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Abstract: This paper is on the normal approximation of singular sub-
spaces when the noise matrix has i.i.d. entries. Our contributions are three-
fold. First, we derive an explicit representation formula of the empirical
spectral projectors. The formula is neat and holds for deterministic ma-
trix perturbations. Second, we calculate the expected projection distance
between the empirical singular subspaces and true singular subspaces. Our
method allows obtaining arbitrary k-th order approximation of the expected
projection distance. Third, we prove the non-asymptotical normal approx-
imation of the projection distance with different levels of bias corrections.
By the [log(di +d2)]-th order bias corrections, the asymptotical normality
holds under optimal signal-to-noise ratio (SNR) condition where d; and d2
denote the matrix sizes. In addition, it shows that higher order approxima-
tions are unnecessary when |d1 —da| = O((d1 +d2)1/2). Finally, we provide
comprehensive simulation results to merit our theoretic discoveries.
Unlike the existing results, our approach is non-asymptotical and the
convergence rates are established. Our method allows the rank r to diverge
as fast as o((dy + d2)'/3). Moreover, our method requires no eigen-gap
condition (except the SNR) and no constraints between d; and da.
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1. Introduction

Matrix singular value decomposition (SVD) is a powerful tool for various pur-
poses across diverse fields. In numerical linear algebra, SVD has been success-
fully applied for solving linear inverse problems, low-rank matrix approximation
and etc. See, e.g., Golub and Van Loan (2012), for more examples. In many
machine learning tasks, SVD is crucial for designing computationally efficient
algorithms, such as matrix and tensor completion (Cai et al. (2010), Keshavan
et al. (2010), Candes and Tao (2010), Xia and Yuan (2018), Xia et al. (2017)),
and phase retrieval (Ma et al. (2017), Candes et al. (2015)), where SVD is
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often applied for generating a warm initial point for non-convex optimization
algorithms. In statistical data analysis, SVD is superior for denoising and di-
mension reduction. For instance, SVD, as a dimension reduction tool, is used
for text classification in Kim et al. (2005). See also Li and Wang (2007). In
Shabalin and Nobel (2013), SVD shows appealing performances in low rank
matrix denoising. More specifically, in Donoho and Gavish (2014), they proved
that statistically minimax optimal matrix denoising can be attained via pre-
cise singular value thresholding. Recently, matrix SVD is generalized to ten-
sor SVD for tensor denoising, see Xia and Zhou (2019) and Zhang and Xia
(2018).

The perturbation analysis is critical for advancing the theoretical develop-
ments of SVD for low-rank matrix denoising where the observed data matrix
often equals a low-rank information matrix plus a noise matrix. The determin-
istic perturbation bounds of matrix SVD have been well established by Davis-
Kahan (Davis and Kahan (1970), Yu et al. (2014)) and Wedin (Wedin (1972))
many years ago. Among those deterministic perturbation bounds, one simple
yet useful bound shows that the perturbation of singular vectors is governed by
the so-called signal-to-noise ratio (SNR) where “signal” refers to the smallest
non-zero singular value of the information matrix and the “noise” refers to the
spectral norm of the noise matrix. It is a quite general result since the bound
does not rely on the wellness of alignments between the singular subspaces of
the information and of the noise matrices. Such a general bound turns out to
be somewhat satisfactorily sharp when the noise matrix contains i.i.d. random
entries. However, more refined characterizations of singular vectors are needed
on the frontiers of statistical inference for matrix SVD. The Davis-Kahan The-
orem and Wedin’s perturbation bounds are illustrated by the non-zero smallest
singular value of the information matrix, where the effects of those large singular
values are usually missing. Moreover, the exact numerical factor is also not well
recognized.

The behavior of singular values and singular vectors of low rank perturba-
tions of large rectangular random matrices is popular in recent years. They play
a key role in statistical inference with diverse applications. See Li and Li (2018),
Naumov et al. (2017), Tang et al. (2018) for some examples in network testing.
The asymptotic limits of singular values and singular vectors were firstly devel-
oped by Benaych-Georges and Nadakuditi (2012), where the convergence rate
of the largest singular value was also established. Recently, by Ding (2017),
more precise non-asymptotic concentration bounds for empirical singular values
were obtained. Meanwhile, Ding (2017) also proved non-asymptotic perturba-
tion bounds of empirical singular vector when the associated singular value has
multiplicity 1. In a recent work (Bao et al., 2018), the authors studied the
asymptotic limit distributions of the empirical singular subspaces when (scaled)
singular values are bounded. Specifically, they showed that if the noise matrix
has Gaussian distribution, then the limit distribution of the projection distance
is also Gaussian. Unlike these prior arts (Ding (2017), Bao et al. (2018)), we focus
on the non-asymptotical normal approximations of the joint singular subspaces
in a different regime. Our approach allows the rank to diverge, and imposes no
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constraints between d; and dy. In addition, we establish the convergence rates
and impose no eigen-gap conditions (except SNR).

In Xia (2019), the low rank matrix regression model is investigated where
the author proposed a de-biased estimator built on nuclear normal penalized
least squares estimator. The de-biased estimator ends up with an analogous
form of the low rank perturbation of rectangular random matrices. Then, non-
asymptotical normal approximation theory of the projection distance is proved,
under near optimal sample size requirement. The paramount observation is that
the mean value in the limit normal distribution is significantly larger than its
standard deviation. As a result, a much larger than regular sample size require-
ment is necessary to tradeoff the estimation error of the expected projection
distance. Most recently, Chen et al. (2018) revealed an interesting phenomenon
of the perturbation of eigenvalues and eigenvectors of such non-asymmetric ran-
dom perturbations, showing that the perturbation of eigen structures is much
smaller than the singular structures. In addition, some non-asymptotic pertur-
bation bounds of empirical singular vectors can be found in Koltchinskii and
Xia (2016),Bloemendal et al. (2016) and Abbe et al. (2017). The minimax opti-
mal bounds of singular subspace estimation for low rank perturbations of large
rectangular random matrices are established in Cai and Zhang (2018).

Our goal is to investigate the central limit theorems of singular subspaces
in the low rank perturbation model of large rectangular random matrices. As
illustrated in Xia (2019), the major difficulty arises from how to precisely de-
termine the expected projection distance. One conclusive contribution of this
paper is an explicit representation formula of the empirical spectral projector.
This explicit representation formula allows us to obtain precise characterization
of the (non-asymptotical) expected projection distance. After those higher or-
der bias corrections, we prove normal approximation of the singular subspaces
with optimal (in the consistency regime) SNR requirement. For better present-
ing the results and highlighting the contributions, let’s begin with introducing
the standard notations. We denote M = UAVT the unknown d; X ds ma-
trix where U € R“*" and V € R9*" are its left and right singular vectors.
The diagonal matrix A = diag(A1,- -+, A.) contains M’s non-increasing positive
singular values. The observed data matrix M € R4%d> gatisfies the additive
model:

i.4.d.

M=M+2Z where Z;; "~"N(0,1) for1<j; <d,1<jp<ds (1)

1j2
Here, we fix the noise variance to be 1, just for simplicity. For ease of exposition,
let dy < do. Let U € R4%" and V € R%2%" be the top-r left and right singular
vectors of M. Let A = diag(Ay, -+, Ar) denote the top-r singular values of M.
We focus on the projection distance between the empirical and true singular
subspaces which is defined by

dist’[(U, V), (U, V)] := 00T = UUT[[§ + [VVT = VV [ (2)

By Davis-Kahan Theorem (Davis and Kahan, 1970) or Wedin’s sin © theorem
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(Wedin, 1972), dist?[(T7, V), (U, V)] is non-trivial on the event {\, > 2||Z||}. It
is well-known that ||Z| = Op(1/d2) where | - || denotes the spectral norm and
dy = max{dy, dy}. Therefore, it is convenient to consider A, > \/ds. In this pa-
per, we focus on the consistency regime' so that the empirical singular subspaces
are consistent which requires \, > \/rds. See, e.g., Tao (2012), Koltchinskii and
Xia (2016), Cai and Zhang (2018) and Vershynin (2010).

Our contributions are summarized as follows.

1. An explicit representation formula of UUT and VVT is derived. In partic-
ular, UUT and VVT can be completely determined by a sum of a series of
matrix product involving only A, UUT, ULUJT_, vvT, VLVI and Z, where
Uy € Rax(di=r) and V e R¥%*(@-7) are chosen so that (U,U,) and
(V,V.) are orthonormal matrices. To derive such a useful representation
formula, we apply the Reisz formula, combinatoric formulas, contour inte-
grals, residue theorem and generalized Leibniz rule. It worths to point out
that the representation formula is deterministic as long as || Z| < A./2.
We believe that this representation formula of spectral projectors should
be of independent interest for various purposes.

2. By the representation formula, we prove the normal approximation of
¢y = (dist?[(U, V), (U, V)]-Edist*[(U, V), (U, V)])/ (v8d, | A~2||r) where
dyx = di + do — 2r. In particular, we show that &; converges to a standard
normal distribution as long as v/rda /A, — 0 and r3/dy — 0 as dy,dy —
00. The required SNR is optimal in the consistency regime. Note that
our result allows r to diverge as fast as o((d; + do)'/?). In addition, no
conditions on the eigen-gaps (except A,.) are required. The convergence
rate is also established. The proof strategy is based on the Gaussian
isoperimetric inequality and Berry-Esseen theorem.

3. The unknown Edist?[(7, V), (U, V)] plays the role of centering in é;. To
derive user-friendly normal approximations of dist*[(T, V), (U, V)], it suf-
fices to explicitly calculate its expectation (non-asymptotically). By the
representation formula of UUT and VVT, we obtain approximations of
Edist?[(U, V), (U, V)]. Different levels of approximating the expectation
ends up with different levels of bias corrections. These levels of approxi-
mations are

(a) Level-1 approximation: By = 2d,||A™!||%. The approximation error
is

. N rd3
’Edlst2[(U, V), (U, V)] - 31] - O()\—f).
(b) Level-2 approximation: By = 2(dy|[A7![|2 — A2Z||A72||Z) where Ay =

d1 — d2. Then,

. Ao rds
’EdlstQ[(U, V), (U, V)] - 32] - O(Tg).
T
IWe note that, in RMT literature (see, e.g., Bao et al. (2018),Ding (2017)), many works
studied the problem when A\, = O(v/d2) and A\, > (d1d2)'/%. In this paper, we focus on the
regime when empirical singular subspaces are consistent, i.e., Edistz[(U, V), (U,V)] = 0 when
d2 — 0o. As shown in Cai and Zhang (2018), such consistency requires v/rda/Ar — 0.
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(c) Level-k approximation: By = 2d, ||A™!||%—2 Eﬁozz(—l)ko Ag(dhot -
d5o~1)||A=0||2 where d;_ = dy —r and dy_ = dy — 7. Then, for all
k> 2,

‘EdistQ[(U, V), (U, V)] — Bk‘
(57 () (5

where (5 > 0 is some absolute constant.

The aforementioned approximation errors hold whenever Cody /A2 < 1.
Explicit formula for B, is also derived. An intriguing fact is that if
|di — da| = O(/dz), i.e., the two dimensions of M are comparable, then
higher level approximations have similar effects as the Level-1 approxima-
tion. Simulation results show that Level-1 approximation by B; is indeed
satisfactorily accurate when dy = ds.

4. By replacing EdistQ[(U, V), (U, V)] with By, we prove the normal approx-
imation of dist®[(, V), (U, V)]. Different levels of bias corrections require
different levels of SNR conditions for the asymptotical normality. For in-
stance, we prove the normal approximation of &, := (distQ[(U, V), (U, V)]-
Briogdy1)/(V38d.||[A72||r) with the [logds]-th order bias correction. More
exactly, we show the asymptotical normality of é; when v/rda/A\,. — 0
and r%/dy — 0 as dy,dy — oo. As far as we know, this is the first re-
sult about the limiting distribution of singular subspaces which allows the
rank r to diverge. Meanwhile, no eigen-gap conditions (except SNR) are
needed. Since our normal approximation is non-asymptotical, we impose
no constraints on the relation between d; and ds.

The rest of the paper is organized as follows. In Section 2, we derive the ex-
plicit representation formula of empirical spectral projector. The representa-
tion formula is established under deterministic perturbation. We prove normal
approximation of dist?[(, V), (U, V)] in Section 3. Especially, we show that
dist?>[(U, V), (U, V)] is asymptotically normal under optimal SNR. conditions.
In Section 4 and 5, we develop the arbitrarily k-th level approximations of
EdistQ[(ﬁ ,V), (U, V)] and its corresponding normal approximation, where re-
quirements for SNR are specifically developed. In Section 6, we propose con-
fidence regions and discuss about data-adaptive shrinkage estimator of sin-
gular values. We then display comprehensive simulation results in Section 7,
where, for instance, we show the importance of higher order approximations
of Edist*[(T, V), (U, V)] when the matrix has unbalanced sizes and the effec-
tiveness of shrinkage estimation of singular values. The proofs are collected in
Section 8 and Appendix 8.
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2. Representation formula of spectral projectors

Let A and X be dxd symmetric matrices. The matrix A has rank r = rank(A) <
d. Denote the eigen-decomposition of A,

A=0A0" = );0,0]
j=1

where A = diag(A1,- -+, A.) contains the non-zero non-increasing eigenvalues of
A. The d x r matrix © = (61,--- ,60,) consists of A’s eigenvectors. The noise
matrix X satisfies | X|| < minj<;<, % where || - || denotes the matrix operator

norm. Given A = A + X where A and X are unknown, our goal is to estimate
O. We denote © = (él, ceey L‘L) the d X r matrix containing the eigenvectors of A
with largest r eigenvalues in absolute values. Therefore, 6 represents the empir-
ical version of ©. We derive the representation formula of ©0T for deterministic
X. The formula is useful for various of purposes.

To this end, define ©; = (6,41, -+ ,04) the d x (d — r) matrix such that
(©,0,) is orthonormal. Define the spectral projector,

d
P= > 0,6 =0,0.

j=r+1
Also, define
-1 ._ -1 T _ 1T
Pi=) N'0;0] =eA~'eT.
j=1

Meanwhile, we write 8% = OA~*OT for all k > 1. For notational simplicity,
we denote PY = P+ and denote the k-th order perturbation term

Sar(X)= Z (=) ps X P X L XSk (3)
s:s14-+spp1=k
where s = (81, -+ , Sk+1) contains non-negative integer indices and

k+1
7(s) =) I(s; >0)

+

J
denotes the number of positive indices in s. For instance, if k = 1, we have
Sai(X) =P XP-+ PP
If k = 2, by considering s1 + s2 + s3 = 2 for s1, 82,83 > 0 in (3), we have

Sa2(X) =(P2XPLXP + PXP2XP + PXPIXP )
_ (;BLmengpfl + mlemLmel + ;Blegnle;BJ_).
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Theorem 1. If || X|| < minj<;<, "\2”, then

00T — 00T =) " S4x(X)

E>1

where Sa 1 (X) is defined in (3) and we set P° = P+ = 0,07 for notational
simplicity.

Apparently, by eq. (3), a simple fact is

2k\ || X|* 4| X ||\ *
fsarcoll < (F) B < ()" iz

Compared with the famous Wedin’s and Davis-Kahan’s first-order (w.r.t. || X]|)
perturbation bound (Davis and Kahan, 1970; Wedin, 1972), Theorem 1 provides
a precise formula for the empirical spectral projector. For instance, we can
obtain the second-order approximation ©@T —0O0T — S, ;(X) and even higher
order approximations. The proof of Theorem 1 is based on complex analysis
of the resolvent, a technique has been used in Koltchinskii and Lounici (2016);
Xia (2019); LofHer et al. (2019). We note that our representation formula is
similar, in spirit, to the perturbation series of the spectral projector for a single
eigenvalue developed in Kato (2013). However, our formula is to investigate the
spectral projector for all eigenvalues jointly, which has recently become more
useful in low-rank methods.

3. Normal approximation of spectral projectors

Recall from (1) that M = M + Z € R %% with M = UAVT where U € R%*"
and V € R%X" satisfying UTU = I, and V'V = I,.. The diagonal matrix
A = diag(\1,- -+, A) contains non-increasing positive singular values of M. Let
U and V be M’s top-r left and right singular vectors. We derive the normal
approximation of

dist*[(U, V), (U, V)] = |[UUT —UUT |3 +|[VVT = VVT|3,

which is often called the (squared) projection distance on Grassmannians. To
this end, we clarify important notations which shall appear frequently through-
out the paper.

To apply the representation formula from Theorem 1, we turn M M and Z
into symmetric matrices. For notational consistency, we create (dy +ds) X (d1 +
d2) symmetric matrices as

X 0 M 0 M 0 Z
A= (0 ) (e M) e x=(2 7).

The model (1) is thus translated into A = A+ X. The symmetric matrix A has
eigenvalues A\y > -+ > A\, > A_,. > - > Ay where A\_;, = -\, for 1 <i<r.
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The eigenvectors corresponding to A; and A_; are, respectively,

1 (173 _ 1 (173
=g () -5 ()

for 1 < i < r, where {u;};_, and {v;}!_, are the columns of U and V. Here,
{0;};_; may not be uniquely defined if the singular value \; has multiplicity
larger than 1. However, the spectral projector UUT and VVT are unique re-
gardless of the multiplicities of M’s singular values.

Following the same routine of notations, we denote

@ = (61’... 797"977,7... ’971) c R(d1+d2)><2'r

and ©, € RdiHd2)x(ditd2=2r) gych that (6,0 ,) is an orthonormal matrix.

Then,
T_ T_(UUT 0
o0’ = Y ejej_( 0 vyT
1<|jl<r
and P
AAT sar_ (UUT 0
667= 3 07 =("y pir
1<[jl<r

where U and V represent M’s top-r left and right singular vectors. Similarly,
for all k£ > 1, denote

( 0 UAFYT

VA-RDT 0 ) if k is odd

1<]jl<r 7 < UAFUT 0

0 VA-FYT > if k is even.

The orthogonal spectral projector is written as

1 r_ [ ULU] 0
T =0.0 _( 0  wvuvf

where (U,U,) and (V, V) are orthonormal matrices. Actually, the columns of
O, can be explicitly expressed by the columns of U, and V. Indeed, if we
denote the columns of © € R(d1+d2)x(di+d2=2r) }y

(_)J_ = (€T+1a" . 79d17977‘713"' 707d2)

, then we can write

0, = ( s ) and 0_j, = ( U?é )

forr+1<j;<dyandr+1<j;, <ds.
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By the above notations, it is clear that
dist?>[(U, V), (U, V)] = |66T —eeT|2.
It suffices to prove the normal approximation of ||é@T — ©0T||Z. Observe that
1067 —00T||i =4r — 2(607,607) = —2(60"7,60" —00").
By Theorem 1 and @B+ = 0, we can write

dist?[(U, V), (U, V)] = =2 (007, 844(X))
E>2

=2 PEXPE 2> (00T, Sun(X)).  (4)

k>3
where we used the fact PP+ = P+ so that
—2(007,842) =2(60T, P XPLXP)
=260 (PIXPIXP ) = 2P 3

We prove CLT of dist?[(U, V), (U, V)] with an explicit normalizing factor. With-
out loss of generality, we assume d; < dy hereafter.

Theorem 2. Suppose dy > 3r where do = max{d;,ds}. There exist absolute
constants C1,Co > 0 such that if A\, > C1+/da, then for any s > 1,

dist?[(U, V), (U, V)] — E dist?[(U, V), (U, V)] )
P < —d
sup P NI sv) o)
d)'/? [ATYEN\3/2 1
< Chsl/? VT ) (rda s C F )
=20 <||A_2||F)‘72~> N et 2‘(IIA‘QII%) Vdy'

where d, = dy + da — 2r and ®(z) denotes the c.d.f. of standard normal distri-
butions. By setting s = J%’ we conclude that

dist?[(U, V), (U, V)] — E dist?[(U, V), (U, V)] )
P < —®
2eR ( NERISE sv) =)
Jr (rdp)1/2 AT A2 1
< C . C —
<o) ot 2(||A*2||%) NG

By Theorem 2, the asymptotical normality holds as long as

VT (rdy)'/? AT EN22 1
. — 0 and . —0 b}
(o) (=) 7 ®)
as dy,dy — oco. If /7 = O(A2||[A=2||g), then the first condition in (5) is equiv-

v T’d2

alent to ¥y — 0. Such SNR condition is optimal in the consistency regime.
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In addition, Cauchy-Schwartz inequality implies that [[A7![|g < r - [|[A72]3.
Therefore, the second condition in (5) holds when
3

T——>O an17d2—>OO.
da

Therefore, r is allowed to grow as fast as o((d1 + d2)'/3).

Remark 1. The normalization factor \/8d||A2||r comes from the fact
Var (2P~ XP§) = 8d.]|A7? .

Clearly, this conclusion relies on the Gaussian assumption. If the entries of
Z are not Gaussian, this variance should involve the kurtosis of the unknown
distribution. The unknown kurtosis makes the data-driven statistical inference
even more challenging. Finally, we remark by the proof of Theorem 2 that no
constraints between dy and do are needed.

Note that Edi§t2 L(U ,V), (U,V)] in Theorem 2 is not transparent yet. Cal-
culating Edist*[(U, V), (U, V)] needs delicate analysis. If we approximate this
expectation by its leading term 2E[ B~ XPL||Z, we obtain

E dist*[(T, V), (U, V)] = [2+ o(1)] - du]|A~" |5

The primary subject of section 4 is to approximate Edist?[(T, V), (U, V)] to a
higher accuracy.

4. Approximating the bias
Recall (4), we have

E dist*[(T, V), (U, V)] = 2[R X P F — 2D E(OOT, S 21(X))
k>2
where we used the fact E S4 25+1(X) = 0 for any positive integer k£ > 1. We aim
to determine E[|P-XP1||Z and E(OOT, Sy 2 (X)) for all k > 2. Apparently,
by obtaining explicit formulas of E<@@T,S A2k (X )> for larger ks, we end up
with more precise approximation of E dist?[(U, V), (U, V)]. In Lemma 1-3, we
provide arbitrarily k-th order approximation of the bias.

Lemma 1 (First order approximation). The following equation holds

B[R XPHF = duf|A~ 7
where d, = di + do — 2r. Moreover, if A\, > Ci+\/dy for some large enough
constant Cy > 0, then

A A d 2
E dist?[(T7, V), (U, V)] — 2d*||A*1||%’ < CQT()\_Z)

where C2 > 0 is an absolute constant (depending on the constant Cy ).
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In Lemma 2, we calculate E<@@T,SA74(X )> It yields the second order ap-
proximation of E dist?[(U, V), (U, V)].
Lemma 2 (Second order approximation). The following fact holds
T 201 A =22 r2dy
(007, 844(X)) - AN R| < G157

where d, = di +do — 2r and Ay = di — d2 and Co is an absolute constant.
Moreover, if A\, > C1y/da for some large enough constant C; > 0, then

B dist®[(0, V), (U. V)] - 2 [A [F-A3IA72R)|
T2d2 dg 3
< k) hatald
_O] )\;4” +CQT()\%)
where Cq,C3 > 0 are absolute constants (depending on Cf ).

In general, we calculate the arbitrary k-th order approximation in Lemma 3.
Recall that di_ =dy —r and do_ = doy — 7.

Lemma 3 (Arbitrary k-th order approximation). For a positive integer k > 2

and \/dsy > log2 ds and e~ 1% < J%Ty the following fact holds

[E(067, S426(X)) = (~1)"(dh =" — db=")(dr- — do) AT

< Cl(T2+k) ) (Czdg)k
T Vs A7

where ¢1,C1,Cy > 0 are some absolute constants. Then, the following bound
holds

E dist?[(0, V), (U, V)] Bk]

<Cy

T2d2 057“2 d2 3 Ogdg k+1
YRR~ (rg) Cﬁr()\—i)
where C3,Cy, Cs,Cq are some absolute constants and By, is defined by

k
Bi=2d AR 2 3 (-1 (@ — b die — do) AR (6)
ko=2
The second and higher order terms involve the dimension difference Ay =

dy — dy. If d; = dg, these higher order approximations essentially have similar
effects as the first order approximation.

Remark 2. By choosing k = [logds] so that (C3da/A2)kTt < (da/A2)3/\/da,
we get

T2d2 7‘2 d2 3
L (2
vz (%)

for some absolute constants Cyq,C5 > 0. In addition, for each 1 < j < r, we

E dist*[(U, V), (U, V)] = Brioga,2]| < Cu
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have

s  2di- A2 4+ do
J J -

which matches EHﬂjﬂj - ujujTH% developed in (Bao et al., 2018, Theorem 2.9)
if min{\; — Ajqy1, A\j—1 — A;} is bounded away from 0 and r is fized. Similarly,
we have

> 2dy_ (A2 +dy_)
2dy A7 -2 Fldye —dy_)d5— N7 = — 1 -
- Z 2- = di-)d ), A2(\2 4 dyo)

which matches E||0;0] — vl || developed in (Bao et al., 2018, Theorem, 2.3).
Compared with Bao et al. (2018), our results are non- asymptotzcal We impose
no eigen-gap conditions and no upper bounds on r.

Remark 3. The proof of Lemma 3 imply that if A, > C1+/ds, then

" di- (M2 +dao) ridy o d3

E|UUT -UUTg=2) —5ra—~ +O0(—~m + = ¢
| I Z X2 Fdi ) (Aa N Aé)

and

2 (N3 +di) O(r2d2 r? d§>

E|[VVT —VVT|Z =2 -t =

(>\2 +d2-)

5. Normal approximation after bias corrections

In this section, we prove the normal approximation of dist2[((7 , V), (U, V)] with
explicit centering and normalizing terms. By Theorem 2, it suffices to substitute
E dist?[(U, V), (U, V)] with the explicit formulas from Lemma 1-3.

Similarly as in Section 4, we consider arbitrarily k-th levels of bias corrections
for dist?[(U, V), (U,V)]. Higher order bias corrections, while involving more
complicate bias reduction terms, require lower levels of SNR to guarantee the
asymptotical normality. For instance, the first order bias correction in Theorem 3

requires A, > rdg/z

for asymptotical normality, while the [logds]-th order
bias correction in Theorem 4 only requires optimal A, > 1/rdy for asymptotical

normality. Again, the rank r is allowed to diverge as fast as o((dy + d2)1/3).

Theorem 3 (First order CLT). Suppose dy > 3r. There exist absolute constants
C1,Cs,C3 > 0 such that if A, > Ci\/da, then,

diStQ[(ﬁa V)a (Uv V)] - Bl >

sup <z|-—®x

z€R ( V8d,||A2||p @)
cop( L) [T g (AT Lo
=2\ A2 [pA2 Ar IA=2]12 Jd N

where dy = dy + do — 2r and By is defined by (6).
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By Theorem 3, we conclude that

dist? (T, V), (U, V)] — 2d, A2 o

— N(0,1
VBE Ay 0.1
as dy,dy — oo if /7 = O(]|]A72||[rpA2) and
Vrdy +\[rdy? . <||A*1||%>3/2 L,
A A=)V

The above conditions require A, > rd;/ > and 73 < dy. The order dg/ s

larger than the optimal rate v/ds. It is improvable if we apply higher order bias
corrections.

Theorem 4 (Arbitrary k-th order CLT). Suppose that do > 3r and k > 3.
There exist absolute constants Cy,C1,Co,C3 > 0 such that if A\, > Civ/da,
then,

dist”[(U, V), (U, V)] — By, ) NG (rds)V/2
< —d < C. .
o < VR |IA-2]|r sw) - @) < 2(||A*2||FA%) A

r’Vdy
A7

+ Cz(HA_lH%)S/Q - + 4 rd + Cor/dy - (%)kv

C
o AZE) VG e ¥

where By, is defined by (6).

Tthe asymptotical normality of (distz[(f], V), (U, V)] - Bi) /8. ||A7? || re-
quires
Vrdg +rdyt + dp - (r2da)
Ar
as dy,dy — 0o when /7 = O(||A=2||[pA2). By choosing k = [logds], it boils
down to v/rda/)\,. — 0 which is optimal in the consistency regime. Similarly
as in Theorem 2, the condition (|[A~'||%/[|A=2|2)%/2/y/dz — 0 requires that
T’3/d2 — 0 as dhdg — Q.

—0

Remark 4. To avoid computing the sum of k terms in By (6), it suffices to
apply Bs which by Remark 2 is

" 1 )\2+d2, )\2+d1,
BOO:2 — d_.]i _]7 .
;Ag(l Nrd A§+d2_)

By setting k = oo in Theorem /4, we obtain

dist?[(U, V), (U, V)] — Buo
V8, |A=2||p

as long as \/rds /N, — 0 and r3/dy — 0 when dy,ds — co.

— N(0,1)
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We note that it is also possible to develop the asymptotic distribution for
the one-sided singular vectors |[UUT — UUT||2 and ||[VVT — VV |2, For that
purpose, some treatments should be adjusted and the proof has to be modified
accordingly. We leave it as a future work.

6. Data-driven Confidence regions of singular subspaces

By the normal approximation of dist*[(T, V), (U, V)] in Theorem 4, we construct
confidence regions of U and V. The confidence regions of (U, V') attain the pre-
determined confidence level asymptotically. In the asymptotic scheme, we shall
consider dy,dy — oo. Therefore, the parameters r(41:d2)  [7(di.d2) y/(di.d2) apd
Al41:92) 4150 depend on dy, da. For notational simplicity, we omit the superscripts
(dy,dy) without causing confusions.

In particular, we set k = [logds| in Theorem 4 and get

diStQ[(U, V)a (Uv V)] - B[logd ] d
2 N 0,1
VBLIA2s SO

as dy,ds — 400 when /7 = O(A2||[A~2||) and

X{\/@Hd;/“ . (|A—1||§)3/2. 1 }:O.
Ar IA=21% Vdz

We define the confidence region based on (U, V) by
Mo (U, V) :{(L, R):LeR"™ " ReR™*" [TL=R'R=1,

iU R), (0, V)] = Brogay| < \ﬁsmwnr%}

where z, denotes the critical value of standard normal distribution, i.e., z, =
®~1(1 — a). Theorem 5 follows immediately from Theorem 4.

Theorem 5. Suppose that conditions in Theorem 4 hold. Then, for any o €
(0,1), we get

. T (rd2)!/?
_ — < .
‘]P)((U, V) e MQ(U,V)) (1 0‘)‘ <G X2[[A=2]|p A\
AR L PV

for some absolute constants Cy,Cq,Cs,Cy > 0. If condition (7) holds, then

lim IP((U, V) e Ma(U, f/)) —1-a

dl,dgﬂoo
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Remark 5. We can also simply replace Biioga,) with Bo and Theorem 5 still
holds under the same conditions.

Note that A is usually unknown. An immediate choice is the empirical sin-
gular values A= diag(jq, e ,S\T), i.e., top-r singular values of M. Tt is well
known that {5\]»};:1 are biased estimators of {\;}7_;. See (Benaych-Georges
and Nadakuditi, 2012) and (Ding, 2017) for more details. The results of Section
3.1 in (Benaych-Georges and Nadakuditi, 2012) show, under the condition d; /d
converges to « € (0, 1], that

3 a.s. J J do — 8
da )\?/d2 pomeTe )

for all j = 1,--- ,r. The square root of RHS of (8) is called the class loca-
tion of the empirical singular value. Bound (8) inspires the following shrinkage
estimator of )\3:

o A2 —(d1+d (A2 = (dy + d2))? — 4dydy
=0 (21 2)+\/ J 5 forall1<j<r (9)

By replacing A with data-dependent estimates A= diag(j\l, e ,S\T), we define

k
By =2 J AR —2 Y (—1)fo(afomt — dho Y (dis — doo) AR R
k}o:2

and similarly
NG+ dy A+ dy
—9 (d _ do - J4>
Z/\2 D v A
To this end, we define the data-driven confidence region based on (U , V) by

Mo (U, V) ::{(L,R) LeRYWT" ReRE*" [TL=R'R=1,

|dist?[(L. R), (0, V)] = Briogay| < \/s_d*za/znﬂnp}.

Theorem 6. Suppose that conditions in Theorem 4 and (7) hold, and r = O(1).
Then, for any a € (0,1), we have

lim ]P’((U, V) e Ma(U, V)) —1-a

dl,dg‘)OO

By Theorem 6, the data-driven confidence region M\a(ﬁ ,V) is a valid con-
fidence region asymptotically. For simplicity, we only consider the case of fixed
ranks. We remark that Theorem 6 still holds if we replace Briqg 4,7 With Boo
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7. Numerical experiments

For all the simulation cases considered below, we choose the rank r = 6 and
the singular values are set as A\; = 2"~%- X for ¢ = 1,--- ,r for some positive
number \. As a result, the signal strength is determined by A. The true singular
vectors U € R4*" and V' € R%*" are computed from the left and right singular
subspaces of a di; X do Gaussian random matrix.

7.1. Higher order approximations of bias and normal approximation

In Simulation 1, we show the effectiveness of approximating Edist? [(U , V), (U, V)]
by the first order approximation 2d,||A™!||Z where d, = d; + dy — 2r. Mean-
while, we show the inefficiency of first order approximation when |d; — da| 2
min(dy,ds). In Simulation 2, we demonstrate the benefits of higher order ap-
proximations when |dy — ds| 2 min(dy, ds).

Simulation 1. In this simulation, we study the accuracy of first order ap-
proximation and its relevance with Ay = di — do. First, we set di = doy = d
where d = 100, 200, 300. The signal strength A is chosen as 30, 30.5, - - - ,40. For
each given )\, the first order approximation 2d,||A~!||% is recorded. To obtain
Edist?[(U7, V), (U, V)], we repeat the experiments for 500 times for each A and the
average of dist?[(U, V), (U, V)] is recorded, which denotes the simulated value
of Edist?[(U, V), (U, V)]. We compare the simulated Edist*[(T, V), (U, V)] with
2d, || A~ ||, which is displayed in Figure 1(a). Since d; = d2 = d, the first order
approximation has similar effect as higher order approximation which is verified
by Figure 1(a). Second, we set d; = d—; = d for d = 100,200, 300. As a result,
Ay = ds —dy = d which is significantly large. Similar experiments are conducted
and the results are displayed in Figure 1(b), which clearly shows that first or-
der approximation is insufficient to estimate Edist*[(T, V), (U, V)]. Therefore,
if |dy — da| > 0, we need higher order approximation of Edist*[(T7, V), (U, V).

Simulation 2. In this simulation, we study the effects of higher order ap-
proximations when |d; — da| > 0. More specifically, we choose d; = 500 and
dy = 1000. The signal strength A = 50,51, --- ,60. For each A, we repeat the
experiments for 500 times producing 500 realizations of dist?[(U, V), (U, V)]
whose average is recorded as the simulated Edist?[(T, V), (U, V)]. Meanwhile,
for each A, we record the 1st-4th order approximations B;, By, B3 and By which
are defined by (6). All the results are displayed in Figure 2. It verifies that
higher order bias corrections indeed improve the accuracy of approximating
Edist?[(T, V), (U, V)]. Tt also shows that the 1st and 3rd order approximations
over-estimate Edist2[(U, V), (U, V)]; while, the 2nd and 4th order approxima-
tions under-estimate Edist?[(U, V), (U, V)].

Stmulation 3. We apply higher order approximations and show the normal
approximation of (dist>[(U, V), (U, V)]~ B)/v/8d.|A~2||r when d; = 100,d, =
600 and rank r = 6. We fixed the signal strength A = 50. The density histogram
is based on 5000 realizations from independent experiments. We consider 1st-4th
order approximations, denoted by {By}_;. More specifically,

By =2d. ATY[E, and  Ba = 2(du[|ATM[E — AZIAT?E)
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18 First order approx. of Edisty[(ﬁ, V) (U, V)] with dy = dy 3 First order approx. of Bist” [(U V) (U~ V)] with dy = %

. T T T T T T T T
—4Simulated mean d; = dy = 100 —Simulated mean d; = ‘i—?’ =100
st approx dy = dy = 100 & Ist approx dy = % =100

16h - Simulated mean dy = dy =200} g —%-Simulated mean d; = % =200
& 1st approx dj = dy = 200 "

—-1st approx dj = % =200
-&-Simulated mean d; = d—; =300
-g-Ist approx d) = % =300

-5 Simulated mean d; = dy = 300 25
-1t approx d; = dy = 300

§1.2' ;
S N
g g
o o
B08r 2

067
X
041
3
02 L L L L 0 L L L L
30 32 34 36 38 40 30 32 34 36 38 40
signal strength \ signal strength A

(a) First order approximation 2d.||[A~!||% is (b) First order approximation 2d.|[A~1||Z is

accurate when Ay = di — d2 = 0 and rank not sufficiently accurate when |d1 — d2| > 0.

r = 6. Here dy = di + do2 — 2r. There is no Here dx = di + do — 2r and rank » = 6. The

need for higher order approximations. higher order approximations are indeed neces-
sary.

Fic 1. Comparison between Edist?[(U, V), (U, V)] and the first order approzimation:
2d*HA’1||%‘. It verifies that the accuracy of first order approximation depends on the di-
mension difference Ay = di — da. Here the red curves represent the simulated mean
Edist2[(U, V), (U, V)] based on 500 realizations of dist?[(U, V), (U,V)]. The blue curves are
the theoretical first order approzimations 2d.||A=1||Z based on Lemma 1. The above left figure
clearly shows that first order approximation is accurate if di = da.

and
Bs = 2(d,||A7H R — AZIAT?F 4+ dATIIATPF)

and
By = 2(d [ATH[E — AZIA T2 + dAZIA TR — (dF - — d3_)AallATHE).

The results are shown in Figure 3. This experiment aims to demonstrate the
necessity of higher order bias corrections. Indeed, by the density histograms in
Figure 3, the first and second order bias corrections are not sufficiently strong to
guarantee the normal approximations, at least when A < 50, where the density
histograms either shift leftward or rightward compared with the standard normal
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Approx. of Edist?[(U, V), (U, V)] with d; = 500, d> = 1000
T T T T

1.6
—¥— Simulated mean
=% 1st approx
1.50 |
2nd approx
-©- 3rd approx
1.4 4th approx |
=
S
=13 1
2
0 x
2 AN
3 NN
= % %,
1.2 \}@ % 2
\im %
\\\Q \\
ENINENY
%{Q *
1.1 F e ¥
o
1 |
50 52 54 56 58 60

signal strength A

Fic 2. The higher order approzimations of Edist2[(U,V),(U,V)]. The simulated
mean represents Edist?[(U, V), (U, V)] calculated by the average of 500 realizations of
dist?[(U, V), (U, V)]. The 1st order approzimation is 2d.||A"Y||2; 2nd order approzima-
tion is 2(d« ||ATY|Z — A2||A=2||2), 3rd order approzimation is 2(d«||AT % — Aé”A‘QH2 +
d« A2||A73||2) and 4th order approzimation is 2(d.||[AT||2 — AZ||AT2|2 + d. AZ|AT3)E —
(dz — d17d27)A3HA_4”%) where Agq = di —de, di— = di —r, do— = do — r and
dy = di— + do— with r = 6. Clearly, the 3rd and 4th order approximations are already
close to the simulated mean. We observe that the 1st and 3rd order approximations over-
estimate Edist?[(U, V), (U, V)]; while, the 2nd and 4th order approzimations under-estimate

Edist2[(T, V), (U, V)].

curve. On the other hand, after third or fourth order corrections, the normal
approximation is very satisfactory at the same level of signal strength A = 50.

7.2. Normal approximation with data-dependent bias corrections

Next, we show normal approximations of distQ[(ﬁ, V), (U, V)] with data-depen-
dent bias corrections and normalization factors.
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Normal ‘Approxima‘tion of —u—)—i—ﬂ—m \7_VH AU)H/ B Norl‘na,l Approx‘imation of dist|(0.V)(UV)|-By \7_VH AUA‘H: B
0.4
0.3
0.2
0.1
0
-6 -4 -2 0 -2 0 2 4
signal strength A = 50 signal strength A = 50
(a) Br = 2d, AR (b) By = 2(dx[|A7HIE — AZIIAT2(12)
04 No'rma,l jykppr())fimation of iﬂf:‘/‘)l—%ﬂ_—& Normal j‘kpproximati‘on of iﬂf:‘/‘)l—%rﬂ_—& ‘
0.4
0.3
0.2
0.1
0
B -2 0 2 4
signal strength A = 50 signal strength A = 50
) Bs = 2dJATE - AJATIR + (@) Bs = 2dA[E — AJIAR
di AGIIAT IR A AZIATPIE = (df = d3)(dr — d2)[[ A1)

s 2077
Fic 3. Normal approximation of dist [\(}%’ﬁﬂ;‘ﬁi}*m with higher order bias corrections when
*

di = 100,d2 = 600 and r = 6. The density histogram is based on 5000 realizations from
independent experiments. The red curve presents p.d.f. of standard normal distributions. Since
|di — d2| > 0, this experiment demonstrates the necessity of higher order bias corrections.

The bias correction Bk can be 1st -4th order bias corrections.

Simulation 4. We apply the 1st order approximation and show normal ap-
proximation of (dist2[(U, V), (U, V)] — 2d*||f\_1||12;)/\/@||f&_2||p when d; =
ds = 100 and r = 6. Here, A = diag()A\l, e ,5\r) denotes the top-r empirical sin-
gular values of M. The signal strength A = 25,50, 65, 75. For each A\, we record
(dist?[(U, V), (U, V)] — 2d,|A=|2) /v/8dx||A=2||p from 5000 thousand indepen-
dent experiments and draw the density histogram. The p.d.f. of standard normal
distribution is displayed by the red curve. The results are shown in Figure 4.
Since each \; over-estimates the true );, the bias correction 2d,||A~"(|2 is not
sufficiently s1gmﬁcant. It explains why the density histograms shift rightward
compared with the standard normal curve, especially when signal strength A is
moderately strong.
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mati dist’[(0.),(0)] -2 JA R
Normal Approximation of WAl

0.4 : !

dist?[(0V),(U.V)]—2d JA L2
VB A e

Normal Approximation of

0 5 10 -2 0 2 4
signal strength A = 25 signal strength A = 50
(a) A=25 (b) A =50

dist?[(0,V),(U.V)] 24 A2

dist?[(0V),(U.V)]—2d JA L2
V| JA-2]

Normal Approximation of | AT

Normal Approximation of
0.4 T

0.4

0.3

0.2

0.1

0
-2 0 2 4 -4 -2 0 2 4
signal strength A = 65 signal strength A = 75
(c) A=65 (d) A=75

s 21017 O _ A—12
dist [(U,\yéﬁTUiI\g)l?ﬁd*llA & with dy = do = 100 and r =
* F

6. The density histogram is based on 5000 realizations from independent experiments. The
empirical singular values A= diag(j\l, e ,5\,.) are calculated from M. The red curve presents
p.d.f. of standard normal distributions. Since ;\j over-estimates \;, it explains why the density
histogram shifts to the right compared with the standard normal curve, especially when signal
strength \ is not significantly strong.

F1a 4. Normal approzimation of

Simulation 5. We apply the 1st order approximation and show normal ap-
proximation of (dist®[(U, V), (U, V)] — 2d,|A~(|3)/v8d,|A~2||r when d; =
ds = 100 and 7 = 6. Here, A = diag(j\l, e ,5\,«) denotes the top-r shrinkage
estimators of ;s as in (9). The signal strength A = 25, 50, 65, 75. For each A, we
record (distQ[(U, V), (U,V)]—2d,||A~* ||%)/M||A‘2||F from 5000 thousand in-
dependent experiments and draw the density histogram. The results are shown
in Figure 5. In comparison with Simulation 4 and Figure 4, we conclude that
2d,||A~1||2 works better than 2d,|[A~"||2 for bias corrections. Indeed, normal
approximation of (dist?[(T, V), (U, V)] — 2d,|A~1)2)/v8d.|A~2||r is already
satisfactory when signal strength A = 35, compared with A > 75 when A is used.



3818 D. Xia

UV),(0V)) =24 JA 12

imation of S IONWYI-2d A imation of SOV (WYY 2 A
Normal Approximation of N /'\’?Hp‘ Normal Approximation of NN

0.4 " ' 0.4 T

-4 =2 0 2 4 -4 =2 0 2 4
signal strength A = 25 signal strength A = 35
(a) A=25 (b) A=35
it 21171 A2 it 21(0 .1 ALz
Normal Approximation of SV 20. A7) Normal Approximation of S UVIZ2d |4 )
0.4 : : VB A lle, 0.4 i ‘MHA e

-4 =2 0 2 4 -2 0 2 4
signal strength A = 45 signal strength A = 55
(c) A=45 (d) A=55

st 21077 U A—12
e Ol e with i = d2 = 100 and

r = 6. The density histogram is based on 5000 realizations from independent experiments.

The shrinkage estimators A = diag(A1,---,Ar) are calculated as eq. (9). The red curve

presents p.d.f. of standard normal distributions. Since di = d2, we apply first order bias

corrections to dist?[(U, V), (U, V)]. In comparison with Simulation 4 and Figure 4 where A

is used instead of A, we conclude that 2d*||1~X_1||}27 is more accurate than 2d*||f\_1||% for

dist?[(0,V),(U,V)]—2d, [[A~ |3
VB A2 p

Fic 5. Normal approximation of

bias corrections. Indeed, we see that normal approzimation of

is already satisfactory when signal strength A = 35.

8. Proofs

We only provide the proof of Theorem 1 in this section. Proofs of other theorems
are collected in the supplementary file.

8.1. Proof of Theorem 1

For notational simplicity., we assume \; > 0 for 1 < i < r, i.e., the matrix
A is positively semidefinite. The proof is almost identical if A has negative



Normal approximation of SVD 3819

eigenvalues. Indeed, if there exist negative eigenvalues, we should also construct
a contour plot which includes those negative eigenvalues.

Since A is positively semidefinite, we have min;<;<, |A;| = A,. The condition
in Theorem 1 is equivalent to A, > 2||X||. Recall that {\;,0;}%, denote the
singular values and singular vectors of A. Define the following contour plot 4
on the complex plane (shown as in Figure 6):

F1G 6. The contour plot y4 which includes {)\Z, Xi}i_y leaving out 0 and {)\ }Z 1

, where the contour 4 is chosen such that min,c,, mini<;<, [n — Xi| = ’\77

Weyl’s lemma implies that max; <<, |Ai = Ai| < ||X||. We observe that, when
|X]| < 2e, all {\;}}_; are inside the contour 74 while 0 and {\;}L,,, are
outside of the contour v4. By Cauchy’s integral formula, we get

d

1 1 dn » 1
27 Sy, 22772 A77— Z;IQM ya N — Ag
Y 64T = 60T,
As a result, we have
A A 1
T=_— I—A)"td 1
607 = 5i f (al =) (10)

Note that

where Ra(n) := (nI — A)~L. clearly

X
[Ratn x| < RaGIIx] < 22 <
Therefore, we write the Neumann series:
(I -Ra(n) —I+ZRA (11)

7j>1
By (11) and (10), we get

1

¢ I— Al
Ce o (n )" dn

YA
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:% iA dn+z 7{ (MX]’Ra(n)dn.

7>1

Clearly, 51 fm Ra(n)dn = ©OT, we end up with

66T — e = =y — 5 f X] R a(n)dn.

j>1
For k > 1, we define

SanlX) = 5§ [Ra@)X] Raln)ay (12)

X

which is essentially the k-th order perturbation. Therefore, we obtain

00" — 00" =) " Sax (13)

k>1

By (13), it suffices to derive explicit expression formulas for {Sa x(X)}r>1.
Before dealing with general k, let us derive S4 (X)) for k = 1,2 to interpret the
shared styles.

To this end, we denote I, the r x r identity matrix and write

d
Ran) =0 I, —A)'OT+p'0 0] =)
j= 1N

;
i

where we set A; = 0 for all r +1 < j < d. Denote P; = ejejT forall1 <j<d
which represents the spectral projector onto ;.

Derivation of S41(X). By the definition of S4 1(X),

1
Saa(X) =5 Ra(n)XRa(n)dn

YA

d d
Z Z 7{ P, X P;,. (14)

7’ /\Jl n— >‘Jz)

Case 1: both j; and jo are greater than r. In this case, the contour integral in
(14) is zero by Cauchy integral formula.
Case 2: only one of j; and j, is greater than . W.L.O.G, let jo > r, we get

-1q r B )
Z Z 27mj{ n P XPy=) Y NP X P, =BT

Ji=1j2>r Ji=1j2>r

Case 3: none of j; and js is greater than r. Clearly, the contour integral in (14)
is zero.

To sum up, we conclude with S 1(X) =P 1XP+ + PLXP~L.
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Derivation of S42(X). By the definition of S42(X),

Sa2(X)=x=¢ Ra(n)XRa(n)XRa(n)dn

(15)

Case 1: all ji, jo,j3 are greater than r. The contour integral in (15) is zero by

Cauchy integral formula.
Case 2: two of j1, jo,j3 are greater than r. W.L.O.G., let j; < r and js, j3 > r,

we get
r d
1 2d
> 3 f NN p xp,XP,
La La omg n— A
J1=1j2,53>r

= Z Z L P, XP,XP;, = p 2 XPLXPL.

J1=1j2,j3>r Jl

Case 3: one of j1, jo,j3 is greater than r. W.L.O.G., let ji,j2 < r and jg > r,
we get

Z sz% (n— )‘31 n—- /\Jz)leXPj2XPj3

J1,J2=1js>r
1d’l7

Z 2%27{ WPXPXP

J1=j2=1j3>r

n~dn
P, XP; XP;
N Z Z 7”% 77 /\Jl n—- )‘Jz) 7 72 7

J17’5J2>1 Ja>r

=— Z AP, X P XP+ — Z (A Aj,) 1Py, X Py, Xt
J1=1 J1#j22>1

= - PIXPIXP

Case 4: none of j1, jo, j3 is greater than r. Clearly, the contour integral in (15)
is zero.
To sum up, we obtain

Sa2(X) =(P2XPLXP + PLXP AP + PXPLXPT)
7(mJ_X;B71Xq371 + mlemJ_mel + ;BlegplemL).
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Derivation of S4 ,(X) for general k. Recall the definition of S x(X), we
write

d k+1
1 1
Sak(X) = Z omi g (H77_)\ji>anj1XPj2X"'ijXij+1'

Jiy k1 >1 A =1

(16)

We consider components of summations in (16). For instance, consider the cases
that some k; indices from {j1,--- ,jk+1} are not larger than r. W.L.O.G., let
Jis gk < rand jg 41, ,Je+1 > r. By Cauchy integral formula, the inte-
gral in (16) is zero if k1 = 0 or k; = k+ 1. Therefore, we only focus on the cases
that 1 < k1 < k. Then,

T d ke
1 1 k1—k—
Z Z 2mi <H*—)\)n ' 1anj1XP72X"'ijXij+1
J1rdky 21 k41 s Tk1>T YA =1 n i
T 1 k1 1 i . )
—k—1
= 2 2mi <H _—,\.>77 M dn P, X P, X - Py XPEX - XOP
jl""7jk121 X YA =1 n Ji

Recall that our goal is to prove

Sap(X) = Z (71)1+7‘(s) SPTIXPIN - XP T

s:s1+-+spr1=k

Accordingly, in the above summations, we consider the components, where
81,7+, 8k > 1 and sg,41 = -+ = s+1 = 0, namely,

DR E Lt D SRP'O UnED'C NP O U
s1+tsp, =k
57‘21

It turns out that we need to prove

I k‘l
1 1 e
2 57{ ([T ;=5 ) P XX
>1 YA g

— Aj,
J1y ey 2 -1 n Ji
1
— k1+1 . . . )
B Z Z (=1 ALk Py, XP;, X XP]kl'
J1y s Jky 21 s1t sk, =k J1 Jkq
szl

It suffices to prove that for all j = (j1,..., k) € {1, -+, 7}k,

1 7{ dn 1 1
S — — (_1) 01+ —_—
2mi Jo, (= Ajy) - (= g InkriThe +¥k=k At A
sj=>1
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To prove (17), we rewrite its right hand side. Given any j = (j1, - ,Jjk,) €
{1,---,r}* define

vi(j) i ={1<t<ki:je=i} for1<i<r

, that is, v;(j) contains the location s such that A;, = \;. Meanwhile, denote
v;(j) = Card(v;(j)). Then, the right hand side of (17) is written as

1
Z (—1)k1+1845
)\jll B !

s1+-+sk, =k Tk
s;2>1

(1)l Z )\Izpevlm Sp“.AT—ZpeW(j) sp.
S1tF sk =k
SjZl

Now, we denote t;(j) = > ey, sp for 1 < i < r, we can write the above
equation as

1
Z (_1)k1+1 )\sl . )\Skl

s1t sk, =k J1 Jkq

s;2>1
:(_1)k1+1 Z H <ti(j) - 1))\4_,&10)
t1(§)+-+tr(G)=Fk iv;(§)>1 UZ(-]) -1
i (§)2vi(j)
t;(§)=0 if v;(j)=0

:(71)k:1+1 2 : ti(-]) + vl(.]) -1 )\fti(j)—vi(j)
. . - vi(j) — 1 ’
t1(§)++tr()=k—k1 v (§) 21
t:(§)=0 if v;(j)=0

where the last equality is due to the fact v1(j) + -+ + v,-(j) = k1. Similarly, the
left hand side of (17) can be written as

1y ar
2mi Ya (77 - >‘j1) e (77 - )\jkl )nkJrlikl

_ 1 f dn
2 Jy, (n— )@ (g — N, )or@Dphtl=h

Therefore, in order to prove (17), it suffices to prove that for any j = (41, , jk, )
the following equality holds

Lj{ dn
271 YA (n—A1)vr---(n— )\jr)y,.nlwrkkl

S A VRN | (G PR

t14+-Ftr=k—ki t:v;>1
t;=0 if v;=0
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where we omitted the index j in definitions of v;(j) and ¢;(j) without causing
any confusions. The non-negative numbers vy + --- + v, = k1. We define the

function
1

(77 — )\l)vl e (qf] — AT)UTQ’IIC"‘I_]‘)I

and we will calculate # f'm ©(n)dn by Residue theorem. Indeed, by Residue
theorem,

e(n) =

1

3 @(n)dn = —Res(p,n = o0) — Res(p,n = 0).

YA
Clearly, Res(¢,n = 00) = 0 and it suffices to calculate Res(¢,n = 0). To this
end, let vy be a contour plot around 0 where none of {A;}}_, is inside it. Then,

1
Res(¢,n =0) = 2m% @(n)dn.
Yo

By Cauchy integral formula, we obtain

Res(p,n =0) = (k 71k1)! { H (n— )\i)_w} e

iw; >1

n=0

where we denote by f(z) =% the k — k;-th order differentiation of f(z). Then,
we use general Leibniz rule and get

r

1 (k — k1)! 7
RQS(%U:O)ZW Z Tl ] H [(U—/\i) }

’t1+...+tT:k—k1 ™ >1
':0 if ’Ui_

D D | =k e

t14-Ftr=k—ky t:v;>1
t;=0 if v;=0

SIS S | (”_”"1)( A

t14-Ftr=k—ky t:v;>1
t;=0 if v;=0

ST SRR | GBS P

t1+-+t.=k— klz'u1>1
t;=0 if v;=

n=0

Therefore,

%]{A p(n)dn = (-1)+ Y H (t R )A;“i‘ti

t14++t,=k—ky i:v;>1
t;=0 if v;=0

which proves (18). We conclude the proof of Theorem 1.
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Appendix A: Proofs

A.1. Proof of Theorem 2

By rank(©) = rank(©) = 2r, we get
dist>[(U, V), (U, V)] = [|667 — 00|} = 4r — 2(667,007).

Since X is random, we shall take care of the “size” of X. Observe that | X|| =
| Z|| and the operator norm of Z is well-known (see, e.g., (Tao, 2012) and (Ver-
shynin, 2010)). Indeed, there exist some absolute constants Cy,Ca,c; > 0 such
that
E|X|| < C1vdy and P(|X| > Cay/dy) < e % (19)

where dy = max{d;,ds}. Meanwhile, EV/?|| X ||P < C3v/dy for all integer p > 1.
See (Koltchinskii and Xia, 2016, Lemma 3).

Denote the event & = {||X| < Cyv/dmax} so that P(&;) > 1 — e~z
Assume that A\, > 2C5+/ds, our analysis is conditioned on &;. By Theorem 1,
on event &, we have

60T = 00" + 841 (X) +Sa2(X) + D Sas(X)

k>3
where Sa1(X) = P LXPL + PLXP~! and
Saa(X) =(P2XPIXP + PEXP2XR +PLXPXP?)
—(BFXPIXRT A RTIXPIXPT 4+ PTIXP NP,
Therefore, we get

1667 — ©OT||2 =2tr (P XP-XP 1) —2) (007,84 4(X))

k>3
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=2IPXRE -2 (007, Sak(X)).

k>3

Then,
dist*[(U,V), (U, V)] — E dist*[(U, V), (U, V)]
= (21 X — 2E|P T XPR) — 2 (007, San(X) — ESan(X)).

k>3

We investigate the normal approximation of

2P XP | — 2BPTIXP R
VB(di +ds —2r) - [A=2||g

23 k>3 (007,84 1(X) —ES4 k(X))

V8(dy +dg —27) - [[A72||p

is ignorable when signal strength A, is sufficiently strong. For some ¢ > 0 which
shall be determined later, define a function

1X1]
X):2§ 007, Sax (X)) o —~= (20)
k23< 44(X)) (t-@)

and show that

where we view X as a variable in R(41+d2)x(di+d2) and the function ¢(-) : Ry
R, is defined by

1 if s <1,
o(s) =92—s5 ifl<s<2,
0 if s > 2.

Clearly, ¢(s) is Lipschitz with constant 1. Lemma 4 shows that f(-) is Lipschitz
when A. > Cyv/ds. The proof of Lemma 4 is in Appendix, Section B.1.

Lemma 4. There exist absolute constants Cs, Cy > 0 so that if A\, > Cst?+/da,
then

| fi(X1) = fi(Xa)| < 04752 Xy = Xo|le

where fi(X) is defined by (20).

By Lemma 4 and Gaussian isoperimetric inequality (see, e.g., (Koltchinskii
and Lounici, 2016, 2017)), it holds with probability at least 1 —e~* for any s > 1
that

23" (007 544(0) -0 (;EL) B2 T (007 800)) o (1))

k>3

rd
< Csy/st? )\32

T

(21)
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for some absolute constant Cs > 0. Now, set t = Cy where C is defined in (19).
Therefore, q§< XN ) =1 on event & . Meanwhile, the following fact holds

Col
X
‘mz (007,84 4(X)) - qs( 1XI )—]EQZ(@@T,SAJC(X»'
k>3 Vdy k>3
T X ]
g‘m;(@@ \San(X)) - ¢(O \/_)H
>3
+|E2) (007,84 5(X))le:
k>3
<4 EOOT,S4(X))[les <81 Y EV2|San(X)|| - 7o/
k>3 k>3
k 2k 1/2
SRS e R S S
k>3 " k>3 Ar
—c1ds OGTdS/Q sz
<e WWngcﬁA—%

—C1d2/2 < 1

where the last inequality holds as long as e 7% and we used the fact

E/?|| X ||P < Cg+/dy for some absolute constant C > 0 and any positive integer
p. (See, e.g., (Koltchinskii and Xia, 2016), (Vershynin, 2010) and (Tao, 2012)).
Together with (21), it holds with probability at least 1 — e™* — e~1% for any
s > 1 that

007 5108 B2 (097 ) < .
k>3 k>3 T

for some absolute constant Cg > 0. Therefore, for any s > 1, with probability
at least 1 —e ™% — e~ 142
25010 (OOT, S k(X)) — B2, (00T, Sa s(X))]

\/S(dl +dy — 27‘)||A_2||F

Vrdy
< 1/2 VT L Vraz
< Cos (||A*2||F>\%) X,

(22)

where we assumed dy > 3r.
We next prove the normal approximation of 2| B~1XPL|2. Similar as in
(Xia, 2019), by the definition of 8~!, X and B+, we could write

. _(UNYWTZTULUT 0
¥R _( 0 VATWUTZV, VT

Then,
1B XPE =|UAVTZTULUTE + VAT UTZVIV] |
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Denote z; € R4 the j-th column of Z for 1 < j < dy. Then, z1,--- ,z4, are
independent Gaussian random vector and IEzjij = Iy, for all j. Therefore,

da
UTZ=> (U"%)e]
j=1
where {e; }?2:1 represent the standard basis vectors in R%. Similarly,
da
UlZ = Z(Ulzj)e}.
j=1
Sincet UTz; and U z; are Gaussian random vectors and
EUTz(UT2) =UTUL =0

, we know that {UTz; }?2:1 are independent with {U] z; }?2:1.
Therefore, [UATIVTZTU UT||% is independent with [|[VA-IUTZV VI ||3.

Denote by Z an independent copy of Z, we conclude that (Y3 4 Y5 denotes
equivalence of Y7 and Y3 in distribution)

IR X2 LA VT ZTULUT (A + VAU ZVIVTR

dq do
= Y UATVTZTu)Z, + Y (VAU Zoyl,
Jj=r+1 Jj=r+1
d1 da ~
= > IATWVTZTyllE, + D AU 2o,
Jj=r+1 j=r+1

where {u; };-11: 41 and {v; }?ir 41 denote the columns of U} and V7, respectively.
Observe that ZTu; ~ N(0,14,) for all 7 +1 < j < d; and

IE(ZTujl)(ZTujz)T =0 forallr+1<j; #jo<d.

Therefore, {ZTuj}‘;l:T 41 are independent normal random vectors. Similarly,
Zvj ~ N(0,14,) are independent for all r +1 < j < do. Clearly, V' ZTu;, ~
N(0,1I,) and UTZvj2 ~ N(0,1,) are all independent for r +1 < j; < dy and
r+ 1< j2 <da.

As a result, let d, = dy + do — 2r, we conclude that

dy
_ d _
IR XBEE =D 1A 7 (23)
j=1

where we abuse the notations and denote {z; }‘j*:l where z; N (0,1.). By

Berry-Esseen theorem ((Berry, 1941) and (Esseen, 1942)), it holds for some
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absolute constant C7 > 0 that

P(2‘131X‘J3l||% — BB X _ x) — o)

sup
z€R \/ 8(d1 +dy — 27‘)||A_2||F
[ATME\?2 1
<C . (24)
7(||A*2||%) Vi,

where we used the fact Var(||[A™'z;(7,) = 2| A~2||% and

T 1
EHA*lszZ <y Z 222 < C7||A71||19‘“~

J1,ja,ga>1 17027

In (24), the function ®(z) denotes the c.d.f. of standard normal distributions.
Recall that, on event &1,

diStQ[(ﬁa V)a (Ua V)} —E diSt2[(Ua V)v (Ua V)}
V/8(dy + da — 2r)||A72||r
_2BTXP R 2B PIXRE | 25055 (90T, San(X) ~ ESar(X))
\/8(d1—|—d2—27‘)HA_2HF \/S(dl + do —27“)||A_2||F
where normal approximation of the first term is given in (24) and upper bound

of the second term is given in (22). Based on (22), we get for any € R and
any s > 1,

P(distz[(f], V), (U, V)] —E dist*[(U, V), (U, V)] - x)

\/8(d1 + dy — 27‘)||A_2||F

<P<2lm—1xml|%—2E||m—1xa3ﬂ|% V., _W@)
- 8(di +dz —2r)[A=2]p T IA=2[eA2 A,
et et
VI e e JAH 3
<o .”L'+Csl/2~ \/F . +e S +e 61d2+C F .
( AR A 7(||Af2|\gﬂ) NGA
Vids o A3
<P C, 12 \/F . raz s ci1dz C F .
<o)+ o' s, T Oeg) U

where the last inequality is due to (24) and the Lipschitz property of ®(z).
Similarly, for any x € R and any s > 1,

P(distQ[(ﬁ, V), (U, V)] - E dist*[(U, V), (U, V)] - x)
\/8(d1 + dg — 27”)”/\72”1:* -
-1 12 _ -1 12
2[[”(2”&3 XP[lg — 2E[PXP[|§ Sl’*cﬁsl/z' \2/7_" - V7“d2>
V8(d1 +d2 — 27)[|A~2]|p [A=2[[eAZ Ar
p— e_s

_ 6—61d2
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VAN At yae 1
> -~ 1/2 VT Vrdy\ o a, 3 .
20 (o O i ) e e ()
Vrd A-YAN3/2 1
Z(I)(l') - C681/2 . |A\2/ﬁF)\2 . ; 2 —e 5 — e—Cldg _ 07(|| ”F) A

IA=2][% Vi,
Finally, we conclude that for any s > 1,

dist?[(T, V — E dist*[(U, V
ap [p(UOD OV _EEHOIDECV ) gy,
z€R V/8(dy + da — 2r)||A72||p

vrdy o [ATH[EN32 1

< 1/2 \/F . ra2 s crdo F .
= Coe (||A*2||FA%) N +C7(||Af2||%) Vi,

where d, = dy + do — 2r and Cg, C7, ¢ are absolute positive constants.

A.2. Proof of Theorem 6

It suffices to prove

diSt2[(U, V), (U, V)} - B[logdz.\ i> N(O 1)
VB[ A2 ’

as di,ds — 0o. Toward that end, we write

diStQ[(ﬁa V)v (U, V)] — B[log da] _ diStQ[(ﬁv V)? (U, V)] — B(log da] ”Aiz“F

VB ||A=2|p V8. ||A=2||k |A=2||p
Briog dy _~Bﬂogdﬂ’ (25)
V8d.||A=2|p

where the first term in the RHS of (25) converges to A'(0, 1) in view of Theorem

4 and (9). It suffices to show that the second term in the RHS of (25) converges
to 0 in distribution. We prove it in two cases.

Case 1: if dg/4 log(do)A -t = O(1). In this case, we write
Bfiogaz) — Briogax) = 24« (A HIE — [IA7IE)
log ds]

> (CDR@T = dy2 ) (die — dan)(JATRE — IR,
ko=2

[
-2

Note that (8) and (9) implies that 5\5 — )\5 = dy - 0p(1), where o,(1) denotes a
random variable converges to 0 almost surely. Then,

B[logdﬂ - B[logdg] Y dgTIOgd2 ) (1)
VR IA 2 A2 o

which converges to 0 almost surely.




Normal approximation of SVD 3833

Case 2: if A\, = O(d3/4 logdsz) and v/rda/A. = o(1). In this case, we apply
a recent result from Ding and Yang (2020) which holds when A, < dg/ 6. By
Theorem 2.132 of Ding and Yang (2020), we have

Sj = /N2 4yt dy + dida);? = Oy(log ™ d),

where O, (log™" da) stands for “asymptotically bounded by O(log™" dy) in prob-
ability”. Then, by (9), we get AZ — X\? = \; - O,(log™ ' dy). As a result,

B[logdﬂ - B[logdg] _ Vdar log do
VELIA]le .

which converges to 0 in probability.
The proof is concluded by combining Case I and Case 2.

: OP(log_1 d2),

A.3. Proof of lemmas in Section 4

Observe that S4 x(X) involves the product of X for k times. If k is odd, we imme-
diately get ES4 (X) = 0 since Z has i.i.d. standard normal entries. Therefore,
it suffices to investigate E(©OT, S x(X)) when k is even.

Proof of Lemma 1. By the definitions of 8+, X and 1,
E|B-XB 2 =E|UAT'VTZTULUT|% + E|VAT'UTZV V]|
=E|A" VT ZTU |3 +E|ATTUTZV, |3

By the proof of Theorem 2, we obtain E||B-XB 1|2 = (d1 + da — 2r)[| A2
which is the first claim. To prove the second claim, it holds by Theorem 1 that

(EuééT —00"|: - 2d*\|A’1\|%’ < 2‘ 3 E<9@T,3A,2k(x’)>\

k>2
<2y

E<@9T7 Z (_1)1+T(S) . ;13—51X;J3—32X . X’B_S2kX‘J3_S2k+1>’

k22 sisy+tsopp1=2k
:22 E<@@T, Z (_1)1+T(S) .;Df‘ﬂxmme._.mesgkxm—s%+1>’
k>2 sis1+-tsopp1=2k

s1,82k4+12>1
where we used the fact ©0TP? = P°OOT = 0. Then,
[E|66T - 007 |2 - 2d. /473

<Y e g
k>2 S:Sl+---+52k+1:2k‘
81,82k4+12>1

?Note that the result in Ding and Yang (2020) is even stronger. We only use a weaker
version of their results.
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EXZk
wy oy AR

k>2 S:Sl+---+82k+1:2k‘
51,82k41>1

4K\ E[X|* 42’“EHXII%
<arS (o) e < Cr Y S

k>2 k>2

for some absolute constant Cy > 0. Therefore,

1667 - 067 24,14~ | < Cur 3 (X512 < ¢, 20
k>2 T

where the last inequality holds as long as A, > 5C1+v/da.

Property 1: only even order terms matter. In order to calculate higher
order approximations, we need the following useful property of ESay (X).
By Theorem 1,

(007, 8421(X)) = S DT (X X ),
s:s1+-+Sok 1 =2k
81,82k +1>1
For any 7(s) = 7 > 2, there exists positive integers s;,,sj,, - ,s;. and positive
integers tq,t2, -+ ,tr_1 so that we can write

‘stlX . Xgp*ﬁzkﬂ
=P XP . PLEX P2 P XPE P X P
—_————— ~—_— ——

t1 of X oy of X
where
Sj1+"'+$jT:2k and t1+---+t_1 = 2k.
Therefore, for positive integers s1, - , Sap11,t1, - ,tor > 1,
(00T ESan(X)) =D (-7 > S Ew(QU))

T2>2 sitetsr=2kti++t-_1=2k

where the matrix Q(Sls2 o ) is defined by

QU er) — s XL L X PR YRR P (26)
N——— N—————

t1 of X tr_q1 of X

Case 1. if any of t,ts, -+ ,tr—1 equals one. W.L.O.G., let t; = 1. Then,
Qfls2 : SI involves the product of P51 XP~52. Then,

1t2 1

X2
)\2’6—81—32
r

’Etr(QtSIS2 sf))‘ < \/_ ]EH‘B U 52”

1t2
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Xzt

<V2r -E[|00TX00T|r F

V2r

<

-E[loeTXe0T |||

ke
N

<or "E'?|00TX00T [ZE | X"
1
C§_1r3/2d§7
ST
T T 0 vutzvve o
where we used the fact ©0' X000 ' = VVTZTUUT 0 which is

of rank at most 27 and E'/2||UT ZV||Z2 = O(r). We also used the fact E'/?|| X||P <
C3+/dy for some absolute constant Co > 0 and all positive integers p > 1. There-

fore, if any of t1,--- ,t-_1 equals one, then the magnitude of ’]Etr(ng%;"’tizﬂ
k gk
is of the order O(i’;g . % )

Case 2: if any of t1,--- ,t,_1 is an odd number greater than 1. W.L.O.G., let
t;1 be an odd number and t; > 3. More specifically, let t; = 2p + 3 for some
non-negative integer p > 0. Then,

[E(06T, Q1))

t1—1 to—1

<for(x (X)X (X)X
X))
<E|pmox(paptyrrixpe %Hts

VEr|X P

F )\%kfslfsQ 1

n EHm—slx(mlxml)Zp—&-lxm—sQ

where, as in the proof of Theorem 2, define the event & = {||X|| < Cs - V/d2}
for some absolute constant Cy > 0 such that P(£;) > 1 —e~ 92, As a result, we
get

|E<@@T, Q(S182“'ST) >|

tito-tr—1

k
rds
)\Qk‘

T
k
rds
2k
)\T

—ci1dz

2k—t1)/2
Y 27’dé )/
F )\%k—s1—sz

(2k—t1)/2
SEI/QHmfle(mJ_XmJ_)QZPFIXm,SZ 2 ] \/ﬂdz
F

<E[pe X (Pt X2 X Ie, + CF

- e

. ,—c1dz

+ C2k.

)\gk—s1—32

C\/;déQk—tl)/2
<V ®2

2 rdb
.El/zH@TX(mLX;BL)szX@HF e LN )\zz

. 701(12
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where © = (01,--- ,0,,60_,,---,0_1) € R(41+d2)x(2") Tp addition, we can write
2 2
JEH@TX@LX%H%“X@HF = Y E(0LX(BIXBLHX0,)”.
1<lj1lslgz|<r

Observe that, for any integer p > 0,

(PrXPH)2P = ( (ULuizviviztu o) - VP )
0 (VLVIZTUUTZv, V])

W.L.O.G, let ji,j2 > 1. Then, we write
0], X (P-XPH)** X0,
1
ZEU;EZT(ULUIZVLVIZTULUI)pULUIZVLVIZTujQ

1
+ 5u}lZ(VLVIZTULUIZVLVI)%VIZTUl Ul Zv,

and get the simple bound
E(6] X (B X B2+ X6;,)°
§2—1E(v}1 Z7 (UlUIZVLVIZTULUDPULUIZVLVIZT@%)2
n 2—1Ifz(ujlz(xm/jZTUl UIZVLVI)I)VLVIZTULUIZUJ»Q) g

Observe that Zvj, is independent with ZV, and ZTu;, is independent with
Z'U, . Therefore,

E(07 X (B XPH)2+1X0,,)°

2
§2‘1]EH(ULUIZVLVIZTULUI)pULUIZVLVIZTujZ Z

2
—|—2‘1EH(VLVIZTULUIZVLVDPVLVIZTULUIZ% @

2

2
§2‘1IEH(ULUIZVLVIZTULUDPULUIZVLVI )

+27'E\(vovIZTu vl zviv) viviZzTo Ul

2
L2

Ap+2 2p+1 _ ~4p+2 gt —2
< ORIl o2 ghi=2

where the last inequality is due to the independence between Z Tuj2 and ZTU
the independence between Zv;, and ZV, . We conclude that

r3/2d5t (Cng)’f. r3/2 . (C’zdz)’C

e C1 d2
A2k 2 22

[B(o0T.Qlzi ) < C3- Sl e

titatr_1
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where Cy > 0 is some absolute constant and the last inequality is due to e~¢192 <
dy*t.

We now finalize the proof. If there exists one odd ¢;, then there exists at least
another ¢; which is also odd since the sum of ¢;s is even. Following the same
analysis, we conclude

2
r Czdg k
B0, Qi < = (S)
e E
whenever any of 1, -+ ,t,_1 is an odd number. Therefore, it suffices to consider

the cases that all of ¢1,--- ,¢,_1 are even numbers.

Proof of Lemma 2. From the above analysis, to calculate E<@@T, SA’4(X)>,
it suffices to calculate

3

PGS >, E(eeQiiri)

T=2 sittsr=4ti 4 Ftr_1=4

where t1,--- ,t,_1 are positive even numbers and si,--- , s, are positive num-
bers.

Case 1: 7 = 2. In this case, t; = 4 and s; + s = 4. Therefore, for any s1, so
such that sy + sy = 4, we shall calculate

QL =PTIX(PLXP PR
=Etr(Q{"**?)) = Etr (00T X (P XP)2X00TH ).

Clearly, we have

eOTX(PrXPr)xea’
([ uUutzviviz'uulizv.vizZzTouT 0
- 0 vvZlu,ulzv,vizZTu, ulzvv?

By the independence between UTZ and U] Z, independence between VT ZT and
VIZT we immediately obtain

EOO'X(PLXPr)2xee’
B di_UUTZv vIZTuuT 0 B T
=E ( 0 b VVTZU UTZVVT ) T di-d>-60

where dy_ = d; —r and do_ = dy — r. Then,
E(067,Q\" ) = 2d, _dy_||A 2|2

for all (51,52) = (1,3), (81,52) = (2,2) and (51,52) = (3, ].)
Case 2: 7 = 3. In this case, the only possible even numbers are t; = 2 and to = 2.



3838 D. Xia

There are three pairs of (s1,s2,53) € {(1,1,2),(1,2,1),(2,1,1)}. W.L.O.G.,
consider s; = 1,55 = 1, 83 = 2, we have

b = PIXPIXPTIXRIXP .
Similarly, we can write

Etr(Q5y>)) = Etr(UA'VTZTU UTZVA~UT ZV, VI ZTUA2UT)
+Etr(VAT'UTZV VI ZTUN VT ZTUL UT ZVAT2VT)
=dy Btr(UA'WTZTULU[ZVAUT )+ dy _EBtr (VAU T ZV VI ZTUAT3VT)
=2d,-dy- | A7?| 3.

By symmetricity, the same equation holds for Etr( 52211)). Next, we consider

(s1,82,83) = (1,2,1). We will write
Etr(QSy ™) =Etr (UA~'VTZTU, UTZVA2VT ZTU, UT ZVA~'UT)
+Er (VAU T ZV VI ZTUA2UT ZV VI ZTUA VT
=E|A 21 ZTA 2 + E|A 2220 A2

where Zl e R™*d1- and Zg € R"*%- contain i.i.d. standard normal entries. By
Lemma 6 in the Appendix, we obtain

121 _ _ _
Etr(QW%™") = (d3_ + 3 ) AR + (die +dao) (A2 + [ATY|E).
Therefore, we conclude that

7“2 dg
24

T

|~ E(007,84.4(X)) + (di- —dy I 2E| < O

for some absolute constant Cq; > 0 where we also include those smaller terms
when some ¢; is odd as discussed in Property 1. Together with the proof of
Lemma 1, we conclude that

r2dsy rd%

E[66T ~ 06T} - 2(d A E ~ AHIAIE) | < 1 S5 4 0 ¢

where Ay = diy — dy and Cy,Cs > 0 are absolute constants.

A.4. Proof of Lemma 3.

To characterize IE<®@T,S A,21(X )> more easily, we observe the following prop-
erty.
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Property 2: effect from distinct singular values are negligible. Recall
that

E(007,8421(X)) = > (—1)7ELE(OOT, P X - XP T,

s:s14+sop1=2k
As proved in Property 1, we have

[E(007, Sa2t(X)) = Y (-1 Y >, E(eTQnT)

T>2 s1+-ts =2k t1 4+t _1=2k

< (%)

where the matrix ng;:f:;fj is defined as in (26) and ty,--- ,t,_; are positive

even numbers. Recall that ©0T = 3" (Pj+P_;) and P~ = Y7, [\ Pj+
(A—j)™% P_;] where A_; = —\;. For each fixed (s1,---,s;) and (t1,-- ,tr—1)
where t;s are even numbers, we write

(067, Q 1))

tito-tr—1
T

—(s1t+s7)y—s —S8r—
— Z )\]1( 1T$8 ))\j262 . >\j7_71 1(0;—1 thojg)(HL Wt20j3)
71152 s ldr =121

o (GT WtT*lejl)

Jr—1

where the matrix W;, = XP-XPL ... PLX for positive even numbers t;. Ob-

t1 of X

serve that

0] Wi,05, = 0] Wy, 0;, =60; X(P-XPH)"2X0;,.
We show that if there exists 1 < kg < 7 — 1 so that |jg,| # |Jre+1|, then
|9]Tk_0 Wiy, 0,11 | is a negligibly smaller term. W.L.O.G., assume [ji| # |j2| and
then

T

(8145 s
‘E z : )\.(1+T)/\.‘52
J1 J2
l3alslg2], 5 ldr —1 21
711152

(0], W, 03,) (07, Wiy 05,) -+ (6

Jr—1 1

TT,l Wt7719j1)

J

=B D AL (0], Wi 03,)0T, Wi BT W B T W, L,
7117721

S DO RN R
" gl #l gl
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Since 6;, and 0, are orthogonal, we conclude that X6, and X0,, are inde-
pendent normal vectors from which we get that 9}1 Wi, 0, B XPL is sub-
exponential and IE|0]T1 Wi, 05| = O([|(B+XP+)"~2||r). Therefore, we get

B0, Wi, 05, ]| X [
=E|0], Wy, 0, || X[** = 1(| X|| < C1+/dp)
+E[0] W, 05, | [ X |1 1(| X || > C1v/da)
<E'2|6], Wi, 05, - (Cda)* "1 21(| X | < Cady/?) + e /%(Crdy)*

1
Sz (Ceda) + 7B (Cada)*
As a result, we conclude that

T
‘]E E )\f(51+87)/\f52
J1 J2
‘j1|7|j2""' 7‘jT*1‘21

ce N T (a;l' th 0j2)(9;!—2Wt20j3) T (QT Wtr—lajl)

Jr—1 1 Jr—1

<

v ) e (G8) < O ()

for some absolute constants C7,Csy > 0.

It suggests that the dominating terms come from those tuples (ji, j2, -+ ,jr—1)
such that [ji| = [j2| = -+ = |jr—1|. Now, we define P; = \;P; + A_;P_;. To
this end, we conclude

‘E(@@T, Sa2k(X))

_ Z Z(_l)l-‘rT Z ]Etr(mj—m th(’pj—@ th .. .q:;j_sf)

j=17>2 s:s1+--+sr=2k,s1,5+ >0
tity++t_1=2k
C1T2 ngg k
< (2 (27)
d2 A7‘

for some absolute constants C7,Cy > 0. The above fact suggests that it suffices
to focus on the effect from individual singular values (i.e., for any fixed 1 < j <
). Moreover, it is easy to check that

1

W . Si}j—sl thgﬁj—sz th .. .fi}j_sf
J

;:pj—Sl thmj—sz Wtz .. .fpj_ST =

where ‘}3]—3 = P; + (—1)°P_; implying that the k-th order error term has dom-
inator )\Ek. To this end, we prove the following lemma in the Appendix.
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Lemma 5. For any 1 < j <7 and k > 2, we obtain

‘ Z(_l)l-i-‘r Z Etl'(mj_sl thmj—& .. .S:pj—sr)

T>2 s:s1+--+s,=2k,s1,5: >0
titi -+t _1=2k

()Rt — dE=)(dy - — dao) ‘
A2k
J

Cl <02d2>
- \/_2
for some absolute constants Cy,Co > 0.
By Lemma 5 and (27), it holds for all k > 2 that
[E(0OT, Sa26(X)) — (D= — d5=")(di- — )| A7F ]
< 01(7“2 +k) ) (CQdQ)k
T WVdy A7

for some absolute constants C7, Co > 0, which concludes the proof.

A.5. Proof of CLT theorems in Section 5

Proof of Theorem 3 Recall Theorem 2, we end up with
. .2 = >, . .2 = %
3 —E
<dlbt (U, V), (U, V)] dist“[(U, V), (U, V)] < a:) o)

sup
z€R \/ 8(d1 +dy — 2’/“)”/\_2”1:

VT (rd2)'? .4 JATHE\3/2 1 NN
<C : ada 4 : r/Vrds,
<C(me) | ot () Tt

By Lemma 1, we get

2
|Edist*[(U, V), (U, V)] — 2d.|A7 3] < cfd :

Therefore,
‘Edistzw,w U V)) =20 AR g rdy"
VB, ||A=2|p =P

By the Lipschitz property of ®(x) and applying similar technical as in proof of
Theorem 2, we can get

. -1
2R 8d*|| [r
(Td2)1/2
<C
= 2 [A- 2||F>\2 Ar
. A-14N3/2 1 rd?
+€ C1d2+CQ(HA_2:§> . +C’3 )\22 —|—e )\r/\/@
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Proof of Theorem 4 By Lemma 3, we have

2 2
21 rd2 C5T‘ dg 3 Ogdg k+1
— < - | —= _ .
Edist*[(U, V), (U, V)] — Bi| < Cy4 M + N ()\%) +C’6r< v )

The rest of the proof is the same as in the proof of Theorem 3.

Appendix B: Appendix
B.1. Supporting lemmas

Proof of Lemma /4. Recall that

X
X1) =) (007,84,(X 1%y,
f(X1) §< an(x0)o(; )
Case 1: if || X1 > 2t\/dy and || Xa|| > 2t\/ds, then fi(X1) = fi(X2) = 0 by
definition of ¢(-) where the claimed inequality holds trivially.
Case 2: if || X1| < 2ty/dy and || X3|| > 2t\/da, then f;(X3) = 0. We get, by
Lipschitz property of ¢(-), that

> (007,84 5(X1)) - (¢(t”.)\(/1@) - "5(15-)\(/2%))’

[£:X0) = £(2)| =

k>3
X1 — Xo|lr
<D 2| Sar(X)|| - ——
2. P

2r|| X X
S 7’“ 1~ 2||F Z Z H‘BiSIleiszXl . X1m75k+1

k>3 s:s14+spr1=k

§2r||X1 X2||F SO IIP;II’c

k>3 s:s14+spr1=k

§27"||X1 - X2||F Z (4||X1H) ’
t'\/(TZ k>3 )\7"

copptIX = Xole dy”
VY

where the last inequality holds as long as A, > 9t/ds.
Case 3:if || X1 < 2td1/2 and | Xs| < Qtdl/2 Then,

[ F(0) = £(0)| < 2r§3\\s,4,k<xl>¢(%) - sustxo({ 20|
14

<oy 3 Rexexngmee(RUE) -

k>3s:s1++Spt1=k
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xS

2td1/2 k—1
S DD DI P S [Py

AF
k>3s:s14+ - +sp1=k
ng
<C4t2 FHXl — XQ”F

where the last inequality holds as long as )\, > 9t\/dy. Therefore, we conclude
the proof of Lemma 4. O

Proof of Lemma 5. Based on Property 2 and eq. (27), it suffices to calculate
the quantities Etr (9, " Wy, B *2Wr, ---P; °") which relies on singular values
A; and singular vectors u;, v; only. Moreover, the actual forms of u;, v; does not
affect the values. By choosing {u;}7_; and {v;}}_; as the first r canonical basis
vectors in R% and R%, it is easy to check that we can reduce the calculations to
the rank-one spiked model with singular value A;. To leverage the dimensionality
effect where UT ZV, € R%1-*42- hag i.i.d. standard normal entries, we consider
the rank-one spiked model with

M= ANu®v) + Z € Rli-+1)x(d2-+1) (28)

where Z has i.i.d. standard normal entries and di_ = dy — r,do_ = do — r. Let
@ and © denote the leading left and right singular vectors of M. By fact (27),
it suffices to calculate the k-th order approximation of ||aa" — uuT||Z + ||66T —
vuT||%. In the proof, we calculate the errors ||aa’ — uu'||Z and ||687 — vvT |3
separately. W.L.O.G., we just deal with ||a4" — uu'||% and consider d; < dg®.

Recall that we aim to calculate the k-th order error term in |juu™ — 44" ||3.
To this end, we write the error terms as

(oo}

o Eoy,
Elaa" — uu'|3 = 2ZW. (29)
k=1

We show that Eyy, = (—1)*d¥ "' (di_ —dy_) - {1 + 0(55—2)} for some absolute
constant Cy > 0. To this end, we consider the second-order (see (Xia and Zhou,
2019)) moment trick (denote T' = A\?(u ® u))

MMT =) (u@u)+ A e RIE-FDx(h—+D) (30)

where A = \uv™ZT + MZvu" + ZZ7. By eq. (4), we can write

aa" — uu' || = —2 Z <““T’ ST’]“(A»
k>2

3This condition just simplifies our calculation when dealing with the Marchenko Pastur
law. Our results do not rely on the condition d; < da
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where we define B, = A\(u ® u) and B0 = P- = U, U] € R(-+Dxdi- and

Srp(A) = Z (_1)T(s)+1 SPTIAPIZA - AP

s:s1++spp1=k

Now, we investigate (uu', St (A)) for all k > 2. Denote Wy, = AP A -+ Pir A
—_—
t1 of A
and we can write

<uuT, ST,;C(A)>

k
=> (=)t > tr (B, Wy, By 2 Wy - B W B
T=2

ti+ ot 1=k,t;>1
s14-tsr=k,5;>1

k
— LSy (k - 1) S W) W) (T u).

A2k T—1
=2 bt _1=ht;>1

Denote ﬁtAl = u" Wy, u, we can write concisely

k
Bl S =gm D0 (1) X meRses).

T—1
T=2 trtett_1=k,t;>1
(31)

Now, we investigate the concentration property of 32 = u' Wyu. Clearly, we can

write
S =2\-(u"Zv)+u" 27"y
—_—

BA, Ao
and for all t > 2, we write 8> = 5& + Bﬁo where
Bio=u'ZZU(U[ZZ U, ) 2UT ZZ u
+ Nw"ZTU (Ul 22 U )20 Zou”
B =2 " ZTU (U] Z2ZTU )" UL ZZ .
As a result, we can calculate
E(ﬁﬁﬁé e ﬁtAT_l) = E((ﬁﬁ,o + ﬁﬁ,l)(ﬂé,@ + 5@,1) e (Bﬁ_l,o + 5ﬁ_1,1))'
It is easy to check that E3® = dy_ + 1 and for ¢t > 2
EBf =NE(v'ZTU L (U[ZZ U, ) 20U Zv) + B (ZTU (UL ZZTU L)' 2UL Z)
)\2
- (1 n 7) B (27U (UTZZTUL) 20T Z)
do_ +1
2
= (1
( + do +1

) B ((UT227UL)Y)
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where the second equality can be checked by choosing v = e; € R%-+1, Since
ZTwand ZTU, are independent, it is easy to check that

T—1
Eﬂﬁ_’hb’éh "'@ﬁ,m‘r,l =0, if Zij is an odd number
j=1
for all 41,49, -+ ,i,—1 € {0,1}. As a result, we observe that E<uuT7ST,k> has

contributions to Foy, Fag—2, Eok—4,** , Ea[x/21- (Recall that Fsy is the coeffi-
cient for 13r.)
Moreover, since ZTu and ZTU | are independent, we can conclude that

By ~ N(0,4X%)
and for all ¢ > 2,
BRUTZ ~ N (0,402 ZTUL(U[ZZ UL ) UL Zo|,).
We can get, for all t > 2, that
E'V2[()*|UT 2] S EVH[(85)UTZ] S MUTz|Pe—Y

Therefore, it is easy to check that for any (iy,ia, - ,i,_1) € {0,1}7~! where
there exists some 4; > 1, then Eﬂﬁ’ilﬂé,iz -~-Bﬁ717ipl’s contribution to any

k1
Esy, is bounded by é . (Cj\?) for some absolute constant C; > 0 and

27k/2] < 2k; < 2k. To show this, w.l.o.g, let i; =iy = 1 and observe that

EBS 1 BEBE . - BE i =EY2(BR L BR ) EVA(BR ., B2 )
SEMA(B8 BB B (B, B )]
<A HR2EL2(BA 5371%71)2 (32)
and then we get

1
ok

2
L dayret BP0 )

A pA QA A
E5t1,15t2,15t3,i3 T BtT—hiT—l < d_2 a2 A2(k—t1—t2)

The claim follows immediately since

2 k
EY2 (B B0 irs)” N CREVYz)e
\2(k—t1—t2) - Z \2k1
ki=[(k—t1—t2)/2]
il ngg k1
<
< )

ki=[(k—t1—t2)/2]

for some absolute constant C7,Cs > 0 and where the last inequality is due to
E||Z||** < C3¥d2* for some absolute constant Cs > 0.
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As a result, in order to calculate eq. (31), it suffices to calculate

. k-1
% D (=T (T ~ 1) > E(B5oBho 85 0)  (33)

=2 tido bty 1=kt >1

Next, we will replace E(ﬁﬁ,oﬁé,o . ~ﬁﬁ71)0) with EﬁﬁoEﬂtAbo . ~Eﬁﬁ7170 for
which we shall investigate the concentrations of ﬁfo. To this end, we have the
sub-exponential inequality

]P>(|uTZZTu - dg_’ > C3y/ado_ + 0404) <Cse™@, VYa>0

for some constants C3, Cy > 0. Again, by Gaussian isoperimetric inequality and
the proof of Theorem 3%, we can show, for all a > 0

P(|u"Z2(ZTU U] Z2) ZTu—Bu" Z(ZTU UL Z)' Z"u|
> Caady™? 4 Cpemr2dlHY)

< 0567062 + 066762d2
and
P([vT(ZTU UTZ) 0 — BoT(ZTU L UT 2)" 0| >Cstady™? + Cye=192d571)

< C5€_a2 + 066_02(12.

Therefore, we can show that ‘]E(ﬁﬁ)oﬁé ﬁtT 17 0) — (Eﬁﬁo)(Eﬁé,o)-n
(EBL ., o)|’s contribution to any Fay, is bounded by \/@ (Cydy/N*)F for some
constant C; > 0 and 2[k/2] < 2k; < 2k. Indeed, the above concentration
inequalities of Bﬁo imply

EV2(B8 — EAR)? S dy V2 4+ 22dy%2 e > 1.

The claim can be proved as in eq. (32). Indeed, we can write

R oBRa B0 — (BB 0)EBR )+ E(BR_, o)

i(ﬁmﬁo)\ﬂﬂ (20 - E520)( H )

)\Qk

i=1 " j=1
SiEl/Q(ﬂ o —EBto)" = (Eﬂtj,o)E1/2( ﬁ 5@,0)2
i=1 ]:1 =
-1
g \/——((dz/AQ) + (da/X%)" _1) /\2(k ) H (Eﬁt“ )EW(; lllﬁtj )

4We just need to study the Lipschitz property of the function f(Z) =
W' Z(ZTUL UT 2) ZTu - 1(]| Z|| < C1V/d2)
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. 2
which concludes the proof since ﬁ H;;ll (]Eﬂé >E1/2<H] i1 ﬂt,,o) <
Codo k—t;
A2
To this end, to calculate eq. (31), it suffices to calculate

k

1 (k-1
ok Z(—1)1+ (T - 1) Z EB: oEBL o EBE Lo

T=2 ti+- At _1=k,t; >1

Now, we compute EBfy = (1+ A?/(da— + 1)) - Etr (U] ZZTUL)"""). Note
that the matrix UTZ € Rdl *(d2—+1) has i.i.d. standard normal entries. By the
moment of Marchenko—Pastur law ((Mingo and Speicher, 2017)), for all ¢ > 2,
we define (additionally, 51 = da— + 1)

/Bt r+1 t—1—r t—1 t—1
_+1) . 4
T+ 22/ (1+ds) t—lzd (do—+ ra1)\ r (34)

Note that Etr((U]ZZTUL)'™!) = Etr((ZTULUTZ)'™!) for all ¢t > 2. By the
rate of convergence of Marchenko Pastur law ((Gotze and Tikhomirov, 2011,
Theorem 1.1)), we have (as long as v/da > log® dy)

o B _ 1
1+ A2/(do + 1) ~ iy

for all t > 2 where C7 > 0 is an absolute constant. As a result, we get that for
all t1 +---+¢,_1 = k, the contribution to Ey, from ’Eﬁﬁ,oEﬁtAz,o . -EBtAFl 0—

: 1 Crdy \™
6t1 6t2 e ﬁtT—l ‘ is bounded by Vi ( )1\22)
Therefore, by eq. (31), to calculate ]E<uuT, ST,k(A)>, we consider the following

term .
1 k—1
WZ(71)1+T <T— 1> Z ﬂt16t2 "'ﬂt.r_l
T=2

ottt 1=kt >1

1

Cidy)'™

which is the k-th order derivative of the function —Agk'l(k!) (1—gla)rtata=0
where
g(a) =frat+a?fy+aiBz+ - = Zﬁkak. (35)

k>1

Now, we calculate the explicit form of the function g(a). Denote v = diljrl and
Y the random variable obeying the Marchenko-Pastur distribution, i.e., its pdf
is given by

1 VO =9y -

o) = o VO L
7Y

where 74 = (1+ ,/7)? and 7- = (1 — /7)?. It is easy to check that ((Mingo

and Speicher, 2017))

Y€ [v—,7+])

)\2 t—1 t—1
- - vVt > 2.
Bt = (1 + 1 ) )dl_(dg_ + 1) EY s t 2
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For notational simplicity, we just write do_ instead of 1 4+ do_. As a result, we
get for a < =

-,
d3

= 1+ XV 0B Y s (v
9(@) =pra+ (1+ 7—)di-aEY_ds_(aY)

t>1
)\2 )Edl,adz,aY

=fa+ (1 T Ty

2 Tt T ado)?
_ad2_+(1+%>(\/ adaz-7y 4\/ a27+)

where the last equality comes up by integrating Y according to the p.d.f. Fy (y).
Therefore, we get

1= g@) = 3o (@)~ Tg-(a)]
where
g () =1—(di_ +dy_)a—+/(1 —ady_v_)(1— ady_vy)
and

gr(@) =1 = (do- —di-)a+ /(1 —ady - )(1 — ada_7y).
Therefore, in order to calculate E<uuT, ST,k(A)>7 it suffices to calculate the k-th

k—1
order derivative of function % at o = 0. Write

(- gta))* )"

A2k (K1)

1
T AT 2T (k)

a=0

() () ot ]

t=

E

(36)

a:O.

(e}

Note that g_(a) = O(a?). The terms in eq. (36) with ¢ > % are all 0. Re-
call that we are interested in the ko-th order term in the error |44’ — uuT||3
whose denominator is A2%0. By eq. (36), the ko-th order error term 350 can be
contributed from E<uuT,ST7k(A)> for k =ko,k=ko+1, -,k =2k.

By the above analysis, we conclude that the ko-th error term (except the
negligible error terms from translating E(Bﬁﬂé e Bﬁ_l) into By, B, -+ Br._,)
of |aa" — uuT||2 is given by Eor, = Zfio Eo, + where (we change k in (36) to
ko + t)

11 1 (ko+t—1 LNET o peq, o7 (oD
B2t = ok ghore1 (ko+t)!< t ><_E> {g‘(a)w (a)]

When t = kg, we have

a=0

(4d1_d2_)k°a2k°
[1—a(di- +do)+ /(1 —adavy_)(1 - adg_’y_,_)]ko

g (a) =
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implying that
(2ko) ko
] 0 (ijo)! (4d1_d2_) .

g @g @] .

Therefore, we get Eag, 5, = (—1)*0df (21320—1)‘ Now, we consider ¢ < kg — 1 and
we observe
1—a(di- +do )+ (1 —ado v )1 —adysvi) =g(a) —2d;_a

4d1_ d2_ 042
g+ (o) —2aud;

so that g_(«a) = , Then, we get

tiayabot o] (4dy_dy_a®)t ot (] oD
G C] R [(%(a)_?adl)t ) R
ko +t . g () (ko—t)
:< o )(2t)!(4d1_d2_) [(g+(0;)r—2ad1,)t] .

It suffices to calculate the (ko — t)-th derivative of function gio_l(a)/(ng () —

2ad1,)t at a = 0. We write

P () (ko—1)
{(g+(i;)r— 204(117)4 k

- rf (kot_ 1) (2ad;-)* 717" (g4 (o) - 2ad17)t1_t}

t1=0 1

a=0

(ko—t)

a=0

Observe that [(2ad;_)ke~17"] (kr% =0 for all £; <t — 1. Then, we get

a=0

M=) (ko—t)
[(MZS - 2ad1-)f} k

ko—1

_ —¢7 (ko—t)

_ [ Z (kotl 1> (20d;_)F~17t (g, () 72ad1_)t1 t} o—t
ti=t—1

a=0

a=0

If t1 =t —1, then

[(kot— 1) (2ad; _)ko—1-t (g+(a) — 2ad1_)t1_t]

1

= (kto_ll) (2d1)*~" (ko — 1)! - %

(ko—1)

a=0

If t; > t, we have

1—¢7 (Fo—t)
[(Qadl,)k"_l_tl (g4 () — 2ad1,)t t}

a=0
(t1+1—t)

= (kok_ol__t t1>(2d1)ko—1—t1(k0 —1—t)! [(ng(a) _ 2ad1_)t1—t:|
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Clearly, if t; = ¢, then [(g+(a) _ 2ad17)t1—t](t1+1—t)‘

recall that

a—o = 0. For ty > ¢t+1,

g (@) —2ady =1 — (di_ +dy_ )+ /(1 — ado_v_)(1 — ada_v4).

It is easy to check that

[<g+<a> —2ad,_)" O

—[(1 = (d1- + do-)a — (T~ adary )1 — ady—2)" 1)
[( 4d1 do_a? >t17t} (t1+1-t)
- 20[d1

a=0

which is non-zero only when t; = ¢ + 1. In fact, when t; =t + 1, we get

[(9:+(0) =2ady) "] L = —adida-.

Therefore, we conclude that

(ko1 fot L1 (k-1
a_o(t—1>(2d1_) (ko =t-3 = {1 11

g (a) }(’fo—”
(9+(a) — 2ad; - )*

As a result, for t < kg — 1, we get

ko+t—1\ (ko —1
—kO._ t 0 0
Bkt =dy2 - ( 1)< ; ><t_1>
_ ko +t—1\ (ko —1
_dRo g, ()™ 0 )
i dy - (1) t t+1

Clearly, it also holds for t = kq. Therefore, we have

ko
0 ko+t—1\[ko—1
Eo, zEzkot_d z<—>( : )(;_1)

t=0

k02
_ ko+t—1\ (ko —1
— (ko 1d,§ —1) .
1- %2 ( )( t )(t+1)

t=0

It is easy to check that
Bon (7)) £
o k:Z;(_l)t </zo++1t> (kot— 1),
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It is interesting to observe that 310" (— D! (herh (*o, 1) equals the coefficient
feo— o
of 2"~ in the polynomial (1 + z)"[1 — (1+z)]™" ' Then, it is easy to check
that 3705 (= 1) (*of) (*71) = (=1)%~1. Similarly, we can observe that

t+1 t
k(f(—l)t ko+t—1\ (ko —1 _koil(—l)t_l ko+t—2\ (ko —1
paare t t+1) & t—1 t

—(-1) kj_z_:(_l)t (ko t+_t1— 2) (’fot_ 1).

Again, it is easy to check that Zko ! —1)t (kottt;2) (kogl) equals the coefficient
of z*~1 in the polynomial (1 + x)ko 2[1 — (1 4 2)]*~1. As a result, we get
fi;l(—l)t (kf’;r_tfz) (k‘);l) = (—1)ko~1, To this end, we conclude that
Eayy = (=1)*di2 (dr— — da-)
. . o AT T2 . - (—)kod¥ o~ (dy_—dy_)
, i.e., the ko-th error term in E|aa" — uu'||2 is given by v
(except the negligible error terms). In a similar fashion, we can show that the kq-
(—1)kogko~ 1(d2_7d1_) M .
2o . Meanwhile, the

negligible error terms from translating E(85 85 -+ - B2 _ ) into By, By, -+ By, _, are

th error term in E||697 —vvT||2 is given by

k
upper bounded by £ r (C§§l2) ’ which concludes the proof. O

Lemma 6. Let A = diag(\1,---,\,.) and Z € R"™*¢ be a random matriz con-
taining i.i.d. standard normal entries. Then, for any positive numbers jy, jo, we
have

E|A™ZZTAT2f = d?||A™ 72 |F + d(IA™ 772 |F + AT [RIAT2(1R).

Proof of Lemma 6. Let zy,--- ,z. € R? denote the columns of ZT. Therefore,
we can write

T

. , 1 1
_ TA— o7 T
A~ ZZTA92||f = ZW( i %) + Z W(Zilzi2)2~

i=1 "\ 1<iy#ig<r "Vi1 iz
Then, we get
s
d? +2d d
— Ta—
E”A 127\ 1||%:Z 2(j1+72) Z 2j1/\2j2
i=1 )‘i 1<ig#ia<r 7i1 iz

=d? AT TR+ d (AT TR AT RIAT ).
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