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Abstract: Estimation of sparse, high-dimensional precision matrices is an
important and challenging problem. Existing methods all assume that ob-
servations can be made precisely but, in practice, this often is not the case;
for example, the instruments used to measure the response may have limited
precision. The present paper incorporates measurement error in the context
of estimating a sparse, high-dimensional precision matrix. In particular, for
a Gaussian graphical model with data corrupted by Gaussian measurement
error with unknown variance, we establish a general result which gives suf-
ficient conditions under which the posterior contraction rates that hold in
the no-measurement-error case carry over to the measurement-error case.
Interestingly, this result does not require that the measurement error vari-
ance be small. We apply our general result to several cases with well-known
prior distributions for sparse precision matrices and also to a case with a
newly-constructed prior for precision matrices with a sparse factor-loading
form. Two different simulation studies highlight the empirical benefits of
accounting for the measurement error as opposed to ignoring it, even when
that measurement error is relatively small.

Keywords and phrases: High-dimensional inference, Gaussian graphical
model, measurement error, posterior contraction rate, sparsity.

Received December 2020.

1. Introduction

The precision matrix, namely, the inverse of the covariance matrix of a Gaus-
sian random vector, is a key object in multivariate analysis because of its role
in describing conditional distributions. Let there be observations Xi,...,X,,
independent and identically distributed (i.i.d.) from a p-dimensional, mean-zero
Gaussian distribution, N, (0, X), where ¥ denotes a p X p positive definite covari-
ance matrix, with corresponding precision matrix Q = X ~!. The goal is to make
inference on the unknown 2, especially in the high-dimensional situation when
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p is large. Even for relatively modest p, the information available in the data
may be insufficient because the number of unknown parameters to be estimated
is of the order of p?, which can exceed n. The problem can be often addressed if
the precision matrix has a certain structure that allows a significant reduction in
the number of free parameters in the model. For example, in Gaussian graphical
models [24], it is common to assume that there are only a few intrinsic dependent
relationships in the graph and the underlying graph describing the dependence
structure is sparse, thus leading to a precision matrix 2 with many zeros on the
off-diagonal. Therefore, the sparsity simultaneously simplifies the dependence
structure and effectively reduces the dimension of 2, potentially paving the way
for accurate estimation. Regularization methods are often used to incorporate
the intended sparse structure into the estimator. Yuan and Lin [33] and Baner-
jee, Ghaoui and d’Aspremont [1] proposed to add an ¢;-type penalty to the
negative log-likelihood, leading to the so-called graphical lasso estimator. A fast
computational method using the coordinate descent algorithm was introduced
by Friedman, Hastie and Tibshirani [18]. Inspired by the desirable properties of
the smoothly clipped absolute deviation (SCAD) penalty [15] which uses folded
concave penalties to avoid the known problem of bias due to excessive shrinkage
of large non-zero entries, Fan, Feng and Wu [14] proposed the graphical SCAD.
Cai, Liu and Luo [6] designed a procedure based on the Dantzig selector [7]. The
procedure minimizes the ¢1-norm of the precision matrix, while it constrains on
the sup-norm between the identity matrix and the product of sample covariance
matrix with the precision matrix. In the Bayesian literature, several priors were
considered for a sparse precision matrix and resulting computational procedures
were developed. Wang [32] developed the Bayesian graphical lasso, which speci-
fies a Laplace prior on the off-diagonal entries of the precision matrix and an ex-
ponential prior on the diagonal entries independently. He also developed a clever
computational trick, known as scaling-it-up, to cancel out the normalizing con-
stant in each posterior sampling stage. Since a Laplace prior, although peaked
at zero, does not yield the value zero with positive probability, a post-estimation
thresholding mechanism is needed to learn the sparsity structure using Wang’s
method. Banerjee and Ghosal [3] proposed an adjustment with a mixture of a
point mass and a Laplace prior to induce exact sparsity, and also derived the
optimal posterior contraction rate with respect to the Frobenius norm. To com-
pute the posterior, they devised a Laplace approximation method, which is a
scale of magnitude faster than Markov Chain Monte Carlo (MCMC) methods,
but relies on large sample approximations. Selection of the edges in the graph
corresponding to selecting nonzero off-diagonal entries may be more important
than the shrinkage and estimation. Using a graphical Wishart (G-Wishart in
short) prior, which sets some off-diagonal entries to exact zeros guided by the
chosen graph and retains conjugacy with the Gaussian likelihood, the focus on
strcture selection my be exploited. Lenkoski and Dobra [25] and Mohammadi
and Wit [28] proposed useful computational methods that allows MCMC moves
across possible graphs. Banerjee and Ghosal [2] assumed a banding structure
on the precision matrix and derived the posterior contraction rate with a G-
Wishart prior. Liu and Martin [27] proposed an empirical G-Wishart prior and
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demonstrated its optimal posterior contraction rate and strong performance in
terms of computational speed and accuracy. Du and Ghosal [12] considered a
high-dimensional discriminant analysis, where they implemented both the mix-
ture prior and a horseshoe shrinkage prior on the off-diagonal entries in a sparse
modified Cholesky decomposition.

Beyond the challenges of high-dimensionality and complex dependence struc-
tures, it may happen that the data are also corrupted in some way. A classi-
cal example is that where measurements taken on sample units can only be
done with a low-precision device. In such a case, the natural sample variation
is compounded by independent measurement errors. A more recent example,
commonly found in medical applications, is where the data are corrupted inten-
tionally to maintain privacy. In any case, the addition of a measurement error
on top of the natural sampling variability creates new challenges. While there
is an extensive body of literature on the subject of measurement error in statis-
ties [11, 8, 17, 19], very little work has been done in the context of structured
precision matrix estimation in the presence of Gaussian measurement errors.
Byrd, Nghiem and McGee [5] assumed the variance of measurement error to
be known, treated the unobservable outcomes as missing data and recently
proposed a method to impute them and estimate the precision matrix itera-
tively. They combined the imputation-regularized optimization algorithm [26]
and Bayesian regularization for graphical models with unequal shrinkage [20] to
formulate a new procedure and prove its consistency. Their results also revealed
the necessity of adjusting for measurement error when present. Here we propose
a fully Bayesian framework for handling measurement error and give general
sufficient conditions for establishing the posterior contraction rate.

Our main goal in this paper is to understand the effect of measurement error
on Bayesian methods for estimating a high-dimensional structured precision
matrix of a multi-dimensional Gaussian random vector. We focus here on a
Gaussian measurement error model, for i =1,...,nand j =1,...,m,

Yij = Xi+ Zij,  X; ~ N, (0,071, Zy; ~ N,(0,v1,) (1.1)

where the X and Z samples are mutually independent, I, is the identity matrix
of order p and m is the number of replicates for each X. Since the X samples
carry information about ) and the Z samples do not, the observable Y’s are
“corrupted” by the convolution of informative and non-informative inputs. If v
is unknown, then m > 2 replicates for each outcome X is required to guarantee
identifiability of v and €. On the other hand, for the special case that v is
known, the convergence results hold also for m = 1. Let Y; = (Y;1,...,Y;L)T.
Then, the marginal distribution of the Y’s is available in closed-form,

Y X Npp(0,%,), i=1,...,n, (1.2)

where ¥, is an mp x mp block matrix, with Q=1 + vI,, as the diagonal blocks
and Q71 as the off-diagonal blocks. Write 2, = 31, which is an mp x mp block
matrix with v=1{I, — (v + mI,)"'} as the diagonal blocks and —v~1(vQ +
mlI,)~! as the off-diagonal blocks.
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In contrast to the covariance matrix, on which the effect of the measurement
error is simply additive, the inverse (vQ + ml,)~! from the above expression
reveals how even the simple linear measurement error model leads to a very non-
linear corruption when the goal is estimating the precision matrix. An important
quantity in this model is the measurement error variance, v, which characterizes
the magnitude of the measurement errors or the degree of corruption. Intuitively,
if the measurement error is ignored and v is not small, then the estimation of 2
will be negatively affected. Here we develop a general strategy that allows the
user to incorporate additive Gaussian measurement error into existing Bayesian
procedures for inference on structured, high-dimensional precision matrices in
such a way that the posterior concentration rates are preserved and minimal
changes to posterior computations are required. To accommodate the measure-
ment error in our theoretical analysis, so that the posterior can effectively undo
the troublesome inverse in €, it is crucial to have extra control on the prior
distribution of the smallest eigenvalue of €. To address this, we express ) as
kI, + ©, and put independent priors on the scalar x > 0 and the p x p matrix
©. Then the prior on k gives us a control over the lower eigenvalue of €2, while
the prior for © can be any of those from the literature.

Expressing the matrix of interest as a sum “skI, + ©” is a strategy that has
appeared already in the literature. Indeed, Fan, Fan and Lv [13], Fan, Liao and
Mincheva [16] and Pati et al. [30] have used such a model, with © having a
sparse factor structure [4], for a high-dimensional covariance matriz. To our
knowledge, this prior formulation has not been developed for inference on a
precision matrix. OQur posterior concentration rate result simultaneously covers
the measurement error and no-measurement-error cases, and the rate attained
parallels that obtained by Pati et al. [30] for the covariance matrix with respect
to the Frobenius norm, with some improvements.

The remainder of this paper is organized as follows. In Section 2, we inves-
tigate what will happen when the measurement error is ignored, i.e., when a
misspecified no-measurement-error model is fit to the corrupted data Y7,...,Y,
n (1.2). Our general framework for incorporating Gaussian measurement error
into existing Bayesian procedures for inference on structured, high-dimensional
precision matrices is presented in Section 3 along with a general result on pos-
terior contraction rates. The main conclusion from the result is that the rate
in the absence of measurement error remains in force even when a substantial
measurement error is present. Examples of the obtained rates with measurement
error based on priors commonly used in the no-measurement-error literature are
discussed in Section 4. A new prior for the estimation of a precision matrix with
a sparse factor structure is proposed and the corresponding posterior concen-
tration rate is illustrated in Section 5. The result is new even in the context of a
Gaussian graphical model without measurement error. An extensive simulation
study for investigating the numerical performance of the proposed model under
different magnitudes of measurement error is conducted in Section 6, showing
that the adjustment towards to the measurement error leads to a lower esti-
mation error in terms of the Frobenius norm. All proofs are presented in the
appendix.
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2. Effect of ignoring measurement error

For a situation in which the data analyst is either unaware of the measurement
error or simply chooses to ignore it, a natural question is what can go wrong?
We show below that failing to account for the measurement error creates a
large bias and, therefore, certain adjustments are necessary to account for the
presence of measurement error and to ensure accurate estimation of Q. For the
sake of simplicity, we assume that v is known and m = 1 throughout this section.

To develop some intuition, consider the case where the dimension p is fixed,
so that the precision matrix can be estimated directly, at least for large n, with-
out imposing any structural or sparsity assumptions. Let Q, = Q(Y7,...,Y,)
denote an asymptotically unbiased estimator of {2 based on the corrupted data
Yi,...,Y,, eg., Q, = S, 1, the inverse of the sample covariance matrix S,, =
n~t 3" Y;YY. By asymptotically unbiased, we mean that

|Eq Q0 — (' 4+ vL) " r = 0(1), n— oo, (2.1)

where Q* denotes the true p x p precision matrix and ||A||r = {tr(ATA)}1/2
denotes the Frobenius norm of a matrix A, with tr(-) the trace operator. Also, let

||All2 denote the spectral norm, i.e., the square root of the maximum eigenvalue
of ATA.

Theorem 2.1. For a case of fixed dimension p, let ﬁn be an estimator that
ignores the measurement error and satisfies (2.1). If v is fized and known, then
for all large n,

Eq- || — Q117 2 110771, + Q) I3 (2.2)
Moreover, if v < ||Q*||5 %, then the bound can be simplified to

Ear o[ — I3 > 102pAd, (7). (2.3)

min
where Amin(+) stands for the minimum eigenvalue.

The proof is given in Appendix A. From the theorem, we can see the lower
bound on the bias will vanish as ¥ — 0 but will increase monotonically to
|9*]|% as v — co. Therefore, even in a relatively low-dimensional setting with
fixed p, unless v is vanishingly small, the mean squared error associated to any
asymptotically unbiased estimator of the precision matrix is bounded away from
0 asn — oo.

Moreover, the same proof would apply to a case of increasing dimension if
p = O(n) and Q* is known to be diagonal. Since both the fixed-p and known-to-
be diagonal * cases are simpler than the general high-dimensional structured
precision matrix estimation problem, and the effect of ignoring measurement
error is already profound, we conjecture that the estimation bias result will
become even worse in the more general setup involving a complex structure,
unknown v and increasing p.



4550 W. Shi et al.
3. Accounting for measurement error
3.1. Prior and posterior distributions

For technical reasons that will be made clear below, when measurement error is
present, we need precise control on the prior distribution of the smallest and the
largest eigenvalues of 2. We introduce a simple device to automatically satisfy
the requirement, namely, adding a scalar multiple of the identity matrix to the
precision matrix. That is, we express the precision matrix as

Q=0+ k), (3.1)

where © is a positive semi-definite matrix and £ > 0 serves as a lower bound
on the smallest eigenvalue of 2. The strategy is to specify a prior distribution
for 2 by assigning independent prior distributions to © and k. That is, the
prior IT for € is induced from independent priors Ilg and II, for ©® and k,
respectively, by the mapping (©, k) — © + kI;. This term  is introduced only
to automatically assure a lower bound for eigenvalues of the precision matrix 2
in the theoretical results. This structure of the prior, though, is not convenient
for computation. Computational issues will be discussed in Section 6.1. Since v
is typically unknown, we assign it a prior distribution. Details about the specific
priors for k, © and v are presented below.

Prior for k. As mentioned above, control on the prior distribution of eigen-
values is crucial, so the tails of the prior for x need to be carefully chosen. In
particular, we require exponential tails in both directions, i.e., there exists a
constant C' > 0 such that

(k> t) + (<t <e @ for all large t > 0. (3.2)

A common distribution that satisfies this requirement is the inverse Gaussian
distribution [10] with density function, in the one-parameter form, given by
T (t) ox t73/2¢=(t=9*/(2) ¢ > 0, where £ > 0 plays the role of the mean and
variance. A generalized inverse Gaussian density, proportional to tae—b(t=€)*/t
with any b > 0 and a € R, can also be used.

Prior for ©. Since the structure in 2 is determined by the structure in O,
we choose Ilg to induce the desired structure in §2. Fortunately, most of the
existing priors on a precision matrix could be directly applied on © here. For
example, if we believe that {2 has a general sparsity structure, then we could
take IIg to be a suitable G-Wishart prior [25] or a mixture thereof [3]. Similarly,
structures like a sparse Cholesky decomposition or a sparse factor model can be
imposed on ) with a suitable choice of prior on ©. Details will be given for a
number of special cases in Section 4 and Section 5 below. Roughly, our technical
requirement is that Ilg satisfies the sufficient conditions originally laid out in
Ghosal, Ghosh and van der Vaart [21] for posterior contraction at the target rate
in the no-measurement-error context. These sufficient conditions have already
been verified for various low-dimensional structures and commonly used priors



Estimation of precision matrices under measurement error 4551

that induce them, so our main focus here can be on the effects of measurement
error.

Prior for v. We require that the support of the prior distribution for v is
bounded by some large positive constant M, and that it has exponential lower
tail, i.e., for some constant C' > 0,

(v <t <e ©, forall large t > 0. (3.3)

We also require suitable prior concentration around the true-but-unknown mea-
surement error variance v*. A common distribution that satisfies this require-
ment is the truncated inverse Gaussian distribution or a two-sided truncated
distribution. Alternatively, a point mass at the adjusted maximum likelihood
estimator of v, which is

i1 e (Yij = Y) T (Y — Y3)
npm — 1

1/):

, (3.4)

where Y; = Z;nzl Y;;/m, can be used, which corresponds to an empirical Bayesian
method.

Given a prior for © as described above, we update to the posterior distri-
bution via Bayes’s theorem. For the measurement error model (1.2), define the
likelihood function as

Ln(Q,v) o< |det(Q7Y + vL) |72 exp[—ntr{S, (' +vI,)"1}/2],  (3.5)

where S, is the sample covariance matrix of Y as in Section 2 and det denotes
the determinant operator. Then the corresponding posterior distribution, which
depends on the data Y7,...,Y, and the known measurement error variance, is
given by

IT,(dQ, dv) = I(dQ,dv | Y1,...,Ys) < Ly (Q,v) II(dSY, dv). (3.6)

A consequence of this indirect formulation is that the posterior distribution
cannot be computed in closed-form. Therefore, MCMC methods are needed to
obtain samples from II,. Fortunately, these methods can be developed by mod-
ifying the existing algorithms available in the no-measurement-error literature;
see Section 6.1.

3.2. Posterior contraction rates

In this subsection, we characterize the posterior contraction rate with respect to
the Frobenius distance in terms of the characteristics of the model, the prior, and
the true precision matrix. Even under maximal sparsity, there are p unrestricted
diagonal entries, so it is essential that the dimension p is of a smaller order of
n, and in particular log p is the same order of log n, or less. As discussed above,
the intuition here is that if the prior Ilg for © is such that the posterior would
achieve the desired contraction rate without measurement error, and if the prior
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II, for v and prior Il for k are reasonable in some sense, then the same posterior
contraction rate prevails in the presence of measurement error. The following
three conditions make this setup more precise.

Conditions on the prior.

(a) The prior II; has a continuous density on (0,00), and satisfies the tail
condition (3.2).
(b) Given €, and a certain structure in Q*,

(i) there exists a sieve S,, of precision matrices, having the same posited
low-dimensional structure as Q*, with entropy bound

10g N (81, S, [ - [l2) < mey, 3.7)

where §,, = (2Knp)~! for the K presented below;
(ii) the prior Ilg for © satisfies IIg(SS) < e~ En<. for some sufficiently
large K > 0;

(iii) for any constant ¢ > 0, there exists another constant C' > 0, such
that ,
Mo({0: |0 — 0*||r < cen}) Z e e (3.8)

for any ©* having the same posited structure as Q*.

(¢) The prior II, has the support on (0, M) with a large constant M, satisfies
a tail condition like in (3.3), and satisfies

I,({v: v — v*| < enp™/?}) Z e Oen, (3.9)

for some constant C' > 0, where v* is the true measurement error variance.

The conditions related to IIg look complicated but, for the most part, these
are the now-classical sufficient conditions from Ghosal, Ghosh and van der Vaart
[21] for establishing posterior concentration rate results. Therefore, other au-
thors who have investigated concentration rate properties of posterior distri-
butions under various low-dimensional structures and priors, like in Section 4,
would likely have checked these conditions already. One noticeable difference is
in the entropy bound in Condition (b)(i), where the radius is proportional to
5, = (2Knp)~!, which is rather small. However, the dimension is what drives
the entropy’s magnitude, while the radius only impacts the logarithmic term,
so the small d,, has no significant effect. The conditions for II,, are satisfied by
a continuous measure or a point mass prior located close enough to v*. For
continuous measures, many distributions can be used, in which a common ex-
ample is the inverse Gaussian distribution. Further, for the point mass prior,
a typical choice is © in (3.4), which satisfies the conditions for II, since now
lv —v*| < (np)~'/2 if €, = n~1/2. The prior concentration condition (3.9) can
be guaranteed if II, has a continuous support and v* > 0 is fixed, since the
prior density has a lower bound around v* such that

I,({v: |y = v*| < enp™'/?}) 2 logr—loaen, (3.10)
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where — log €,, is of the order of log n, which is smaller than ne2 up to a constant.
However, it will be a little complicated if v* = 0 or it varies in a sequence
approaching 0 fast. Then, the lower bound (3.9) may not hold if the prior density
rapidly decays at 0, for example, in an inverse Gaussian density. Therefore, the
assumption on the prior concentration (3.9) is sometimes useful.

Theorem 3.1. Assume that Q* satisfies a specific low-dimensional structure,
and has eigenvalues bounded away from 0. Consider a prior distribution for
Q = O + k1, induced from independent prior distributions I1,, for k and Ilg for
O, where the prior for © is based on the same low-dimensional structure as that
posited for Q*. Assume that there exists a sequence €, > n~"/? with €, — 0 and
ne2 > logn and a constant M such that Conditions (a)—(c) are satisfied by 11,
g and I1,, respectively. Under the model in (1.2), for any fized v* > 0, the
posterior distribution I1,, in (3.6) contracts at the rate €,, that is, there exists a
constant L > 0, depending on ||Q*||2 and v, such that

Eq« o+ IL,({(Q,v) : |Q—Q%||p > Lep, |[v—v*| > Lé,}) - 0 asn — oo, (3.11)

where €, = e,p~ /2. If ||Q*||2 is not bounded, then the conclusion of v remains
the same but the conclusion of Q holds with the rate €, = ||2*||3¢,.

The proof of the theorem is given in Appendix A. A remarkable consequence
of Theorem 3.1 is that the posterior contraction rate is not affected by measure-
ment error even when it is not small.

4. Examples

In this section, we investigate some existing Bayesian methods for structured,
high-dimensional precision matrix estimation and show how measurement error
can be accommodated in these models. Since the prior for v is regulated to
satisfy Condition (c), we consider a prior for © from the literature and verify
the requirements of Theorem 3.1 for each case. The prior for x will be assumed
to satisfy Condition (a), e.g., by choosing an inverse Gaussian distribution.
Therefore, the discussion below will focus on the prior for © and on verifying
Conditions (b) (i)—(iii) for IIg. We assume that both the smallest and largest
eigenvalues of the true precision matrix Q* are bounded away from 0 and oo for
all the examples in this section. Proofs of the rates derived in Theorems 4.1-4.3
are given in Appendix A.

4.1. General sparsity

Banerjee and Ghosal [3] proposed a Bayesian method to estimate a precision
matrix with a general sparse structure in a Gaussian graphical model. In the
first example, we adopt their setting as a prior for © and verify that all required
Conditions (b) (i)—(iii) are satisfied.



4554 W. Shi et al.

Let ©;; denote the entry at the ith row and jth column of © and I' denote
the matrix with the (¢, j)th entry T';; = 1{©;; # 0}. The cardinality of {(, j) :
i < j,I';; = 1} will be denoted by 7. Consider the following prior

7T(("‘) | F) X ex (7A|@”D ex (7)\@”/2),
Filj_L ' £[1 g (4.1)

m(I'| R) o< q"(1 — q)~"PP=D/21{y < R},

where A is a hyperparameter and ¢ is a pre-specified probability controlling the
sparsity. The smaller ¢ is, the more sparse © is. Another factor controlling the
sparsity, R, is either given a prior or is taken to be a large enough constant.
Since the latter is a trivial case of the former, we demonstrate the main result
of posterior contraction rate in the former setting. The prior of R should satisfy

II(R > M) < exp(—aM log M) (4.2)

for some a > 0 and large enough constant M. Such distributions include the
Poisson and the binomial distributions.

Theorem 4.1. Assume the same setup as in Theorem 3.1 with the priors (4.1)
and (4.2) or fized R = Ry for general sparsity type of structure. Under the model
in (1.2), there exists a constant L > 0 such that the posterior distribution II,, in
(3.6) contracts at the rate €, around Q*, where ¢, = n~?(p+ s*)1/?(logn)'/2,
with s* denoting the number of nonzero off-diagonal entries in 2*.

4.2. Sparse Cholesky decomposition

Assume that the true precision matrix has a sparse Cholesky decomposition
© = UDUT, where U is a lower-triangular matrix and D is a diagonal matrix,
and we specify a prior on © through U and D as in Du and Ghosal [12]. Let
Ui;j denote the entry at the 7th row and jth column of U and D;; denote the ith
diagonal entry of D. Let I' denote the matrix formed by the indicators I';; =
1{U;; # 0}. Following Proposition 1 in Du and Ghosal [12], for i = 1,2,...,p,
and j = 1,2,...,4, consider the prior

(Uij | Tij) ~ (1 = Ti)Ny(0,05) + L'i;N, (0, 07),
Ij~ Bernoulli(C,,/ V%), (4.3)
D;; ~ Gamma(ay, 31),

where a1, B1, 02 and o are some hyperparameters and C, is a constant going

to zero as p — 0o polynomially in p~!.

An alternative to the above prior is to consider more general positive real-
valued I';;, and induce a prior on U;; through the hierarchical scheme

(Usj | L) ~ Ny(0,T5,07),
Fij ~ Cauchy+(0, 1), (44)
Du‘ ~ Gamma(ala/Bl)a
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for i =1,2,...,p, and j = 1,2,...,i, where Cauchy™(0,1) is the positive half-
Cauchy distribution and o? is a pre-specified global shrinkage parameter.

For both setups, let v denote the number of U;;’s greater than €np~ ', where
€n is introduced as below, and 7 will have a binomial distribution as Bin(p(p —
1)/2,n), where

n=1(Uy| > ep™ ') <p " and n>p°,

with some constants a,b > 2 as we assumed for any 0 < j < ¢ < p. This
restriction on 7 can be achieved by either choosing C), in (4.3) going to zero as
p — oo polynomially in p~! or modifying the prior I';; in (4.4) to be truncated
above by 1/7, where 7 < p~%~2¢2. Although the above condition on 7 is required
for the theoretical result, in practice, we choose C}, = 1 for the convenience of
computation. In our simulation studies, the estimation results are not sensitive
to the choice of C).

Theorem 4.2. Consider the setup of Theorem 3.1 with the priors given by
(4.3) or (4.4) for the sparse Cholesky decomposition. Then under the model in
(1.2), the posterior distribution I, in (3.6) contracts at the rate €, around ¥*,
where €, = n~2(p + s*)/2(logn)'/?, with s* denoting the number of nonzero
off-diagonal entries in U*.

4.3. Banded structure using G-Wishart prior

Following Banerjee and Ghosal [2], assume that the sparse precision matrix has
a banded structure. They assumed a k-banded structure on the precision matrix
and used a G-Wishart prior. They derived the posterior convergence rate under
such structure and prior with respect to the spectral norm. In this example, we
consider the same structure and prior, but move our attention on the rate of
the Frobenius norm in the presence of measurement error.

Suppose that the true p x p dimensional precision matrix ©* is k-banded, that
is, ©F; = 0 for all i,j = 1,...,p, such that |i — j| > k, with a fixed known value
of k. A graphical Wishart distribution prior © ~ G-Wish(d, I,,), is assigned on
O, where the graph G is induced by the k-banding. It is easy to conclude that
the graph is decomposable with cliques C; = {j,...,j+k},j=1,...,p—k, and
separators S; = {j,...,j+k—1},j=2,...,p—Fk [2]. An important property we
use is that given Og,,...,0s,_,, the matrices O¢,,...,O¢,_, are conditionally
independent and are Wishart distributed with § degrees of freedom; here and
elsewhere for a matrix M and S C {1,...,p}, Mg = (M;; : i,5 € 9)), the
principal minor of M formed by the entries of S. Let Pg stand for the cone of
positive definite matrices compliant with the graphical structure, that is, the
(4, 7)th entry is 0 if (4,7) is not an edge of the graph.

Theorem 4.3. Consider the setup of Theorem 3.1 with prior © ~ G-Wish(d, I,,).
Assume that the eigenvalues of Q* are bounded and bounded away from zero,
and for a sufficiently small e > 0, {Q : |Q — Q*|| < €} C Pg. Under the model

in (1.2), the posterior distribution 11, in (3.6) contracts at the rate €, around
Q*, where €, = n~?(plogn)/2.
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5. Sparse factor-model structure

The sparse factor-model structure has been used in the literature to develop
prior distributions for structured, high-dimensional covariance matrices, e.g., in
Pati et al. [30]. However, to our knowledge, such a prior has not been proposed
for a structured precision matrix, even when no measurement error is present.
So we separate it from the examples in the previous section because of the novel
use of the prior for estimating the precision matrix and new results on posterior
contraction rate even in a model without measurement error.

Consider the model (1.1), where the possibility v = 0 (i.e. the no-measurement
error model X; ~ N, (0,271)) is not ruled out. Following our discussion in Sec-

tion 3.1, we assume the precision matrix 2 to be of the form
QN=0+kl, ©=AAT,

where A is a p X k matrix with k£ < p and at most s non-zero entries on each
of the k columns. For a given k, let I denote the matrix with the (4, j)th entry
I';; = 1{A;; # 0}, and let v < ks denote the total number of non-zero entries
of A.

We follow Pati et al. [30] and impose the following assumptions on the true
precision matrix *, the corresponding factor-loading matrix A*, its dimension
k*, and the inherent error k*. We assume that the true precision matrix 2* has
also the factor model structure of the form Q* = A*A*T +x*I where A* € RP*F’
and k* < p. In high-dimensional setup, we typically assume there are two
sequences bounding the column sparsity of the true loading matrix A* as s*
and the largest eigenvalue of true precision matrix Q* as ¢*. Furthermore, we
let I'* denote the matrix of 1(A}; # 0) and v* = 3, , I'f; < k*s*.

Assumptions. Suppose that there exist ¢*, k* and s* such that the following
three properties hold:

(A1) 1/¢* < v < ¢/2 and ||A*]|3 < ¢*/2 such that 1/¢* < 1/||Q* 15! <
12| < c*;

(A2) (c55°k*) 13 (log n) S nl/?;

(A3) each column of A* has at most s* non-zero entries.

Assumption (A1) is to give control on the upper and lower bound of the true
precision matrix. Assumption (A2) is introduced to control the final convergence
rate appropriately; that assumption can be relaxed to (¢*s*k*)*/?logn < n'/?
when v = 0 is known. Assumption (A3) controls the sparsity, which is crucial
in high-dimensional problems.

For the Bayesian model formulation, let A;; denote the entry at the ith row
and jth column of the factor-loading matrix A. Then, we consider the spike-
and-slab prior similar to that in Pati et al. [30], except that we make certain
choices to meet Condition (b) such as the inverse Gaussian distribution. For



Estimation of precision matrices under measurement error 4557

1=1,2,...,p,and j =1,2,...,k, let the priors
K ~ invGaussian (1, A1),
k ~ Pois(61),
(Aij | Tij) ~ (1 =Ti5)d0 + Ti;Np (0, 07),
I';; ~ Bernoulli(n),

(5.1)

where §g represents the Dirac distribution at zero and u1, A1, 61, 0% > 1 and 7
are all pre-specified hyper-parameters. The condition on variance o7 is natural
because with the point mass at zero, large variation is preferable. In such a prior
setup, given k = k*, v will have a binomial distribution as Bin(pk*,n), where
n = w(|Ai;| > 0) for any 0 < ¢ < p and 0 < j < k*. The choice of 7 is made
to guarantee that n =< (pk*)~!. Moreover, with such a specification, we have
the prior probability 7/2 < 7(|Ai;| > €,/4y/c*3pk*) < n with €, introduced in
Theorem 5.1.

In general, it is not easy to specify a bound k* that controls the sparsity of
A* and, hence, it is difficult to specify an appropriate 7. The problem can be
addressed by putting a further prior on #:

(n| k) ~ Beta(1,akp + 1), (5.2)

where a is the only new extra pre-specified hyper-parameter. However, when
this deeper hierarchical model is utilized, there is a slight loss in terms of the
posterior concentration rate in Theorem 5.1. With such a hyper-prior on 7, given
k = k*, we can calculate that

m(JAsj| > 0) = (ak™p + 2)_1
T(|Aij| > €n/4\/e3pk*) < (ak*p +2)7 1,
forany 0 <i<pand 0 <j <Ek*.

Theorem 5.1. Suppose that the data are generated from (1.1) and Assumptions
(A1), (A2) and (A3) hold for the true precision matriz Q*. Consider the prior
given by (5.1). Then the posterior distribution I1,, in (3.6) contracts at the rate
€, around *, where

o ¢, =n Y2(cFs k*) 2 (logn)'/? if v* = 0 is known,
o and e, = n~/?(c*)%/?(s*k*)V/2(logn)Y/? if v* is fized and positive.

If the prior (5.2) is imposed on n, then the rates are

o ¢, =n " Y2(crs k%) /2 (logn) if v* =0 is known,
e and €, = n~/2(c*)>/?(s*k*)V/%(logn) if v* is fived and positive.

6. Numerical results
6.1. Computation

The existing literature often provides algorithms for sampling from the posterior
distribution of 2 in the no-measurement-error context, and there is a simple and
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intuitive way to leverage these tools for sampling in cases with measurement

error. Because the Bayes model in the measurement error case provides a joint

distribution for (X, Y, Q,v), it is possible to write down the full conditionals as
(X | Yit, ..., Yi, Qv) & N, (m(mI, + vQ)~'Y;, v(ml, +vQ)~"),  (6.1)
Q] X1,..., X)) ~II(Q] Xq,...,X5), .
(V | X17~-~7XnaY117~-~7Ynm) ~ H(V | X17~-~>XnaY117~-~7Ynm)a (63)

where II(Q | X1,...,X,,) is the posterior based on the no-measurement-error
model, with the augmented dataset Xi,...,X,, and ¥; = m™! z;nzl Y; ;. Note
that Y1,...,Y, do not appear in (6.2) because (2 is conditionally independent of
Y, given X. Therefore, if we know how to sample from the no-measurement-error
posterior distribution—e.g., using the algorithms available in the literature—
then we can easily embed this into a Gibbs sampling framework wherein we
iteratively sample from this set of full conditionals and obtain a posterior sample
of precision matrices that accommodates the known measurement error.

To execute step (6.2) efficiently, the prior on € needs to be convenient to
work with. The assumed structure of 2 = © + xI, in the theoretical results
in Section 3 is undoubtedly not convenient for computation. The role of k is
solely as a technical device to ensure a lower bound for the eigenvalues of 2. If
the prior on © already ensures a bound on the eigenvalues, then the additional
term is not needed even for the theory. For practical applications, the additional
term «/ may not make a noticeable numerical difference and may sometimes
be dropped, provided that this does not cause any instability in inverse, and
simulations give sensible results. The numerical results presented below employ
this simplification.

If v is known, step (6.3) can simply be ignored by using the true v in the
other steps. However, when v is unknown, under the model in (1.1), a prior is
needed for v to execute the algorithm. The conditions imposed on the prior for
v in the theoretical results are sufficient but are not necessary. So, for practical
implementation, one could feel reasonably safe in taking any suitable prior for v
that simplifies the computation. For example, one might use the non-informative
Jeffreys prior, that is, 7(v) v=3/2 or the inverse-Gamma prior. Consider the
non-informative Jeffreys prior and the full conditional posterior of v is in a
closed form as inverse-Gamma distribution as

mpn Z?:l 27:1(3/11 — X)) (Vi - Xl)) .

(u|X1,...,Xn,Y117...,Ynm)~IG( 5 5
Another popular method to deal with the unknown nuisance parameter is using
an estimator of v and pretending it as the truth. This empirical Bayesian method
is equivalent to specify a point mass prior located at the estimator. A typical
choice of such estimator is that in (3.4). The resulting procedure is sensible as
long as the estimator of v is sufficiently accurate. The following simulation study
makes use of this simple plug-in method.
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6.2. Simulations

Since the proposed method covers both cases that the true value v* of v is known
with m = 1 or it is unknown with m > 1, we conduct two separate simulation
studies to explore the performance of adjusting for the measurement error.

0.2.1. When v is known and m =1

We conduct a simulation study over different structures of true precision matrix
and known magnitudes of measurement error with m = 1. We fix the dimension
p = 50 and sample size n = 100. Let (27 denote the entry in the ith row and jth
column of the true precision matrix 2*, and consider the following four sparse
structures for Q*:

e AR(1): Qf; =10and QF ;4 = Qf ;;; =5 for 1 <i < p; QF = 0 otherwise.
e AR(2): Qf =10, Qf, 4y = Qf;4y = 5 and QF, 5, = QF ., = 2.5 for

1< <p; ij = 0 otherwise.

e Block(2): Qf = 10, Qf; = 5 for (k — 1)p/2+1 < i # j < kp/2 and
1<k<2; Q;‘j = 0 otherwise.
e Block(5): Qf = 10, Qf; = 5 for (k- 1)p/5+1 < i # j < kp/5 and

1<k<5; ij = 0 otherwise.

For each sparse structure, 100 replicates are run. We consider the priors as-
signed on the Cholesky decomposition structure in Section 4.2 and the setup
introduced as (4.3) to estimate the precision matrix, since all the the true pre-
cision matrices 2* described above have a sparse Cholesky decomposition and
this prior will induce a posterior with fast and simple MCMC algorithm. Since
our main interest is about the influence of the measurement error, we will not
survey any other types of priors in this simulation study. The hyper-parameters
are specified as ay = 1 = 1/2 and C, = 1, since it is unrealistic to specify
a too large C,. To show the different magnitude of influence by the priors, we
consider two combinations of the spike-and-slab prior:

e Diffuse prior: 03 = 0.01 and o7 = 10.
e Informative prior: 03 = 0.0001 and o = 1.

We use the Gibbs sampling technique introduced in Section 6.1 to sample from
the posterior and choose Y;’s as the initial values of X;’s for i = 1,...,n, re-
spectively. To show the effectiveness of the proposed method that adjusts for
the measurement error, we compare the estimator after adjustment with that
ignoring the measurement error. The estimation error is noted as “adjust” and
“ignore” in the graphs. The estimator is the posterior mean and the Frobenius
norm estimation errors are given in Figures 1, 2, 3, and 4 for the four struc-
tures, respectively. In these figures, only the central 90% of the estimation errors
are displayed to remove some outliers, which are caused by the extra variation
from measurement error in such a finite sample situation. Note that the x-axis
in these figures denotes log,, v, where v is the measurement error variance. In
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Fig 1: Frobenius norm estimation error in the AR(1) model versus the magnitude
of measurement error using diffuse prior (top) and informative prior (bottom).

other words, v varies from 1072 to 10 over 13 different values, which are equally
spaced on the log-scale.

For the results of AR(1) model in Figure 1, the estimator that corrects for
the measurement error has better accuracy in terms of the Frobenius norm
except when v is relatively large using the diffuse prior. At the same time, the
variance of the estimation error becomes larger when v > 1, compared with the
variance of the baseline model, which even ignores the measurement error. This
inflation of the variance in the adjusting model is due to the relatively small
sample size compared to the relatively large dimension, as well as the extra
variation introduced by the measurement error. This large variance means a lack
of sufficient information about the signal in the data, so the estimation with the
diffuse prior becomes problematic when v is large. When a more informative
prior is used, the variance is more stable and our procedure beats the naive
method uniformly as shown in the right plot of Figure 1. On the other hand, since
the estimator is close to the zero matrix when the magnitude of the measurement
error is large, its error approximates to a fixed value and the variance is tiny.
This assertion can be verified by comparing the error with large v and the
Frobenius norm of the true precision matrix listed above. This is the reason
why we choose the entries of the true precision matrix relatively large such that
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Fig 2: Frobenius norm estimation error in the AR(2) model versus the magnitude
of measurement error using diffuse prior (top) and informative prior (bottom).

the bias could be more dominant when the measurement error is ignored even
with a small variance.

When the structure of the precision matrix is more complex, such as in AR(2),
the proposed method performs uniformly better than the naive one, and the
error stabilizes over different measurement error scenarios in Figure 2. Similar
phenomena are observed in the block structures in Figure 3 and 4.

6.2.2. When v is unknown and m > 1

We consider the same simulation settings as in Section 6.2.1, except that now v is
unknown and we have m = 2 replications for each outcomes to estimation v and
Q. Since the effectiveness of adjusting for the measurement error in those four
structures are similar, only AR(1) and AR(2) structures are considered. Further,
the empirical Bayesian method using © as in (3.4) is employed to estimate v and
only the informative prior is used for estimating €2 since its performance is much
better than the diffuse prior.

For both AR(1) and AR(2) structures, as shown in Figure 5, correcting for
the measurement error improves the accuracy of the estimation in terms of the
Frobenius norm for each choice of v. Again, the estimators based on the proposed
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Fig 3: Frobenius norm estimation error in the Block(2) model versus the mag-
nitude of measurement error using diffuse prior (top) and informative prior
(bottom).

method have larger variance than the baseline model since the unknown v and
the extra layer in the hierarchical model introduce more variability. Despite
having slightly larger variability, the estimation error with the proposed method
is still far superior to that using the naive method that ignores measurement
error. There is a peculiar initial downward trend in the proposed method’s
estimation error as v* increases. We believe that this is because, when v* is
very small, i.e., close to the boundary v* = 0, the plug-in estimator & loses
accuracy. However, when v* is away from the boundary, the expected trend
emerges, namely, the estimation error is increasing but more slowly than for the
naive method.

Appendix A: Proofs of the theorems
A.1. Proof of Theorem 2.1

A simple bias—variance decomposition yields

EQ*,V”Qn - Q*”% = EQ*,V”Qn - EQ*,VQHH% + ”EQ*,VQn - Q*H%
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Fig 4: Frobenius norm estimation error in the Block(5) model versus the mag-
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Since the first term is non-negative, we get
Eoe o100 — Q7 > [[Ear Q0 — Q|7 = (7! + v1,) ™" — Q|17 + o(1),

where the first term dominates as n — oo when v is fixed. By the Woodbury
formula (A+BCD) ' = A1 - A7'B(C~'+ DA™ 'B) ' DA™}, the right hand
side equals

19" (v L + @) T +o(1) > 194 (v + Q7)1

for large enough n, which proves the first assertion.

Now consider v < [|Q*||5*, the smallest eigenvalue of Q*~!. Using a spec-
tral decomposition UDU?T of 0*, where U is an orthogonal matrix and D =
diag(D11,...,Dyp), we obtain vDj; <1 for all j =1,...,p. Hence

19 (v L, + @) Q% = 2 |UD(I, + vD) T DU} = 41273

Since [|Q*2||2 = ||D?|% > p- min(D?j : j=1,...,p), the second assertion
follows.
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Fig 5: Frobenius norm estimation error in the AR(1) model (top) and AR(2)
model (bottom) versus the magnitude of measurement error.

A.2. Proof of Theorem 3.1

The proof will proceed in a sequence of steps driven by those sufficient conditions
in Ghosal, Ghosh and van der Vaart [21] for bounding the posterior concentra-
tion rate since now the Y;’s are independent and identically distributed.

Recall that the prior for €2 is based on independent priors for the ingredients
© and k in the representation Q = © + k1, in (3.1). For a given true Q*, in the
proof we consider the corresponding representation

O = 0* + K1,

But this decomposition is not unique—there are many ©* and «* that would
satisfy this equation, e.g., fix a weight w € (0,1), set K* = wWApin(Q2*), and
then ©* = 0* — k*I,,. Fortunately, this non-uniqueness does not affect us here,
since the same conclusion is reached for every choice of (0*,x*) that satisfy
the above display, provided the corresponding assumptions hold there. Indeed,
recall that, e.g., Condition (b) requires that concentration of the prior IIg hold
around some ©* sharing the same assumed structure in Q*.

Step 1: Prior concentration. For generic ) and v, let go and gq,, denote the
N,(0,9271) and N, (0, 27! +v1,) densities, respectively, so that the data in (1.2)
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are i.i.d. with density go, . For the target rate €,, we aim to show that for some
C >0,

T({(2,v) : K(garver gaw) < €,V (gar v, gaw) < 1) 2 e, (A1)

where K (f1, f2) = [ fi log(fi/f2) and V(f1, f2) = [ f1 log®(fi/f2) denote the
Kullback—Leibler (KL) divergence and corresponding KL variation of two den-
sities f; and fs, respectively, as defined above. By our assumption that the
eigenvalues of Q* are bounded away from 0 and infinity, and Lemma B.1 in
Appendix B, there exists ¢ > 0 such that

H({<Q7 V) : K(gﬂ*,y*vgﬂyv) < 6?1’ V(gﬂ*,l/*vgg,l/) < ei})
> Qv |2 — Qo llr < cend). (A2)

Then, from the first result in Lemma B.2 in Appendix B, there exists ¢1,co > 0
such that

T 1) ¢ 9 - ullr < cen))
2O 2~ Qlp < crea)) - T({v s v = 4] < cocap™?)). (AB)

For the first term on the right hand side, replacing Q by (0,x) and Q* by
(©*, k*), the triangle inequality gives

12 -QF <||© - O"||F + ||k, — K™ Ip||F
<||© — 0*||p + p'/?|k — K. (A.4)

By Condition (a) on II, and ne? > logn, we get that for some constant G > 0,

IM,({k:|c— K" < cp_l/Qen/2}) > p_l/Qen

= exp{loge, — 1logp} > e~Cnen. (A5)

For the second term in (A.3), it is automatically guaranteed by Condition (c)
on II,,. Combining (A.3)—(A.5) and using Conditions (b) on Ilg, (A.2) follows,
establishing (A.1).

Step 2: Sieve, test construction, and error rates. In order to apply the theory
of posterior contraction in Ghosal and van der Vaart [22] to show that the
contraction rate at the truth with respect a distance d is €,,, we need to establish
a test for the true value against most of the complement of the d-neighborhood of
size €, around the truth with error probabilities decaying exponentially in neZ.
This test is obtained by combining tests for the truth against small balls with
centers separated from the truth by at least €,,. Whether such a test for the truth
against a small ball exists depends on the metric. If d is the Hellinger metric
on the corresponding densities, then such a test exists by celebrated existence
theorems. For other metrics, either such a test has to be constructed directly
in the given situation, or the distance has to be dominated by a multiple of the
Hellinger distance near the true value. In the present context, the distance of
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interest is the Frobenius distance on the precision matrix, which is not directly
comparable with the Hellinger distance for arbitrary pairs of matrices. Here, we
construct the required test directly from the likelihood ratio tests of the truth
against separated simple alternatives, which can be elegantly quantified by the
Rényi divergence, similar to the strategy pursued by Ning, Jeong and Ghosal
[29] and Jeong and Ghosal [23]. The structure of multivariate normality allows
a useful control over the size of the likelihood ratios essential for this approach
to work.

After the basic tests are constructed, these need to be combined, which is pos-
sible if their number can be controlled appropriately, and in particular, there
are only finitely many covering sets with centers separated from the truth. This
necessitates defining a sieve, a sequence of increasing subsets of the parameter
space, on which the number of covering sets can be controlled, and the comple-
ment of the sieve has an exponentially small prior probability. We shall work
with the sieve

T ={Q=0+kl,v:0€8,, M;* <k < M,,M;' <v<M,}, (AS6)

with S,, as in the statement of the theorem and we choose M,, = K nefl — o0, for
some sufficiently large multiple K and therefore M,, < n. What makes this sieve
appropriate for our purposes here is that every 2 € 7, has eigenvalues lower-
bounded by M, !, which is not too small. This eigenvalue control is critical to
our demonstration below that the combined likelihood ratio test has suitable
bounds on its Type I/IT errors in the presence of measurement error.

Recall that the Rényi divergence (of order 1/2), or the log-affinity, between
two densities f; and fs is given by R(f1, fo) = —log f(f1f2)1/2. In the present
context, the densities are those of Ny, (0, 2, 1), to be denoted by 99,v, indexed
by , and R(ga~ .+, 90,,) can be abbreviated by R(Q}.,,). By simple calcu-
lations,

0. |1/4]62, |1/
3% + %QVP/?)'
For Q* the true precision matrix, fix another Q € T, so that R(Q,’},QZT)

2. A most powerful Neyman—Pearson test is then given by ¢, = 1{g&;

R(95.,0,) = —log(

>
>

9%+ ,+ }, where g , denotes the joint density function for n i.i.d. samples from
ga,.. By Markov’s inequality, the Type I error probability is bounded by

95t 1 (Y™ Y172
o uron = [1[{Z 2 2 g ()
gQ*,J/* (yn) @, ( )

IN

[ [ {s0rar g0 ()12 )

_ nR@L 01

2
<e ",

By reversing the 1roles2 of 0* and (), it follows that the Type II error probability
Eai i (1—¢y,) < e ™ as well. Next, take a generic 2 such that || Q2—QT|[> < 6,
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where 6,, = (2Knp)~! and a generic v such that |v — vf| < §,,. Then
EQ,V(l - ¢n) = EQ?,V{(l - ¢n)gg)y/ggfﬂﬁ}

< (Bt = 0n)12 {000 0) 000 001 9000 ) ]

(A7)

Let h,(:]X) denote the density of N,(X,vI,) and from the Cauchy—Schwarz
inequality, the second factor in the square brackets equals

/- /fnll (il0)go(w)ds)”

ST hot yz\l‘)gm( )dﬂ?

(ﬁm) / gﬂffii

By the choice of M,, < n and §,, the first term can be bounded by

2M2 mp/2 1 mp/2 )
(1 1K 02 ) < <1 + W) < exp(m/4K~-p).

Then, the second factor equals

ga(z) \? 19 |B|'/?
d == el
/{gm(x)} 9o (z) dz Q220 — Q2 ~ |21, — B-1[1/2

where gq is the density of N,(0,Q271) and B = 0/201-101/2. By the choice of
the sieve in (A.6), we get [|(27)7[|2 < M, and || — QF||z < &, which implies
that, on the sieve,

1 "dym

dx

1B — Ill2 < (@) 2] = QFl2 < Madn.

By Weyl’s inequality, the eigenvalues of B are between 1— M,,d,, and 1+ M,,6,,.
Applying the inequality 1 — 27! < logz < x — 1 for any = > 0, we find that

|B|'/? M6,
m < exp{p(log(1 + My6y,) —log(2 = 1/(1 — My0y)))/2} < €”
and consequently,

Ea. (1 — én) < exp{—ne2 /2 + npM,5,/2 + m/4K?*p} < exp{—ne2 /4},

as 0, = (2Knp)~! and M,, = Kne2. This gives the Type II error bound (A.7)
uniformly over the set {2 : ||Q — QT||2 < p}.
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Step 3: Entropy bound. In the above analysis, the QF separated from Q* was
fixed but arbitrary. So we can repeat that argument for finitely many different
Qs and construct a test for the complement of the Rényi neighborhood of
Q* by taking the maximum of those Qf-specific tests. The logarithm of the
number of such tests is therefore bounded by the J,-entropy of 7, with respect
to spectral norm log N (4, 7;1, (IIll2, 1)) It suffices to show that this is bounded
by a constant multiple of ne . To this end, if we take {3y = ©1 + x11p, v1 and

= 02 + kalp, v2 in Ty, then by the triangle inequality, for the given §,,

1og N (8, T (I |2, [ 1) < 1og N (6/2, S, || - [l2) + 2log(M 0,1
< ne2 +2logn < ne2.

Step 4: Prior probability of the complement of the sieve. In view of Condi-
tions (a), (b)(ii) and (c) on the prior distributions and the choice M,, = Kne2,
we estimate I1(T¢) < e (SS) + M ([M; 1, M,]¢) + 1L, ([M;, M,]¢) < e~ Cnen,
where the constant G > 0 can be made as large as we wish by choosing K large
enough.

Step 5: Convert from Rényi to Frobenius. From the previous steps, and the
general result of Theorem 2.1 in Ghosal, Ghosh and van der Vaart [21], we
obtain a concentration rate in terms of Rényi divergence Eq- ,+IL,({(2,v) :
R(Q%.,Q,) > L'é2}) — 0 for some L' > 0 sufficiently large. Under the assump-
tion that ||Q2*||2 is bounded, we shall conclude that Eqs ,«IL,({Q,v : ||Q* —
Qllrp > Lé2,|v* —v| > Le2}) — 0 for some L > 0. Towards this, define
A = 92:1/291/9:*—1/2' Let a3 < -+ < ayyy denote the eigenvalues of A in
the increasing order. It follows from Lemma A.2(ii) of Banerjee and Ghosal [3]
that, if the Hellinger distance or the Rényi divergence of gg« .« from gq, is
sufficiently small, then max{|a; — 1| :j =1,...,mp} <1 and, therefore, every
aj < 2. Since 4a(l + a)™2? < 1 for all @ € (0,2], and —logz > 1 — x for all

€ (0,1), we get that the Rényi divergence R(2%.,,) can be written as

1 A
——lo == lo
T 1A 12 P

iiﬁla:a—} 4§X113)~

Since 14+ a; <1+, <3 for all j, and ||A— L,p||% = ?:1(1 — a;)?, we have
that R(Q%.,Q) 2 | A — Lypll%. Next, observe that

v*

*1/2 ~*%—1/2 *—1/2 *1 2
192, — Q5. 1 = 19522052 (@, — Q) 202 R < 195 13 14 - 1]
Combining these, we conclude that

R, ) 2 190 — . |7,

by the fact that ||}, ||z < 1/v*. For R(}.,
part of Lemma B.2 in Appendix B that

v = Sen/vp, 9= F S 19 3en-

Q,) < €2, it follows from the second

~ n’
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We assume that ||Q*||2 < 1, so ||Q — Q*||r < €, follows immediately.
Finally, note that if ||{2*||2 is not bounded, then, from the penultimate display,

19 — Q*|[% S 119 2¢5.

Therefore, the result of © in Theorem 3.1 holds with the modified rate €, =
19 [13€n-

A.3. Proof of Theorem 4.1

As Condition (a) is directly assumed, we only need to verify the conditions of
Theorem 3.1 for the sieve

S, ={0:7y<R,,|O|ee <M.}, R,=Kne/logn, M, = Kne,

for some sufficiently large constant K > 0. Since ||©]|3 < ||O||% < R,||O||4, we
have

IOgN((SmSnv H : ”2) < IOgN((;nvSm ” ’ ”F) < IOgN(énRr_zl/278m ” : ”00)7

where the last expression is no more than

Ry, 1/2 J
—1)/2 12y
w2 (1) <5—> < R log(RY*5M, /5,) < Ry logn.

j=1

Since R, < ne2/logn, this verifies Condition (b)(i).

Next, for © € S, either |0;;| > M, for some (i,j), or v > R,. The
probability of this set is less than p?II(||©||« > M,) + (R > R,). Since
the entries of ©® have exponential or Laplace distribution, both of which have
an exponentially small tail probability, the first term is bounded by a multi-
ple of exp(—AM,,) < exp(—AKne2). The second term is bounded by II(R >
R,) < exp(—aR,logR,) < exp(—aKne2) by the assumption (4.2) and the
choice R, = ne2/logn. By taking K sufficiently large, we verify Condition
(b) i)

To verify Condition (b)(iii), observe that

(|6 - ©|[r < cen) Z (1O = O7|[oc < cen/p)

2 (cen/p)"H

> exp{—c'(p + s*)logn},

for some ¢’ > 0. By equating ne2 with (p + s*)logn, we obtain the advertised
rate of €, = n~Y2(p + s*)/%(logn)'/2.
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A.4. Proof of Theorem 4.2

We consider the sieve

S, =1{0= UDU" : Y < R,y [[Dlloo £ My, |Ul|oe < My},

where R,, = Kne2/logn and M,, = Kne? for some sufficiently large constant
K > 0, and verify Conditions (b)(i)—(iii).

For any two precision matrices ©1,0, € §,, with Cholesky decompositions
©1 = U1 D1UL and ©5 = Uy DU, we obtain ||©1 — O3|2 less than or equal to

|U1D1UY = UrD1Uy |2 + UL D1 Uy — Ui DoUy |2 + [Ur DoUy — U2 D2Usy' ||
<NUill2l|Dal2llUr = Uzllp + |Urll2]|Uz|[2[| D1 = Dallr + [|Uzl2|| D2ll2l|Ur — Uz||r
=([D1l2l|Ur = Uzllp + | D1 — D2l + | D2[[2[|Ur — Uz|| )
<Mup([|Ur = Uslos + [[D1 — D2ll),

since ||U1]l2 = ||Uz2|l2 = 1 and || D1]l2 = || D1llec < M,,. Hence

R, i+
—1/2\ [ M, 't
1og N (8, S, | - 1) < log Z(p(p I ) (5 pM) < (Ro +p)logn.

j=1

Since R, < ne2/logn and p < ne2, we have verified Condition (b)(i).
To verify Condition (b)(ii), we observe that

I(S) STy > Ra) +pII(|| Dlloc > My) + p* (U]l > My).

Under both (4.3) and (4.4), - has a binomial distribution, and therefore the first
term on the right hand side is bounded by exp(—aR,, log R,)) < exp(—aKne?).
By the tail probabilities of gamma and normal distributions, we have an upper
bound for the remaining two terms as exp(—AM,,) < exp(—AKne2). Choosing
K sufficiently large ensures the required bound.

To verify Condition (b)(iii) about prior concentration, we have for some con-
stant ¢ > 0,

I([[D = D*|[r <€) 2 H(|D = D*|loc < €//P)
Z (en/p)?
2 exp{—cplog(en/p)} (A.8)

since all the diagonal values of D* are bounded away from 0 and the prior
density around D* is lower bounded, and

LU = Ulr < en) 2 (U = U [oo < €n/p)
= {T(|Uy] < en/p)y? P~ D/27
x {L(|Usy = Ul < enfp | |Usy] > en/D)I(Uis| > en/p)}

2 (L= p )PV (e, fp)* pmo
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which shares the same lower bound (A.8). This follows because II(||U — U* |00 <
€n/D) is equal to the probability that II(|U;| < €,/p) Z (1—p~?) when |U;| = 0,
and that is the case for p(p—1)/2—s* many pairs. Now by the triangle inequality,
the facts that |[U*||2 and || D*||2 are assumed to have a constant upper bound,
and the prior independence of U and D, it follows that —logII(||© — ©*||F <
€) < (p+s*)log(p/en) < (p+s*)logn, so the rate €, = [{(p+ s*) logn}n=1]/?
satisfies the required condition.

A.5. Proof of Theorem 4.3

By the arguments given at the beginning of the proof of Theorem 3.1, we may
assume that our choice of ©* meets the two conditions assumed about Q*,
namely, has eigenvalues bounded and bounded away from 0, and a fixed, suffi-
ciently small-size || - ||s-neighborhood of ©* is contained in Pg.

We consider the sieve

Sn ={0:[0]lc < My},

where M,, = Kne? with K to be chosen a suitably large constant. On the sieve,
10113 < ||©]|% < 2pk||©]|%,, which leads to the entropy estimate

log N (6r, Sn, || - [|2) < log N(6n/+/ 2Pk, Sn, ||  [|o0)

< IOg(k ’ (\/ 2pan/6n)pk)
< pklogn. (A.9)

Note that © € S if |©;;| > M, for some pair (7, 7). The positive definiteness
of © implies that the largest entry of 6 in absolute value occurs at a diagonal
position. By the property of the G-Wishart distribution, each diagonal entry is
distributed as a chi-square distribution with § degrees of freedom. From the tail
estimate of a chi-square random variable Y, it then follows that

(S¢) < pP(Y > M,,) < exp(—cM,, + logp) < exp(—c'ne?) (A.10)

n

for some ¢ > 0 which can be made as large we please by choosing K large
enough.

It remains to verify that the prior concentration rate is €, = {n~'(plogn)}'/2.
There are at most pk free arguments in © due to the k-banding structure. By
Roverato [31], the G-Wishart density at the true value ©* is bounded below by
a constant multiple of the product of a power of det(©*), e~ (©")/2 and e~ for
some ¢ > 0; see Equations (3.2), (3.3), (5.2), and (5.3) of Banerjee and Ghosal
[2]. Clearly, tr(©*) = O(p) and |logdet(©*)| = O(p) by the boundedness of the
eigenvalues of ©* and its inverse. Since ©* stays away from the boundary of Pg
by the assumption, it follows that

H(Q - Q|r <€) ZT(Q — Qoo < €n/VEp) 2 e P(en/ kD)™ (A11)

for some ¢’ > 0. From (A.9)-(A.11), the rate ¢, = {n~'(plogn)}'/? follows by
an application of Theorem 3.1.
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A.6. Proof of Theorem 5.1

We apply Theorem 3.1 by verifying Conditions (b)(i)—(iii) on ITg with © = AAT.
We prove the first assertion only; the second assertion can be established by a
minor adjustment of the argument described in the end. Observe that

1©0—0*||p < |AAT —AA*T|[p+ AN = A*A* | 5 < (|All2+ A ]|2) [ A =A% p.

We can lower bound TI([|A — A*||r < €/(4Vc*3)) by

H(IA = A*[loe < ¢/ (4y/expkn) |k = KII(k = k),

where the second factor is bounded below by exp(—K;k*logk*) up to a con-
stant multiple, with some constant K7, by well-known properties of the Poisson
distribution. For the first term, we consider the supremum over all the entries
of 0 <i<pand0<j<k*andlet § =e/(4y/c*3>pk*). Then it can be bounded
below by

{1 = TI(|Ay| > a*) PR II([As; — AY| < a* | [Ag| > a)II(|Ay| > a*)} "
The first factor is proportional to {1 — (pk*)~1}P=5")%" = O(1) since s* < p. For
the second factor, we know that II(|A;; — Af;| <6 | Ay > 0) 2 dexp(—c*/2)
since the probability density is lower bounded on a closed region and II(JA;;| >
§) < (pk*)~L. Therefore, we conclude that

(A = Ao < a* | k= k") 2 (¢/(4y/**pPk*3))*™ exp(—c*s™k*/2)
2 exp(—c*s*k* logn).

Then Condition (b)(iii) is verified for €, = {n~*(c*s*k* logn)}'/2.
Next, let

Sn = {AAT 2V < Yok <k, [ Ao <V My /(2790)

where 7, is a large constant multiple of ne2 /logn, M, = ne2~y, and k, = .
To bound II(S%) so that the theorem applies to give the rate €,, we need to
establish that for some sufficiently large constant C' > 0,

(k> ky,) < e Onen,
(v > ) S e O, (A.12)
maXH(|Aij| > Mn/(2'7n)) S e~ Onen

This is so beczause then conditioning on k < k,, and v < -, to obtain the desired
bound e~¢"¢n for TI(S¢), the maximum number of (i, j) pairs to be considered
is bounded by v2k2, which can be absorbed in the exponent appearing in the

n-'n’
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bound for maxII(|A;;| > /M, /(27v,)). The first relation follows by the tail
estimate

> llc ekn > Ilc kn
_ 1 _1
e &l eXp k! kZ: ]{Z— = k! < exp( 2 knlogkn),

for sufficiently large n. To derive the second relation, it now suffices to condition
on k with k < k,,. By the tail probability of binomial distribution, II(y > ~,)
is bounded by e=C'mlogn for some constant €7 > 0, which gives the desired
bound.
For the third inequality in (A.12), the tail estimate of a normal distribution
gives e=C'Mn/ 7 giving the desired bound in view of the choices of M,, and ~,.
By the relations

181 = ©2]3 < (161 — OaIF < ([[A1]13 + [A2]3)[[ A1 — A7,
the J,-metric entropy of S,, with respect to the spectral norm is bounded by

log {ZZ (pk) <\/72Mn%\§/nMn/(27n)> } < log k(oo (Mo f50) ™)

k=1~=1

< Ynlogn,

which is of the order of ne2. This gives the rate e, = {n~'(logn)c*s*k*}1/2
in terms of the Rényi dlvergence. By the last assertion of Theorem 3.1, since
|2*]]2 < ¢* by assumption, the contraction rate in terms of the Frobenius dis-
tance is n~/2(logn)/?(¢*s*k*)'/? in the case of no-measurement error changes
to

(C*)2n—1/2(10gn)1/2(c*8*k*)1/2 _ n—l/2(10g n)1/2<c*)5/2(8*k,*)1/2

for a fixed scale of measurement error.

When a prior (5.2) is put on 7, the only change in the calculation comes from
the fact that then v has a beta—binomial distribution instead of binomial. By
the tail probability of beta—binomial distribution in Castillo and van der Vaart
[9], II(y > 7y») is bounded by

((1+a4)p1k€n—7n) 1 aspkn

a4prn 2 n 2 —C'vn

kn(pkn - ’YTL) ((1+a4)pkn+1) 5 pkn (1 - (1 + a4)pk + 1) S pkne B
aapkn "

for some constant C’ > 0, which can be bounded as desired; here we have used
the fact that ~,/pk, — 0. Since the tail estimate is weaker than e=C'nlogn
obtained in the case of a fixed 7, this implies that the contraction rate in terms
of the Rényi divergence weakens to n~'/?(log n)v/c*s*k* and that in terms of the
Frobenius distance weakens to {n~'(logn)c*s*k*}'/2 and {n~' (log n)c*>s*k*}1/2
respectively, depending on v* = 0 is known and v* is positive and fixed.
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Appendix B: Auxiliary lemmas

Recall that K (fi, f2) = [ fi log(fi/f2) and V(f1, f2) = [ f1 log*(f1/f2) denote
the Kullback—Leibler (KL) divergence and corresponding KL variation for any

two densities fi, fo. Let go denote the densities of N, (0,Q271) as usual and we
have the following Lemma, which is inspired by the proof of Theorem 3.1 in
Banerjee and Ghosal [3] and the proof of Theorem 2 in Du and Ghosal [12].

Lemma B.1. Suppose that the eigenvalues of Q* lie in [M~1, M] for some large
enough constant M > 0. If || — Q*||p < eM ™! for a sufficiently small € > 0,

then max{K (ga+,ga), V(9o g9a)} < €.
Proof. By the definition of the KL divergence,

K(ga:,ga) = 3log|"Q7"| + 3Eq: (X1 (Q - 0")X)
= 3 log | Q7|+ ju(QQ T — 1),

since Eq+ (XTAX) = tr(AQ*1) if X ~ N,(0,Q2*~1) for any p x p dimensional
symmetric matrix A. Furthermore, let B = Q*~1/2Q0*~1/2 and twice the right-
hand side equivalent to

p
—log|B|+tr(B—1,) =Y (1—X —log\), (B.1)

i=1

where Aq, ..., A\, denotes the eigenvalues of O ~1/200*1/2_ Note that 11—\ —
log \i| S (1=X?)as |1l -\ <eforalli=1,...,p. Therefore, the expression in
(B.1) is bounded by a constant multiple of
P

S = A2 =1 — a0 2R <

i=1
since |1 — Q= 12Q0*12||p < || 1o]|2 — Q*||F < e. This establishes the
first assertion.

Similarly, for the corresponding KL variation,

V(gar,g0) = §log? |2 Q7" + 3 log [2* Q! [Ea- (X (2 — Q%) X)
+ 2B (XT(Q — M) X)?
= 1VQ* (XT(Q - Q*)X) + KQ(gQ*agQ)a

— 4

by adding and subtracting [Eq-(XT(22 — Q*)X)]2. The latter term has been
already bounded by a constant multiple of e*. The first term is equal to a
constant times

p
tr((Q— QN Q- QN ) = (I, - P22 =Y (1-X)? S €

~Y )
i=1

which proves the second assertion. O
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Lemma B.2. Given Q, Q*, v and v*, let Q, denote the precision matrix for
model (1.2) involving Q@ and v and Q. denote the truth of it with * and v*.
Then, if lv —v*| < €/\/p and ||Q — Q*||p < € for small enough €, we have

192, = Q[ < Kie,

where K1 is a constant only depending on m, v* and ||Q*||2. On the other hand,
if |0 — Qu|lp < € and v < M for some constant M, we have

v —v*| < Kae/ b, 11— Q" lF < K3[|Q"3e, (B.2)

where Ky and K3 are constants only depending on m and v*.
Proof. For simplicity, let A = —(v2 + ml,)~!/v with the truth A* involving
Q* and v*. Then, for the first inequality, write
10 — Q|5 = mll /v + A= L/v* — A*|[T +m(m — 1) A - A*|[3
< 2m| L, /v — L /v*|[% + m(m + 1)[| A — A% %
The first term on the right hand side equals 2me?/v2v*2, which is less than or
equal to 4me?/v** because v > v*/2 if € is small enough. Consider the second
term except the front constant, which equals
|0 @ + L) v = (4 mL,) " vl
<2 +mL) " (1 — 1)
2+ mI,) "y — Q4 m) v
< 2| + mL,) BN v — L/
A+ mI) "t — (4 mI) 3/,
where the first term on the right hand side is less than or equal to 4€2/v** by
the former calculation. It holds because the eigenvalues of (v*Q* +ml,)~! and

(vQ2+ml,)~! are all upper-bounded by 1. For the key in the second term except
the constants, it equals

[ Q" +mI,) " (vQ — v Q) (v + ml) THE < Q- QI3
by the same reason as above. The right hand side is less than or equal to
Qv [t =1 |[F < 2= | B F(v—r7)? < 20+ 27]3)e.

The first inequality holds because v < 2v* if € is small enough. Therefore, we
proved the first assertion.
For the second result, write ||Q, — Q5. ||% by entries and it equals

Y mllp/v —Lp/v*)i + 2m(1y v — L /v*)ij (A — A%)ij + m*(A — A},
‘hj

=(m-1) Z(IP/V - IP/V*)?j + Z[(Ip/y —Ip/v*)ij + m(A - A*)ij]g

.7 1.3
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— (= DLfv — Lo 3+ [y — L /v +m(A— A (B.3)

If m > 1, since both terms on the right hand side are strictly positive, we have
that ||1,/v — I,/v*||% < €*/(m — 1), which implies that

|v* —v| <wvv*e/v/p(m — 1) < Ka¢/\/D,
where K5 only depends on m, v* and M. On the other hand, notice that
1920, — Q.15 = mll /v + A = I /v* — A*|[f + m(m — 1)|| A - A*||%,

where both terms on the right hand side are positive. Therefore, we also have
that ||A — A*||F < €/y/m(m — 1), where the left hand side equals

|(v* QO +mI,) "t v — (WQ+mI,) v  + (vQ+mI,) vt — (wQ+m) " v F.
By the triangle inequality, it implies that
| +mL) ™ v — W+ mI,) " v < e/ /m(m — 1)+ Kze/ /. (BA)

since the eigenvalues of (v 4+ ml,)~! are strictly upper-bounded by 1. Note
that

v — v Q|| p
= | Q* + mI,) (v + m,) ™ = (v +mL,) T (v +mL)| F
< Q"+ mlyllallvQ + mI ||| (v*QF + mLp) Tt — (v + ml,) |,

which implies

—1||F > ”VQ_V*Q*”F
= o0+ m o+ ml

|+ mI,) ™ — (v + mi,)

By the triangle inequality, ||v*Q* —vQ||F > ||v*Q* —v*Q||F — ||¥*Q — Q|| F and
thus,

12 —%|F
<Vl Qllalv = v /v" + [V + m |2 [[v Q" + my[|a(e/v/m(m — 1) + Kae//p)
<[|9QlloKae/v™ + (m + 2v7[|Q|2) (m + v [ Q¥ [[2)[1/V/m(m = 1) + Ka //ple,

since v < 2v* when € is small enough. It therefore remains only to obtain an
upper bound on ||Q|]2. By the Woodbury formula, let § = €/y/m(m —1) +
Kye//p and the left hand side of (B.4) equals

1O+l fm) L — (@ v Ty ) /i <6
By the triangle inequality and the relation || - |2 < || - || F, we get that

Q7" + vl /m) ™ o <|Q7 + Ly /m) ™! = (7 + v L fm) 2
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@+ L m)
<m?5 4 (0 + v L /m) o

With some relatively straightforward algebra, it follows that

12|z <

m?d0 + |||,
L —mé(v* + Kae/\/p) — (v* + Kae/\/P)|Q*||l2/ (m + v*[|Q*||2)
<mPS+ 11952,

since € can be as small as we need. Finally, the second bound in (B.2) follows
from the above display and (B.4) for m > 1.

If m =1 and v* is known, the right hand side of (B.3) gives us that ||A —
A*||F < e. By similar calculation thereafter as above, we obtain the same bound

in (B.2). O
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