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Abstract: Hypothesis testing of structure in covariance matrices is of sig-
nificant importance, but faces great challenges in high-dimensional settings.
Although consistent frequentist one-sample covariance tests have been pro-
posed, there is a lack of simple, computationally scalable, and theoretically
sound Bayesian testing methods for large covariance matrices. Motivated
by this gap and by the need for tests that are powerful against sparse al-
ternatives, we propose a novel testing framework based on the maximum
pairwise Bayes factor. Our initial focus is on one-sample covariance testing;
the proposed test can optimally distinguish null and alternative hypothe-
ses in a frequentist asymptotic sense. We then propose diagonal tests and
a scalable covariance graph selection procedure that are shown to be con-
sistent. A simulation study evaluates the proposed approach relative to
competitors. We illustrate advantages of our graph selection method on a
gene expression data set.
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1. Introduction

Consider a sample of observations from a high-dimensional normal model

X1, . . . , Xn | Σn
i.i.d.∼ Np(0,Σn), (1)
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where Σn ∈ R
p×p is a covariance matrix. There is often interest in inferring the

structure in Σn and in comparing different alternative covariance structures.
This article focuses on this problem from a hypothesis testing perspective. Let
X = (X1, . . . , Xn)

T ∈ R
n×p be the data matrix. A one-sample covariance test

can be reduced to the following simple form:

H0 : Σn = Ip versus H1 : Σn �= Ip, (2)

by noting that H0 : Σn = Ip is equivalent to a null hypothesis H0 : Σn = Σ�

for a known positive definite matrix Σ� by applying the linear transformation

Xi �→ Σ
−1/2
� Xi.

Another important problem is testing diagonality

H0 : σij = 0 for any i �= j versus H1 : not H0,

where Σn = (σij). Finally, we consider the problem of support recovery, corre-
sponding to estimating the nonzero elements of covariance matrices.

We are interested in constructing novel Bayesian procedures that are prac-
tically applicable with theoretical guarantees for the (i) one-sample covariance
test, (ii) diagonality test, and (iii) support recovery of the covariance matrix.
We consider the high-dimensional setting in which the number of variables p can
grow to infinity as the sample size n gets larger and possibly be much larger than
n. Although it is well known that assuming a restricted covariance class is nec-
essary for consistent estimation of large covariance matrices (Johnstone and Lu,
2009; Lee and Lee, 2018), in a testing context we focus on alternative hypothe-
ses H1 that are unconstrained. One natural possibility is to assume a conjugate
inverse-Wishart prior IWp(νn, An) for Σn under H1. However, in order for the
resulting posterior to be proper, it is necessary to choose the degrees of freedom
νn > p − 1, suggesting an extremely informative prior in high-dimensional set-
tings. The resulting test will certainly be highly sensitive to the choice of An,
and hence is not very useful outside of narrow applications having substantial
prior information. One could instead choose a non-conjugate prior for Σn under
H1, but then substantial computational issues arise in attempting to estimate
the Bayes factor.

From a frequentist perspective, Chen, Zhang and Zhong (2010) and Cai and
Ma (2013) suggested consistent one-sample covariance tests based on unbiased

estimators of ‖Σn−Ip‖2F , where ‖A‖F =
(∑

ij a
2
ij

)1/2
is the Frobenius norm of a

matrix A = (aij). Under the null hypothesis, they showed that their test statistic
is asymptotically normal. The test also has power tending to one as n goes to
infinity, but it requires the condition, ‖Σn − Ip‖2F n/p → ∞ as n → ∞. This
condition implies that they essentially adoptedH1 = {Σn : ‖Σn−Ip‖2F ≥ bnp/n}
for some bn → ∞ as n → ∞ as the alternative class. Cai and Ma (2013) proved
that if we consider an alternative class H1 = {Σn : ‖Σn − Ip‖2F ≥ εn}, say a
dense alternative, the condition εn ≥ bnp/n is inevitable for any level α test to
have power tending to one. This excludes cases in which a finite number of the
components of Σn − Ip have a magnitude (p/n)1/2, although (p/n)1/2 can be a
significant signal when p ≥ n.
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The above discussion motivates us to develop hypothesis tests that are easy
to implement in practice while possessing theory guarantees. In particular,
we wish to construct tests that can perform well even when the condition
‖Σn−Ip‖2F n/p → ∞ fails to hold. We achieve this by proposing a novel Bayesian
testing framework based on the maximum pairwise Bayes factor which will be
introduced in Section 2.2. The basic strategy is to focus on the pairwise dif-
ference between Σn and Ip rather than the Frobenius norm or other matrix
norms. More precisely, instead of considering a usual Bayes factor based on
a prior on the whole covariance matrix, we first consider the pairwise Bayes
factors for each element of the matrix and combine them by taking a max-
imum over all possible pairs. This approach is analagous to frequentist tests
based on maximum-type statistics (Jeng, Cai and Li, 2013; Enikeeva and Har-
chaoui, 2019). Our construction enables us to consider a different alternative
class, H1 = {Σn : ‖Σn − Ip‖2max ≥ C log p/n} for some constant C > 0, say a
sparse alternative, where ‖A‖max = maxi,j |aij | for a matrix A = (aij). When
the primary interest is not on a collection of very weak signals, but on detect-
ing at least one meaningful signal, our test is much more effective than the
frequentist methods mentioned above.

We would like to clarify that although we use the terminologies “dense al-
ternative” and “sparse alternative”, there is no sparsity assumption anywhere.
They just indicate whether the alternative hypothesis is based on Frobenius
or maximum norm. For example, we use the terminology “sparse alternative”
because the maximum-type alternative considered in this paper is less strin-
gent compared to the Frobenius-type alternative when the difference Σn − Ip is
sparse.

The proposed testing method is general, easily implementable and theo-
retically supported, being the first Bayesian test shown to be consistent in
the high-dimensional setting for the one-sample or diagonal covariance testing
problems. Our procedure yields proven false discovery rate control and power
improvement compared to existing methods. The proposed one-sample test is
rate-optimal in the sense that it can distinguish the sparse alternative class
H1 = {Σn : ‖Σn − Ip‖2max ≥ εn} from the null with the fastest rate of εn,
while guaranteeing consistency under the null. We also propose a scalable graph
selection method for high-dimensional covariance graph models using pairwise
Bayes factors. The proposed method consistently recovers the true covariance
graph structure under a weaker or comparable condition to those in the existing
frequentist literature.

Recently, Leday and Richardson (2018) suggested a fundamentally different
pairwise approach to test marginal or conditional independence between two
variables. Their focus is on the joint distribution of the ith and jth variables
and an inverse-Wishart prior for Σn was imposed. For each i �= j, the hypothesis
testing problem HM

0,ij : σij = 0 versus HM
1,ij : σij �= 0 was considered. Since

the resulting Bayes factors for the pairwise tests are not scale-invariant, they
proposed scaled versions. P-values under the conditional null distribution were
obtained by shuffling or permuting labels of observations (Jiang, Ye and Liu,
2017). For support recovery, they suggest using standard multiplicity correction
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procedures to control the false discovery rate, obtaining a frequentist procedure.
Selection consistency results were not provided.

R code for implementation of our empirical results are available at https://
github.com/leekjstat/mxPBF. Simulation studies for support recovery and
proofs of our main results are included in the Appendix.

2. Preliminaries

2.1. Notations

For any real values a and b, we denote a∨b as the maximum between a and b. For
any positive sequences an and bn, we denote an � bn or an = o(bn) if an/bn → 0
as n → ∞. For any vector x = (x1, . . . , xp)

T ∈ R
p, we define the vector �1- and

�2-norm as ‖x‖1 =
∑p

j=1 |xi| and ‖x‖2 = (
∑p

j=1 x
2
j )

1/2, respectively. Let Cp be

the set of all p×p positive definite matrices. We denote χ2
k(λ) as the non-central

chi-square distribution with degrees of freedom k and non-centrality λ ≥ 0, and
let χ2

k = χ2
k(λ = 0). For positive real values a and b, IG(a, b) denotes the inverse

gamma distribution with shape a and scale b.

2.2. Maximum pairwise Bayes factor

In this subsection, we introduce our approach focusing on the one-sample co-
variance test. As described before, the basic strategy is to concentrate on the
pairwise difference between Σn and Ip. Let X̃j ∈ R

n be the jth column vector
of X. For any indices i and j such that i �= j, based on the joint distribution
(1), the conditional distribution of X̃i given X̃j is

X̃i | X̃j ∼ Nn

(
aijX̃j , τ

2
ijIn

)
, (3)

where aij ∈ R and τij > 0. We can view (3) as a linear regression model given a

design matrix X̃j . For each paired conditional model (3), we consider a testing
problem

H0,ij : aij = 0, τ2ij = 1 versus H1,ij : not H0,ij . (4)

If H0,ij is true, σij = 0 and σii = 1 because aij = σij/σjj and τ2ij = σii(1−ρ2ij),
where Σn = (σij) and Rn = (ρij) are covariance and correlation matrices,
respectively. We suggest the following prior distribution under the alternative
hypothesis H1,ij in (4),

aij | τ2ij ∼ N
(
0,

τ2ij
γ
‖X̃j‖−1

2

)
, τ2ij ∼ IG

(
κ0, b0,ij

)
, (5)

where γ = (n ∨ p)−α and κ0, b0,ij and α are positive constants. The induced
Bayes factor is

B10(X̃i, X̃j) =
p(X̃i | X̃j , H1,ij)

p(X̃i | X̃j , H0,ij)

https://github.com/leekjstat/mxPBF
https://github.com/leekjstat/mxPBF
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=
bκ0

0,ij

Γ(κ0)

( γ

1 + γ

)1/2

Γ
(n
2
+ κ0

)
enτ̂

2
i /2

(n
2
τ̂2ij,γ + b0,ij

)−n/2−κ0

,

where one has nτ̂2i = ‖X̃i‖22, nτ̂2ij,γ = X̃T
i {In − (1 + γ)−1Hj}X̃i and Hj =

X̃j(X̃
T
j X̃j)

−1X̃T
j . More details for the derivation of B10(X̃i, X̃j) can be found

in Appendix D. The choice of hyperparameters κ0 and b0,ij is discussed in
Section 4.1.

The null hypothesis in the one-sample covariance test, H0 : Σn = Ip, is true
if H0,ij is true for all pairs (i, j) such that i �= j. We aggregate the information

from each pairwise Bayes factor B10(X̃i, X̃j) via the maximum pairwise Bayes
factor,

Bmax,10(X) = max
i �=j

B10(X̃i, X̃j). (6)

A large value for Bmax,10(X) provides evidence supporting the alternative hy-
pothesis. By taking a maximum, Bmax,10(X) supports the alternative hypothesis
if at least one of the pairwise Bayes factors supports the alternative. A natural
question is whether false positives increase as we take a maximum over more
and more pairs. Indeed, we find that this is not the case, either asymptotically
based on our consistency results (Theorems 3.1 and 3.3) or in finite samples
based on simulations.

3. Main results

3.1. One-sample covariance test

In this subsection, we show consistency of Bmax,10(X) defined in (6) for the
one-sample covariance test (2). We first introduce assumptions for consistency
under H1 : Σn �= Ip. Let Σ0 = (σ0,ij) ∈ Cp be the true covariance matrix,

implying the conditional distribution of X̃i given X̃j is

X̃i | X̃j ∼ Nn

(
a0,ijX̃j , τ

2
0,ijIn

)
(7)

under P0, where a0,ij = σ0,ij/σ0,jj , τ
2
0,ij = σ0,ii{1− σ2

0,ij/(σ0,iiσ0,jj)}, P0 is the

probability measure corresponding to model (1) with Σn = Σ0, and τ20,ij = σ0,ii

if and only if a0,ij = 0. Under the alternative H1 : Σn �= Ip, we assume that Σ0

satisfies at least one of the following conditions:

(A1) There exists a pair (i, j) satisfying

∣∣σ0,ii − 1
∣∣ ≥

[
4σ0,iiC1

1/2 + C2 +
2b0,ij

{n log(n ∨ p)}1/2
]{ log(n ∨ p)

n

}1/2

(8)

for some constants C1 > 0 and C2 > 2(α+ 2)1/2.
(A2) There exists a pair (i, j) satisfying

∣∣τ20,ij − 1
∣∣ ≥

[
4τ20,ijC1

1/2 + C2 +
2b0,ij + τ20,ij

{n log(n ∨ p)}1/2
]{ log(n ∨ p)

n

}1/2

(9)
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(A3) There exists a pair (i, j) satisfying

σ2
0,ij ≥ σ0,jj

1− 2C1
1/2ε0

{
9C1τ

2
0,ij

(1− C3)2
∨ C4(α+ 2)

C3

}
log(n ∨ p)

n
(10)

for some constants 0 < C3 < 1 and C4 > 1.

Throughout the paper, C1, C2, C3 and C4 are fixed global constants. For a given
small constant ε > 0, they can be considered as C1 = ε, C2 = 2(α+2)1/2+ε, C3 =
1− ε1/4 and C4 = 1 + ε.

Condition (A1) is required to detect a non-unit variance σ0,ii, and can be
interpreted as a beta-min condition for |σ0,ii − 1|. The beta-min condition gives
a lower bound for nonzero parameters and is essential for model selection con-
sistency (Castillo, Schmidt-Hieber and Van der Vaart, 2015; Martin, Mess and
Walker, 2017). Interestingly, the rate of lower bound in (A1) is given by {log(n∨
p)/n}1/2, which has been commonly used in the variable selection literature.
Condition (A2) is similar to condition (A1), which can be interpreted as a beta-
min condition for |τ20,ij − 1|. Condition (A3) is a beta-min condition for off-
diagonal elements of the covariance matrix. In summary, conditions (A1)–(A3)
imply the sparse alternative

Σ0 ∈ H1 =
{
Σn : ‖Σn − Ip‖2max ≥ C

log p

n

}
for some constant C > 0, which corresponds to the meaningful difference we
mentioned earlier. When logn  log p, the above alternative H1 is equivalent to
conditions (A1) –(A3) in terms of the rate because ‖Σ0 − Ip‖2max ≥ C log p/n
holds for some C > 0 if and only if when at least one of conditions (A1)–(A3)
holds. In fact, the rate log p/n is optimal for guaranteeing the consistency under
both hypotheses (Theorem 3.2). Our method is not designed to detect dense
alternatives in which all differences are very small, but requires at least one
difference to be sufficiently large.

Theorem 3.1 shows consistency for the one-sample covariance test even in the
high-dimensional setting as long as log p ≤ ε20n for some small constant ε0 > 0.

Theorem 3.1. Consider model (1) and the one-sample covariance testing prob-
lem (2). Consider prior (5) under H1,ij in (4) with α > 8(1 + 21/2ε0)

2/{1 −
23/2ε0(1 + 21/2ε0)} for some small constant 0 < ε0 < 3 (4C2)

−1. Assume that
log p ≤ ε20 n for all large n. Then under H0 : Σn = Ip, for some constant
CH0 > 0,

Bmax,10(X) = Op

{
(n ∨ p)−CH0

}
.

If, under H1 : Σn �= Ip, Σ0 satisfies at least one of conditions (A1)–(A3), for
some constant CH1 > 0,

Bmax,10(X)−1 = Op

{
(n ∨ p)−CH1

}
.
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The condition for α in Theorem 3.1 is required to prove consistency of the
maximum pairwise Bayes factor Bmax,10(X) under the null H0 : Σn = Ip. We

first prove that the pairwise Bayes factor B10(X̃i, X̃j) is consistent on a large
event Eij such that P0(E

c
ij) → 0 as n → ∞. To show consistency under H0,

it suffices to prove that
∑

i �=j P0(E
c
ij) → 0 as n → ∞, which means that the

false discovery rate converges to zero. The condition for α is closely related to
this requirement. It also has connections with the variable selection literature
in regression (Fernandez, Ley and Steel, 2001; Narisetty and He, 2014; Yang,
Wainwright and Jordan, 2016) where the prior dispersion needs to depend on
(n∨p2) or p for consistency. Note that as α increases, so does the variance of the
prior (5). Thus, the condition for α implies that the variance of aij under the
alternative hypothesis should rapidly increase at certain rate. More specifically,
our theory requires a larger dispersion of order roughly (n ∨ p)8 mainly due to
the larger number of parameters compared to the regression setting.

To show consistency under H1, it suffices to show P0(E
c
ij) → 0 as n → ∞ for

some index (i, j) satisfying at least one of conditions (A1)–(A3). Interestingly,
the rate of convergence is similar under both hypotheses, unlike most Bayesian
testing procedures with the notable exception of non-local prior based methods
(Johnson and Rossell, 2010, 2012).

The next theorem shows the optimality of the alternative class which is
considered in Theorem 3.1 (Conditions (A1)–(A3)). It says, when the alter-
native class is defined based on the element-wise maximum norm, the condition
‖Σ0−Ip‖2max ≥ C log p/n for some constant C > 0 is necessary for any consistent
test to have power tending to one. Thus, conditions (A1)–(A3) are rate-optimal
to guarantee the consistency under H0 as well as H1.

Theorem 3.2. Let EΣ be the expectation corresponding to model (1). For a

given constant C� > 0, define H1(C�) =
{
Σ ∈ Cp : ‖Σ− Ip‖2max ≥ C2

� log p/n
}
.

If C2
� ≤ 2, then for any consistent test φ such that EIpφ −→ 0 as n → ∞,

lim sup
n→∞

inf
Σ∈H1(C�)

EΣ(φ) ≤
1

2
.

To show that C2
� = 2 is “the” boundary constant above which type I and

type II errors both converge to zero, it suffices to show that there exists a
consistent test having power tending to 1 for Σ ∈ H1(C�) when C2

� > 2. For
now, the maximum pairwise Bayes factor Bmax,10(X) is the only candidate that
we have. However, for example, condition (A1) can be roughly considered as
|σ0,ii − 1|2 ≥ 4(α + 2) log(n ∨ p)/n, which corresponds to C2

� ≥ 4(α + 2) > 40
due to the condition on α. Based on current techniques used in the proof, it is
not clear whether we can improve the constants in conditions (A1)–(A3) so that
they match C2

� = 2. It would be an interesting direction for the future research
to investigate the optimal choice of C� > 0.
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3.2. Testing diagonality

We now consider testing of diagonality of the covariance matrix:

H0 : σij = 0 for any i �= j versus H1 : not H0, (11)

where Σn = (σij). Note that the null hypothesis in (11) is composite as σii’s are
unknown. The above hypothesis testing problem can be modularized into many
pairwise independence tests

H0,ij : σij = 0 versus H1,ij : σij �= 0 (12)

for all 1 ≤ i < j ≤ p. We can adopt the maximum pairwise Bayes factor idea to
aggregate the pairwise testing information from (12) for all possible pairs (i, j)
such that i �= j to test (11). Based on the conditional distribution (3), the null
hypothesis H0,ij in (12) is equivalent to H ′

0,ij : aij = 0. We suggest the prior

π(τ2ij) ∝ τ−2
ij under both H0,ij and H1,ij , and the prior π(aij | τ2ij) defined in

(5) under H1,ij , which leads to the pairwise Bayes factor

B̃10(X̃i, X̃j) =
( γ

1 + γ

)1/2
(
τ̂2ij,γ
τ̂2i

)−n/2

.

The improper prior π(τ2ij) ∝ τ−2
ij does not cause any problem because we use

the same priors under H0,ij and H1,ij . In fact, theoretical results in this section
still holds for the inverse gamma prior on τ2ij with a slightly modified condition

(A4). However, we use an improper prior π(τij) ∝ τ−2
ij for the test of testing

diagonality to reduce the number of hyperparameters. Note that the inverse
gamma prior has two hyperparameters, while the improper prior does not have
any hyperparameter.

We suggest using

B̃max,10(X) = max
i<j

B̃10(X̃i, X̃j) (13)

for the hypothesis testing problem (11). Theorem 3.3 states the consistency of
B̃max,10(X) for testing (11) under regularity conditions. For consistency under
the alternative hypothesis, we assume the following condition:
(A4) There exists a pair (i, j) satisfying

σ2
0,ij ≥ C4σ0,jj

1− 2ε0C1
1/2

{
9C1τ

2
0,ij

(1− C3)2
∨ α(1 + γ)(1 + 4ε0C1

1/2)σ0,ii

C3

}
log(n ∨ p)

n

for constants C1 > 0, 0 < C3 < 1 and C4 > 1 defined in Section 3.1.

Theorem 3.3. Consider model (1) and the diagonality testing problem (11).
For a given pair (i, j) such that i �= j, consider the prior π(τ2ij) ∝ τ−2

ij under

both H0,ij and H1,ij, and the prior π(aij | τ2ij) defined in (5) under H1,ij in (12)
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with α > 4/(1 − 21/23ε0) for some small constant 0 < ε0 < 1/(21/23). Assume
that log p ≤ ε20 n for all large n. Then under H0 : σij = 0 for any i �= j, for
some constant c > 0,

B̃max,10(X) = Op

{
(n ∨ p)−c

}
.

If, under H1 : not H0, Σ0 satisfies condition (A4), for some constant c′ > 0,

B̃max,10(X)−1 = Op

{
(n ∨ p)−c′

}
.

Condition (A4) is the beta-min condition for off-diagonal elements of the
true covariance matrix. It indicates that if one of the off-diagonal elements
satisfies the beta-min condition (A4), B̃max,10(X) consistently detects the true
alternative hypothesis. Similar to Theorem 3.1, the condition for α is required to
control the false discovery rate, and B̃max,10(X) has similar rates of convergence
under both hypotheses.

Although the maximum pairwise Bayes factor idea is not limited to the test of
diagonality, we introduce a few procedures that have been proposed for testing
diagonality in the literature. Yao, Zhang and Shao (2018) and Leung and Drton
(2018) proposed L2-type tests for dependence in model-free settings. These tests
are powerful against dense alternatives, while our focus is on the sparse setting.
Han, Chen and Liu (2017) proposed two families of maximum-type rank tests
of diagonality, which include Kendall’s tau and Spearman’s rho as special cases,
respectively.

Although our procedure has a Bayesian motivation, one can use it as a fre-
quentist test statistic. In the following proposition, we derive the limiting null
distribution of the maximum pairwise Bayes factor in (13). This enables us to
construct a test having size α asymptotically.

Proposition 1. Under the conditions of Theorem 3.3, further assume that p =
pn → ∞ as n → ∞ and log p = o(n1/3). If H0 : σij = 0 for any i �= j is

true, 2 log B̃max,10(X)−Cn,p converges in distribution to a type I extreme value
distribution with distribution function

F (z) = exp
{
− (8π)−1/2e−z/2

}
, z ∈ R,

as n → ∞, where Cn,p = 0.5 log{γ/(1 + γ)}+ 4 log p− log(log p).

3.3. Support recovery of covariance matrices

The primary interest of this section is on the recovery of S(Σ0), where S(Σ0) ⊆{
(i, j) : 1 ≤ i < j ≤ p

}
is the nonzero index set of the true covariance ma-

trix Σ0. We call S(Σ0) the support of Σ0. Estimating S(Σ0) corresponds to
graph selection in covariance graph models (Cox and Wermuth, 1993). Despite
its importance, few Bayesian articles have investigated this problem. Kundu
et al. (2019) proposed the regularized inverse Wishart prior, which can be
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viewed as a group Lasso penalty (Yuan and Lin, 2006) on the Cholesky fac-
tor. They showed the consistency of their selection procedure for the support
of precision matrices when the dimension p is fixed. Recently, Gan, Narisetty
and Liang (2018) adopted the spike-and-slab Lasso prior (Rockova and George,
2016; Rockova, 2018) for off-diagonal entries of the precision matrix. Their pro-
posed graph selection procedure for the precision matrix also yields selection
consistency. To the best of our knowledge, in the Bayesian literature, a consis-
tent support recovery result for covariance matrices has not been established.
Although Leday and Richardson (2018) proposed a graph selection procedure
based on Bayesian modeling, their procedure relies on p-values and they do not
show consistency.

To tackle this gap, we propose a scalable graph selection scheme for high-
dimensional covariance matrices based on pairwise Bayes factors. Looking closely
at the proof of Theorem 3.3, each pairwise Bayes factor B̃10(X̃i, X̃j) can con-
sistently determine whether the corresponding covariance element σ0,ij is zero
or not. Thus, we suggest using the estimated index set

Ŝpair,Csel
=

{
(i, j) : 2 log B̃10(X̃i, X̃j) > Csel, 1 ≤ i < j ≤ p

}
(14)

for some constant Csel > 0. Although any threshold Csel can be used for con-
sistent selection asymptotically, the choice is crucial in practice. As a default
method, we suggest using cross-validation to select Csel, as described in detail
in Section 4.3. A simulation study investigating the quality of support recovery
for various threshold values can be found in Appendix C.

In the frequentist literature, Drton and Perlman (2004, 2007) proposed se-
lection procedures using a related idea to (14), which select a graph by mul-
tiple hypothesis testing on each edge. However, they considered only the low-
dimensional setting, n ≥ p+ 1.

For the consistency of Ŝpair,Csel
, we introduce the following condition for

some constants 0 < C3 < 1, C4 > 1 and C5 > 2:

(A5) For a given pair (i, j) such that i �= j,

σ2
0,ij ≥ C4σ0,jj

1− 2ε0C5
1/2

[
9C5τ

2
0,ij

(1− C3)2
∨ α(1 + γ)(1 + 4ε0C5

1/2)σ0,ii

C3

]
log(n ∨ p)

n
.

The beta-min condition (A5) is almost the same as (A4) except using C5 > 2
instead of C1 > 0 to control the probabilities of small events on which the
pairwise Bayes factor might not be consistent. Theorem 3.4 states that (14)
achieves model selection consistency if condition (A5) holds with (i, j) or (j, i)
for any (i, j) ∈ S(Σ0).

Theorem 3.4. Consider model (1) and prior (5) with α > 4/(1− 21/23ε0) for
some small constant 0 < ε0 < (21/23)−1 and each pair (i, j) such that i �= j.
Assume that log p ≤ ε20 n for all large n and condition (A5) holds with (i, j) or
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(j, i) for any (i, j) ∈ S(Σ0). Then, we have

lim
n→∞

P0

(
Ŝpair,Csel

= S(Σ0)
)

= 1.

We note that Ŝpair,Csel
consistently recovers the support of the true co-

variance matrix Σ0 as long as log p ≤ ε20n and nonzero entries satisfy the
beta-min condition (A5). Rothman, Levina and Zhu (2009) proved a similar
support recovery result for generalized thresholding of the sample covariance
matrix while assuming log p = o(n), maxi σ0,ii ≤ M for some M > 0 and
min(i,j)∈S(Σ0) σ

2
0,ij ≥ M ′ log p/n for some sufficiently large M ′ > 0. Cai and Liu

(2011) assumed log p = o(n1/3) and min(i,j)∈S(Σ0) σ
2
0,ij ≥ Cσ0,iiσ0,jj log p/n for

some C > 0 and obtained consistent support recovery using adaptive thresh-
olding. Our condition, log p ≤ ε20n, is much weaker than the conditions used
in the literature. The beta-min condition (A5) is similar to that in Cai and
Liu (2011) and also has the same rate to that in Rothman, Levina and Zhu
(2009) if we assume maxi σ0,ii ≤ M for some M > 0. Thus, the required con-
dition in Theorem 3.4 is weaker or comparable to the conditions used in the
literature.

4. Numerical results

4.1. Simulation study: One-sample covariance test

In this section, we demonstrate the performance of our one-sample covariance
test in various simulation cases. For the hyperparameters, we suggest using κ0 =
2+K−2 and b0,ij = τ̂2ij,γ=0(κ0 − 1) for some large constant K > 0, which leads

to Eπ(τ2ij) = τ̂2ij,γ=0 and a prior coefficient of variation {Varπ(τ2ij)}1/2/Eπ(τ2ij) =
K. In the simulation studies, K = 100 was used and the results are not sensitive
to the choice of K. The hyperparameter α was chosen as α = 8.01(1− 1/ logn).
If we assume a small ε0 > 0, the above choice of α asymptotically satisfies
α > 8(1 + 21/2ε0)

2/{1 − 23/2ε0(1 + 21/2ε0)}. We compare our one-sample co-
variance test with frequentist tests, proposed by Cai and Ma (2013), Srivastava,
Yanagihara and Kubokawa (2014) and Gupta and Bodnar (2014). The test
suggested by Srivastava, Yanagihara and Kubokawa (2014) is based on esti-
mating the squared Frobenius norm, and has a similar perspective to the test
proposed by Cai and Ma (2013). Gupta and Bodnar (2014) proposed an ex-
act one-sample covariance test based on fixed columns of the sample covariance
matrix.

We first generated 100 data sets from the null hypothesis H0 : Σn = Ip for
various choices of n and p. We considered two structures for the alternative
hypothesis H1 : Σn �= Ip. First, we chose Σ0 = (σ0,ij) to have a compound
symmetry structure

σ0,ij = I(i = j) + ρI(i �= j) (15)

for some signal strength constant ρ ranging from 0.025 to 0.15 by 0.025. In this
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Fig 1. Receiver operating characteristic curves are represented for the three tests based on
100 simulated data sets for each hypothesis H0 : Σn = Ip and H1 : Σn �= Ip, where (15)
was used for H1. TPR and FPR represent the true positive rate and the false positive rate,
respectively. mxPBF, CM, SYK and GB represent the test proposed in this paper, Cai and
Ma (2013), Srivastava, Yanagihara and Kubokawa (2014) and Gupta and Bodnar (2014),
respectively.

case, the difference between Σ0 and Ip is dense. As a second case for Σ0, we let

σ0,ij = I(i = j) + ρI(i = 1, j = 2) + ρI(i = 2, j = 1), (16)

for some constant ρ ranging from 0.3 to 0.8 by 0.025. Because (16) has signals
at only two locations, the difference between Σ0 and Ip is sparse. We generated
100 simulated data from Np(0,Σ0) for each setting. Note that (15) and (16) cor-
respond to extremely sparse and dense settings, respectively. A more exhaustive
simulation study can be found in Appendix B.

We calculated receiver operating characteristic (ROC) curves to illustrate
and compare the performance of the tests. A ROC curve is drawn by plotting
the true positive rate (TPR) against the false positive rate (FPR) while vary-
ing the thresholds. For each setting, points of the curves were obtained based
on various thresholds and significance levels for Bmax,10(X) and the frequentist
tests, respectively. We tried n = 100, 200, 300 and p = 200, 500 for each setting.
Figure 1 shows results based on 100 simulated data from Np(0, Ip) (H0) and 100
simulated data from Np(0,Σ0) with a compound symmetry structured Σ0 (H1)
given in (15), for (n, p) = (100, 200) and (n, p) = (200, 500). The false positive
rate corresponds to the rate of H0’s falsely detected as H1’s. Similarly, the true
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Fig 2. Receiver operating characteristic curves are represented for the three tests based on
100 simulated data sets for each hypothesis H0 : Σn = Ip and H1 : Σn �= Ip, where (16)
was used for H1. TPR and FPR represent the true positive rate and the false positive rate,
respectively. mxPBF, CM, SYK and GB represent the tests proposed in this paper, Cai and
Ma (2013), Srivastava, Yanagihara and Kubokawa (2014) and Gupta and Bodnar (2014),
respectively.

positive rate is the rate of H1’s correctly detected as H1’s. In this setting, as
expected, the tests in Cai and Ma (2013), Srivastava, Yanagihara and Kubokawa
(2014) and Gupta and Bodnar (2014) work better than the test proposed in this
paper. However, as we can see from the second and third columns in Figure 1,
Bmax,10(X) also performs well as the signal size ρ increases. The only case when
our method is not as powerful is when weak signals are spread through the al-
ternative covariance matrix, in which case one may question the meaningfulness
of the signals.

Figure 2 shows results based on 100 simulated data from Np(0, Ip) and 100
simulated data from Np(0,Σ0) with Σ0 given in (16), when (n, p) = (100, 200)
and (n, p) = (200, 500). As expected, Bmax,10(X) is much more powerful than
the tests based on global norms when Σ0 − Ip is sparse. Furthermore, the per-
formances of the frequentist tests based on the Frobenius norm are almost
the same for every setting, while Bmax,10(X) has better performance when
(n, p) = (200, 500) than (n, p) = (100, 200). Interestingly, the performance of
the test in Gupta and Bodnar (2014) improves as the signal strength ρ in-
creases. Thus, the test in Gupta and Bodnar (2014) is more sensitive to sparse
changes than other tests based on the Frobenius norm difference. This makes
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sense because it focuses on the changes in a column of the covariance matrix
rather than in the whole covariance matrix.

4.2. Simulation study: Testing diagonality

We conducted a simulation study to illustrate the performance of our proposed
diagonality test. The hyperparameter α was chosen as α = 4.01(1 − 1/ logn).
We generated 100 data sets from the null H0 : σij = 0 for any i �= j using
Σ0 = Ip. The two structures of Σ0 under H1 used in the previous section, (15)
and (16), were considered. For each setting, 100 data sets were generated.

We compare our test with some existing frequentist tests. Cai and Jiang
(2011) proposed a diagonality test based on the maximum of sample correla-
tions. Here τ̂2ij,γ in the pairwise Bayes factor B̃10(X̃i, X̃j) is a decreasing function

of the sample correlation between X̃i and X̃j . Lan et al. (2015) developed a test
in the regression setting based on the squared Frobenius norm of a sample co-
variance matrix. Their test should be powerful against dense alternatives. We
also conducted maximum-type tests based on Kendall’s tau and Spearman’s rho
(Han, Chen and Liu, 2017). Chen and Liu (2018) assumed p-dimensional obser-
vations from a common multivariate normal distribution and investigated the
dependence among samples. Since their method can be applied to the diagonal-
ity test by considering XT instead ofX, we included it as a contender. Their test
requires p = O(n) and the uniformly bounded condition for the eigenvalues of
Σ0 for theoretical properties, excluding the high-dimensional setting p � n and
some interesting covariance classes like compound symmetry. Finally, we also
considered frequentist union-intersection tests based on the p-values associated
with the marginal independence tests. A t-test for Pearson’s correlation was
conducted for testing H0,ij : σij = 0 for each pair i > j, and the null hypothesis
H0 : σij = 0 for any i �= j was rejected if at least one H0,ij was rejected. To
calculate the p-values, we used the cor0.test function in the GeneNet package.

Figure 3 shows the area under the ROC curve for varying signal strength ρ
for each fixed (n, p). We omit the results of Cai and Jiang (2011), which were
almost identical to our test in every setting. As expected, the test of Lan et al.
(2015) is more powerful against dense alternatives. The other tests, except the
test of Chen and Liu (2018), have less power, but work reasonably well as the
signal ρ grows. The test of Chen and Liu (2018) does not work well, likely
because (15) violates their assumptions. When Σ0− Ip is sparse, the test of Lan
et al. (2015) does not work well even when ρ is large. The other tests show good
results against sparse alternatives, but our test has better performance.

4.3. Support recovery using gene expression data

To describe the practical performance of the support recovery procedure (14),

Ŝpair, we analyzed a data set from a small round blue-cell tumor microarray
experiment (Khan et al., 2001). The data set originally had 6,567 gene expression
values, and 2,308 gene expressions were selected by an initial filtering (Khan
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Fig 3. Area under the curves (AUC) are represented for the tests based on 100 simulated
data sets for each hypothesis H0 : σij = 0 for any i �= j and H1 : not H0. “dense” and
“sparse” mean that the true covariance matrix Σ0 under H1 were generated from (15) and
(16), respectively. mxPBF, CL and Lan represent the tests proposed in this paper, Chen and
Liu (2018) and Lan et al. (2015), respectively. HCL1 and HCL2 represent the test based
on Kendall’s tau and Spearman’s rho, respectively. “multiple” means the frequentist union-
intersection test.

et al., 2001). For comparison purposes, we focus on the preprocessed data used
in Rothman, Levina and Zhu (2009) and Cai and Liu (2011), consisting of
p = 200 gene expression values for each of n = 64 training tissue samples. There
are four types of tumors represented in these tissue samples. Data were centered
prior to analysis.

For pairwise Bayes factors, the hyperparameter was set at α = 4.01(1 −
1/ logn). We used cross-validation to select Csel. Let n be the number of obser-
vations for a given data set. We randomly divided the data 50 times into two
subsamples with size n1 = �n/3� and n2 = n − n1 as a test set and training
set, respectively. Denote I1 and I2 as indices for the test set and training set,
respectively, thus, |I1| = n1, |I2| = n2 and I1 ∪ I2 = {1, . . . , n}. Let Ŝj(Csel) be
the estimated support for the jth column of the covariance matrix via pairwise
Bayes factors, based on {Xi}i∈I2 and a given threshold Csel. We calculated the
averaged mean squared error

MSE(Csel) =

p∑
j=1

∑
l∈Ŝj(Csel)

{∑
i∈I1

(Xij −Xilβ̂jl)
2/(n1 − 1)

}
/|Ŝj(Csel)|,



Maximum pairwise Bayes factors 4399

Fig 4. The absolute sample correlation matrix (top left) and estimated supports from various

methods. Clockwise from the top right are plots for the estimated supports based on Ŝ
pair,Ĉsel

,

Σ̂�
δ̂
and Σ̂δ̂, respectively.

where β̂jl is a least square estimate with respect to the dependent variable
{Xij}i∈I1 and covariate {Xil}i∈I1 . The threshold Csel was varied from −7 to 10

with increment 0.2, and Ĉsel was set to minimize
∑50

ν=1 MSEν(Csel)/50, where
MSEν(Csel) is the averaged mean squared error based on the νth split.

We compared our method with generalized thresholding estimators of Roth-
man, Levina and Zhu (2009) and Cai and Liu (2011). Rothman, Levina and Zhu
(2009) used a universal threshold λ = δ(log p/n)1/2, while Cai and Liu (2011)

used an individual threshold λ̂ij = δ(θ̂ij log p/n)
1/2 with a data-dependent

θ̂ij . We denote thresholding estimators proposed by Rothman, Levina and Zhu

(2009) and Cai and Liu (2011) by Σ̂δ and Σ̂�
δ , respectively. We used the adaptive

lasso thresholding rule, sλ(σ) = σmax(1−|λ/σ|η, 0) with η = 4, because it gave
good support recovery results in simulation studies in Rothman, Levina and
Zhu (2009) and Cai and Liu (2011). We adopted the cross-validation method
described in Section 4 of Cai and Liu (2011) to select δ and denote the selected

tuning parameter by δ̂.

Figure 4 shows the support recovery results and the absolute sample correla-
tion matrix. The estimated supports based on Ŝpair,Ĉsel

, Σ̂�
δ̂
and Σ̂δ̂ are repre-

sented. One can see that Ŝpair,Ĉsel
and Σ̂�

δ̂
show the clustering structure between

informative (top 40) and non-informative (bottom 160) genes, while the struc-

ture is somewhat blurred in Σ̂δ̂. To compare Ŝpair,Ĉsel
and Σ̂�

δ̂
in more detail, we

further focused on the top 40 genes. We applied hierarchical clustering to the
genes based on the complete linkage method using R function hclust, and the
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Fig 5. The ordered absolute sample correlation matrix and estimated supports for top 40
genes, with 1’s representing the estimated supports from Ŝ

pair,Ĉsel
(left) and Σ̂�

δ̂
(right).

genes were ordered according to the clustering result. Figure 5 shows the ordered
absolute sample correlation matrix and estimated supports for the top 40 genes.
The clustering result suggests that there are four clusters, consistent with the
four tumor types. Both support recovery procedures detect significant blocks in
the sample correlation matrix. However, our support recovery procedure shows
the clustering structure much clearer, while Σ̂�

δ̂
gives a blurred structure due

to a dense support estimate. The estimated support based on pairwise Bayes
factors has the advantage of producing a sparser, and hence potentially more
interpretable, estimate of support.

5. Discussion

We have focused on covariance matrix structure testing in this paper, but the
maximum pairwise Bayes factor idea can be easily applied to other related set-
tings. For example, testing differences across groups in high-dimensional mean
vectors is an interesting possibility. When the two mean vectors are almost the
same but differ only at a few locations, a maximum pairwise Bayes factor ap-
proach should have relatively high power. Similarly, it can be applied to the
high-dimensional two-sample covariance test. Two covariances from two popu-
lations may differ only in a small number of entries.

There are some possible generalizations of the pairwise Bayes factor idea.
To accelerate the speed of computation, a random subsampling method can be
used instead of calculating the pairwise Bayes factor for every single pair (i, j).
It should be interesting to develop a suitable random subsampling or random
projection scheme achieving desirable theoretical properties. Especially when p
is huge, it will effectively reduce the computational complexity. The maximum
pairwise Bayes factor approach is also trivially parallelizable. Another possibil-
ity is considering alternative combining approaches to the max in merging the
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information from every pairwise Bayes factor. If there are many weak non-zero
covariances, then the average or summation may be preferable to the maximum.
A suitable modification to learn parameters in the combining operator can po-
tentially make the test powerful to a broad class of alternative hypotheses.

Appendix A: Testing pairwise independence

As a by-product of Theorem 3.3, when pairwise independence testing (12) itself
is of interest, we suggest a pairwise Bayes factor B̃10(X̃i, X̃j), which can be
shown to be consistent. For consistency under the alternative hypothesis, we
assume

σ2
0,ij ≥ C4σ0,jj

1− 2ε0C1
1/2

{
9C1τ

2
0,ij

(1− C3)2
∨ α(1 + γ)(1 + 4ε0C1

1/2)σ0,ii

C3

}
logn

n
(17)

for constants C1 > 0, 0 < C3 < 1 and C4 > 1 defined in Section 3.1. If we
substitute logn in the above condition with log(n∨p), it coincides with condition
(A4). The proof of Corollary 1 follows from that of Theorem 3.3, and thus it is
omitted.

Corollary 1. Consider model (1) and a hypothesis testing problem (12) for a
given pair (i, j) such that i �= j. Suppose we use the prior π(τ2ij) ∝ τ−2

ij under

both H0,ij and H1,ij, and the prior π(aij | τ2ij) defined in (5) under H1,ij with
γ = n−α for some positive constant α. Then under H0,ij : σij = 0, for some
constant c > 0,

B̃10(X̃i, X̃j) = Op

(
n−c

)
.

If, under H1,ij : σij �= 0, at least one of σ0,ij and σ0,ji satisfies (17), for some
constant c′ > 0,

B̃10(X̃i, X̃j)
−1 = Op

(
n−c′

)
.

Appendix B: Additional simulation study for one-sample covariance
test

In this section, we conduct an additional simulation study for one-sample covari-
ance test. To see a phase-transition from a regime where the maximum-based
test (i.e., maximum pairwise Bayes factor) is preferable to a regime where global
norm-based tests are preferable. As global norm-based tests, we choose the tests
of Cai and Ma (2013), Srivastava, Yanagihara and Kubokawa (2014) and Gupta
and Bodnar (2014).

We fix (n, p) = (100, 200) and generate 100 data sets from the null H0 : Σn =
Ip. To generate the true covariance matrix Σ0 = (σ0,ij) for the alternative H1 :
Σn �= Ip, (1) we randomly select s0 locations, say S0, among the lower triangular
parts of Σ0 and (2) let σ0,ij = ρI((i, j) ∈ S0), σ0,ji = σ0,ij for all 1 ≤ i < j ≤ p
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Fig 6. Area under the curves (AUC) are represented for the tests based on 100 simulated
data sets for each hypothesis H0 : Σn = Ip and H1 : Σn �= Ip. mxPBF, CM, SYK and GB
represent the tests proposed in this paper, Cai and Ma (2013), Srivastava, Yanagihara and
Kubokawa (2014) and Gupta and Bodnar (2014), respectively.

and σ0,ii = 1 for all 1 ≤ i ≤ p. Here, ρ and s0 correspond to the magnitude
and the number of signals, respectively. We generate 100 data sets for each
ρ ∈ {0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5} and s0 ∈ {1, 2, 22, . . . , 29}. For ρ = 0.3
and ρ ∈ {0.4, 0.5}, we use s0 ∈ {1, 2, 22, . . . , 28} and s0 ∈ {1, 2, 22, . . . , 27},
respectively, to make the resulting Σ0 positive definite.

Figure 6 shows the (averaged) area under the curves (AUC) for varying the
number of signals s0 for each fixed ρ. For ρ ∈ {0.02, 0.05}, all the tests have
AUC values around 0.5, which means that the signals are too small so that the
performances of the tests are similar to that of random guess. For ρ ∈ {0.1, 0.15},
the Frobenius norm-based tests (Cai and Ma (2013) and Srivastava, Yanagihara
and Kubokawa (2014)) outperform the maximum pairwise Bayes factor when the
number of signals s0 larger than 26. However, the performance of the maximum
pairwise Bayes factor tends to better than the Frobenius norm-based tests when
s0 is smaller than 24. Furthermore, the performance of the maximum pairwise
Bayes factor is also improved as the strength of signals grows. For ρ = 0.2,
the maximum pairwise Bayes factor works slightly better than the Frobenius
norm-based tests when s0 ≤ 24, while the reverse is true when s0 ≥ 26. For
ρ ∈ {0.3, 0.4, 0.5}, the maximum pairwise Bayes factor outperforms the global
norm-based tests regardless of the number of signals, which implies that ρ ≥ 0.3
is large enough to be detected as a meaningful signal by the maximum-based
test.
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Based on the simulation results, we see that the maximum pairwise Bayes
factor is preferable for large ρ and small s0. On the other hand, the Frobenius
norm-based tests are preferable for small ρ and large s0. Thus, there is a phase-
transition from a regime where the maximum pairwise Bayes factor is preferable
to a regime where global norm-based tests are preferable. A rigorous theoretical
investigation for this phase-transition would be an interesting topic for future
research.

Appendix C: Simulation study for support recovery

The proposed support recovery procedure, Ŝpair,Csel
, consistently recovers the

true support S(Σ0) for any constant threshold Csel (Theorem 3.4). However, in
practice, the choice of the threshold is crucial. In this section, we investigate the
quality of Ŝpair,Csel

as a function of the threshold Csel to assess the importance
of the choice of Csel. Furthermore, the performance of the cross-validation-based
threshold Ĉsel proposed in Section 4.3 also will be demonstrated.

Two structures of covariance matrices were investigated. In the first setting,
we consider

σ∗
0,ij = 2max

(
1− |i− j|

10
, 0

)
I
{
|i− j| ≤ 5, (i ∨ j) ≤ p

2

}
for i �= j. In the second setting, we consider

σ∗
0,ij = 2max

(
1− |i− j|

10
, 0

)
I
{
|i− j| ≤ 5, i ≤ p

2

}
+ 2max

(
1− |i− j|

20
, 0

)
I
{
|i− j| ≤ 10, i >

p

2

}
for i < j. In both settings, we set σ∗

0,ii = 1 and σ∗
0,ij = σ∗

0,ji, where Σ
∗
0 = (σ∗

0,ij).
Let Σ0 = (σ0,ij) be the true covariance matrix. If Σ∗

0 is positive definite, Σ0 = Σ∗
0

is used, and if Σ∗
0 is not positive definite, Σ0 = (σ0,ij) is used where σ0,ij = σ∗

0,ij

and Σ0,ii = Σ∗
0,ii − λmin(Σ0) + 0.01 for all 1 ≤ i �= j ≤ p. The data were

generated from Np(0,Σ0) with n = 50, 100 and p = 100, 300. To illustrate the

performance of the estimated support Ŝpair,Csel
, we consider (i) the Matthews

correlation coefficient,

MCC =
TP × TN − FP × FN

{(TP + FP )(TP + FN)(TN + FP )(TN + FN)}1/2 ,

and (ii) the number of errors, FP + FN , where TP, TN, FP and FN are true
positive, true negative, false positive and false negative, respectively.

Figures 7 and 8 show the performance of Ŝpair,Csel
for the first setting and the

second setting, respectively. Each plot represents the performance of Ŝpair,Csel

as a function of the threshold Csel, where the red vertical line is the cross-
validation-based threshold Ĉsel. We found that the quality of a fixed threshold
changes with the sample size n, the dimension p and the structure of Σ0. The
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Fig 7. MCC (Matthews correlation coefficient) and the number of errors for the first setting.

The red vertical line is the cross-validation-based threshold Ĉsel.

Fig 8. MCC (Matthews correlation coefficient) and the number of errors for the second set-

ting. The red vertical line is the cross-validation-based threshold Ĉsel.

estimated Ĉsel has reasonable performance in terms of the two criteria. There-
fore, based on the simulation results, the cross-validation-based threshold Ĉsel

seems adequate for adaptive selection of the threshold. Figure 9 represents the
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Fig 9. The character 1 indicates the estimated supports based on Ĉsel for the first setting
with p = 300 when n = 50 (left) and n = 100 (right). The values in red represent the entries
of the true covariance matrix.

estimated support Ŝpair,Ĉsel
for the first setting with p = 300. It shows that

the cross-validation-based threshold Ĉsel has reasonable performance and the
quality of the support recovery increases as the sample size gets larger.

Appendix D: Proof of Theorem 3.1

We first give more details about

B10(X̃i, X̃j) =
p(X̃i | X̃j , H1,ij)

p(X̃i | X̃j , H0,ij)

=
bκ0
0,ij

Γ(κ0)

( γ

1 + γ

)1/2

Γ
(n
2
+ κ0

)
enτ̂

2
i /2

(n
2
τ̂2ij,γ + b0,ij

)−n/2−κ0

.

Note that

p(X̃i | X̃j , H0,ij) = f(X̃i | X̃j , aij = 0, τ2ij = 1)

= (2π)−n/2e−‖X̃i‖2
2/2 = (2π)−n/2e−nτ̂2

i /2

and

p(X̃i | X̃j , H1,ij)

=

∫ ∫
f(X̃i | X̃j , aij , τ

2
ij)π(aij | τ2ij)π(τ2ij)daijdτ2ij

=

∫∫
(2πτ2ij)

−n/2 exp
(
− ‖X̃i − aijX̃j‖22

2τ2ij

)( 2πτ2ij

γ‖X̃j‖22

)−1/2
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× exp
(
− γ‖X̃j‖22

2τ2ij
a2ij

) bκ0
0,ij

Γ(κ0)
(τ2ij)

−κ0−1e−b0,ij/τ
2
ij daijdτ

2
ij

= (2π)−n/2
bκ0
0,ij

Γ(κ0)
Γ
(n
2
+ κ0

)(n
2
τ̂2ij,γ + b0,ij

)−n/2−κ0
( γ

1 + γ

)1/2

.

Proof of Theorem 3.1. For a given pair (i, j),

logB10(X̃i, X̃j)

= κ0 log b0,ij +
1

2
log

( γ

1 + γ

)
(18)

+
{
log Γ

(n
2
+ κ0

)
− log Γ(κ0)−

(n
2
+ κ0

)
log

n

2
+

n

2

}
(19)

+
{n

2
τ̂2i −

(n
2
+ κ0

)
log

(
τ̂2ij,γ +

2b0,ij
n

)
− n

2

}
. (20)

Equation (19) can be written as

log Γ
(n
2
+ κ0

)
− log Γ

(
1 + κ0

)
+ κ0 −

(n
2
+ κ0

)
log

n

2
+

n

2
,

where by Theorem 1 of Keckic and Vasic (1971),(n
2
+ κ0 − 1

)
log

(n
2
+ κ0

)
− κ0 log(1 + κ0)−

n

2
+ 1

≤ log Γ
(n
2
+ κ0

)
− log Γ

(
1 + κ0

)
≤

(n
2
+ κ0 −

1

2

)
log

(n
2
+ κ0

)
− (

1

2
+ κ0) log(1 + κ0)−

n

2
+ 1.

Thus, it is easy to see that (19) is equal to

− C log
(n
2
+ κ0

)
+
(
κ0 +

2κ2
0

n

)
log

(
1 +

2κ0

n

)n/2κ0

+ C ′ (21)

for some constants 1/2 < C < 1 and κ0{1− log(1+ κ0)}+1− 0.5 log(1+ κ0) <
C ′ < κ0{1− log(1+κ0)}+1, which is of order O(− log n). Since γ = (n∨ p)−α,
(18) is equal to

κ0 log b0,ij −
α

2
log(n ∨ p)− 1

2
log

{
1 + (n ∨ p)−α

}
= −α

2
log(n ∨ p) + C (22)

for some constant C. Thus, we only need to focus on the behavior of (20).
For the true covariance matrix Σ0, one of the following cases holds:

Case (i). Σ0 = Ip,
Case (ii). σ0,ii satisfies condition (A1) for some pair (i, j),
Case (iii). τ20,ij satisfies condition (A2) for some pair (i, j),
Case (iv). σ0,ij satisfies condition (A3) for some pair (i, j).
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Note that (20) can be expressed as

n

2

{
τ̂2ij,γ +

2b0,ij
n

− log
(
τ̂2ij,γ +

2b0,ij
n

)
− 1

}
(23)

+
n

2

(
τ̂2i − τ̂2ij,γ

)
(24)

−
{
κ0 log

(
τ̂2ij,γ +

2b0,ij
n

)
+ b0,ij

}
. (25)

We will calculate the rate of the above three terms (23)-(25) for every
possible case. More precisely, we will show that for all sufficiently large n,
logB10(X̃i, X̃j) ≤ −CH0 log(n ∨ p) with probability at least 1 − (n ∨ p)−c for

some constants CH0 > 0 and c > 2 under Case (i), and logB10(X̃i, X̃j) ≥
CH1 log(n∨p) with probability at least 1−(n∨p)−c′ for some constants CH1 > 0
and c′ > 0 under Cases (ii)–(iv). Then, we have

P0

{
logBmax,10(X) ≤ −C log(n ∨ p)

}
= 1− P0

{
max

(i,j):i �=j
logB10(X̃i, X̃j) > −C log(n ∨ p)

}
≥ 1−

∑
(i,j):i �=j

P0

{
logB10(X̃i, X̃j) > −C log(n ∨ p)

}
≥ 1− (n ∨ p)−c+2

if Case (i) holds, and

P0

{
logBmax,10(X) ≥ C ′ log(n ∨ p)

}
≥ max

(i,j):i �=j
P0

{
logB10(X̃i, X̃j) ≥ C ′ log(n ∨ p)

}
≥ 1− (n ∨ p)−c′

if there exists at least one pair (i, j) satisfying one of Cases (ii)–(iv).
Case (i). Define nτ̂2ij = nτ̂2ij,γ=0 = X̃T

i (In − Hj)X̃i, then we have nτ̂2ij,γ =

nτ̂2ij + γ(1 + γ)−1
(
X̃T

j X̃i

)2‖X̃j‖−2
2 . Note that

(
X̃T

j X̃i

)2 ≤ ‖X̃j‖22‖X̃i‖22 and

‖X̃i‖22 ∼ χ2
n under Case (i). By Lemma 1 in Laurent and Massart (2000), we

have P{k−1χ2
k − 1 ≥ 2(k−1x)1/2 + 2k−1x} ≤ 2 exp(−x) and P{1 − k−1χ2

k ≥
2(k−1x)1/2} ≤ 2 exp(−x) for all x > 0, which implies

τ̂2ij ≤ τ̂2ij,γ ≤ τ̂2ij +
γ

1 + γ

[
1 + 2

{C log(n ∨ p)

n

}1/2

+
2C log(n ∨ p)

n

]
with probability at least 1 − 2(n ∨ p)−C for some constant C > 2. Since γ =
(n ∨ p)−α under the conditions on α, we have∣∣τ̂2ij,γ − τ̂2ij

∣∣ ≤ (n ∨ p)−2 (26)
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with probability at least 1− 2(n ∨ p)−C for some constant C > 2 and all large
n. It is easy to check that nτ̂2ij ∼ χ2

n−1 and n(τ̂2i − τ̂2ij) ∼ χ2
1 under Case (i).

Thus, we have

P0

{ ∣∣n(τ̂2i − τ̂2ij)− 1
∣∣ ≤ 2C ′c log(n ∨ p)

}
≥ 1− 2(n ∨ p)−c, (27)

P0

[ ∣∣∣ n

n− 1
τ̂2ij − 1

∣∣∣ ≤ 2C ′
{c log(n ∨ p)

n− 1

}1/2
]

≥ 1− 2(n ∨ p)−c (28)

for any constants c > 2, C ′ > 1 + 21/2ε0 and all large n. The inequalities (26)
and (28) imply

P0

[ ∣∣∣τ̂2ij,γ +
2b0,ij
n

− 1
∣∣∣ < C

{ log(n ∨ p)

n

}1/2
]

≥ 1− 4(n ∨ p)−c (29)

for any constant C > 2(21/2 + 2ε0) and all large n. By the Taylor expansion of
log(1 + x),

x− log(1 + x) = x−
(
x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · ·

)
=

1

2
x2 − 1

3
x3 +

1

4
x4 − · · · ≤ 1

2
x2

(
1− |x|

)−1

for small |x|. Thus, on the event in (29), (23) is bounded above by 4−1C2(1 −
Cε0)

−1 log(n ∨ p) for any constant 2(21/2 + 2ε0) < C < ε−1
0 . Since (25) is of

order O(1) on the event in (29), we have

logB10(X̃i, X̃j)

≤ −2−1α log(n ∨ p)− 2−1 logn+ 2−1C2(1− Cε0)
−1 log(n ∨ p)

≤ −2−1
{
α− C2(1− Cε0)

−1
}
log(n ∨ p)

with probability at least 1−4(n∨p)−c for any constants 2(
√
2+2ε0) < C < ε−1

0

and all large n. Thus, if α > 8(1 +
√
2ε0)

2/{1− 2
√
2ε0(1 +

√
2ε0)},

logB10(X̃i, X̃j) ≤ −2−1C log(n ∨ p)

with probability at least 1 − 4(n ∨ p)−c for any constants 0 < C < α − 8(1 +√
2ε0)

2/{1− 23/2ε0(1 +
√
2ε0)}, c > 2 and all large n. This completes the proof

for Case (i) with the constant CH0 = [α−8(1+
√
2ε0)

2/{1−23/2ε0(1+
√
2ε0)}]/2.

Case (ii). Now assume that σ0,ii satisfies condition (A1) for some pair (i, j).
Note that (20) can be expressed as

n

2

{
τ̂2i +

2b0,ij
n

− log
(
τ̂2i +

2b0,ij
n

)
− 1

}
(30)

+
(n
2
+ κ0

)
log

(
τ̂2i +

2b0,ij
n

τ̂2ij,γ +
2b0,ij

n

)
(31)

− κ0 log
(
τ̂2i +

2b0,ij
n

)
− b0,ij . (32)
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We will show that for given constants C1 > 0 and C2 > 2(α+ 2)1/2,

P0

{ ∣∣∣τ̂2i +
2b0,ij
n

− 1
∣∣∣ ≥ C2

( log(n ∨ p)

n

)1/2
}

≥ 1− 2(n ∨ p)−C1 . (33)

On this event, we can show that (30) is larger than 4−1C2
2 (1−2C2ε0/3) log(n∨p)

for all large n by the Taylor expansion of log(1+x) and the fact that x−log x−1
is increasing in |x−1|. Note that (31) is positive and (32) is negligible compared
to (30). Then, by (21) and (22),

logB10(X̃i, X̃j) > −α

2
log(n ∨ p)− logn+ 4−1C2

2 (1− 2C2ε0/3) log(n ∨ p) + C

≥ 8−1
(
C2

2 − 4α− 8
)
log(n ∨ p) + C

with probability at least 1 − 4(n ∨ p)−C1 for some constant C and all large n,
by the condition on ε0.

Now, we only need to show (33). By Lemma 1 in Laurent and Massart (2000),
one can show that

P0

[
σ0,ii − 1 +

2b0,ij
n

− 2σ0,ii

{C1 log(n ∨ p)

n

}1/2

≤ τ̂2i +
2b0,ij
n

− 1

≤ σ0,ii − 1 +
2b0,ij
n

+ 4σ0,ii

{C1 log(n ∨ p)

n

}1/2
]

≥ 1− (n ∨ p)−2C1 ,

because nτ̂2i /σ0,ii ∼ χ2
n. Thus, it suffices to prove

σ0,ii − 1 +
2b0,ij
n

− 2σ0,ii

{C1 log(n ∨ p)

n

}1/2

≥ C2

{ log(n ∨ p)

n

}1/2

or

σ0,ii − 1 +
2b0,ij
n

+ 4σ0,ii

{C1 log(n ∨ p)

n

}1/2

≤ −C2

{ log(n ∨ p)

n

}1/2

,

which is satisfied by (A1).
Case (iii). If σ0,ii satisfies (A1) for some pair (i, j), the previous case gives the
desired result. Here we assume that σ0,ii does not satisfy (A1) for all i, and τ20,ij
satisfies condition (A2) for some pair (i, j). Similar to Case (ii), we will show
that for given constants C1 > 0 and C2 > 2(α+ 2)1/2,

P0

[ ∣∣∣τ̂2ij,γ +
2b0,ij
n

− 1
∣∣∣ ≥ C2

{ log(n ∨ p)

n

}1/2
]

≥ 1− 4(n ∨ p)−C1 , (34)

which gives the desired result by (23)–(25). Note that we have nτ̂2ij/τ
2
0,ij ∼ χ2

n−1.
Then, similar to (28),

P0

[ ∣∣∣τ̂2ij,γ − n− 1

n
τ20,ij

∣∣∣ ≤ 4τ20,ij

{C1 log(n ∨ p)

n

}1/2
]

≥ 1− 4(n ∨ p)−C1
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by (26). To prove (34), we only need to show that(
1− 1

n

)
τ20,ij +

2b0,ij
n

− 1− 4τ20,ij

{C1 log(n ∨ p)

n

}1/2

≥ C2

{ log(n ∨ p)

n

}1/2

,

when τ20,ij > 1, and(
1− 1

n

)
τ20,ij +

2b0,ij
n

− 1 + 4τ20,ij

{C1 log(n ∨ p)

n

}1/2

≤ −C2

{ log(n ∨ p)

n

}1/2

when τ20,ij < 1. It is satisfied because we have condition (A1). Thus, we have
proved that if a pair (i, j) satisfies (A1),

logB10(X̃i, X̃j) ≥ 8−1(C2
2 − 4α− 8) log(n ∨ p) + C

with probability at least 1−4(n∨p)−C1 for some constant C and all sufficiently
large n.
Case (iv). Suppose σ0,ij satisfies condition (A3). In this case, we have n(τ̂2i −
τ̂2ij)/τ

2
0,ij ∼ χ2

1(λij) given X̃j , where λij = ‖X̃j‖22a20,ij/τ20,ij . For a random vari-

able X ∼ χ2
k(λ),

P

[
X ≥ k + λ− 2{(k + 2λ)x}1/2

]
≥ 1− e−x

for all x > 0, by Lemma 8 in Kolar and Liu (2012). Then,

1− (n ∨ p)−C1

≤ P0

(
n

2

(
τ̂2i − τ̂2ij

)
≥

τ20,ij
2

[
1 + λij − 2{(1 + 2λij)C1 log(n ∨ p)}1/2

] ∣∣∣ X̃j

)

≤ P0

(
n

2

(
τ̂2i − τ̂2ij

)
≥

τ20,ij
2

λij

[
1− 2

{ (1 + 2λij)C1 log(n ∨ p)

λ2
ij

}1/2 ] ∣∣∣ X̃j

)
.

Also τ20,ijλij/(a
2
0,ijσ0,jj) = ‖X̃j‖22/σ0,jj ∼ χ2

n, so we have

P0

(
τ20,ij

a20,ijσ0,jj
λij ≥ n

[
1− 2

{C1 log(n ∨ p)

n

}1/2 ])
≥ 1− (n ∨ p)−C1(35)

by Lemma 1 in Laurent and Massart (2000). On the event in (35), we have

λij ≥
a20,ijσ0,jj

τ20,ij
n
[
1− 2

{C1 log(n ∨ p)

n

}1/2 ]
≥

σ2
0,ij

σ0,jjτ20,ij
n
[
1− 2

{C1 log(n ∨ p)

n

}1/2 ]
≥ 9C1

(1− C3)2
log(n ∨ p)
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with probability at least 1− (n ∨ p)−C1 by condition (A3), which implies

1− 2
{ (1 + 2λij)C1 log(n ∨ p)

λ2
ij

}1/2

≥ C3 (36)

for a given constant 0 < C3 < 1. Again by (35) and condition (A3),

τ20,ij
2

λij

[
1− 2

{ (1 + 2λij)C1 log(n ∨ p)

λ2
ij

}1/2 ]
≥

τ20,ij
2

λijC3

≥ 1

2

σ2
0,ij

σ0,jj
C3 n

[
1− 2

{C1 log(n ∨ p)

n

}1/2 ]
≥ 1

2
C4(α+ 2) log(n ∨ p)

with probability at least 1− (n∨p)−C1 for a given constant C4 > 1 and all large
n. Note that (23) is positive and (25) is negligible compared to (23). Thus, by
similar arguments used in Case (ii),

logB10(X̃i, X̃j)

≥ 1

2

σ2
0,ij

σ0,jj
C3 n

[
1− 2

{C1 log(n ∨ p)

n

}1/2 ]
− 1

2
(α− 2) log(n ∨ p)

≥ 1

2
(C4 − 1)(α− 2) log(n ∨ p) + C

with probability at least 1 − 2(n ∨ p)−C′
for some constants C,C ′ > 0 and all

large n. This completes the proof for cases (ii)–(iv) with the constant CH1 =
{8−1(C2

2 − 4α− 8)} ∨ {2−1(C4 − 1)(α− 2) log(n ∨ p)}, where C2 > 2(α+ 2)1/2

and C4 > 1.

Appendix E: Proof of Theorem 3.2

Proof. For a given constant C� > 0, define a parameter class

H∗
1 (C�) =

{
Σν : Σν = Ip +

{
C�

( log p
n

)1/2

I(i = j = ν)
}
1≤i,j≤p

, 1 ≤ ν ≤ p
}
,

which trivially satisfies H∗
1 (C�) ⊂ H1(C�). Let Pmix = p−1

∑
ν PΣν and Emix

be the corresponding expectation under Pmix. For any Σν ∈ H∗
1 (C�) and test

φ,

sup
ν

{
EIp(φ) + EΣν (1− φ)

}
≥ inf

φ
sup
ν

{
EIp(φ) + EΣν (1− φ)

}
≥ inf

φ

1

p

∑
ν

{
EIp(φ) + EΣν (1− φ)

}



4412 K. Lee et al.

= inf
φ

{
EIp(φ) + Emix(1− φ)

}
=

∫
(fIp ∧ fmix)

= 1− 1

2

∫
|fmix − fIp |,

where fmix and fΣ are density functions of Pmix and PΣ, respectively. Also(∫
|fmix − fIp |

)2

≤
∫

|fmix − fIp |2

≤
∫

|fmix

fIp
− 1|2fIp

≤
∫

f2
mix

fIp
− 1. (37)

Thus, for any test φ,

inf
Σ∈H1(C�)

EΣ(φ) ≤ inf
Σ∈H∗

1 (C�)
EΣ(φ) ≤ EIp(φ) +

1

2

(∫
f2
mix

fIp
− 1

)1/2

by the above arguments. Now we only need to deal with the upper bound of
(37). An upper bound of

∫
(f2

mix/fIp) can be derived as follows:

∫
f2
mix

fIp
=

∫
1

fIp

(1
p

∑
ν

fΣν

)2

=
1

p2

∑
ν1,ν2

∫
fΣν1

fΣν2

fIp

=
1

p2

∑
ν1,ν2

[
det

{
Ip − (Σν1 − Ip)(Σν2 − Ip)

}]−n/2

=
1

p2

{
p2 − p+ p

(
1− C2

�

log p

n

)−n/2}
≤ 1− 1

p
+

1

p
pC

2
�/2 ≤ 2− 1

p

because C2
� ≤ 2. The third equality follows from Lemma B.3 of Lee and Lee

(2018). It gives the upper bound

inf
Σ∈H1(C�)

EΣ(φ) ≤ EIp(φ) +
1

2

(
2− p−1

)1/2
,

which completes the proof.
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Appendix F: Proof of Theorem 3.3

Proof. For a given pair (i, j) such that i �= j, suppose the null hypothesis is
true, so that σ0,ij = 0. We have

log B̃10(X̃i, X̃j) =
1

2
log

( γ

1 + γ

)
− n

2
log

(
τ̂2ij,γ
τ̂2i

)

≤ 1

2
log

( γ

1 + γ

)
+

n

2

τ̂2i − τ̂2ij,γ
τ̂2ij,γ

≤ 1

2
log

( γ

1 + γ

)
+

n

2

τ̂2i − τ̂2ij
τ̂2ij

,

where the first inequality holds because log(1 + x) ≤ x for all x. Note that
nτ̂2ij/σ0,ii ∼ χ2

n−1 and n(τ̂2i − τ̂2ij)/σ0,ii ∼ χ2
1. By Lemma 1 in Laurent and

Massart (2000),

n(τ̂2i − τ̂2ij)

σ0,ii
≤ 1 + 2C C4 log(n ∨ p)

and

nτ̂2ij
σ0,ii

− (n− 1) ≥ 2{C(n− 1) log(n ∨ p)}1/2

with probability at least 1 − 6(n ∨ p)−C for any constant C > 2 and C4 > 1.
This implies

log B̃10(X̃i, X̃j) ≤ 1

2
log

( γ

1 + γ

)
+

n

2

1 + 2C C4 log(n ∨ p)

n− 1− 2{C(n− 1) log(n ∨ p)}1/2

≤ 1

2
log

( γ

1 + γ

)
+

1

2

n+ 2C C4n log(n ∨ p)

n− 1− 2{C(n− 1) log(n ∨ p)}1/2

≤ 1

2
log

( γ

1 + γ

)
+

1

2
C ′ log(n ∨ p) + C ′′

for any constants C ′ > 2C C4/(1 − 3ε0C
1/2), C ′′ > 0 with probability at least

1 − 6(n ∨ p)−C for some constant C > 2 and large n. Since γ = (n ∨ p)−α

and α > 4/(1 − 21/23ε0), by choosing C > 2 and C4 > 1 such that α > C ′,
the log Bayes factor log B̃10(X̃i, X̃j) tends to minus infinity as n → ∞ on the
above event. By similar arguments used in the proof of Theorem 3.1, this implies
consistency of the maximum pairwise Bayes factor under H0.

Now suppose the alternative hypothesis is true. Without loss of generality,
assume that σ0,ij satisfies condition (A4). Then,

− log B̃10(X̃i, X̃j) = −1

2
log

( γ

1 + γ

)
− n

2
log

(
1−

τ̂2ij,γ − τ̂2i
τ̂2ij,γ

)
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≤ −1

2
log

( γ

1 + γ

)
+

n

2

τ̂2ij,γ − τ̂2i
τ̂2i

because − log(1 − x) ≤ x/(1 − x) for any x < 1. Since nτ̂2i /σ0,ii ∼ χ2
n and

n(τ̂2i − τ̂2ij)/τ
2
0,ij ∼ χ2

1(λij) given X̃j , where λij = ‖X̃j‖22a20,ij/τ20,ij , we have

1

2τ̂2i
≥ 1

2

(
σ0,ii

[
1 + 4

{C1 log(n ∨ p)

n

}1/2 ])−1

≥ 1

2

{
σ0,ii(1 + 4ε0C1

1/2)
}−1

and

n(τ̂2ij,γ − τ̂2i ) = − 1

1 + γ
n(τ̂2i − τ̂2ij)

≤ − C3

1 + γ
τ20,ijλij

= − C3

1 + γ
σ0,jja

2
0,ij

‖X̃j‖22
σ0,jj

≤ − C3

1 + γ

σ2
0,ij

σ0,jj
n(1− 2C1

1/2ε0)

with probability at least 1 − C(n ∨ p)−c for some constants c > 0 and C > 0
and all large n, by condition (15). The fourth inequality holds by condition (A4)
and similar arguments used in (36). Thus, on this event,

n

2

τ̂2ij,γ − τ̂2i
τ̂2i

≤ − C3

1 + γ

σ2
0,ij

σ0,jj
n(1− 2ε0C1

1/2)× 1

2

{
σ0,ii(1 + 4ε0C1

1/2)
}−1

≤ −α

2
C4 log(n ∨ p)

which implies

− log B̃10(X̃i, X̃j) ≤ α

2
log(n ∨ p) +

1

2
log(1 + γ)− α

2
C4 log(n ∨ p)

for all sufficiently large n. Since C4 > 1, this completes the proof.

Appendix G: Proof of Proposition 1

Proof. Let σ̂2
ij = n−1(X̃T

i X̃j)
2 and ρ̂2ij = σ̂2

ij/(τ̂
2
i τ̂

2
j ). Then

τ̂2ij,γ
τ̂2i

=
τ̂2ij
τ̂2i

+
τ̂2ij,γ − τ̂2ij

τ̂2i

= 1−
σ̂2
ij

τ̂2i τ̂
2
j

+
τ̂2ij,γ − τ̂2ij

τ̂2i
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≡ 1− ρ̂2ij + δ̂ij .

Then we have

log B̃max,10(X) =
1

2
log

( γ

1 + γ

)
− n

2
log

{
1−max

i �=j
(ρ̂2ij − δ̂ij)

}
.

We will show that upper and lower bounds of 2 log B̃max,10(X)−Cn,p converges
in distribution to an extreme distribution of type I with distribution function

F (z) = exp
{
− (8π)−1/2e−z/2

}
, z ∈ R.

By the definitions of τ̂2ij and τ̂2ij,γ , we have δ̂ij ≥ 0, thus

2 log B̃max,10(X)− Cn,p

≤ log
( γ

1 + γ

)
− n log

(
1−max

i �=j
ρ̂2ij

)
− Cn,p

=
log

(
1−maxi �=j ρ̂

2
ij

)
−maxi �=j ρ̂2ij

n max
i �=j

ρ̂2ij − 4 log p+ log(log p)

=
log

(
1−maxi �=j ρ̂

2
ij

)
−maxi �=j ρ̂2ij

{
n max

i �=j
ρ̂2ij − 4 log p+ log(log p)

}
(38)

+
{ log

(
1−maxi �=j ρ̂

2
ij

)
−maxi �=j ρ̂2ij

− 1
}{

4 log p− log(log p)
}
. (39)

By Theorem 4 in Cai and Jiang (2011), log p maxi �=j ρ̂
2
ij

p−→ 0 as n → ∞ under
P0. Taylor expansion of log(1− x) gives

0 ≤
log

(
1−maxi �=j ρ̂

2
ij

)
−maxi �=j ρ̂2ij

− 1 =
1

2
max
i �=j

ρ̂2ij +
1

3
max
i �=j

ρ̂4ij + · · ·

≤
maxi �=j ρ̂

2
ij

1−maxi �=j ρ̂2ij
,

which implies that (39) converges to 0 in probability and

log
(
1−maxi �=j ρ̂

2
ij

)
−maxi �=j ρ̂2ij

p−→ 1

as n → ∞. Since n maxi �=j ρ̂
2
ij−4 log p+log(log p) converges in distribution to an

extreme distribution of type I by Theorem 4 in Cai and Jiang (2011), Slutsky’s
theorem says that (38) converges in distribution to an extreme distribution of
type I.

On the other hand, we have

2 log B̃max,10(X)− Cn,p

≥ log
( γ

1 + γ

)
− n log

(
1−max

i �=j
ρ̂2ij +max

i �=j
δ̂ij

)
− Cn,p
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=
log

(
1−maxi �=j ρ̂

2
ij +maxi �=j δ̂ij

)
−maxi �=j ρ̂2ij +maxi �=j δ̂ij

n
(
max
i �=j

ρ̂2ij −max
i �=j

δ̂ij
)

−4 log p+ log(log p)

Thus, if we can show that n maxi �=j δ̂ij
p−→ 0 as n → ∞ under P0, with the

same arguments used in the previous paragraph it implies that the lower bound
of 2 log B̃max,10(X) − Cn,p converges in distribution to an extreme distribution
of type I, which completes the proof. By the proof of Theorem 3.1, for a given
pair (i, j),

P0

[
1− 2

{C log(n ∨ p)

n

}1/2

≤ τ̂2i
σ0,ii

≤ 1 + 4
{C log(n ∨ p)

n

}1/2]
≥ 1− (n ∨ p)−2C

and

P0

(
0 <

τ̂2ij,γ − τ̂2ij
σ0,ii

≤ γ

1 + γ

[
1 + 2

{C log(n ∨ p)

n

}1/2

+
2C log(n ∨ p)

n

])
≥ 1− 2(n ∨ p)−C

for some constant C > 2. Since γ = (n ∨ p)−α and α > 1, it implies that

n maxi �=j δ̂ij
p−→ 0 as n → ∞ under P0.

Appendix H: Proof of Theorem 3.4

Proof. For a given constant Csel > 0 and a pair (i, j), define

Ŝij = I
{

log B̃pair,10(X̃i, X̃j) > Csel

}
and Sij(Σ0) = I(σ0,ij �= 0). By the proof of Theorem 3,

P0

{
Ŝij = 1, Sij(Σ0) = 0

}
= P0

{
log B̃pair,10(X̃i, X̃j) > Csel, σ0,ij = 0

}
≤ (n ∨ p)−c

for some constant c > 2 and all sufficiently large n. Now, assume that σ0,ij

satisfies condition (A5). Condition (A5) is the same as condition (A4) except
using C5 instead of C1. Thus, by similar arguments used in the proof of Theorem
3.3, it is easy to check that

P0

{
Ŝij = 0, Sij(Σ0) = 1

}
= P0

{
log B̃pair,10(X̃i, X̃j) ≤ Csel, σ0,ij �= 0

}
≤ (n ∨ p)−c

for some constant c > 2 and all sufficiently large n. Therefore, we have

P0

{
Ŝ �= S(Σ0)

}
≤

∑
i �=j, i<j

P0

{
Ŝij �= Sij(Σ0)

}
−→ 0

as n → ∞.
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