2. Note that our algorithm based on Lepski’s method requires knowl-
edge of the sparsity level k, which is one drawback of the procedure. An upper
bound k′ would also be sufficient, in which case the comparisons used to deter-
mine j∗ in equation (3.6) would involve k′ rather than k. On the other hand,
the error guarantees would then also be looser.

We would also need to have an explicit value for C in order to apply Lep-
ski’s method. As seen from the proof, the constant C appearing in our bounds
depends on universal constants; the choice τ of the parameter used for the ro-
bust loss function; and distributional properties of xi (i.e., the eigenvalue bounds
{cmin, cmax, c

′
min}). The last point is somewhat unsatisfactory. However, in prac-

tical applications, we might imagine having numerous observed values of the xi’s
available, from which we might be able to estimate these quantities. Importantly,
we emphasize that our proposed method does not require any information about
the distribution of the εi’s, which we would not be accessible without a good
initial estimate of β∗ in practice.

Although we do not include the derivations here, a similar procedure based
on �∞-error comparisons could be used to obtain an estimator based on Lep-
ski’s method with �∞-error guarantees on the same order as the �1-penalized
Huber estimator with a theoretically optimal parameter. Furthermore, such a
procedure would not involve knowledge of the sparsity, since �∞-error bounds

are typically O
(√

log p
n

)
and do not depend on the sparsity. On the other
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hand, one would need to impose slightly stronger assumptions in order to derive
�∞-error bounds [53].

3.3. Rough scale parameter bounds

Our application of Lepski’s method requires specifying choices of τmin and τmax.
We now describe how to select these values in a reasonable manner. We assume
we have prior knowledge of the constant cτ , which only depends on characteris-
tics of the covariate distribution and not the unknown error distribution. Then
it suffices to compute rough bounds [σmin, σmax] on σ∗. By independence, we
have

Var(yi) = Var(xT
i β

∗) + Var(εi).

Hence, we have (σ∗)2 ≤ Var(yi), and we may select σ2
max to be a rough estimate

of Var(yi).
Various estimators for population means exist that only involve weak distri-

butional assumptions. For instance, the “median of means” estimator takes as
input n i.i.d. observations X1, . . . , Xn, and then computes the means {μ̂j}Kj=1

of the K disjoint subsets of N = � n
K � observations, for a parameter K. The

overall estimate μ̂MoM is the median of the means {μ̂j}Kj=1.

Accordingly, we propose to take σ2
max = 2σ̂2

MoM , where σ̂2
MoM is the median-

of-means estimator computed from the dataset {y2i }ni=1. Assuming the existence
of (2+ε)-moments of xi and εi, and using the concentration inequality provided
in Lemma 13 of Appendix H, we have

σ2
max = 2σ̂2

MoM ≥ E[y2i ] ≥ Var(εi) = (σ∗)2

and

σ2
max ≤ 3

2
Var(yi) =

3

2

(
(β∗)TΣxβ

∗ + (σ∗)2
)
,

with probability at least 1− c exp(−c′n).
We now turn to the problem of choosing σmin. Consider the choice σmin =

σmax

2M
, for some integer M . Let β̂ be the final output of Lepski’s method. We

have the following result:

Theorem 3. Suppose Lepski’s method is performed on the �1-penalized Huber
problem with σ2

max equal to the median-of-means estimator of Var(yi) and σmin =
σmax

2M
. Suppose xT

i β
∗ and εi have finite (2 + ε)-moments. If

3

22M+1

(
(β∗)TΣxβ

∗ + (σ∗)2
)
≤ (σ∗)2, (3.7)

we have

‖β̂ − β∗‖2 ≤ 6Ccτσ
∗
√

k log p

n
, and (3.8)

‖β̂ − β∗‖1 ≤ 24Ccτσ
∗k

√
log p

n
, (3.9)

with probability at least 1− cMp−c′ .
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Note that if M = o(pc
′
), the bounds (3.8) and (3.9) in Theorem 3 hold w.h.p.

If we define the signal-to-noise ratio SNR := (β∗)TΣxβ
∗

(σ∗)2 , then inequality (3.7)

can be rewritten as log2(SNR + 1) � M , which is a fairly mild assumption. In
particular, if λmax(Σx) and ‖β∗‖2 are bounded, then SNR is also bounded and
we can even choose M to be a constant. Finally, note that some knowledge of
the curvature of the covariate distribution (i.e., maximum eigenvalue of Σx) can
be helpful in determining the choice of M necessary for inequality (3.7) to be
satisfied. Note also that in practice, we would not want M to be too large, since
the computational complexity of the algorithm will increase linearly with M .

4. One-step estimators

Although we have established the consistency of our estimators under rather
weak distributional assumptions on the xi’s and εi’s, the presence of the weight
function w(x) may lead to poor efficiency. Classical theory for regression M -
estimators suggests that efficiency might be improved by using a loss which is
governed by the specific form of the error density. The theory of M -estimation
from classical robust statistics also recommends one-step estimators for im-
proved efficiency [65, 45, 69, 29]. In this section, we address the problem of im-
proving efficiency by studying one-step modifications of the estimators proposed
in the previous section. Note that recent results in high-dimensional inference
have led to theoretical derivations based on similar types of one-step estimators
to those analyzed here.

We begin by presenting the “one-step” adjustment which may be performed
on an initial estimate β̂ to obtain a final estimate b̂ with desirable asymptotic
normality properties. The statement of our main theorem about asymptotic
normality is provided in Section 4.1, where we also discuss conditions on β̂ and
additional assumptions to be imposed on the covariate and error distributions
in order for the results of the theorem to hold. In particular, the theory from
Section 3 shows that the �1-penalized Huber estimator is a suitable choice for
β̂. In Section 4.2, we expand upon the specific sense in which b̂ is a more ef-
ficient estimator than β̂ when the score function ψ is chosen appropriately. In
Section 4.3, we provide a method for constructing confidence regions for subsets
of regression coefficients based on b̂, which is a natural corollary of our result
on asymptotic normality.

Consider a differentiable score function ψ̃, and let A(ψ̃) = E[ψ̃′(εi)]. Based on

an initial estimator β̂, define the empirical estimate Â(ψ̃) = 1
n

∑n
i=1 ψ̃

′(yi−xT
i β̂).

Following Bickel [7], we then define the one-step estimator

b̂ = β̂ +
Θ̂

Â(ψ̃)
· 1
n

n∑
i=1

ψ̃(yi − xT
i β̂)xi, (4.1)

where Θ̂ is a suitable estimate of Θx = Σ−1
x , to be described in the sequel.

For the theory in this section, we will change our notation slightly and adopt
the language of scale families. Thus, we write εi = σ∗

ξ ξi, where the ξi’s are i.i.d.
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random variables from a fixed reference distribution, and σ∗
ξ is an unknown scale

parameter (note that σ∗
ξ agrees with σ∗, the standard deviation of εi defined

earlier, up to a constant factor).
As suggested in Bickel [7], we use a score function ψσ of the form ψσ(t) =

1
σψ
(
t
σ

)
, and plug in an estimate σ̂ of the scale parameter σ∗

ξ . Then the one-step
estimator (4.1) becomes

b̂ψ := β̂ +
Θ̂

Â(ψσ̂)
· 1
n

n∑
i=1

ψσ̂(yi − xT
i β̂)xi

= β̂ +
Θ̂

σ̂Â(ψσ̂)
· 1
n

n∑
i=1

ψ

(
yi − xT

i β̂

σ̂

)
xi, (4.2)

where

Â(ψσ̂) =
1

n

n∑
i=1

ψ′
σ̂(yi − xT

i β̂) =
1

σ̂2
· 1
n

n∑
i=1

ψ′

(
yi − xT

i β̂

σ̂

)
, (4.3)

and the scale estimate σ̂ is obtained from the consistent regression parameter

estimate β̂ via σ̂ =
√

1
n

∑n
i=1(yi − xT

i β̂)
2/Var(ξi). For ease of notation, we will

redefine the term Â(ψ) to be equal to the expression (4.3), and let A(ψ) :=

E

[
1

(σ∗
ξ )

2ψ
′(ξi)
]
.

Example 3. The choice ψ = −f ′

f , where f is the density of ξi (assumed to

be smooth), will play a prominent role in our analysis. This corresponds to the
derivative of the negative log likelihood function. In the case when ξi ∼ N(0, 1),
we then have ψ(t) = t and ψ′(t) = 1, in which case formula (4.2) reduces to

b̂ψ = β̂ +
Θ̂XT (y −Xβ̂)

n
,

which is the “debiased Lasso” [75, 43, 13, 41, 85]. However, in that line of work,

β̂ is always taken to be the output of the usual MLE-based objective, whereas we
take β̂ to be a more general robust high-dimensional estimator with guaranteed
statistical consistency properties even when the covariate or error distributions
are non-sub-Gaussian.

We now discuss how to obtain a suitable estimate Θ̂ of Θx. Note that Bickel [7]

proposes to use Θ̂ =
(

XTX
n

)−1

; however, when p > n, the matrix XTX
n is not

invertible. We instead choose Θ̂ to be the graphical Lasso estimator [86, 28],
obtained by solving the following convex optimization program:

Θ̂ ∈ argmin
Θ
0

⎧⎨⎩tr
(
ΘT Σ̂

)
− log det(Θ) + λ

∑
i �=j

|Θij |

⎫⎬⎭ , (4.4)
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for a suitable choice of Σ̂. In particular, we define Σ̂ to be the entrywise MoM
estimator of the values Σx, i.e., Σ̂jk is the MoM estimator based on {xijxik}ni=1.
The reason for choosing this estimator rather than the simpler sample covariance

matrix Σ̂ = XTX
n will become clear in the statement of Theorem 4 and proof of

Proposition 1 below, which proceed by deriving a high-probability bound of the

form ‖Σ̂−Σx‖max �
√

log p
n . Although such a bound would hold for the sample

covariance matrix if the xi’s were sub-Gaussian, it behooves us to impose such
stringent tail assumptions. See also Remark 5 below for an alternative approach
involving a reweighted sample covariance matrix and its connection to classical
robust regression literature.

4.1. Asymptotic normality

We now derive the limiting distribution of the one-step estimator. Our argu-
ments involve Taylor expansions of the function ψ, so for simplicity, we assume
that ψ is thrice-differentiable. We also assume that ψ is an odd function, and
suppose the derivatives of ψ are bounded: ‖ψ′‖∞, ‖ψ(2)‖∞, ‖ψ(3)‖∞ < ∞, where
ψ(s) denotes the sth derivative. Extensions to cases where ψ does not satisfy
these smoothness criteria (e.g., corresponding to the Huber loss function) may
be derived via more careful arguments, but we omit the details here.

We now present the assumptions we will make on the covariate and error
distributions in order to guarantee asymptotic normality of the one-step esti-
mator. Our theorem will be stated assuming that β̂ satisfies a suitable error
bound; thus, if we wish to use the Huber estimator for β̂, we will also need the
covariates to satisfy the conditions of Assumption 1 in order to guarantee that
the results of Section 3 hold, as well.

We make the following assumptions on the distribution of the covariates:

Assumption 2. Assume that the marginals xij are sub-exponential with pa-
rameter σx, for all 1 ≤ j ≤ p. Also suppose min1≤j≤p Var(xij) ≥ c1 for some
constant c1 > 0.

Note that the conditions imposed on the covariates in this section are some-
what stronger than the conditions imposed in Section 3 (cf. Assumption 1),
since we no longer include a weight function to temper the effect of heavy tails.
Thus, unlike the scenario described in Example 2, Assumption 2 does not permit
the covariates to have arbitrarily heavy tails. On the other hand, we actually
do not require the full power of sub-exponential tails: As our analysis shows,
as long as we have a high-probability bound of the form ‖X‖max � polylog(p)
(cf. Lemma 6), the theorems of this section will still continue to hold under a
sample size condition of the form n � k2 polylog(p).

We also impose the following assumptions on the additive errors:

Assumption 3. Assume that

(i) E[ξ4i ] < ∞, and
(ii) ψ(ξi) is sub-exponential with parameter σξ = O(1).
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Note that the conditions appearing in Assumption 3 are fairly mild, e.g., if ψ
is bounded, then condition (ii) holds regardless of the tails of εi. Furthermore,
if the εi’s are Gaussian and ψ corresponds to the MLE of ξi, then ψ is the
identity function and condition (ii) is again satisfied. However, on top of the
finite variance bound imposed in Section 3, we now assume that the fourth
moments of the εi’s are finite.

Our main result is the following:

Theorem 4. Suppose Assumptions 2 and 3 hold and n � k2 polylog(p), and β̂
satisfies the error bounds

‖β̂ − β∗‖1 = OP

(√
k log p

n

)
, and ‖β̂ − β∗‖2 = OP

(
k

√
log p

n

)
. (4.5)

Also suppose ∣∣∣∣∣∣∣∣∣Θ̂−Θx

∣∣∣∣∣∣∣∣∣
1
= OP

(
k

√
log p

n

)
. (4.6)

Let PJ denote the projection onto any set of m = |J | coordinates of fixed di-
mension. Then the one-step estimator (4.2) satisfies

√
nPJ (̂bψ − β∗)

d−→ N

(
0,

E[ψ2(ξi)]

(σ∗
ξ )

2A2(ψ)
· (Θx)JJ

)
,

as n, p → ∞.

The proof of Theorem 4 is contained in Appendix D. In particular, the er-
ror bounds (4.5) follow directly from the guarantees for the Huber estimator
derived in Theorem 3 (under the additional distributional conditions stated in
Assumptions 2 and 3).

Altogether, we conclude that the limiting distribution of the high-dimensional
estimator, restricted to m coordinates, agrees with the result of Bickel [7] for
low-dimensional robust M -estimators.

Remark 3. Note that the assumption n � k2 polylog(p) is somewhat stronger
than the sample size condition n � k log p usually required for consistency in
statistical estimation, in the sense that n = Ω(k2) as opposed to n = Ω(k) (cf.
Theorem 1). However, a similar gap also appears in the analysis of van de Geer
et al. [75] and Javanmard and Montanari [43] in the random design setting.
As noted by a reviewer, it would be interesting to see whether this sample size
requirement could be improved using more refined arguments, but to the best of
our knowledge, existing work on the Lasso [44, 4] relies heavily on a Gaussian
distributional assumption on the covariates and the specific form of the least-
squares objective.

Remark 4. We may also compare this result with Section 3 of van de Geer et
al. [75], in which Lasso debiasing results are derived for general convex loss func-
tions. Translating to the linear model with i.i.d. (but not necessarily Gaussian)



5950 P. Loh

additive errors, the proposed one-step estimator takes the form

b̂ρ = β̂ + Θ̂ρ ·
1

n

n∑
i=1

ρ′(yi − xT
i β̂)xi, (4.7)

where β̂ is the solution to the �1-penalized program

β̂ ∈ argmin
β

{
1

n

n∑
i=1

ρ(yi − xT
i β) + λ‖β‖1

}
, (4.8)

and ρ is assumed to be a smooth convex function. Furthermore, Θ̂ρ is defined to

be a sparse approximate inverse of the matrix 1
n

∑n
i=1 ρ

′′(yi − xT
i β̂)xix

T
i .

Although clear similarities exist between the one-step estimator (4.7) and the
expression (4.2), with ρ′ taking the place of ψ, the one-step estimator (4.7) is
only guaranteed to be asymptotically normal when standardized appropriately.
Furthermore, note that the M -estimator (4.8) is not designed to be robust to
contaminated covariates, and in order to obtain appropriate error bounds, much
stronger assumptions must be made on the distribution of the xi’s. Importantly,
our proposed one-step estimator involves using one loss (the Huber loss) to de-

fine the initial estimate β̂, and then a separate score function ψ, which does
not necessarily correspond to a derivative of the Huber loss, to obtain both (a)
robustness and (b) efficiency.

Finally, we provide conditions for the inverse covariance matrix estimator Θ̂ to
satisfy the error bound (4.6). Suppose Σx satisfies the α-incoherence condition,
defined by

max
e∈Sc

∣∣∣∣∣∣Γ∗
eS(Γ

∗
SS)

−1
∣∣∣∣∣∣
1
≤ 1− α, (4.9)

where α ∈ (0, 1], and we denote Γ∗ := Σx ⊗ Σx and S = supp(Θx). We also
denote κΣ := |||Σx|||1 and κΓ :=

∣∣∣∣∣∣(Γ∗
SS)

−1
∣∣∣∣∣∣
1
.

Combining a high-probability deviation bound on ‖Σ̂−Σx‖max (cf. Lemma 11
in Appendix H) with standard derivations for the graphical Lasso [63] yields the
following result:

Proposition 1. Suppose Assumption 2 holds and n � polylog(p). Also suppose
Θx satisfies the α-incoherence condition (4.9) and the regularization parameter
satisfies

c0σ
2
x

α

√
log p

n
≤ λ ≤ 1

6κΓk

(α
8
+ 1
)−1

min

{
1

κΣ
,

1

κ3
ΣκΓ

,
α(α/8 + 1)−1

8κ3
ΣκΓ

}
.

With probability at least 1 − exp(−cn), the graphical Lasso estimator (4.4)

computed with respect to the entrywise MoM estimator Σ̂ satisfies supp(Θ̂) ⊆
supp(Θx), and

‖Θ̂−Θx‖max ≤ 2
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣
1

(
1 +

α

8

)
λ.
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In particular, if each row of Θx is k-sparse, we also have the bound∣∣∣∣∣∣∣∣∣Θ̂−Θx

∣∣∣∣∣∣∣∣∣
1
≤ 2
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣
1

(
1 +

α

8

)
λk.

The proof of Proposition 1 is contained in Appendix E. We see that the final

conclusion of the lemma, with λ �
√

log p
n , furnishes the deviation bound (4.6).

Note that simply applying Theorem 1 in Ravikumar et al. [63] would produce
a weaker result than we want, since the concentration result in Lemma 11 would
fall into the category of “polynomial-type tails,” thus yielding a suboptimal
sample size requirement. Instead, we derive a statistical error guarantee suitable
for our setting, building upon some of the key lemmas in Ravikumar et al. [63].

Remark 5. Welsch and Ronchetti [82] studied higher-order expansions of var-
ious one-step estimators using different proposals for the Hessian term, and
pointed out that the critical characteristic for equivalence of first-order terms
is a certain bound on the rate of convergence of the Hessian to its expectation.
Our estimator (4.2) is most closely related to the “method of scoring” one-step
estimator discussed in Welsch and Ronchetti [82]. However, the direct analog

of that estimator would involve inverting the matrix Σ̂w := 1
n

∑n
i=1 w

2(xi)xix
T
i ,

instead. The main result in Theorem 4 would still hold, since Assumption 1(i)

would be enough to guarantee concentration of Σ̂w to its expectation Σw
x , so that

the inverse computed with respect to the graphical Lasso would also converge to
Θw

x := (Σw
x )

−1 (cf. Proposition 1). On the other hand, since Θw
x is generally a

biased estimator of Θx, we would not have the semiparametric efficiency results
derived in Section 4.2.

4.2. Semiparametric efficiency

To make the notions of increased efficiency more precise, we now analyze the
one-step estimator b̂ψ from the point of view of semiparametric efficiency. In
particular, consider the semiparametric regression model

yi = xT
i β0 + g0(vi) + εi,

where the distribution of the εi’s is unknown and our goal is to estimate the
unknown vector β0 from i.i.d. observations {(yi, xi, vi)}ni=1. Recall the notion of
semiparametric efficiency:

Definition 3. An estimate β̂ of β0 is semiparametrically efficient if it is regular
(i.e.,

√
n(β̂ − β0) is asymptotically normal), and the asymptotic variance is

minimal among all regular estimates of β0.

Additional background material is included in Appendix A. In particular,
Theorem 7 states that a lower bound on the variance of any semiparametrically
efficient estimator is given by

V =

(
E

[(
f ′(ε)

f(ε)

)2
]
· E
[
(x− E[x|v])(x− E[x|v])T

])−1

,



5952 P. Loh

where f denotes the density of εi.
For a fixed set of indices J ⊆ {1, . . . , p}, we partition the linear model as

yi = (xi)
T
J β

∗
J + (xi)

T
Jcβ∗

Jc + εi

and consider it as a subclass of the semiparametric regression model

yi = (xi)
T
J β

∗
J + g0 ((xi)Jc) + εi. (4.10)

We then have the following result, proved in Appendix F:

Theorem 5. Suppose we have i.i.d. observations from the linear model (2.1).

Suppose ψ = −f ′

f , where f is the pdf of the distribution of ξi, and the initial

estimate β̂ satisfies the conditions of Theorem 4. Then the one-step estimator
(̂bψ)J is semiparametrically efficient for the model (4.10).

Theorem 5 shows that just as in classical asymptotic theory forM -estimators,
a one-step correction with ψ function equal to the (negative) derivative of the
log likelihood will yield an estimator with the same asymptotic properties as
the maximum likelihood estimator. However, a benefit of using the one-step
estimator b̂ψ rather than directly using the maximum likelihood estimator is
that the latter may be difficult to compute, especially when the negative log
likelihood is nonconvex and/or the scale parameter of the error distribution is

unknown. Our theory shows that using the Huber estimator β̂ for initialization
sidesteps both of these potential issues, since the Huber loss is convex and our
procedure via Lepski’s method adapts to the scale.

Remark 6. The notions of efficiency we have just described should be contrasted
with the discussion of efficiency contained in Loh [53]. Importantly, our present
results do not require any conditions for correct support recovery of the regression
estimator, which were rather strong requirements imposed in the theory of the
aforementioned paper. Furthermore, by using a one-step estimator, we do not
require a second subgradient optimization routine performed on a nonconvex
objective function in order to achieve efficiency, since a one-step modification
of the global optimum of the convex surrogate is sufficient for our purposes.

Finally, we note that another notion of semiparametric efficiency was recently
studied in Jankova and van de Geer [40], involving a more complicated infinite-
dimensional model that is allowed to change with n. It was shown that when
Θx is a sparse matrix, the same bounds may be established for semiparametric
efficiency; however, van de Geer [73] showed that without the sparsity condition,
the variance of an efficient estimator may in fact be lower. We suspect that these
notions could also be adapted to the setting of robust regression estimators
discussed in our paper, but such derivations are beyond the scope of our present
work.

4.3. Confidence intervals

Our results from Section 4.1 naturally allow us to derive confidence intervals
with the correct asymptotic coverage, which we briefly describe here. Further-



Scale calibration for high-dimensional robust regression 5953

more, the semiparametric efficiency result of Section 4.2 provides a type of
“optimality” guarantee for the size of the confidence region. We again consider
a fixed subset J ⊆ {1, . . . , p}, where |J | = m.

For an error probability α ∈ (0, 1), we write Bα,J to denote the subset of RJ

corresponding to the direct product of m intervals of the form[
−Φ−1

(
1 + (1− α)1/m

2

)
, Φ−1

(
1 + (1− α)1/m

2

)]
,

where Φ is the cdf of a standard normal random variable. In particular, if
Z ∼ N(0, Im) is an m-dimensional Gaussian random vector with i.i.d. stan-
dard normal components, we have

P(Z ∈ Bα,J) =

(
1− 2

(
1− 1 + (1− α)1/m

2

))m

= 1− α. (4.11)

We have the following main result, proved in Appendix G. We impose one
additional condition involving the boundedness of (ψ2)′′ in order to facilitate
our derivations.

Theorem 6. Let |J | = m be a fixed set of constant cardinality. In addition to
the assumptions of Theorem 4, suppose ‖(ψ2)′′‖∞ < ∞. An asymptotically valid
(1 − α)-confidence region for the projection β∗

J of the regression vector onto J
is given by

PJ b̂ψ +
1√
n
·

√
1
n

∑n
i=1 ψ

2
(

yi−xT
i β̂

σ̂

)
σ̂Â(ψ)

·
(
Θ̂JJ

)1/2
Bα,J . (4.12)

Note that the region (4.12) is a (pointwise) linear transformation of Bα,J .

In the case m = 1, the confidence region for a fixed coordinate j reduces to
the interval

(̂bψ)j ±
1√
n
·

√
1
n

∑n
i=1 ψ

2
(

yi−xT
i β̂

σ̂

)
σ̂Â(ψ)

·
√

Θ̂jj · Φ−1
(
1− α

2

)
.

Note that as in Javanmard and Montanari [43], the set Bα,J could be replaced
with any other set of measure 1 − α under an m-dimensional standard normal
distribution.

Note that Theorem 6 is a result that holds for any choice of score functions ψ,
not necessarily corresponding to the score function of the true pdf. Importantly,
we can construct valid confidence intervals without needing to know the true
distribution of the εi’s. However, in order to construct optimal intervals, we
would need to use the correct ψ function corresponding to the distribution.

Remark 7. As mentioned in Remark 4, our recipe for constructing confidence
intervals resembles the proposal of van de Geer et al. [75]. However, the key
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difference is that the vanilla Lasso estimator would in general not achieve the
correct rates of consistency in order for the confidence intervals to be asymp-
totically valid for the prescribed sample size scaling. Similarly, Javanmard and
Montanari [43] include a section in their paper discussing how to construct
confidence intervals in the case of non-Gaussian noise; however, again, they
assume that the noise and covariance distributions are sufficiently well-behaved
to guarantee fast convergence of the initial Lasso estimator. A way to correct
this would be to use the Huber estimator as an initial estimator rather than the
Lasso; see the simulations at the end of Section 5.2 for additional discussion
and an empirical comparison.

Finally, it is worth discussing the relationship between our proposed method
and the robust inference procedures studied in classical robust statistics. These
include robust Wald-type and likelihood ratio tests [64, 32], which are more gen-
erally applicable to hypothesis testing scenarios involving linear combinations
of predictors. Our method resembles Wald-type tests in the sense that they are
constructed with respect to a robust M -estimator, and also include robust esti-
mates of the (inverse) covariance—however, our results are primarily designed
for hypothesis testing of single coordinates. It is an interesting open question
to see if analogs of the robust Wald-type or τ -tests [64] could be derived in the
high-dimensional setting. It is plausible that such tests exist using an initial
M -estimator such as the regression estimator introduced in this paper (cf. van
de Geer and Stucky [74] and Sur et al. [72] for some theory in the non-robust
setting).

Remark 8. As pointed out by a reviewer, an alternative approach proposed
by Belloni et al. [6] does not require incoherence assumptions (4.9) on the in-
verse covariance matrix, which are required to ensure the validity of our method.
However, since the method of Belloni et al. [6] is a coordinatewise approach,
it leads to confidence regions which are direct products of confidence intervals
for individual components. This misses out on the optimality property of our
confidence regions which is derived from the semiparametric efficiency of our
regression estimator; note that in general, the confidence regions constructed in
equation (4.12) may correspond to affine transformations of cuboids which are
not direct products of intervals.

5. Simulations

We now report the result of experiments that we performed to validate our
theoretical predictions.

5.1. Summary of procedure

We first briefly summarize the steps of the robust regression procedure:
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1. Compute rough lower and upper bounds on the scale, using the median

of means estimator with tolerance δ and K =
⌊
8 log

(
e1/8

δ

)
∧ n

2

⌋
groups:

σ2
max = 2σ2

MoM , and σmin = σmax

2M
.

2. Compute the �1-penalized Huber M -estimator β̂τ for all τ in a grid of
values within [cτσmin, cτσmax], according to the program (3.1).

3. Use Lepski’s method to adaptively choose β̂ = β̂(j∗), according to the
rule (3.6).

4. Use one-step estimation to improve efficiency, with b̂ψ defined according

to equation (4.2), with β̂ from Lepski’s method and Θ̂ from the graphical
Lasso.

Composite gradient descent: In order to obtain the estimators β̂τ in the
second step above, we employ the composite gradient descent algorithm, which
has fast rates of convergence for convex functions [60]. Specifically, the updates
are

β̂t+1 ∈ argmin
β

{
Ln(β

t) + 〈∇Ln(β
t), β − βt〉+ η

2
‖β − βt‖22 + λτ‖β‖1

}
= argmin

β

{
1

2

∥∥∥∥β −
(
βt − 1

η
∇Ln(β

t)

)∥∥∥∥2
2

+
λτ

η
‖β‖1

}

= Sλτ/η

(
βt − 1

η
∇Ln(β

t)

)
,

where Sλτ/η(β) is the soft-thresholding operator defined componentwise accord-
ing to

Sj
λτ/η(β) = sign(βj)

(
|βj | −

λτ

η

)
+

.

Note also that

∇Ln(β) =
1

n

n∑
i=1

�′τ
(
(xT

i β − yi)w(xi)
)
w(xi)xi.

5.2. Synthetic data

We first ran experiments involving synthetic data to check the validity of our
theory. The simulation results confirm that our estimator is (a) consistent and
(b) efficient. For (a), we provide simulation results under two different scenarios:

(i) Additive errors are drawn from a heavy-tailed distribution, but covariates
have a sub-Gaussian distribution.

(ii) Both xi’s and εi’s are drawn from heavy-tailed distributions.

In case (i), we generated the xi’s from a standard normal distribution. The εi’s
were generated from a t-distribution with five degrees of freedom, to make the
fourth moment finite (recall that moments of order five and above do not exist).
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Fig 1. Plots comparing �2-error of our Huber regression estimator with tuning parameter
chosen adaptively using Lepski’s method, for p = 100, k = 4, and increasing values of n.
In plot (a), covariates were generated from a multivariate normal distribution and additive
errors were generated from a t-distribution. In plot (b), covariates were generated from a
Laplace distribution and additive errors were generated from a t-distribution. Individual points
represent an average over 10 independent trials. The performance of the Lasso (dotted line)
is also shown in the figure.

Independently, with probability 0.1, we then multiplied each εi by 10 to simulate
further heavy-tailed contamination. Finally, we scaled the additive errors by 0.1.
In case (ii), we generated the εi’s in the same manner as in (i), but generated
the coordinates of the xi’s independently from a Laplace distribution with mean
0 and scale parameter 1. Note that in this case, the marginals of the xi’s are
sub-exponential.

Further implementation details are as follows: We set the error tolerance
δ = 0.05 for the MoM estimator, and took σmin = σmax

22n
1/3 and (cτ , C) = (1, 20)

for the Lepski gridding. We defined the weight function according to the expres-
sion (3.2), using b = 1 for the simulations in (i) and a range of values for the

simulations in (ii). We defined the regularization parameter to be λ = 0.5
√

log p
n

for the simulations in (ii) and λ = Cλ

√
log p
n for a range of values for Cλ for the

simulations in (i). We chose the problem dimensions to be p = 100 and k = 4,
and defined β∗ to have 1’s in the first four components and 0’s everywhere else.

Figure 1(a) shows the �2-error of the adaptively tuned Huber estimator in
setting (i), using a range of λ values. Figure 1(b) shows the �2-error of the
adaptively tuned Huber estimator in setting (ii), using a range of λ values.
For comparison, we also include error curves for the vanilla Lasso, where the
tuning parameter was chosen using 10-fold cross-validation. As expected, the
error of both the Huber and Lasso estimators appears to decrease to zero with
n. However, the Huber estimator tends to perform better than the Lasso, and
the gap becomes more noticeable when both the covariates and errors are heavy-
tailed. The precise values of Cλ and b do not seem to affect the performance of
the Huber estimator too heavily.
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Fig 2. Plots comparing �2-error and variance of estimators obtained via Lepski’s method
(red) and Lepski’s method followed by a one-step correction (blue), when p = 100 and k = 4.
Covariates were generated from a Laplace distribution and additive errors were generated from
a t-distribution. Panel (a) shows the error ‖β̂−β∗‖2, averaged over 10 trials. Panel (b) shows

the empirical variance of β̂j , for each of the four nonzero regression coefficients, computed
with respect to 10 trials. The coefficients are distinguished in the figure using different line
markings.

In order to explore (b) the relative efficiency of the Huber estimator in com-
parison to its one-step correction, we borrowed some implementation details
from the settings described in (a). We generated the coordinates of the xi’s
from a Laplace distribution with mean 0 and scale parameter 1. We generated
the εi’s from a t-distribution with five degrees of freedom, scaled by 0.1. We set
the error tolerance δ = 0.05 for the MoM estimator, and took σmin = σmax

22n
1/3

and (cτ , C) = (1, 20) for the Lepski gridding. We defined the weight function
according to the expression (3.2) with b = 1, and we defined the regularization

parameter to be λ = 0.5
√

log p
n . We chose the problem dimensions to be p = 100

and k = 4, and defined β∗ to have 1’s in the first four components and 0’s
everywhere else.

For the one-step estimator, we use the formulas in equation (4.2) to define Â
and σ̂. Recall that the pdf of a t-distribution with ν degrees of freedom is equal
to

f(t) =
Γ
(
ν+1
2

)
√
νπΓ
(
ν
2

) (1 + t2

ν

)− ν+1
2

.

Then we may compute

ψ(t) =
−f ′(t)

f(t)
=

(ν + 1)t

ν + t2
, and ψ′(t) =

−(ν + 1)t2 + ν(ν + 1)

(ν + t2)2
.

Figure 2 shows the results of the simulations. The plot in (a) shows the �2-

error ‖β̂ − β∗‖2 of the initial Huber estimator in comparison to the �2-error

‖b̂ψ − β∗‖2 of the one-step estimator. Both curves show vanishing error as n
increases—note that our theory does not necessarily imply that the �2-error of
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Fig 3. Plots showing results of confidence interval simulations based on 100 trials. Data
were generated with covariates drawn from a Laplace distribution and errors drawn from a
t-distribution, and confidence intervals were constructed at the 90% level. Panels (a) and
(b) show confidence interval coverage for p = 50 with n = 100 and n = 200. The empirical
coverage was 82% and 78%, respectively. Panel (c) shows confidence interval coverage for
p = 100 and n = 100. The empirical coverage was 74%.

the one-step estimator will always be smaller than the �2-error of the initial
estimator, and only guarantees that the error will decrease at the same rate,
up to constant factors. However, in the plot in (b), we can clearly see that
the empirical variance of the estimates of all four of the nonzero coefficients of
β∗ indeed appears to decrease after the one-step correction, corroborating our
theoretical conclusions.

Finally, we provide a set of simulation results illustrating the validity of our
method for constructing confidence intervals described in Section 4.3. Figure 3
shows the result of 100 confidence intervals constructed using our procedure
when the coordinates of the xi’s are drawn i.i.d. from a Laplace distribution with
mean 0 and scale parameter 1, and the εi’s are generated from a t-distribution
with five degrees of freedom, scaled by 0.5.

For comparison, we also constructed confidence intervals according to the
method suggested by van de Geer et al. [75] and Javanmard and Montanari [43],
which essentially corresponds to our one-step procedure with score function
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ψ ≡ 1 (corresponding to the MLE for Gaussian errors). Furthermore, we set

the initial estimator β̂ to be equal to the Huber estimator rather than the
Lasso, since the Lasso estimator has slower rates of convergence under heavy-
tailed covariates and/or error distributions; we take the estimate of variance
used in those formulas to be the empirical variance of the residuals computed
with respect to β̂. We observe that the empirical coverage of the confidence
intervals constructed according to our procedure is similar to that of the method
using a Gaussian one-step correction: In comparison to the coverage percentages
reported in Figure 3, the coverage levels for confidence intervals constructed
using a Gaussian correction were (a) 78%, (b) 81%, and (c) 73%. On the other
hand, the confidence intervals were on average shorter when using the one-step
estimator with score function ψ corresponding to the t-distribution: The average
lengths of confidence intervals for t-distribution (normal) corrections were (a)
0.2102 (0.2156), (b) 0.1410 (0.1464), and (c) 0.1823 (0.1921). This supports our
theoretical results of semiparametric efficiency.

To check for consistency as n → ∞, we ran the same confidence interval
experiment with p = 10 and n = 500. The results, averaged over 100 trials, are
tabulated in Figure 4. Here, t denotes confidence intervals computed with respect
to the t-distribution score function, and z denotes confidence intervals computed
with respect to the Gaussian one-step correction. We see that the empirical
coverage percentages for both methods are roughly equal to 90%, whereas the
average lengths of intervals computed using the t-distribution score function are
generally slightly smaller. However, the difference between the average lengths
of confidence intervals for the two methods vanishes as the number of degrees of
freedom ν increases, since the t-distribution tends toward the standard normal.

ν = 5 ν = 6 ν = 7 ν = 8

empirical coverage (t) 88% 87% 87% 87%
empirical coverage (z) 90% 88% 81% 87%
average length (t) 0.083 0.082 0.082 0.081
average length (z) 0.088 0.084 0.082 0.080

(a)

ν = 5 ν = 6 ν = 7 ν = 8

empirical coverage (t) 90% 82% 90% 88%
empirical coverage (z) 87% 81% 91% 85%
average length (t) 0.087 0.084 0.084 0.083
average length (z) 0.092 0.086 0.084 0.082

(b)

Fig 4. Tables of results for confidence interval simulations at the 90% level, based on 100
trials. (a) Data were generated with covariates drawn from a multivariate normal distribution
and errors were drawn from a t-distribution with ν degrees of freedom. (b) Data were generated
with covariates drawn i.i.d. from a Laplace distribution and errors were drawn from a t-
distribution with ν degrees of freedom.
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5.3. Real data experiment

Turning to a real dataset, we analyzed a dataset collected from X-ray microanal-
ysis of archaeological glass vessels [42], which has been analyzed in several other
papers on high-dimensional robust linear regression with leverage points [56, 70].
The dataset consists of n = 180 observations and p = 486 frequencies, which we
used as predictors for the contents of compound 13, which is PbO. As discussed
in [56], the dataset contains clear outliers.

Following the method of Smucler and Yohai [70] for tuning parameter selec-
tion, we chose the parameter λ in our algorithm via 5-fold cross-validation using
a τ -scale of the residuals [84, 66]. (Note that our theorems are stated with λ

equal to
√

log p
n times universal constants, but in practice, choosing λ in a data-

driven manner leads to better predictive performance.) Based on this procedure,
Lepski’s method yielded a sparse vector with six nonzero components. This fit
corresponds to the value 0.134 of the τ -scale, which is comparable to the values
reported in Smucler and Yohai [70] using alternative methods: MM -Lasso (τ -
scale of 0.086, seven selected variables), adaptive MM -Lasso (τ -scale of 0.083,
four selected variables), sparse-LTS (τ -scale of 0.329, three selected variables),
Lasso (τ -scale of 0.131, seventy selected variables), and adaptive Lasso (τ -scale
of 0.138, forty-nine selected variables); note that as is the case for the robust
methods advocated in that paper, our method likewise chooses sparser models
than the Lasso and adaptive Lasso, making the model easier to interpret, while
maintaining good predictive performance.

We also attempted to construct confidence intervals for the selected frequen-
cies. The simulations were inconclusive, due to the fact that various implemen-
tations of the graphical Lasso algorithm on the 486 × 486 matrix of covariates
failed to converge. We suspect that this is because the assumption that the
population-level inverse covariance matrix is sparse is violated, or the covariate
distribution is heavy-tailed and/or possesses extreme outliers, so that the rate

of convergence of the estimated covariance matrix Σ̂ to Σx is too slow. This
experiment reveals that the additional assumptions required to construct confi-
dence intervals may be somewhat more stringent than the assumptions needed
for consistency in terms of estimation or prediction error.

6. Discussion

Throughout this paper, we have assumed that the variance of εi is finite. We now
describe a small adaptation that applies to the consistency results of Section 3
when the second moment does not exist. Indeed, one can still define σ∗ to
be a scale parameter of the distribution of εi (e.g., in the case of a Cauchy
distribution). However, the place where we have required existence of second
moments in our analysis is in the computation of the rough scale parameter
bounds σmin and σmax.

Instead of the MoM estimator, we may use the median absolute deviation
(MAD) as the scale parameter when the second moments are not finite. Recall
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that the population-level MAD is given by

MAD(X) = med (|X −med(X)|) ,

where med denotes the median operator. By Lemma 19 in Appendix H, we
know that under the assumption that the distribution of εi is symmetric and
unimodal, we have

MAD(εi) ≤ MAD(xT
i β

∗ + εi) = MAD(yi),

so that the MAD estimate based on the yi’s can indeed be used as an upper
bound on the scale of the εi’s, analogous to the case of the variance. Furthermore,
concentration inequalities for the empirical version of the MAD estimator can
be found, e.g., in [68]. It is an open question whether the analysis of the one-step
estimation results in Section 4 can also be adapted to remove the dependence
on finiteness of the variance (and/or higher moments).

We also mention an interesting open question of practical relevance: What
type of one-step estimator could we use for obtaining a more efficient estimator
and/or confidence intervals when the shape of the error distribution is unknown?
Some general guidelines for choosing the ψ function in the one-step estimator,
or a more principled procedure for flagging outliers and then fitting confidence
intervals based on a fitted distribution, would be quite useful in practice.

Finally, an interesting direction to pursue would be whether an approach
based on Lepski’s method could also be used to adaptively choose the correct
parameter for the Huber loss in the case of an ε-contaminated model (either
in location estimation or linear regression). A related question is how to adap-
tively choose a trimming parameter for the robust location estimator based
on trimmed means. These are both questions of theoretical interest that have
largely remained open in the classical robust statistics literature—since they de-
pend on minimizing variance quantities, rather than deriving high-probability
error bounds, the machinery developed in this paper does not carry over directly.
However, it is plausible that an appropriate modification of the Lepski-based ap-
proach may result in theoretically valid conclusions for obtaining a near-optimal
estimator from the point of view of variance.

Appendix A: Semiparametric efficiency

In this appendix, we review several concepts in semiparametric estimation. For
a more detailed overview, we refer the reader to the textbooks by Bickel et al. [8]
or Hansen [33].

Following the treatment of Newey [61], we first define the semiparametric
regression model [21]:

Definition 4. The semiparametric regression model characterized by a param-
eter vector β0 ∈ R

q and function g0 is given by

yi = xT
i β0 + g0(vi) + εi, for 1 ≤ i ≤ n, (A.1)
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where the xi’s and vi’s are vectors of exogenous observations, yi is a scalar
response, and εi is independent additive error.

Semiparametric efficiency is usually established by obtaining lower bounds
on the asymptotic variance of an efficient estimator by considering Cramer-Rao
bounds for different parametric “submodels,” which are models that include the
semiparametric model under consideration and are equal to the semiparametric
model for a certain value of the parameter. In particular, the Cramer-Rao bound
for any parametric subclass must provide a lower bound for the semiparametric
estimation problem, as well, and we have the variance lower bound

V = sup
θ

Vθ,

where Vθ is the Cramer-Rao bound corresponding to a parametric submodel
indexed by θ. If one can find a parametric submodel with a Cramer-Rao bound
that matches the asymptotic variance of a particular semiparametric estima-
tor, that estimator is guaranteed to be efficient. Note that for multidimensional
problems, the supremum is taken with respect to the partial order of positive
semidefinite matrices (and the supremum is guaranteed to exist under appro-
priate regularity conditions, which apply in the setting considered here).

Newey [61] presents an approach to compute the variance bound V directly
by considering the projection of the score function of the semiparametric model
onto the tangent set corresponding to the scores of all parametric submodels,
where the score of the semiparametric model is the partial derivative of the
negative log likelihood with respect to the parameter vector. Formally, consider
a parametric submodel parametrized by θ = (β, η), where both β and η are
vectors, and β corresponds to the q-dimensional parametric part of the original
semiparametric model. The overall score function may be partitioned as Sθ =
(Sβ , Sη). By block matrix inversion, we may verify that the Cramer-Rao bound
for estimation of β in the parametric submodel is then given by

Vθ =
(
E[(Sβ − B̃Sη)(Sβ − B̃Sη)

T ]
)−1

,

where B̃ := E[SβS
T
η ]
(
E[SηS

T
η ]
)−1

. In particular, B̃Sη is the best linear predictor
of Sβ as a function of Sη.

We now define the tangent set to be the mean square closure of all q-
dimensional linear combinations of scores of parametric submodels:

T =
{
S ∈ R

q : E[‖S‖22] < ∞, ∃AjSθj s.t. E[‖S −AjSθj‖22]
}
,

where the Aj ’s are matrices with q rows and the Sθj ’s are the score vectors of
various parametric submodels.

We have the following result, which holds generally for semiparametric esti-
mation (not just in the case of the semiparametric regression model):

Lemma 1. [Newey [61, Theorem 3.2]] Suppose T is a linear space, and let ST
β

denote the projection of Sβ on T . Then

V =
(
E
[
(Sβ − ST

β )(Sβ − ST
β )T
])−1

,
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provided the matrix is nonsingular.

For the model (A.1), we denote a parametrization of g0(v) as g(v, η), where
η is a parameter such that g(v, η0) = g0(v). Then the log likelihood may be
written as

pβ,η(y|x, v) = log f
(
y − xTβ + g(v, η)

)
,

where f is the density of εi. Taking partial derivatives and evaluating at the
true parameter values (β0, η0), we obtain the score functions

Sβ =
f ′(ε)

f(ε)
· x, Sη =

f ′(ε)

f(ε)
· gη,

where ε = y − xTβ0 − g0(v) and gη := ∂g(v,η)
∂η

∣∣∣
η=η0

. It is not hard to verify that

the tangent set is equal to

T =

{
f ′(ε)

f(ε)
·D(v) : E

[(
f ′(ε)

f(ε)

)2

‖D(v)‖22

]
< ∞
}
,

using the observation that the parametric submodel with g(v, η) = g0(v) +

ηTD(v) yields the score Sη = f ′(ε)
f(ε) · D(v). Furthermore, T is clearly a linear

space.
In order to compute ST

β , we use the following result:

Lemma 2. [Newey [61, Lemma 3.4]] If UW has finite second moment and
V and W are functions of some random variable T , such that E[UUT | T ] is
constant and positive definite, then the projection of UW on the space

TV :=
{
UD(V ) : E[‖UD(V )‖22] < ∞

}
is equal to UE[W | V ].

Applying Lemma 2 with W = x, V = v, and U = f ′(ε)
f(ε) , we conclude that

ST
β =

f ′(ε)

f(ε)
· E[x|v].

Combining this with Lemma 1, we arrive at the following result:

Theorem 7. Suppose x has finite second moments and

0 < E

[(
f ′(ε)

f(ε)

)2
]
< ∞.

Then

V =

(
E

[(
f ′(ε)

f(ε)

)2

· (x− E[x|v])(x− E[x|v])T
])−1

,

provided the matrix is nonsingular.
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Appendix B: Proof of Theorem 1

We begin by analyzing the estimator

β̃τ ∈ arg min
‖β−β∗‖2≤r

{
1

n

n∑
i=1

�τ
(
(xT

i β − yi)w(xi)
)
+ λτ‖β‖1

}
,

where we have introduced a side constraint defined in terms of a parameter r
to be specified later. We will show that such optima β̃τ lie in the interior of
the constraint set, hence agree with the global optima β̂τ of the unconstrained
problem.

B.1. Main argument

Let

Ln(β) :=
1

n

n∑
i=1

�τ
(
(xT

i β − yi)w(xi)
)
.

We first derive a bound on ‖β̃τ − β∗‖2, assuming the following conditions:

• (Regularization parameter)

‖∇Ln(β
∗)‖∞ ≤ λτ

2
(B.1)

• (RSC condition)

Ln(β)− Ln(β
∗)− 〈∇Ln(β

∗), β − β∗〉 ≥ α‖β − β∗‖22,
∀β s.t. ‖Δ‖2 ≤ r and ‖ΔSc‖1 ≤ 3‖ΔS‖1, (B.2)

where we have denoted Δ := β − β∗.

In Appendices B.2 and B.3, we will show that the conditions (B.1) and (B.2)
hold w.h.p., when τ ≥ cτσ

∗ and α = 1
4λmin

(
E
[
w2(xi)xix

T
i

])
.

We have the basic inequality

Ln(β̃τ ) + λτ‖β̃τ‖1 ≤ Ln(β
∗) + λτ‖β∗‖1. (B.3)

Hence,

〈∇Ln(β
∗), β̃τ − β∗〉 ≤ Ln(β̃τ )− Ln(β

∗) ≤ λτ
(
‖β∗‖1 − ‖β̃τ‖1

)
, (B.4)

where the first inequality is due to the convexity of Ln. Therefore, we have

0 ≤ λτ
(
‖β∗‖1 − ‖β̃τ‖1

)
+ ‖∇Ln(β

∗)‖∞‖β̃τ − β∗‖1.

Denoting ν̂ = β̃τ − β∗ and using the bound (B.1), we then have

0 ≤ λτ

(
‖ν̂S‖1 − ‖ν̂Sc‖1 +

1

2
‖ν̂‖1
)
,
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since

‖β∗‖1 − ‖β̃τ‖1 = ‖β∗
S‖1 − ‖β̃τ,S‖1 − ‖β̃τ,Sc‖1 ≤ ‖ν̂S‖1 − ‖ν̂Sc‖1. (B.5)

This implies that

‖ν̂Sc‖1 ≤ 3‖ν̂S‖1, (B.6)

which is the cone condition.
Therefore, the RSC condition (B.2) together with the basic inequality (B.3)

implies that

〈∇Ln(β
∗), ν̂〉+ α‖ν̂‖22 ≤ Ln(β̂τ )− Ln(β

∗) ≤ λτ
(
‖β∗‖1 − ‖β̂τ‖1

)
,

so combining with inequalities (B.5) and (B.1), we have

α‖ν̂‖22 ≤ ‖∇Ln(β
∗)‖∞‖ν̂‖1 + λτ

(
‖β∗‖1 − ‖β̂τ‖1

)
≤ λτ

(
‖ν̂S‖1 − ‖ν̂Sc‖1 +

1

2
‖ν̂‖1
)

≤ 3λτ

2
‖ν̂S‖1

≤ 3λτ
√
k

2
‖ν̂‖2,

implying that

‖ν̂‖2 ≤ 3λτ
√
k

2α
. (B.7)

Rewriting the bound (B.7), we conclude that

‖β̃τ − β∗‖2 ≤ Cτ

√
k log p

n
,

with probability at least 1 − c exp(−c′n). Further note that for n � k log p, we
are guaranteed that

Cτ

√
k log p

n
< r.

It follows that β̃τ lies in the interior of the region {β : ‖β − β∗‖2 ≤ r}, so β̃τ

must also be a global optimum of the regularized Huber estimator (3.1) that does
not include the side constraint. Furthermore, any optima of the unconstrained
problem must also lie in the interior of the constraint set.

Finally, note that inequality (B.6) implies

‖β̃τ − β∗‖1 = ‖ν̂S‖1 + ‖ν̂Sc‖1 ≤ 4‖ν̂S‖1 ≤ 4
√
k‖ν̂S‖2 ≤ 4

√
k‖β̃τ − β∗‖2,

giving the desired �1-bound. This concludes the proof of the theorem.
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B.2. Bound on regularization parameter

We now verify the bound (B.1). Note that

∇Ln(β
∗) =

1

n

n∑
i=1

�′τ (εiw(xi))w(xi)xi.

We first condition on the values of the xi’s. For each 1 ≤ j ≤ p, we see that

eTj ∇Ln(β
∗) =

n∑
i=1

�′τ (εiw(xi))
w(xi)e

T
j xi

n

is a sum of independent, zero-mean random variables, where the ith term is

bounded by
τw(xi)|eTj xi|

n . Hence, by Hoeffding’s inequality and a union bound,
we have

P

⎛⎝‖∇Ln(β
∗)‖∞ ≥ τt

n
· max
1≤j≤p

√√√√ n∑
i=1

w2(xi)(eTj xi)2

∣∣∣∣∣ {xi}ni=1

⎞⎠ ≤ 2p exp(−2t2),

(B.8)
for any t > 0. We will take t �

√
log p.

Furthermore, the random vectors w(xi)xi are sub-Gaussian with parame-
ter b′ by assumption, so a union bound together with standard concentration
inequalities shows that

P

(
max
1≤j≤p

∣∣∣∣∣ 1n
n∑

i=1

w2(xi)(e
T
j xi)

2 − E
[
w2(xi)(e

T
j xi)

2
]∣∣∣∣∣ ≥ (b′)2s

)

≤ 2p exp

(
−ns2

2

)
, (B.9)

for any s > 0. In addition,

max
1≤j≤p

E
[
w2(xi)(e

T
j xi)

2
]
≤ max

1≤j≤p
E
[
(eTj xi)

2
]
≤ λmax(Σx).

Taking s �
√

log p
n in the concentration inequality (B.9), we then conclude that

P

(
max
1≤j≤p

1

n

n∑
i=1

w2(xi)(e
T
j xi)

2 ≤ 2λmax(Σx)

)
≥ 1− exp(−c log p), (B.10)

when n � log p. Now let E denote the high-probability event appearing on the
left-hand side of inequality (B.10), and let

F :=

{
‖∇Ln(β

∗)‖∞ ≤ cτλ1/2
max(Σx)

√
log p

n

}
.
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By a conditioning argument, we have

P(F c) =

∫
E

P(F c | {xi}ni=1)dP({xi}ni=1) +

∫
Ec

P(F c | {xi}ni=1)dP({xi}ni=1)

≤ 2 exp(−c log p),

where the first term is bounded via inequality (B.8) and the second term is
bounded by P(Ec), which is in turn bounded using inequality (B.10).

Hence, we conclude that

‖∇Ln(β
∗)‖∞ ≤ c0τ

√
log p

n
,

with probability at least 1 − cp−c′ , for a universal constant c0 (note that this
constant depends on the bound cmax on λmax(Σx)). In particular, the choice of

regularization parameter λ = 2c0

√
log p
n ensures that ‖∇Ln(β

∗)‖∞ ≤ λτ
2 , w.h.p.

B.3. RSC condition

We now turn to the more challenging task of establishing the RSC condi-
tion (B.2). We show that w.h.p., the inequality

Ln(β)− Ln(β
∗)− 〈∇Ln(β

∗), β − β∗〉 ≥ α‖β − β∗‖22

holds uniformly over the set

C :=
{
β : ‖β − β∗‖2 ≤ r, ‖βSc − β∗

Sc‖1 ≤ 3‖βS − β∗
S‖1
}
.

Defining

T (β, β∗) := Ln(β)− Ln(β
∗)− 〈∇Ln(β

∗), β − β∗〉,

we have

T (β, β∗) =
1

n

n∑
i=1

(
�τ
(
(xT

i β − yi)w(xi)
)
− �τ (εiw(xi))

− �′τ (εiw(xi))w(xi)x
T
i (β − β∗)

)
.

Note that for |u1|, |u2| ≤ τ , we have

�τ (u1)− �τ (u2)− �′τ (u2)(u1 − u2) =
(u1 − u2)

2

2
,

whereas the convexity of �τ implies that

�τ (u1)− �τ (u2)− �′τ (u2)(u1 − u2) ≥ 0, ∀u1, u2 ∈ R.
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Denote Δ := β − β∗, and define the events

Aβ
i :=

{
|εiw(xi)| ≤

τ

2

}⋂{
|(xT

i (β − β∗))w(xi)| ≤
τ

2

}
, ∀1 ≤ i ≤ n.

Note that on the event Aβ
i , we have

|(xT
i β − yi)w(xi)| ≤ |εiw(xi)|+ |(xT

i (β − β∗))w(xi)| ≤ τ,

so

T (β, β∗) ≥ 1

n

n∑
i=1

1

2

(
w(xi)x

T
i (β − β∗)

)2
1{Aβ

i }

=
1

2

(
1

n

n∑
i=1

(
w(xi)(x

T
i (β − β∗)

)2 − 1

n

n∑
i=1

(
w(xi)x

T
i (β − β∗)

)2
1
{
(Aβ

i )
c
})

.

We will now prove that the following statements hold, where γ is a sufficiently
small constant to be specified later. The proofs of Lemmas 3, 4, and 5 may be
found in Appendix B.4.

Lemma 3. With probability at least 1− 2 exp
(
− cδn

(b′)2 + 2k log p
)
, we have

1

n

n∑
i=1

(
w(xi)x

T
i (β − β∗)

)2 ≥ E

[(
w(xi)x

T
i (β − β∗)

)2]− 459δ‖β−β∗‖22, (B.11)

uniformly over β ∈ C.

Lemma 4. With probability at least 1−2 exp
(
− cδ′γn

(b′)2 + 2k log p+ γn log
(

e
γ

))
,

we have

1

γn
sup

|T |≤γn

∑
i∈T

(
w(xi)x

T
i (β − β∗)

)2 ≤ E

[(
w(xi)x

T
i (β − β∗)

)2]
+ 459δ′‖β − β∗‖22,

(B.12)

uniformly over β ∈ C. In particular, taking δ′ � log
(

e
γ

)
and assuming n �

k log p, we have

1

n
sup

|T |≤γn

∑
i∈T

(
w(xi)x

T
i (β − β∗)

)2 ≤ γE
[(
w(xi)x

T
i (β − β∗)

)2]
+ c′γ log

(
e

γ

)
‖β − β∗‖22,

with probability at least 1− 2 exp
(
−c′′γ log

(
e
γ

)
n
)
.

Lemma 5. Let r = γτ

8λ
1/2
max(E[w2(xi)xixT

i ])
and suppose n � k log p. With proba-

bility at least 1− c exp(−c′n), we have

sup
β∈C

n∑
i=1

1
{
(Aβ

i )
c
}
≤ γn. (B.13)
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Combining the results of Lemmas 3, 4, and 5, we see that

T (β, β∗) ≥ 1

2

(
(1− γ)E

[(
w(xi)x

T
i (β − β∗)

)2]
−
(
459δ + c′γ log

(
e

γ

))
‖β − β∗‖22

)

≥ 1

4
λmin

(
E
[
w2(xi)xix

T
i

])
‖β − β∗‖22,

with probability at least 1− c exp(−c′n), where we choose γ, δ, and δ′ such that
γ ≤ 1

4 and

459δ + c′γ log

(
e

γ

)
≤ 1

4
λmin

(
E
[
w2(xi)xix

T
i

])
in order to ensure the second inequality. (Note that limγ→0 γ log

(
e
γ

)
= 0.) This

completes the proof.

B.4. Proofs of supporting lemmas

We now provide the proofs of Lemmas 3, 4, and 5.

B.4.1. Proof of Lemma 3

We make use of Lemma 14 in Appendix H. We will apply the lemma to the
matrix

Γ =
1

n

n∑
i=1

w2(xi)xix
T
i − E

[
w2(xi)xix

T
i

]
,

with s = k. (We will verify the deviation condition (H.1) momentarily.)
Denoting Δ := β − β∗, we then have

1

n

n∑
i=1

(
w(xi)x

T
i Δ
)2 ≥ E

[
w2(xi)

(
xT
i Δ
)2]− 27δ

(
‖Δ‖22 +

‖Δ‖21
k

)
,

uniformly over all Δ ∈ R
p. Now note that for any β ∈ C, we have

‖Δ‖1 = ‖ΔS‖1 + ‖ΔSc‖1 ≤ 4‖ΔS‖1 ≤ 4
√
k‖ΔS‖2,

so

‖Δ‖22 +
‖Δ‖21
k

≤ 17‖Δ‖22,

from which inequality (B.11) follows.
Finally, note that the bound (H.1) in the hypothesis of Lemma 14 holds,

w.h.p. Indeed, for ‖v‖2 ≤ 1, the quantity vTΓv is the recentered average of i.i.d.
random variables, each of which is the square of a sub-Gaussian variable with
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parameter b′. Thus, a standard ε-net argument over 2k-dimensional subspaces
and a union bound over the

(
p
2k

)
choices of the support set implies that

P
(
|vTΓv| ≤ δ, ∀v ∈ R

p s.t. ‖v‖0 ≤ 2k, ‖v‖2 ≤ 1
)

≥ 1− 2 exp

(
− cδn

(b′)2
+ 2k log p

)
(B.14)

(cf. Lemma 15 in Loh and Wainwright [54]). This proves the desired result.

B.4.2. Proof of Lemma 4

The proof is similar to the proof of Lemma 3, except that on top of the arguments
used there, we also take a union bound over subsets of size at most γn, leading
to an additional factor of

(
n
γn

)
in the error probability. Recalling a standard

bound on binomial coefficients, we have(
n

γn

)
≤
(
e

γ

)γn

,

and using this expression in the probability bound completes the proof.

B.4.3. Proof of Lemma 5

We write

sup
β∈C

n∑
i=1

1{(Aβ
i )

c} ≤
n∑

i=1

1
{
|εiw(xi)| >

τ

2

}
+ sup

β∈C

n∑
i=1

1
{
|(xT

i (β − β∗))w(xi)| >
τ

2

}
≤

n∑
i=1

1
{
|εi| >

τ

2

}
+ sup

β∈C

n∑
i=1

1
{
|(xT

i (β − β∗))w(xi)| >
τ

2

}
.

(B.15)

For the first term in inequality (B.15), note that by the Chernoff bound in
Lemma 16, we have

1

n

n∑
i=1

1
{
|εi| >

τ

2

}
≤ 3P

(
|εi| >

τ

2

)
≤ 3(σ∗)2

τ2/4
,

with probability at least 1− exp(−cn), where the second inequality comes from
Markov’s inequality. In particular, we can guarantee that this term is bounded
by γ

2 if we take τ ≥ cτσ
∗, where the constant cτ depends on γ.
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For the second term in inequality (B.15), the bound 1{x ≥ y} ≤ x
y for x ≥ 0

and y > 0, together with the Cauchy-Schwarz inequality, implies that

sup
β∈C

1

n

n∑
i=1

1
{
|(xT

i (β − β∗))w(xi)| >
τ

2

}
≤

supβ∈C

1
n

∑n
i=1 |xT

i (β − β∗)w(xi)|
τ/2

≤ sup
β∈C

2

τ

√∑n
i=1

(
w(xi)xT

i (β − β∗)
)2

n
.

(B.16)

By an analogous argument to the one employed in the proof of Lemma 3, we
can derive the bound

1

n

n∑
i=1

(
w(xi)x

T
i (β − β∗)

)2 ≤ E

[(
w(xi)x

T
i (β − β∗)

)2]
+ 459δ‖β − β∗‖22,

with probability at least 1− 2 exp
(
− cδn

(b′)2 + 2k log p
)
, uniformly over all β ∈ C.

Combined with inequality (B.16), this implies that

sup
β∈C

1

n

n∑
i=1

1
{
|(xT

i (β − β∗))w(xi)| >
τ

2

}
≤ 2

τ

(
λmax

(
E
[
w2(xi)xix

T
i

])
+ 459δ

)1/2
r,

w.h.p. If we take δ =
3λmax(E[w2(xi)xix

T
i ])

459 , we have

2

τ

(
λmax

(
E
[
w2(xi)xix

T
i

])
+ 459δ

)1/2
r =

γ

2
.

Thus, both terms in inequality (B.15) are bounded by γn
2 , leading to the

desired result.

Appendix C: Proof of Theorem 2

Let j′ = min {j ∈ J : τj ≥ cτσ
∗}. Then τj′ ≤ 2cτσ

∗. We have

P(j∗ > j′) = P

( ⋃
i∈J :i>j′

{
‖β̂(i) − β̂(j′)‖2 > 2Cτi

√
k log p

n

}
⋃

i∈J :i>j′

{
‖β̂(i) − β̂(j′)‖1 > 8Cτik

√
log p

n

})

≤ P

(
‖β̂(j′) − β∗‖2 > Cτj′

√
k log p

n
or
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‖β̂(j′) − β∗‖1 > 4Cτj′k

√
log p

n

)

+
∑

i∈J :i>j′

P

(
‖β̂(i) − β∗‖2 > Cτi

√
k log p

n
or

‖β̂(i) − β∗‖1 > 4Cτik

√
log p

n

)

≤ cp−c′ + log2

(
2τmax

τmin

)
· cp−c′ ,

where we have used Theorem 1 and a union bound in the final inequality.

Hence, with probability at least 1− log2

(
4τmax

τmin

)
· cp−c′ , we have j′ ≥ j∗ and

the bounds

‖β̂(j′) − β∗‖2 ≤ Cτj′

√
k log p

n
,

‖β̂(j′) − β∗‖1 ≤ 4Cτj′k

√
log p

n
.

It follows that

‖β̂(j∗) − β∗‖2 ≤ ‖β̂(j∗) − β̂(j′)‖2 + ‖β̂(j′) − β∗‖2

≤ 2Cτj′

√
k log p

n
+ Cτj′

√
k log p

n

= 3Cτj′

√
k log p

n

≤ 6Ccτσ
∗
√

k log p

n
,

using the fact that τj′ ≤ 2cτσ
∗ in the final inequality.

Similarly, we have the bound

‖β̂(j∗) − β∗‖1 ≤ 24Ccτσ
∗k

√
log p

n
.

Appendix D: Proof of Theorem 4

We first present the main argument, with supporting lemmas in the succeeding
subsections.

D.1. Main argument

We write

√
n(̂bψ − β∗) =

√
n(β̂ − β∗) +

Θ̂

σ̂Â(ψ)
· 1√

n

n∑
i=1

ψ

(
yi − xT

i β̂

σ̂

)
xi
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=
Θ̂

σ̂Â(ψ)
· 1√

n

n∑
i=1

ψ(ξi)xi +
√
n

{
(β̂ − β∗)

+
Θ̂

σ̂Â(ψ)
· 1
n

n∑
i=1

(
ψ

(
yi − xT

i β̂

σ̂

)
− ψ

(
yi − xT

i β
∗

σ∗
ξ

))
xi

}
:= I + II. (D.1)

We first consider the term I = Θ̂

σ̂Â(ψ)
· 1√

n

∑n
i=1 ψ(ξi)xi, which we claim is

asymptotically normal. We have∥∥∥∥∥PJ

(
Θ̂

σ̂Â(ψ)
− Θx

σ∗
ξA(ψ)

)
1√
n

n∑
i=1

ψ(ξi)xi

∥∥∥∥∥
∞

≤
∥∥∥∥∥
(

Θ̂

σ̂Â(ψ)
− Θx

σ∗
ξA(ψ)

)
1√
n

n∑
i=1

ψ(ξi)xi

∥∥∥∥∥
∞

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ Θ̂

σ̂Â(ψ)
− Θx

σ∗
ξA(ψ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1

·
∥∥∥∥∥ 1√

n

n∑
i=1

ψ(ξi)xi

∥∥∥∥∥
∞

.

By Lemma 7, the second factor is OP (
√
log p). To handle the first factor, we

write∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ Θ̂

σ̂Â(ψ)
− Θx

σ∗
ξA(ψ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

σ∗
ξA(ψ)

(
Θ̂−Θx

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

1

σ̂Â(ψ)
− 1

σ∗
ξA(ψ)

)
Θx

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

1

σ̂Â(ψ)
− 1

σ∗
ξA(ψ)

)(
Θ̂−Θx

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1

≤ 1

|σ∗
ξA(ψ)|

∣∣∣∣∣∣∣∣∣Θ̂−Θx

∣∣∣∣∣∣∣∣∣
1
+

∣∣∣∣∣ 1

σ̂Â(ψ)
− 1

σ∗
ξA(ψ)

∣∣∣∣∣ |||Θx|||1

+

∣∣∣∣∣ 1

σ̂Â(ψ)
− 1

σ∗
ξA(ψ)

∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣Θ̂−Θx

∣∣∣∣∣∣∣∣∣
1

=OP

(
k log3/2 p√

n

)
, (D.2)

where the final inequality leverages Lemma 9 and the condition (4.6).
Together with the convergence statement in Lemma 10, we conclude that I

has the desired asymptotic normality property, since

OP

(
k log3/2 p√

n

)
· OP (

√
log p) = oP (1),

assuming n � k2 polylog(p).
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We now shift our attention to term II on the right-hand side of equa-
tion (D.1). By Taylor’s theorem applied to each summand, we have

1

n

n∑
i=1

(
ψ

(
yi − xT

i β̂

σ̂

)
− ψ

(
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)
and the same argument em-

ployed to bound the term B3 in the proof of Lemma 9 and the bound on ‖X‖max

from Lemma 6. Altogether, we have the bound
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Finally, again using the expansion δ̂i =
xi(β

∗−β̂)
σ̂ + εi

(
1
σ̂ − 1

σ∗
ξ

)
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We then bound
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using inequality (D.2) and Lemma 8, the bound on ‖X‖max from Lemma 6, and

the �1-error bound on β̂ in the last inequality. Hence, we conclude that
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under the assumption n � k2 polylog(p). Next, we bound A2 by noting that∥∥∥∥∥ 1n
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as well. The desired result then follows.

D.2. Supporting lemmas

We begin with a lemma concerning the magnitude of the entries of the design
matrix.

Lemma 6. Suppose Assumption 2 holds. Then

P (‖X‖max ≥ 2σx log(np)) ≤
1

np
.

Proof. Applying a union bound to the entries of X, we have
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(
− t
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)
.

Taking t = 2σx log(np) then gives the desired result.
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The next lemma is a concentration inequality derived using Lemma 15:

Lemma 7. Under Assumptions 2 and 3, and assuming n � polylog(p), we have∥∥∥∥∥ 1n
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with probability at least 1− Cn−c − p−c′ .

Proof. All the inequalities are proved by applying Lemma 15, where the vectors
{yi}ni=1 in the lemma are 2p-dimensional vectors containing the summands in
the respective inequalities, together with their additive inverses.

For inequality (D.4), let yi = ψ(ξi)xi. Note that conditioned on the εi’s, the
yi’s are independent, zero-mean vectors. Since ψ(ξi) is sub-exponential, a union
bound gives
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)
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(cf. the proof of Lemma 6). Furthermore, by Chebyshev’s inequality, we have
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we have P(E) ≥ 1− c
n .

We claim that the conditions (H.2) and (H.3) of Lemma 15 are satisfied with
Bn � polylog(p), conditioned on E. Indeed, we have
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for some constant c3 > 0. Then

E
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on E. Hence, by taking Bn � polylog(p), we can guarantee that condition (H.3)
is satisfied.

Inequalities (D.5) and (D.6) are proved in a similar manner, noting that
‖ψ′‖∞, ‖ψ′′‖∞ < ∞ by assumption, so the terms involving ψ(ξi) are still sub-
exponential.

The next two lemmas use the preceding concentration results to prove con-
vergence of certain empirical quantities to their population-level counterparts.

Lemma 8. Under the assumptions of Theorem 4, we have
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For the first term in inequality (D.7), we show that∣∣∣(β̂ − β∗)T Σ̂(β̂ − β∗)
∣∣∣ = OP

(
k log p

n

)
. (D.8)

We use Lemma 14 with Γ = Σ̂, δ = Θ(1), and s = k. In particular, we will show
that inequality (H.1) holds w.h.p. Then the lemma implies that
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.

In order to verify the deviation condition (H.1), note that by Lemma 6, we can

define Σ̃ = X̃T X̃
n , where X̃ is the matrix X with columns truncated according

to x̃i = xi · 1{‖xi‖∞ > 2σx log(np)}; then Σ̂ = Σ̃, w.h.p. Furthermore, Σ̃ is the
sample covariance matrix of bounded i.i.d. random vectors, so we have
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giving the desired result. For the second term in inequality (D.7), we have∥∥∥∥XT ε
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using the fact that n � k2 polylog(p) by assumption. Finally, note that

|σ̂ − σ∗
ξ | =

|σ̂2 − (σ∗
ξ )

2|
|σ̂ + σ∗

ξ |
,
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so when n � k2 polylog(p), we have |σ̂ − σ∗
ξ | = OP

(
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)
, from which

the desired bound follows.
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The third bound may be obtained in a similar manner via inequality (D.9).

Lemma 9. Under the assumptions of Theorem 4, we have
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Proof. We first prove the bound (D.10). We use the bound on
∣∣ 1
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By the triangle inequality, we have
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we may use a Taylor series expansion to write
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We claim that B = OP
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)
.

Using Lemma 7, together with the assumed �1-error bound on β̂, we have
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using the error bound on
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∣∣∣ from Lemma 8, boundedness of ‖ψ′′‖∞, and

Chebyshev’s inequality. Finally, we have
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via the same argument used in inequality (D.8) of Lemma 8, the assumed �2-

error bound on β̂, and the assumption n � k2 polylog(p).
Putting the results together, we have
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(
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)
,
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as claimed.
To establish inequality (D.11), we write∣∣∣∣∣ 1

Â(ψ)
− 1
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. (D.13)

Then∣∣∣∣∣ 1

σ̂Â(ψ)
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∣∣∣∣∣ ≤ 1

σ∗
ξ
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∣∣∣∣∣ ,
and the bounds from inequality (D.13) and Lemma 8 provide the desired result.

Finally, we derive an asymptotic normality result, which follows from an
application of the multivariate Central Limit Theorem.

Lemma 10. Under the assumptions of Theorem 4, we have the convergence in
distribution

PJ · Θx

σ∗
ξA(ψ)

· 1√
n

n∑
i=1

ψ(ξi)xi
d−→ N

(
0,

E[ψ2(ξi)]

(σ∗
ξ )

2A2(ψ)
· (Θx)JJ

)
, (D.14)

as n, p → ∞.

Proof. The convergence statement is easy to verify using the assumptions and
the multivariate CLT (cf. Lemma 18). Indeed, the mixed third moments of the
summands are finite, since they are products of sub-exponential variables, and
the variance of the limiting distribution is obtained via the calculation

Var

(
PJ · Θx

σ∗
ξA(ψ)

· ψ(ξi)xi

)
=

PJΘx

σ∗
ξA(ψ)

· E
[
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]
· Σx

ΘxP
T
J

σ∗
ξA(ψ)

=
E[ψ2(ξi)]

(σ∗
ξ )

2A2(ψ)
· PJΘxP

T
J .

Appendix E: Proof of Proposition 1

We adapt an argument from Ravikumar et al. [63], suitable for the present
setting. The main technical argument is a primal-dual witness construction,
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which shows that the solution of the graphical Lasso restricted to the true
support set also yields the unique global optimum when padded with zeros
to obtain a p × p matrix. We only mention the necessary amendments to the
arguments used in Ravikumar et al. [63]; for more details, see the paper.

Following the proof of Theorem 1 in Ravikumar et al. [63], we denote W =

Σ̂− Σx. We can easily derive the following lemma:

Lemma 11. The entrywise MoM covariance estimator Σ̂ satisfies∥∥∥Σ̂− Σx

∥∥∥
max

≤ cσ2
x

√
log p

n
,

with probability at least 1− exp(−c′n).

Proof. We apply Lemma 13 in Appendix H with ε = 1, together with a union
bound. Note that by assumption, the marginals of the xi’s are sub-exponential
random variables, so moments of all orders are finite. Then we have

P

(∥∥∥Σ̂− Σx

∥∥∥
max

≥ cσ2
xt
)
≤ p exp(−c′nt2),

for all t > 0, from which the desired result follows by taking t �
√

log p
n and

using the sample size assumption n � log p.

By Lemma 11, we can guarantee that

‖W‖max ≤ αλ

8
,

w.h.p., by choosing the constant c in the bound to be sufficiently small. Next,
we define the matrix function

R(Δ) = Θ̂−1 −Θ−1
x +Θ−1

x ΔΘ−1
x .

By Lemma 5 of Ravikumar et al. [63], we know that ‖Δ‖max ≤ 1
3κΣd implies

that

‖R(Δ)‖max ≤ 3k‖Δ‖2maxκ
3
Σ

2
.

Lemma 6 of Ravikumar et al. [63] then applies directly, as well, stating that if

r := 2κΓ(‖W‖max + λ) ≤ min

{
1

3κΣk
,

1

3κ3
ΣκΓk

}
, (E.1)

we have
‖Θ̂−Θx‖max ≤ r.

Note that the bound (E.1) holds by our assumption on the range of λ. In par-
ticular, we have

‖R(Θ̂−Θx)‖max ≤ 3κ3
Σk

2
‖Θ̂−Θx‖2max
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≤ 3κ3
Σk

2
· 4κ2

Γ

(α
8
+ 1
)2

λ2

≤ αλ

8
,

by our assumptions. Lemma 4 of Ravikumar et al. [63] then applies, implying the
required strict dual feasibility result and the validity of the primal-dual witness
construction argument.

Appendix F: Proof of Theorem 5

By Theorem 4, the asymptotic variance of
√
n(̂bψ − β∗)J is equal to

VJ =
E[ψ2(ξi)]

(σ∗
ξ )

2E

[
1

(σ∗
ξ )

4ψ′(ξi)
]2 · (Θx)JJ .

We simply need to note that

(Θx)JJ =
(
E

[(
(xi)J − E [(xi)J | (xi)Jc ]

)(
(xi)J − E [(xi)J | (xi)Jc ]

)])−1

,

so it suffices to prove the equivalence of the terms

V1 :=

⎛⎝E
⎡⎣(f ′

σ∗
ξ
(εi)

fσ∗
ξ
(εi)

)2
⎤⎦⎞⎠−1

, and

V2 :=
E

[
ψ2
(

εi
σ∗
ξ

)]
E

[
1
σ∗
ξ
ψ′
(

εi
σ∗
ξ

)]2 ,
where fσ∗

ξ
denotes the pdf of εi. Taking f to be the pdf of εi

σ∗
ξ
, we have

fσ∗
ξ
(t) =

1

σ∗
ξ

f

(
t

σ∗
ξ

)
, and f ′

σ∗
ξ
(t) =

1

(σ∗
ξ )

2
f ′

(
t

σ∗
ξ

)
,

so

V1 =

⎛⎜⎝E
⎡⎢⎣ 1

(σ∗
ξ )

2

⎛⎝f ′
(

εi
σ∗
ξ

)
f
(

εi
σ∗
ξ

)
⎞⎠2⎤⎥⎦
⎞⎟⎠

−1

.

Furthermore, differentiating the equation ψ(t) = f ′(t)
f(t) , we have

ψ′(t) =
f(t)f ′′(t)− (f ′(t))2

(f(t))2
,
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so

V2 =

E

⎡⎢⎣
⎛⎝ f ′

(
εi
σ∗
ξ

)
f

(
εi
σ∗
ξ

)
⎞⎠2
⎤⎥⎦

⎛⎝E
⎡⎣ 1

σ∗
ξ
·
f

(
εi
σ∗
ξ

)
f ′′
(

εi
σ∗
ξ

)
−
(
f ′
(

εi
σ∗
ξ

))2

(
f

(
εi
σ∗
ξ

))2

⎤⎦⎞⎠2 .

Furthermore, the square root of the term in the denominator is equal to

1

σ∗
ξ

· E
[
f(ε)f ′′(ε)− f ′(ε)f ′(ε)

f(ε)2

]
=

∫ ∞

−∞
f ′′(t)dt−

∫ ∞

−∞

f ′(t)f ′(t)

f(t)
dt

= [f ′(t)]
∞
−∞ −

∫ ∞

−∞

f ′(t)f ′(t)

f(t)
dt

= −E

⎡⎢⎣
⎛⎝f ′
(

εi
σ∗
ξ

)
f
(

εi
σ∗
ξ

)
⎞⎠2⎤⎥⎦ ,

from which we conclude that V1 = V2. Thus, we have VJ = V as well, implying
the desired property of asymptotic efficiency.

Appendix G: Proof of Theorem 6

The proof follows in a straightforward manner from Theorem 4, which estab-
lishes the weak convergence statement

√
nPJ (̂bψ − β∗)

d−→
√
E[ψ2(ξi)]

σ∗
ξA(ψ)

· ((Θx)JJ)
1/2

Z,

where Z ∼ N(0, Im). Rearranging, we have

√
nσ∗

ξA(ψ)√
E[ψ2(ξi)]

· ((Θx)JJ)
−1/2 · PJ (̂bψ − β∗)

d−→ Z.

We then use the following lemma:

Lemma 12. Under the assumptions of the theorem, we have

σ̂Â(ψ)√
1
n

∑n
i=1 ψ

2
(
(yi − xT

i β̂)/σ̂
) ·
√
E[ψ2(ξi)]

σ∗
ξA(ψ)

·
(
Θ̂JJ

)−1/2

· ((Θx)JJ)
1/2

P−→ 1.
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Proof. Note that it suffices to show the following convergence results:

σ̂Â(ψ)

σ∗
ξA(ψ)

P−→ 1, (G.1)

E[ψ2(ξi)]

1
n

∑n
i=1 ψ

2
(
(yi − xT

i β̂)/σ̂
) P−→ 1, (G.2)

(
Θ̂JJ

)−1

(Θx)JJ
P−→ 1, (G.3)

since we may combine the statements via Slutsky’s theorem to obtain the desired
result. Convergence results (G.1) and (G.3) are direct consequences of Lemma 9
and condition (4.6) of Theorem 4, under the assumed sample size scaling. To
obtain the convergence result (G.2), we may use a parallel argument to the one
employed to bound term B in the proof of Lemma 9. The only difference is that
we use a Taylor expansion of ψ2 rather than ψ′. Note that we have assumed
(ψ2)′′ to be bounded. Since

(ψ2)′ = 2ψψ′,

the terms we need to control replace B1 and B2 in inequality (D.12) by the
quantities

B′
1 :=

∥∥∥∥∥ 1n
n∑

i=1

ψ(ξi)ψ
′(ξi)xi

∥∥∥∥∥
∞

, B′
2 :=

∣∣∣∣∣ 1n
n∑

i=1

ψ(ξi)ψ
′(ξi)ξi

∣∣∣∣∣ .
As in the proof of Lemma 9, these terms may be bounded w.h.p. using Lemma 7
and Chebyshev’s inequality.

Hence, by Slutsky’s theorem, we also have

√
nσ̂Â(ψ)√

1
n

∑n
i=1 ψ

2
(
(yi − xT

i β̂)/σ̂
) ·
(
Θ̂JJ

)−1/2

· PJ (̂bψ − β∗)
d−→ Z.

Combined with equation (4.11), we then have

lim
n,p,k→∞

P

( √
nσ̂Â(ψ)√

1
n

∑n
i=1 ψ

2
(
(yi − xT

i β̂)/σ̂
) ·
(
Θ̂JJ

)−1/2

· PJ (̂bψ − β∗) ∈ Bα,J

)
= 1− α.

Rearranging the argument inside the probability expression yields the desired
result.
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Appendix H: Additional useful lemmas

We begin with a lemma giving a concentration inequality for the median-of-
means estimator:

Lemma 13. [Bubeck et al. [12, Lemma 2]] Let 0 < δ < 1 and 0 < ε ≤ 1,
and n ≥ 16 log

(
1
δ

)
+ 2. Suppose E[Xi] = μ and E

[
|Xi − μ|1+ε

]
= v. Let K =⌊

8 log
(

e1/8

δ

)
∧ n

2

⌋
. Then with probability at least 1− δ,

|μ̂MoM − μ| ≤ (12v)
1

1+ε

(
16 log(e1/8/δ)

n

) ε
1+ε

.

In particular, taking δ = ce−c′n, where c and c′ are functions of ε, v, and μ, we
have μ

2 ≤ μ̂MoM ≤ 3μ
2 with probability at least 1− c exp(−c′n).

The following lemma concerns quadratic forms of a matrix computed with
respect to sparse vectors:

Lemma 14. [Loh and Wainwright [54, Lemma 12]] For a fixed matrix Γ ∈
R

p×p, parameter s ≥ 1, and tolerance δ > 0, suppose we have the deviation
condition

|vTΓv| ≤ δ, ∀v ∈ R
p s.t. ‖v‖0 ≤ 2s and ‖v‖2 ≤ 1. (H.1)

Then

|vTΓv| ≤ 27δ

(
‖v‖22 +

‖v‖21
s

)
, ∀v ∈ R

p.

We now have a useful lemma concerning a Gaussian approximation of max-
ima.

Lemma 15. [Chernozhukov et al. [16, Corollary 2.1]] Suppose {yi}ni=1 ⊆ R
p are

independent, zero-mean random vectors such that for some constants c1, C1 > 0
and a sequence of constants Bn ≥ 1, the following conditions hold uniformly in
1 ≤ j ≤ p:

c1 ≤ 1

n

n∑
i=1

E[y2ij ] ≤ C1, and (H.2)

max
�=1,2

{
1

n

n∑
i=1

E

(
|yij |2+�

B�
n

)}
+ max

1≤i≤n
E

[
exp

(
|yij |
Bn

)]
≤ 4. (H.3)

Also suppose
B2

n(log(pn))
7

n ≤ C2n
−c2 for some constants c2, C2 > 0. Then there

exist constants c, C > 0, depending only on c1, c2, C1, and C2, such that

sup
t∈R

∣∣∣∣P( max
1≤j≤p

Yj ≤ t

)
− P

(
max
1≤j≤p

Zj ≤ t

)∣∣∣∣ ≤ Cn−c,

where Y = 1√
n

∑n
i=1 yi, and Z ∼ N (0,E[yiy

T
i ]) is a multivariate Gaussian

vector with components {Zj}pj=1.
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Lemma 15 leads to several useful concentration inequalities. In particular,
using a union bound together with standard Gaussian tail bounds, we have

P

(
max
1≤j≤p

Zj ≤ t

)
≤ 2p exp

(
− t2

2σ2
Y

)
,

where σY = max1≤j≤p E[y
2
ij ], so we have

max
1≤j≤p

Yj ≤ 2σY

√
log p,

with probability at least 1− Cn−c − p−c′ .

Lemma 16. [Chernoff bound for binomials [76, Theorem 2.3.1]] Let Xi
i.i.d.∼

Bernoulli(p), and let μ̂ = 1
n

∑n
i=1 Xi. For any t > p, we have

P(μ̂ ≥ t) ≤ exp (−np+ nt log(ep/t)) .

Lemma 17. [Moments of spherically symmetric distributions [24]] Suppose
X = RU , where U is uniformly distributed on a p-dimensional unit sphere
and R is a scalar random variable. For even integers 2si ≥ 0, where 1 ≤ i ≤ p,
we have

E

[
p∏

i=1

X2si
i

]
= E[R2s]π−p/2 Γ(p/2)

Γ(p/2 + s)

p∏
i=1

Γ

(
1

2
+ si

)
,

where s =
∑p

i=1 si.

Lemma 18. [Multivariate Lindeberg-Feller CLT [30]] Suppose {xn}n≥1 are in-
dependent random vectors such that all mixed third moments are finite. Let
E[xi] = μi and Var[xi] = Qi, and define

μn =
1

n

n∑
i=1

μi, and Qn =
1

n

n∑
i=1

Qi.

Suppose
lim

n→∞
Qn = Q � 0,

and for every i,

lim
n→∞

(
Qn

)−1 Qi

n
= 0.

Then
√
n

(
1

n

n∑
i=1

xi − μ̄n

)
d−→ N (0, Q).

Lemma 19. Suppose X and Y are independent random variables, where X has
a symmetric, unimodal density. Then

MAD(X) ≤ MAD(X + Y ).
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Proof. Without loss of generality, we assume the distribution of X is symmetric
around 0. Note that it suffices to show that

P

(
|X + Y −med(X + Y )| ≥ MAD(X)

)
≥ 1

2
.

Indeed, we will show this inequality holds for any fixed value Y = y:

P

(
|X + y −M | ≥ MAD(X)

)
≥ 1

2
, (H.4)

where we have denoted M = med(X + Y ). We may then write the left-hand
probability as

P (X ≥ M − y +MAD(X)) + P (X ≤ M − y −MAD(X)) := I + II.

Note that:

1. If M − y ≥ MAD(X), we have

II ≥ P(X ≤ 0) ≥ 1

2
.

2. If M − y ≤ −MAD(X), we have

I ≥ P(X ≥ 0) ≥ 1

2
.

3. Otherwise, suppose 0 ≤ M − y < MAD(X) (the case when M − y is
negative is analogous). We have the bound(

I + II
)
−
(
P(X ≥ MAD(X)) + P(X ≤ −MAD(X)

)
= −P

(
MAD(X) ≤ X < MAD(X) +M − y

)
+ P

(
−MAD(X) < X ≤ −MAD(X) +M − y

)
= −P

(
MAD(X) ≤ X < MAD(X) +M − y

)
+ P

(
MAD(X)−M + y ≤ X < MAD(X)

)
≥ 0,

where the final inequality comes from the assumption that the pdf of X
is unimodal, hence is a nonincreasing function on the interval MAD(X)±
(M − y). We conclude that

I + II ≥ P

(
|X| ≥ MAD(X)

)
≥ 1

2

in this case, as well.

This establishes inequality (H.4).
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