
Electronic Journal of Statistics
Vol. 15 (2021) 3798–3851
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1876

Normal approximation and confidence

region of singular subspaces∗

Dong Xia

Department of Mathematics,
Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
e-mail: madxia@ust.hk

Abstract: This paper is on the normal approximation of singular sub-
spaces when the noise matrix has i.i.d. entries. Our contributions are three-
fold. First, we derive an explicit representation formula of the empirical
spectral projectors. The formula is neat and holds for deterministic ma-
trix perturbations. Second, we calculate the expected projection distance
between the empirical singular subspaces and true singular subspaces. Our
method allows obtaining arbitrary k-th order approximation of the expected
projection distance. Third, we prove the non-asymptotical normal approx-
imation of the projection distance with different levels of bias corrections.
By the �log(d1+d2)�-th order bias corrections, the asymptotical normality
holds under optimal signal-to-noise ratio (SNR) condition where d1 and d2
denote the matrix sizes. In addition, it shows that higher order approxima-
tions are unnecessary when |d1−d2| = O((d1+d2)1/2). Finally, we provide
comprehensive simulation results to merit our theoretic discoveries.

Unlike the existing results, our approach is non-asymptotical and the
convergence rates are established. Our method allows the rank r to diverge
as fast as o((d1 + d2)1/3). Moreover, our method requires no eigen-gap
condition (except the SNR) and no constraints between d1 and d2.
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1. Introduction

Matrix singular value decomposition (SVD) is a powerful tool for various pur-
poses across diverse fields. In numerical linear algebra, SVD has been success-
fully applied for solving linear inverse problems, low-rank matrix approximation
and etc. See, e.g., Golub and Van Loan (2012), for more examples. In many
machine learning tasks, SVD is crucial for designing computationally efficient
algorithms, such as matrix and tensor completion (Cai et al. (2010), Keshavan
et al. (2010), Candès and Tao (2010), Xia and Yuan (2018), Xia et al. (2017)),
and phase retrieval (Ma et al. (2017), Candes et al. (2015)), where SVD is
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often applied for generating a warm initial point for non-convex optimization
algorithms. In statistical data analysis, SVD is superior for denoising and di-
mension reduction. For instance, SVD, as a dimension reduction tool, is used
for text classification in Kim et al. (2005). See also Li and Wang (2007). In
Shabalin and Nobel (2013), SVD shows appealing performances in low rank
matrix denoising. More specifically, in Donoho and Gavish (2014), they proved
that statistically minimax optimal matrix denoising can be attained via pre-
cise singular value thresholding. Recently, matrix SVD is generalized to ten-
sor SVD for tensor denoising, see Xia and Zhou (2019) and Zhang and Xia
(2018).

The perturbation analysis is critical for advancing the theoretical develop-
ments of SVD for low-rank matrix denoising where the observed data matrix
often equals a low-rank information matrix plus a noise matrix. The determin-
istic perturbation bounds of matrix SVD have been well established by Davis-
Kahan (Davis and Kahan (1970), Yu et al. (2014)) and Wedin (Wedin (1972))
many years ago. Among those deterministic perturbation bounds, one simple
yet useful bound shows that the perturbation of singular vectors is governed by
the so-called signal-to-noise ratio (SNR) where “signal” refers to the smallest
non-zero singular value of the information matrix and the “noise” refers to the
spectral norm of the noise matrix. It is a quite general result since the bound
does not rely on the wellness of alignments between the singular subspaces of
the information and of the noise matrices. Such a general bound turns out to
be somewhat satisfactorily sharp when the noise matrix contains i.i.d. random
entries. However, more refined characterizations of singular vectors are needed
on the frontiers of statistical inference for matrix SVD. The Davis-Kahan The-
orem and Wedin’s perturbation bounds are illustrated by the non-zero smallest
singular value of the information matrix, where the effects of those large singular
values are usually missing. Moreover, the exact numerical factor is also not well
recognized.

The behavior of singular values and singular vectors of low rank perturba-
tions of large rectangular random matrices is popular in recent years. They play
a key role in statistical inference with diverse applications. See Li and Li (2018),
Naumov et al. (2017), Tang et al. (2018) for some examples in network testing.
The asymptotic limits of singular values and singular vectors were firstly devel-
oped by Benaych-Georges and Nadakuditi (2012), where the convergence rate
of the largest singular value was also established. Recently, by Ding (2017),
more precise non-asymptotic concentration bounds for empirical singular values
were obtained. Meanwhile, Ding (2017) also proved non-asymptotic perturba-
tion bounds of empirical singular vector when the associated singular value has
multiplicity 1. In a recent work (Bao et al., 2018), the authors studied the
asymptotic limit distributions of the empirical singular subspaces when (scaled)
singular values are bounded. Specifically, they showed that if the noise matrix
has Gaussian distribution, then the limit distribution of the projection distance
is also Gaussian. Unlike these prior arts (Ding (2017), Bao et al. (2018)), we focus
on the non-asymptotical normal approximations of the joint singular subspaces
in a different regime. Our approach allows the rank to diverge, and imposes no
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constraints between d1 and d2. In addition, we establish the convergence rates
and impose no eigen-gap conditions (except SNR).

In Xia (2019), the low rank matrix regression model is investigated where
the author proposed a de-biased estimator built on nuclear normal penalized
least squares estimator. The de-biased estimator ends up with an analogous
form of the low rank perturbation of rectangular random matrices. Then, non-
asymptotical normal approximation theory of the projection distance is proved,
under near optimal sample size requirement. The paramount observation is that
the mean value in the limit normal distribution is significantly larger than its
standard deviation. As a result, a much larger than regular sample size require-
ment is necessary to tradeoff the estimation error of the expected projection
distance. Most recently, Chen et al. (2018) revealed an interesting phenomenon
of the perturbation of eigenvalues and eigenvectors of such non-asymmetric ran-
dom perturbations, showing that the perturbation of eigen structures is much
smaller than the singular structures. In addition, some non-asymptotic pertur-
bation bounds of empirical singular vectors can be found in Koltchinskii and
Xia (2016),Bloemendal et al. (2016) and Abbe et al. (2017). The minimax opti-
mal bounds of singular subspace estimation for low rank perturbations of large
rectangular random matrices are established in Cai and Zhang (2018).

Our goal is to investigate the central limit theorems of singular subspaces
in the low rank perturbation model of large rectangular random matrices. As
illustrated in Xia (2019), the major difficulty arises from how to precisely de-
termine the expected projection distance. One conclusive contribution of this
paper is an explicit representation formula of the empirical spectral projector.
This explicit representation formula allows us to obtain precise characterization
of the (non-asymptotical) expected projection distance. After those higher or-
der bias corrections, we prove normal approximation of the singular subspaces
with optimal (in the consistency regime) SNR requirement. For better present-
ing the results and highlighting the contributions, let’s begin with introducing
the standard notations. We denote M = UΛV T the unknown d1 × d2 ma-
trix where U ∈ R

d1×r and V ∈ R
d2×r are its left and right singular vectors.

The diagonal matrix Λ = diag(λ1, · · · , λr) contains M ’s non-increasing positive
singular values. The observed data matrix M̂ ∈ R

d1×d2 satisfies the additive
model:

M̂ = M + Z where Zj1j2
i.i.d.∼ N (0, 1) for 1 ≤ j1 ≤ d1, 1 ≤ j2 ≤ d2. (1)

Here, we fix the noise variance to be 1, just for simplicity. For ease of exposition,
let d1 ≤ d2. Let Û ∈ R

d1×r and V̂ ∈ R
d2×r be the top-r left and right singular

vectors of M̂ . Let Λ̂ = diag(λ̂1, · · · , λ̂r) denote the top-r singular values of M̂ .
We focus on the projection distance between the empirical and true singular
subspaces which is defined by

dist2[(Û , V̂ ), (U, V )] := ‖Û ÛT − UUT‖2F + ‖V̂ V̂ T − V V T‖2F. (2)

By Davis-Kahan Theorem (Davis and Kahan, 1970) or Wedin’s sinΘ theorem
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(Wedin, 1972), dist2[(Û , V̂ ), (U, V )] is non-trivial on the event {λr > 2‖Z‖}. It
is well-known that ‖Z‖ = OP (

√
d2) where ‖ · ‖ denotes the spectral norm and

d2 = max{d1, d2}. Therefore, it is convenient to consider λr �
√
d2. In this pa-

per, we focus on the consistency regime1 so that the empirical singular subspaces
are consistent which requires λr �

√
rd2. See, e.g., Tao (2012), Koltchinskii and

Xia (2016), Cai and Zhang (2018) and Vershynin (2010).
Our contributions are summarized as follows.

1. An explicit representation formula of Û ÛT and V̂ V̂ T is derived. In partic-
ular, Û ÛT and V̂ V̂ T can be completely determined by a sum of a series of
matrix product involving only Λ, UUT, U⊥U

T
⊥, V V T, V⊥V

T
⊥ and Z, where

U⊥ ∈ R
d1×(d1−r) and V ∈ R

d2×(d2−r) are chosen so that (U,U⊥) and
(V, V⊥) are orthonormal matrices. To derive such a useful representation
formula, we apply the Reisz formula, combinatoric formulas, contour inte-
grals, residue theorem and generalized Leibniz rule. It worths to point out
that the representation formula is deterministic as long as ‖Z‖ < λr/2.
We believe that this representation formula of spectral projectors should
be of independent interest for various purposes.

2. By the representation formula, we prove the normal approximation of
ε̂1 :=

(
dist2[(Û , V̂ ), (U, V )]−Edist2[(Û , V̂ ), (U, V )]

)
/
(√

8d�‖Λ−2‖F
)
where

d� = d1 + d2 − 2r. In particular, we show that ε̂1 converges to a standard
normal distribution as long as

√
rd2/λr → 0 and r3/d2 → 0 as d1, d2 →

∞. The required SNR is optimal in the consistency regime. Note that
our result allows r to diverge as fast as o((d1 + d2)

1/3). In addition, no
conditions on the eigen-gaps (except λr) are required. The convergence
rate is also established. The proof strategy is based on the Gaussian
isoperimetric inequality and Berry-Esseen theorem.

3. The unknown Edist2[(Û , V̂ ), (U, V )] plays the role of centering in ε̂1. To
derive user-friendly normal approximations of dist2[(Û , V̂ ), (U, V )], it suf-
fices to explicitly calculate its expectation (non-asymptotically). By the
representation formula of Û ÛT and V̂ V̂ T, we obtain approximations of
Edist2[(Û , V̂ ), (U, V )]. Different levels of approximating the expectation
ends up with different levels of bias corrections. These levels of approxi-
mations are

(a) Level-1 approximation: B1 = 2d�‖Λ−1‖2F. The approximation error
is ∣∣∣Edist2[(Û , V̂ ), (U, V )]−B1

∣∣∣ = O
(rd22
λ4
r

)
.

(b) Level-2 approximation: B2 = 2(d�‖Λ−1‖2F −Δ2
d‖Λ−2‖2F) where Δd =

d1 − d2. Then,∣∣∣Edist2[(Û , V̂ ), (U, V )]−B2

∣∣∣ = O
(rd32
λ6
r

)
.

1We note that, in RMT literature (see, e.g., Bao et al. (2018),Ding (2017)), many works
studied the problem when λr = O(

√
d2) and λr � (d1d2)1/4. In this paper, we focus on the

regime when empirical singular subspaces are consistent, i.e., Edist2[(Û , V̂ ), (U, V )] → 0 when
d2 → ∞. As shown in Cai and Zhang (2018), such consistency requires

√
rd2/λr → 0.
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(c) Level-k approximation:Bk = 2d�‖Λ−1‖2F−2
∑k

k0=2(−1)k0Δd(d
k0−1
1− −

dk0−1
2− )‖Λ−k0‖2F where d1− = d1 − r and d2− = d2 − r. Then, for all

k ≥ 2,

∣∣∣Edist2[(Û , V̂ ), (U, V )]−Bk

∣∣∣
=O

(r2d2
λ4
r

+
r2√
d2

·
(d2
λ2
r

)3

+ r
(C2d2

λ2
r

)k+1)

where C2 > 0 is some absolute constant.

The aforementioned approximation errors hold whenever C2d2/λ
2
r < 1.

Explicit formula for B∞ is also derived. An intriguing fact is that if
|d1 − d2| = O(

√
d2), i.e., the two dimensions of M are comparable, then

higher level approximations have similar effects as the Level-1 approxima-
tion. Simulation results show that Level-1 approximation by B1 is indeed
satisfactorily accurate when d1 = d2.

4. By replacing Edist2[(Û , V̂ ), (U, V )] with Bk, we prove the normal approx-
imation of dist2[(Û , V̂ ), (U, V )]. Different levels of bias corrections require
different levels of SNR conditions for the asymptotical normality. For in-
stance, we prove the normal approximation of ε̂2 :=

(
dist2[(Û , V̂ ), (U, V )]−

B�log d2�
)
/
(√

8d�‖Λ−2‖F
)
with the �log d2
-th order bias correction. More

exactly, we show the asymptotical normality of ε̂2 when
√
rd2/λr → 0

and r3/d2 → 0 as d1, d2 → ∞. As far as we know, this is the first re-
sult about the limiting distribution of singular subspaces which allows the
rank r to diverge. Meanwhile, no eigen-gap conditions (except SNR) are
needed. Since our normal approximation is non-asymptotical, we impose
no constraints on the relation between d1 and d2.

The rest of the paper is organized as follows. In Section 2, we derive the ex-
plicit representation formula of empirical spectral projector. The representa-
tion formula is established under deterministic perturbation. We prove normal
approximation of dist2[(Û , V̂ ), (U, V )] in Section 3. Especially, we show that
dist2[(Û , V̂ ), (U, V )] is asymptotically normal under optimal SNR conditions.
In Section 4 and 5, we develop the arbitrarily k-th level approximations of
Edist2[(Û , V̂ ), (U, V )] and its corresponding normal approximation, where re-
quirements for SNR are specifically developed. In Section 6, we propose con-
fidence regions and discuss about data-adaptive shrinkage estimator of sin-
gular values. We then display comprehensive simulation results in Section 7,
where, for instance, we show the importance of higher order approximations
of Edist2[(Û , V̂ ), (U, V )] when the matrix has unbalanced sizes and the effec-
tiveness of shrinkage estimation of singular values. The proofs are collected in
Section 8 and Appendix 8.
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2. Representation formula of spectral projectors

Let A andX be d×d symmetric matrices. The matrix A has rank r = rank(A) ≤
d. Denote the eigen-decomposition of A,

A = ΘΛΘT =
r∑

j=1

λjθjθ
T
j

where Λ = diag(λ1, · · · , λr) contains the non-zero non-increasing eigenvalues of
A. The d × r matrix Θ = (θ1, · · · , θr) consists of A’s eigenvectors. The noise

matrix X satisfies ‖X‖ < min1≤i≤r
|λi|
2 where ‖ · ‖ denotes the matrix operator

norm. Given Â = A+X where A and X are unknown, our goal is to estimate
Θ. We denote Θ̂ = (θ̂1, · · · , θ̂r) the d×r matrix containing the eigenvectors of Â
with largest r eigenvalues in absolute values. Therefore, Θ̂ represents the empir-
ical version of Θ. We derive the representation formula of Θ̂Θ̂T for deterministic
X. The formula is useful for various of purposes.

To this end, define Θ⊥ = (θr+1, · · · , θd) the d × (d − r) matrix such that
(Θ,Θ⊥) is orthonormal. Define the spectral projector,

P⊥ =

d∑
j=r+1

θjθ
T
j = Θ⊥Θ

T
⊥.

Also, define

P−1 :=

r∑
j=1

λ−1
j θjθ

T
j = ΘΛ−1ΘT.

Meanwhile, we write P−k = ΘΛ−kΘT for all k ≥ 1. For notational simplicity,
we denote P0 = P⊥ and denote the k-th order perturbation term

SA,k(X) =
∑

s:s1+···+sk+1=k

(−1)1+τ(s) ·P−s1XP−s2X · · ·XP−sk+1 (3)

where s = (s1, · · · , sk+1) contains non-negative integer indices and

τ(s) =

k+1∑
j=1

I(sj > 0)

denotes the number of positive indices in s. For instance, if k = 1, we have

SA,1(X) = P−1XP⊥ +P⊥XP−1.

If k = 2, by considering s1 + s2 + s3 = 2 for s1, s2, s3 ≥ 0 in (3), we have

SA,2(X) =
(
P−2XP⊥XP⊥ +P⊥XP−2XP⊥ +P⊥XP⊥XP−2

)
−
(
P⊥XP−1XP−1 +P−1XP⊥XP−1 +P−1XP−1XP⊥).
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Theorem 1. If ‖X‖ < min1≤i≤r
|λi|
2 , then

Θ̂Θ̂T −ΘΘT =
∑
k≥1

SA,k(X)

where SA,k(X) is defined in (3) and we set P0 = P⊥ = Θ⊥Θ
T
⊥ for notational

simplicity.

Apparently, by eq. (3), a simple fact is

∥∥SA,k(X)
∥∥ ≤

(
2k

k

)
· ‖X‖k

λk
r

≤
(4‖X‖

λr

)k

, ∀ k ≥ 1.

Compared with the famous Wedin’s and Davis-Kahan’s first-order (w.r.t. ‖X‖)
perturbation bound (Davis and Kahan, 1970; Wedin, 1972), Theorem 1 provides
a precise formula for the empirical spectral projector. For instance, we can
obtain the second-order approximation Θ̂Θ̂�−ΘΘ�−SA,1(X) and even higher
order approximations. The proof of Theorem 1 is based on complex analysis
of the resolvent, a technique has been used in Koltchinskii and Lounici (2016);
Xia (2019); Löffler et al. (2019). We note that our representation formula is
similar, in spirit, to the perturbation series of the spectral projector for a single
eigenvalue developed in Kato (2013). However, our formula is to investigate the
spectral projector for all eigenvalues jointly, which has recently become more
useful in low-rank methods.

3. Normal approximation of spectral projectors

Recall from (1) that M̂ = M + Z ∈ R
d1×d2 with M = UΛV T where U ∈ R

d1×r

and V ∈ R
d2×r satisfying UTU = Ir and V TV = Ir. The diagonal matrix

Λ = diag(λ1, · · · , λr) contains non-increasing positive singular values of M . Let
Û and V̂ be M̂ ’s top-r left and right singular vectors. We derive the normal
approximation of

dist2[(Û , V̂ ), (U, V )] = ‖Û ÛT − UUT‖2F + ‖V̂ V̂ T − V V T‖2F,

which is often called the (squared) projection distance on Grassmannians. To
this end, we clarify important notations which shall appear frequently through-
out the paper.

To apply the representation formula from Theorem 1, we turn M̂,M and Z
into symmetric matrices. For notational consistency, we create (d1+d2)× (d1+
d2) symmetric matrices as

Â =

(
0 M̂

M̂T 0

)
, A =

(
0 M

MT 0

)
and X =

(
0 Z
ZT 0

)
.

The model (1) is thus translated into Â = A+X. The symmetric matrix A has
eigenvalues λ1 ≥ · · · ≥ λr ≥ λ−r ≥ · · · ≥ λ−1 where λ−i = −λi for 1 ≤ i ≤ r.
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The eigenvectors corresponding to λi and λ−i are, respectively,

θi =
1√
2

(
ui

vi

)
and θ−i =

1√
2

(
ui

−vi

)
for 1 ≤ i ≤ r, where {ui}ri=1 and {vi}ri=1 are the columns of U and V . Here,
{θi}ri=1 may not be uniquely defined if the singular value λi has multiplicity
larger than 1. However, the spectral projector UUT and V V T are unique re-
gardless of the multiplicities of M ’s singular values.

Following the same routine of notations, we denote

Θ = (θ1, · · · , θr, θ−r, · · · , θ−1) ∈ R
(d1+d2)×2r

and Θ⊥ ∈ R
(d1+d2)×(d1+d2−2r) such that (Θ,Θ⊥) is an orthonormal matrix.

Then,

ΘΘT =
∑

1≤|j|≤r

θjθ
T
j =

(
UUT 0
0 V V T

)
and

Θ̂Θ̂T =
∑

1≤|j|≤r

θ̂j θ̂
T
j =

(
Û ÛT 0

0 V̂ V̂ T

)
where Û and V̂ represent M̂ ’s top-r left and right singular vectors. Similarly,
for all k ≥ 1, denote

P−k =
∑

1≤|j|≤r

1

λk
j

θjθ
T
j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
0 UΛ−kV T

V Λ−kUT 0

)
if k is odd

(
UΛ−kUT 0

0 V Λ−kV T

)
if k is even.

The orthogonal spectral projector is written as

P⊥ = Θ⊥Θ
T
⊥ =

(
U⊥U

T
⊥ 0

0 V⊥V
T
⊥

)
where (U,U⊥) and (V, V⊥) are orthonormal matrices. Actually, the columns of
Θ⊥ can be explicitly expressed by the columns of U⊥ and V⊥. Indeed, if we
denote the columns of Θ⊥ ∈ R

(d1+d2)×(d1+d2−2r) by

Θ⊥ = (θr+1, · · · , θd1 , θ−r−1, · · · , θ−d2)

, then we can write

θj1 =

(
uj1

0

)
and θ−j2 =

(
0
vj2

)
for r + 1 ≤ j1 ≤ d1 and r + 1 ≤ j2 ≤ d2.
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By the above notations, it is clear that

dist2[(Û , V̂ ), (U, V )] = ‖Θ̂Θ̂T −ΘΘT‖2F.

It suffices to prove the normal approximation of ‖Θ̂Θ̂T −ΘΘT‖2F. Observe that

‖|Θ̂Θ̂T −ΘΘT‖2F =4r − 2
〈
ΘΘT, Θ̂Θ̂T

〉
= −2

〈
ΘΘT, Θ̂Θ̂T −ΘΘT

〉
.

By Theorem 1 and ΘΘTP⊥ = 0, we can write

dist2[(Û , V̂ ), (U, V )] =− 2
∑
k≥2

〈
ΘΘT,SA,k(X)

〉
=2‖P⊥XP−1‖2F − 2

∑
k≥3

〈
ΘΘT,SA,k(X)

〉
. (4)

where we used the fact P⊥P⊥ = P⊥ so that

−2
〈
ΘΘT,SA,2

〉
=2

〈
ΘΘT,P−1XP⊥XP−1

〉
=2tr

(
P−1XP⊥XP−1

)
= 2‖P⊥XP−1‖2F.

We prove CLT of dist2[(Û , V̂ ), (U, V )] with an explicit normalizing factor. With-
out loss of generality, we assume d1 ≤ d2 hereafter.

Theorem 2. Suppose d2 ≥ 3r where d2 = max{d1, d2}. There exist absolute
constants C1, C2 > 0 such that if λr ≥ C1

√
d2, then for any s ≥ 1,

sup
x∈R

∣∣∣∣P(dist2[(Û , V̂ ), (U, V )]− E dist2[(Û , V̂ ), (U, V )]√
8d�‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣
≤ C2s

1/2
( √

r

‖Λ−2‖Fλ2
r

)
· (rd2)

1/2

λr
+ e−s + C2

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

,

where d� = d1 + d2 − 2r and Φ(x) denotes the c.d.f. of standard normal distri-
butions. By setting s = λr√

rd2
, we conclude that

sup
x∈R

∣∣∣∣P(dist2[(Û , V̂ ), (U, V )]− E dist2[(Û , V̂ ), (U, V )]√
8d�‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣
≤ C2

( √
r

‖Λ−2‖Fλ2
r

)
·

√
(rd2)1/2

λr
+ C2

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

.

By Theorem 2, the asymptotical normality holds as long as

( √
r

‖Λ−2‖Fλ2
r

)
·

√
(rd2)1/2

λr
→ 0 and

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

→ 0 (5)

as d1, d2 → ∞. If
√
r = O(λ2

r‖Λ−2‖F), then the first condition in (5) is equiv-

alent to
√
rd2

λr
→ 0. Such SNR condition is optimal in the consistency regime.



Normal approximation of SVD 3807

In addition, Cauchy-Schwartz inequality implies that ‖Λ−1‖4F ≤ r · ‖Λ−2‖2F.
Therefore, the second condition in (5) holds when

r3

d2
→ 0 as d1, d2 → ∞.

Therefore, r is allowed to grow as fast as o
(
(d1 + d2)

1/3
)
.

Remark 1. The normalization factor
√
8d�‖Λ−2‖F comes from the fact

Var
(
2‖P−1XP⊥‖2F

)
= 8d�‖Λ−2‖2F.

Clearly, this conclusion relies on the Gaussian assumption. If the entries of
Z are not Gaussian, this variance should involve the kurtosis of the unknown
distribution. The unknown kurtosis makes the data-driven statistical inference
even more challenging. Finally, we remark by the proof of Theorem 2 that no
constraints between d1 and d2 are needed.

Note that Edist2[(Û , V̂ ), (U, V )] in Theorem 2 is not transparent yet. Cal-
culating Edist2[(Û , V̂ ), (U, V )] needs delicate analysis. If we approximate this
expectation by its leading term 2E‖P−1XP⊥‖2F, we obtain

E dist2[(Û , V̂ ), (U, V )] = [2 + o(1)] · d�‖Λ−1‖2F.

The primary subject of section 4 is to approximate Edist2[(Û , V̂ ), (U, V )] to a
higher accuracy.

4. Approximating the bias

Recall (4), we have

E dist2[(Û , V̂ ), (U, V )] = 2E‖P⊥XP−1‖2F − 2
∑
k≥2

E
〈
ΘΘT,SA,2k(X)

〉
where we used the fact E SA,2k+1(X) = 0 for any positive integer k ≥ 1. We aim
to determine E‖P⊥XP−1‖2F and E

〈
ΘΘT,SA,2k(X)

〉
for all k ≥ 2. Apparently,

by obtaining explicit formulas of E
〈
ΘΘT,SA,2k(X)

〉
for larger ks, we end up

with more precise approximation of E dist2[(Û , V̂ ), (U, V )]. In Lemma 1-3, we
provide arbitrarily k-th order approximation of the bias.

Lemma 1 (First order approximation). The following equation holds

E‖P⊥XP⊥‖2F = d�‖Λ−1‖2F
where d� = d1 + d2 − 2r. Moreover, if λr ≥ C1

√
d2 for some large enough

constant C1 > 0, then∣∣∣E dist2[(Û , V̂ ), (U, V )]− 2d�‖Λ−1‖2F
∣∣∣ ≤ C2r

(d2
λ2
r

)2

where C2 > 0 is an absolute constant (depending on the constant C1).
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In Lemma 2, we calculate E
〈
ΘΘT,SA,4(X)

〉
. It yields the second order ap-

proximation of E dist2[(Û , V̂ ), (U, V )].

Lemma 2 (Second order approximation). The following fact holds∣∣∣E〈ΘΘT,SA,4(X)
〉
−Δ2

d‖Λ−2‖2F
∣∣∣ ≤ C2

r2d2
λ4
r

where d� = d1 + d2 − 2r and Δd = d1 − d2 and C2 is an absolute constant.
Moreover, if λr ≥ C1

√
d2 for some large enough constant C1 > 0, then∣∣∣E dist2[(Û , V̂ ), (U, V )]− 2

(
d�‖Λ−1‖2F−Δ2

d‖Λ−2‖2F
)∣∣∣

≤ C1
r2d2
λ4
r

+ C2r
(d2
λ2
r

)3

where C2, C3 > 0 are absolute constants (depending on C1).

In general, we calculate the arbitrary k-th order approximation in Lemma 3.
Recall that d1− = d1 − r and d2− = d2 − r.

Lemma 3 (Arbitrary k-th order approximation). For a positive integer k ≥ 2
and

√
d2 ≥ log2 d2 and e−c1d2 ≤ 1√

d2
, the following fact holds∣∣∣E〈ΘΘT,SA,2k(X)

〉
− (−1)k(dk−1

1− − dk−1
2− )(d1− − d2−)‖Λ−k‖2F

∣∣
≤ C1(r

2 + k)√
d2

·
(C2d2

λ2
r

)k

where c1, C1, C2 > 0 are some absolute constants. Then, the following bound
holds ∣∣∣E dist2[(Û , V̂ ), (U, V )]−Bk

∣∣∣
≤C4

r2d2
λ4
r

+
C5r

2

√
d2

·
(d2
λ2
r

)3

+ C6r
(C3d2

λ2
r

)k+1

where C3, C4, C5, C6 are some absolute constants and Bk is defined by

Bk = 2d�‖Λ−1‖2F − 2

k∑
k0=2

(−1)k0(dk0−1
1− − dk0−1

2− )(d1− − d2−)‖Λ−k0‖2F. (6)

The second and higher order terms involve the dimension difference Δd =
d1 − d2. If d1 = d2, these higher order approximations essentially have similar
effects as the first order approximation.

Remark 2. By choosing k = �log d2
 so that (C3d2/λ
2
r)

k+1 � (d2/λ
2
r)

3/
√
d2,

we get ∣∣∣E dist2[(Û , V̂ ), (U, V )]−B�log d2�

∣∣∣ ≤ C4
r2d2
λ4
r

+ C5
r2√
d2

·
(d2
λ2
r

)3

for some absolute constants C4, C5 > 0. In addition, for each 1 ≤ j ≤ r, we
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have

2d1−λ
−2
j − 2

∞∑
k=2

(−1)k(d1− − d2−)d
k−1
1− λ−2k

j =
2d1−(λ

2
j + d2−)

λ2
j (λ

2
j + d1−)

which matches E‖ûj û
T
j − uju

T
j ‖2F developed in (Bao et al., 2018, Theorem 2.9)

if min{λj − λj+1, λj−1 − λj} is bounded away from 0 and r is fixed. Similarly,
we have

2d2−λ
−2
j − 2

∞∑
k=2

(−1)k(d2− − d1−)d
k−1
2− λ−2k

j =
2d2−(λ

2
j + d1−)

λ2
j (λ

2
j + d2−)

which matches E‖v̂j v̂Tj − vjv
T
j ‖2F developed in (Bao et al., 2018, Theorem 2.3).

Compared with Bao et al. (2018), our results are non-asymptotical. We impose
no eigen-gap conditions and no upper bounds on r.

Remark 3. The proof of Lemma 3 imply that if λr ≥ C1

√
d2, then

E‖Û ÛT − UUT‖2F = 2
r∑

j=1

d1−(λ
2
j + d2−)

λ2
j (λ

2
j + d1−)

+O
(r2d2

λ4
r

+
r2√
d2

· d
3
2

λ6
r

)
and

E‖V̂ V̂ T − V V T‖2F = 2

r∑
j=1

d2−(λ
2
j + d1−)

λ2
j (λ

2
j + d2−)

+O
(r2d2

λ4
r

+
r2√
d2

· d
3
2

λ6
r

)
.

5. Normal approximation after bias corrections

In this section, we prove the normal approximation of dist2[(Û , V̂ ), (U, V )] with
explicit centering and normalizing terms. By Theorem 2, it suffices to substitute
E dist2[(Û , V̂ ), (U, V )] with the explicit formulas from Lemma 1-3.

Similarly as in Section 4, we consider arbitrarily k-th levels of bias corrections
for dist2[(Û , V̂ ), (U, V )]. Higher order bias corrections, while involving more
complicate bias reduction terms, require lower levels of SNR to guarantee the
asymptotical normality. For instance, the first order bias correction in Theorem 3

requires λr �
√
rd

3/2
2 for asymptotical normality, while the �log d2
-th order

bias correction in Theorem 4 only requires optimal λr �
√
rd2 for asymptotical

normality. Again, the rank r is allowed to diverge as fast as o
(
(d1 + d2)

1/3
)
.

Theorem 3 (First order CLT). Suppose d2 ≥ 3r. There exist absolute constants
C1, C2, C3 > 0 such that if λr ≥ C1

√
d2, then,

sup
x∈R

∣∣∣∣P(dist2[(Û , V̂ ), (U, V )]−B1√
8d�‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣
≤C2

( √
r

‖Λ−2‖Fλ2
r

)
·

√
(rd2)1/2

λr
+ C2

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

+ C3
rd

3/2
2

λ2
r

,

where d� = d1 + d2 − 2r and B1 is defined by (6).
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By Theorem 3, we conclude that

dist2[(Û , V̂ ), (U, V )]− 2d�‖Λ−1‖2F√
8d�‖Λ−2‖F

d−→ N (0, 1)

as d1, d2 → ∞ if
√
r = O(‖Λ−2‖Fλ2

r) and

√
rd2 +

√
rd

3/2
2

λr
→ 0 and

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

→ 0.

The above conditions require λr �
√
rd

3/2
2 and r3 � d2. The order d

3/4
2 is

larger than the optimal rate
√
d2. It is improvable if we apply higher order bias

corrections.

Theorem 4 (Arbitrary k-th order CLT). Suppose that d2 ≥ 3r and k ≥ 3.
There exist absolute constants C0, C1, C2, C3 > 0 such that if λr ≥ C1

√
d2,

then,

sup
x∈R

∣∣∣∣P(dist2[(Û , V̂ ), (U, V )]−Bk√
8d�‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣ ≤ C2

( √
r

‖Λ−2‖Fλ2
r

)
·

√
(rd2)1/2

λr

+ C0
r2
√
d2

λ2
r

+ C2

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

+ C1
r2d22
λ4
r

+ C2r
√
d2 ·

(C3d2
λ2
r

)k

,

where Bk is defined by (6).

Tthe asymptotical normality of
(
dist2[(Û , V̂ ), (U, V )]−Bk

)
/
√
8d�‖Λ−2‖F re-

quires √
rd2 + rd

1/4
2 +

√
d2 · (r2d2)1/4k

λr
→ 0

as d1, d2 → ∞ when
√
r = O(‖Λ−2‖Fλ2

r). By choosing k = �log d2
, it boils
down to

√
rd2/λr → 0 which is optimal in the consistency regime. Similarly

as in Theorem 2, the condition (‖Λ−1‖4F/‖Λ−2‖2F)3/2/
√
d2 → 0 requires that

r3/d2 → 0 as d1, d2 → ∞.

Remark 4. To avoid computing the sum of k terms in Bk (6), it suffices to
apply B∞ which by Remark 2 is

B∞ = 2

r∑
j=1

1

λ2
j

(
d1− ·

λ2
j + d2−

λ2
j + d1−

+ d2− ·
λ2
j + d1−

λ2
j + d2−

)
.

By setting k = ∞ in Theorem 4, we obtain

dist2[(Û , V̂ ), (U, V )]−B∞√
8d�‖Λ−2‖F

→ N (0, 1)

as long as
√
rd2/λr → 0 and r3/d2 → 0 when d1, d2 → ∞.
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We note that it is also possible to develop the asymptotic distribution for
the one-sided singular vectors ‖Û Û� − UU�‖2F and ‖V̂ V̂ � − V V �‖2F. For that
purpose, some treatments should be adjusted and the proof has to be modified
accordingly. We leave it as a future work.

6. Data-driven Confidence regions of singular subspaces

By the normal approximation of dist2[(Û , V̂ ), (U, V )] in Theorem 4, we construct
confidence regions of U and V . The confidence regions of (U, V ) attain the pre-
determined confidence level asymptotically. In the asymptotic scheme, we shall
consider d1, d2 → ∞. Therefore, the parameters r(d1,d2), U (d1,d2), V (d1,d2) and
Λ(d1,d2) also depend on d1, d2. For notational simplicity, we omit the superscripts
(d1, d2) without causing confusions.

In particular, we set k = �log d2
 in Theorem 4 and get

dist2[(Û , V̂ ), (U, V )]−B�log d2�√
8d�‖Λ−2‖F

d−→ N (0, 1)

as d1, d2 → +∞ when
√
r = O(λ2

r‖Λ−2‖F) and

lim
d1,d2→∞

max

{√
rd2 + rd

1/4
2

λr
+

(
‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

}
= 0. (7)

We define the confidence region based on (Û , V̂ ) by

Mα(Û , V̂ ) :=

{
(L,R) : L ∈ R

d1×r, R ∈ R
d2×r, LTL = RTR = Ir

,
∣∣dist2[(L,R), (Û , V̂ )]−B�log d2�

∣∣ ≤ √
8d�zα/2‖Λ−2‖F

}
where zα denotes the critical value of standard normal distribution, i.e., zα =
Φ−1(1− α). Theorem 5 follows immediately from Theorem 4.

Theorem 5. Suppose that conditions in Theorem 4 hold. Then, for any α ∈
(0, 1), we get

∣∣∣P((U, V ) ∈ Mα(Û , V̂ )
)
− (1− α)

∣∣∣ ≤ C1

√
r

λ2
r‖Λ−2‖F

·

√
(rd2)1/2

λr

+ C2

(
‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

+ C3
r2
√
d2

λ2
r

+ C4
r2d22
λ4
r

for some absolute constants C1, C2, C3, C4 > 0. If condition (7) holds, then

lim
d1,d2→∞

P

(
(U, V ) ∈ Mα(Û , V̂ )

)
= 1− α.
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Remark 5. We can also simply replace B�log d2� with B∞ and Theorem 5 still
holds under the same conditions.

Note that Λ is usually unknown. An immediate choice is the empirical sin-
gular values Λ̂ = diag(λ̂1, · · · , λ̂r), i.e., top-r singular values of M̂ . It is well

known that {λ̂j}rj=1 are biased estimators of {λj}rj=1. See (Benaych-Georges
and Nadakuditi, 2012) and (Ding, 2017) for more details. The results of Section
3.1 in (Benaych-Georges and Nadakuditi, 2012) show, under the condition d1/d2
converges to α ∈ (0, 1], that

λ̂2
j

d2

a.s.−→
(1 + λ2

j/d2)(d1/d2 + λ2
j/d2)

λ2
j/d2

, as d2 → ∞ (8)

for all j = 1, · · · , r. The square root of RHS of (8) is called the class loca-
tion of the empirical singular value. Bound (8) inspires the following shrinkage
estimator of λ2

j :

λ̃2
j =

λ̂2
j − (d1 + d2)

2
+

√
(λ̂2

j − (d1 + d2))2 − 4d1d2

2
for all 1 ≤ j ≤ r. (9)

By replacing Λ with data-dependent estimates Λ̃ = diag(λ̃1, · · · , λ̃r), we define

B̃k = 2d∗‖Λ̃−1‖2F − 2
k∑

k0=2

(−1)k0(dk0−1
1− − dk0−1

2− )(d1− − d2−)‖Λ̃−k0‖2F

and similarly

B̃∞ = 2

r∑
j=1

1

λ2
j

(
d1− ·

λ2
j + d2−

λ2
j + d1−

+ d2− ·
λ2
j + d1−

λ2
j + d2−

)
.

To this end, we define the data-driven confidence region based on (Û , V̂ ) by

M̂α(Û , V̂ ) :=

{
(L,R) : L ∈ R

d1×r, R ∈ R
d2×r, LTL = RTR = Ir

,
∣∣dist2[(L,R), (Û , V̂ )]− B̃�log d2�

∣∣ ≤ √
8d�zα/2‖Λ̃−2‖F

}
.

Theorem 6. Suppose that conditions in Theorem 4 and (7) hold, and r = O(1).
Then, for any α ∈ (0, 1), we have

lim
d1,d2→∞

P

(
(U, V ) ∈ M̂α(Û , V̂ )

)
= 1− α.

By Theorem 6, the data-driven confidence region M̂α(Û , V̂ ) is a valid con-
fidence region asymptotically. For simplicity, we only consider the case of fixed
ranks. We remark that Theorem 6 still holds if we replace B̃�log d2� with B̃∞.
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7. Numerical experiments

For all the simulation cases considered below, we choose the rank r = 6 and
the singular values are set as λi = 2r−i · λ for i = 1, · · · , r for some positive
number λ. As a result, the signal strength is determined by λ. The true singular
vectors U ∈ R

d1×r and V ∈ R
d2×r are computed from the left and right singular

subspaces of a d1 × d2 Gaussian random matrix.

7.1. Higher order approximations of bias and normal approximation

In Simulation 1, we show the effectiveness of approximating Edist2[(Û , V̂ ), (U, V )]
by the first order approximation 2d�‖Λ−1‖2F where d� = d1 + d2 − 2r. Mean-
while, we show the inefficiency of first order approximation when |d1 − d2| �
min(d1, d2). In Simulation 2, we demonstrate the benefits of higher order ap-
proximations when |d1 − d2| � min(d1, d2).

Simulation 1. In this simulation, we study the accuracy of first order ap-
proximation and its relevance with Δd = d1 − d2. First, we set d1 = d2 = d
where d = 100, 200, 300. The signal strength λ is chosen as 30, 30.5, · · · , 40. For
each given λ, the first order approximation 2d�‖Λ−1‖2F is recorded. To obtain

Edist2[(Û , V̂ ), (U, V )], we repeat the experiments for 500 times for each λ and the
average of dist2[(Û , V̂ ), (U, V )] is recorded, which denotes the simulated value
of Edist2[(Û , V̂ ), (U, V )]. We compare the simulated Edist2[(Û , V̂ ), (U, V )] with
2d�‖Λ−1‖2F, which is displayed in Figure 1(a). Since d1 = d2 = d, the first order
approximation has similar effect as higher order approximation which is verified
by Figure 1(a). Second, we set d1 = d2

2 = d for d = 100, 200, 300. As a result,
Δd = d2−d1 = d which is significantly large. Similar experiments are conducted
and the results are displayed in Figure 1(b), which clearly shows that first or-
der approximation is insufficient to estimate Edist2[(Û , V̂ ), (U, V )]. Therefore,
if |d1 − d2| � 0, we need higher order approximation of Edist2[(Û , V̂ ), (U, V )].

Simulation 2. In this simulation, we study the effects of higher order ap-
proximations when |d1 − d2| � 0. More specifically, we choose d1 = 500 and
d2 = 1000. The signal strength λ = 50, 51, · · · , 60. For each λ, we repeat the
experiments for 500 times producing 500 realizations of dist2[(Û , V̂ ), (U, V )]
whose average is recorded as the simulated Edist2[(Û , V̂ ), (U, V )]. Meanwhile,
for each λ, we record the 1st-4th order approximations B1, B2, B3 and B4 which
are defined by (6). All the results are displayed in Figure 2. It verifies that
higher order bias corrections indeed improve the accuracy of approximating
Edist2[(Û , V̂ ), (U, V )]. It also shows that the 1st and 3rd order approximations
over-estimate Edist2[(Û , V̂ ), (U, V )]; while, the 2nd and 4th order approxima-
tions under-estimate Edist2[(Û , V̂ ), (U, V )].

Simulation 3. We apply higher order approximations and show the normal
approximation of

(
dist2[(Û , V̂ ), (U, V )]−Bk

)
/
√
8d�‖Λ−2‖F when d1 = 100, d2 =

600 and rank r = 6. We fixed the signal strength λ = 50. The density histogram
is based on 5000 realizations from independent experiments. We consider 1st-4th
order approximations, denoted by {Bk}4k=1. More specifically,

B1 = 2d�‖Λ−1‖2F, and B2 = 2(d�‖Λ−1‖2F −Δ2
d‖Λ−2‖2F)
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Fig 1. Comparison between Edist2[(Û , V̂ ), (U, V )] and the first order approximation:
2d�‖Λ−1‖2F. It verifies that the accuracy of first order approximation depends on the di-
mension difference Δd = d1 − d2. Here the red curves represent the simulated mean
Edist2[(Û , V̂ ), (U, V )] based on 500 realizations of dist2[(Û , V̂ ), (U, V )]. The blue curves are
the theoretical first order approximations 2d�‖Λ−1‖2F based on Lemma 1. The above left figure
clearly shows that first order approximation is accurate if d1 = d2.

and

B3 = 2(d�‖Λ−1‖2F −Δ2
d‖Λ−2‖2F + d�Δ

2
d‖Λ−3‖2F)

and

B4 = 2
(
d�‖Λ−1‖2F −Δ2

d‖Λ−2‖2F + d�Δ
2
d‖Λ−3‖2F − (d31− − d32−)Δd‖Λ−4‖2F

)
.

The results are shown in Figure 3. This experiment aims to demonstrate the
necessity of higher order bias corrections. Indeed, by the density histograms in
Figure 3, the first and second order bias corrections are not sufficiently strong to
guarantee the normal approximations, at least when λ ≤ 50, where the density
histograms either shift leftward or rightward compared with the standard normal
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Fig 2. The higher order approximations of Edist2[(Û , V̂ ), (U, V )]. The simulated

mean represents Edist2[(Û , V̂ ), (U, V )] calculated by the average of 500 realizations of

dist2[(Û , V̂ ), (U, V )]. The 1st order approximation is 2d�‖Λ−1‖2F; 2nd order approxima-
tion is 2(d�‖Λ−1‖2F − Δ2

d‖Λ−2‖2F), 3rd order approximation is 2(d�‖Λ−1‖2F − Δ2
d‖Λ−2‖2F +

d�Δ2
d‖Λ−3‖2F) and 4th order approximation is 2(d�‖Λ−1‖2F − Δ2

d‖Λ−2‖2F + d�Δ2
d‖Λ−3‖2F −

(d2� − d1−d2−)Δ2
d‖Λ−4‖2F) where Δd = d1 − d2, d1− = d1 − r, d2− = d2 − r and

d� = d1− + d2− with r = 6. Clearly, the 3rd and 4th order approximations are already
close to the simulated mean. We observe that the 1st and 3rd order approximations over-
estimate Edist2[(Û , V̂ ), (U, V )]; while, the 2nd and 4th order approximations under-estimate

Edist2[(Û , V̂ ), (U, V )].

curve. On the other hand, after third or fourth order corrections, the normal
approximation is very satisfactory at the same level of signal strength λ = 50.

7.2. Normal approximation with data-dependent bias corrections

Next, we show normal approximations of dist2[(Û , V̂ ), (U, V )] with data-depen-
dent bias corrections and normalization factors.
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Fig 3. Normal approximation of
dist2[(Û,V̂ ),(U,V )]−Bk√

8d�‖Λ−2‖F
with higher order bias corrections when

d1 = 100, d2 = 600 and r = 6. The density histogram is based on 5000 realizations from
independent experiments. The red curve presents p.d.f. of standard normal distributions. Since
|d1 − d2| � 0, this experiment demonstrates the necessity of higher order bias corrections.

The bias correction B̂k can be 1st -4th order bias corrections.

Simulation 4. We apply the 1st order approximation and show normal ap-
proximation of

(
dist2[(Û , V̂ ), (U, V )] − 2d�‖Λ̂−1‖2F

)
/
√
8d�‖Λ̂−2‖F when d1 =

d2 = 100 and r = 6. Here, Λ̂ = diag(λ̂1, · · · , λ̂r) denotes the top-r empirical sin-
gular values of M̂ . The signal strength λ = 25, 50, 65, 75. For each λ, we record(
dist2[(Û , V̂ ), (U, V )]−2d�‖Λ̂−1‖2F

)
/
√
8d�‖Λ̂−2‖F from 5000 thousand indepen-

dent experiments and draw the density histogram. The p.d.f. of standard normal
distribution is displayed by the red curve. The results are shown in Figure 4.
Since each λ̂j over-estimates the true λj , the bias correction 2d�‖Λ̂−1‖2F is not
sufficiently significant. It explains why the density histograms shift rightward
compared with the standard normal curve, especially when signal strength λ is
moderately strong.
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Fig 4. Normal approximation of
dist2[(Û,V̂ ),(U,V )]−2d�‖Λ̂−1‖2F√

8d�‖Λ̂−2‖F
with d1 = d2 = 100 and r =

6. The density histogram is based on 5000 realizations from independent experiments. The
empirical singular values Λ̂ = diag(λ̂1, · · · , λ̂r) are calculated from M̂ . The red curve presents

p.d.f. of standard normal distributions. Since λ̂j over-estimates λj , it explains why the density
histogram shifts to the right compared with the standard normal curve, especially when signal
strength λ is not significantly strong.

Simulation 5. We apply the 1st order approximation and show normal ap-
proximation of

(
dist2[(Û , V̂ ), (U, V )] − 2d�‖Λ̃−1‖2F

)
/
√
8d�‖Λ̃−2‖F when d1 =

d2 = 100 and r = 6. Here, Λ̃ = diag(λ̃1, · · · , λ̃r) denotes the top-r shrinkage
estimators of λjs as in (9). The signal strength λ = 25, 50, 65, 75. For each λ, we

record
(
dist2[(Û , V̂ ), (U, V )]−2d�‖Λ̃−1‖2F

)
/
√
8d�‖Λ̃−2‖F from 5000 thousand in-

dependent experiments and draw the density histogram. The results are shown
in Figure 5. In comparison with Simulation 4 and Figure 4, we conclude that
2d�‖Λ̃−1‖2F works better than 2d�‖Λ̂−1‖2F for bias corrections. Indeed, normal

approximation of
(
dist2[(Û , V̂ ), (U, V )] − 2d�‖Λ̃−1‖2F

)
/
√
8d�‖Λ̃−2‖F is already

satisfactory when signal strength λ = 35, compared with λ ≥ 75 when Λ̂ is used.
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Fig 5. Normal approximation of
dist2[(Û,V̂ ),(U,V )]−2d�‖Λ̃−1‖2F√

8d�‖Λ̃−2‖F
with d1 = d2 = 100 and

r = 6. The density histogram is based on 5000 realizations from independent experiments.
The shrinkage estimators Λ̃ = diag(λ̃1, · · · , λ̃r) are calculated as eq. (9). The red curve
presents p.d.f. of standard normal distributions. Since d1 = d2, we apply first order bias
corrections to dist2[(Û , V̂ ), (U, V )]. In comparison with Simulation 4 and Figure 4 where Λ̂

is used instead of Λ̃, we conclude that 2d�‖Λ̃−1‖2F is more accurate than 2d�‖Λ̂−1‖2F for

bias corrections. Indeed, we see that normal approximation of
dist2[(Û,V̂ ),(U,V )]−2d�‖Λ̃−1‖2F√

8d�‖Λ̃−2‖F
is already satisfactory when signal strength λ = 35.

8. Proofs

We only provide the proof of Theorem 1 in this section. Proofs of other theorems
are collected in the supplementary file.

8.1. Proof of Theorem 1

For notational simplicity., we assume λi > 0 for 1 ≤ i ≤ r, i.e., the matrix
A is positively semidefinite. The proof is almost identical if A has negative
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eigenvalues. Indeed, if there exist negative eigenvalues, we should also construct
a contour plot which includes those negative eigenvalues.

Since A is positively semidefinite, we have min1≤i≤r |λi| = λr. The condition

in Theorem 1 is equivalent to λr > 2‖X‖. Recall that {λ̂i, θ̂i}di=1 denote the

singular values and singular vectors of Â. Define the following contour plot γA
on the complex plane (shown as in Figure 6):

Fig 6. The contour plot γA which includes {λ̂i, λi}ri=1 leaving out 0 and {λ̂i}di=r+1.

, where the contour γA is chosen such that minη∈γA
min1≤i≤r |η − λi| = λr

2 .

Weyl’s lemma implies that max1≤i≤r |λ̂i−λi| ≤ ‖X‖. We observe that, when

‖X‖ < λr

2 , all {λ̂i}ri=1 are inside the contour γA while 0 and {λ̂i}di=r+1 are
outside of the contour γA. By Cauchy’s integral formula, we get

1

2πi

∮
γA

(ηI − Â)−1dη =

r∑
i=1

1

2πi

∮
γA

dη

η − λ̂i

(θ̂iθ̂
T
i ) +

d∑
i=r+1

1

2πi

∮
γA

dη

η − λ̂i

(θ̂iθ̂
T
i )

=

r∑
i=1

θ̂iθ̂
T
i = Θ̂Θ̂T.

As a result, we have

Θ̂Θ̂T =
1

2πi

∮
γA

(ηI − Â)−1dη. (10)

Note that

(ηI − Â)−1 = (ηI −A−X)−1 =
[
(ηI −A)

(
I −RA(η)X

)]−1

=
(
I −RA(η)X

)−1RA(η)

where RA(η) := (ηI −A)−1. clearly∥∥RA(η)X
∥∥ ≤ ‖RA(η)‖‖X‖ ≤ 2‖X‖

λr
< 1.

Therefore, we write the Neumann series:(
I −RA(η)X

)−1
= I +

∑
j≥1

[RA(η)X]j . (11)

By (11) and (10), we get

Θ̂Θ̂T =
1

2πi

∮
γA

(ηI − Â)−1dη
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=
1

2πi

∮
γA

RA(η)dη +
∑
j≥1

1

2πi

∮
γA

[
RA(η)X

]jRA(η)dη.

Clearly, 1
2πi

∮
γA

RA(η)dη = ΘΘT, we end up with

Θ̂Θ̂T −ΘΘT = SA(X) :=
∑
j≥1

1

2πi

∮
γA

[
RA(η)X

]jRA(η)dη.

For k ≥ 1, we define

SA,k(X) =
1

2πi

∮
γA

[
RA(η)X

]kRA(η)dη (12)

which is essentially the k-th order perturbation. Therefore, we obtain

Θ̂Θ̂T −ΘΘT =
∑
k≥1

SA,k(X). (13)

By (13), it suffices to derive explicit expression formulas for {SA,k(X)}k≥1.
Before dealing with general k, let us derive SA,k(X) for k = 1, 2 to interpret the
shared styles.

To this end, we denote Ir the r × r identity matrix and write

RA(η) = Θ(η · Ir − Λ)−1ΘT + η−1Θ⊥Θ
T
⊥ =

d∑
j=1

1

η − λj
θjθ

T
j

where we set λj = 0 for all r + 1 ≤ j ≤ d. Denote Pj = θjθ
T
j for all 1 ≤ j ≤ d

which represents the spectral projector onto θj .

Derivation of SA,1(X). By the definition of SA,1(X),

SA,1(X) =
1

2πi

∮
γA

RA(η)XRA(η)dη

=

d∑
j1=1

d∑
j2=1

1

2πi

∮
γA

dη

(η − λj1)(η − λj2)
Pj1XPj2 . (14)

Case 1: both j1 and j2 are greater than r. In this case, the contour integral in
(14) is zero by Cauchy integral formula.
Case 2: only one of j1 and j2 is greater than r. W.L.O.G, let j2 > r, we get

r∑
j1=1

d∑
j2>r

1

2πi

∮
γA

η−1dη

η − λj1

Pj1XPj2 =

r∑
j1=1

∑
j2>r

λ−1
j1

Pj1XPj2 = P−1XP⊥.

Case 3: none of j1 and j2 is greater than r. Clearly, the contour integral in (14)
is zero.

To sum up, we conclude with SA,1(X) = P−1XP⊥ +P⊥XP−1.
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Derivation of SA,2(X). By the definition of SA,2(X),

SA,2(X) =
1

2πi

∮
γA

RA(η)XRA(η)XRA(η)dη

=

d∑
j1=1

d∑
j2=1

d∑
j3=1

1

2πi

∮
γA

dη

(η − λj1)(η − λj2)(η − λj3)
Pj1XPj2XPj3 .

(15)

Case 1: all j1, j2, j3 are greater than r. The contour integral in (15) is zero by
Cauchy integral formula.
Case 2: two of j1, j2, j3 are greater than r. W.L.O.G., let j1 ≤ r and j2, j3 > r,
we get

r∑
j1=1

d∑
j2,j3>r

1

2πi

∮
γA

η−2dη

η − λj1

Pj1XPj2XPj3

=

r∑
j1=1

d∑
j2,j3>r

1

λ2
j1

Pj1XPj2XPj3 = P−2XP⊥XP⊥.

Case 3: one of j1, j2, j3 is greater than r. W.L.O.G., let j1, j2 ≤ r and j3 > r,
we get

r∑
j1,j2=1

d∑
j3>r

1

2πi

∮
γA

η−1dη

(η − λj1)(η − λj2)
Pj1XPj2XPj3

=

r∑
j1=j2=1

d∑
j3>r

1

2πi

∮
γA

η−1dη

(η − λj1)
2
Pj1XPj1XPj3

+

r∑
j1 
=j2≥1

d∑
j3>r

1

2πi

∮
γA

η−1dη

(η − λj1)(η − λj2)
Pj1XPj2XPj3

=−
r∑

j1=1

λ−2
j1

Pj1XPj1XP⊥ −
r∑

j1 
=j2≥1

(λj1λj2)
−1Pj1XPj2XP⊥

=−P−1XP−1XP⊥.

Case 4: none of j1, j2, j3 is greater than r. Clearly, the contour integral in (15)
is zero.

To sum up, we obtain

SA,2(X) =
(
P−2XP⊥XP⊥ +P⊥XP−2XP⊥ +P⊥XP⊥XP−2

)
−
(
P⊥XP−1XP−1 +P−1XP⊥XP−1 +P−1XP−1XP⊥).
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Derivation of SA,k(X) for general k. Recall the definition of SA,k(X), we
write

SA,k(X) =

d∑
j1,··· ,jk+1≥1

1

2πi

∮
γA

( k+1∏
i=1

1

η − λji

)
dηPj1XPj2X · · ·PjkXPjk+1

.

(16)

We consider components of summations in (16). For instance, consider the cases
that some k1 indices from {j1, · · · , jk+1} are not larger than r. W.L.O.G., let
j1, · · · , jk1 ≤ r and jk1+1, · · · , jk+1 > r. By Cauchy integral formula, the inte-
gral in (16) is zero if k1 = 0 or k1 = k+1. Therefore, we only focus on the cases
that 1 ≤ k1 ≤ k. Then,

r∑
j1,··· ,jk1

≥1

d∑
jk1+1,··· ,jk+1>r

1

2πi

∮
γA

( k1∏
i=1

1

η − λji

)
ηk1−k−1dηPj1XPj2X · · ·PjkXPjk+1

=
r∑

j1,··· ,jk1
≥1

1

2πi

∮
γA

( k1∏
i=1

1

η − λji

)
ηk1−k−1dηPj1XPj2X · · ·Pjk1

XP
⊥X · · ·XP

⊥.

Recall that our goal is to prove

SA,k(X) =
∑

s:s1+···+sk+1=k

(−1)1+τ(s) ·P−s1XP−s2X · · ·XP−sk+1 .

Accordingly, in the above summations, we consider the components, where
s1, · · · , sk1 ≥ 1 and sk1+1 = · · · = sk+1 = 0, namely,∑

s1+···+sk1
=k

sj≥1

(−1)k1+1P−s1X · · ·XP−sk1XP⊥ · · ·XP⊥.

It turns out that we need to prove

r∑
j1,··· ,jk1

≥1

1

2πi

∮
γA

( k1∏
i=1

1

η − λji

)
ηk1−k−1dηPj1XPj2X · · ·Pjk1

=

r∑
j1,··· ,jk1

≥1

∑
s1+···+sk1

=k
sj≥1

(−1)k1+1 1

λs1
j1
· · ·λsk1

jk1

Pj1XPj2X · · ·XPjk1
.

It suffices to prove that for all j = (j1, . . . , jk1) ∈ {1, · · · , r}k1 ,

1

2πi

∮
γA

dη

(η − λj1) · · · (η − λjk1
)ηk+1−k1

=
∑

s1+···+sk1
=k

sj≥1

(−1)k1+1 1

λs1
j1
· · ·λsk1

jk1

.

(17)
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To prove (17), we rewrite its right hand side. Given any j = (j1, · · · , jk1) ∈
{1, · · · , r}k1 , define

vi(j) :=
{
1 ≤ t ≤ k1 : jt = i

}
for 1 ≤ i ≤ r

, that is, vi(j) contains the location s such that λjs = λi. Meanwhile, denote
vi(j) = Card

(
vi(j)

)
. Then, the right hand side of (17) is written as∑

s1+···+sk1
=k

sj≥1

(−1)k1+1 1

λs1
j1
· · ·λsk1

jk1

=(−1)k1+1
∑

s1+···+sk1
=k

sj≥1

λ
−
∑

p∈v1(j) sp

1 · · ·λ−
∑

p∈vr(j) sp
r .

Now, we denote ti(j) =
∑

p∈vi(j)
sp for 1 ≤ i ≤ r, we can write the above

equation as∑
s1+···+sk1

=k
sj≥1

(−1)k1+1 1

λs1
j1
· · ·λsk1

jk1

=(−1)k1+1
∑

t1(j)+···+tr(j)=k
ti(j)≥vi(j)

ti(j)=0 if vi(j)=0

∏
i:vi(j)≥1

(
ti(j)− 1

vi(j)− 1

)
λ
−ti(j)
i

=(−1)k1+1
∑

t1(j)+···+tr(j)=k−k1

ti(j)=0 if vi(j)=0

∏
i:vi(j)≥1

(
ti(j) + vi(j)− 1

vi(j)− 1

)
λ
−ti(j)−vi(j)
i

where the last equality is due to the fact v1(j) + · · ·+ vr(j) = k1. Similarly, the
left hand side of (17) can be written as

1

2πi

∮
γA

dη

(η − λj1) · · · (η − λjk1
)ηk+1−k1

=
1

2πi

∮
γA

dη

(η − λ1)v1(j) · · · (η − λjr)
vr(j)ηk+1−k1

.

Therefore, in order to prove (17), it suffices to prove that for any j = (j1, · · · , jk1)
the following equality holds

1

2πi

∮
γA

dη

(η − λ1)v1 · · · (η − λjr )
vrηk+1−k1

= (−1)k1+1
∑

t1+···+tr=k−k1
ti=0 if vi=0

r∏
i:vi≥1

(
ti + vi − 1

vi − 1

)
λ−ti−vi
i (18)
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where we omitted the index j in definitions of vi(j) and ti(j) without causing
any confusions. The non-negative numbers v1 + · · · + vr = k1. We define the
function

ϕ(η) =
1

(η − λ1)v1 · · · (η − λr)vrηk+1−k1

and we will calculate 1
2πi

∮
γA

ϕ(η)dη by Residue theorem. Indeed, by Residue
theorem,

1

2πi

∮
γA

ϕ(η)dη = −Res(ϕ, η = ∞)− Res(ϕ, η = 0).

Clearly, Res(ϕ, η = ∞) = 0 and it suffices to calculate Res(ϕ, η = 0). To this
end, let γ0 be a contour plot around 0 where none of {λk}rk=1 is inside it. Then,

Res(ϕ, η = 0) =
1

2πi

∮
γ0

ϕ(η)dη.

By Cauchy integral formula, we obtain

Res(ϕ, η = 0) =
1

(k − k1)!

[ r∏
i:vi≥1

(η − λi)
−vi

](k−k1)∣∣∣
η=0

where we denote by f(x)(k−k1) the k−k1-th order differentiation of f(x). Then,
we use general Leibniz rule and get

Res(ϕ, η = 0) =
1

(k − k1)!

∑
t1+···+tr=k−k1
ti=0 if vi=0

(k − k1)!

t1!t2! · · · tr!

r∏
i:vi≥1

[
(η − λi)

−vi
](ti)∣∣∣

η=0

=(−1)k−k1

∑
t1+···+tr=k−k1
ti=0 if vi=0

r∏
i:vi≥1

vi(vi + 1) · · · (vi + ti − 1)

ti!
(−λi)

−vi−ti

=(−1)k−k1

∑
t1+···+tr=k−k1
ti=0 if vi=0

r∏
i:vi≥1

(
ti + vi − 1

vi − 1

)
(−λi)

−vi−ti

=(−1)2k−k1

∑
t1+···+tr=k−k1
ti=0 if vi=0

r∏
i:vi≥1

(
ti + vi − 1

vi − 1

)
λ−vi−ti
i .

Therefore,

1

2πi

∮
γA

ϕ(η)dη = (−1)k1+1
∑

t1+···+tr=k−k1
ti=0 if vi=0

r∏
i:vi≥1

(
ti + vi − 1

vi − 1

)
λ−vi−ti
i

which proves (18). We conclude the proof of Theorem 1.
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Appendix A: Proofs

A.1. Proof of Theorem 2

By rank(Θ̂) = rank(Θ) = 2r, we get

dist2[(Û , V̂ ), (U, V )] = ‖Θ̂Θ̂T −ΘΘT‖2F = 4r − 2
〈
Θ̂Θ̂T,ΘΘT

〉
.

Since X is random, we shall take care of the “size” of X. Observe that ‖X‖ =
‖Z‖ and the operator norm of Z is well-known (see, e.g., (Tao, 2012) and (Ver-
shynin, 2010)). Indeed, there exist some absolute constants C1, C2, c1 > 0 such
that

E‖X‖ ≤ C1

√
d2 and P

(
‖X‖ ≥ C2

√
d2
)
≤ e−c1d2 (19)

where d2 = max{d1, d2}. Meanwhile, E1/p‖X‖p ≤ C3

√
d2 for all integer p ≥ 1.

See (Koltchinskii and Xia, 2016, Lemma 3).
Denote the event E1 := {‖X‖ ≤ C2

√
dmax} so that P(E1) ≥ 1 − e−c1d2 .

Assume that λr > 2C2

√
d2, our analysis is conditioned on E1. By Theorem 1,

on event E1, we have

Θ̂Θ̂T = ΘΘT + SA,1(X) + SA,2(X) +
∑
k≥3

SA,3(X)

where SA,1(X) = P−1XP⊥ +P⊥XP−1 and

SA,2(X) =
(
P−2XP⊥XP⊥ +P⊥XP−2XP⊥ +P⊥XP⊥XP−2

)
−
(
P⊥XP−1XP−1 +P−1XP⊥XP−1 +P−1XP−1XP⊥).

Therefore, we get

‖Θ̂Θ̂T −ΘΘT‖2F =2tr
(
P−1XP⊥XP−1

)
− 2

∑
k≥3

〈
ΘΘT,SA,k(X)

〉
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https://arxiv.org/abs/1711.04934
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https://www.ams.org/mathscinet-getitem?mr=3960915
https://www.ams.org/mathscinet-getitem?mr=3371006
https://www.ams.org/mathscinet-getitem?mr=3876445
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=2‖P−1XP⊥‖2F − 2
∑
k≥3

〈
ΘΘT,SA,k(X)

〉
.

Then,

dist2[(Û ,V̂ ), (U, V )]− E dist2[(Û , V̂ ), (U, V )]

=
(
2‖P−1XP

⊥‖2F − 2E‖P−1XP
⊥‖2F

)
− 2

∑
k≥3

〈
ΘΘT,SA,k(X)− ESA,k(X)

〉
.

We investigate the normal approximation of

2‖P−1XP⊥‖2F − 2E‖P−1XP⊥‖2F√
8(d1 + d2 − 2r) · ‖Λ−2‖F

and show that
2
∑

k≥3

〈
ΘΘT,SA,k(X)− ESA,k(X)

〉√
8(d1 + d2 − 2r) · ‖Λ−2‖F

is ignorable when signal strength λr is sufficiently strong. For some t > 0 which
shall be determined later, define a function

ft(X) = 2
∑
k≥3

〈
ΘΘT,SA,k(X)

〉
· φ
( ‖X‖
t ·

√
d2

)
(20)

where we view X as a variable in R
(d1+d2)×(d1+d2) and the function φ(·) : R+ �→

R+ is defined by

φ(s) :=

⎧⎪⎨⎪⎩
1 if s ≤ 1,

2− s if 1 < s ≤ 2,

0 if s > 2.

Clearly, φ(s) is Lipschitz with constant 1. Lemma 4 shows that f(·) is Lipschitz
when λr ≥ C4

√
d2. The proof of Lemma 4 is in Appendix, Section B.1.

Lemma 4. There exist absolute constants C3, C4 > 0 so that if λr ≥ C3t
2
√
d2,

then ∣∣ft(X1)− ft(X2)
∣∣ ≤ C4t

2 rd2
λ3
r

· ‖X1 −X2‖F

where ft(X) is defined by (20).

By Lemma 4 and Gaussian isoperimetric inequality (see, e.g., (Koltchinskii
and Lounici, 2016, 2017)), it holds with probability at least 1−e−s for any s ≥ 1
that∣∣∣∣2∑

k≥3

〈
ΘΘT,SA,k(X)

〉
· φ
( ‖X‖
t ·

√
d2

)
− E2

∑
k≥3

〈
ΘΘT,SA,k(X)

〉
· φ
( ‖X‖
t ·

√
d2

)∣∣∣∣
≤ C5

√
st2

rd2
λ3
r

(21)
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for some absolute constant C5 > 0. Now, set t = C2 where C2 is defined in (19).

Therefore, φ
(

‖X‖
C2·

√
d2

)
= 1 on event E1. Meanwhile, the following fact holds∣∣∣∣E2∑

k≥3

〈
ΘΘT,SA,k(X)

〉
· φ
( ‖X‖
C2 ·

√
d2

)
− E2

∑
k≥3

〈
ΘΘT,SA,k(X)

〉∣∣∣∣
≤
∣∣∣∣E2∑

k≥3

〈
ΘΘT,SA,k(X)

〉
· φ
( ‖X‖
C2 ·

√
d2

)
IEc

1

∣∣∣∣
+

∣∣∣∣E2∑
k≥3

〈
ΘΘT,SA,k(X)

〉
IEc

1

∣∣∣∣
≤4

∑
k≥3

E
∣∣〈ΘΘT,SA,k(X)

〉∣∣IEc
1
≤ 8r

∑
k≥3

E
1/2‖SA,k(X)‖2 · e−c1d2/2

≤e−c1d2/2 · 8r
∑
k≥3

E
1/2 16

k‖X‖2k
λ2k
r

≤ e−c1d2/2 · 8r
∑
k≥3

(C6 · d1/22

λr

)k

≤e−c1d2/2 · C6rd
3/2
2

λ3
r

≤ C6
rd2
λ3
r

where the last inequality holds as long as e−c1d2/2 ≤ 1√
d2

and we used the fact

E
1/p‖X‖p ≤ C6

√
d2 for some absolute constant C6 > 0 and any positive integer

p. (See, e.g., (Koltchinskii and Xia, 2016), (Vershynin, 2010) and (Tao, 2012)).
Together with (21), it holds with probability at least 1 − e−s − e−c1d2 for any
s ≥ 1 that∣∣∣2∑

k≥3

〈
ΘΘT,SA,k(X)

〉
− E2

∑
k≥3

〈
ΘΘT,SA,k(X)

〉∣∣∣ ≤ C6s
1/2 · rd2

λ3
r

for some absolute constant C6 > 0. Therefore, for any s ≥ 1, with probability
at least 1− e−s − e−c1d2 ,∣∣∣2∑k≥3

〈
ΘΘT,SA,k(X)

〉
− E2

∑
k≥3

〈
ΘΘT,SA,k(X)

〉∣∣∣√
8(d1 + d2 − 2r)‖Λ−2‖F

≤ C6s
1/2

( √
r

‖Λ−2‖Fλ2
r

)
·
√
rd2
λr

(22)

where we assumed d2 ≥ 3r.
We next prove the normal approximation of 2‖P−1XP⊥‖2F. Similar as in

(Xia, 2019), by the definition of P−1, X and P⊥, we could write

P−1XP⊥ =

(
UΛ−1V TZTU⊥U

T
⊥ 0

0 V Λ−1UTZV⊥V
T
⊥

)
.

Then,

‖P−1XP⊥‖2F =‖UΛ−1V TZTU⊥U
T
⊥‖2F + ‖V Λ−1UTZV⊥V

T
⊥ ‖2F.
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Denote zj ∈ R
d1 the j-th column of Z for 1 ≤ j ≤ d2. Then, z1, · · · , zd2 are

independent Gaussian random vector and Ezjz
T
j = Id1 for all j. Therefore,

UTZ =

d2∑
j=1

(UTzj)e
T
j

where {ej}d2
j=1 represent the standard basis vectors in R

d2 . Similarly,

UT
⊥Z =

d2∑
j=1

(UT
⊥zj)e

T
j .

Sincet UTzj and UT
⊥zj are Gaussian random vectors and

EUTzj
(
UT
⊥zj

)T
= UTU⊥ = 0

, we know that {UTzj}d2
j=1 are independent with {UT

⊥zj}d2
j=1.

Therefore, ‖UΛ−1V TZTU⊥U
T
⊥‖2F is independent with ‖V Λ−1UTZV⊥V

T
⊥ ‖2F.

Denote by Z̃ an independent copy of Z, we conclude that (Y1
d
= Y2 denotes

equivalence of Y1 and Y2 in distribution)

‖P−1XP⊥‖2F
d
=‖UΛ−1V TZTU⊥U

T
⊥‖2F + ‖V Λ−1UTZ̃V⊥V

T
⊥ ‖2F

=

d1∑
j=r+1

‖UΛ−1V TZTuj‖2	2 +
d2∑

j=r+1

‖V Λ−1UTZ̃vj‖2	2

=

d1∑
j=r+1

‖Λ−1V TZTuj‖2	2 +
d2∑

j=r+1

‖Λ−1UTZ̃vj‖2	2

where {uj}d1

j=r+1 and {vj}d2

j=r+1 denote the columns of U⊥ and V⊥, respectively.

Observe that ZTuj ∼ N (0, Id2) for all r + 1 ≤ j ≤ d1 and

E(ZTuj1)(Z
Tuj2)

T = 0 for all r + 1 ≤ j1 �= j2 ≤ d1.

Therefore, {ZTuj}d1
j=r+1 are independent normal random vectors. Similarly,

Z̃vj ∼ N (0, Id1) are independent for all r + 1 ≤ j ≤ d2. Clearly, V
TZTuj1 ∼

N (0, Ir) and UTZ̃vj2 ∼ N (0, Ir) are all independent for r + 1 ≤ j1 ≤ d1 and
r + 1 ≤ j2 ≤ d2.

As a result, let d� = d1 + d2 − 2r, we conclude that

‖P−1XP⊥‖2F
d
=

d�∑
j=1

‖Λ−1zj‖2	2 (23)

where we abuse the notations and denote {zj}d�
j=1 where zj

i.i.d.∼ N (0, Ir). By
Berry-Esseen theorem ((Berry, 1941) and (Esseen, 1942)), it holds for some
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absolute constant C7 > 0 that

sup
x∈R

∣∣∣∣P(2‖P−1XP⊥‖2F − 2E‖P−1XP⊥‖2F√
8(d1 + d2 − 2r)‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣
≤ C7

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d�

(24)

where we used the fact Var
(
‖Λ−1zj‖2	2

)
= 2‖Λ−2‖2F and

E
∥∥Λ−1zj

∥∥6
	2

≤ C7

r∑
j1,j2,j3≥1

1

λ2
j1
λ2
j2
λ2
j3

≤ C7‖Λ−1‖6F.

In (24), the function Φ(x) denotes the c.d.f. of standard normal distributions.
Recall that, on event E1,

dist2[(Û , V̂ ), (U, V )]− E dist2[(Û , V̂ ), (U, V )]√
8(d1 + d2 − 2r)‖Λ−2‖F

=
2‖P−1XP⊥‖2F − 2E‖P−1XP⊥‖2F√

8(d1 + d2 − 2r)‖Λ−2‖F
+

2
∑

k≥3

〈
ΘΘT,SA,k(X)− ESA,k(X)

〉√
8(d1 + d2 − 2r)‖Λ−2‖F

where normal approximation of the first term is given in (24) and upper bound
of the second term is given in (22). Based on (22), we get for any x ∈ R and
any s ≥ 1,

P

(
dist2[(Û , V̂ ), (U, V )]− E dist2[(Û , V̂ ), (U, V )]√

8(d1 + d2 − 2r)‖Λ−2‖F
≤ x

)
≤ P

(
2‖P−1XP⊥‖2F − 2E‖P−1XP⊥‖2F√

8(d1 + d2 − 2r)‖Λ−2‖F
≤ x+ C6s

1/2 ·
√
r

‖Λ−2‖Fλ2
r

·
√
rd2
λr

)
+ e−s + e−c1d2

≤Φ

(
x+ C6s

1/2 ·
√
r

‖Λ−2‖Fλ2
r

·
√
rd2
λr

)
+ e−s + e−c1d2 + C7

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d�

≤Φ(x) + C6s
1/2 ·

√
r

‖Λ−2‖Fλ2
r

·
√
rd2
λr

+ e−s + e−c1d2 + C7

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d�

where the last inequality is due to (24) and the Lipschitz property of Φ(x).
Similarly, for any x ∈ R and any s ≥ 1,

P

(
dist2[(Û , V̂ ), (U, V )]− E dist2[(Û , V̂ ), (U, V )]√

8(d1 + d2 − 2r)‖Λ−2‖F
≤ x

)
≥ P

(
2‖P−1XP⊥‖2F − 2E‖P−1XP⊥‖2F√

8(d1 + d2 − 2r)‖Λ−2‖F
≤ x− C6s

1/2 ·
√
r

‖Λ−2‖Fλ2
r

·
√
rd2
λr

)
− e−s − e−c1d2
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≥Φ

(
x− C6s

1/2 ·
√
r

‖Λ−2‖Fλ2
r

·
√
rd2
λr

)
− e−s − e−c1d2 − C7

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d�

≥Φ(x)− C6s
1/2 ·

√
r

‖Λ−2‖Fλ2
r

·
√
rd2
λr

− e−s − e−c1d2 − C7

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d�

.

Finally, we conclude that for any s ≥ 1,

sup
x∈R

∣∣∣∣P(dist2[(Û , V̂ ), (U, V )]− E dist2[(Û , V̂ ), (U, V )]√
8(d1 + d2 − 2r)‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣
≤ C6s

1/2
( √

r

‖Λ−2‖Fλ2
r

)
·
√
rd2
λr

+ e−s + e−c1d2 + C7

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d�

where d� = d1 + d2 − 2r and C6, C7, c1 are absolute positive constants.

A.2. Proof of Theorem 6

It suffices to prove

dist2[(Û , V̂ ), (U, V )]− B̃�log d2�√
8d∗‖Λ̃−2‖F

d.−→ N (0, 1)

as d1, d2 → ∞. Toward that end, we write

dist2[(Û , V̂ ), (U, V )]− B̃�log d2�√
8d∗‖Λ̃−2‖F

=
dist2[(Û , V̂ ), (U, V )]−B�log d2�√

8d∗‖Λ−2‖F
· ‖Λ

−2‖F
‖Λ̃−2‖F

+
B�log d2� − B̃�log d2�√

8d∗‖Λ̃−2‖F
, (25)

where the first term in the RHS of (25) converges to N (0, 1) in view of Theorem
4 and (9). It suffices to show that the second term in the RHS of (25) converges
to 0 in distribution. We prove it in two cases.

Case 1: if d
3/4
2 log(d2)λ

−1
r = O(1). In this case, we write

B�log d2� − B̃�log d2� = 2d∗(‖Λ−1‖2F − ‖Λ̃−1‖2F)

− 2

�log d2�∑
k0=2

(−1)k0(dk0−1
1− − dk0−1

2− )(d1− − d2−)(‖Λ̃−k0‖2F − ‖Λ−k0‖2F).

Note that (8) and (9) implies that λ̃2
j − λ2

j = d2 · op(1), where op(1) denotes a
random variable converges to 0 almost surely. Then,

B�log d2� − B̃�log d2�√
8d∗‖Λ̃−2‖F

=

√
d32r log d2

λ2
r

· op(1),

which converges to 0 almost surely.
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Case 2: if λr = O(d
3/4
2 log d2) and

√
rd2/λr = o(1). In this case, we apply

a recent result from Ding and Yang (2020) which holds when λr � d
5/6
2 . By

Theorem 2.132 of Ding and Yang (2020), we have

λ̂j −
√
λ2
j + d1 + d2 + d1d2λ

−2
j = Op(log

−1 d2),

where Op(log
−1 d2) stands for “asymptotically bounded by O(log−1 d2) in prob-

ability”. Then, by (9), we get λ̃2
j − λ2

j = λj ·Op(log
−1 d2). As a result,

B�log d2� − B̃�log d2�√
8d∗‖Λ̃−2‖F

=

√
d2r log d2

λr
·Op(log

−1 d2),

which converges to 0 in probability.
The proof is concluded by combining Case 1 and Case 2.

A.3. Proof of lemmas in Section 4

Observe that SA,k(X) involves the product ofX for k times. If k is odd, we imme-
diately get ESA,k(X) = 0 since Z has i.i.d. standard normal entries. Therefore,
it suffices to investigate E

〈
ΘΘT,SA,k(X)

〉
when k is even.

Proof of Lemma 1. By the definitions of P⊥, X and P−1,

E‖P⊥XP−1‖2F =E‖UΛ−1V TZTU⊥U
T
⊥‖2F + E‖V Λ−1UTZV⊥V

T
⊥ ‖2F

=E‖Λ−1V TZTU⊥‖2F + E‖Λ−1UTZV⊥‖2F.

By the proof of Theorem 2, we obtain E‖P⊥XP−1‖2F = (d1 + d2 − 2r)‖Λ−1‖2F
which is the first claim. To prove the second claim, it holds by Theorem 1 that∣∣∣E‖Θ̂Θ̂T −ΘΘT‖2F − 2d�‖Λ−1‖2F

∣∣∣ ≤ 2
∣∣∣∑
k≥2

E
〈
ΘΘT,SA,2k(X)

〉∣∣∣
≤2

∑
k≥2

∣∣∣∣E〈ΘΘT,
∑

s:s1+···+s2k+1=2k

(−1)1+τ(s) ·P−s1XP
−s2X · · ·XP

−s2kXP
−s2k+1

〉∣∣∣∣
=2

∑
k≥2

∣∣∣∣E〈ΘΘT,
∑

s:s1+···+s2k+1=2k
s1,s2k+1≥1

(−1)1+τ(s) ·P−s1XP
−s2X · · ·XP

−s2kXP
−s2k+1

〉∣∣∣∣
where we used the fact ΘΘTP0 = P0ΘΘT = 0. Then,∣∣∣E‖Θ̂Θ̂T −ΘΘT‖2F − 2d�‖Λ−1‖2F

∣∣∣
≤4r

∑
k≥2

∑
s:s1+···+s2k+1=2k

s1,s2k+1≥1

E

∥∥∥P−s1XP−s2X · · ·XP−s2kXP−s2k+1

∥∥∥
2Note that the result in Ding and Yang (2020) is even stronger. We only use a weaker

version of their results.
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≤4r
∑
k≥2

∑
s:s1+···+s2k+1=2k

s1,s2k+1≥1

E‖X‖2k
λ2k
r

≤4r
∑
k≥2

(
4k

2k

)
E‖X‖2k
λ2k
r

≤ C2r
∑
k≥2

42kE‖X‖2k
λ2k
r

.

for some absolute constant C2 > 0. Therefore,∣∣∣E‖Θ̂Θ̂T −ΘΘT‖2F−2d�‖Λ−1‖2F
∣∣∣ ≤ C2r

∑
k≥2

(16C2
1d2

λ2
r

)k

≤ C2
rd22
λ4
r

where the last inequality holds as long as λr ≥ 5C1

√
d2.

Property 1: only even order terms matter. In order to calculate higher
order approximations, we need the following useful property of ES2k(X).

By Theorem 1,〈
ΘΘT,SA,2k(X)

〉
=

∑
s:s1+···+s2k+1=2k

s1,s2k+1≥1

(−1)1+τ(s) · tr
(
P−s1X · · ·XP−s2k+1

)
.

For any τ(s) = τ ≥ 2, there exists positive integers sj1 , sj2 , · · · , sjτ and positive
integers t1, t2, · · · , tτ−1 so that we can write

P−s1X · · ·XP−s2k+1

= P−sj1 XP⊥ · · ·P⊥X︸ ︷︷ ︸
t1 of X

P−sj2 · · ·P−sjτ−1 XP⊥ · · ·P⊥X︸ ︷︷ ︸
tτ−1 of X

P−sjτ

where
sj1 + · · ·+ sjτ = 2k and t1 + · · ·+ tτ−1 = 2k.

Therefore, for positive integers s1, · · · , s2k+1, t1, · · · , t2k ≥ 1,〈
ΘΘT,ESA,2k(X)

〉
=
∑
τ≥2

(−1)1+τ
∑

s1+···+sτ=2k

∑
t1+···+tτ−1=2k

Etr
(
Q

(s1s2···sτ )
t1t2···tτ−1

)
where the matrix Q

(s1s2···sτ )
t1t2···tτ−1

is defined by

Q
(s1s2···sτ )
t1t2···tτ−1

= P−s1 XP⊥ · · ·P⊥X︸ ︷︷ ︸
t1 of X

P−s2 · · ·P−sτ−1 XP⊥ · · ·P⊥X︸ ︷︷ ︸
tτ−1 of X

P−sτ . (26)

Case 1: if any of t1, t2, · · · , tτ−1 equals one. W.L.O.G., let t1 = 1. Then,

Q
(s1s2···sτ )
t1t2···tτ−1

involves the product of P−s1XP−s2 . Then,

∣∣Etr(Q(s1s2···sτ )
t1t2···tτ−1

)∣∣ ≤ √
2r · E‖P−s1XP−s2‖F · ‖X‖2k−1

λ2k−s1−s2
r



Normal approximation of SVD 3835

≤
√
2r · E‖ΘΘTXΘΘT‖F · ‖X‖2k−1

λ2k
r

≤
√
2r

λ2k
r

· E‖ΘΘTXΘΘT‖F‖X‖2k−1

≤
√
2r

λ2k
r

· E1/2‖ΘΘTXΘΘT‖2FE1/2‖X‖4k−2

≤C1
Ck−1

2 r3/2d
k− 1

2
2

λ2k
r

where we used the fact ΘΘTXΘΘT =

(
0 UUTZV V T

V V TZTUUT 0

)
which is

of rank at most 2r and E
1/2‖UTZV ‖2F = O(r). We also used the fact E1/p‖X‖p ≤

C2

√
d2 for some absolute constant C2 > 0 and all positive integers p ≥ 1. There-

fore, if any of t1, · · · , tτ−1 equals one, then the magnitude of
∣∣Etr(Q(s1s2···sτ )

t1t2···tτ−1

)∣∣
is of the order O

(
r3/2√
d2

· Ck
2 d

k
2

λ2k
r

)
.

Case 2: if any of t1, · · · , tτ−1 is an odd number greater than 1. W.L.O.G., let
t1 be an odd number and t1 ≥ 3. More specifically, let t1 = 2p + 3 for some
non-negative integer p ≥ 0. Then,∣∣E〈ΘΘT, Q

(s1s2···sτ )
t1t2···tτ−1

〉∣∣
≤
∣∣∣tr(P−s1X

(
P⊥X

)t1−1
P−s2X

(
P⊥X

)t2−1
P−s3X

· · ·P−sτ−1X
(
P⊥X

)tτ−1−1
P−sτ

)∣∣∣
≤E

∥∥∥P−s1X(P⊥XP⊥)2p+1XP−s2
∥∥∥
F
·
√
2r‖X‖2k−t1

λ2k−s1−s2
r

≤E

∥∥∥P−s1X(P⊥XP⊥)2p+1XP−s2
∥∥∥
F
·
√
2r‖X‖2k−t1

λ2k−s1−s2
r

IE1

+ E

∥∥∥P−s1X(P⊥XP⊥)2p+1XP−s2
∥∥∥
F
·
√
2r‖X‖2k−t1

λ2k−s1−s2
r

IEc
1

where, as in the proof of Theorem 2, define the event E1 = {‖X‖ ≤ C2 ·
√
d2}

for some absolute constant C2 > 0 such that P(E1) ≥ 1− e−c1d2 . As a result, we
get ∣∣E〈ΘΘT, Q

(s1s2···sτ )
t1t2···tτ−1

〉∣∣
≤E

∥∥∥P−s1X(P⊥XP⊥)2p+1XP−s2
∥∥∥
F
·
√
2rd

(2k−t1)/2
2

λ2k−s1−s2
r

IE1 + C2k
2 · rd

k
2

λ2k
r

· e−c1d2

≤E
1/2

∥∥∥P−s1X(P⊥XP⊥)2p+1XP−s2
∥∥∥2
F
·
√
2rd

(2k−t1)/2
2

λ2k−s1−s2
r

+ C2k
2 · rd

k
2

λ2k
r

· e−c1d2

≤C
√
rd

(2k−t1)/2
2

λ2k
r

· E1/2
∥∥∥ΘTX(P⊥XP⊥)2p+1XΘ

∥∥∥2
F
+ C2k

2 · rd
k
2

λ2k
r

· e−c1d2
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where Θ = (θ1, · · · , θr, θ−r, · · · , θ−1) ∈ R
(d1+d2)×(2r). In addition, we can write

E

∥∥∥ΘTX(P⊥XP⊥)2p+1XΘ
∥∥∥2
F
=

∑
1≤|j1|,|j2|≤r

E
(
θTj1X(P⊥XP⊥)2p+1Xθj2

)2
.

Observe that, for any integer p ≥ 0,

(P⊥XP⊥)2p =

( (
U⊥U

T
⊥ZV⊥V

T
⊥ZTU⊥U

T
⊥
)p

0

0
(
V⊥V

T
⊥ZTU⊥U

T
⊥ZV⊥V

T
⊥
)p )

.

W.L.O.G, let j1, j2 ≥ 1. Then, we write

θTj1X(P⊥XP⊥)2p+1Xθj2

=
1

2
vTj1Z

T
(
U⊥U

T
⊥ZV⊥V

T
⊥ZTU⊥U

T
⊥
)p
U⊥U

T
⊥ZV⊥V

T
⊥ZTuj2

+
1

2
uT
j1Z

(
V⊥V

T
⊥ZTU⊥U

T
⊥ZV⊥V

T
⊥
)p
V⊥V

T
⊥ZTU⊥U

T
⊥Zvj2

and get the simple bound

E
(
θTj1X(P⊥XP⊥)2p+1Xθj2

)2
≤2−1

E

(
vTj1Z

T
(
U⊥U

T
⊥ZV⊥V

T
⊥ZTU⊥U

T
⊥
)p
U⊥U

T
⊥ZV⊥V

T
⊥ZTuj2

)2

+ 2−1
E

(
uT
j1Z

(
V⊥V

T
⊥ZTU⊥U

T
⊥ZV⊥V

T
⊥
)p
V⊥V

T
⊥ZTU⊥U

T
⊥Zvj2

)2

.

Observe that Zvj1 is independent with ZV⊥ and ZTuj1 is independent with
ZTU⊥. Therefore,

E
(
θTj1X(P⊥XP⊥)2p+1Xθj2

)2
≤2−1

E

∥∥∥(U⊥U
T
⊥ZV⊥V

T
⊥ZTU⊥U

T
⊥
)p
U⊥U

T
⊥ZV⊥V

T
⊥ZTuj2

∥∥∥2
	2

+ 2−1
E

∥∥∥(V⊥V
T
⊥ZTU⊥U

T
⊥ZV⊥V

T
⊥
)p
V⊥V

T
⊥ZTU⊥U

T
⊥Zvj2

∥∥∥2
	2

≤2−1
E

∥∥∥(U⊥U
T
⊥ZV⊥V

T
⊥ZTU⊥U

T
⊥
)p
U⊥U

T
⊥ZV⊥V

T
⊥

∥∥∥2
	2

+ 2−1
E

∥∥∥(V⊥V
T
⊥ZTU⊥U

T
⊥ZV⊥V

T
⊥
)p
V⊥V

T
⊥ZTU⊥U

T
⊥

∥∥∥2
	2

≤ C4p+2
2 d2p+1

2 = C4p+2
2 dt1−2

2 ,

where the last inequality is due to the independence between ZTuj2 and ZTU⊥,
the independence between Zvj2 and ZV⊥. We conclude that

∣∣E〈ΘΘT,Q
(s1s2···sτ )
t1t2···tτ−1

〉∣∣ ≤ C2k
2 · r

3/2dk−1
2

λ2k
r

+ r
(C2d2

λ2
r

)k

· e−c1d2 ≤ r3/2

d2
·
(C2d2

λ2
r

)k
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where C2 > 0 is some absolute constant and the last inequality is due to e−c1d2 ≤
d−1
2 .
We now finalize the proof. If there exists one odd ti, then there exists at least

another tj which is also odd since the sum of tis is even. Following the same
analysis, we conclude

∣∣E〈ΘΘT, Q
(s1s2···sτ )
t1t2···tτ−1

〉∣∣ ≤ r2

d2
·
(C2d2

λ2
r

)k

whenever any of t1, · · · , tτ−1 is an odd number. Therefore, it suffices to consider
the cases that all of t1, · · · , tτ−1 are even numbers.

Proof of Lemma 2. From the above analysis, to calculate E
〈
ΘΘT,SA,4(X)

〉
,

it suffices to calculate

3∑
τ=2

(−1)1+τ
∑

s1+···+sτ=4

∑
t1+···+tτ−1=4

E
〈
ΘΘT, Q

(s1s2···sτ )
t1t2···tτ−1

〉
where t1, · · · , tτ−1 are positive even numbers and s1, · · · , sτ are positive num-
bers.
Case 1: τ = 2. In this case, t1 = 4 and s1 + s2 = 4. Therefore, for any s1, s2
such that s1 + s2 = 4, we shall calculate

Q
(s1s2)
4 =P−s1X(P⊥XP⊥)2XP−s2

=Etr
(
Q

(s1s2)
4

)
= Etr

(
ΘΘTX(P⊥XP⊥)2XΘΘTP−4

)
.

Clearly, we have

ΘΘTX(P⊥XP
⊥)2XΘΘT

=

(
UUTZV⊥V⊥Z

TU⊥U
T
⊥ZV⊥V

T
⊥ZTUUT 0

0 V V TZTU⊥U
T
⊥ZV⊥V

T
⊥ZTU⊥U

T
⊥ZV V T

)
.

By the independence between UTZ and UT
⊥Z, independence between V TZT and

V T
⊥ZT, we immediately obtain

EΘΘTX(P⊥XP
⊥)2XΘΘT

= E

(
d1−UUTZV⊥V

T
⊥ZTUUT 0

0 d2−V V TZTU⊥U
T
⊥ZV V T

)
= d1−d2−ΘΘT

where d1− = d1 − r and d2− = d2 − r. Then,

E
〈
ΘΘT, Q

(s1s2)
4

〉
= 2d1−d2−‖Λ−2‖2F

for all (s1, s2) = (1, 3), (s1, s2) = (2, 2) and (s1, s2) = (3, 1).
Case 2: τ = 3. In this case, the only possible even numbers are t1 = 2 and t2 = 2.
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There are three pairs of (s1, s2, s3) ∈
{
(1, 1, 2), (1, 2, 1), (2, 1, 1)

}
. W.L.O.G.,

consider s1 = 1, s2 = 1, s3 = 2, we have

Q
(112)
22 = P−1XP⊥XP−1XP⊥XP−2.

Similarly, we can write

Etr(Q
(112)
22 ) = Etr

(
UΛ−1V TZTU⊥U

T
⊥ZV Λ−1UTZV⊥V

T
⊥ZTUΛ−2UT

)
+Etr

(
V Λ−1UTZV⊥V

T
⊥ZTUΛ−1V TZTU⊥U

T
⊥ZV Λ−2V T

)
=d2−Etr

(
UΛ−1V TZTU⊥U

T
⊥ZV Λ−3UT

)
+ d1−Etr

(
V Λ−1UTZV⊥V

T
⊥ZTUΛ−3V T

)
=2d1−d2−‖Λ−2‖2F.

By symmetricity, the same equation holds for Etr(Q
(211)
22 ). Next, we consider

(s1, s2, s3) = (1, 2, 1). We will write

Etr(Q
(121)
22 ) =Etr

(
UΛ−1V TZTU⊥U

T
⊥ZV Λ−2V TZTU⊥U

T
⊥ZV Λ−1UT

)
+Etr

(
V Λ−1UTZV⊥V

T
⊥ZTUΛ−2UTZV⊥V

T
⊥ZTUΛ−1V T

)
=E‖Λ−1Z̃1Z̃

T
1 Λ

−1‖2F + E‖Λ−1Z̃2Z̃
T
2 Λ

−1‖2F

where Z̃1 ∈ R
r×d1− and Z̃2 ∈ R

r×d2− contain i.i.d. standard normal entries. By
Lemma 6 in the Appendix, we obtain

Etr
(
Q

(121)
22

)
= (d21− + d22−)‖Λ−2‖2F + (d1− + d2−)

(
‖Λ−2‖2F + ‖Λ−1‖4F

)
.

Therefore, we conclude that∣∣∣− E
〈
ΘΘT,SA,4(X)

〉
+ (d1− − d2−)

2‖Λ−2‖2F
∣∣∣ ≤ C1 ·

r2d2
λ4
r

for some absolute constant C1 > 0 where we also include those smaller terms
when some ti is odd as discussed in Property 1. Together with the proof of
Lemma 1, we conclude that∣∣∣E‖Θ̂Θ̂T −ΘΘT‖2F − 2

(
d�‖Λ−1‖2F −Δ2

d‖Λ−2‖2F
)∣∣∣ ≤ C1 ·

r2d2
λ4
r

+ C2 ·
rd32
λ6
r

where Δd = d1 − d2 and C1, C2 > 0 are absolute constants.

A.4. Proof of Lemma 3.

To characterize E
〈
ΘΘT,SA,2k(X)

〉
more easily, we observe the following prop-

erty.
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Property 2: effect from distinct singular values are negligible. Recall
that

E
〈
ΘΘT,SA,2k(X)

〉
=

∑
s:s1+···+s2k+1=2k

(−1)1+τ(s)·E
〈
ΘΘT,P−s1X · · ·XP−s2k+1

〉
.

As proved in Property 1, we have∣∣∣E〈ΘΘT,SA,2k(X)
〉
−
∑
τ≥2

(−1)1+τ
∑

s1+···+sτ=2k

∑
t1+···+tτ−1=2k

E
〈
ΘΘT, Q

(s1s2···sτ )
t1t2···tτ−1

〉∣∣∣
≤ r2

d2
·
(C2d2

λ2
r

)k

where the matrix Q
(s1s2···sτ )
t1t2···tτ−1

is defined as in (26) and t1, · · · , tτ−1 are positive

even numbers. Recall that ΘΘT =
∑r

j=1(Pj+P−j) and P−s1 =
∑r

j=1

[
λ−s1
j Pj+

(λ−j)
−sjP−j

]
where λ−j = −λj . For each fixed (s1, · · · , sτ ) and (t1, · · · , tτ−1)

where tjs are even numbers, we write〈
ΘΘT, Q

(s1s2···sτ )
t1t2···tτ−1

〉
=

r∑
|j1|,|j2|,··· ,|jτ−1|≥1

λ
−(s1+sτ )
j1

λ−s2
j2

· · ·λ−sτ−1

jτ−1
(θTj1Wt1θj2)(θ

T
j2Wt2θj3)

· · · (θTjτ−1
Wtτ−1θj1)

where the matrix Wt1 = XP⊥XP⊥ · · ·P⊥X︸ ︷︷ ︸
t1 of X

for positive even numbers t1. Ob-

serve that

θTj1Wt1θj2 = θTj1Wt1θj2 = θTj1X(P⊥XP⊥)t1−2Xθj2 .

We show that if there exists 1 ≤ k0 ≤ τ − 1 so that |jk0 | �= |jk0+1|, then
|θTjk0

Wtk0
θjk0+1

| is a negligibly smaller term. W.L.O.G., assume |j1| �= |j2| and
then∣∣∣∣E r∑

|j1|,|j2|,··· ,|jτ−1|≥1
|j1|
=|j2|

λ
−(s1+sτ )
j1

λ−s2
j2

· · ·λ−sτ−1

jτ−1
(θTj1Wt1θj2)(θ

T
j2Wt2θj3) · · · (θTjτ−1

Wtτ−1θj1)

∣∣∣∣
=
∣∣∣E ∑

|j1|
=|j2|
λ
−(s1+sτ )
j1

λ−s2
j2

(θTj1Wt1θj2)θ
T
j2Wt2P

−s3Wt3P
−s4 · · ·P−sτ−1Wtτ−1θj1

∣∣∣
≤ 1

λ2k
r

∑
|j1|
=|j2|

E
∣∣θTj1Wt1θj2

∣∣‖X‖2k−t1
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Since θj1 and θj2 are orthogonal, we conclude that Xθj1 and Xθj2 are inde-
pendent normal vectors from which we get that θTj1Wt1θj2 |P⊥XP⊥ is sub-

exponential and E|θTj1Wt1θj2 | = O
(
‖(P⊥XP⊥)t1−2‖F

)
. Therefore, we get

E
∣∣θTj1Wt1θj2

∣∣‖X‖2k−t1

=E
∣∣θTj1Wt1θj2

∣∣‖X‖2k−t11(‖X‖ ≤ C1

√
d2)

+ E
∣∣θTj1Wt1θj2

∣∣‖X‖2k−t11(‖X‖ ≥ C1

√
d2)

≤E
1/2

∣∣θTj1Wt1θj2
∣∣2 · (C2

1d2)
k−t1/21(‖X‖ ≤ C1d

1/2
2 ) + e−d2/2(C1d2)

k

� 1√
d2

· (C2d2)
k + e−d2/2(C2d2)

k.

As a result, we conclude that∣∣∣∣E r∑
|j1|,|j2|,··· ,|jτ−1|≥1

λ
−(s1+sτ )
j1

λ−s2
j2

· · ·λ−sτ−1

jτ−1
(θTj1Wt1θj2)(θ

T
j2Wt2θj3) · · · (θTjτ−1

Wtτ−1θj1)

∣∣∣∣
≤ C1r

2

√
d2

·
(C2d2

λ2
r

)k

+ C3e
−d2/2 ·

(C2d2
λ2
r

)k

≤ C1r
2

√
d2

·
(C2d2

λ2
r

)k

for some absolute constants C1, C2 > 0.

It suggests that the dominating terms come from those tuples (j1, j2, · · · , jτ−1)
such that |j1| = |j2| = · · · = |jτ−1|. Now, we define Pj = λjPj + λ−jP−j . To
this end, we conclude∣∣∣E〈ΘΘT,SA,2k(X)

〉
−

r∑
j=1

∑
τ≥2

(−1)1+τ
∑

s:s1+···+sτ=2k,s1,sτ>0
t:t1+···+tτ−1=2k

Etr
(
P

−s1
j Wt1P

−s2
j Wt2 · · ·P−sτ

j

)∣∣∣
≤C1r

2

√
d2

·
(C2d2

λ2
r

)k

(27)

for some absolute constants C1, C2 > 0. The above fact suggests that it suffices
to focus on the effect from individual singular values (i.e., for any fixed 1 ≤ j ≤
r). Moreover, it is easy to check that

P
−s1
j Wt1P

−s2
j Wt2 · · ·P−sτ

j =
1

λ2k
j

· P̃−s1
j Wt1P̃

−s2
j Wt2 · · · P̃−sτ

j

where P̃
−s
j = Pj + (−1)sP−j implying that the k-th order error term has dom-

inator λ2k
j . To this end, we prove the following lemma in the Appendix.
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Lemma 5. For any 1 ≤ j ≤ r and k ≥ 2, we obtain∣∣∣∑
τ≥2

(−1)1+τ
∑

s:s1+···+sτ=2k,s1,sτ>0
t:t1+···+tτ−1=2k

Etr
(
P

−s1
j Wt1P

−s2
j · · ·P−sτ

j

)

−
(−1)k(dk−1

1− − dk−1
2− )(d1− − d2−)

λ2k
j

∣∣∣
≤ C1k√

d2
·
(C2d2

λ2
r

)k

for some absolute constants C1, C2 > 0.

By Lemma 5 and (27), it holds for all k ≥ 2 that∣∣E〈ΘΘT,SA,2k(X)
〉
− (−1)k(dk−1

1− − dk−1
2− )(d1− − d2−)‖Λ−k‖2F

∣∣
≤ C1(r

2 + k)√
d2

·
(C2d2

λ2
r

)k

for some absolute constants C1, C2 > 0, which concludes the proof.

A.5. Proof of CLT theorems in Section 5

Proof of Theorem 3 Recall Theorem 2, we end up with

sup
x∈R

∣∣∣∣P(dist2[(Û , V̂ ), (U, V )]− Edist2[(Û , V̂ ), (U, V )]√
8(d1 + d2 − 2r)‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣
≤ C2

( √
r

‖Λ−2‖Fλ2
r

)
·

√
(rd2)1/2

λr
+ e−c1d2 + C2

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

+ e−λr/
√
rd2 .

By Lemma 1, we get∣∣Edist2[(Û , V̂ ), (U, V )]− 2d�‖Λ−1‖2F
∣∣ ≤ C2

rd22
λ4
r

.

Therefore, ∣∣∣Edist2[(Û , V̂ ), (U, V )]− 2d�‖Λ−1‖2F√
8d�‖Λ−2‖F

∣∣∣ ≤ C2
rd

3/2
2

λ2
r

.

By the Lipschitz property of Φ(x) and applying similar technical as in proof of
Theorem 2, we can get

sup
x∈R

∣∣∣∣P(dist2[(Û , V̂ ), (U, V )]− 2d�‖Λ−1‖2F√
8d�‖Λ−2‖F

≤ x

)
− Φ(x)

∣∣∣∣
≤ C2

( √
r

‖Λ−2‖Fλ2
r

)
·

√
(rd2)1/2

λr

+ e−c1d2 + C2

(‖Λ−1‖4F
‖Λ−2‖2F

)3/2

· 1√
d2

+ C3
rd

3/2
2

λ2
r

+ e−λr/
√
rd2 .
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Proof of Theorem 4 By Lemma 3, we have∣∣∣Edist2[(Û , V̂ ), (U, V )]−Bk

∣∣∣ ≤ C4
r2d2
λ4
r

+
C5r

2

√
d2

·
(d2
λ2
r

)3

+ C6r
(C3d2

λ2
r

)k+1

.

The rest of the proof is the same as in the proof of Theorem 3.

Appendix B: Appendix

B.1. Supporting lemmas

Proof of Lemma 4. Recall that

ft(X1) =
∑
k≥3

〈
ΘΘT,SA,k(X1)

〉
φ
( ‖X1‖
t ·

√
d2

)
.

Case 1: if ‖X1‖ > 2t
√
d2 and ‖X2‖ > 2t

√
d2, then ft(X1) = ft(X2) = 0 by

definition of φ(·) where the claimed inequality holds trivially.
Case 2: if ‖X1‖ ≤ 2t

√
d2 and ‖X2‖ > 2t

√
d2, then ft(X2) = 0. We get, by

Lipschitz property of φ(·), that∣∣∣ft(X1)− ft(X2)
∣∣∣ = ∣∣∣∣∑

k≥3

〈
ΘΘT,SA,k(X1)

〉
·
(
φ
( ‖X1‖
t ·

√
d2

)
− φ

( ‖X2‖
t ·

√
d2

))∣∣∣∣
≤
∑
k≥3

2r
∥∥SA,k(X1)

∥∥ · ‖X1 −X2‖F
t ·

√
d2

≤2r‖X1 −X2‖F
t ·

√
d2

·
∑
k≥3

∑
s:s1+···+sk+1=k

∥∥∥P−s1X1P
−s2X1 · · ·X1P

−sk+1

∥∥∥
≤2r‖X1 −X2‖F

t ·
√
d2

·
∑
k≥3

∑
s:s1+···+sk+1=k

‖X1‖k
λk
r

≤2r‖X1 −X2‖F
t ·

√
d2

·
∑
k≥3

(4‖X1‖
λr

)k

≤C4t
2 r‖X1 −X2‖F√

d2
· d

3/2
2

λ3
r

where the last inequality holds as long as λr ≥ 9t
√
d2.

Case 3: if ‖X1‖ ≤ 2td
1/2
2 and ‖X2‖ ≤ 2td

1/2
2 . Then,∣∣∣ft(X1)− ft(X2)

∣∣∣ ≤ 2r
∑
k≥3

∥∥∥SA,k(X1)φ
( ‖X1‖
t ·

√
d2

)
− SA,k(X2)φ

( ‖X2‖
t ·

√
d2

)∥∥∥
≤2r

∑
k≥3

∑
s:s1+···+sk+1=k

∥∥∥P−s1X1 · · ·X1P
−sk+1φ

( ‖X1‖
t ·

√
d2

)
−P−s1X2
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· · ·X2P
−sk+1φ

( ‖X2‖
t ·

√
d2

)∥∥∥
≤2r

∑
k≥3

∑
s:s1+···+sk+1=k

(k + 2) · (2td
1/2
2 )k−1

λk
r

‖X1 −X2‖F

≤C4t
2 · rd2

λ3
r

‖X1 −X2‖F

where the last inequality holds as long as λr ≥ 9t
√
d2. Therefore, we conclude

the proof of Lemma 4.

Proof of Lemma 5. Based on Property 2 and eq. (27), it suffices to calculate
the quantities Etr

(
P

−s1
j Wt1P

−s2
j Wt2 · · ·P−sτ

j

)
which relies on singular values

λj and singular vectors uj , vj only. Moreover, the actual forms of uj , vj does not
affect the values. By choosing {uj}rj=1 and {vj}rj=1 as the first r canonical basis

vectors in R
d1 and R

d2 , it is easy to check that we can reduce the calculations to
the rank-one spiked model with singular value λj . To leverage the dimensionality
effect where UT

⊥ZV⊥ ∈ R
d1−×d2− has i.i.d. standard normal entries, we consider

the rank-one spiked model with

M̂ = λ(u⊗ v) + Z ∈ R
(d1−+1)×(d2−+1) (28)

where Z has i.i.d. standard normal entries and d1− = d1 − r, d2− = d2 − r. Let
û and v̂ denote the leading left and right singular vectors of M̂ . By fact (27),
it suffices to calculate the k-th order approximation of ‖ûûT − uuT‖2F + ‖v̂v̂T −
vvT‖2F. In the proof, we calculate the errors ‖ûûT − uuT‖2F and ‖v̂v̂T − vvT‖2F
separately. W.L.O.G., we just deal with ‖ûûT − uuT‖2F and consider d1 ≤ d2

3.
Recall that we aim to calculate the k-th order error term in ‖uuT − ûûT‖2F.

To this end, we write the error terms as

E‖ûûT − uuT‖2F = 2

∞∑
k=1

E2k

λ2k
. (29)

We show that E2k = (−1)kdk−1
1− (d1− − d2−) ·

[
1 + O

(
Ck

1√
d2

)]
for some absolute

constant C1 > 0. To this end, we consider the second-order (see (Xia and Zhou,
2019)) moment trick (denote T = λ2(u⊗ u))

M̂M̂T = λ2(u⊗ u) + Δ ∈ R
(d1−+1)×(d1−+1) (30)

where Δ = λuvTZT + λZvuT + ZZT. By eq. (4), we can write

‖ûûT − uuT‖2F = −2
∑
k≥2

〈
uu�,ST,k(Δ)

〉
3This condition just simplifies our calculation when dealing with the Marchenko Pastur

law. Our results do not rely on the condition d1 ≤ d2
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where we define Pu = λ(u⊗ u) and P0
u = P⊥

u = U⊥U
�
⊥ ∈ R

(d1−+1)×d1− and

ST,k(Δ) =
∑

s:s1+···+sk+1=k

(−1)τ(s)+1 ·P−s1
u ΔPs2

u Δ · · ·ΔP−sk+1
u .

Now, we investigate
〈
uu�,ST,k(Δ)

〉
for all k ≥ 2. DenoteWt1 = ΔP⊥

uΔ · · ·P⊥
uΔ︸ ︷︷ ︸

t1 of Δ

and we can write〈
uu�,ST,k(Δ)

〉
=

k∑
τ=2

(−1)τ+1
∑

t1+···+tτ−1=k,tj≥1
s1+···+sτ=k,sj≥1

tr
(
P−s1

u Wt1P
−s2
u Wt2 · · ·P−sτ−1

u Wtτ−1P
−sτ
u

)

=
1

λ2k

k∑
τ=2

(−1)1+τ

(
k − 1

τ − 1

) ∑
t1+···+tτ−1=k,tj≥1

(uTWt1u)(u
TWt2u) · · · (uTWtτ−1u).

Denote βΔ
t1 = uTWt1u, we can write concisely

E
〈
uu�,ST,k(Δ)

〉
=

1

λ2k

k∑
τ=2

(−1)1+τ

(
k − 1

τ − 1

) ∑
t1+···+tτ−1=k,tj≥1

E
(
βΔ
t1β

Δ
t2 · · ·β

Δ
tτ−1

)
.

(31)
Now, we investigate the concentration property of βΔ

t = uTWtu. Clearly, we can
write

βΔ
1 = 2λ · (uTZv)︸ ︷︷ ︸

βΔ
1,1

+uTZZTu︸ ︷︷ ︸
βΔ
1,0

and for all t ≥ 2, we write βΔ
t = βΔ

t,1 + βΔ
t,0 where

βΔ
t,0 =uTZZTU⊥(U

T
⊥ZZTU⊥)

t−2UT
⊥ZZTu

+ λ2uvTZTU⊥(U
T
⊥ZZTU⊥)

t−2UT
⊥ZvuT

βΔ
t,1 =2λuvTZTU⊥(U

T
⊥ZZTU⊥)

t−2UT
⊥ZZTu.

As a result, we can calculate

E(βΔ
t1β

Δ
t2 · · ·β

Δ
tτ−1

) = E
(
(βΔ

t1,0 + βΔ
t1,1)(β

Δ
t2,0 + βΔ

t2,1) · · · (β
Δ
tτ−1,0 + βΔ

tτ−1,1)
)
.

It is easy to check that EβΔ
1 = d2− + 1 and for t ≥ 2

EβΔ
t =λ2

E
(
vTZTU⊥(U

T
⊥ZZTU⊥)

t−2UT
⊥Zv

)
+ Etr

(
ZTU⊥(U

T
⊥ZZTU⊥)

t−2UT
⊥Z

)
=
(
1 +

λ2

d2− + 1

)
· Etr

(
ZTU⊥(U

T
⊥ZZTU⊥)

t−2UT
⊥Z

)
=
(
1 +

λ2

d2− + 1

)
· Etr

(
(UT

⊥ZZTU⊥)
t−1

)
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where the second equality can be checked by choosing v = e1 ∈ R
d2−+1. Since

ZTu and ZTU⊥ are independent, it is easy to check that

EβΔ
t1,i1β

Δ
t2,i2 · · ·β

Δ
tτ−1,iτ−1

= 0, if

τ−1∑
j=1

ij is an odd number

for all i1, i2, · · · , iτ−1 ∈ {0, 1}. As a result, we observe that E
〈
uuT,ST,k

〉
has

contributions to E2k, E2k−2, E2k−4, · · · , E2�k/2�. (Recall that E2k is the coeffi-

cient for 1
λ2k .)

Moreover, since ZTu and ZTU⊥ are independent, we can conclude that

βΔ
1,1 ∼ N (0, 4λ2)

and for all t ≥ 2,

βΔ
t,1

∣∣UT
⊥Z ∼ N

(
0, 4λ2‖ZTU⊥(U

T
⊥ZZTU⊥)

t−2UT
⊥Zv‖2	2

)
.

We can get, for all t ≥ 2, that

E
1/2

[
(βΔ

t,1)
2
∣∣UT

⊥Z
]

� E
1/4

[
(βΔ

t,1)
4
∣∣UT

⊥Z
]

� λ‖UT
⊥Z‖2(t−1)

Therefore, it is easy to check that for any (i1, i2, · · · , iτ−1) ∈ {0, 1}τ−1 where
there exists some ij ≥ 1, then EβΔ

t1,i1
βΔ
t2,i2

· · ·βΔ
tτ−1,iτ−1

’s contribution to any

E2k1 is bounded by 1
d2

·
(

C1d2

λ2

)k1

for some absolute constant C1 > 0 and

2�k/2
 ≤ 2k1 ≤ 2k. To show this, w.l.o.g, let i1 = i2 = 1 and observe that

EβΔ
t1,1β

Δ
t2,1β

Δ
t3,i3 · · ·β

Δ
tτ−1,iτ−1

= E
1/2(βΔ

t1,1β
Δ
t2,1)

2
E
1/2

(
βΔ
t3,i3 · · ·β

Δ
tτ−1,iτ−1

)2
≤E

1/4(βΔ
t1,1)

4
E
1/4(βΔ

t2,1)
4
E
1/2

(
βΔ
t3,i3 · · ·β

Δ
tτ−1,iτ−1

)2
≤λ2dt1+t2−2

2 E
1/2

(
βΔ
t3,i3 · · ·β

Δ
tτ−1,iτ−1

)2
(32)

and then we get

1

λ2k
EβΔ

t1,1β
Δ
t2,1β

Δ
t3,i3 · · ·β

Δ
tτ−1,iτ−1

≤ 1

d2
·
(d2
λ2

)t1+t2−1

·
E
1/2

(
βΔ
t3,i3

· · ·βΔ
tτ−1,iτ−1

)2
λ2(k−t1−t2)

.

The claim follows immediately since

E
1/2

(
βΔ
t3,i3

· · ·βΔ
tτ−1,iτ−1

)2
λ2(k−t1−t2)

≤
k1∑

k1=�(k−t1−t2)/2�

Ck1
1 E

1/2‖Z‖4k1

λ2k1

≤
k1∑

k1=�(k−t1−t2)/2�

(C2d2
λ2

)k1

for some absolute constant C1, C2 > 0 and where the last inequality is due to
E‖Z‖4k1 ≤ C4k1

3 d2k1
2 for some absolute constant C3 > 0.
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As a result, in order to calculate eq. (31), it suffices to calculate

1

λ2k

k∑
τ=2

(−1)1+τ

(
k − 1

τ − 1

) ∑
t1+···+tτ−1=k,tj≥1

E
(
βΔ
t1,0β

Δ
t2,0 · · ·β

Δ
tτ−1,0

)
. (33)

Next, we will replace E
(
βΔ
t1,0β

Δ
t2,0 · · ·βΔ

tτ−1,0

)
with EβΔ

t1,0Eβ
Δ
t2,0 · · ·EβΔ

tτ−1,0 for

which we shall investigate the concentrations of βΔ
t,0. To this end, we have the

sub-exponential inequality

P
(∣∣uTZZTu− d2−

∣∣ ≥ C3

√
αd2− + C4α

)
≤ C5e

−α, ∀α > 0

for some constants C3, C4 > 0. Again, by Gaussian isoperimetric inequality and
the proof of Theorem 34, we can show, for all α > 0

P
(∣∣uTZ(ZTU⊥U

T
⊥Z)tZTu− EuTZ(ZTU⊥U

T
⊥Z)tZTu

∣∣
≥ C3αd

t+1/2
2 + C4e

−c1d2dt+1
2

)
≤ C5e

−α2

+ C6e
−c2d2

and

P
(∣∣vT(ZTU⊥U

T
⊥Z)t−1v − EvT(ZTU⊥U

T
⊥Z)t−1v

∣∣ ≥C3tαd
t−3/2
2 + C4e

−c1d2dt−1
2

)
≤ C5e

−α2

+ C6e
−c2d2 .

Therefore, we can show that
∣∣E(βΔ

t1,0β
Δ
t2,0 · · ·βΔ

tτ−1,0) − (EβΔ
t1,0)(Eβ

Δ
t2,0) · · ·

(EβΔ
tτ−1,0)

∣∣’s contribution to any E2k1 is bounded by 1√
d2

· (C1d2/λ
2)k1 for some

constant C1 > 0 and 2�k/2
 ≤ 2k1 ≤ 2k. Indeed, the above concentration
inequalities of βΔ

t,0 imply

E
1/2(βΔ

t,0 − EβΔ
t,0)

2 � d
t−1/2
2 + λ2d

t−3/2
2 , ∀t ≥ 1.

The claim can be proved as in eq. (32). Indeed, we can write

1

λ2k

∣∣∣EβΔ
t1,0β

Δ
t2,0 · · ·β

Δ
tτ−1,0 − (EβΔ

t1,0)(Eβ
Δ
t2,0) · · ·E(β

Δ
tτ−1,0)

∣∣∣
≤ 1

λ2k

τ−1∑
i=1

( i−1∏
j=1

EβΔ
tj ,0

)∣∣∣E(βΔ
ti,0 − EβΔ

ti,0

)( τ−1∏
j=i+1

βΔ
tj ,0

)∣∣∣
≤

τ−1∑
i=1

E
1/2

(
βΔ
ti,0 − EβΔ

ti,0

)2
λ2ti

· 1

λ2(k−ti)

i−1∏
j=1

(
EβΔ

tj ,0

)
E
1/2

( τ−1∏
j=i+1

βΔ
tj ,0

)2

≤
τ−1∑
i=1

1√
d2

(
(d2/λ

2)ti + (d2/λ
2)ti−1

)
· 1

λ2(k−ti)

i−1∏
j=1

(
EβΔ

tj ,0

)
E
1/2

( τ−1∏
j=i+1

βΔ
tj ,0

)2

4We just need to study the Lipschitz property of the function f(Z) =
uTZ(ZTU⊥UT

⊥Z)tZTu · 1(‖Z‖ ≤ C1
√
d2)
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which concludes the proof since 1
λ2(k−ti)

∏i−1
j=1

(
EβΔ

tj ,0

)
E
1/2

(∏τ−1
j=i+1 β

Δ
tj ,0

)2

≤(
C2d2

λ2

)k−ti
.

To this end, to calculate eq. (31), it suffices to calculate

1

λ2k

k∑
τ=2

(−1)1+τ

(
k − 1

τ − 1

) ∑
t1+···+tτ−1=k,tj≥1

EβΔ
t1,0Eβ

Δ
t2,0 · · ·Eβ

Δ
tτ−1,0

Now, we compute EβΔ
t,0 =

(
1 + λ2/(d2− + 1)

)
· Etr

(
(UT

⊥ZZTU⊥)
t−1

)
. Note

that the matrix UT
⊥Z ∈ R

d1−×(d2−+1) has i.i.d. standard normal entries. By the
moment of Marchenko-Pastur law ((Mingo and Speicher, 2017)), for all t ≥ 2,
we define (additionally, β1 = d2− + 1)

βt

1 + λ2/(1 + d2−)
=

1

t− 1

t−2∑
r=0

dr+1
1− (d2− + 1)t−1−r

(
t− 1

r + 1

)(
t− 1

r

)
. (34)

Note that Etr
(
(UT

⊥ZZTU⊥)
t−1

)
= Etr

(
(ZTU⊥U

T
⊥Z)t−1

)
for all t ≥ 2. By the

rate of convergence of Marchenko Pastur law ((Götze and Tikhomirov, 2011,
Theorem 1.1)), we have (as long as

√
d2 ≥ log2 d2)∣∣βt − EβΔ

t,0

∣∣
1 + λ2/(d2− + 1)

≤ 1√
d2

·
(
C1d2

)t−1

for all t ≥ 2 where C1 > 0 is an absolute constant. As a result, we get that for
all t1+ · · ·+ tτ−1 = k, the contribution to E2k1 from

∣∣EβΔ
t1,0Eβ

Δ
t2,0 · · ·EβΔ

tτ−1,0−

βt1βt2 · · ·βtτ−1

∣∣ is bounded by 1√
d2

·
(

C1d2

λ2

)k1

.

Therefore, by eq. (31), to calculate E
〈
uuT,ST,k(Δ)

〉
, we consider the following

term

1

λ2k

k∑
τ=2

(−1)1+τ

(
k − 1

τ − 1

) ∑
t1+···+tτ−1=k,tj≥1

βt1βt2 · · ·βtτ−1

which is the k-th order derivative of the function 1
λ2k·(k!) (1− g(α))k−1 at α = 0

where
g(α) = β1α+ α2β2 + α3β3 + · · · =

∑
k≥1

βkα
k. (35)

Now, we calculate the explicit form of the function g(α). Denote γ = d1−
d2−+1 and

Y the random variable obeying the Marchenko-Pastur distribution, i.e., its pdf
is given by

fY (y) =
1

2π

√
(γ+ − y)(y − γ−)

γy
· 1(y ∈ [γ−, γ+])

where γ+ = (1 +
√
γ)2 and γ− = (1 − √

γ)2. It is easy to check that ((Mingo
and Speicher, 2017))

βt =
(
1 +

λ2

1 + d2−

)
d1−(d2− + 1)t−1

EY t−1, ∀t ≥ 2.
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For notational simplicity, we just write d2− instead of 1 + d2−. As a result, we
get for α � 1

d2
2
,

g(α) =β1α+
(
1 +

λ2

d2−

)
d1−αE

∑
t≥1

dt2−(αY )t

=β1α+
(
1 +

λ2

d2−

)
E
d1−αd2−αY

1− d2−αY

=αd2− +
(
1 +

λ2

d2−

)
·
(√

1− αd2−γ− −
√

1− αd2−γ+
)2

4

where the last equality comes up by integrating Y according to the p.d.f. FY (y).
Therefore, we get

1− g(α) =
1

2

[
g+(α)−

λ2

d2−
g−(α)

]
where

g−(α) = 1− (d1− + d2−)α−
√

(1− αd2−γ−)(1− αd2−γ+)

and
g+(α) = 1− (d2− − d1−)α+

√
(1− αd2−γ−)(1− αd2−γ+).

Therefore, in order to calculate E
〈
uu�,ST,k(Δ)

〉
, it suffices to calculate the k-th

order derivative of function (1−g(α))k−1

λ2k·(k!) at α = 0. Write[(
1− g(α)

)k−1
](k)

λ2k(k!)

∣∣∣
α=0

=
1

λ2k · 2k−1 · (k!)

k−1∑
t=0

(
k − 1

t

)(
− λ2

d2−

)t[
gt−(α)g

k−1−t
+ (α)

](k)∣∣∣
α=0

. (36)

Note that g−(α) = O(α2). The terms in eq. (36) with t > k
2 are all 0. Re-

call that we are interested in the k0-th order term in the error ‖ûûT − uuT‖2F
whose denominator is λ2k0 . By eq. (36), the k0-th order error term 1

λ2k0
can be

contributed from E
〈
uu�,ST,k(Δ)

〉
for k = k0, k = k0 + 1, · · · , k = 2k0.

By the above analysis, we conclude that the k0-th error term (except the
negligible error terms from translating E(βΔ

t1β
Δ
t2 · · ·βΔ

tτ−1
) into βt1βt2 · · ·βtτ−1)

of ‖ûûT − uuT‖2F is given by E2k0 =
∑k0

t=0 E2k0,t where (we change k in (36) to
k0 + t)

E2k0,t=
1

λ2k0

1

2k0+t−1

1

(k0 + t)!

(
k0 + t− 1

t

)(
− 1

d2−

)t[
gt−(α)g

k0−1
+ (α)

](k0+t)∣∣∣
α=0

When t = k0, we have

gk0
− (α) =

(4d1−d2−)
k0α2k0[

1− α(d1− + d2−) +
√

(1− αd2−γ−)(1− αd2−γ+)
]k0
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implying that [
gk0
− (α)gk0−1

+ (α)
](2k0)∣∣∣

α=0
= (2k0)!

(4d1−d2−)
k0

2
.

Therefore, we get E2k0,k0 = (−1)k0dk0
1−
(
2k0−1

k0

)
. Now, we consider t ≤ k0− 1 and

we observe

1− α(d1− + d2−) +
√
(1− αd2−γ−)(1− αd2−γ+) = g+(α)− 2d1−α

so that g−(α) =
4d1−d2−α2

g+(α)−2αd1−
, Then, we get[

gt−(α)g
k0−1
+ (α)

](k0+t)∣∣∣
α=0

=
[ (4d1−d2−α

2)t(
g+(α)− 2αd1−

)t · gk0−1
+ (α)

](k0+t)∣∣∣
α=0

=

(
k0 + t

2t

)
(2t)!(4d1−d2−)

t
[ gk0−1

+ (α)

(g+(α)− 2αd1−)t

](k0−t)∣∣∣
α=0

.

It suffices to calculate the (k0 − t)-th derivative of function gk0−1
+ (α)/

(
g+(α)−

2αd1−
)t

at α = 0. We write[ gk0−1
+ (α)

(g+(α)− 2αd1−)t

](k0−t)∣∣∣
α=0

=
[ k0−1∑

t1=0

(
k0 − 1

t1

)
(2αd1−)

k0−1−t1
(
g+(α)− 2αd1−

)t1−t
](k0−t)∣∣∣

α=0
.

Observe that
[
(2αd1−)

k0−1−t1
](k0−t)∣∣

α=0
= 0 for all t1 < t− 1. Then, we get

[ gk0−1
+ (α)

(g+(α)− 2αd1−)t

](k0−t)∣∣∣
α=0

=
[ k0−1∑
t1=t−1

(
k0 − 1

t1

)
(2αd1−)

k0−1−t1
(
g+(α)− 2αd1−

)t1−t
](k0−t)∣∣∣

α=0
.

If t1 = t− 1, then[(k0 − 1

t1

)
(2αd1−)

k0−1−t1
(
g+(α)− 2αd1−

)t1−t
](k0−t)∣∣∣

α=0

=

(
k0 − 1

t− 1

)
(2d1)

k0−t(k0 − t)! · 1
2

If t1 ≥ t, we have[
(2αd1−)

k0−1−t1
(
g+(α)− 2αd1−

)t1−t
](k0−t)∣∣∣

α=0

=

(
k0 − t

k0 − 1− t1

)
(2d1)

k0−1−t1(k0 − 1− t1)!
[(
g+(α)− 2αd1−

)t1−t
](t1+1−t)∣∣∣

α=0
.
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Clearly, if t1 = t, then
[(
g+(α) − 2αd1−

)t1−t](t1+1−t)∣∣
α=0

= 0. For t1 ≥ t + 1,
recall that

g+(α)− 2αd1 = 1− (d1− + d2−)α+
√

(1− αd2−γ−)(1− αd2−γ+).

It is easy to check that[(
g+(α)− 2αd1−

)t1−t](t1+1−t)∣∣
α=0

= −
[(
1− (d1− + d2−)α−

√
(1− αd2−γ−)(1− αd2−γ+)

)t1−t](t1+1−t)∣∣
α=0

= −
[( 4d1−d2−α

2

g+(α)− 2αd1−

)t1−t](t1+1−t)∣∣∣
α=0

which is non-zero only when t1 = t+ 1. In fact, when t1 = t+ 1, we get[(
g+(α)− 2αd1−

)t1−t](t1+1−t)∣∣
α=0

= −4d1−d2−.

Therefore, we conclude that[ gk0−1
+ (α)

(g+(α)− 2αd1−)t

](k0−t)∣∣∣
α=0

=

(
k0 − 1

t− 1

)
(2d1−)

k0−t(k0 − t)! · 1
2
−
(
k0 − 1

t+ 1

)
×
(
k0 − t

2

)
(2d1−)

k0−t−2(k0 − 2− t)!(4d1−d2−).

As a result, for t ≤ k0 − 1, we get

E2k0,t =dk0
1− · (−1)t

(
k0 + t− 1

t

)(
k0 − 1

t− 1

)
− dk0−1

1− d2− · (−1)t
(
k0 + t− 1

t

)(
k0 − 1

t+ 1

)
.

Clearly, it also holds for t = k0. Therefore, we have

E2k0 =

k0∑
t=0

E2k0,t = dk0
1−

k0∑
t=0

(−1)t
(
k0 + t− 1

t

)(
k0 − 1

t− 1

)

− dk0−1
1− d2−

k0−2∑
t=0

(−1)t
(
k0 + t− 1

t

)(
k0 − 1

t+ 1

)
.

It is easy to check that

k0∑
t=0

(−1)t
(
k0 + t− 1

t

)(
k0 − 1

t− 1

)
=

k0∑
t=1

(−1)t
(
k0 + t− 1

t

)(
k0 − 1

t− 1

)

=(−1)

k0−1∑
t=0

(−1)t
(
k0 + t

t+ 1

)(
k0 − 1

t

)
.
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It is interesting to observe that
∑k0−1

t=0 (−1)t
(
k0+t
t+1

)(
k0−1

t

)
equals the coefficient

of xk0−1 in the polynomial (1 + x)k0
[
1− (1 + x)

]k0−1
. Then, it is easy to check

that
∑k0−1

t=0 (−1)t
(
k0+t
t+1

)(
k0−1

t

)
= (−1)k0−1. Similarly, we can observe that

k0−2∑
t=0

(−1)t
(
k0 + t− 1

t

)(
k0 − 1

t+ 1

)
=

k0−1∑
t=1

(−1)t−1

(
k0 + t− 2

t− 1

)(
k0 − 1

t

)

=(−1)

k0−1∑
t=1

(−1)t
(
k0 + t− 2

t− 1

)(
k0 − 1

t

)
.

Again, it is easy to check that
∑k0−1

t=1 (−1)t
(
k0+t−2

t−1

)(
k0−1

t

)
equals the coefficient

of xk0−1 in the polynomial (1 + x)k0−2[1 − (1 + x)]k0−1. As a result, we get∑k0−1
t=1 (−1)t

(
k0+t−2

t−1

)(
k0−1

t

)
= (−1)k0−1. To this end, we conclude that

E2k0 = (−1)k0dk0−1
1− (d1− − d2−)

, i.e., the k0-th error term in E‖ûûT − uuT‖2F is given by
(−1)k0d

k0−1
1− (d1−−d2−)

λ2k0

(except the negligible error terms). In a similar fashion, we can show that the k0-

th error term in E‖v̂v̂T−vvT‖2F is given by
(−1)k0d

k0−1
2− (d2−−d1−)

λ2k0
. Meanwhile, the

negligible error terms from translating E(βΔ
t1β

Δ
t2 · · ·βΔ

tτ−1
) into βt1βt2 · · ·βtτ−1 are

upper bounded by k0√
d2

·
(

C2d2

λ2
r

)k0

which concludes the proof.

Lemma 6. Let Λ = diag(λ1, · · · , λr) and Z ∈ R
r×d be a random matrix con-

taining i.i.d. standard normal entries. Then, for any positive numbers j1, j2, we
have

E‖Λ−j1ZZTΛ−j2‖2F = d2‖Λ−j1−j2‖2F + d
(
‖Λ−j1−j2‖2F + ‖Λ−j1‖2F‖Λ−j2‖2F

)
.

Proof of Lemma 6. Let z1, · · · , zr ∈ R
d denote the columns of ZT. Therefore,

we can write

‖Λ−j1ZZTΛ−j2‖2F =

r∑
i=1

1

λ
2(j1+j2)
i

(zTi zi)
2 +

∑
1≤i1 
=i2≤r

1

λ2j1
i1

λ2j2
i2

(zTi1zi2)
2.

Then, we get

E‖Λ−1ZZTΛ−1‖2F =

r∑
i=1

d2 + 2d

λ
2(j1+j2)
i

+
∑

1≤i1 
=i2≤r

d

λ2j1
i1

λ2j2
i2

=d2‖Λ−j1−j2‖2F + d
(
‖Λ−j1−j2‖2F + ‖Λ−j1‖2F‖Λ−j2‖2F

)
.
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