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in the warping functions to account for individual phase variations; and in
the linear structure to deal with individual amplitude variations. Via an
appropriate choice of the warping function and B-spline approximations,
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of the developed method is further illustrated via the analysis of a real data
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Fig 1. Pinch Force dataset.
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1. Introduction

Functional data are encountered in many fields, a multitude of examples can
be found in the books by [10, 24, 25]. When analyzing functional data it is of
particular interest to provide answers to the questions: (i) is there a common
main (mean) functional pattern to be distinguished?; (ii) can we quantify the
significant individual fluctuations with respect to such a mean pattern? While
the common functional mean is capturing main features such as peaks and val-
leys, differences between individual curves are often exposed via differences in
phase and in amplitude of the main features. In Figure 1 the Pinch Force data
are depicted. These data were collected as part of an experiment to investigate
the force (measured in Newton) exerted by thumb and forefinger when pinching
a 6 cm width force meter. See [26]. Data on 20 recordings of such force mea-
surements, recorded every 2 milliseconds during a time period of 0.3 seconds,
are presented in Figure 1. There seems to be a clear maximum for each curve,
but the position and the size of this maximum differs considerably from curve
to curve. See further Section 5.

Often there is no prior information available regarding the number of impor-
tant features, and where, in which region, they occur. A flexible method should
thus not rely on such information, and be able to extract a main pattern from
the data, as well as information on major individual variations. Aligning the
individual curves via individual shift functions is conveniently done via time
warping functions, see for example [2, 7, 8, 14, 19, 33]. One approach towards
describing the curve-specific deviations from the mean curve is via random ef-
fects. See for example [5, 9, 15]. An analysis of variance model for functional data
describing the phase variability through time-warping and allowing for inference
in the presence of amplitude variability, was introduced by [13]. This approach
was further extended to a functional regression setting in [11, 12]. A functional
mixed effects regression model was used to analyse spike train data in [16]. In
[36] the emphasis was to construct separate boxplot-type displays for the three
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main components of the observed variation in functional data, the amplitude,
phase, and vertical translation. A shift-warping method is used in [3] for multi-
variate functional data where each of the components may contribute to a shift
with its own parameter value. In [35], warping methods are proposed for data
from exponential families. The methodology consists of working with principal
components analysis (PCA) and using an expectation-maximization (EM) al-
gorithm for parameter estimation. In [17], PCA is studied to analyse warping
functions. A nonparametric registration method is proposed in [4], based on a
local variation measure introduced to provide nonparametric conditions that
lead to identifiability. The phase and amplitude are separated in [31] by using
a representation of functional data that is based on the Fisher-Rao metric to
compute an elastic shape analysis of the curves. Based on this representation,
[37] analyses the phase variation using a principal nested sphere approach. In
[28], a constrained elastic shape analysis is used with a landmark representa-
tion. While there are Bayesian methods for registration too, see for example
[6], these are not considered here. Other papers focus on curve registration and
classification or clustering, see [21, 27, 30, 38].

In this paper we use a mixed effects model in which random effects enter on
two levels: (1) a warping function with random effects describes the individual
phase variability in a flexible manner, and (2) a second random effect is used
to model the individual amplitude variability. This follows the approach of [13],
but with two major differences: (i) the definition of the warping function does
not depend on ‘landmarks’ (locations of peaks and valleys); (ii) the estimation
procedure. A first important advantage of our method is that there is no need to
know nor estimate landmarks, neither their number nor their positions, which
can be time consuming and/or difficult. Second, our estimation procedure is
computationally less demanding than, for example, an EM-algorithm as used in
[13]. Different from [23] is that we use nonparametric estimation by means of
B-splines and avoid a linearization of the mean around the warped values as in
their estimation approach. We focus in this paper on homogeneous signals. We
prove the identifiability results of the proposed data registration model under
some mild conditions. In addition, the asymptotic properties of the proposed
estimation procedure are investigated: convergence of the algorithm, asymptotic
normality of the estimator at each step, and consistency of the final estimator.
An important contribution of this theory is the study of the algorithm, seen
as an iterative process, and not on the estimator that it approximates. The
added value of the method is illustrated on the Pinch Force data in Section 5,
where our analysis not only provides a mean pattern, but also allows to describe
clearly where most individual differences occur with respect to either phase or
amplitude.

The paper is organized as follows. In Section 2 the modeling framework is
introduced together with the necessary notations. The identifiability of the pro-
posed model is obtained. Details about the estimation procedure are provided
in Section 3. An estimator for the warping parameters is constructed, and its
asymptotic normality is proven. Linear mixed model estimators are proposed
for the functional parameters and their asymptotic normality is shown. In Sec-
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tion 3.3 we derive an iterative estimation procedure for which we show the
convergence and the consistency of the resulting estimators. The finite-sample
performance of the proposed estimation method is investigated in Section 4,
which also includes a comparison with four existing methods. The methodol-
ogy is used to analyse the Pinch Force data in Section 5. The paper concludes
by some discussion in Section 6. This paper is accompanied by the R package
warpMix. All proofs are given in the Appendices.

2. The model and its identifiability

Suppose one observes individual curves Y1(t), Y2(t), . . . , Yn(t) on the interval
[0, 1] (without loss of generality), and a first aim is to find a main pattern
μ(t) in these individual curves. First, we introduce the various elements of the
modeling framework, and provide the identifiability of the model. All the proofs
of the results stated in this section can be found in Appendix A.

2.1. A functional mixed model with warping function

We consider the following functional mixed model. For i = 1, . . . , n, and for
t ∈ [0, 1], we define the process

Yi(t) = μ
{
w−1(t;θi)

}
+ Ui

{
w−1(t;θi)

}
+ εi

{
w−1(t;θi)

}
, (1)

with μ the unknown common mean and where Ui denotes the unknown random
effect on the amplitude for the observation i. The flexible warping function
w : [0, 1] → [0, 1] is strictly increasing and depends on a random variable θi ∼
Nr(θ0,Σ

θ), that describes the individual phase variability. Details about the
warping function are provided in Section 2.3.

We rather use the discretization of model (1) with time points (ti,j) for j =
1, . . . , Ti; i = 1, . . . , n, where Ti denotes the number of fixed (non-random) time
points for the individual i:

Yi(ti,j) = μ
{
w−1(ti,j ;θi)

}
+ Ui

{
w−1(ti,j ;θi)

}
+ εi,j . (2)

We assume that for all i, the error vectors εi = (εi,1, . . . , εi,Ti)
� with εi ∼

NTi(0Ti , σ
2
εITi) are i.i.d., meaning that the error terms are independent of ti,j

and of the warping effects θi.

An analogous model was used in [23], where the warping function stands
only in the common mean and not in the individual effect, and in [13], where a
group level is added. We argue that from this general formulation, many things
have to be defined to allow the estimation of this model. The specificities of our
study and its novelty will be described in the next two subsections, through the
decomposition of the signals onto a B-splines basis and the warping function.
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2.2. B-spline basis decomposition

The warping function w, the unknown mean function μ and the individual
random effect amplitude functions Ui are modeled in a flexible fashion via B-
splines. In this paper, we make the following assumption.

Assumption A. We assume that the functions μ, (Ui)i=1,...,n and w belong to
the space spanned by the considered spline basis.

Assumption A ensures to have unbiased estimators for the curves, and avoids
having to theoretically deal with a modeling bias. When using a spline basis in
practice, the curves are well approximated when utilizing a finite (maybe large)
number of knots.

For the mean function μ, we define a sequence of Kμ interior knots 0 = κμ
0 <

κμ
1 < . . . κμ

Kμ
< κμ

Kμ+1 = 1. In addition, we put pμ + 1 boundary knots at 0

as well as at 1, and denote κμ
−pμ

= . . . = κμ
−1 = κμ

0 and κμ
Kμ+1 = κμ

Kμ+2 =

. . . = κμ
Kμ+pμ+1. We denote by κμ = {κμ

−pμ
, . . . , κμ

Kμ+pμ+1} the set of all knots
involved in estimation of μ. The B-spline basis functions of degree pμ are defined
by induction as

Bμ
l,1(t;κ

μ) =

{
1 if κμ

l ≤ t ≤ κμ
l+1;

0 otherwise;

Bμ
l,pμ+1(t;κ

μ) =
t− κμ

l

κμ
l+pμ

− κμ
l

Bμ
l,pμ

(t;κμ) +
κμ
l+pμ+1 − t

κμ
l+pμ+1 − κμ

l+1

Bμ
l+1,pμ

(t;κμ);

for l = −pμ, . . . ,Kμ. With the use of the additional (boundary) knots, this gives
precisely mμ = Kμ + pμ + 1 basis functions. The function μ is decomposed in
the B-spline basis, with coefficient vector αμ = (αμ

−pμ
, . . . , αμ

Kμ
)�,

μ(t) =

Kμ∑
l=−pμ

αμ
l B

μ
l,pμ+1(t;κ

μ). (3)

Note that if μ(·) does not belong to the space spanned by the basis functions,
then the equality in (3) should be replaced by an approximation. The induced
modeling bias can be controlled by taking a large number of knots.

Similarly, for i = 1, . . . , n each individual random function Ui is decom-
posed in a basis of B-splines of degree pUi . Denote the B-spline basis for Ui by
(BU

i,−pUi
,pUi

+1, . . . , B
U
i,KUi

,pUi
+1) with knots sequence κUi , resulting in mUi =

KUi + pUi + 1 basis functions, and consider

Ui(t) =

KUi∑
l=−pUi

αU
i,lB

U
i,l,pUi

+1(t;κ
Ui),

where αU
i = (αU

i,−pUi
, . . . , αU

i,KUi
)�. For this random vector αU

i of B-spline
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coefficients, attaining values in RmUi
×1, we assume that, for all i = 1, . . . , n,

αU
i =

⎛
⎜⎝
αU
i,−pUi

...
αU
i,KUi

⎞
⎟⎠∼NmUi

(
0mUi

,ΣUi
)
with ΣUi =

⎛
⎜⎜⎜⎝
σ2
U,1 0 . . . 0

0 σ2
U,2 . . . 0

0 0
. . . 0

0 . . . 0 σ2
U,mUi

⎞
⎟⎟⎟⎠ ,

the covariance matrix for which we assume a diagonal structure, and which needs

to be estimated. Further we denote α∼
U =

(
(αU

1 )
�, . . . , (αU

n )
�)�, a random

vector taking values in R
∑n

i=1 mUi
×1.

2.3. The warping function

A flexible way to model the warping function is as follows. For every t ∈ [0, 1],
we define

w−1(t;θi) =

∫ t

0
exp
{
h−1(u;θi)

}
du∫ 1

0
exp {h−1(u;θi)} du

, (4)

with h−1 as indicated below. Note that w−1 (and hence w) is by construction
an increasing function. The advantage of using the exponential function is that
it warrants the positivity of the function. A non-random version of this warping
function was introduced in [25] and used in [16, 32]. There are many other choices
of warping functions that could be made (see for example [20]). In short, the
warping function w−1 (or w) in (4) satisfies the following necessary conditions:
increasing, and from [0, 1] to [0, 1]. To ensure identifiability, the function h−1

will be decomposed using a basis of centralized B-splines, i.e.

h−1(u;θi) =

Kh∑
l=−ph

θi,lB̄
h
l,ph+1(u;κ

h), (5)

where (B̄h
l,ph+1)l=−ph,...,Kh

satisfy∫ 1

0

B̄h
l,ph+1(u;κ

h)du = 0.

The vector of random effects θi = (θi,−ph
, . . . , θi,Kh

)� describes the individual
phase variability, for which we assume a linear mixed effects model

θi = θ0 +Ei + ε̃i, (6)

with Ei ∼ Nr(0r,Σ
E) and ε̃i ∼ Nr(0r, σ

2
ε̃Ir) independent. Then θi ∼ Nr(θ0,

Σθ), with Σθ = ΣE+σ2
ε̃Ir. To ensure identifiability, we assume that σ2

ε̃ is known.
In [13] the parameter θ0 is considered to be a Jupp transform of the landmarks
of the mean function μ. In contrast, we avoid the use of landmarks, and θ0 is a
parameter to be estimated.

By construction, the warping function is injective, as proved in Lemma 1.
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Lemma 1. The warping function w defined via (4) and (5) is injective with
respect to the second parameter: for every t ∈ [0, 1],

t = w(w−1(t;θ1);θ2) ⇒ θ1 = θ2.

Further, we assume that the αU
i s and θis, the random effects describing the

individual phase and amplitude variability, are independent of each other.

2.4. The model in matrix form

For further analysis it will be useful to introduce some matrix notation. The
matrix Bμ

i of dimension Ti ×mμ contains (j, l)th element Bμ
l,pμ+1(tij ;κ

μ), and

BU
i is the matrix of dimension Ti×mUi with (j, l)th element BU

i,l,pUi
+1(tij ;κ

Ui).

Further, (Bμ
i )

θi = ([(Bμ
i )

θi ]j,l)j=1,...,Ti; l=−pμ,...,Kμ , with

[(Bμ
i )

θi ]j,l = Bμ
l,pμ+1{w−1(ti,j ;θi);κ

μ}.

Define [(Bμ
i )

θi,θ̃i ]j,l = Bμ
l,pμ+1[w

−1{w(ti,j ;θi); θ̃i};κμ] for j = 1, . . . , Ti and

l = −pμ, . . . ,Kμ. Similarly, we define (BU
i )

θi and [(BU
i )

θi,θ̃i ]j,l.
The model (2) in matrix representation is

Y∼ = B∼
μ αμ +B∼

U α∼
U + ε∼ (7)

with

Y∼ =
(
(Y1(t1,1), . . . , Y1(t1,T1))

�, . . . , (Yn(tn,1), . . . , Yn(tn,Tn))
�)�∈R∑n

i=1 Ti ×1,

ε∼ =
(
(ε1)

�, . . . , (εn)
�)� ∼ N∑n

i=1 Ti
(0∑n

i=1 Ti
, σ2

εI
∑n

i=1 Ti
),

αμ ∈ Rmμ×1,

B∼
μ =

[
(Bμ

1 )
θ1 ; . . . ; (Bμ

n)
θn
]
∈ R

∑n
i=1 Ti×mμ ,

α∼
U ∼ N∑n

i=1 mUi
(0∑n

i=1 mUi
,Σ∼

U ),

Σ∼
U =

⎛
⎜⎜⎜⎝
ΣU1 0 0 0
0 ΣU2 0 0

0 0
. . . 0

0 0 0 ΣUn

⎞
⎟⎟⎟⎠ ,

B∼
U =

[
(BU

1 )
θ1 ; . . . ; (BU

n )
θn
]
∈ R

∑n
i=1 Ti×mμ ,

θ∼ =
(
(θ1)

�, . . . , (θn)
�)� ∼ Nr×n(θ∼ 0, Ir ⊗ Σθ),

θ∼ 0 ∈ R(r×n)×1,

where A⊗B denotes the Kronecker product of two matrices A and B.
In summary, the unknown parts in the model consist of αμ, σ2

ε,Σ∼
U ,θ0,Σ

θ.
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2.5. Identifiability of the model

In this section, we provide sufficient and necessary conditions to ensure the
identifiability of model (7). First, the joint model (7) is identifiable if and only if
at least one (approximate) individual model (2) is identifiable. We thus focus on
a fixed i, and on the set of parameters (αμ, σ2

ε,Σ
Ui ,θ0,Σ

θ) which consists of the
subparts (αμ, σ2

ε,Σ
Ui) and (θ0,Σ

θ), where the latter is linked to the warping
modeling part, and the former with the other parts. We start by investigating
identifiability in each part.

2.5.1. Identifiability of the warped process

Take any i ∈ {1, . . . , n}. For j = 1, . . . , Ti, let Xi be the warped process:

Xi,j = Yi{w(ti,j ;θi)} = μ(ti,j) + Ui(ti,j) + εi,j

=

Kμ∑
l=−pμ

αμ
l B

μ
l,pμ+1(ti,j ;κ

μ) +

KUi∑
l=−pUi

αU
i,lB

U
i,l,pUi

+1(ti,j ;κ
Ui) + εi,j . (8)

Since εi ∼ NTi(0Ti , σ
2
εITi), we obtain

Xi|αU
i ∼ NTi(B

μ
i α

μ +BU
i α

U
i , σ

2
εITi).

First, remark that if we know (σ2
ε,Σ

Ui), or if we know σ2
ε, or if we know

ΣUi , model (8) is identifiable. In the following theorem, we give sufficient and
necessary conditions for model (8) to be identifiable when both variance pa-
rameters are unknown. Since, for given (θ0,Σ

θ), and due to the use of B-spline
approximations, the warped process leads to a linear mixed effects model, we
can use general results on the identifiability of such models, as obtained by [34].
Theorem 1 is an adaptation of Corollary 4.2 in [34] to the current setting.

Theorem 1. Let i∈{1, . . . , n} be given. Model (8) is not identifiable if and only
if the three conditions are fulfilled:

1. (BU
i )

�BU
i 	= 0mUi

;

2. HU
i = BU

i {(BU
i )

�BU
i }−1(BU

i )
� = ITi ;

3. (BU
i )

�BU
i is diagonal.

Consequently, model (8) is identifiable if at least one of the three conditions
in Theorem 1 is not satisfied.

2.5.2. Identifiability of the warping function

Here, we assume that we know the parameters of the mixed effects model
(αμ, σ2

ε,Σ
Ui), and we want to prove the identifiability of the warping process

Yi(t) = Xi{w−1(t;θi)}, (9)
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involving the parameters (θ0,Σ
θ).

Sufficient and necessary conditions for identifiability of this part are estab-
lished in Theorem 2.

Theorem 2. Let i ∈ {1, . . . , n} be given. Let θi ∼ Nr(θ0,Σ
θ) and θ̃i ∼

Nr(θ̃0,Σ
θ̃) be used to define two warping functions w−1(.;θi) and w−1(.; θ̃i),

and let Xi and X̃i be the corresponding warped functions, such that

Yi(t) = Xi{w−1(t;θi)} = X̃i{w−1(t; θ̃i)}.

Then model (9) is identifiable if and only if

Bμ
i =Eθi,θ̃i

{
(Bμ

i )
θi,θ̃i

}
;

(BU
i )

�ΣUiBU
i =Varθi,θ̃i

{
(Bμ

i )
θi,θ̃iαμ

}
+Eθi,θ̃i

[{
(BU

i )
θi,θ̃i

}�
ΣUi(BU

i )
θi,θ̃i

]
.

2.5.3. Identifiability of the global model

We proved that, when knowing the warping parameters, the functional linear
mixed effects model is identifiable, and that when knowing the functional linear
mixed effects model, the warping parameters are identifiable. Then, by iterat-
ing between these two identifiable steps until convergence, we have a procedure
which is identifiable and leads to the estimation of all the parameters of the
model defined in (2). Note that the identifiability conditions are essentially con-
ditions on the englobing B-spline basis structure.

3. Estimation procedure and asymptotic properties

Recall that the unknown parameters of model (2) are (αμ, σ2
ε,Σ∼

U ,θ0,Σ
θ).

Model (2) is a nonlinear functional mixed effects model due to the composi-
tion by the warping function, which is an essential ingredient to describe the
individual phase variability. First, we analyse each part of the model, that is,
the warping parameters and the linear mixed effect model, by providing an es-
timator and theoretical guarantees. Then, we propose an iterative estimation
procedure, where in a first step we fix the warping parameters (θ0,Σ

θ) and
estimate the functional parameters (αμ, σ2

ε,Σ∼
U ); and next, we start from these

estimated parameters, and estimate the warping parameters. Further, we obtain
the convergence of the method and the consistency of the global estimator.

We have access to a sample (Yi(ti,j))j=1,...,Ti; i=1,...,n of n curves, the ith
curve being evaluated in Ti points. Given are the knot sequences in the B-
splines approximations, the degree of the B-splines, and the dimension of the
warping parameters r = Kh + ph + 1.

Proofs of the results in this section are provided in Appendix B.
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3.1. Parameters of the warping function

3.1.1. Estimators for the parameters of the warping function

Suppose we know the functional parameters (αμ,Σ∼
U , σ2

ε), and the predictors

αU
i for all i = 1, . . . , n. The goal is to estimate (θ0,Σ

θ).
We construct pseudo-observations by minimizing the following empirical L2

criterion:

θ̂
Ti

i = argmin
θ̃i∈Rr

⎡
⎣Ti−1∑

j=1

{
Yi{w(ti,j ; θ̃i)} − μ(ti,j)− Ui(ti,j)

}2

(ti,j+1 − ti,j)

⎤
⎦ . (10)

Note that the criterion which is minimized tends to the L2 distance between
Yi ◦ w(.; θ̃i) and μ+ Ui, if Ti → +∞.

However, as we want to consider the warping parameter as a random effect,
we fit a mixed effects model as defined in Eq. (6) on the pseudo-observations

θ̂
T1

1 , . . . , θ̂
Tn

n , that is,

θ̂
Ti

i = θ0 +Ei + ε̃i, (11)

with Ei ∼ Nr(0r,Σ
E), ε̃i ∼ Nr(0r, σ

2
ε̃Ir) for all i = 1, . . . , n. The random

variables Ei and ε̃i are independent. As we assume that σ2
ε̃ is known for iden-

tifiability reasons, we use the empirical mean of {θ̂T1

1 , . . . , θ̂
Tn

n } to estimate θ0,
and the empirical covariance to estimate Σθ = ΣE + σ2

ε̃Ir. The prediction of Ei

is easy to get because σ2
ε̃ is known. We consider the following estimators:

θ̂0 =
1

n

n∑
i=1

θ̂
Ti

i ; Σ̂θ =
1

n− 1

n∑
i=1

(θ̂
Ti

i − θ̂0)(θ̂
Ti

i − θ̂0)
�;

Êi =
(
Σ̂θ − σ2

ε̃Ir

)(
Σ̂θ
)−1

θ̂
Ti

i .

3.1.2. Asymptotic normality of θ̂
Ti

i

First, we focus on the distribution of θ̂
Ti

i conditional on θi. To do so, we rely on
the theory of nonlinear least squares estimators developed in [18], which uses
the weighted tail product defined as follows.

Definition 1. Let p be a nonnegative integer and (tj)j=1,...,p be fixed time points.
Let x = (xp) and y = (yp) be two sequences of real numbers and let

(x, y)πp =
1

p

p−1∑
j=1

xjyj(tj+1 − tj).

If (x, y)πp converges to a real number when p → +∞, its limit (x, y)π is called
the weighted tail product of x and y.
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Let g and h be two sequence valued functions on Θ. If (g(α), h(β))πp →
(g(α), h(β))π when p → +∞ uniformly for all α and β in Θ, we define

[g, h] : (α, β) ∈ Θ×Θ �→ (g(α), h(β))π.

This function is called the weighted tail cross product of g and h.

Then, we define the r × r-matrix ai(θ̃i) as follows.

Definition 2. For l = 1, . . . , r, we denote by

∂l(μ+ Ui) =
∂[(μ(w−1(ti,j ; θ̃i)) + Ui(w

−1(ti,j ; θ̃i)))j=1,...,Ti ]

∂[θ̃i]l
.

the partial derivative of the aligned signal. We define

ai,Ti(θ̃i) =
[
(∂l(μ+ Ui), ∂l′(μ+ Ui))

π
Ti

]
l=1,...,r;l′=1,...,r

the matrix with coefficients the weighted tail product between two partial deriva-
tives, and ai(θ̃i) its limit when Ti → +∞.

Assumption B. For all i = 1, . . . , n, the r × r-matrix ai(θi) is non-singular.

Theorem 3. Fix i ∈ {1, . . . , n}, and α ∈ (0, 1). Let (θ̂
Ti

i )Ti be a sequence of
weighted least squares estimators of θi. We assume that the model is identifiable

and satisfies Assumption A. With probability 1− α, conditional on θi, θ̂
Ti

i is a
strongly consistent estimator of θi (convergence a.s.).

If we assume that the model satisfies Assumption B, conditional on θi,

T
1/2
i (θ̂

Ti

i − θi)
d−−−−−→

Ti→+∞
Nr(0, σ

2
εa

−1
i (θi));

and ai,Ti(θ̂
Ti

i ) is a strongly consistent estimator of ai(θi).

Let f
θ̂
Ti
i

(.|θi) be the conditional distribution function. Denote by ϕ the Gaus-

sian density function. Theorem 3 implies that for all η ∈ R,

f
θ̂
Ti
i

(η|θi) →
Ti→+∞

ϕ(η;θi, σ
2
εa

−1
i (θi)).

By the dominated convergence theorem, we get the asymptotic marginal dis-
tribution, for all η:

m
θ̂
Ti
i

(η) →
Ti→+∞

mθ̂
∞
i
(η) =

∫
ϕ(η;θi, σ

2
εa

−1
i (θi))ϕ(θi;θ0,Σ

θ)dθi

=

∫
Rr

ϕ(θi; c, C)ϕ(θ0; η, σ
2
εa

−1
i (θi) + Σθ)dθi

where θ̂
∞
i = limTi→∞ θ̂

Ti

i , and

C = (σ−2
ε ai(θi) + (Σθ)−1)−1;
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c =
(
σ−2
ε ai(θi) + (Σθ)−1

)−1
(
σ−2
ε ai(θi)θ̂

∞
i + (Σθ)−1θ0

)
.

The last line comes from a computation with Gaussian densities, see Lemma 4
in Appendix C.

We discuss two cases where the limiting distribution mθ̂
∞
i

is computed ex-

plicitly:

• the case when the noise ε tends to disappear, which makes the theory
easier, but also requires a strong assumption for the limit to hold;

• the case when the eigenvalues of the matrix ai(θi) are bounded. Under
this weak assumption the limiting distribution will be more complicated
(see below).

We next discuss these two cases in more detail.
In the first case we assume that the noise tends to disappear, when the

number of points in the time grid increases.

Assumption C. We assume that σε →
minTi→∞

0.

It is important to remark the following. If, however, there is a non-negligible
noise, the method will warp the observed noise curve on some global mean,
and the warping parameter will depend on this noise, whereas the true warping
parameter does not, as it would be based on the denoised data.

Theorem 4. Fix i ∈ {1, . . . , n}. Let (θ̂
Ti

i )Ti be a sequence of weighted least

squares estimators of θi, and θ̂
∞
i = limTi→∞ θ̂

Ti

i . We assume that the model is
identifiable and satisfies Assumptions A, B and C. Then, for all η ∈ R,

lim
σ2
ε→0

mθ̂
∞
i
(η) = ϕ(η;θ0,Σ

θ).

We now turn to the second case. With weaker assumptions, the limiting
distribution mθ̂

∞
i
(η) is more complicate to describe. Denote by Eα(θ0,Σ

θ) the

following ellipsoid:

Eρ(θ0,Σ
θ) =

{
x ∈ Rr | (θ0 − x)t(Σθ)−1(θ0 − x) ≤ ρ

}
.

Assumption D. For all θi, a
−1
i (θi)− a−1

i (θ0) is positive definite.

Assumption E. The eigenvalues of ai are bounded: there exist λm, λM such
that, for all θi,

λm ≤ min eigen(ai(θi)) ≤ max eigen(ai(θi)) ≤ λM .

The following theorem establishes that in this second setting, the limiting
distribution mθ̂

∞
i
(η) is close to a Gaussian distribution.

Theorem 5. Fix i ∈ {1, . . . , n}. Let (θ̂
Ti

i )Ti be a sequence of weighted least

squares estimators of θi, and θ̂
∞
i = limTi→∞ θ̂

Ti

i . We assume that the model
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is identifiable and satisfies Assumptions A, B, D and E. Let ρ > 0, and A a
positive definite matrix. Then,

mθ̂
∞
i
(η) = (1 +O(ρ))ϕ(η;θ0, σ

2
εa

−1
i (θ0) + Σθ) if η ∈ Eρ(θ0,A).

In summary, we get that under the two settings, the distribution of θ̂
∞
i is

close to a Gaussian distribution.

3.1.3. Asymptotic normality for θ̂0 and Σ̂θ

We consider the linear mixed effect model given in Eq. (11). We assume that
σ2
ε̃ is known for identifiability reasons. Remark that Σθ = ΣE + σ2

ε̃ITi . We are

now interested in the estimators θ̂0 and Σ̂θ.

Theorem 6. Fix i ∈ {1, . . . , n}. Let (θ̂
Ti

i )Ti be a sequence of weighted least
squares estimators of θi. We assume that the model is identifiable and satisfies
Assumptions A, B and C.

Let bn,T =
∑n

i=1 T
−1
i . Then,

b
−1/2
n,T

(
θ̂0 − θ0

)
d−→

n→+∞,minTi→+∞
Nr(0,Σ

θ);

Σ̂θ d−→
n→+∞,minTi→+∞

W(Σθ, n− 1),

where W(Σ, p) denotes the Wishart distribution with scale matrix Σ and p de-
grees of freedom.

Note that this implies that Ti has to go to infinity faster than n goes to
infinity, i.e. n = o(minTi). Indeed,

1√∑n
i=1

1
Ti

≥
√

minTi

n
.

3.2. Functional parameters

Suppose we know the warping parameters (θi)i=1,...,n. Then, we warp the ob-
servations (Yi(ti,j))j=1,...,Ti; i=1,...,n onto the estimated warped curves Xi,j =
Yi{w(ti,j ;θi}, and we fit a functional linear mixed model on (Xi)i=1,...,n as de-
fined in Eq. (8) using maximum likelihood estimation, which leads to estimators
(α̂μ, Σ̂U , (σ̂2

ε)) and predictors (α̂U
i )i=1,...,n. Following the ideas described in [22,

Chapter 3], we need the following assumption:

Assumption F. Existence and positive definiteness of I, which is the limit of
minus the expected Hessian matrix of the log-likelihood function based on the
model given in Eq. (8).

Then, we get the asymptotic normality of the estimator.
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Theorem 7. Let (α̂μ, Σ̂U , (σ̂2
ε)) be a sequence of maximum likelihood esti-

mator of the functional linear mixed model, computed over the observations
(Yi(ti,j))j=1,...,Ti; i=1,...,n. We assume that the model is identifiable and satisfies
Assumption F. Then,

√
n

⎛
⎝α̂μ −αμ

σ̂U − σU

σ̂ε − σε

⎞
⎠ d−→

n→∞
N (0, I−1).

3.3. Global model and iterative estimation procedure

We propose to directly estimate the nonlinear model. Working with the L2-
distance, we want to fit the model of which the coefficients minimize∥∥∥∥∥∥Y −

Kμ∑
l=−pμ

αμ
l B

μ
l,pμ+1{w−1(.;θ);κμ} −

KUi∑
l=−pU

αU
l B

U
l,pUi

+1{w−1(.;θ);κUi}

∥∥∥∥∥∥
2

.

Using the steps described previously, we propose an iterative process that ap-
proximates the following minimizer:

argmin
αμ,αU ,(θi)i=1,...,n

⎧⎨
⎩ 1

n

n∑
i=1

Ti−1∑
j=1

⎛
⎝Yi(ti,j)−

Kμ∑
l=−pμ

αμ
l B

μ
l,pμ+1{w−1(ti,j ;θi);κ

μ}

−
KUi∑

l=−pUi

αU
i,lB

U
i,l,pUi

+1{w−1(ti,j ;θi);κ
Ui}

⎞
⎠

2

(ti,j+1 − ti,j)

⎫⎪⎬
⎪⎭ .

Algorithm 1 presents the steps in the iterative procedure. Further details are
provided regarded the initialization, the convergence criterion, the theoretical
convergence and the consistency of the resulting estimator.

3.3.1. Details about the initialization

First, we initialize the mean function μ. There exist several ways to define a
central curve in functional data analysis. Here we use band depth for functional
data as introduced in [29], and compare every observed curve with the deepest

function μ̂(0) = μdeep. We then deduce α̂(0)
μ , the projection of the function

μ̂(0) onto Bμ the B-spline basis considered. In the initialization step, we do not
consider individual amplitude effects, i.e. (α̂U

i )
(0) = 0mUi

for all i = 1, . . . , n.

3.3.2. Convergence of the algorithm

We define

Cn =
1

n

n∑
i=1

Ti−1∑
j=1

(
Yi(ti,j)− μ̂{w−1(ti,j ; θ̂i)} − Ûi{w−1(ti,j ; θ̂i)}

)2
(ti,j+1 − ti,j).
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Algorithm 1 WarpMix

Initialization: Computation of the deepest function μ̂(0) = μdeep.
for i = 1, . . . , n do

Approximation of θ
(0)
i by

θ
(0)
i = argmin

θi∈Rr

⎡
⎣Ti−1∑

j=1

{
Yi{w(ti,j ; θi)} − μ̂(0)(ti,j)

}2
(ti,j+1 − ti,j)

⎤
⎦ .

Fit a linear mixed model on the pseudo-observations, θ
(0)
i = θ

(0)
0 +E

(0)
i + ε̃i; and deduce

θ̂
(0)
0 , (Σ̂θ)(0) and θ̂

(0)
i = θ̂

(0)
0 + Ê

(0)
i .

for ite = 1, . . . until convergence do
Warp the observed curves according to w−1

θ̂
(ite−1)
i

;

Estimate {(α̂μ)(ite), (α̂U
i )(ite), (Σ̂Ui )(ite), (σ̂2

ε)
(ite)} with the R package nlme;

Approximate (θ
(ite)
1 , . . . , θ

(ite)
n ) by computing, for every i = 1, . . . , n,

θ
(ite)
i = argmin

θi∈Rr

⎡
⎣Ti−1∑

j=1

{Yi{w(ti,j ; θi)} − μ(ti,j)− Ui(ti,j)}2 (ti,j+1 − ti,j)

⎤
⎦ .

Fit a linear mixed model on these observations: θ
(ite)
i = θ̂

(ite)
0 + Ê

(ite)
i + ε̃i; and define

θ̂
(ite)
i = θ̂

(ite)
0 + Ê

(ite)
i .

The iterations are stopped when Cn < 10−4 during five successive iteration
steps.

Note first of all that the various iterations in Algorithm 1 involve three op-
erations Ψ1, Ψ2 and Ψ3, and that the update function to go from one iteration
to the next is composed of three parts

Ψ = Ψ3 ◦Ψ2 ◦Ψ1 : Rmμ+nmU+1+nr → Rmμ+nmU+1+nr. (12)

Herein Ψ and its components are defined as follows.

Ψ : ((αμ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite)
i=1,...,n)

�→ ((αμ)(ite+1), (αU
i )

(ite+1)
i=1,...,n, (σ

2
ε)

(ite+1), (θi)
(ite+1)
i=1,...,n)

Ψ1 : ((αμ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite)
i=1,...,n)

�→ ((αμ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite+1)
i=1,...,n)

Ψ2 : ((αμ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite+1)
i=1,...,n)

�→ ((αμ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θ
(ite+1)
0 + E

(ite+1)
i )i=1,...,n)

Ψ3 : ((αμ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θ
(ite+1)
0 + E

(ite+1)
i )i=1,...,n)

�→ ((αμ)(ite+1), (αU
i )

(ite+1)
i=1,...,n, (σ

2
ε)

(ite+1), (θi)
(ite+1)
i=1,...,n).

In Ψ1 the vector θi is updated. This is used as input for Ψ2 where observations
are denoised, through the linear model defined in (6). Then, this is used as input
for Ψ3, where αμ, (αU

i )i=1,...,n, σ
2
ε are updated.
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In Theorem 8 we prove that the algorithm is converging. A condition under
which this holds is that Ψ1 is a contraction mapping, as stated in the following
assumption.

Assumption G. There exists kΨ1 <1 such that, for (x, y)∈(Rmμ+nmU+1+nr)2,

‖Ψ1(x)−Ψ1(y)‖2 ≤ kΨ1‖x− y‖2.

Under Assumption G we show the convergence of the algorithm, seen as

iterations of Ψ. We denote by ((α̂μ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞)) the
estimator obtained at the end of the algorithm.

Theorem 8. Fix n and T. Suppose (Y1, . . . ,Yn) is a sequence of iid random
variables satisfying the functional nonlinear mixed model (1) observed on fixed
time points: for i = 1, . . . , n, for j = 1, . . . , Ti, [Yi]j = Yi(ti,j). Moreover,
suppose that the model is identifiable and satisfies Assumption G.

Then, ((α̂μ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞)) exists and is unique, and
the algorithm converges to this solution with a geometric rate with respect to the
Euclidean distance.

This theorem gives the pointwise convergence of the algorithm. The ran-
domness has not been taken into account. We rather focus on the iterations of
steps. Theorem 8 relies on Assumption G, which appears as rather technical.
To get some insights into this assumption, we investigate it in a specific setting
in Example 1.

Example 1. We focus on μ, do not consider Ui, and restrict the family of
warping functions to translations: w−1(t; θi) = θi + t. The global mean is sup-
posed to be a linear function μ(t) = α + βt. Let ti,1 = 0 and ti,Ti = 1 Finally,
we set θ0 = 0.

Fix i. Recalling (10), in this case we are looking for

θi = argmin
θ̃i

⎧⎨
⎩ 1

Ti

Ti−1∑
j=1

(α− α̃+ (β − β̃)ti,j − β̃θ̃i)
2(ti,j+1 − ti,j)

⎫⎬
⎭ .

This is a polynomial function of degree 2 in θ̃i with nonnegative coefficient of
the quadratic term: there exists a unique minimizer:

θ̂i =
α− α̃

β̃
+

β − β̃

β̃

Ti−1∑
j=1

ti,j(ti,j+1 − ti,j).

We know that the Lipschitz constant is bounded by the norm of the differential.
Here, the function we consider is (α̃, β̃) �→ θ̃, so we compute the differential,
evaluated in (α, β):

‖Dα̃,β̃Ψ1‖22 =

(
− 1

β̃

)2

+

⎛
⎝−α+ α̃

β̃2
+

−β

β̃2

Ti−1∑
j=1

ti,j(ti,j+1 − ti,j)

⎞
⎠

2

;
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‖Dα,βΨ1‖22 =
1

β2

⎛
⎝1 + {

Ti−1∑
j=1

ti,j(ti,j+1 − ti,j)}2
⎞
⎠ .

These expressions reveal that for β small, the problem is more complicated (as
one could expect). Note that in this special case Assumption G in fact leads to
an assumption on β.

Example 1 also shows that, in some particular settings, Assumption G might
be translated into a condition on μ and w.

3.3.3. Consistency of the estimators

To conclude, we provide the statistical consistency of the full procedure. This
has the following meaning. When the sample size and the number of time points
are going to infinity, the parameters estimated by the iterative process are con-
verging almost-surely to the true parameter. Finally, the consistency is deduced
for the common mean, seen as a functional parameter.

Theorem 9. Suppose (Y1, . . . ,Yn) is a sequence of iid random variables sat-
isfying the functional nonlinear mixed model (1) observed on fixed time points:
for i = 1, . . . , n, for j = 1, . . . , Ti, [Yi]j = Yi(ti,j). Suppose that the model is
identifiable, and Assumptions A, B, C, F and G hold. Then,

((α̂μ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞))
a.s.−→

n→∞
minTi→∞

(αμ, σ2
ε,Σ∼

U ,θ0,Σ
θ).

As a consequence, we get that, from a functional viewpoint, for μ ∈ span(Bμ),
if we denote μ̂ = (α̂μ)(∞)Bμ,

‖μ− μ̂‖L2[0,1]
a.s.−−→
n→∞

minTi→∞

0.

4. Simulation study

We investigate the finite-sample performance of the proposed estimation me-
thod, and we compare it with four state-of-the-art methods, described below.
An R package, called warpMix, has been developed for the proposed method and
is available at https://cran.r-project.org/web/packages/warpMix/index.
html.

4.1. Description of the simulation settings

4.1.1. Warping functions

The warping process is the same in most of the settings (with exception of Model
M2), and defined via (4) and (5). Three different interior knots {0.2, 0.5, 0.7}

https://cran.r-project.org/web/packages/warpMix/index.html
https://cran.r-project.org/web/packages/warpMix/index.html
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Fig 2. A sample of size 100 of warping functions (left), and the empirical covariances of
these functions (right).

are used for a basis of cubic splines for h−1. So in this setting κh = 3, ph = 3
and r = κh + ph + 1 = 7.

The random variables (θi)i=1,...,n are distributed according to Nr(0r,Σ
θ),

with Σθ = ΣE+σ2
ε̃I, where σ

2
ε̃ = 10−3, and ΣE a diagonal matrix with elements

{2, 0.8, 0.4, 0.3, 0.4, 0.8, 2}.
Figure 2 depicts a sample of size 100 of the warping function, and the em-

pirical covariance matrix of (w−1(.;θi))i=1,...,n computed on this sample. This
highlights the differences between the correlation in (θi)i=1,...,n and that in
(w−1(.;θi))i=1,...,n. Note that due to the random warping structure, there is a
variability induced on the whole time period.

4.1.2. Elements of the functional model

The elements determining the functional model are the function μ and the
individual random effects Ui. For the mean function μ we consider four different
functions. For t ∈ [0, 1],

μ1(t) = {sin(3πt) + 3πt}/4, μ2(t) = exp−(t−0.25)2/0.04 +exp−(t−0.75)2/0.02,

μ3(t) = cos(2πt+ π/2), μ4(t) = sin(6πt)/(6πt).

These functions are plotted in Figure 3.
The modeling framework in Section 2 assumes that the functions μ and Ui are

well approximated using a B-spline basis. This is in practice not always the case,
for example when a too limited number of knots is considered in the B-spline
bases. In the simulation study we present results on the B-spline approximations
of the μ-functions, denoted by μ̃1, μ̃2, μ̃3 and μ̃4 respectively. To illustrate the
impact of modeling bias, we provide for the fourth function simulation results
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Fig 3. The mean functions μ in the simulation study.

for its B-spline approximation μ̃4 as well as for the function μ4 itself. We refer
to model (2) with mean function μ̃k (k = 1, 2, 3, 4) as model M̃k, and with mean
function μ4 as model M4.

We consider a low-dimensional setting in which n = 100 and Ti = 70, as well

as a high-dimensional setting in which n = 200 and Ti = 150. We use M̃
HD

1 ,

M̃
HD

2 , M̃
HD

3 and M̃
HD

4 to refer to the high-dimensional sample setting.
The estimators of μ and U are computed using quadratic splines (pμ = pUi =

2), with interior knots at {0.12, 0.24, 0.36, 0.48, 0.60, 0.72, 0.84}, so that Kμ =
KUi = 7, and mμ = mUi = 7 + 2 + 1 = 10. The individual effects Ui in the
functional model have a centered multivariate normal distribution with diagonal

isotropic covariance matrix ΣU = 0.1I10, except for models M̃4 and M̃
HD

4 which
are harder to fit, where we use ΣU = 0.05I10. The variance of ε in the functional
linear model equals σ2

ε = 0.02.
In the numerical study, we simulate 100 times from each setting, and report

the evaluation criteria based on these 100 simulated samples.

4.1.3. Variability

To generate the data, we first construct a sample of the process (X1, . . . ,Xn),
defined in (8) and then un-warp them via (9) and the warping function described
in Section 4.1.1. To understand the variability induced by each modeling aspect,
we plot in Figure 4, a warped sample and the un-warped sample for model M1.

The signal-to-noise ratio expresses the ratio of the variability caused by the
signal [μ{w−1(ti,j ;θi)}+ Ui{w−1(ti,j ;θi)}] and that due to the noise εi,j

SNR(ti,j) =
Var
[
μ{w−1(ti,j ;θi)}+ Ui{w−1(ti,j ;θi)}

]
Var(εi,j)

.

To compute the numerator we use the conditional variance formula, for a random
variable V seen as a function of two random variables U and θ,

Var(θ,U)(V ) = Eθ{VarU (V |θ)}+Varθ{EU (V |θ)}.
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Fig 4. A sample of the warped process X (left) and the un-warped process Y (right) for M1.

Fig 5. SNR functions for M̃1 (left) and M̃2 (right).

For each given time point ti,j we compute this SNR function 50 times to get 50
values for SNR at each time point. To compute the function once, we proceed as
follows. For a fixed θ, we compute the empirical conditional variance VarU (Z|θ)
and the conditional expectation EU (Z|θ) over a sample of size 100. By varying θ
60 times, we compute the global variance. This whole process is then repeated 50
times. In Figure 5 the resulting approximations for the SNR functions for models
M̃1 and M̃2 are plotted. For higher values of SNR we expect the estimation
problem to be somewhat easier. Some caution regarding this interpretation is
needed though. In our functional mixed effects model there are several sources
of variability in the signal part (the individual effect related to Ui and the
warping effect due to θi). The SNR-criterion does not distinguish between these
variabilities, and just considers the global signal variability against the error
variability. Note from the SNR plots in Figure 5 that the estimation task can
be harder in some time-regions. At the endpoints of the interval [0, 1] the SNR-
values for the different models are equal, since the warping is not effecting these
parts, and the only effect is coming from the covariance matrix ΣU , the noise
variance σ2

ε, and their relative contribution.

4.2. Comparison with existing methods and performance criteria

To illustrate the numerical performance of the proposed method, we compare
with four methods available in the literature.
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Table 1

Evaluation criteria for the estimation tasks.

quantity of interest evaluation criterion

μ Δμ =
∑T−1

j=1 [μ̂(tj)− μ(tj)]
2(tj+1 − tj)

w Δw =
∑T−1

j=1 [w−1(tj ; θ̂0)− tj ]
2(tj+1 − tj)

ΣU ΔU = Tr(Σ̂U − ΣU )

Σθ Δθ = Tr(Σ̂θ − Σθ)
σ2
ε Δε = |σ̂2

ε − σ2
ε |

Since our nonlinear functional mixed effects model is closely related to that
of [13] with major differences as indicated in Section 1, we include a comparison
with this method. Some procedure parameters have to be chosen in the method
of [13]: we took p = q = 1 for the number of components in the Karhunen-Loève
decompositions; λ = 1 for the regularization parameter; and τ 0 = {0.3, 0.6}
as the set of average landmarks. Their estimation method involves a Monte
Carlo approximation part, for which we considered 100 iterations; and an EM
algorithm part in which we also considered at most 100 iterations. Convergence
was said to be reached when the difference in norm between estimated param-
eters in two consecutive iteration steps was less than 10−2. We also would like
to mention that in our simulation study we use a rewritten Matlab version of
the original Fortran code used in [13], since the latter was no longer running
properly. The use of the Matlab code can make computations a bit slower.

The elastic square-root slope is a promising framework, so we include a com-
parison with the method developed in [31]. We use the default settings: no
elasticity, Karcher mean, do not smooth the data and at most 20 iterations. We
use the code available in the R package fdasrvf.

Bayesian methods are also of interest, and we choose to compare with [6],
also available in the R package fdasrvf. Also here we considered the default
settings: 150000 iterations and a uniform prior distribution.

Finally, we compare the performances with that of the algorithm of [27],
available in the R package fdakma, that allows for clustering misaligned data.
We assume that there is no cluster, consider affine alignment and compute the
similarity through the cosine of the angle between the two function.

Since the available inference in those studies does not fully match our mod-
eling inference, we can only report on the comparison related to estimating μ.

To evaluate the estimation performance for the various components of the
target (αμ, σ2

ε,Σ∼
U ,θ0,Σ

θ) we need some criteria. Note that the modeling frame-
work involves two unknown functions, namely the overall mean function μ and
the warping function w, unknown matrices ΣU , Σθ, as well as the unknown
variance σ2

ε . For each sample we obtain estimates μ̂, ŵ, Σ̂U , Σ̂θ and σ̂2
ε . Since

in our simulation setting we have the same observational time points for each
individual curve, i.e. ti,j = tj , and j = 1, . . . , Ti, with Ti = T , we use the criteria
in Table 1 to evaluate the estimation performance in each sample. Herein Tr(A)
denotes the trace of a matrix A.
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Table 2

Simulation results for the proposed procedure for models M̃1 and M̃
HD
1 .

criterion
M̃1 M̃

HD
1

bias variance bias variance
Δμ 0.0102 0.0090 0.0055 0.0065
Δε 0.0089 0.0003 0.0074 0.0004
ΔU 0.2349 0.1453 0.1880 0.1070
Δθ 6.5050 779.6355 4.7537 138.9394
Δw 0.0020 0.0019 0.0007 0.0009

For each simulated sample we calculate the estimates, and the corresponding
evaluation criteria of Table 1. To report on the bias of an estimator, we compute
the empirical mean of a criterion over the 100 simulations. To report on the
variance of an estimator, we proceed as follows. For example, when estimating
the function μ, we calculate in each point tj the empirical mean over all 100
estimated values of μ(tj) and denoting this by μ̄(tj). For each simulated sample

we then calculate Δ̄μ =
∑T−1

j=1 [μ̂(tj)− μ̄(tj)]
2(tj+1− tj). The empirical variance

of the estimator for μ is then computed by taking the average over the 100
obtained Δ̄μ values. In a similar way we obtain Δ̄w, Δ̄U , Δ̄θ and Δ̄ε.

A final remark is that for Δθ and Δ̄θ, we use medians rather than means
across all simulations as a measure of central position, since sometimes estima-
tion of some components of Σθ resulted in large outlying values. However, even
in the latter cases the quality of the estimated warping function was still very
good, as will be seen from the reported results.

4.3. Simulation results for the proposed method

Models M̃1 and M̃
HD

1 . Figure 6 depicts the simulation results for estimating

μ̃1 in M̃1 and M̃
HD

1 . In the left panels we depict, for each time point tj , the
boxplots of the obtained estimated values for μ̃1(tj), whereas in the right panels
we use a functional boxplot, as developed in [29]. The true curve μ̃1 is in all
plots presented as the solid (red) curve. The black solid curve in the centre
of the functional boxplots indicates the deepest function among all estimated
mean functions.

The quality of estimating μ̃1 is quite good for the proposed method. Passing
from low dimension to high dimension (from the top row to the bottom row
plots), we see that the results improve for larger values of n and T . Note that
the largest variability occurs in the region where there was also most variability
noticed in the SNR plot for model M̃1 in Figure 5. Table 2 further summarizes

the simulation results for models M̃1 and M̃
HD

1 . The results on estimation of
μ are in correspondence with what was observed from Figure 6. Note that in
estimation of Σθ there are quite some extreme estimation results. However, the
resulting estimation of the warping function w is still good, as can be noticed
from the last row in Table 2.

In Figure 7 we present boxplots of the estimation results for the components
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Fig 6. Comparison between μ̃1 and μ̂1 for model M̃1 (n = 100 and T = 70, top) and for

model M̃
HD
1 (n = 200 and T = 150, bottom) using the proposed method.

Table 3

Simulation results for Σθ using the proposed procedure for models M̃1 and M̃
HD
1 .

Model maximum of estimated diagonal components

M̃1 30976.0730 6141.906 953.239 333.466 325.040 345.714 290.960

M̃
HD
1 4664.249 193.563 4.735 5.023 46.427 5.329 1.937

of Σθ for models M̃1 (left) and M̃
HD

1 (right), with the true component values
indicated as red horizontal lines. Outliers have been excluded for plotting the
boxplots for clarity of presentation. To complement these boxplots, we summa-
rize in Table 3 the maximum (across simulations) of the estimated values for
each of the seven components of Σθ. Note that the most extreme values occur
for the first coefficient. For larger n and T there are less extreme estimates.

Next, we focus on estimating the individual curve amplitude variability, which
is captured by the estimation of the ten diagonal components of ΣU . In Figure
8 we provide boxplots of the estimation results. The horizontal red line presents
the true value 0.10 for all diagonal components. As can be seen the estimation
results tend to be better for larger value of n and T , as expected.

Models M̃
wCDG

2 and M̃
wGC

2 . To study the finite-sample performance of the
proposed estimation method when there is a misspecification with respect to
the warping function, we consider the model with μ̃2 and simulate data under
two different warping schemes:

• scheme wCDG: the warping scheme of Section 2.3;
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Fig 7. Simulation results for the components of (Σ̂θ
i,i)1≤i≤7 for the proposed procedure for

model M̃1 (left) and M̃
HD
1 (right). Boxplot without the outliers. True coefficient values: red

horizontal lines.

Fig 8. Simulation results for the components of (Σ̂U
i,i)1≤i≤10 for models M̃1 (left) and M̃

HD
1

(right) for the proposed procedure. The horizontal red line present the true value.

• scheme wGC: the warping scheme of [13].
In the scheme wGC, θi are generated via a linear mixed effects model, and then
mapped into the set of landmarks using a Jupp transform. This is followed by
interpolation by cubic splines to get to the corresponding parameters. Simula-

tions were carried out from the two models, referred to as models M̃
wCDG

2 and

M̃
wGC

2 .
Table 4 summarizes the simulation results for all elements in the functional

mixed effects model. Overall conclusions remain as above. Note that also under
the misspecified warping scheme wGC the proposed method continues to perform
very well.

Table 4

Simulation results for the proposed procedure for models M̃
wCDG
2 , M̃

wGC
2

criterion
M̃

wCDG
2 M̃

wGC
2

bias variance bias variance
Δμ 0.0230 0.0136 0.0053 0.0052
Δε 0.0079 0.0009 0.0089 0.0003
ΔU 0.4044 0.2809 0.2552 0.1388
Δθ 16.3997 497.9732 3.7417 42.9801
Δw 0.0012 0.0027 0.0003 0.0003
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Models M̃3 and M̃
HD

3 , and Models M4, M̃4 and M̃
HD

3 . Table 5 presents

the simulation results for the low- and high-dimensional settings for model M̃3.
Also in these settings the method performs well.

Table 5

Simulation results for the proposed procedure for models M̃3 and M̃
HD
3

criterion
M̃3 M̃

HD
3

bias variance bias variance
Δμ 0.0183 0.0153 0.0126 0.0105
Δε 0.0087 0.0003 0.0070 0.0005
ΔU 0.2554 0.2111 0.2400 0.1622
Δθ 6.1263 1400.3432 4.8580 865.6914
Δw 0.0021 0.0020 0.0013 0.0018

For the fourth model we include simulation results (in the low-dimensional
sample setting) when simulating from the unprojected function μ4, for which the
B-spline approximation induces a modeling bias. As can be seen from columns
2—5 in Table 6 there is only a little loss in performance when modeling bias is
present.

Table 6

Simulation results for the proposed procedure for models M4, M̃4 and M̃
HD
4 .

criterion
M4 M̃4 M̃

HD
4

bias variance bias variance bias variance
Δμ 0.0110 0.0070 0.0088 0.0044 0.0057 0.0018
Δε 0.0138 0.0003 0.0085 0.0004 0.0075 0.0003
ΔU 0.4398 0.1033 0.3906 0.1241 0.3999 0.0942
Δθ 8.2414 2139.4377 4.0467 602.5896 4.3262 299.9634
Δw 0.0043 0.0032 0.0022 0.0012 0.0011 0.0005

4.4. Comparison with available methods.

We compare the four methods introduced in Section 4.2 with the proposed one

on models M̃1, M̃
HD

1 , M̃
wCDG

2 and M̃
wGC

2 . The simulation results are summarized
in Table 7. Note that the proposed method often has low/lowest bias, but at

the price of having a larger estimation variance. On model M̃1, the method
fdakma performs the best, with a very low variance, but it has a comparable

performance (in terms of bias) to the proposed method for M̃
HD

1 . On models

M̃
wCDG

2 and M̃
wGC

2 , our method has particularly good results in mean, but with
a larger variance.
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Table 7

Simulation results for μ(·) for the proposed and competitive methods. Method (3)=Bayesian
warping; Method (4)= elastic square-root slope.

Simulation results for models M̃1, M̃
HD
1 , M̃

wCDG
2 and M̃

wGC
2

Method
M̃1 M̃

HD
1 M̃

wCDG
2 M̃

wGC
2

bias variance bias variance bias variance bias variance
proposed 0.0102 0.0090 0.0055 0.0065 0.0230 0.0236 0.0053 0.0052

GC 0.0454 0.0043 0.0588 0.0048 0.0703 0.0134 0.0280 0.0014
(3) 0.0435 0.0009 0.0201 0.0001 0.0493 0.0003 0.0423 0.0001
(4) 0.1062 0.0011 0.0745 0.0009 0.1277 0.0014 0.1245 0.0011

fdakma 0.0075 7.10−6 0.0069 3.10−6 0.0281 2.10−5 0.0283 1.10−5

Simulation results for models M̃3, M̃
HD
3 , M̃4 and M̃

HD
4

Method
M̃3 M̃

HD
3 M̃4 M̃

HD
4

bias variance bias variance bias variance bias variance
proposed 0.0183 0.0153 0.0126 0.0105 0.0088 0.0044 0.0057 0.0018

(3) 0.0794 0.0024 0.0491 0.0002 0.0280 0.0003 0.0212 0.0001
(4) 0.1851 0.0009 0.1951 0.0007 0.1555 0.0016 0.1754 0.0026

fdakma 0.0277 4.10−5 0.0272 2.10−5 0.0113 5.10−6 0.0104 2.10−6

As GC’s method is very slow (i.e high computational cost) and does not
provide very good results whereas the modelling is close to the proposed one,

we restrict further comparisons, for Models M̃3, M̃
HD

3 , M̃4 and M̃
HD

4 , to the

other three methods. On all models M̃3, M̃
HD

4 , M̃4 and M̃
HD

4 , fdakma performs
the best among the competitive methods, followed by the Bayesian warping
method (method (3)), but both are less good than the proposed method in
terms of bias. Finally, we see that the elastic square-root slope method (method
(4) in the table) does not perform well on those simulated datasets.

5. Real data analysis

We analyze the Pinch Force dataset, available in the R package fda. These
data were described and analyzed in [26]. The data consist of measurements, at
every second millisecond, on the exerted force (in Newton) during a period of
0.3 seconds. The resulting measurements consist of 20 curves recorded on 151
points in [0, 0.3]. See Figure 1. For convenience the data were rescaled to the
domain [0, 1].

We analyzed these data, using B-splines of degree 2 for μ and U (i.e. pμ =
pUi = 2), with interior knots {0.25, 0.50, 0.75}, resulting in six B-spline basis
functions. For the function determining the warping in (5) we use B-splines of
degree 3 (i.e. ph = 3) and the same set of interior knots {0.25, 0.50, 0.75}, leading
to seven B-spline basis functions for h−1.

From the analysis with the proposed method, we get the estimated individual
warping functions as in the left panel of Figure 9, and the warped (aligned)
functionsXi,j for each individual (right panel). The estimated covariance matrix

Σ̂U (respectively Σ̂θ) is presented in the left (respectively right) panel of Figure
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Fig 9. Estimated warping functions (left) and warped individual curves (right).

Fig 10. Estimated covariance matrices Σ̂U (left) and absolute value of Σ̂θ (right).

10. From this, we observe that there is more time variability induced by the
coefficient of the second B-spline basis function in the decomposition of h−1(.,θ),
whereas there is more amplitude variability caused by the coefficient associated
to the third basis function in the decomposition of U , see also Figure 9 (right
panel).

6. Conclusion and further discussion

In this paper we considered a nonlinear mixed effect model for functional data.
We apply a B-splines approximation on three different levels: on the inverse of
the warping function describing the individual phase variability; on the global
mean function and on the individual amplitude random effects. Random effects
enter to model the individual amplitude as well as the phase variability. The
main advantage of the proposed method is that it avoids the (costly) choice
of landmarks, and that we can provide important theoretical support for the
procedure: (i) convergence of the iterative algorithm to the target function(s);
(ii) consistency and asymptotic normality of the estimators.

In this paper we considered the discrete Ti time points to be fixed (non-
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random). However the methodology could be generalized fairly easily to random
time points. Typically one would then need to assume that the distribution of
the random time points is regular enough (meaning that there are no empty
regions in the observed pattern of discretized time points). This would require,
for example, an adaptation of the criteria used in Sections 3.2 and 3.3.2. An
analysis of the assumptions, particularly modeling assumptions of the noise,
with the aim to see the robustness of the method, would be of interest.We
postpone this analysis to an experimental work.

Appendix A: Proof of results in Section 2

A.1. Proof of Lemma 1

Let θ1 and θ2 such that t = w(w−1(t;θ1);θ2). Then it follows that,

w−1(t;θ2) =

∫ t

0
exp(h−1(u;θ2))du∫ 1

0
exp(h−1(u;θ2))du

=

∫ t

0
exp(h−1(u;θ1))du∫ 1

0
exp(h−1(u;θ1))du

= w−1(t;θ1)

⇔
∫ t

0
exp(h−1(u;θ2))du∫ t

0
exp(h−1(u;θ1))du

=

∫ 1

0
exp(h−1(u;θ2))du∫ 1

0
exp(h−1(u;θ1))du

def
= δ(θ2,θ1)

⇔
∫ t

0

[
δ(θ2,θ1) exp(h−1(u;θ1))− exp(h−1(u;θ2))

]
du = 0.

As this equation is true whatever the value of t ∈ [0, 1], we have that the
integrand is equal to 0 for every u ∈ [0, 1] except for possibly a countable number
of points. As B-splines are continuous, it is equal to 0 for every u ∈ [0, 1]. It
holds that,

log(δ(θ2,θ1)) = h−1(u;θ2)− h−1(u;θ1) =

Kh∑
l=−ph

(θ2l − θ1l )B̄
h
l (u;κ

h).

As the left hand side does not depend on u, so the right hand side should be

equal to 0 for all u. As (Bh̃
l )l is a B-spline basis, it induces that θ2 = θ1.

A.2. Proof of Theorem 1

First, suppose that HU
i = ITi . Let Σε = σ2

εITi , and choose 0 < σ̃2
ε < σ2

ε. Then,
HU

i (Σε − Σ̃ε) = Σε − Σ̃ε. Since σ̃2
ε − σ2

ε < 0, and (BU
i )

�BU
i 	= 0mUi

,

Σ̃U = ΣU + (σ2
ε − σ̃2

ε){(BU
i )

�BU
i }−1

is semi positive, definite, and is diagonal. Thus, we have found two parameters
(Σε,Σ

U ) and (Σ̃ε, Σ̃
U ) which define the same model. Hence we do not have

identifiability.
Suppose now that model (8) is not identifiable. Then, according to Theorem

4.1 in [34], for all (Σε,Σ
U ), there exists (Σ̃ε, Σ̃

U ) 	= (Σε,Σ
U ) such that
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• (BU
i )

�ΣεB
U
i 	= (BU

i )
�Σ̃εB

U
i ;

• HU
i (Σε − Σ̃ε) = Σε − Σ̃ε;

• Σ̃U = ΣU + {(BU
i )

�BU
i }−1(Σε − Σ̃ε)B

U
i {(BU

i )
�BU

i }−1 = ΣU + (σ2
ε −

σ̃2
ε){(BU

i )
�BU

i }−1.

As Σε 	= Σ̃ε, H
U
i = ITi .

Since Σ̃U 	= ΣU , one gets (BU
i )

�(Σε− Σ̃ε)B
U
i = (σ2

ε − σ̃2
ε)(B

U
i )

�BU
i 	= 0mUi

,

which implies (BU
i )

�BU
i 	= 0mUi

.

Moreover, as Σ̃U is diagonal, (BU
i )

�BU
i must be diagonal.

A.3. Proof of Theorem 2

We have

Xi(t) = X̃i

[
w−1

{
w(t;θi); θ̃i

}]
= μ(t) + Ui(t) + εi(t).

As Xi(t) is Gaussian distributed, the identifiability of the warping process is
equivalent to the identifiability of the mean and of the variance of Xi. We thus
investigate the expectation and the variance of Xi(t).

• Expectation:

E[Xi(t)] = E
[
X̃i{w−1{w(t;θi); θ̃i}}

]
= Eθi,θ̃i

[
E[X̃i{w−1{w(t;θi); θ̃i}}|θi, θ̃i]

]
;

μ(t) = Eθi,θ̃i

[
μ{w−1{w(t;θi); θ̃i}}

]
;

which is equivalent to, by projecting onto the B-spline basis, for all l =
−pμ, . . . ,Kμ, and for all j = 1, . . . , Ti,

Bμ
l,pμ+1(ti,j ;κ

μ) = Eθi,θ̃i

[
Bμ

l,pμ+1{w−1{w(ti,j ;θi); θ̃i};κμ}
]

or, in a matrix representation, Bμ
i = Eθi,θ̃i

{
(Bμ

i )
θi,θ̃i

}
.

• Variance.
By the formula of the conditional variance,

Var
[
X̃i{w−1{w(t;θi); θ̃i}}

]
=Eθi,θ̃i

[
Var
[
X̃i{w−1{w(t;θi); θ̃i}}

∣∣∣θi, θ̃i

]]
+Varθi,θ̃i

[
E
[
X̃i{w−1{w(t;θi); θ̃i}}

∣∣∣θi, θ̃i

]]
.

(13)

Now,

Var

[[
X̃i{w−1{w(ti,j ;θi); θ̃i}}

]
j=1,...,Ti

]
= Eθi,θ̃i

[
{(BU

i )
θi,θ̃i}�ΣUi(BU

i )
θi,θ̃i

]
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+ Eθi,θ̃i

[
Var

[(
εi{w−1{w(ti,j ;θi); θ̃i}}

)
j=1,...,Ti

]]
+Varθi,θ̃i

{
(Bμ

i )
θi,θ̃iαμ

}
,

and

Var [{Xi(ti,j)}j=1,...,Ti ] = (BU
i )

�ΣUiBU
i +Var[{εi(ti,j)}j=1,...,Ti ].

As Var[{εi(ti,j)}j=1,...,Ti ] = σ2
εITi , and

Var

[(
εi{w−1{w(ti,j ;θi); θ̃i}}

)
j=1,...,Ti

]
= σ2

εITi ,

(13) becomes

(BU
i )

�ΣUiBU
i = Varθi,θ̃i

{
(Bμ

i )
θi,θ̃iαμ

}
+ Eθi,θ̃i

[
{(BU

i )
θi,θ̃i}�ΣUi(BU

i )
θi,θ̃i

]
.

Appendix B: Proof of results in Section 3

B.1. Proof of Theorem 3

Before passing to the proof of Theorem 3 we study the weighted tail cross
products, that are appearing in this context. This is done in Lemmas 2 and 3.

Lemma 2. The weighted tail cross product of μ(w−1(ti,j ; .)) + Ui(w
−1(ti,j ; .))

with itself (with respect to Ti) exists and

Qθi
(θ̃i) =|μ(w−1(ti,j ;θi)) + Ui(w

−1(ti,j ;θi))

− μ(w−1(ti,j ; θ̃i))− Ui(w
−1(ti,j ; θ̃i))|2

has a unique minimum at θ̃i = θi.

Proof. We assume that μ and Ui can be decomposed onto a spline basis. As
every function is defined on [0, 1], μ ◦ w−1 and Ui ◦ w−1 are L2. Then the
tail cross product of μ(w−1(ti,j ;θi)) + Ui(w

−1(ti,j ;θi)) with μ(w−1(ti,j ; θ̃i)) +

Ui(w
−1(ti,j ; θ̃i)) exists because it converges uniformly for θi ∈ Rr and θ̃i ∈ Rr.

The function Q has a unique minimum at θi: if Q(θ̃i) = 0, for every t ∈ [0, 1],

(μ+ Ui)(w
−1(t; θ̃i)) = (μ+ Ui)(w

−1(t;θi)) ⇒ t = w(w−1(t;θi); θ̃i).

Then, as the warping function is injective (see Lemma 1), θ̃i = θi.

Lemma 3. For l = 1, . . . , r and l′ = 1, . . . , r, the derivatives

∂
[
μ(w−1(ti,j ;θi))+Ui(w

−1(ti,j ; .))
]

∂[θi]l
and

∂2
[
μ(w−1(ti,j ;θi))+Ui(w

−1(ti,j ; .))
]

∂[θi]l∂[θi]l′

exist and are continuous on Rr and all weighted tail cross products in between

μ(w−1(ti,j ;θi)) + Ui(w
−1(ti,j ; .))

and its first and second derivatives exist.



5276 G. Claeskens et al.

Proof. Each function is defined on [0, 1], and is either decomposed onto a spline
basis, or composed with the exponential function, then there is no problem to
intervert derivation and integrals. As explained before, the weighted tail cross
products exist because those functions are L2([0, 1]).

Equipped with Lemmas 2 and 3 we can adapt results from [18] to prove
Theorem 3.

Proof of Theorem 3. We consider the following compact set:

Eα(θ0,Σ
θ) =

{
x ∈ Rr | (θ0 − x)t(Σθ)−1(θ0 − x) ≤ χ2

r(1− α)
}

where χ2
r(1−α) denotes the 1−α quantile of the χ2-distribution with r degrees

of freedom.
With probability 1 − α, θi and θ̂

Ti

i belongs to Eα(θ0,Σ
θ). [18, Theorem 6]

is used to get the strong consistency and [18, Theorem 7] is used to get the

asymptotic normality of θ̂
Ti

i .

B.2. Proof of Theorem 4

Proof. We use the dominated convergence theorem. As the variance is lower
bounded by Σθ, the mean is upper bounded by a fixed constant, so we can
construct a dominating function. Then,

lim
σ2
ε→0

mθ̂
∞
i
(η) = lim

σ2
ε→0

∫
Rr

ϕ(θi; c, C)ϕ(η;θ0, σ
2
εa

−1
i (θi) + Σθ)dθi

=

∫
Rr

lim
σ2
ε→0

(
ϕ(θi; c, C)ϕ(η;θ0, σ

2
εa

−1
i (θi) + Σθ)

)
dθi

=

∫
Rr

ϕ(θi;θ0,Σ
θ)ϕ(η;θ0,Σ

θ)dθi = ϕ(η;θ0,Σ
θ).

B.3. Proof of Theorem 5

We consider η ∈ Eρ(θ0,A), with A positive definite.

mθ̂
∞
i
(η) =

∫
Rr

ϕ
(
θi; η, σ

2
εa

−1
i (θi)

)
ϕ
(
θi;θ0,Σ

θ
)
dθi

=

∫
Rr

ϕ
(
θi; η, σ

2
εa

−1
i (θ0)

)
ϕ
(
θi;θ0,Σ

θ
)
× det(a−1

i (θ0)ai(θi))

× exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
dθi

= ϕ(η;θ0, σ
2
εa

−1
i (θ0) + Σθ)

∫
Rr

ϕ(θi; c0, C0)× det(a−1
i (θ0)ai(θi))

× exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
dθi
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where the last equality comes from Lemma 4, with

C0 = (σ−2
ε ai(θ0) + (Σθ)−1)−1;

c0 = C0

(
σ−2
ε ai(θ0)η + (Σθ)−1θ0

)
= θ0 + C0σ

−2
ε ai(θ0)(η − θ0).

Our goal is now to prove that

I =

∫
Rr

ϕ(θi; c0, C0) det(a
−1
i (θ0)ai(θi))

× exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
dθi

is close to 1.
We then divide this integral into two parts: let ρ̃ > 0, if θi ∈ Eρ̃(θ0, A),

a−1
i (θi) = a−1

i (θ0) +Dθ0
a−1
i (θi − θ0) +O(ρ̃),

⇒ (θi − η)T (a−1
i (θi)− a−1

i (θ0))(θi − η) = O(ρ̃+ ρ), and

det(a−1
i (θ0)ai(θi)) = 1 +O(ρ̃).

If θi ∈ Eρ̃(θ0, A)
c, by Assumption E we get that

det(a−1
i (θ0)ai(θi)) = O(1)

⇒ exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
≤ 1.

This leads to

I = (1 +O(ρ))

∫
Eρ̃(θ0,A)

ϕ(θi; c0, C0)dθi +O(1)

∫
Eρ̃(θ0,A)c

ϕ(θi; c0, C0)dθi

= 1 +O(ρ).

B.4. Proof of Theorem 6

From Theorem 4, √
Ti(θ̂

Ti

i − θ0)
d−→

Ti→+∞
Nr(0,Σ

θ).

For i = 1, . . . , n, let ZTi
i ∼ N (θ0,

1
Ti
Σθ), and ΔTi

i = θ̂
Ti

i − ZTi
i .

We know that ΔTi
i

d−→
Ti→+∞

δ0 with δ0 the Dirac distribution in 0, which implies

that ΔTi
i

P−→
Ti→+∞

0. Then, by inverting limits, 1
n

∑n
i=1 Δ

Ti
i

d−→
Ti→+∞,n→+∞

δ0.

For ZTi
i , we use Lindeberg Central limit Theorem, recalled in Theorem A of

Appendix C.
Let S2

n = Σθ
∑n

i=1
1
Ti
. We assume that (14) holds. Then,

b
−1/2
n,T (

1

n

n∑
i=1

ZTi

i − θ0)
d−→

n→+∞
N (0,Σθ).
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By Slustky’s Lemma, we get that

b
−1/2
n,T

(
θ̂0 − θ0

)
d−→

n→+∞,minTi→+∞
Nr(0,Σ

θ).

For i = 1, . . . , n, let ZTi
i ∼ N (θ0,

1
Ti
Σθ), and Δ̃Ti

i =
√
Ti(θ̂

Ti

i θ̂
Ti

i − ZTi
i ). We

know that
√
TiZ

Ti
i ∼ N (θ0,Σ

θ) and then
∑n

i=1 TiZ
Ti
i (ZTi

i )T ∼ W(Σθ, n − 1).

Moreover, we know that Δ̃Ti
i

d−→
Ti→+∞

δ0,and then

1

n− 1

n∑
i=1

TiΔ
Ti
i (ΔTi

i )T
d−→

minTi→+∞,n→+∞
δ0.

Thus, we get

1

n− 1

n∑
i=1

Tiθ̂
Ti

i (θ̂
Ti

i )T =
1

n− 1

n∑
i=1

TiZ
Ti

i (ZTi

i )T +
1

n

n∑
i=1

TiΔ
Ti

i (ΔTi

i )T

d−→
n→+∞,minTi→+∞

W(Σθ, n− 1).

B.5. Proof of Theorem 7

We check that our model satisfies the assumptions given in [22, Chapter 3]:

• The Ui are independent and follow a N (0,ΣUi) distribution, εi follows a
NTi(0, σ

2
ε) distribution and the Ui are independent of εi

• The matrix Bμ
i is of full rank, as it is a functional basis

• n ≥ mμ + 1 + 1
• The concatenated matrix [Bμ

i ,B
U
i ] has rank greater than mμ if we don’t

take the same basis for μ and Ui

• The matrices ITi and BU
i (B

U
i )

t are linearly independent

• limn→+∞
n−rank(BU

i )
n = 1

So we get the asymptotic normality of the estimator.

B.6. Proof of Theorem 8

Recall the different operator parts of the iterative algorithm in (12). The Banach
fixed point theorem, recalled in Theorem B of Appendix C, is used to prove
that there is a unique fixed point, and that the algorithm converges. To use
this theorem, we work in Rmμ+nmU+1+nr with the Euclidean distance. It is a
non-empty complete metric space. The mapping we consider is Ψ, as defined in
(12). We need to prove that Ψ is a contraction mapping.

Denote by kf the Lipschitz constant for the function f .
We want to find kΨ such that, for (x, y) ∈ (Rmμ+nmU+1+nr)2,

‖Ψ(x)−Ψ(y)‖2 ≤ kΨ‖x− y‖2.
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As Ψ2 and Ψ3 are linear, for (x, y) ∈ (Rmμ+nmU+1+nr)2,

‖Ψ3 ◦Ψ2 ◦Ψ1(x)−Ψ3 ◦Ψ2 ◦Ψ1(y)‖2 = ‖Ψ3 ◦Ψ2(Ψ1(x)−Ψ1(y))‖2
The proof relies on Lemma 5 applied to Ψ3 and Ψ2, defined via the mixed

effect models. The statement of Lemma 5 and its proof can be found in Appendix
C. Then, using Assumption G, there exists kΨ < 1 such that Ψ is kΨ-Lipschitz.
Banach fixed point theorem concludes.

B.7. Proof of Theorem 9

First, we prove that for a fixed iteration ite, the several computations we are
doing to the true parameters (αμ, σ2

ε,Σ∼
U ,θ0,Σ

θ) are keeping it fixed under
Assumption C.

Fix the iteration number (ite) and consider (αμ, σ2
ε,Σ∼

U ,θ0,Σ
θ). We know

(θ0,Σ
θ) and we predict θi with the BLUP. As n → ∞ and mini Ti → ∞,

predictions are good. Then, we estimate (αμ, σ2
ε,Σ∼

U ), by Theorem 7 we get

(αμ, σ2
ε,Σ∼

U ) (strong consistency).
Then, we approximate θi for all i = 1, . . . , n. By Theorem 4, those pseudo-

observations are close to the true random variables, with the good distribution
function. Finally, we estimate a linear mixed model on those observations: by
Theorem 6, we get θ0 and Σθ (consistency).

Then, under identifiability, Assumptions A, C and G, (αμ, σ2
ε,Σ∼

U ,θ0,Σ
θ) is

a fixed point of Ψ.
By Theorem 8, there exists only one fixed point: then

((α̂μ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞)) −→
n→∞

minTi→∞

(αμ, σ2
ε,Σ∼

U ,θ0,Σ
θ).

This convergence is almost surely, as the convergence in each step is almost
surely.

Appendix C: Additional useful results and tools.

Theorem A (Lindeberg Central Limit Theorem). Let (Ω,F ,P) be a probability
space, and Xk : Ω → R, k ∈ N, be independent random variables defined on that
space. Assume that the expected values E[Xk] = μk and variances Var [Xk] = σ2

k

exist and are finite. Define s2n =
∑n

k=1 σ
2
k.

If this sequence of independent random variables Xk satisfies Lindeberg’s con-
dition: for all ε > 0,

lim
n→∞

1

s2n

n∑
k=1

E
[
(Xk − μk)

2 · 1{|Xk−μk|>εsn}
]
= 0, (14)

where 1 is the indicator function, then the central limit theorem holds, i.e. the

random variables Zn :=
∑n

k=1(Xk−μk)

sn
converge in distribution to a standard

normal random variable as n → ∞.
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Theorem B (Banach fixed point theorem). Let (X, d) be a non-empty complete
metric space with a contraction mapping T : X → X with Lipschitz constant
q ∈ [0, 1). Then, T admits a unique fixed-point x∞ in X. Furthermore, x∞

can be found as follows: starts with an arbitrary element x0 in X and define
a sequence {xn} by xn = T (xn−1), then xn → x∞. Moreover, d(x∞, xn) =
qnd(x1, x0)/(1− q).

Lemma 4 ([1]). The following holds, for all x ∈ Rp, for A,B positive definite
matrices of size p× p and (a, b) ∈ (Rp)2:

ϕ(x; a,A)ϕ(x; b, B) = ϕ(a; b, A+B)ϕ(x; c, C),

with C = (A−1 +B−1)−1 and c = C(A−1a+B−1b).

Lemma 5. Let π1 and π2 be two orthogonal projections, and denote |||.||| the
operator norm. Then,

|||π1||| = |||π2||| = 1; (15)

|||π1 ◦ π2||| < 1 if and only if Eπ1 ∩ Eπ2 = {0}. (16)

Proof. We first prove (15). Let π be an orthogonal projection. As it is a pro-
jection, its norm is larger than 1. As it is an orthogonal projection, we can use
Pythagorean theorem to prove that its norm is smaller than 1.

We now prove (16). If Eπ1∩Eπ2 	= {0}, let x ∈ Eπ1∩Eπ2 . Then, π1◦π2(x) = x
so |||π1 ◦ π2||| ≥ 1.

If Eπ1 ∩Eπ2 = {0}, assume that |||π1 ◦ π2||| = 1: there exists x 	= 0 such that
‖π1◦π2(x)‖ = ‖x‖. But as π1 and π2 are projections, it means that x ∈ Eπ1∩Eπ2 :
contradiction.
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