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Abstract: We consider survival data from a population with cured sub-
jects in the presence of mismeasured covariates. We use the mixture cure
model to account for the individuals that will never experience the event
and at the same time distinguish between the effect of the covariates on the
cure probabilities and on survival times. In particular, for practical appli-
cations, it seems of interest to assume a logistic form of the incidence and
a Cox proportional hazards model for the latency. To correct the estima-
tors for the bias introduced by the measurement error, we use the simex
algorithm, which is a very general simulation based method. It essentially
estimates this bias by introducing additional error to the data and then
recovers bias corrected estimators through an extrapolation approach. The
estimators are shown to be consistent and asymptotically normally dis-
tributed when the true extrapolation function is known. We investigate
their finite sample performance through a simulation study and apply the
proposed method to analyse the effect of the prostate specific antigen (PSA)
on patients with prostate cancer.
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1. Introduction

Classical survival analysis methods are designed to deal with time-to-event data
in the presence of censoring and covariates. However, they often fail to address
various challenges presented by real-life problems. In recent times, significant
advances have been made in adapting and extending traditional methods for
handling data with more complex features. In this article we account simultane-
ously for a cure fraction of the population, referring to those subjects that are
immune to the event of interest, and covariates measured with error. Such situa-
tions arise frequently in practice. For instance, in cancer studies it is known that
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some of the patients will never experience recurrence or cancer related death
and certain biomarker expressions such as the hemoglobin level or tumor size
cannot be measured precisely. The systolic blood pressure is also known to be
an error-prone predictor for the development of the coronary heart disease. Ex-
amples of variables that cannot be measured precisely end events that are not
experienced by the whole population can also be found in economic and social
studies. Ignoring both these characteristics in the statistical procedures would
most probably lead to incorrect inferences.

Cure rate models were first introduced in [7] and [3], but only quite recently
they have attracted attention in the statistical literature and applications. The
proposed models can be divided in two main categories: mixture cure models
and promotion time models (see [1] for a detailed review). The first ones assume
that the population consists of two subpopulations, the cured and the susceptible
ones, and model separately the incidence (the probability of being noncured)
and the latency (the survival of the noncured subjects) using parametric or
nonparametric models. The latter ones have a proportional hazards structure
and extend the classical Cox regression model to allow for the survival function
to flatten at a level greater than zero. There is no clear indication of which
approach is more appropriate but in general, mixture cure models are preferred
when one wants to distinguish between variables that affect the cure probability
and the survival of the uncured subjects.

On the other hand, there is a vast literature about bias correction methods
mainly in regression models with covariates contaminated by measurement er-
ror ([11]). The classical additive error model is generally accepted and the most
common methods to deal with it are the so called functional ones, which do
not make any assumption on the distribution of the unobserved true covariates.
They can be divided in three large classes of models: regression calibration,
score functional methods and simulation-extrapolation (simex). Regression cal-
ibration is a computationally simple method which replaces the mismeasured
covariate by its conditional mean given the observed variables. However, for
estimation of this conditional mean, a parametric model is assumed and repli-
cated measurements or validation data are required ([11, 37]). The corrected
score approach is mathematically more involved since it constructs the estima-
tors as M -estimators based on a corrected score function that is unbiased in
the presence of the measurement error. As a result, this method depends on
specific model assumptions and cannot be easily extended or adapted to vari-
ations of the model ([33, 27]). The simex approach is quite appealing because
it is a simulation based method and it can be easily adapted to any kind of
model. It only requires an estimation method in the absence of measurement
error and can be easily implemented (though computationally more intensive).
In survival analysis it has been applied to the semiparametric Cox model ([11]),
the marginal hazards model for multivariate failure time data ([16]), the frailty
model for clustered survival data ([20]) etc.

However, there are only limited studies on cure rate models with measure-
ment error. This problem was first addressed in [24] and [23], who propose a
corrected score approach for the parametric and semiparametric promotion time
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models respectively. Afterwards, the simex procedure was introduced as an al-
ternative estimation method in a more general version of promotion time models
in [4] and an extensive simulation study was done in [5] to compare it with the
corrected score approach and get a better understanding on the robustness of
the method. In the context of mixture cure models, the simex algorithm has
only been proposed for left-truncated right-censored data when a transforma-
tion model is assumed for the latency ([12]). However, [12] considers only the
case in which the mismeasured covariate affects only the latency and theory is
developed for one specific estimation method based on martingale integral rep-
resentations. In particular, the most commonly used logistic/Cox mixture cure
model for right-censored data and the maximum likelihood estimation method
(based on the EM algorithm) have not been investigated in presence of measure-
ment error. The popularity of this model motivates us to search for solutions to
correct estimates for the biases induced by the measurement error.

Here we propose a simex approach for a general mixture cure model with
a parametric form of the incidence and a semiparametric model for the la-
tency. Any estimation method in the absence of measurement error can be used
within the simex algorithm. We focus mainly on the logistic/Cox setting, given
its practical relevance, but the proposed procedure and the asymptotic theory
hold for other mixture cure models as well, provided that the considered esti-
mation method in the absence of measurement error satisfies certain conditions.
In particular, these conditions are satisfied for the maximum likelihood estima-
tor introduced in [35] and the presmoothing approach proposed in [26]. We use
both these estimators in the simex procedure and compare them through a sim-
ulation study. In contrast to the previously considered promotion time models,
here we find that if the mismeasured covariate affects only one of the two com-
ponents (incidence or latency), the estimation of the other component remains
undisturbed even if the variables are correlated.

The article is organized as follows. We start by describing a general para-
metric/ semiparametric mixture cure model with measurement error in Section
2 and then explain the simex estimation procedure in Section 3. Asymptotic
properties of the estimators are presented in Section 4, while their practical
performance for the logistic/Cox mixture cure model is demonstrated through
simulation studies in Section 5. Finally, in Section 6, we apply the proposed
method to a prostate cancer dataset to account for measurement error in the
values of the prostate specific antigen. Proofs and additional simulation results
are presented in the Appendix.

2. Mixture cure model with measurement error

Suppose we are interested in the time T until a certain event happens. In con-
trast to classical survival analysis, in cure models it is possible to have T = ∞
(the event never happens), reflecting the presence of a cure fraction. On the
other hand, a finite survival time corresponds to susceptible subjects that will
experience the event at some time point. If we indicate by B the uncured status,
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i.e. B = 1{T<∞}, then we can write

T = BT0 + (1−B)∞,

with T0 representing the survival time for an uncured individual. The challenge
of dealing with this type of models arises from the fact that, because of finite
censoring times, it is impossible to completely separate the two groups. To be
precise, if C denotes the censoring time, then we only observe the follow-up
time Y = min(T,C) and the censoring indicator Δ = 1{T≤C}. Hence, for the
observations with Δ = 0, we do not know whether they are cured or susceptible.
In addition to the cure fraction and censoring, it is desirable to also account for
the impact of certain covariates on the time to event variable. Let (XT , ZT )T

a (p + q)-dimensional vector of covariates, where xT denotes the transpose of
the vector x. The advantage of mixture cure models with respect to promotion
time models is that they can distinguish between the covariates X, which affect
the cure rate, and Z, which affect the survival of the uncured subjects, i.e.

P(T = ∞|X,Z) = P(T = ∞|X) and P(T < ∞|X,Z) = P(T < ∞|Z).

However, it is possible for X and Z to be the same or share some of the com-
ponents. As commonly done in studies of cure models, we assume that the
censoring time and the survival time are independent given the covariates

T ⊥ C|(X,Z), (1)

which is equivalent to requiring T0 ⊥ (C,X)|Z and B ⊥ (C, T0, Z)|X (see
Lemma 1 in Appendix A of [26]).

In this paper we deal with situations in which some of the continuous co-
variates included in X and/or Z are subject to measurement error. For ease of
notation and interpretation we define the vector of unique covariates

(E(1)T , E(2)T , E(3)T )T ∈ R
p+q1 ,

where E(1) denotes the covariates in X that are not present in Z, E(2) de-
notes the common components of X and Z, E(3) denotes the covariates in Z
that are not present in X and q1 is the number of covariates in E(3). In other
words, we are removing the repeated covariates from the vector (XT , ZT )T with-
out loosing any information. In the presence of measurement error, instead of

(E(1)T , E(2)T , E(3)T )T , we observe W = (W (1)T ,W (2)T ,W (3)T )T such that

W =
(
E(1)T , E(2)T , E(3)T

)T

+ U (2)

where U ∈ R
p+q1 is the vector of measurement errors. We assume that U is

independent of (X,Z, T, C) and it follows a continuous distribution with mean
zero and known variance matrix V . The elements of V corresponding to co-
variates with no measurement error (including non-continuous covariates) are
set to zero. However, no parametric assumption is made on the distribution of
the errors. In particular, the measurement error is not required to be normally
distributed.
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We consider a general mixture cure model with a parametric form of the
incidence and a semiparametric model for the latency. To be precise, the cure
probability of a subject with covariate x is

π0(x) = 1− φ(γ∗, x)

for some known function φ : Rp×R
p �→ [0, 1] and γ∗ ∈ R

p, while the conditional
survival function of the noncured subjects Su(·|z) depends on a parametric
component β∗ and a nonparametric non-decreasing function Λ∗ (for example
the cumulative baseline hazard). As a result, the conditional survival function
corresponding to T is then

S(t|x, z) = P(T > t|X = x, Z = z) = 1− φ(γ∗, x) + φ(γ∗, x)Su(t|z). (3)

Choosing a parametric model for the incidence seems quite standard in the
literature of mixture cure models ([29, 8, 32]) because of its simplicity and ease of
interpretability (particularly for multiple covariates). Recently there have been
also a few nonparametric proposals ([39, 2, 21]) but we choose to focus on the
previous models since they are more widely used in practice ([18, 40, 38, 34]). In
addition, nonparametric estimation of π0(·) would require repeating the simex
procedure for multiple points of the support, which is very computationally
intensive. In general, it is possible to test whether this assumption is reasonable
([25]). Among the parametric models for the incidence component, the logistic
model where

φ(γ, x) =
eγ

T x

1 + eγT x
, (4)

is perhaps the most common one. On the other hand, the Cox proportional
hazards model ([14])

Su(t|z) = exp
{
−Λ∗(t) exp(β∗T z)

}
, (5)

and the accelerated failure time model

Su(t|z) = exp
{
−Λ∗ (exp (β∗T z

)
t
)}

,

where Λ∗ is the baseline cumulative hazard function, are both widely used semi-
parametric modelling approaches for the latency ([30, 35, 19]). However, our
methodology applies more in general to parametric/semiparametric mixture
cure models provided that an estimation method for the case without mea-
surement error is available. The goal is to estimate the true parameters γ∗,
β∗ and Λ∗ on the basis of n i.i.d. observations (Y1,Δ1,W1), . . . , (Yn,Δn,Wn),
knowing the variance matrix V of the measurement error. In the next section
we propose a simulation-extrapolation approach designed to reduce the bias due
to the measurement error.

3. Methodology

The basic idea behind the simex algorithm is that we can gain insights on
how the measurement error affects the estimators by creating artificial data
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with increasing levels of measurement error and estimating the parameters as if
there was no error. The obtained information is then used in the second step to
recover the bias corrected estimators through an extrapolation approach. Next
we describe the details of this procedure.

Step 1. (Simulation) We choose K levels of added noise λ1, . . . , λK ≥ 0 and
for each of them we generate a large number B of artificially contaminated sam-
ples. To be precise, for each λ ∈ {λ1, . . . , λK} and b ∈ {1, . . . , B}, we simulate
independent identically distributed variables {Ũb,i}ni=1, independently of the ob-
served data and with distribution ND(0, ID), where D = p+q1 is the dimension
of the vector W . Afterwards, we construct new covariates

Wi,λ,b = Wi + (λV )1/2Ũi,b, (6)

where V is the covariance matrix of the error in (2). Distributions different from
Gaussian can be used too but here we focus on normal errors. The mixture model
satisfied by the new covariates Wi,λ,b

S

(
t

∣∣∣∣ (W (1)
i,λ,b,W

(2)
i,λ,b

)
,
(
W

(2)
i,λ,b,W

(3)
i,λ,b

))

= 1− φ
(
γλ,

(
W

(1)
i,λ,b,W

(2)
i,λ,b

))
+ φ

(
γλ,

(
W

(1)
i,λ,b,W

(2)
i,λ,b

))
Su,λ

(
t

∣∣∣∣ (W (2)
i,λ,b,W

(3)
i,λ,b

))
,

is characterized by the parameters γλ, βλ and Λλ. Using {Yi,Δi,Wi,λ,b}ni=1

we estimate γλ, βλ and Λλ, as if there was no measurement error, obtaining
γ̂λ,b, β̂λ,b and Λ̂λ,b. The latter one is an estimator of Λ∗ over some compact
interval [0, τ ]. Any available estimation method can be used. For example, in the
logistic/Cox mixture cure model, the maximum likelihood estimation ([35, 9])
or the presmoothing approach proposed in [26] can be considered.

At the end, for each level of contamination, the average values of all the B
estimates are calculated:

γ̂λ =
1

B

B∑
b=1

γ̂λ,b, β̂λ =
1

B

B∑
b=1

β̂λ,b and Λ̂λ(t) =
1

B

B∑
b=1

Λ̂λ,b(t).

(7)
Note that, if the estimators Λ̂λ,b are piecewise constant with jumps at the ob-

served event times, then also Λ̂λ is piecewise constant with jumps at the observed
event times. The parameters to be chosen in this step are K, the λ values and
B. Common values are K = 5, λ ∈ {0, 0.5, 1, 1.5, 2} and B = 50 ([10, 13]).

Step 2. (Extrapolation) Note that, by independence, the covariance matrix of
the simulated covariates Wi,λ,b is

var(Wi,λ,b|Xi) = var(Wi|Xi) + λV = (1 + λ)V.

This means that the variance has been inflated by a factor 1 + λ and that
the ideal case of no measurement error corresponds to λ = −1 (adding ‘nega-
tive’ variance). Hence, the idea is to model the relationship between λ and the

estimators γ̂λ, β̂λ, Λ̂λ by fitting a regression function and then extrapolate to
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λ = −1. First, an extrapolant function needs to be chosen (e.g. linear, quadratic

or fractional) for each component of γ̂λ, β̂λ, Λ̂λ as a function of λ. For example,
for the quadratic case and λ ∈ {λ1, . . . , λK}, we have

γ̂λ,j = gγ,j(a
∗
γj
, λ) + εγ,λ,j = a∗γj ,1 + a∗γj ,2λ+ a∗γj ,3λ

2 + εγ,λ,j , j = 1, . . . , p

β̂λ,j = gβ,j(a
∗
βj
, λ) + εβ,λ,j = a∗βj ,1 + a∗βj ,2λ+ a∗βj ,3λ

2 + εβ,λ,j , j = 1, . . . , q

Λ̂λ(t) = gΛ,t(a
∗
t , λ) + εΛ,λ,t = a∗t,1 + a∗t,2λ+ a∗t,3λ

2 + εΛ,λ,t, t ∈ [0, τ ],

where εβ,λ,j , εγ,λ,j and εΛ,λ,t are the error terms in the extrapolant model, as-
sumed to have mean zero and to be independent. We obtain estimators âγj =
(âγj ,1, âγj ,2, âγj ,3), âβj = (âβj ,1, âβj ,2, âβj ,3) and ât = (ât,1, ât,2, ât,3) of the un-
known parameters of the extrapolant function by fitting the previous regression
models using the method of least squares. Finally, the simex estimators are
defined by

γ̂j,simex = lim
λ→−1

gγ,j(âγj , λ), j = 1, . . . , p,

β̂j,simex = lim
λ→−1

gβ,j(âβj , λ), j = 1, . . . , q,

Λ̂simex(t) = lim
λ→−1

gΛ,t(ât, λ), t ∈ [0, τ ].

If the initial estimators Λ̂λ,b are piecewise constant with jumps at the observed
event times, then the extrapolation procedure needs to be applied only for the
observed event times t ∈ {T(1), . . . , T(m)}. Equivalently, the procedure can be
applied to the jump sizes for different coefficients a∗ and a possibly different
extrapolation function (if it is not polynomial). Even though this does not guar-
antee that the resulting estimator Λ̂simex is non-decreasing, in practice this is
often the case. If one is interested in estimation of Λ∗ on the whole support
and Λ̂simex is not monotone, an isotonized version of it, using for example the
pool-adjacent-violators algorithm ([31]), would be a more reasonable estimate.
However, here we focus on estimation of the parameters γ, β and do not further
exploit this aspect. Note also that different extrapolation functions lead to dif-
ferent results. Hence it is important to have a good approximation of the true
extrapolation function.

4. Asymptotic properties

4.1. General results

In this section we will discuss the identifiability of the model and establish
some theoretical results regarding the large-sample properties of the proposed
estimators. A drawback of the simex approach is that consistency and asymp-
totic normality of the estimators hold only if we knew the true extrapolation
function, which is usually not the case in practice. When the true extrap-
olant function is not known, but an approximation of it is used, the results
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of Theorems 1 and 2 hold with γ∗, β∗, Λ∗(t) replaced by limλ→−1 gγ(aγ , λ),
limλ→−1 gβ(aβ , λ) and limλ→−1 gΛ(at, λ) respectively. Here gγ(aγ , λ) denotes
the vector (gγ,1(aγ1 , λ), . . . , gγ,p(aγp , λ))

T and gβ(aβ , λ), gΛ(at, λ) are defined
similarly. We first establish the asymptotic results in a general mixture cure
model as described in Section 2, assuming that the used estimation method
for obtaining γ̂λ,b, β̂λ,b, Λ̂λ,b (ignoring the measurement error) satisfies certain
conditions. Afterwards, we will focus on two estimation methods for the logis-
tic/Cox mixture cure model and show that the required conditions are met. All
the proofs can be found in the Appendix.

For a fixed λ > 0 consider observations (Y,Δ,Wλ), where Wλ = W +
(λV )1/2Ũ and the mixture cure model with conditional survival

S(t|Wλ) = 1− φ
(
γλ,

(
W

(1)
λ ,W

(2)
λ

))
+ φ

(
γλ,

(
W

(1)
λ ,W

(2)
λ

))
Su,λ

(
t

∣∣∣∣ (W (2)
λ ,W

(3)
λ

))
,

(8)

where, as mentioned in Section 2, the decomposition of Wλ in three components
corresponds to the covariates that influence only the cure probability, those that
are common for the incidence and the latency and the ones that affect only the
latency. The survival of the uncured subject Su,λ depends on the regression
parameters βλ and the nonparametric function Λλ. Suppose we have an esti-
mation method that provides estimates γ̂λ, β̂λ and Λ̂λ, the latter one being a
non-decreasing function.

The mixture cure model in (3) is identifiable when the following basic condi-
tions are satisfied:

(I1) if φ(γ,X) = φ(γ̃, X) almost surely, then γ = γ̃,
(I2) the function Su(·|z) has support [0, τ(z)],
(I3) P(C > τ(Z)|X,Z) > 0 for almost all X and Z,
(I4) if, for all t ≥ 0, we have Su(t|Z; Λ, β) = Su(t|Z; Λ̃, β̃) almost surely, then

Λ = Λ̃ and β = β̃,

where identifiability means that different parameter values lead to different dis-
tributions of the observed variables (Y,Δ, X, Z). This can be proved in the same
way as in [28] (or as Lemma 1 in [2]). In the particular case of the logistic-Cox
model the conditions become:

(I1’) for all x, z, 0 < φ(γ, x) < 1,
(I2’) the function Su has support [0; τ0] for some τ0 < ∞,
(I3’) P (C > τ0|X;Z) > 0 for almost all X and Z,
(I4’) the matrices V ar(X) and V ar(Z) are positive definite,

(see Proposition 1 and 2 in [28]). When these conditions are satisfied by the
original model, they are also satisfied for the model in (8) with the mismea-
sured covariates because of the assumptions on W, Ũ, V (the matrix V ar(Wλ) is
positive definite for all λ > 0). Moreover, for known extrapolation functions, the
parameters γ∗, β∗ and Λ∗ are uniquely identified through the simex procedure,
if the extrapolant functions g(a, λ) are such that the matrix ġ(a, λ) of partial
derivatives with respect to the elements of a is bounded and continuous at the
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true parameters a∗ and has full rank, i.e. ġ(a∗, λ)T ġ(a∗, λ) is invertible.
The following conditions will be needed in order to establish the asymptotic

results.

(A1) With probability one and for some τ > 0 we have

‖γ̂λ−γλ‖ → 0, ‖β̂λ−βλ‖ → 0 and sup
t∈[0,τ ]

|Λ̂λ(t)−Λλ(t)| → 0

as n → ∞, i.e. the estimators are strongly consistent. By ‖ · ‖ we denote
the Euclidean norm.

(A2) For m < ∞, define

Hm = {h = (h1, h2, h3) ∈ BV [0, τ ]× R
p × R

q :

‖h‖H = ‖h1‖v + ‖h2‖+ ‖h3‖ ≤ m}

where BV [0, τ ] denotes the space of functions of bounded variation on
[0, τ ], ‖h1‖v = |h1(0)|+ V τ

0 (h1) and V τ
0 (h1) denotes the total variation of

h1 over [0, τ ]. Uniformly over h ∈ Hm we have

hT
2 (γ̂λ − γλ) + hT

3 (β̂λ − βλ) +

∫ τ

0

h1(s)d(Λ̂λ − Λλ)(s)

=
1

n

n∑
i=1

Ψλ(Yi,Δi,Wi,λ, h1, h2, h3) + oP (n
−1/2)

for some function Ψλ such that E[Ψλ(Y,Δ,Wλ, h1, h2, h3)] = 0 and for
fixed λ, the class

{(y, δ, w) �→ Ψλ(y, δ, w, h1, h2, h3) : (h1, h2, h3) ∈ Hm}

is uniformly bounded and Donsker.

Theorem 1. Suppose that condition (A1) is satisfied and that Λ∗ is continuous.
If the measurement error variance and the true extrapolant functions are known
then, with probability one,

‖γ̂simex − γ∗‖ → 0, ‖β̂simex − β∗‖ → 0 and sup
t∈[0,τ ]

|Λ̂simex(t)− Λ∗(t)| → 0.

Theorem 2. Suppose that conditions (A1)-(A2) are satisfied and that Λ∗ is
continuous. If the measurement error variance and the true extrapolant functions
are known, then n1/2(γ̂simex − γ∗) converges in distribution to N(0,Σγ) and

n1/2(β̂simex − β∗) converges in distribution to N(0,Σβ), with Σγ and Σβ as in

(11) and (12). Moreover, n1/2(Λ̂simex − Λ∗) converges weakly in l∞([0, τ ]) to a
mean zero Gaussian process G defined in (13).

The proofs of Theorems 1 and 2 follow the usual arguments for simex estima-
tors. In particular, consistency relies mainly on the consistency of the estimators
for each λ and consistency of the estimated extrapolant functions. Moreover,
the i.i.d. representation in condition (A2) and the expressions in (7) allow us
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to obtain convergence to a Gaussian process for any λ. Finally, the asymptotic
normality of the simex estimators follows by the delta method. Details of the
proofs can be found in the Appendix.

The asymptotic variance of the simex estimators can be estimated through a
plug-in principle from the formulas (11), (12) and (13) replacing the true param-
eters a∗ by their estimators â if we are able to estimate the covariance matrix
of the naive estimator for each level of added noise λ. An alternative way to
estimate the variance of the simex estimators has been described in Appendix
B.4.1 of [11]. The idea is to compute the variance estimator by fitting an extrap-
olation model and extrapolating to λ = −1 the matrices {Σλ− Σ̂λ}λ∈{λ1,...,λK},

where Σ̄λ = 1
B

∑B
b=1 Var(γ̂λ,b), Var(γ̂λ,b) is the estimated covariance matrix of

γ̂λ,b as in the naive estimation method and

Σ̂λ =
1

B − 1

B∑
b=1

(γ̂λ,b − γ̂λ)(γ̂λ,b − γ̂λ)
T

is the empirical covariance matrix of {γ̂λ,b}Bb=1. Similar expressions hold for β
and Λ(t). However, both these two approaches require estimation of the asymp-
totic variance for the naive estimation method. The expressions of the asymp-
totic variances for the estimators of a mixture cure model (without measurement
error) are quite complicated ([22, 26]) and in practice estimating them through
a plug-in principle (as proposed for example in [22]) is not feasible. For this
reason we estimate the variance through a bootstrap procedure as proposed in
[9, 26].

Remark 1. In practice the true extrapolation function is not known and the
mispecification error depends on how good is the approximation of the true ex-
trapolation function by the function we are considering in the simex procedure.
For parametric problems, the asymptotic bias resulting from an approximation
of the true extrapolation function has been investigated in [13]. To illustrate the
idea in our model, we restrict for simplicity to a situation where only one co-
variate is measured with error, the variance of the measurement error is σ2 and
a quadratic extrapolant is used in the simex procedure. We consider estimation
of the first component of γ but the idea remains the same for the other param-
eters. Let q(λ) be the true extrapolation function, i.e. γλ,1 = q(λ) for λ ≥ 0
and γ∗

1 = q(−1), where γ∗
1 denotes the first component of γ∗. Note that γλ,1

depends on λ only through λσ2 because of (6). Hence, by redefining q, we can
write γλ,1 = q(λσ2) and γ∗

1 = q(−σ2). Assuming that q is a smooth functional,
by a Taylor expansion around λ = −1, we have

q(λσ2) = a∗1 + a∗2λ+ a∗3λ
2 + δλ,

for some constants a∗1, a
∗
2, a

∗
3 depending on σ2 and δλ = O

(
((λ+ 1)σ2)3

)
. In

particular, it follows that sup−1≤λ≤C |δλ| = O(σ6). For each λ ≥ 0 we have,
γ̂λ,1 → γλ,1 with probability one as n → ∞ (see proof of Theorem 1). When we
fit a quadratic model

γ̂λ,1 = γλ,1 + ελ = a∗1 + a∗2λ+ a∗3λ
2 + ελ + δλ
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using the least-squares method, we obtain estimators â1, â2, â3 of a∗1, a
∗
2, a

∗
3,

whose bias âi − a∗i is a linear function of δλ. Hence, |âi − a∗i | = O(σ6), i =
1, 2, 3. The resulting extrapolation function is g(â, λ) = â1 + â2λ + â3λ

2 and
γ̂simex,1 = g(â,−1). It follows that

sup
−1≤λ≤C

|g(â, λ)− q(λσ2)| = O(σ6),

and in particular |γ̂simex,1 − γ∗
1 | = O(σ6). Hence, in practice even when using

an approximation of the true extrapolation function the procedure still works
well for small magnitudes of the measurement error variance. The appropriate-
ness of the chosen extrapolation function can also be checked visually through
a graphical representation. We investigate the robustness of the method with
respect to the extrapolation function through a simulation study in Section 5.4.

4.2. Example: logistic/Cox mixture cure model

The logistic/Cox mixture cure model is perhaps the most commonly used one
for studying survival data in the presence of a cure fraction. It assumes that
the function φ(γ, x) is as in (4), where the first component of x is equal to
one and γ∗

1 corresponds to the intercept. On the other hand, the distribution
of the uncured subjects follows a Cox proportional hazards model as in (5),
where Λ∗ is the baseline cumulative hazard, β∗TZ does not contain an intercept
and the matrix var(Z) is assumed to have full rank for the Cox model to be
identifiable. The classical estimator in this setting is the maximum likelihood
estimator proposed by [35] and implemented in the R package smcure. The
estimator is computed through the expectation maximization algorithm because
of the unobserved cure status and its asymptotic properties are investigated in
[22]. Recently, an alternative estimation procedure relying on presmoothing was
proposed in [26]. It uses a preliminary nonparametric estimator for the cure
probabilities and ignores the Cox model when estimating γ∗. It is shown through
simulations that, if the interest is focused on estimation of the parameters of
the incidence, this method usually performs better that the maximum likelihood
estimator. However, both methods lead to very similar results when estimating
the latency. Next we show that these two estimators satisfy our conditions (A1)-
(A2) and as a result, both procedures can be used in the SIMEX algorithm
leading to consistent and square-root convergent estimators.

Theorem 3. Consider the maximum likelihood estimation method proposed by
[35]. Assume that conditions 1-4 in [22] are satisfied. Then our conditions (A1)-
(A2) above hold with Ψλ(y, δ, w, h1, h2, h3) as in (18).

Theorem 4. Consider the estimation method proposed by [26] and assume
that their assumptions (C1)-(C5), (AC2), (AC5)-(AC7) are satisfied. Then our
conditions (A1)-(A2) above hold with Ψλ(y, δ, w, h1, h2, h3) as in (20).

For completeness, we list the conditions 1-4 of [22] and the assumptions (C1)-
(C5), (AC2), (AC5)-(AC7) of [26] in the Appendix. These assumptions are usual
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regularity conditions that guarantee the consistency and the rates of convergence
of semiparametric and nonparametric estimators, in this case of the naive esti-
mators (maximum likelihood estimator and the estimator based on presmooth-
ing). More assumptions are needed for the presmoothing approach because it
requires nonparametric estimation in the first step. Our condition (A1) in indeed
just the consistency of the naive method, while condition (A2) is an intermedi-
ate result used to obtain the asymptotic normality of the naive method (in case
of semiparametric models). Hence it would be easy to check this condition for
any naive method, for which consistency and asymptotic normality have already
been obtained.

In order for the mixture cure model to be identifiable, T0 should have compact
support [0, τ0] such that infx,z P(C > τ0|X = x, Z = z) > 0. Hence, τ in our
conditions (A1) − (A2) is equal to τ0. In practice cure rate models are used
when there is a long follow-up beyond the largest observed event time T(m) and
the zero-tail constraint is applied, i.e. the censored subjects with follow-up time
larger than T(m) are considered cured. For being able to develop the asymptotic
theory, in [22] it is assumed that infz P(T0 = τ0|Z = z) > 0, while [26] argue
that this assumption can be avoided thanks to the presmoothing step.

5. Numerical study

5.1. Setup

In this section we investigate the finite-sample behaviour of the simex method
in the logistic/Cox mixture cure model. The two estimation approaches con-
sidered in Section 4.2 are used within the simex algorithm and compared with
each other in the context of mismeasured covariates. Results for a variety of
models and scenarios are presented in the next subsections. We try to cover a
wide range of situations and capture the effect of the cure rate, censoring rate,
sample size and measurement error variance. Unless stated otherwise, the error
distribution is Gaussian and the used extrapolation function is quadratic, which
seems to be a good compromise in terms of bias and variance ([13, 11, 20, 4]).
Finally, we also briefly investigate the robustness of the method with respect to
the extrapolation function, misspecification of the error distribution and vari-
ance. In all the simulation studies, for the simex method, we choose B = 50,
K = 5, λ ∈ {0, 0.5, 1, 1.5, 2} (as these seem to be quite common choices in the
literature) and for each setting 500 simulated datasets were used to compute the
bias, variance and mean squared error (MSE) of the estimators. We also com-
pare the bias corrected estimators with the naive estimators, which do not take
the measurement error into account. The bandwidth for the estimator based on
presmoothing is chosen as in [26], i.e. the cross-validation optimal bandwidth for
estimation of the conditional distribution H(t|x) for t ≤ Y(m) truncated from
above at 2, where Y(m) is the largest uncensored observation and x is the contin-
uous covariate affecting the incidence (standardized). To reduce computational
time, we compute this bandwidth only once for the initial dataset and use the
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same for the data with added noise. We observed that not updating the band-
width for each b ∈ {1, . . . , B} and λ ∈ {0.5, 1, 1.5, 2} does not have a significant
impact on the final results. Moreover, we assume to know the standard devi-
ation of the error, which is usually not the case in practice. In such situations,
a preliminary step of variance estimation is required before applying the simex
procedure (see for example [6]). Another issue in practice is the correct identi-
fication of X and Z since usually one does not know a priori which variables
determine the cure status and which affect the survival of the uncured subjects.
In our simulation study we assume to know which covariates to include in each
part of the model (according to how we generate the data) because the purpose
of this study is to investigate the performance of the simex procedure and not
problems related to misspecification of X and Z. However, in practice one can
include all the covariates in both X and Z (if they are not too many) and check
their significance for each of the components through the obtained p-values (as
we do in Section 6). Another possibility is to first determine the right model,
for example based on an Akaike information criterion as suggested in [15], and
then apply the simex procedure afterwards to the selected model.

5.2. One mismeasured covariate

We start by considering a simplified model in which there is only one covariate
of interest, measured with error, affecting both the cure probability and the
survival of the uncured subjects.

Model 1. Both incidence and latency depend on one covariate X, which is a
standard normal random variable. We generate the cure status B as a Bernoulli
random variable with success probability φ(γ, x) = 1/(1+exp(−γ1−γ2x)). The
survival times for the uncured observations are generated according to a Weibull
proportional hazards model

Su(t|x) = exp
(
−μtρ exp(βTx)

)
,

and are truncated at τ0 = 7 for ρ = 1.75, μ = 1.5 and β = 1. The censoring
times are independent from X and T . They are generated from the exponential
distribution with parameter λC and are truncated at τ = 9. Various choices of
the parameters γ and λC with the corresponding cure and censoring rates can
be found in Table 1. Here and in what follows, the truncation of the survival
times and censoring times is done in such a way that τ0 < τ and it is unlikely
to observe an event time at τ0. This mimics real-life situations in which cure
models are adequate. X is measured with error, i.e. instead of X we observe
W = X + U , where U ∼ N(0, v2).

Results for sample size n = 200 (n = 400) and measurement error variance
v2 = 0.72 are given in Table 2 (Table 7). This corresponds to a large error
situation since the ratio between the standard deviation of the error and the
standard deviation of the covariate is 0.7. Below we will consider also settings
with smaller measurement error.
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Table 1

Parameter values and characteristics of each scenario for Model 1.

Setting γ2 Scenario Cure rate γ1 Cens. rate λC Cens. level Plateau

1 0.1 1 20% 1.4 1 0.09 25% 14%
2 0.3 35% 7%

2 50% 0 1 0.13 55% 32%
2 0.5 65% 15%

2 0.5 1 20% 1.4 1 0.07 25% 16%
2 0.26 35% 9%

2 50% 0 1 0.15 55% 31%
2 0.6 65% 14%

3 2 1 20% 2.2 1 0.1 25% 15%
2 0.33 35% 9%

2 50% 0 1 0.2 55% 33%
2 0.7 65% 16%

First of all, we observe that in the presence of measurement error there is
usually no advantage of using the presmoothing approach instead of maximum
likelihood estimation. In particular, when the bias induced by the measurement
error is large, it seems that the estimator based on presmoothing is more affected
for both the naive and the simex method. Moreover, most of the time the bias
is observed only for the coefficients that correspond to the variables measured
with error. As expected, in all cases, the simex algorithm reduces this bias at the
price of a larger variance. In terms of mean squared error, it is better to use the
naive approach for coefficients that are small in absolute value (the case of γ2 in
setting 1), while the simex method is preferred when the absolute value of the
coefficient is large (i.e. the covariate has a greater effect on the cure/survival).
In this setting, for n = 200, γ2 = 0.5 seems to be a borderline case, meaning
that the simex method performs better when the censoring rate is low, while
the naive method has smaller MSE when the censoring rate is high. In addition,
results show that when the coefficient of a mismeasured covariate is large, there
might be induced bias even for the intercept, which is also corrected by the simex
algorithm. As the sample size increases, the bias created by the measurement
error increases but the variance decreases for both naive and simex estimators.
Furthermore, the advantage of using simex instead of ignoring the bias becomes
more significant. At the same time, the threshold absolute value of a coefficient
for which bias correction leads to better MSE decreases (simex is preferred for
γ2 = 0.5 in setting 2, which was a borderline case for n = 200).

5.3. More realistic scenarios

Through the following four models we try to cover more realistic situations and
investigate the effect of the measurement error on the naive and bias corrected
estimators.

Model 2. Both incidence and latency depend on two independent covariates:
X1 has a uniform distribution on the interval [−1, 1] and X2 is a Bernoulli
random variable with success probability 0.5. We generate the cure status B as
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Table 2

Bias, variance and MSE of γ̂ and β̂ for the naive and simex method based on the maximum
likelihood (1) or the presmoothing (2) approach for Model 1 (n = 200). The first column

gives the setting/scenario/cens. level. All numbers were multiplied by 100.

naive - 1 naive - 2 simex - 1 simex - 2
Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE Bias Var. MSE

1/1/1 γ1 2.4 3.8 3.8 1.5 3.8 3.8 2.4 3.8 3.9 1.4 4.0 4.0
γ2 −3.5 2.6 2.7 −2.7 2.5 2.5 −1.2 4.8 4.8 −0.2 5.1 5.1
β −43.3 0.7 19.4 −43.3 0.7 19.4 −18.8 1.9 5.5 −18.9 1.9 5.5

1/1/2 γ1 3.9 5.5 5.6 0.5 5.1 5.2 3.6 5.6 5.7 −0.3 6.2 6.2
γ2 −3.0 4.0 4.1 0.3 3.8 3.9 −0.2 7.3 7.3 4.5 8.6 8.8
β −42.4 0.9 18.9 −42.8 0.9 19.2 −18.2 2.4 5.7 −18.6 2.4 5.9

1/2/1 γ1 0.7 2.4 2.4 0.2 2.4 2.4 0.7 2.4 2.4 0.2 2.5 2.5
γ2 −4.0 1.6 1.8 −3.6 1.4 1.5 −1.9 3.0 3.0 −1.3 2.7 2.7
β −42.5 1.2 19.3 −42.6 1.2 19.3 −18.1 3.3 6.6 −18.2 3.3 6.6

1/2/2 γ1 1.6 4.2 4.2 −0.3 4.0 4.0 1.3 4.3 4.3 −0.2 4.7 4.7
γ2 −3.0 2.8 2.9 −2.1 2.4 2.5 −0.4 5.0 5.0 0.4 5.2 5.2
β −41.9 1.9 19.5 −42.3 1.8 19.8 −18.0 4.9 8.1 −18.4 4.7 8.1

2/1/1 γ1 −0.3 3.7 3.7 −1.0 3.6 3.7 1.4 3.9 4.0 0.4 4.1 4.1
γ2 −15.9 2.3 4.9 −16.6 2.2 5.0 −3.9 4.5 4.7 −5.1 4.7 5.0
β −44.2 0.7 20.2 44.2 0.7 20.2 −19.7 2.0 5.8 −19.7 2.0 5.8

2/1/2 γ1 2.1 4.8 4.8 −0.5 4.7 4.7 3.8 5.2 5.3 0.8 5.8 5.8
γ2 −16.0 3.6 6.2 −14.8 3.4 5.6 −3.6 7.0 7.1 −1.5 7.9 8.0
β −43.1 0.9 19.4 −43.3 0.9 19.6 −18.6 2.4 5.9 −18.9 2.4 5.9

2/2/1 γ1 0.8 2.3 2.3 0.3 2.3 2.3 0.8 2.4 2.4 0.2 2.5 2.5
γ2 −16.7 1.8 4.6 −17.9 1.7 4.9 −4.8 3.5 3.7 −6.3 3.5 3.9
β −43.6 1.3 20.3 −43.6 1.3 20.3 −19.1 3.5 7.2 −19.1 3.5 7.2

2/2/2 γ1 0.6 4.7 4.7 −1.7 4.3 4.3 0.1 4.8 4.8 −2.2 4.9 4.9
γ2 −15.0 3.4 5.6 −16.3 3.1 5.8 −2.2 6.4 6.5 −4.0 6.5 6.7
β −43.1 2.0 20.6 −43.2 1.9 20.5 −19.3 5.0 8.8 −19.3 4.8 8.5

3/1/1 γ1 −33.6 7.1 18.4 −36.6 6.8 20.1 −12.1 13.3 14.8 −16.5 12.9 15.6
γ2 −84.6 6.0 77.5 −88.6 5.4 84.0 −34.0 17.0 28.6 −40.3 16.1 32.3
β −48.0 0.8 23.9 −48.0 0.8 23.8 −23.1 2.3 7.6 −23.0 2.3 7.6

3/1/2 γ1 −31.0 10.6 20.3 −37.2 9.8 23.7 −9.0 19.1 19.9 −17.4 19.5 22.6
γ2 −83.7 8.5 78.5 −89.2 7.4 86.9 −32.0 23.6 33.8 −40.6 22.4 38.9
β −46.8 1.0 22.9 −46.7 1.0 22.8 −21.9 2.7 7.4 −21.8 2.6 7.4

3/2/1 γ1 0.9 2.9 2.9 0.4 2.8 2.8 1.0 3.8 3.8 0.7 3.9 3.9
γ2 −88.8 4.0 82.9 −93.6 3.8 91.4 −38.6 11.0 25.9 −46.1 11.0 32.2
β −51.1 1.6 27.7 −50.9 1.6 27.5 −26.5 4.7 11.7 −26.2 4.7 11.5

3/2/2 γ1 1.8 5.2 5.3 −0.8 4.9 4.9 1.8 6.9 6.9 −1.0 6.9 6.9
γ2 −87.6 6.7 83.6 −95.4 5.8 96.9 −37.0 19.3 33.0 −48.9 17.6 41.5
β −49.5 2.2 26.7 −48.9 2.1 26.0 −24.4 6.1 12.1 −23.7 5.7 11.3

a Bernoulli random variable with success probability

φ(γ, x) = 1/(1 + exp(−γ1 − γ2x1 − γ3x2)).

The survival times for the uncured observations are generated according to a
Weibull proportional hazards model

Su(t|x) = exp (−μtρ exp(β1x1 + β2x2)) ,

and are truncated at τ0 for ρ = 1.75 and μ = 1.5. The censoring times are
independent from (X,T ). They are generated from the exponential distribution
with parameter λC and are truncated at τ . Instead of X1 we observe W =
X1 +U , where U ∼ N(0, v2). We consider v ∈ {0.2, 0.4} corresponding to small
and large error settings respectively.

Model 3. For the incidence we consider two independent covariates: X1 has
a uniform distribution on the interval [−1, 1] and X2 is a Bernoulli random
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variable with success probability 0.5. The latency also depends on two covariates:
Z1 = X1 and Z2 is independent of the previous ones and normally distributed
with mean zero and standard deviation 0.3. We generate the cure status B as a
Bernoulli random variable with success probability

φ(γ, x) = 1/(1 + exp(−γ1 − γ2x1 − γ3x2)).

The survival times for the uncured observations are generated according to a
Weibull proportional hazards model

Su(t|z) = exp (−μtρ exp(β1z1 + β2z2)) ,

and are truncated at τ0 for ρ = 1.75 and μ = 1.5. The censoring times are
independent from (T,X,Z). They are generated from the exponential distribu-
tion with parameter λC and are truncated at τ . The mismeasured covariate is
Z2, i.e. we only observe W = Z2 + U , where U ∼ N(0, v2) and v ∈ {0.1, 0.2}
corresponding to small and large error settings respectively.

Model 4. The incidence depends on one covariate X which is a standard
normal random variable. The latency depends on two covariates: Z1 = X and
Z2 is independent of X and uniformly distributed on [−1, 1]. We generate the
cure status B as a Bernoulli random variable with success probability φ(γ, x) =
1/(1 + exp(−γ1 − γ2x)). The survival times for the uncured observations are
generated according to a Weibull proportional hazards model

Su(t|z) = exp (−μtρ exp(β1z1 + β2z2)) , (9)

and are truncated at τ0 for ρ = 1.75 and μ = 1.5. The censoring times are
independent of the vector (X,Z, T ). They are generated from the exponential
distribution with parameter λC and are truncated at τ . Instead of X and Z2 we
observe W1 = X + U1 and W2 = Z2 + U2, where the error terms U1 ∼ N(0, v21)
and U2 ∼ N(0, v22) are independent. We consider (v1, v2) = (0.35, 0.2) and
(v1, v2) = (0.7, 0.4) corresponding to small and large error settings respectively.

Model 5. The incidence depends on one covariate X which is a standard
normal random variable. The latency depends on two correlated covariates:
Z1 = X and Z2 = −X + N , where N is a normal random variable with mean
zero and standard deviation 0.5 independent of X. We generate the cure status
B as a Bernoulli random variable with success probability

φ(γ, x) = 1/(1 + exp(−γ1 − γ2x)).

The survival times for the uncured observations are generated according to the
Weibull proportional hazards model in (9) and are truncated at τ0 for ρ = 1.75
and μ = 1.5. The censoring times are independent of the vector (X,Z, T ).
They are generated from the exponential distribution with parameter λC and
are truncated at τ . The covariate Z2 is measured with error, i.e. instead of Z2

we observe W = Z2 + U , where U ∼ N(0, v2) is independent of the previous
variables. We consider v = 0.39 and v = 0.78 corresponding to small and large
error settings respectively.
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Table 3

Parameter values and model characteristics for each scenario in Models 2-5.

Model Scenario γ∗ β∗ λC (τ0, τ) Cure Cens. Plateau
rate rate

1 (1.3, 1, 0.4) (0.8, 0.3) 0.33 (4, 6) 20% 35% 9%
2 2 (1.1, 1.3,−0.3) (2,−0.8) 0.08 (10, 12) 30% 35% 19%

3 (−0.5, 1.5, 1) (0.8, 0.3) 0.4 (4, 6) 50% 60% 22%

1 (1.3, 1, 0.4) (1.5, 0.5) 0.3 (6, 8) 20% 35% 7%
3 2 (1.1, 1.3,−0.3) (1,−1) 0.1 (6, 8) 30% 35% 22%

3 (−0.5, 1.5, 1) (0.5, 1.5) 0.3 (6, 8) 50% 60% 24%

1 (1.4, 0.5) (0.5, 0.1) 0.3 (5, 7) 20% 35% 9%
4 2 (1.4, 2) (0.1, 0.5) 0.12 (5, 7) 30% 35% 22%

3 (0.− 2) (−1.5, 0.5) 0.5 (5, 7) 50% 60% 14%

1 (1.4, 0.5) (0.5, 0.1) 0.3 (4, 6) 20% 35% 10%
5 2 (1.4, 2) (0.1,−0.5) 0.13 (4, 6) 30% 35% 21%

3 (0, 2) (1,−1) 0.5 (6, 8) 50% 60% 12%

For the four models, various choices of the parameters γ, β, λC and (τ0, τ)
are considered, in such a way that we obtain three scenarios for the cure rate
(20%, 30% and 50%) and different levels of censoring (see Table 3). The sample
size is fixed at n = 200, while the variance of the measurement error is chosen
as described in each model, corresponding to a ratio between the standard de-
viation of the error and the standard deviation of the covariate equal to 0.35
and 0.7. Results for some of the settings are given in Tables 4 and the rest in
Table 8.

Once more we observe that the maximum likelihood estimator and the esti-
mator based on presmoothing give comparable results for both the naive and the
simex method. As expected, the measurement error mainly affects the estimators
of the coefficients corresponding to the mismeasured covariates. However, the
measurement error induces bias also on variables correlated to the mismeasured
covariate within the same component. For example in Model 5, the measure-
ment error of Z2 leads to biased estimators for β1 and β2, but does not affect
the estimation of γ2 even though Z1 = X. In all settings, the simex method cor-
rects for the bias due to the measurement error. Nevertheless, in terms of mean
squared error, the naive approach is still preferred when the measurement error
is small and the absolute value of the coefficient corresponding to the standard-
ized covariate is small (the covariate has a weak effect on cure or survival). On
the contrary, a strong effect (large coefficient) and a large measurement error
favour the use of the simex method.

5.4. Robustness of the method

Here we investigate the robustness of the simex approach with respect to the
choice of the extrapolation function, misspecification of the error distribution
and of the error standard deviation. We focus on Model 2, where the mismea-
sured covariate is X1 = Z1 affecting both the cure probability and the survival.
The sample size is n = 200 and the error standard deviation is v = 0.2 or
v = 0.4.
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Table 4

Bias, variance and MSE of γ̂ and β̂ for the naive and simex method based on the maximum
likelihood (1) or the presmoothing (2) approach in Models 2-5 (n = 200). The first column
gives the model, scenario and the standard deviation of the measurement error. All numbers

were multiplied by 100.

naive - 1 naive - 2 simex - 1 simex - 2
Mod./Scen./v Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE Bias Var. MSE

2/1/0.2 γ1 4.8 12.0 12.2 2.7 11.6 11.6 5.9 12.6 13.0 4.5 13.0 13.2
γ2 −6.3 18.3 18.7 −11.3 16.2 17.5 4.7 24.6 24.8 −1.0 23.9 23.9
γ3 −1.1 25.0 25.0 −1.7 25.3 25.3 −0.7 25.4 25.4 −2.2 29.4 29.5
β1 −8.3 2.9 3.6 −8.1 2.9 3.6 1.0 4.0 4.0 1.2 4.0 4.0
β2 −0.2 4.2 4.2 −0.2 4.1 4.1 0.4 4.3 4.3 0.5 4.3 4.3

2/1/0.4 γ1 2.3 11.8 11.8 0.1 11.7 11.7 4.4 13.1 13.3 2.6 14.8 14.9
γ2 −30.3 13.4 22.5 −34.4 12.1 24.0 −6.0 27.0 27.3 −11.4 28.5 29.8
γ3 −1.3 25.0 25.0 −2.2 24.7 24.8 −0.6 26.3 26.3 −1.7 30.1 30.1
β1 −27.2 2.1 9.5 −27.1 2.0 9.4 −7.9 4.3 5.0 −7.7 4.3 4.9
β2 −1.3 4.2 4.2 −1.3 4.2 4.2 0.0 4.6 4.6 0.0 4.6 4.6

2/2/0.2 γ1 2.5 6.8 6.9 1.9 6.8 6.8 4.0 7.1 7.2 3.7 7.5 7.7
γ2 −11.7 10.2 11.6 −13.9 9.8 11.8 2.0 13.4 13.4 −0.3 13.9 14.0
γ3 −2.8 12.7 12.8 −2.9 12.7 12.8 −3.0 13.0 13.1 −3.3 13.9 14.0
β1 −33.3 4.1 15.2 −33.3 4.1 15.2 −1.4 7.9 7.9 −1.4 7.9 7.9
β2 6.1 4.3 4.7 6.1 4.3 4.7 0.0 5.3 5.3 0.0 5.3 5.3

2/2/0.4 γ1 −0.7 6.5 6.5 −1.4 6.6 6.6 2.2 7.2 7.2 1.7 8.0 8.0
γ2 −41.8 7.4 24.9 −42.9 7.3 25.7 −10.7 15.0 16.2 −11.5 16.4 17.7
γ3 −1.7 12.4 12.4 −2.1 12.4 12.4 −2.3 13.2 13.3 −3.0 14.5 14.6
β1 −89.9 2.5 83.3 −89.9 2.5 83.3 −41.1 7.3 24.2 −41.1 7.3 24.2
β2 16.8 4.5 7.4 16.9 4.5 7.4 8.1 6.5 7.1 8.1 6.5 7.1

3/3/0.1 γ1 −1.8 7.4 7.5 −1.5 7.5 7.6 −1.8 7.4 7.5 −1.5 7.5 7.6
γ2 5.0 13.4 13.6 −2.8 13.6 13.7 4.9 13.4 13.6 −2.8 13.6 13.7
γ3 3.9 15.2 15.4 2.0 15.9 16.0 3.9 15.2 15.4 2.0 15.9 16.0
β1 −0.3 6.4 6.4 0.4 6.3 6.3 0.3 6.5 6.5 1.0 6.4 6.4
β2 −18.7 17.1 20.5 −19.1 17.0 20.7 −3.2 22.7 22.8 −3.6 22.7 22.8

3/3/0.2 γ1 −1.8 7.4 7.5 −1.5 7.5 7.6 −1.8 7.5 7.5 −1.5 7.5 7.6
γ2 5.0 13.5 13.7 −2.8 13.6 13.7 5.0 13.5 13.7 −2.8 13.6 13.7
γ3 3.9 15.2 15.3 2.0 15.9 15.9 4.0 15.2 15.3 2.0 15.9 15.9
β1 −1.6 6.4 6.4 −0.9 6.3 6.3 −0.4 6.8 6.8 0.3 6.7 6.7
β2 −51.6 13.1 39.7 −52.0 13.0 40.0 −17.8 26.9 30.0 −18.2 26.9 30.2

4/3 γ1 0.7 6.1 6.1 −1.2 5.9 5.9 0.3 7.1 7.1 −1.4 7.4 7.4
v1 = 0.35 γ2 29.4 9.9 18.6 37.7 10.5 24.8 −3.7 18.3 18.4 8.2 20.8 21.5
v2 = 0.2 β1 33.6 3.9 15.2 33.3 4.0 15.0 3.7 8.2 8.3 3.2 8.2 8.3

β2 −9.0 4.8 5.6 −9.3 4.7 5.6 −0.8 7.6 7.6 −1.0 7.5 7.5
4/3 γ1 1.2 5.2 5.2 −0.9 4.9 5.0 0.9 6.9 6.9 −1.0 6.9 7.0

v1 = 0.7 γ2 89.1 4.9 84.3 93.9 5.0 93.1 38.8 13.8 28.9 46.6 14.7 36.4
v2 = 0.4 β1 82.2 2.6 70.2 82.0 2.5 69.8 46.2 7.8 29.2 45.9 7.6 28.7

β2 −23.1 3.7 9.0 −23.3 3.6 9.0 −11.2 8.7 10.0 −11.5 8.5 9.9
5/1/0.39 γ1 3.2 4.9 5.0 1.2 4.7 4.7 3.2 5.0 5.1 1.2 4.7 4.7

γ2 2.9 5.5 5.6 −0.5 5.3 5.3 2.9 5.6 5.6 −0.5 5.3 5.3
β1 −3.7 3.3 3.4 −3.5 3.2 3.4 −1.5 5.7 5.7 −1.3 5.6 5.6
β2 −4.3 2.4 2.5 −4.3 2.3 2.5 −2.0 4.7 4.8 −2.1 4.7 4.8

5/1/0.78 γ1 3.1 4.9 5.0 1.2 4.7 4.7 3.2 5.0 5.1 1.2 4.7 4.7
γ2 2.9 5.5 5.6 −0.5 5.3 5.3 2.9 5.6 5.6 −0.5 5.3 5.3
β1 −6.7 2.1 2.5 −6.5 2.0 2.5 −5.0 4.1 4.3 −4.8 4.0 4.3
β2 −7.2 1.1 1.6 −7.3 1.1 1.6 −5.4 3.1 3.4 −5.5 3.1 3.4

5/2/0.39 γ1 6.1 7.9 8.3 2.2 7.1 7.2 6.1 7.9 8.3 2.2 7.1 7.2
γ2 8.6 14.5 15.2 −1.8 12.5 12.6 8.6 14.5 15.2 −1.8 12.5 12.6
β1 18.4 3.2 6.6 18.5 3.2 6.6 6.6 5.2 5.7 6.7 5.2 5.7
β2 18.6 2.2 5.6 18.6 2.2 5.6 6.1 4.5 4.9 6.2 4.5 4.9

5/2/0.78 γ1 6.2 8.0 8.3 2.2 7.1 7.2 6.1 8.0 8.4 2.2 71. 7.2
γ2 8.7 14.5 15.3 −1.8 12.5 12.6 8.6 14.6 15.3 −1.8 12.5 12.6
β1 34.3 2.3 14.0 34.4 2.3 14.1 25.3 3.9 10.3 25.4 3.8 10.3
β2 35.5 1.0 13.6 35.5 1.0 13.6 26.0 2.8 9.6 26.0 2.8 9.6

In addition to the quadratic extrapolant used in Table 4, we consider also a
linear and a cubic extrapolant. Results in Table 9 show that, as the order of the
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extrapolation function increases, the difference between the maximum likelihood
estimators and the estimators based on presmoothing becomes more significant.
In particular, it favours the first method over the latter one mainly due to
a smaller variance. As expected, the choice of the extrapolation function has
stronger effect on the coefficients corresponding to the mismeasured covariates
and when the error is large. For v = 0.4, the bias decreases as the extrapolation
order increases while there is no clear conclusion when v is small. In terms of
mean squared error, linear extrapolation is preferred when the measurement
error variance is low or more in general in situations where the naive method
would do better than the simex approach. In cases where simex outperforms the
naive estimators, the quadratic extrapolant seems to be the best choice.

To understand what happens if the error distribution is misspecified we gener-
ate the measurement error from three other distributions: a uniform distribution
U ∼ Unif(−a, a), a Student-t distribution with k degrees of freedom a−1U ∼ tk
and a chi-squared distribution with k degrees of freedom a−1U + k ∼ χ2

k. The
constant a is chosen in such a way that the standard deviation of U is v = 0.2
or v = 0.4. In all three cases we still use the Gaussian distribution in the simex
procedure. Results are given in Table 10. We observe that, when the true distri-
bution is uniform or Student-t, the method still behaves quite well and there is
little impact on the estimators. However, when the true distribution is not sym-
metric (χ2) there is a significant increase in mean squared error, in particular
for large v.

Finally we investigate the effect of error variance misspecification. We sim-
ulate the error from a normal distribution with standard deviation v = 0.2
and v = 0.4 but in the estimation process the variance is misspecified vE ∈
{v − 0.1, v + 0.1}. Results reported in Table 11 show that the misspecification
affects estimation of all the parameters but the difference is larger for those that
correspond to the mismeasured covariates. As expected, increasing the specified
variance v2E leads to an increased variance of the simex estimators. For small v,
the lowest bias is obtained when v is correctly specified while for large v, the bias
decreases as the specified variance increases. In terms of mean squared error, in
situations where simex performs worse than the naive approach underspecifying
the variance works better. On the other hand, when simex outperforms the naive
estimators, overspecifying the error variance is preferred over underspecification.

6. Application: prostate cancer study

In this section we illustrate the practical use of the proposed simex procedure
for a medical dataset concerning patients with prostate cancer. According to the
American Cancer Society, prostate cancer is the second most common cancer
among American men (after skin cancer) and it is estimated that about 1 man in
9 is diagnosed with prostate cancer during his lifetime. Even though most men
diagnosed with prostate cancer do not die from it, it can sometimes be a serious
disease. The 5-year survival rate based on the stage of the cancer at diagnoses is
almost 100% for localized or regional stage and drops to 31% for distant stage.
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Among other factors, the prostate-specific antigen (PSA) blood level is a good
indicator of the presence of the cancer and is used as a tool to both diagnose
and monitor the development of the disease. In most cases, elevated PSA levels
indicate a poor prostate cancer prognosis. Even though most studies do not
take it in consideration, the PSA measurements are not error-free because of
the inaccuracy of the measuring technique and own fluctuations of the PSA
levels. Here we try to analyse the effect of PSA on cure probability and survival
while accounting for measurement error. Our purpose is to check how sensitive
the results are to the measurement error.

We obtain the data from the Surveillance, Epidemiology and End Results
(SEER) database, which is a collection of cancer incidence data from population-
based cancer registries in the US. We select the database ‘Incidence - SEER 18
Regs Research Data’ and extract the prostate cancer data for the county of
San Bernardino in California during the period 2004−2014. We restrict to only
white patients, aged 35−65 years old, with stage at diagnosis: localized, regional
or distant and follow-up time greater than zero. Since a PSA level smaller than
4 ng/ml of blood is considered as normal and a PSA value between 4 and 10
ng/ml is considered as a borderline range, we focus only on patients with PSA
level greater than 10 ng/ml. The event time is death because of prostate cancer.
This cohort consists of 726 observations out of which 654 do not experience
cancer related death (i.e. around 90% are censored). The follow-up time ranges
from 2 to 155 months. For most of the patients the cancer has been diagnosed at
early stage (localized), while for 228 of them the stage at diagnosis is ‘regional’
and only for 51 it is ‘distant’. The PSA level varies from 10.1 to 94 ng/ml,
with median value 15.4 ng/ml, mean value 21.9 ng/ml and standard deviation
16 ng/ml. We use a logistic/Cox mixture cure model to analyse this dataset
and the covariates of interest are the PSA level (continuous variable centered
to the mean and measured with error) and stage at diagnosis. The latter one
is classified using two dummy Bernoulli variables S1 and S2, indicating distant
and regional stage respectively.

The use of the cure models is justified from the presence of a long plateau
containing around 18% of the observations visible in the Kaplan-Meier curve
([17]) in Figure 1. Moreover, the Kaplan-Meier curves depending on stage at
diagnosis in Figure 1 confirm that being in the distant stage significantly af-
fects the probability of being cured. To see how sensitive the results are to the
measurement error, we first estimate the model ignoring the measurement error
(‘naive’) and then we apply the simex procedure with quadratic extrapolation
function for two levels of measurement error, namely with standard deviation
v = 4.8 and v = 8, corresponding to a ratio between the standard deviation of
the error and the standard deviation of the covariate equal to 0.3 and 0.5 (we
considered slightly smaller error than in the simulation setting in order to be
closer to real life scenarios). In all three cases we use both the maximum like-
lihood estimation method and the presmoothing based method. The standard
deviations of the estimates are computed through 1000 bootstrap samples. We
consider such a large number of bootstrap samples because we noted that the
estimated standard deviation for γ3 (distant stage) is not very stable due to the
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Fig 1. Left panel: Kaplan Meier survival curve for the prostate cancer data. Right panel:
Kaplan Meier survival curves based on cancer stage at diagnosis, localized (solid), regional
(dotted) and distant (dashed).

Table 5

Coefficient estimates, estimated standard deviations and p-values for the prostate cancer
data using the naive and the simex method based on the maximum likelihood (1) and the

presmoothing (2) approach.

incidence latency

Intercept PSA S1 S2 PSA S1 S2

n
a
iv
e-
1 estimates −2.2307 0.0302 3.2982 0.1021 0.0081 1.2775 0.6120

est. SD 0.2043 0.0097 1.1943 0.3802 0.0078 0.5060 0.3485
p-value 0.0000 0.0019 0.0058 0.7883 0.2999 0.0116 0.0790

n
a
iv
e-
2 estimates −2.3050 0.0293 3.2373 0.1909 0.0081 1.2600 0.5667

est. SD 0.2221 0.0084 0.4950 0.3780 0.0072 0.4937 0.3219
p-value 0.0000 0.0005 0.0000 0.6135 0.2619 0.0107 0.0852

v
=

4
.8

si
m
ex

-1 estimates −2.2311 0.0306 3.2927 0.0990 0.0081 1.2757 0.6151
est. SD 0.2048 0.0099 1.1939 0.3809 0.0079 0.5065 0.3492
p-value 0.0000 0.0019 0.0058 0.7949 0.3066 0.0118 0.0782

si
m
ex

-2 estimates −2.2757 0.0281 3.2500 0.1779 0.0085 1.2658 0.5766
est. SD 0.2937 0.0106 0.6480 0.5603 0.0073 0.4971 0.3405
p-value 0.0000 0.0083 0.0000 0.6992 0.2442 0.0109 0.0903

v
=

8

si
m
ex

-1 estimates −2.2337 0.0317 3.2857 0.0995 0.0081 1.2836 0.6150
est. SD 0.2046 0.0099 1.1957 0.3814 0.0080 0.5064 0.3494
p-value 0.0000 0.0014 0.0060 0.7942 0.3092 00112 0.0784

si
m
ex

-2 estimates −2.2752 0.0285 3.2412 0.2110 0.0086 1.2746 0.5655
est. SD 0.2992 0.0110 0.6687 0.4712 0.0074 0.4996 0.3434
p-value 0.0000 0.0096 0.0000 0.6543 0.2444 0.0107 0.0997

Table 6

Estimated cure probability for given PSA level and stage. The naive and simex estimators
are computed using the maximum likelihood (1) or the presmoothing (2) approach.

‘Localized’ ‘Distant’

PSA (ng/ml) 10 22 34 10 22 34

naive - 1 93.0% 90.3% 86.7% 33.1% 25.6% 19.3%
simex - 1 (v = 4.8) 93.1% 90.3% 86.6% 33.3% 25.7% 19.3%
simex - 1 (v = 8) 93.2% 90.3% 86.4% 33.8% 25.9% 19.3%
naive - 2 93.4% 90.9% 87.6% 35.9% 28.2% 21.7%
simex - 2 (v = 4.8) 93.2% 90.7% 87.4% 34.6% 27.4% 21.2%
simex - 2 (v = 8) 93.2% 90.7% 87.3% 34.9% 27.6% 21.3%

small sample size of that category. The results are reported in Table 5.

First of all we observe that, independently of the estimation method that we
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use, the PSA level and being in the distant stage are significant for the cure
probability, while only the latter one is significant for survival of uncured pa-
tients (at level 5%). The positive sign of the coefficients confirms that high PSA
level and distant stage are related to low cure probability and poor survival.
Note that the estimated coefficient for the PSA value seems very small but it
corresponds to a coefficient around 0.5 for the standardized variable. Given that
the sample size is also large, we expect that, if the measurement error is rela-
tively large, the use of the simex procedure would give more accurate results.
Moreover, since there is some correlation between the PSA level and the stage of
cancer, the measurement error might induce bias also in the other coefficients.
For the maximum likelihood estimator, the estimated effect of the PSA level
on the cure probability is slightly stronger when taking into account the mea-
surement error, while the effect of the distant stage is slightly weakened. The
opposite happens with the estimation based on presmoothing. To understand
what these differences in the estimates mean in practical terms we compute the
cure probability for patients with distant or localized stage and three different
PSA levels: 10 ng/ml, 22 ng/ml (mean value) and 34 ng/ml (see Table 6).

Contrary to our expectation, we see that, in this example, there is not much
difference between the naive and the simex approach. We observed in the simu-
lation study that, when the bias induced by the measurement error is large, it
is significantly reduced by the simex procedure and otherwise simex has little
effect (see for example estimation of γ2 in Model 1 and Model 2, Scenario 1 with
v = 0.2 or estimation of β2 in Model 5, Scenario 2 with v2 = 0.2). Hence, we
can conclude that in this example, the bias induced by the mismeasured PSA
value is small. This is probably due to the fact that the effect of the PSA value
on survival is weak (the absolute value of its coefficient is small compared to the
intercept and the coefficient of S1). The very high cure and censoring rate might
also play a role. On the other hand, correlation between PSA and the stage of
cancer would lead to induced bias even for the coefficients corresponding to S1

and S2. From the simulation study (see Model 5) we expect this bias to be of the
same order as for the mismeasured covariate. Thus, since here the bias for the
coefficient of the PSA value is small, even for the coefficients of S1 and S2 we do
not observe much difference between the naive and simex method. Finally, we
find that the estimated cure probabilities are larger when using the estimators
based on presmoothing. Based again on the simulation study (cases with small
bias), it is more likely that presmoothing behaves better than the maximum
likelihood approach.

7. Discussion

In this paper we proposed a simulation-extrapolation procedure to correct for
the bias induced by the measurement error in a mixture cure model. We focused
on the logistic/Cox model and two existing estimation methods that can be
incorporated in the simex algorithm. However, the proposed procedure and the
asymptotic theory hold more in general for mixture cure models. Compared to
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promotion time models, mixture cure models allow us to separate the effect
of the covariates on the cure probability and on survival. Simulations show
that if the mismeasured covariate affects only one of these two components, the
estimation of the other component remains undisturbed even if the variables are
correlated. However, the use of the simex algorithm to correct for the bias, not
always leads to better results in terms of mean squared error. The decision on
whether to choose simex over the naive approach (ignoring the bias) depends
on a number of factors. In particular, a large sample size, a strong effect of the
covariate, a relatively large measurement error and low censoring favour the use
of the simex approach. In practice, the effect of the covariates is not known
in advance but, based on medical evidence for example, one has some prior
knowledge about whether a covariate has a strong prognostic value (or at least
not very weak compared to the other variables). In general, we would suggest
that both methods (naive and simex) should be applied to check the sensitivity
of the estimators. Results can then be compared with the simulation settings
presented in this paper for getting a better understanding of the scenario in
consideration.

A natural extension of this work would be to study the effect of the mea-
surement error and simex method on the cumulative hazard, which would be of
interest in estimating personalized survival curves. Here we only show consis-
tency and asymptotic normality but did not investigate this further since the
use of the simex procedure over many points of the support would be computa-
tionally intensive. In the context of nonparametric estimation, one could try to
relax the parametric model of the incidence and consider for example a single-
index model instead. Furthermore, it would also be of interest to combine the
simex procedure with variable selection procedures for situations in which the
number of predictor variables is very large.

Appendix A: Proofs

Proof of Theorem 1. For a fixed λ and b, from condition (A1) we have

‖γ̂λ,b − γλ‖ → 0, ‖β̂λ,b − βλ‖ → 0 and sup
t∈[0,τ ]

|Λ̂λ,b(t)− Λλ(t)| → 0

with probability one. By definition of γ̂λ, β̂λ and Λ̂λ as averages over the corre-
spondent values for b = 1, . . . , B ((7)) and Slutsky’s theorem, it follows that for
each λ ∈ {λ1, . . . , λK}

‖γ̂λ − γλ‖ → 0, ‖β̂λ − βλ‖ → 0 and sup
t∈[0,τ ]

|Λ̂λ(t)− Λλ(t)| → 0

almost surely. Next we first focus on consistency of γ̂simex. Since we are assum-
ing that gγ(a

∗
γ , λ) = (gγ,1(a

∗
γ1
, λ), . . . , gγ,p(a

∗
γp
, λ))T is the true extrapolation

function, we have γλ = gγ(a
∗
γ , λ) and γ∗ = gγ(a

∗
γ ,−1). On the other hand,

γ̂simex = gγ(âγ ,−1), where âγ is the least squares estimator of a∗γ , i.e. it solves

Ψn(aγ) = ġγ(aγ ,λ)
T {gγ(aγ ,λ)− γ̂λ} = 0
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where γ̂λ = (γ̂T
λ1
, . . . , γ̂T

λK
)T , gγ(aγ ,λ) = (gγ(aγ , λ1)

T , . . . , gγ(aγ , λK)T )T and
ġγ(aγ ,λ) is the pK × pdim(aγ) matrix of partial derivatives of the elements of
gγ(aγ ,λ) with respect to the elements of aγ . Moreover, the true parameters a∗γ
are the solution of

Ψ(aγ) = ġγ(aγ ,λ)
T {gγ(aγ ,λ)− γλ} = 0

and
sup
aγ

‖Ψn(a)−Ψ(a)‖ ≤ sup
aγ

‖ġγ(aγ ,λ)‖‖γ̂λ − γλ‖ → 0 a.s.

Hence, if a∗γ is the unique solution of Ψ(aγ) = 0, it follows that âγ → a∗γ with
probability one. From the continuous mapping theorem it follows that

‖γ̂simex − γ∗‖ → 0 a.s.

Consistency of β̂simex can be proven in the same way. For the function Λ̂simex we
suppose that for every t ∈ [0, τ ], Λλ(t) can be specified by a function gΛ,t(at, λ)
depending on a parametric vector at and Λ∗(t) = gΛ,t(at,−1). Hence, arguing
as above, for any fixed t ∈ [0, τ0] we can show that

|Λ̂simex(t)− Λ∗(t)| → 0 a.s.

Uniform consistency on the compact [0, τ ] follows from the fact that Λ∗ is con-
tinuous and ΛSIMEX is non-decreasing. �

Proof of Theorem 2. For fixed λ and b, from condition (C2) we have

hT
2 (γ̂λ,b − γλ) + hT

3 (β̂λ,b − βλ) +

∫ τ

0

h1(s)d(Λ̂λ,b − Λλ)(s)

=
1

n

n∑
i=1

Ψ(Yi,Δi,Wi,λ,b, h1, h2, h3) + oP (n
−1/2)

uniformly over (h1, h2, h3) ∈ Hm. As a result,

hT
2 (γ̂λ − γλ) + hT

3 (β̂λ − βλ) +

∫ τ

0

h1(s)d(Λ̂λ − Λλ)(s)

= hT
2

(
1

B

B∑
b=1

γ̂λ,b − γλ

)
+ hT

3

(
1

B

B∑
b=1

β̂λ,b − βλ

)

+

∫ τ

0

h1(s)d

(
1

B

B∑
b=1

Λ̂λ,b − Λλ

)
(s)

=
1

n

n∑
i=1

{
1

B

B∑
b=1

Ψ(Yi,Δi,Wi,λ,b, h1, h2, h3)

}
+ oP (n

−1/2).

Since sum of Donsker classes is Donsker (see Lemma 2.10.6 in [36]), it follows
that the process

n1/2

{
hT
2 (γ̂λ − γλ) + hT

3 (β̂λ − βλ) +

∫ τ

0

h1(s)d(Λ̂λ − Λλ)(s)

}
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converges weakly to a zero-mean Gaussian process Gλ indexed by h = (h1, h2,
h3) ∈ Hm and covariance function

Cov (Gλ(h1, h2, h3), Gλ(h
∗
1, h

∗
2, h

∗
3))

= E

[{
1

B

B∑
b=1

Ψ(Y,Δ,Wλ,b, h1, h2, h3)

}{
1

B

B∑
b=1

Ψ(Y,Δ,Wλ,b, h
∗
1, h

∗
2, h

∗
3)

}]
.

Moreover, the K dimensional vector

n1/2

⎧⎪⎨
⎪⎩

hT
2 (γ̂λ1 − γλ1) + hT

3 (β̂λ1 − βλ1) +
∫ τ

0
h1(s)d(Λ̂λ1 − Λλ1)(s)

...

hT
2 (γ̂λK

− γλK
) + hT

3 (β̂λK
− βλK

) +
∫ τ

0
h1(s)d(Λ̂λK

− ΛλK
)(s)

⎫⎪⎬
⎪⎭

converges to a K dimensional Gaussian process Gλ with mean zero and covari-
ance function between the ith and the jth component

E

[{
1

B

B∑
b=1

Ψ(Y,Δ,Wλi,b, h1, h2, h3)

}{
1

B

B∑
b=1

Ψ(Y,Δ,Wλj ,b, h
∗
1, h

∗
2, h

∗
3)

}]
.

In particular, if we take h1 ≡ 0, h3 = 0 and h2 = (0, . . . , 0, 1, 0, . . . , 0) with h2

containing 1 at the jth position (j = 1, . . . , p) and 0 elsewhere, we obtain the
weak convergence of n1/2(γ̂λ − γλ) to a multivariate normal random variable
with mean zero and covariance matrix Σγ,λ. With the same reasoning we also

obtain n1/2(β̂λ − βλ)
d−→ N(0,Σβ,λ). For Λ̂λ we consider the class{

(h1, h2, h3) ∈ Hm : h2 = h3 = 0 and h1(s) = 1{s≤t}, t ∈ [0, τ ]
}

and obtain the weak convergence of n1/2{Λ̂λ(t)−Λλ(t)} to a Gaussian process
Gλ indexed by t ∈ [0, τ ].

Next we prove the asymptotic normality of γ̂simex. Since we are assuming that
gγ(a

∗
γ , λ) = (gγ,1(a

∗
γ1
, λ), . . . , gγ,p(a

∗
γp
, λ))T is the true extrapolation function,

we have γλ = gγ(a
∗
γ , λ) and γ∗ = gγ(a

∗
γ ,−1). On the other hand, γ̂simex =

gγ(âγ ,−1), where âγ is the least squares estimator of a∗γ , i.e. it solves

Ψn(aγ) = ġγ(aγ ,λ)
T {gγ(aγ ,λ)− γ̂λ} = 0 (10)

where γ̂λ = (γ̂T
λ1
, . . . , γ̂T

λK
)T , gγ(aγ ,λ) = (gγ(aγ , λ1)

T , . . . , gγ(aγ , λK)T )T and
ġγ(aγ ,λ) is the pK × pdim(aγ) matrix of partial derivatives of the elements of
gγ(aγ ,λ) with respect to the elements of aγ . Since âγ solves equation (10) and
âγ → a∗γ with probability one (see proof of Theorem 1), if ġγ(aγ ,λ) is bounded

and continuous w.r.t. aγ and ġγ(aγ ,λ)
T ġγ(aγ ,λ) is invertible, we have

n1/2(âγ − a∗γ) =
{
ġγ(a

∗
γ ,λ)

T ġγ(a
∗
γ ,λ)

}−1
ġγ(a

∗
γ ,λ)

Tn1/2(γ̂λ − γλ) + oP (1).

As a result,

n1/2(âγ − a∗γ)
d−→

{
ġγ(a

∗
γ ,λ)

T ġγ(a
∗
γ ,λ)

}−1
ġγ(a

∗
γ ,λ)

TN(0,Σγ,λ).
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Finally, using the delta method, we obtain

n1/2(γ̂simex − γ∗)
d−→ ġγ(a

∗
γ ,−1)

{
ġγ(a

∗
γ ,λ)

T ġγ(a
∗
γ ,λ)

}−1
ġγ(a

∗
γ ,λ)

TN(0,Σγ,λ),

meaning that n1/2(γ̂simex − γ∗) converges weakly to a multivariate normal ran-
dom variable with mean zero and covariance matrix

Σγ = ġγ(a
∗
γ ,−1)

{
ġγ(a

∗
γ ,λ)

T ġγ(a
∗
γ ,λ)

}−1
ġγ(a

∗
γ ,λ)

T

× Σγ,λ ġγ(a
∗
γ ,λ)

{
ġγ(a

∗
γ ,λ)

T ġγ(a
∗
γ ,λ)

}−1
ġγ(a

∗
γ ,−1)T .

(11)

In the same way it can be shown that n1/2(β̂simex − β∗) converges weakly to a
multivariate normal random variable with mean zero and covariance matrix

Σβ = ġβ(a
∗
β ,−1)

{
ġβ(a

∗
β ,λ)

T ġβ(a
∗
β ,λ)

}−1
ġβ(a

∗
β ,λ)

T

× Σβ,λ ġβ(a
∗
β ,λ)

{
ġβ(a

∗
β ,λ)

T ġβ(a
∗
β ,λ)

}−1
ġβ(a

∗
β ,−1)T .

(12)

Similarly, for the nonparametric component we have

n1/2(ât−a∗t )=
{
ġΛ,t(a

∗
t ,λ)

T ġΛ,t(a
∗
t ,λ)

}−1
ġΛ,t(a

∗
t ,λ)

Tn1/2(Λ̂λ(t)−Λλ(t))+oP (1)

for all t ∈ [0, τ ]. From the weak convergence of the process n1/2(Λ̂λ − Λλ), it
follows that n1/2(ât − a∗t ) converges in distribution to the Gaussian process{

ġΛ,t(a
∗
t ,λ)

T ġΛ,t(a
∗
t ,λ)

}−1
ġΛ,t(a

∗
t ,λ)

TGλ.

Once more, the delta method yields that n1/2(Λ̂simex −Λ0) converges weakly to
the Gaussian process

G = ġΛ,t(a
∗
t ,−1)

{
ġΛ,t(a

∗
t ,λ)

T ġΛ,t(a
∗
t ,λ)

}−1
ġΛ,t(a

∗
t ,λ)

TGλ. (13)

�
In order to establish the asymptotic results of the maximum likelihood es-

timator in the logistic/Cox mixture cure model, the following conditions are
required in [22]:

1) The function Λ∗(t) is strictly increasing and continuously differentiable,
and Λ∗(τ) < ∞, where τ denotes the total follow-up of the study.

2) θ∗ = (γ∗, β∗) lies in the interior of a compact set and the covariate vectors
Z and X are bounded in the sense that P(‖Z‖ < m and ‖X‖ < m) = 1
for some constant m > 0.

3) There exists a positive constant ε such that P(C ≥ T0 ≥ τ | Z,X) > ε
with probability one.

4) P(Y ≥ t | Z,X) is continuous in t.

Because of the model identifiability conditions (I2’) and (I3’) in Section 4.1, in
this case we must have τ = τ0, i.e. the support of T0 coincides with the total
follow-up, and P(T0 = τ | Z,X) > ε.

For the estimator based on presmoothing, in [26] the asymptotic results are
obtained only for the case with one continuous covariate for the incidence com-
ponent. The following assumptions are required:
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(AC2) The parameters β∗ and γ∗ lie in the interior of compact sets B ⊂ R
q,

G ⊂ R
2.

(AC5) The covariates are bounded: P (‖Z‖ < m and |X| < m) = 1 for some
m > 0.

(AC6) The function λ∗(t) is strictly positive and continuous on [0, τ0).
(AC7) With probability one, the conditional distribution function of the cen-

soring times FC(t|x, z) is continuous in t on [0, τ0] and there exists a
constant K > 0 such that

inf
0≤t1<t2≤τ0

inf
x,z

{FC(t2|x, z)− FC(t1|x, z)} > K(t2 − t1).

(C1) The bandwidth b is such that nb4 → 0 and nb3+ξ/(log b−1) → ∞ for some
ξ > 0.

(C2) The support X of X is a compact subset of R. The density fX(·) of X
is bounded away from zero and twice differentiable with bounded second
derivative.

(C3) The kernel k is a twice continuously differentiable, symmetric probability
density function with compact support and

∫
uk(u) du = 0.

(C4) (i) The functions H([0, t]|x), H1([0, t]|x), where

Hk([0, t]|x) = P (Y ≤ t,Δ = k|X = x) , k ∈ {0, 1}

and H([0, t]|x) = H1([0, t]|x) + H0([0, t]|x), are twice differentiable with
respect to x, with uniformly bounded derivatives for all t ≤ τ0, x ∈ X .
Moreover, there exist continuous nondecreasing functions L1, L2, L3 such
that Li(0) = 0, Li(τ0) < ∞ and for all t, s ∈ [0, τ0], x ∈ X ,

|Hc(t|x)−Hc(s|x)| ≤ |L1(t)− L1(s)| ,
|H1c(t|x)−H1c(s|x)| ≤ |L1(t)− L1(s)|∣∣∣∣∂Hc(t|x)
∂x

− ∂Hc(s|x)
∂x

∣∣∣∣ ≤ |L2(t)− L2(s)|∣∣∣∣∂H1c(t|x)
∂x

− ∂H1c(s|x)
∂x

∣∣∣∣ ≤ |L3(t)− L3(s)| ,

where the subscript c denotes the continuous part of a function.
(ii) The jump points for the distribution function FC(t|x) of the censoring
times given the covariate, are finite and the same for all x. The partial
derivative of FC(t|x) with respect to x exists and is uniformly bounded
for all t ≤ τ0, x ∈ X . Moreover, the partial derivative with respect to x of
F (t|x) (distribution function of the survival times T given X = x) exists
and is uniformly bounded for all t ≤ τ0, x ∈ X .

(C5) The survival time T and the censoring time C are independent given X.

The results can be generalized to cases with additional discrete covariates in X
with a finite number of atoms.

In what follows, we assume such conditions to be satisfied in order to use
the results of [22] and [26] for the naive estimator. We show that these naive
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estimators satisfy our conditions (A1)-(A2) and as a result, the simex estimators
have the desired asymptotic properties.

Proof of Theorem 3. Let Υ0 = (γ∗, β∗,Λ∗), θ0 = (γ∗, β∗), θ̂n = (γ̂n, β̂n) and
Hm as in (A2). Define the continuous linear operator σ = (σ1, σ2) from Hm to
Hm of the form

σ1(h)(t) = E

[
1{Y≥t}V (t,Υ0)(h)g(t,Υ0)e

βT
0 Z

]
− E

[∫ τ

t

1{Y≥s}V (t,Υ0)(h)g(s,Υ0){1− g(s,Υ0)}e2β
∗TZdΛ∗(s)

]
(14)

and

σ2(h)(t) = E

[∫ τ

0

1{Y≥t}W (t,Υ0)V (t,Υ0)(h)g(t,Υ0)e
β∗TZdΛ∗(t)

]
(15)

where

g(t,Λ, β, γ) =
φ(γ,X) exp

(
−Λ(t) exp

(
βTZ

))
1− φ(γ,X) + φ(γ,X) exp (−Λ(t) exp (βTZ))

, (16)

V (t,Υ0)(h) = h1(t)− {1− g(t,Υ0)} eβ
∗TZ

∫ t

0

h1(s)dΛ
∗(s) + (hT

2 , h
T
3 )W (t,Υ0)

and

W (t,Υ0) =
(
{1− g(t,Υ0)}XT ,

[
1− {1− g(t,Υ0)} eβ

∗TZΛ∗(t)
]
ZT

)T

.

Note that in our case X = (W
(1)
λ ,W

(2)
λ ) and Z = (W

(1)
λ ,W

(2)
λ ). In the proof of

Theorem 2 in [22] (page 572) it is shown that∫ τ

0

σ1(h)(t) d
√
n(Λn − Λ∗)(t) +

√
n(θ̂n − θ0)

Tσ2(h)

=
√
n {Sn(Υ0)− S(Υ0)} (h) + oP (1),

(17)

where
√
n {Sn(Υ0)− S(Υ0)} (h1, h2, h3) =

∫
fh(y, δ, x, z) d

√
n(Pn − P)(y, δ, x, z)

and {fh(y, δ, x, z), h ∈ Hm} is a uniformly bounded Donsker class such that

E [fh(Y,Δ, X, Z)] = S(Υ0) = 0.

In [22] it is also shown that σ is invertible with inverse σ−1 = (σ−1
1 , σ−1

2 ). Hence,
for all h ∈ Hm, if in (17) we replace h by σ−1(h), we obtain∫ τ

0

h1(t)d(Λn(t)− Λ∗(t)) + hT
2 (γ̂n − γ∗) + hT

3 (β̂n − β∗)

=

∫
fσ−1(h)(y, δ, x, z) d(Pn − P)(y, δ, x, z) + oP (n

−1/2)
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and (A2) holds with

Ψλ(y, δ, w, h1, h2, h3) = fσ−1(h)

(
y, δ, (w(1), w(2)), (w(2), w(3))

)
(18)

�
Proof of Theorem 4. In [26] it is shown that

γ̂n − γ∗ = −(ΓT
1 Γ1)

−1ΓT
1

∫
ψ(y, δ, x) (.Pn − P)(y, δ, x, z) + oP (n

−1/2) (19)

(see their equation (A.33)), where

Γ1 = −E

[{
1

φ(γ∗, X)
+

1

1− φ(γ∗, X)

}
∇γφ(γ

∗, X)∇γφ(γ
∗, X)T

]
,

ψ(y, δ, x) = −
{

Δ1{y≤τ0}
1−H(y|x) −

∫ y∧τ0

0

H1(ds|x)
(1−H(s|x))2

}
1

φ(γ∗, x)
∇γφ(γ

∗, x)

with Hk(t|x) = P (Y ≤ t,Δ = k|X = x) for k = 0, 1 and H(t|x) = H1(t|x) +
H0(t|x). Moreover we have E [ψ(Y,Δ, X)] = 0.

Let Υ0 = (γ∗, β∗,Λ∗) and H̃m = {h̃ = (h1, h3) ∈ BV [0, τ0] × R
q : ‖h1‖v +

‖h3‖L1 ≤ m}. Define the continuous linear operator σ = (σ1, σ2) from H̃m to
H̃m as in (14), (15) with

V (t,Υ0)(h) = h1(t)− {1− g(t,Υ0)} eβ
∗TZ

∫ t

0

h1(s)dΛ
∗(s) + hT

3 W (t,Υ0)

and
W (t,Υ0) =

[
1− {1− g(t,Υ0)} eβ

∗TZΛ∗(t)
]
Z.

From equations (A37)-(A38) in [26] we have∫ τ

0

σ1(h̃)(t) d
√
n(Λn − Λ∗)(t) +

√
n(β̂n − β∗)Tσ2(h̃)

=
√
n
{
Ŝn(Υ0)− S(Υ0)

}
(h̃) + oP (1),

where

√
n
{
Ŝn(Υ0)− S(Υ0)

}
(h1, h3) =

∫
f̃h̃(y, δ, x, z) d

√
n(Pn − P)(y, δ, x, z)

for some uniformly bounded Donsker class {fh̃(y, δ, x, z), h̃ ∈ H̃m} with

E[f̃h̃(Y,Δ, X, Z)] = 0.

Hence, if we replace h̃ by σ−1(h̃), we obtain∫ τ

0

h1(t)d(Λn(t)− Λ∗(t)) + hT
3 (β̂n − β∗)

=

∫
f̃σ−1(h̃)(y, δ, x, z) d(Pn − P)(y, δ, x, z) + oP (n

−1/2).
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Note that in our case x = (w
(1)
λ , w

(2)
λ ) and z = (w

(1)
λ , w

(2)
λ ). Moreover, if h =

(h1, h2, h3) ∈ Hm, then h̃ = (h1, h3) ∈ H̃m. It follows that (A2) holds with

Ψλ(y, δ, w, h1, h2, h3) = −hT
2 (Γ

T
1 Γ1)

−1ΓT
1 ψ

(
y, δ, (w(1), w(2))

)
+ f̃σ−1((h1,h3))

(
y, δ, (w(1), w(2)), (w(2), w(3))

) (20)

�

Appendix B: Additional simulation results

Table 7

Bias, variance and MSE of γ̂ and β̂ for the naive and simex method using the maximum
likelihood (1) and the presmoothing (2) approach for Model 1 (n = 400). The first column

gives the setting/scenario/cens. level. All numbers were multiplied by 100.

naive - 1 naive - 2 simex - 1 simex - 2
Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE Bias Var. MSE

1/1/1 γ1 0.8 1.9 1.9 0.5 1.8 1.8 0.9 1.9 1.9 0.7 1.9 1.9
γ2 −4.1 1.4 1.5 −3.7 1.3 1.4 −1.8 2.5 2.5 −1.7 2.5 2.5
β −44.3 0.3 19.9 −44.3 0.3 20.0 −20.1 0.9 4.9 −20.2 0.9 4.9

1/1/2 γ1 1.8 2.7 2.7 0.5 2.6 2.6 1.5 2.6 2.6 0.7 3.0 3.0
γ2 −4.1 2.0 2.1 −1.8 2.0 2.0 −1.3 3.6 3.6 1.0 4.3 4.3
β −43.2 0.4 19.1 −43.5 0.4 19.3 −19.2 1.1 4.8 −19.4 1.1 4.9

1/2/1 γ1 −0.3 1.3 1.3 −0.6 1.3 1.3 −0.4 1.3 1.3 −0.5 1.3 1.3
γ2 −3.7 0.8 0.9 −3.8 0.7 0.9 −1.5 1.5 1.5 −1.8 1.4 1.4
β −43.9 0.6 19.9 −43.9 0.4 19.3 −19.8 1.6 5.5 −19.8 1.5 5.5

1/2/2 γ1 −0.2 2.1 2.1 −1.4 2.1 2.1 −0.5 2.1 2.1 −1.4 2.2 2.3
γ2 −3.1 1.3 1.4 −2.3 1.2 1.3 −0.5 2.4 2.4 0.3 2.5 2.5
β −42.5 0.9 19.0 −42.8 0.9 19.3 −18.6 2.4 5.9 −18.9 2.4 5.9

2/1/1 γ1 −2.0 1.8 1.9 −2.3 1.8 1.8 −0.4 1.9 1.9 −0.8 1.9 1.9
γ2 −17.3 1.2 4.2 −17.9 1.2 4.4 −5.7 2.3 2.7 −6.8 2.4 2.9
β −45.0 0.3 20.6 −45.0 0.3 20.6 −20.8 0.9 5.2 −20.8 0.9 5.2

2/1/2 γ1 −1.2 2.3 2.3 −2.3 2.3 2.3 0.3 2.4 2.4 −0.7 2.5 2.5
γ2 −17.2 1.7 4.7 −16.7 1.6 4.4 −5.2 3.3 3.6 −5.3 3.5 3.8
β −44.2 0.4 19.9 −44.3 0.4 20.0 −20.1 1.1 5.1 −20.1 1.1 5.1

2/2/1 γ1 −0.5 1.3 1.3 −0.8 1.3 1.3 −0.5 1.3 1.3 −0.7 1.4 1.4
γ2 −17.3 0.9 3.9 −18.4 0.9 4.2 −5.6 1.8 2.1 −7.5 1.7 2.3
β −44.5 0.6 20.4 −44.4 0.6 20.4 −20.0 1.7 5.7 −19.9 1.7 5.6

2/2/2 γ1 0.0 2.4 2.4 −1.5 2.3 2.4 −0.2 2.4 2.4 −1.5 2.6 2.7
γ2 −17.1 1.5 4.4 −17.6 1.6 4.7 −5.1 3.0 3.3 −5.9 3.5 3.9
β −42.8 1.0 19.3 −42.9 1.0 19.5 −18.4 2.6 6.0 −18.6 2.6 6.1

3/1/1 γ1 −37.0 3.4 17.1 −38.7 3.2 18.2 −16.3 5.9 8.6 −18.8 5.6 9.1
γ2 −87.5 2.6 79.2 −90.4 2.4 84.0 −38.3 7.1 21.8 −43.1 6.4 24.9
β −48.9 0.4 24.3 −48.8 0.4 24.2 −24.1 1.1 6.9 −24.0 1.1 6.9

3/1/2 γ1 −35.3 4.8 17.3 −38.1 4.9 19.4 −14.0 8.7 10.7 −17.6 10.0 13.1
γ2 −87.6 3.7 80.4 −90.5 3.9 85.8 −37.8 10.3 24.6 −43.0 11.8 30.4
β −47.5 0.5 23.0 −47.4 0.5 23.0 −22.6 1.3 6.4 −22.5 1.2 6.3

3/2/1 γ1 −1.1 1.7 1.7 −1.5 1.6 1.6 −1.0 2.2 2.2 −1.7 2.1 2.1
γ2 −90.5 2.0 83.9 −93.7 1.9 89.8 −41.2 5.5 22.4 −46.3 5.3 26.7
β −51.5 0.7 27.2 −51.3 0.7 27.1 −26.6 2.1 9.2 −26.5 2.1 9.1

3/2/2 γ1 0.0 2.7 2.7 −1.7 2.5 2.5 0.1 3.5 3.5 −1.5 3.6 3.6
γ2 −91.0 3.2 85.9 −95.4 3.0 94.1 −41.9 8.9 26.5 −49.1 8.7 32.9
β −49.9 1.2 26.1 −49.5 1.2 25.7 −25.1 3.1 9.4 −24.6 3.0 9.0
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Table 8

Bias, variance and MSE of γ̂ and β̂ for the naive and simex method based on the maximum
likelihood (1) or the presmoothing (2) approach in Models 2-5 (n = 200). The first column
gives the model, scenario and the standard deviation of the measurement error. All numbers

were multiplied by 100.

naive - 1 naive - 2 simex - 1 simex - 2
Mod./Scen./v Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE Bias Var. MSE

2/3/0.2 γ1 0.0 7.3 7.3 0.0 7.3 7.3 −0.9 7.7 7.7 −0.6 8.0 8.0
γ2 −10.3 12.7 13.8 −16.7 12.0 14.8 5.4 16.7 17.0 −1.3 18.0 18.0
γ3 0.5 14.4 14.4 −0.7 14.3 14.3 2.5 15.2 15.3 1.1 16.1 16.1
β1 −8.9 6.3 7.0 −8.4 6.2 6.9 1.5 9.0 9.0 2.0 8.9 9.0
β2 −0.6 7.2 7.2 −0.6 7.2 7.2 0.7 7.6 7.6 0.7 7.5 7.6

2/3/0.4 γ1 1.7 6.8 6.8 1.9 7.0 7.1 −0.1 7.6 7.6 0.9 9.0 9.0
γ2 −45.2 9.2 29.6 −51.5 8.4 35.0 −8.0 19.5 20.1 −16.5 19.8 22.5
γ3 −3.2 13.3 13.4 −4.6 13.5 13.7 0.9 15.1 15.1 −1.3 17.0 17.1
β1 −29.2 4.2 12.8 −28.8 4.2 12.5 −9.5 9.3 10.2 −8.9 9.3 10.0
β2 −3.1 7.2 7.3 −3.1 7.2 7.3 −0.6 8.0 8.0 −0.5 8.0 8.0

3/1/0.1 γ1 5.4 11.2 11.5 4.2 11.3 11.5 5.4 11.2 11.5 4.2 11.3 11.5
γ2 3.0 20.4 20.5 −0.1 20.8 20.8 3.0 10.4 20.5 −0.1 20.8 20.8
γ3 0.5 24.9 24.9 −1.0 26.3 26.3 0.5 24.9 24.9 −1.0 26.3 26.3
β1 0.9 4.3 4.3 1.0 4.3 4.3 1.1 4.3 4.3 1.1 4.3 4.3
β2 −5.8 9.6 9.9 −6.0 9.5 9.9 −0.9 12.1 12.1 1.1 12.1 12.1

3/1/0.2 γ1 5.4 11.2 11.4 4.2 11.3 11.5 5.4 11.2 11.4 4.2 11.3 11.5
γ2 2.8 20.4 20.4 −0.2 20.9 20.9 2.9 20.4 20.5 −0.2 20.9 20.9
γ3 0.4 24.8 24.8 −1.0 26.2 26.2 0.3 24.8 24.8 −1.0 26.2 26.2
β1 0.6 4.3 4.3 0.6 4.2 4.2 0.9 4.4 4.4 0.9 4.3 4.3
β2 −16.6 7.2 9.9 −16.7 7.2 10.0 −5.6 13.4 13.7 −5.8 13.3 13.6

3/2/0.1 γ1 4.4 7.3 7.5 3.6 7.2 7.4 4.3 7.3 7.5 3.6 7.2 7.4
γ2 3.3 12.0 12.1 −0.5 11.8 11.8 3.3 12.0 12.1 −0.5 11.8 11.8
γ3 −2.5 12.5 12.5 −2.4 12.3 12.3 −2.5 12.5 12.5 −2.4 12.3 12.3
β1 0.5 3.7 3.7 0.6 3.7 3.7 1.1 3.7 3.7 1.2 3.7 3.7
β2 8.3 9.0 9.7 8.3 9.0 9.7 −1.8 11.6 11.6 −1.8 11.6 11.6

3/2/0.2 γ1 4.3 7.3 7.5 3.6 7.2 7.4 4.3 7.3 7.5 3.6 7.2 7.4
γ2 3.3 12.0 12.1 −0.5 11.8 11.8 3.3 12.0 12.1 −0.5 11.8 11.8
γ3 −2.5 12.4 12.5 −2.4 12.3 12.3 −2.5 12.5 12.1 −2.4 12.3 12.3
β1 −0.8 3.7 3.7 −0.7 3.7 3.7 0.5 3.9 3.9 0.6 3.9 3.9
β2 30.4 6.8 16.1 30.4 6.8 16.1 7.3 13.1 13.6 7.3 13.0 13.6

4/1 γ1 3.4 5.3 5.4 1.6 5.1 5.2 4.3 5.5 5.7 2.4 5.6 5.6
v1 = 0.35 γ2 −2.2 4.9 4.9 −5.1 4.5 4.8 3.8 6.4 6.5 0.2 6.7 6.7
v2 = 0.2 β1 −6.5 1.0 1.5 −6.3 1.0 1.4 −0.5 1.4 1.4 −0.3 1.4 1.4

β2 0.1 2.6 2.6 0.1 2.6 2.6 1.5 3.4 3.5 1.5 3.4 3.4
4/1 γ1 1.8 5.2 5.3 0.1 5.2 5.2 3.6 5.7 5.8 2.0 6.2 6.2

v1 = 0.7 γ2 −14.3 3.6 5.6 −16.7 3.4 6.2 −1.4 7.0 7.0 −4.8 7.4 7.7
v2 = 0.4 β1 −18.8 0.8 4.3 −18.7 0.8 4.3 −6.8 1.7 2.1 −6.7 1.7 2.1

β2 −2.7 2.0 2.1 −2.7 2.0 2.1 0.0 3.9 3.9 0.0 3.9 3.9
4/2 γ1 −5.1 6.4 6.6 −9.7 5.9 6.9 4.3 8.7 8.9 −1.7 8.2 8.2

v1=0.35 γ2 −27.5 8.8 16.4 −39.6 8.0 23.7 4.5 15.9 16.1 −11.6 15.1 16.5
v2=0.2 β1 −1.4 1.2 1.2 −1.3 1.2 1.2 0.1 1.7 1.7 0.3 1.7 1.7

β2 −3.6 2.6 2.8 −3.6 2.6 2.8 2.0 3.5 3.6 2.0 3.5 3.6
4/2 γ1 −21.6 4.9 9.6 −24.7 4.6 10.7 −7.2 8.1 8.6 −11.9 7.5 8.9

v1=0.7 γ2 −85.1 4.5 76.9 −93.0 4.2 90.7 −33.7 12.6 23.9 −46.0 11.9 33.1
v2=0.4 β1 −4.4 0.8 1.0 −4.2 0.8 1.0 −1.8 1.8 1.8 −1.6 1.7 1.8

β2 15.5 1.9 4.3 −15.5 1.9 4.3 −3.2 3.9 4.0 −3.2 3.9 4.0
5/3/0.39 γ1 1.2 7.0 7.0 −0.8 6.6 6.6 1.0 6.9 6.9 −0.8 6.6 6.6

γ2 11.4 20.3 21.6 3.8 20.9 21.1 11.7 20.5 21.8 3.8 20.9 21.1
β1 34.0 8.8 20.3 34.5 8.8 20.7 14.1 11.9 13.9 14.8 11.9 14.1
β2 38.4 4.7 19.4 38.8 4.7 19.7 13.1 10.7 12.4 13.6 10.7 12.5

5/3/0.78 γ1 1.5 7.2 7.2 −0.8 6.6 6.6 1.3 7.2 7.2 −0.8 6.6 6.6
γ2 11.0 20.5 21.7 3.8 20.9 21.1 11.2 20.7 22.0 3.8 20.9 21.1
β1 60.3 7.7 44.0 60.6 7.7 44.4 45.5 10.1 30.8 46.0 10.1 31.2
β2 72.0 2.1 54.0 72.2 2.1 54.2 53.4 6.6 35.2 53.7 6.6 35.5
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Table 9

Bias, variance and MSE of γ̂ and β̂ for the simex method based on the maximum likelihood
(1) or the presmoothing (2) approach with three different extrapolation functions. All

numbers were multiplied by 100.

v = 0.2 v = 0.4
simex - 1 simex - 2 simex - 1 simex - 2

Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE Bias Var. MSE

linear γ1 5.6 12.3 12.6 3.6 12.0 12.1 3.3 12.2 12.3 1.3 12.3 12.3
γ2 1.9 21.9 22.0 −3.5 19.8 20.0 −18.2 18.7 22.0 −22.9 17.0 22.3
γ3 −0.9 25.4 25.4 −1.6 26.0 26.1 −1.0 25.7 25.7 −2.2 25.5 25.5
β1 −1.7 3.6 3.7 −1.5 3.6 3.6 −17.9 2.9 6.2 −17.8 2.9 6.0
β2 0.3 4.3 4.3 0.3 4.2 4.2 −0.7 4.3 4.4 −0.6 4.3 4.3

cubic γ1 6.5 12.7 13.1 5.3 16.7 16.9 5.6 13.5 13.8 4.1 22.6 22.7
γ2 5.9 28.1 28.4 −0.5 34.2 34.2 0.5 35.4 35.4 −4.4 54.4 54.6
γ3 −1.1 25.3 25.3 −2.2 39.2 39.2 −0.8 26.6 26.6 −2.8 46.0 46.1
β1 2.3 5.0 5.0 2.6 4.9 5.0 −2.4 6.3 6.4 −2.2 6.3 6.4
β2 0.2 4.5 4.5 0.3 4.4 4.4 −0.1 5.0 5.0 0.0 5.0 5.0

Table 10

Bias, variance and MSE of γ̂ and β̂ for the simex method based on the maximum likelihood
(1) or the presmoothing (2) approach when the error distribution is misspecified. All

numbers were multiplied by 100.

v = 0.2 v = 0.4
simex - 1 simex - 2 simex - 1 simex - 2

Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE Bias Var. MSE

t-distr. γ1 6.3 12.4 12.7 3.9 13.6 13.7 5.3 12.7 12.9 2.5 14.3 14.4
γ2 5.9 23.2 23.6 0.5 25.8 25.9 −1.3 27.0 27.1 −5.2 26.5 26.7
γ3 −1.5 25.3 25.4 −0.1 31.2 31.2 −2.1 26.0 26.0 −1.6 33.8 33.8
β1 0.1 4.1 4.1 0.3 4.0 4.0 −8.7 4.8 5.6 −8.5 4.8 5.5
β2 0.5 4.3 4.3 0.3 4.3 4.3 0.2 4.6 4.6 0.1 4.6 4.6

Unif. γ1 6.2 12.4 12.7 4.9 14.0 14.2 5.1 12.6 12.9 4.5 15.0 15.2
γ2 4.9 22.4 22.6 −1.5 24.5 24.5 −5.8 23.3 23.6 −11.2 27.1 28.3
γ3 −1.2 25.1 25.1 −0.2 29.4 29.4 −1.5 25.4 25.4 −0.8 29.0 29.0
β1 0.1 4.0 4.0 0.4 4.0 4.0 −9.5 4.3 5.2 −9.2 4.2 5.0
β2 0.3 4.3 4.3 0.2 4.4 4.4 −0.2 4.7 4.7 −0.3 4.6 4.6

χ2 γ1 6.9 12.7 13.2 3.2 13.1 13.2 8.2 14.6 15.3 4.1 14.8 14.9
γ2 6.8 25.6 26.1 −2.4 25.6 25.7 5.6 38.6 38.9 −13.5 33.8 35.7
γ3 −1.5 25.1 25.1 −0.5 27.7 27.7 −2.0 25.9 25.9 −1.4 33.1 33.1
β1 −0.5 4.5 4.5 −0.1 4.4 4.4 −12.9 6.0 7.7 −11.8 5.9 7.3
β2 0.2 4.3 4.3 0.1 4.4 4.4 −0.5 4.8 4.8 −0.5 4.8 4.8

Table 11

Bias, variance and MSE of γ̂ and β̂ for the simex method based on the maximum likelihood
(1) or the presmoothing (2) approach when the error variance is misspecified. All numbers

were multiplied by 100.

v = 0.2 v = 0.4
simex - 1 simex - 2 simex - 1 simex - 2

vE Par. Bias Var. MSE Bias Var. MSE Bias Var. MSE Bias Var. MSE

v − 0.1 γ1 5.0 12.2 12.4 3.3 12.1 12.2 3.5 12.6 12.7 1.6 13.7 13.8
γ2 −3.7 19.9 20.0 −8.9 18.4 19.2 −16.4 20.9 23.6 −21.2 22.6 27.1
γ3 −1.0 25.1 25.1 −2.2 27.3 27.4 −0.9 25.7 25.7 −2.1 28.6 28.6
β1 −6.1 3.2 3.6 −5.9 3.1 3.5 −16.1 3.3 5.9 −15.9 3.3 5.8
β2 0.0 4.2 4.2 0.0 4.2 4.2 −0.6 4.4 4.4 −0.5 4.4 4.4

v + 0.1 γ1 7.4 13.4 13.9 6.0 14.0 14.4 5.5 13.8 14.1 3.9 15.6 15.8
γ2 18.6 32.7 36.1 12.2 32.1 33.6 5.5 34.2 34.5 0.1 35.7 35.7
γ3 −0.4 26.1 26.1 −1.5 31.3 31.3 −0.3 27.1 27.1 −1.7 31.4 31.4
β1 12.4 5.5 7.1 12.6 5.5 7.1 1.1 5.6 5.6 1.3 5.5 5.5
β2 1.2 4.6 4.6 1.3 4.6 4.6 0.6 4.9 4.9 0.7 4.9 4.9
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