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Abstract: In this paper, we use the class of Wasserstein metrics to study
asymptotic properties of posterior distributions. Our first goal is to provide
sufficient conditions for posterior consistency. In addition to the well-known
Schwartz’s Kullback-Leibler condition on the prior, the true distribution
and most probability measures in the support of the prior are required
to possess moments up to an order which is determined by the order of
the Wasserstein metric. We further investigate convergence rates of the
posterior distributions for which we need stronger moment conditions. The
required tail conditions are sharp in the sense that the posterior distribution
may be inconsistent or contract slowly to the true distribution without these
conditions. Our study involves techniques that build on recent advances on
Wasserstein convergence of empirical measures. We apply the results to
some examples including a Dirichlet process mixture prior and conduct a
simulation study for further illustration.
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1. Introduction

The Wasserstein distance originally arose in the problem of optimal transporta-
tion [43] and is often called the Kantorovich or transportation distance. We refer
to [42] for the history about this metric. For two Borel probability measures P
and @ on the real line, the Wasserstein metric of order p, p € [1, 00), is defined as

1/p
WP = _int ([ le-aaren)
where @ (P, Q) is the set of every coupling w of P and @, that is, a Borel prob-
ability measure on R? with marginals P and @Q, respectively.

There are a wide number of applications of Wasserstein metrics, e.g. Wasser-
stein generative adversarial networks (GAN; [1, 25]), approximate Markov chain
Monte Carlo (MCMC; [38]), distributionally robust optimization (DRO; [31])
and clustering ([4, 32]). However, exhaustive study on statistical properties such
as the convergence behavior of the empirical measure with respect to W), have
been conducted only recently, see [7, 18, 46, 15]. In particular, the great suc-
cess of Wasserstein GAN in machine learning society accelerated the study of
Wasserstein metrics in statistics community as a discrepancy measure between
probabilities; [41, 34, 5]. Recently, [3] proposed the use of the Wasserstein dis-
tance in the implementation of Approximate Bayesian Computation (ABC) to
approximate the posterior distribution. In nonparametric Bayesian inference,
[36, 12] used Wasserstein metrics to study asymptotic properties of posterior
distributions, but W, was considered as a distance between mixing distributions
rather than a distance between mixture densities themselves. As a result, the
Wasserstein metrics in these papers yielded a stronger topology than the total
variation distance on the space of density functions. In general, W), 1 < p < oo,
metrizes the weak convergence of probability measures in a bounded metric
space. Specifically, if the diameter of the underlying metric space is bounded
by 1, one has the relationship d%) < Wi < 2dp < dy, where dp and dy are
Lévy-Prokhorov and total variation distances, see [23]. In an unbounded met-
ric space, the second and third inequalities do not hold because W7 is not a
bounded metric.

In this article, we utilize the Wasserstein distances to study asymptotic be-
havior of posterior distributions under the assumption that data are generated
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from a fixed true distribution and we focus on nonparametric Bayesian density
estimation on the real line. To set the stage, let X7, ..., X,, be the observations
which are independent and identically distributed random variables from the
true distribution Py possessing a density pg. Let F be a collection of probability
densities in R equipped with the weak topology, and IT be a prior distribution
on F. Then the posterior probability of a measurable set A C F is given as

fA * 1 p(Xi)/po(X5)dII(p)
JTTiZ, p(Xi)/po(Xi)dII(p)

by the Bayes formula. Throughout the paper, we allow the prior IT to depend
on the sample size n, but often abbreviate this dependency in the notation of
both prior and posterior distributions. If clarification is necessary, the prior and
posterior will be denoted IT,, and IL, (- | X1, ..., X,,), respectively. The posterior
distribution is said to be consistent with respect to a (pseudo-)metric d if

(1.1)

H(d(p,po) >el| Xyq,... 7Xn) — 0 in probability for every e > 0,

where the convergence in probability is taken with respect to the true distribu-
tion Pp. If € is replaced by €, for some sequence €, — 0, the convergence rate of
the posterior distributions is said to be at least ¢,. There is a huge amount of
research articles concerning asymptotic properties of the posterior distribution.
We refer to the monograph [22] for the history and details about this topic.

Of key importance is the Kullback—Leibler (KL) support condition developed
by [39]. A fixed prior II is said to satisfy the KL support condition if

H(p : K(po,p) < e) >0 for every e > 0, (1.2)

where K(pg,p) = [loglpo(x)/p(x)]dPy(x) is the KL divergence. If the prior
depends on the sample size, the KL condition (1.2) can be replaced by

lim inf IT,, <p : K(po,p) < e) >0 for every e > 0. (1.3)

n—o0

Conditions (1.2) and (1.3) became standard for proving posterior consistency.
In particular, it gives a suitable lower bound of the denominator in (1.1) and
it implies posterior consistency in the weak topology, that is with respect to
the Lévy-Prokhorov distance, see [39] and Section 6.4 of [22]. A variation of the
KL support condition to obtain a convergence rate is developed by [20]. It is
formally expressed as

I(K,) > e~ for all large enough n, (1.4)

2
/cn—{pef;/log@dpo<ei,/(1og@) dP0<ei}.
p p

In literature, studies on posterior asymptotics have focused on strong metrics
such as the total variation, Hellinger and uniform metrics. For those purposes,
some non-trivial conditions such as the bounded entropy or prior summability
are assumed in addition to the KL conditions, see [19, 45, 2, 11] for example.

where
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On the other hand, it is surprising that careful analysis of the convergence rates
with respect to a weak metric such as the Lévy-Prokhorov and Kolmogorov
has not been studied in literature, considering that the KL support condition is
sufficient for the consistency in those metrics. [11] studied the convergence rate
of the posterior distribution with respect to the Lévy-Prokhorov metric, but
their rate n~/* have a lot of room for improvement. Furthermore, they used
the Lévy-Prokhorov rate as a tool for proving the consistency in total variation,
and did not focus on the convergence rate itself.

Wasserstein metrics W), 1 < p < oo metrize weak convergence in a bounded
space, but it generates a stronger topology in general. Indeed, neither the KL
support condition (1.2) nor (1.4) are sufficient for posterior consistency with
respect to W, If P is a standard Cauchy density, for example, W,(P, Py) = oo
for any P and p > 1. Therefore, for any prior except the one putting all its mass
on Py, the posterior distribution is inconsistent with respect to W,. This simple
example shows that tails or moments of probability measures play an important
role for handling W,.

For a sequence P, of probability measures, it is well-known that W, (P, P) —
0 if and only if P,, converges to P weakly and M, (P,) — M,(P), see [43], p.212,
where M, (P) = [ |x[PdP(z). Therefore, for the Wasserstein consistency to hold,
the posterior moment should converge to the true moment, see Theorem 2.1.
However, while the moment consistency of frequentist’s nonparametric estima-
tors such as the the empirical distribution is straightforward, it is non-trivial
to show that the posterior moment converges to the true moment even with a
very popular prior such as a Dirichlet process mixture. This is mainly because
tails of probability measures in the support of the prior should be considered
simultaneously.

To prove posterior consistency, we will leverage on the KL condition. We pro-
vide two different approaches which are of independent interest; see the proof of
Theorem 2.2. The first one targets directly posterior moment consistency and
relies on a result from [45]. The second one has less stringent conditions but
the proof is more complicated. Specifically, we construct uniformly consistent
tests based on the empirical distribution by exploiting suitable upper bounds of
Wasserstein metrics. We then show that, to achieve posterior consistency with
respect to W, moments of densities must be suitably bounded. In particular,
the posterior needs to put most of its mass on distributions that possess mo-
ments up to an order determined by that of the Wasserstein metric. In practice,
the posterior moment condition can be worked out by means of exponentially
small prior probability on the complement set, cf. Lemma 8.2. In Section 5.2
we provide an illustration in the specific example of Dirichlet process mixture
prior.

Both approaches for posterior consistency can be extended to obtain suitable
convergence rates with the KL condition (1.4). While the first approach gives
the convergence rate for the moment, the second approach gives the rate with
respect to W) relying on slightly stronger moment conditions, see Theorems
3.1 and 3.2. For convergence rates with the second approach, we rely on new
upper bounds on Wasserstein metrics that can be of independent interest, cf.
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Lemma 8.7. Interestingly, the posterior moment conditions for consistency and
convergence rates are nearly necessary, that is the posterior distribution may
be inconsistent or contract slowly to the true distribution when they are not
satisfied. Finally, we obtain convergence rates for the case p = oo in Theorem
4.1, for which we need to restrict to probability measures on a bounded space.

To the best of our knowledge, this paper is the first result on posterior asymp-
totics with the Wasserstein metric. The remainder of this paper is organized as
follows. Results on posterior consistency and its convergence rate with respect
to Wp, for 1 < p < oo, are considered in Sections 2 and 3, respectively. Posterior
asymptotics with respect to W, is studied in Section 4. Section 5 considers
more details with specific examples. Some numerical results complementing our
theory are provided in Section 6. Concluding remarks and proofs are given in
Sections 7 and 8, respectively.

Notation

Before proceeding, we introduce some further notation; for two real numbers a
and b, their minimum and maximum are denoted by a Ab and a Vb, respectively.
Inequality @ < b means that a is less than a constant multiple of b, where the
constant is universal unless specified. Upper cases such as P and @ refer to
probability measures corresponding to the densities denoted by lower cases and
vise versa. The empirical measure based on Xi,..., X, is denoted P,,. For a
real-valued function f, its expectation with respect to P is denoted Pf. The
expectation with respect to the true distribution is often denoted Ef(X). The
restriction of P onto a set A is denoted P|4.

2. Consistency with respect to W,

Recall that W,(P,,P) — 0 if and only if P, converges weakly to P and
My(P,) — My(P), see Theorem 7.12 of [43]. Also, the KL support condi-
tion (1.2), or (1.3), guarantees posterior consistency with respect to the Lévy-
Prokhorov metric which induces the weak convergence. Therefore, it is natural
under the KL support condition to guess that posterior consistency with respect
to W), is equivalent to the consistency of the pth moment, that is, for every € > 0,

H(|M,,(P) — My(Py)| > e | X1, ,Xn> — 0 in probability. (2.1)

If (2.1) holds, we say that the posterior moment of order p is consistent. For
= 1, the moment consistency can be easily implied by W;i-consistency by the
help of the duality theorem by [30], see also [17, 14, 44], which asserts that

(PQ—sup‘/f )P - [ f@)da

fez

where .Z is the class of every Lipschitz function whose Lipschitz constant is
bounded by 1. Since the map x — |z| belongs to £, we have that

|M1(P) — M1 (Q)] < Wi(P,Q).
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Although such an explicit bound does not exist for p > 1, one can show that
posterior consistency with respect to the Wasserstein distance is equivalent to
the moment consistency under the KL support condition.

Theorem 2.1. For a prior I1, suppose that the KL condition (1.3) holds. Then,
the consistency of the p-th moment (2.1) is equivalent to that

H(WP(P, Py >el| Xq,... ,Xn) — 0 in probability for every e > 0. (2.2)

We provide two different approaches for proving posterior consistency with
respect to W, which are of independent interests. The first approach relies on
a result from [45]; namely that if C is a convex set of probability measures and
infpec H(FPo, P) > 0 then II(C|X1,...,X,) — 0 in probability, where H(P, Q)
denotes the Hellinger distance between P and . This approach directly uses
Theorem 2.1 by establishing the consistency of the pth moment (2.1). The proof
based on this approach is very simple as it only needs a single application of the
Cauchy—Schwarz inequality. However, it requires the moment of order 2p to be
bounded a posteriori.

The second approach constructs a uniformly consistent sequence of tests
based on the convergence of empirical distribution. The uniformity does not
make any problem for the compact support case, i.e. Po([—1,1]) = 1 and
P([-1,1]) = 1 for every P in the support of the prior II. If probability measures
in the support of the prior have unbounded support, however, problems may
happen due to probability measures with large moments. This problem can be
avoided if the moments are suitably bounded a posteriori, as expressed through
condition (2.3) below. The second approach relies on a rather complicated proof,
but it only needs the moment of order p 4 J, for some § > 0, to be bounded.

Theorem 2.2. Assume that I satisfies the KL condition (1.3). Furthermore,
assume that there exist positive constants K and § such that M,s(FPy) < oo
and

H(Mp+5(P) <K|Xi,... ,Xn) 51 in probability. (2.3)

Then for every e > 0,
H(WP(P, P)>e|Xi,... ,Xn> —5 0 in probability.

It should be emphasized that assumptions in Theorem 2.2 are nearly neces-
sary. Certainly, M,(Pp) < oo is necessary. Since the consistency with respect
to W, entails the consistency of the pth moment by Theorem 2.1, it is also
necessary that for some constant K,

H(MP(P) <K|Xi,... ,Xn) 1 in probability. (2.4)
On the other hand, M,(P)) < oo and (2.4) are not sufficient for the posterior

distribution to be consistent with respect to W), as shown in the following
example.
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Example. Let Py = 6y, P, = (1 —n~"Y8 +n716,, and U{P}) = U{P.}) =
1/2, where §, is the Dirac measure at  and z, = n'/P. Obviously, the KL
condition (1.3) holds. Furthermore, W} (Fy, P,) = M,(P,) = 1 < oo and
Mpis(Pn) = n%/P — oo for every § > 0. Since Py(X1=0,...,X,=0)=1and
P(X1=0,...,X,=0)=(1-n"1)" = e~ > 0, the posterior distribution is
inconsistent with respect to W,,. Here, condition (2.4) holds, but (2.3) is violated
for any ¢ > 0.

By Theorem 2.2, the proof of the Wasserstein consistency boils down to
H(M,,(P) <K|Xi,... ,Xn) ~ 31 in probability (2.5)

for a constant K, a condition that seems easy to prove at first sight. How-
ever, the proof is not simple even with a well-known prior which puts all of its
mass on the space of light-tailed distributions, that is, distribution with large
or infinite tail index. Here, if a distribution function F' satisfies 1 — F(x) =
x~*L(x) for large enough x, where L(-) is a slowly varying function satisfying
limy_,o0 L(zy)/L(y) = 1 for any & > 0, the positive constant « is called the
(right) tail index of F, see [33] for a Bayesian consistency of the tail index. It
should be noted that a light-tail, i.e. large tail index, does not guarantee a small
value of moment, which makes the proof of posterior consistency in W, difficult.
This is in stark contrast to that the moment of the empirical distribution can be
trivially shown to be consistent. In Section 5.2, we are able to work out the case
of Dirichlet process mixture prior by using Lemma 8.2, that is by establishing
that the prior puts exponentially small mass to probability measures P with
M,(P) > K. See Theorem 5.1.

3. Convergence rates with respect to W,

For a given rate sequence €, suppose that II(C,,) > e~men for every large enough
n. Based on this condition, which is used to find a lower bound of the integrated
likelihood, the denominator in the expression (1.1), we will extend the results
of Section 2 to obtain a convergence rate. The main task in this section is to
find additional assumptions required to achieve the convergence rate €,. An
extension of the first proof for Theorem 2.2 requires the moment of order 2p as
follows.

Theorem 3.1. Assume that the prior 11 satisfies the KL condition (1.4) for a
sequence €, with €, — 0 and ne2 — co. Furthermore, assume that there exists
a constant K such that Ms,(Py) < K and

H(P: Myy(P) > K | X1, ... 7Xn> 0 in probability.

Then
H<|MP(P) — My(Py)| > K'en | X1, ... ,Xn) 0 in probability

for some constant K’ > 0.
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Note that M,(P) is a linear functional of P for which the semi-parametric
Bernstein—von Mises (BvM) theorem may hold, see [9, 37]. In this case, the
convergence rate of the marginal posterior distribution of M, (P) would be the
parametric rate n~'/2 even though the global posterior convergence rate €, may
be slower. However, while Theorem 3.1 is very general, the semi-parametric
BvM theorem holds under rather strong conditions. For example, the above
mentioned papers consider only specific priors and relied on the assumption
that pg is compactly supported and bounded away from zero. It is sometimes
possible to obtain the parametric convergence rate for the finite-dimensional
parameter of interests without the semi-parametric BvM theorem. However,
the proof typically relies on the LAN (locally asymptotically normal) expansion
of the log-likelihood, see [6, 10].

Next, we consider an extension of the testing approach. To achieve the con-
vergence rate €,, we will construct a sequence of consistent test

Py, -0 and sup P(l1—¢,) < e*?’”ei,
PeFe

where F,, = {P : W)(P, Fy) < Ke, }NFy. Here, Fo will be defined as a collection
of probability measures whose tails and moments are suitably bounded. Then,
it will suffices for the desired result to show that II(F§ | X1,...,X,) — 0 in
probability.

A consistent sequence of tests will be constructed based on the convergence
of the empirical distribution to the true distribution. Note that there are well-
known concentration inequalities of the form P(W} (P, P) > €,) < 0, where
on is a decaying sequence, and those inequalities might be directly used to define
tests as

b = { 1 if Wﬁ(]?n,Po) > €,
0 otherwise.

However, such a simple approach does not give sharp convergence rates of the
posterior distribution. For example, if we apply the concentration inequality by
[18], for any P with WP(P, Py) > 2P¢,, and Ma,y5(P) < 0o, we have

P(1—¢,) = P(W;’(Pn, R) < en)

< P(WE(F,, P) > 27 DWE(P, By) — € (3.1)

2 1 1
< P > < —eemen 4o T T
< P(Wp (P, P) > en> <c (e + ne (nen)5/2P>
where ¢; and cy are constants. Here, the constants ¢; and ¢y depends on the
moments of P, so it is not easy to bound (3.1) uniformly. Furthermore, the

second term in the right hand side of (3.1) is of polynomial order in ne? which

nel . In turn, the use of ¢, would give a much

decays too slowly compared to e~

slower convergence rate than e,.
Theorem 3.2 below is our main results concerning convergence rates of the

posterior distribution. Proof of Theorem 3.2 relies on the set-up in [18]. In

particular, Lemmas 8.3 and 8.5 can be easily deduced from the results in [18].
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We build on these two lemmas to develop some techniques whose details are
different from [18]. As mentioned above, we need to construct a sequence of tests
decaying with an exponential rate. As far as we know, this is not possible with
the proof technique used in [18]. Given a bounded moment condition, we achieve
this by the help of Lemma 8.7. The condition ¢,, > /(logn)/n in Theorem 3.2 is
assumed only for technical reason. Although we could not succeed to eliminate
this condition, we believe the result is valid for any €, | 0 with ne2 — oco.

Theorem 3.2. Assume that the prior Il satisfies the KL condition (1.4) for a
sequence €, with €, | 0 and €, > \/(logn)/n. Furthermore, assume that there
exist positive constants K and § such that Mapy5(Po) < oo and II(Mapy5(P) <
K| X1,...,X,) — 1 in probability. Then, for some constant K' > 0,

H(W},“(P,Po) > K'{e, +I(p=1)loge,"} | Xl,...,Xn) —0

in probability.

Assumptions in Theorems 3.2 should be understood as sufficient conditions
so that II(K,) > e~ e guarantees €, as the posterior convergence rate for
any e, > n~'/2. For the empirical measure to achieve the rate n~'/? with
respect to W), the same moment condition Mapi5(Py) < oo is considered in
[18]. They provided an example showing that this moment condition cannot be
weakened in general. As illustrated in the example at the end of this section,
the posterior moment condition II(Ms,4s(P) < K | X1,...,X,) — 1 cannot
also be weakened.

When p > 1, Theorem 3.2 gives a rate €,, with respect to W} rather than W,,.
This result is more relevant to [18] than [7]. In particular, condition Ma,4s(Pp) <
oo is the same to Eq. (3) of [18], and much weaker than

/ [Fo(2)(1 — Fo())]P/?

po(x)P~1

dx < 0o (3.2)

which is a necessary and sufficient condition in [7] for that E[W,(P,, Py)] =<
n~/2. When p = 1, My, 5(Pp) < oo is only slightly stronger than (3.2), which
is reduced to [ \/Fo(z)(1 — Fy(z))dx < oo, where Fy is the cumulative distri-
bution function of Fy. If p > 1, however, Ma,15(Py) < oo is much weaker than
(3.2) which may not be satisfied even when Py is compactly supported. Note
that if Py is standard normal, (3.2) is satisfied if and only if 1 < p < 2. As
mentioned in [7], the rate E[W,(P,, Py)] < n~/? cannot be obtained under
moment-type conditions considered in Theorem 3.2. Therefore, we would need
a stronger assumption such as (3.2) to replace W} by W, in Theorem 3.2. Since
we are focusing on the moment-type condition in the present paper, we do not
address more detail about condition (3.2). Instead, we consider the metric W,
in Section 4 with a stronger assumption. Specifically, Py will be assumed to be
supported on a bounded interval. This is necessary to obtain the consistency
with respect to W,. The result in Section 4 guarantees the rate €, with respect
to Wy, not WP, at least when probabilities are compactly supported.
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Note that our approach does not guarantee the rate n~/2 which is minimax
optimal and achieved by the empirical measure under some general conditions,
e.g. [47, 18, 7]. Our approach gives the rate n='/2 only if the prior puts suffi-
ciently large mass around the KL neighborhood of py. This is mainly because
our approach relies on the general approach of [20] for which the KL condition
K, =z e~ plays an important role to determine the rate. Also, note that
the testing approach only gives sharp rates when the distance is compatible
with the natural statistical distance of the model, the Hellinger distance in our
case, see [27] for extensive discussion on this point. In this regards, it might
not be possible to obtain sharp rates based on the testing approach. Hence, a
different approach would be necessary to achieve the rate n=1/2, e.g. the ap-
proach in [27, 48]. Another possible approach would be to utilize the functional
Bernstein—von Mises theorem. Specifically, the approach given in [8], combining
with the Kantorovich-Rubinstein representation, might give the rate n='/? at
least for W7, and further limiting distribution of the posterior distribution. Note
that the above papers are limited to specific priors and probability measures on
a bounded set, while the present paper focuses on the moment condition for the
posterior convergence rate. With these approaches, it would be highly interest-
ing to investigate sufficient conditions to achieve the rate n=1/2.

For p = 1, an additional logarithmic term in Theorem 3.2 can be eliminated if
we assume a slightly stronger condition, which is satisfied if po(z) < K|z|~(3+9)
and (p(x) < K|z|~G+) va | X;,..., X,,) — 1 in probability for some positive
constants K and d, see Theorem 8.9 for details. Since Theorem 8.9 relies on some
technical assumptions, we defer its statement to Section 8, and provide here a
simpler statement, Theorem 3.2. Proofs of these theorems are quite similar.

Finally, we note that moment conditions in Theorem 3.2 cannot be weakened

to § < 0 as shown in the following example.
Example. Let Py = 6y, P, = (1 —n~"Y6y +n"16,, and H{Py}) = H({P,}) =
1/2. Certainly, the KL condition (1.4) holds for any €, > n~'/2. Note that
the likelihood given P, equals to (1 —n~!)" Py-almost-surely, which converges
to et > 0. If z,, = n'/P+9 for small enough 6 > 0, then WP(Py, P,) =
n~(1/2=p8)  Therefore, the posterior distribution is consistent with respect to
WP, but the rate of convergence is strictly slower than /(logn)/n. In this ex-
ample, note that [ |z[*’dP,(z) = n2%? — o, so the posterior moment condition
in Theorem 3.2 is not satisfied.

4. Convergence rates with respect to W,

Since W,(P, Q) monotonically increases in p, one may define W (P,Q) =
lim, oo W, (P, @) which, according to [24], corresponds to

W (P,Q) = inf{e >0: P(A) < Q(A9), VA € R},

where A¢ = {x : |z — y| < € for some y € A} is the e-enlargement of A and R
is the set of all Borel subsets of R. This representation of W, bears similarities
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with the Lévy-Prokhorov metric
dp(P,Q) = inf {e >0:P(A) < QA9 +¢, VA€ R}

which metrizes the weak convergence.

The metric W, induces a much stronger topology than the weak topology
even in a bounded metric space. In an unbounded space, if the tail index of two
probability measures P and @ are different, then W (P, Q) is typically infinity.
For example, if P and @ are Student’s t-distributions with v and v, degrees
of freedom with vy # v, then W (P, Q) = oo. Therefore, it is meaningless to
study asymptotics with W, in an unbounded space.

In this section, we assume that Py is supported in the unit interval [0, 1], and
so are all probability measures in the support of the prior. Our benchmarking
assumption is inf,¢c[g 1 po(x) > ¢p for some constant ¢ > 0, which is a necessary
and sufficient condition for that Po[Wea (Pn, Py)] < n~ /2, see [7].

Theorem 4.1. Suppose that pg is a density on [0, 1] and inf,¢cjo 1) po(x) > co for
some constant co > 0. Also, assume that the prior 11 satisfies the KL condition

(1.4) for a sequence €, with €, | 0 and €, > /(logn)/n and II(P([0,1]) =1) =
1. Then, for some constant K > 0,

I (WOO (P,Py) > Ke,

Xq,... ,Xn> — 0 in probability. (4.1)

5. Examples

In this section, we consider the posterior moment condition (2.5) with two ex-

amples. In the first example, we illustrate the idea of a novel approach handling

the second moment condition without full technical details. The approach relies

on a special property of gamma distributions. The second example considers

higher order moments, and concrete posterior convergence rates are derived.
Note that (2.5) holds trivially if the prior satisfies

H(p :p(z) < K'ty(x) V;L’) =1 (5.1)

for some K’, where t, is the density of the Student’s ¢ distribution with p degrees
of freedom. Such a prior can be easily constructed by conditioning well-known
priors by the event in the left hand side of (5.1). Although the prior probability
for this event would be close to 1 with most priors and large enough K, this
conditioning might be unnatural in practice.

5.1. Mixture of gamma distributions

Suppose it is required to establish weak consistency alongside a functional con-
straint; such as

H<p:/pr(x)dz>K|X1,...,Xn) -0
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in probability, for some finite K > 0, with the prior II on density functions on
(0, 00). This would be for establishing W; consistency.
With the usual Kullback-Leibler support condition, we write the posterior

as
T o) i (p)
STy o) 22 dri(p)
for some function «a. Using standard arguments, the Py-expectation of the nu-

merator over the set A is
/ (/ adP) dII(p)
A

and the reciprocal of the denominator is upper bounded, i.e.

dlI(p | Xq,...,X5)

end enf log(1/a) dPy a.s.

for all large n, for any d > 0; see [39] for details about this argument. Also note

exp {n/log(l/a) dPO} < (/a‘ldP())n.

Hence, if A={p: [a~'dP > K} and we construct the prior II so that

—1
/aldP>K:>/adP<e<</a1dP0) ,

then, a.s. for all large n, using the Markov inequality and the Borel-Cantelli
lemma,

(A | X1,...,X,) <eden (/aldP()) —0 as.

We obtain the second moment result by taking a(z) = 1/2? and so we need to
ensure for the prior, for any € > 0, there exists a K < oo such that [ 22dP > K
implies [272dP <e.

Let xg be the true second moment and assume we can construct the model
p(z) such that for any € > 0 there exists a K > 0 such that

/pr(x) de > K = /x_zp(a:) dz < € < 1/ko.

This also implies K > k. Such an example arises with the gamma distribution,
so consider p(z) = I'(a) " 2 e~®, where we have E X2 = a(a+1) and EX 2 =
[(a—1)(a—2)]7t. Hence, E X? > K implies E X =2 < ¢ for some suitably large
K, for a > 2.

For a more general nonparametric model, consider

M
p(z) = ijr(l' | aj,b),

a mixture of gamma distributions. We can assign priors to M and w but to
describe the prior for a = (ai,...,ap) and b there is no loss in generality in
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fixing them. Now
(1 +
E w] aj)

and, if, as assumed, a; > 2 + 9, then

2

Z%m

To obtain our required condition, we take the prior so that if a single a;(1 +
aj)/b> > K then it is true for all j. This ensures that if EX? > K then
aj(1+a;)/b* > K for all j and then it is also true that b2/((a; — 1)(a; —2)) <
&/ K, for all j, for some £ < oo, which is fixed. Indeed, £ = (2+6)(3+48)/(5(1+4)),
so EX7?2 < ¢/K.

Hence, we take the prior for (a,b) as

M
m(a,b) =7=(b) [ (1 —q) H —(a;|b) +(1ch+ a;|b) |,

Jj=1

where g.— is a density on (0,¢) and g.; a density on (¢, 00) for some c. Here,
ge—(a;|b) puts all the mass on a;(1 + a;) < cb? and g.(a;|b) puts all the mass
on a;(l+a;) > cb?. In practice, we can take c so large that the part of the prior
which contributes to the posterior will only be the g._ component.

5.2. Darichlet process mixture

Consider a Dirichlet process mixture prior
= /gzbo(:v —2)dG(z), G ~DP(aH), (5.2)

where DP(«H) denotes the Dirichlet process with base measure aH, ¢, () =
o~ t¢(z /o) and ¢ is the standard normal density. In practice, an inverse gamma
prior is usually imposed for o2, but we consider a fixed sequence o = o, — 0 for
technical convenience. Note that the sequence o,, controls the convergence rate.
Specifically, with a suitable sequence o, one can prove that II(XC,) > e‘"ei,
see [21, 40]. While these papers extensively studied posterior convergence rates
with respect to the Hellinger metric, posterior moments have not been studied
thoroughly. Only Section 8 of [21] slightly touched the tail mass of the posterior
distribution. However, their result relies on the assumption that Py is compactly
supported, and cannot be directly used to bound the posterior moments.
Note that the posterior moment condition (2.5) is similar to

H(P(Bm) <K27P"Ym >0 Xy, ... ,Xn) —+ 1 in probability,  (5.3)

where By = (—1,1] and B,, = (—=2™,2™]\(-2m"1,2™~1] for m > 1. Since
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QLP > 2"P(By,) < My(P) < > 2" P(By,) (5.4)

m>1 m>0

for any probability measure P and p > 1, (2.5) is implied by
H(P(Bm) < K'27HOm ym > 0] Xy, . Xn) —+ 1 in probability

for some positive constants K’ and 9.
Suppose that Py(By,) < 27P™ for every m > 0. Under the assumption that
II(K,) > e~ it is not difficult to show that

H(|P(Bm) — Po(Bu)| 2 €n | X1, ... ,Xn) — 0 in probability

for every m > 0. If 27P™ > ¢,, or equivalently m < p~!log,e !, then the
posterior probability

H(P(Bm) < g pm | Xl,...,Xn)

will be close to 1 for large enough n with high Py-probability. More generally,
one can show that

H(P(Bm) <27Pmym < ptlogy et | X, ... ,Xn) — 1 in probability.

If m > p~llog,e,t, however, one cannot bound P(B,,) by 27P™ because the
convergence rate €, is larger than 277", In this case, the prior must play a
role, that is, the prior probability that P(B,,) 2 27P™ should be small. In fact,
this prior probability should be exponentially small, with an order e~cnen for
some constant ¢ > 0, to guarantee that the posterior probability also decays, cf.

Lemma 8.2. To this aim we will make use of
G(By) ~ Beta(aH(Bm),a(l - H(Bm))>

for every m > 0, which in particular implies that the prior expectation of G(B,,)
equals H(By,). If H is a normal distribution (any H with sub-Gaussian tail
would actually work), the prior expectation of G(B,,) is much smaller than
27P™ for every large enough m.

Theorem 5.1. Let H be the normal distribution with mean py and variance
0%. Let II be a Dirichlet process mizture prior (5.2) with o > 1 and o =
on = n~ 5. Also, suppose that po is twice continuously differentiable with a
sub-Gaussian tail, and satisfies [(p{/po)* + (p}/po)*dPy < co. Then, for any
p < 4, there exists a constant K such that

H(MP(P) <K|Xi,... 7Xn> —1 in probability.

If the prior and Py satisfy conditions in Theorem 5.1, the posterior distribu-
tion is consistent with the rate n~2/5 with respect to WJ for p < 2, up to a
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logarithmic factor. Once Py possesses a smoother density, it is possible to prove
the consistency of higher order moments, see Lemma 8.13 for more details.

If we impose a prior on o2, it can be deduced from the proof that the asser-
tion of Lemma 8.13 is still valid provided that o2 is bounded a posteriori, that
is, (02 > K | X1,...,X,) — 0 for some constant K > 0. Under mild assump-
tions, the posterior distribution of o2 will be concentrated around 0 unless P,
itself is a location mixture of normal distributions. If Py is a location mixture of
normal distributions, the posterior probability that 02 > 02 + € vanishes, where
o3 is the true parameter.

6. Numerical study

Although theoretical results given in previous sections provide reasonable suffi-
cient conditions for the Wasserstein consistency, those conditions are not easy to
verify in practice. With a DP mixture prior, for example, the rate €,, determined
by II(KC,,) > e~nen plays an important role for the consistency with respect to
W,. However, it is very difficult to find exact rate ¢, satisfying II(K,) =< e,
Note also that if Py has an unbounded support, the posterior distribution is
typically inconsistent with respect to We,. Since W), T W, as p 1 0o, the pos-
terior distribution will be consistent with respect to W), only for small values
of p, where the threshold value depends on ¢,. Perhaps the most interesting
cases would be p =1 or p = 2, so in this section, we empirically show that the
posterior distribution tends to be consistent with respect to W7 and W5 with
popularly used priors.

We consider DP mixtures of Gaussian priors described in Section 5.2. Instead
of a decaying sequence o,, we put an inverse gamma prior on o2 as usual
in practice. Specifically, we used H = N(pw,0n), 0> ~ T71(3,\) and o ~
T'(BasAa) With og =8 =X =B, = Ao =1 and py = 0, where 8 and A denotes
the shape and rate parameters of the gamma distribution. In addition to the
location mixture, we also consider a location-scale mixture

p(z) = /qbg(x —2)dG(z,0), G~ DP(aH),

where H is the normal-inverse gamma distribution. In this case, we used H =
N-I' Y (g, 0, 8,A) and a ~ T(Ba, o) With og = B =X = B4 = Ao = 1
and py = 0, where (X,Y) ~ N-I'"*(p, 0, 8, ) means that X | Y ~ N(u,Y/o)
and Y ~ I'"1(B,)). Note that an inverse gamma distribution has a tail of
polynomial order, so with a location-scale mixture, the prior probability that
P(B,,) > 27P™ may not be too small.

There are several computational algorithms sampling from a posterior dis-
tribution based on a Dirichlet process mixture prior, see [35, 29] and references
therein. Unfortunately, given a posterior sample P, it is very difficult to compute
the Wasserstein distance W, (P, P,), see Theorem 3 of [31]. Instead of directly
calculating W, (P, P,), we can easily generate a Markov chain sample Y7,..., Yy
from the posterior predictive distribution [ p(z)dII(p | X1,...,X,). Then, the
corresponding empirical distribution P ~ can be used as a proxy of the posterior
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predictive distribution. Note that the empirical distribution from an ergodic
Markov chain, as well as the one from an iid sample, contracts to the stationary
distribution with respect to the Wasserstein metrics, see [18]. However, it is still
not easy to compute W, (I?P'> ~, Po). To evaluate W), (@ N, Po), we first approximate
Py by a discrete measure Qp; and find Wp(ﬁN, Qar). If M is a multiple of N,

one can easily find exact value of Wp(fDN, Q) based on the following lemma
taken from [7].

Lemma 6.1. For given two collections of real numbers 1 < --- < xn and
1 < - < yn, let P and Q be the corresponding empirical measures. Then, for
any p =1,

N
1
Wy (P,Q) = N E |zr — yr|”.
k=1

To approximate Py by Qps, assume for a moment that Py is symmetric about
the origin. For an even integer M, let x, = ¢(1/2+k/M) for k =0,...,M/2—1
and Qps be the probability measure such that Qs ({zo}) = 2/M, Qupr({zx}) =
1/M and Qp({—zr}) = 1/M for k > 1, where ¢ : (0,1) — R is the quantile
function of Py. Then,

i~ M/2-1
2
‘4/‘17 P < 2 — _ Pdp — _ p.
5 (Po, Q) < /ch/21 |z — @arja-1|PdPo(z) + M/2—1 321 |2k — k1]

(6.1)
Since Wp(FPo,Qa) — 0 as M — oo, one can approximate W,(Px, Py) by

Wp(@N,QM). For a non-symmetric Py, a similar approximation Q,; can be
obtained after replacing the origin by the median. For various true distributions—
standard uniform, standard normal, Laplace, Student’s ¢ with 20, 10, 5 degrees
of freedoms-the approximation error, the upper bound of W,(FPy, Qar), is de-
picted in Figure 1. When p = 1 and p = 2, the approximation of Py by Qp is
quite accurate for all cases. On the other hand, for p = 4 and p = 8, the approx-
imation is not reliable unless the support of the true distribution is bounded.
With the above six true distributions, we generated n = 50, 100, 200, . . ., 6400
samples and obtained N = 10* MCMC samples from the posterior predictive
distributions after 1000 burn-in periods. Then, we evaluated the Wasserstein
distance W, (Px, Qar) between the empirical distribution Py of MCMC sample
and the discrete approximation Qu; of Py with M = 2 x 10°. We considered
p=1and p = 2 only because because the approximation by Qp; is not reliable
for large p. We repeated the above procedure for 100 times and the median
among 100 repetitions are depicted in Figures 2 and 3. As can be seen, the
posterior predictive distributions become closer to the approximation Q,; of
the true distribution as the sample size increases. Interestingly, it seems that
the location-scale mixture prior also gives consistent posterior distributions with
respect to both W7 and Ws for all cases. Figure 4 shows similar results with
a location mixture prior with different hyperparameter H = N(0,10%). Note
that a normal distribution with large variance is a natural choice for H in
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(d) Student’s t with 20 df (e) Student’s t with 10 df  (f) Student’s ¢ with 5 df

FiG 1. The upper bound of Wy(Po,Qar) for various true distributions.

practice. The results in Figure 4 shows that the posterior distribution seems to
be consistent with respect to W5, but more samples are needed to dominate
prior probabilities on the tail. This is because some posterior predictive samples
might be very large when the number of observation is small, and Wa(Py, Qar)
is more sensitive to these large samples than Wl(@N, Qum).

7. Discussion

In this paper, we provided sufficient conditions for posterior consistency with
respect to the Wasserstein metrics and the convergence rate to be €, in addi-
tion to the well-known KL conditions. Based on our main theorem, the posterior
probability that W2 (P, Fy) 2 €, vanishes if My, s(P) is bounded by a constant
for some 6 > 0 with high posterior probability. A similar moment condition
has been used in [18] to show that Wp(P,, ) < n~1/? with high probability.
The moment condition cannot be weakened in general as illustrated in our ex-
amples. Under a stronger condition (3.2), which is a necessary and sufficient
condition for W, (P, Py) =< n~1/2, we conjecture that the posterior probability
that W,(P, Py) 2, €, would vanish.

We note that asymptotic results given in this paper might be utilized to ob-
tain posterior consistency and its convergence rate with respect to strong metrics
such as the total variation. For this, the key is to obtain posterior convergence
rate in the Wasserstein metric and bound the total variation between smooth
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FiGc 2. Wasserstein distances between the true distribution—uniform (left), normal (middle),
and Laplace (right)-and the posterior predictive distributions based on location (upper) and
location-scale miztures (lower) of Gaussians.

densities by a power of the Wasserstein metric. More precisely, if P and @ pos-
sess smooth Lebesgue densities p and ¢, one can prove that |[p—qll1 < W7'(P, Q)
for some o > 0, see [13] for a sharp inequality. This is a certain reverse inequality
because the total variation generates a stronger topology than W, in the space
of all probability measures on a bounded metric space. This kind of reverse in-
equality and related theory for posterior consistency are the main motivation of
the present paper, which was firstly considered in [11].

We conclude by discussing an example where total variation consistency and
a mild condition implies Wasserstein consistency. This is a non—trivial finding.
For a given kernel density function k£ on R, consider a location mixture

p(x) = /k(x — 2)dG(z), (7.1)

which is often called a convolution. A prior IT on p can be induced from a prior
on the mixing distribution G. With slight abuse of notation, we use the same
notation II for the prior of G. Suppose that the true distribution is also of the
form (7.1), that is po(z) = [ k(z—2)dGy(z) for some probability measure Gy. In
this case, posterior consistency with respect to the total variation automatically
implies the consistency in Wy. Suppose that k is symmetric about the origin,
[ 2?k(z)dz < oo, and that k(t) # 0 for every ¢ € R, where k is the Fourier
transform of f defined as k(t) = [ e~ #*k(z)dz.
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Fia 3. Wasserstein distances between the true distribution—Student’s t distribution with 20
(left), 10 (middle), and 5 (right) degrees of freedom—and the posterior predictive distributions
based on location (upper) and location-scale miztures (lower) of Gaussians.

Theorem 7.1. Suppose that the kernel k satisfies the assumption described
above. Assume also that M2(Go) < oo and II(M2(G) < o0) = 1. Then, EII(||p—
polli > €| X1,...,X,) — 0 for every € > 0 implies that

EH(WQ(RPO) > e Xl,...,Xn) 50

for every e > 0.

Note that the condition II(M>(G) < o0o) = 1 is easily satisfied for well-known
priors. For example, if we put a Dirichlet process prior for G, the tail of G is
much lighter than that of its mean, see [16]. Posterior consistency with respect
to the total variation can also be easily established using a standard technique.

8. Proofs
Firstly, we introduce a basic set-up which is taken from [18] with slight modifica-
tion, see also [15, 46]. For nonnegative integers [, let P; be the natural partition

of (—1,1] into 2! translations of (—27% 27!], that is,

P = {(—1 F R 1 (k+ 120 k=0,1,...,2 - 1}.
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Fi1G 4. Wasserstein distances between the true distributions and the posterior predictive dis-
tributions based on the location mizture with H = N(0,10%).

Let By = (—1,1] and B, = (=2™,2"\(-2™~1 2™~ for m > 1. Let 7, :
R — R be the function defined as m,,(z) = /2™, and Rp,, P be the probability
measure on (—1,1] defined as the m,,-image of P|p, /P(By,), that is, for any
Borel set F' C (—1,1],

P(r,' (F) N Br)
P(Bm)

Rp, P(F) =

or Rp,, P(F) =0 according as P(B,,) > 0 or P(B,,) =0.

To get some insight of overall proofs, we next address how one can obtain
the consistency of the empirical distribution with respect to W,,. Suppose for
a moment that Py is supported on [—1,1]. Then, Lemma 8.3 implies that if
[P (F) — Py(F)| is sufficiently small for every F € P, and | < L, where L is
a large enough constant, then W,(IP,, Py) will also be small. Since there are
various tools to bound the deviation |P,(F) — Py(F)|, e.g. the inequality by
[26], it is not difficult to prove that the empirical distribution converges to P
in probability with respect to W, 1 < p < 0o, with the help of Lemma 8.3.

In case that Py has an unbounded support, Lemma 8.5 can be applied for
the Wasserstein consistency of P,,. Indeed, if |P,, (7,1 (F)) — Py(7;,, (F))] is suf-
ficiently small for every F' € P, | < L and m < M, where L and M are large
constants, then W, (P, Py) will be small. Note that L and M can be chosen as
large but fixed constants, so the consistency of IP,, can be similarly proven using
a large deviation inequality such as the Hoeffding’s inequality. Here, it plays an
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important role that M, (P,) converges to M,(Fy) by the law of large numbers,
because once the pth moment of P,, and F, is bounded, it is relatively easy to
prove the Wasserstein consistency, see the proof of Theorem 2.2 and Lemma 8.6
for details.

8.1. Frequently used results from literature

The KL condition (1.4) gives a suitable lower bound of the integrated likelihood,
that is, the denominator in (1.1). Once this condition holds, the posterior prob-
ability of a sequence of subsets F,, of F can be shown to converge to 1 if the
prior probability of F¢ or likelihood is sufficiently small. The latter can often
be expressed through the existence of a certain sequence of uniformly consistent
tests. Lemmas 8.1 and 8.2 are taken from [20] with slight modification for the
simplicity. The rate sequence ¢, is assumed that €, — 0 and nez — oo.

Lemma 8.1. Suppose that II(KC,) > e~ and assume that there exists a
sequence of tests ¢, such that

Pyp, — 0 and sup P(1—¢,) < e~ 3nen
PcFe

for F, C F. Then, H(]—"fI | Xq,... ,Xn) — 0 in probability.

Lemma 8.2. Suppose that II(K,) > e " and II(Fe) < e=3n<n for F, C F.
Then, H(;E; | X1, ... ,Xn) 5 0 in probability.
The following lemmas are taken from [18] with slight modification, see also

[15, 46]. Since the statement of Lemma 8.3 is slightly different from these papers,
we provide a detailed proof for the reader’s convenience.

Lemma 8.3. Assume that two probability measures P and Q are supported on
(=1,1]. Then,

L
W PQ) <, (zw S P(F) - Q)| + 2)
=1

FePp,
for every L > 1, where Ky, s a constant depending only on p > 1.

Proof. For a Borel partition {Ay : k > 1} of a Borel set A C R and two finite
measures P and Q on A with equal mass, define the finite measure P as

_ Q(Ax)
|Ak = P(Ak;)P|Ak

if it is well-defined, that is, P(A;) = 0 implies Q(Ax) = 0. Here, P|4, and
P|4, denote the restrictions of P and P, respectively, onto Aj. We say P is
the {Ag : k > 1}-approximation of P to Q. Then, we have the following lemma
whose proof is explicitly given in [15] (pp. 1189-1190).
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Lemma 8.4. Suppose that the {Ay : k > 1}-approzimation P of P to Q is
well-defined. Then, there exists a coupling & of P and P such that

e({w) o £ 4}) = 5 S 1P(AN) - QAW

k>1

For [ > 0, let P, be the Pj-approximation of P to ). We only consider the
case that P, is well-defined for all [ > 0. The other case can be handled with
further details, see Proposition 1 of [46].

Since P(F) = Q(F) for F' € Py, we have W,(P;, Q) < 27~ for every [ > 0.
Furthermore, it is easy to check that, for F' € Py, P(F) = P41 (F) and Piy1|p
is the {C € P11 : C C F}-approximation of P;|r to Q|r. Therefore, by Lemma
8.4, there exists a coupling &1 of P, and P,y such that

an(ley)atn) =5 3 2 |Ple© - alr@)]

Fep, C:.CCF

CePry1
1 1 QF)
=3 >y ’B(C)—Q(C)‘ =3 Y |e©) - mP(C)’~
FeP, C:CCF FeP, C:CCF
CePr41 CePrq1
It follows that there exist random variables Zy, Z1, Zs, . .. in a same probability
space, say (S,S, i), such that
u(lZi1 — 2z <27070) =1,
1 Q(F)
,U(Zl-i-l # Zz) =3 > Y |eE) - ﬁP(C)

Fep, C:CCF
CePry1

and Z; is marginally distributed as P,. Let N = inf{l : Z;1 # Z;}, where the
infimum of the empty set is set to be infinity. Then, conditional on the event
{N =1} with | < L, where L is a fixed positive integer, we have
L-1
Z0 — Z1) <> N2 = Zyga| < 27072
r=l

with probability one. It follows that

L—1
E|Zo — Z1|F < JE“ZO — 7P ‘ N = Z}M<N - z)
o
< 27(172)”# Zi £ 7
(1 2)
1, (oo Q(F)

=0 FePpP, C:.CCF
CePry1
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Therefore,

Wr(P,Q) <2~ (W;(P PrL) + W2(Py, Q))

2z FeP; C:CCF P(F)
CePry1
Since
QF) _ 1
Q(0) - HR PO = 5 P - (o)
< 51 [P(PIQIC) = PC) + POIP(F) - Q(F)
_PO)
= B P = QUP) + P(C) ~ Q)]
we have
WE(P,Q)
2p_1
C
222 sy P - QE) +PE) - (O
+2*P(L*1)
22 (2 Y IP(E) = QB+ ) |P(F) = Q|| +277¢Y
FePy FePi4
22 (I—-2)p Z |P
FepP
L
+§Z —(=3)p Z |P(F F)| 4 27P(E=1)
=1 FeP;
1+2PZL: 12)pZ|P F)|+2" p(L-1),
=1 FeP,
where the second equality holds because > pcp [P(F) — Q(F)] = 0. O

Lemma 8.5. For two probability measures P and Q on R,

PQ) <) 2" [?‘HP(Bm) ~ Q(Bp)|

m>0 (8.1)
+ (P(Bw) A Q(B) )W (R, P.R5,,Q) .

Proof. The proof is explicitly given in [18] (pp. 714-715). |
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8.2. Proof of Theorem 2.1

Since the KL condition (1.3) holds, the posterior distribution is consistent with
respect to the Lévy-Prokhorov metric dp, see Theorem 6.25 of [22]. Therefore,
there exists a real sequence €1, | 0 such that

H(dp(P, Po) > e | X, ,Xn> — .0 in probability.

To see this, let Ny = 1, and for every m > 1, choose N,,, > N,,_1 such that

1
E [H(dp(P,PO) > |X17...,Xn>} < - for every n > N,

1
m+1 m+
Define €1, = (m + 1)1 if N,, <n < Ny,41. Then, €1, — 0 and for N,,, <n <
Npt1, we have

1
E[H(dP(PaPO) >61n‘X1a-~-7Xn)} < m—_H —0

as n — oo.
Now, suppose that (2.1) holds. Then, in a similar way, we can construct a
sequence €o, | 0 such that

H(\M,,(P) — My(Po)| > €an | X1,... ,Xn> —50 in probability.
Let
Fo = {P € F1dp(P,Py) < e1n, |M,(P) — My(Py)| < ezn}
and P, € F, such that

Wy (Pr, Py) > sup W,(P, Py) — €1n.
PeF,

Note that (P,) is a non-random sequence of probability measures such that
dp(Py, Py) — 0 and M,(P,) — M,(F). It follows that W,(P,, Py) — 0. Since
II(F, | X1,...,Xyn) — 1 in probability, we conclude that (2.2) holds.

Conversely, suppose that (2.2) holds. Then, similarly as before, we can con-
struct a sequence €3, J 0 such that

E [H(WP(R Py) > esn | Xl,...,Xn)] —0.
Let
F = {P € F:W,(P,Py) < egn}.
and P/ € F], such that
|My(Py,) — My(Po)| > sup [M,(P) — Mp(Po)| — €3n.
PEF),
Again, (P),) is a non-random sequence with W, (P}, Py) — 0, so we have | M, (P},)—

M,(Py)| — 0. Since II(F), | X1,...,X,) — 1 in probability, we conclude that
(2.1) holds. O
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8.3. Proof of Theorem 2.2

We first provide a simple proof relying on a stronger moment condition than the
one in the statement of Theorem 2.2. For this, we assume that Mo, (FP) < K
and

H(P . Myy(P) < K | X1,... ,Xn> 1 in probability.

In view of the characterization of posterior consistency in the Wasserstein
distance of Theorem 2.1, we will establish that H(Cj | X1,.. .,Xn) — 0 in

probability for j = 1,2, where C; and Cy are the following two convex sets

Ci={P: M,(P)— My(Py) >¢, My,(P)<K}
Co={P: My(Py) — My(P) >e¢, Mo, (P)<K}

To this aim, it suffices to show that inf pec, H(Py, P) > 0 and inf pec, H(Py, P) >
0. For P € C; UCy, we have

(M (P) = My(Py)|* = ] [1al? (Vo o) + 1) (1 = Vo) () po(e)da 2
< H*(Py, P) /|x|2p (1 + \/p(w)/po(x))zpo(x)dx

by the Cauchy—Schwarz inequality. The integral of the right term is itself upper
bounded by

K+2/|x\2p Vo(x)po(z)de + K < 4K

by virtue of \/ppo < 1(p + po). Hence, we get H(Py, P) > ¢/(2VK) for P €
C1 UCs. O

Now, we will prove Theorem 2.2 without the moment condition of order 2p.

Lemma 8.6. For positive constants €,6 and K assume that
P(Bp) + Q(B) < K2~ @)™  form >0, (8.2)
and
P (F) N By) — Q(r-H(F) N Bm)‘ <e form<MFeP,l<L, (83)
where M and L are positive integers. Then,
WEP(P,Q) < K'[27°M 4 275p 4 2MPLe]

where K’ is a constant depending only on 6, K and p.



3660 M. Chae et al.

Proof. Since W} (Rp,, P,Rp, Q) < 2P and (8.2) holds, the summation in the
right hand side of (8.1) over m > M is bounded by ¢;27°M  where ¢; is a
constant depending only on ¢, K" and p. Therefore, W) (P, Q) is bounded by

M

> e[ BB, — Q)

m=0
+(PUBA) A QB WY (R, PR, Q)] + 12

by Lemma 8.5. Note that

[Ri,, P(F) — R, Q(F)| =

‘P(Wml(F) NBm) Q' (F) N Bp) ‘

P(Bp,) Q(Bm)
_ |P(7T;11(F) N Bm)Q(Bm) — P(Bm)Q(W;LI(F) N Bm)|
P(Bm)Q(Bm)

1

< PBIOBL [P(w;f(F) N Bm)‘P(Bm) - Q(Bm)\

P [Pl (F) N B) = Q! (F) 0 B
By Lemma 8.3 and the last display, we have

(P(Bu) A Q(B) )W (Rp,, P. R, Q)

< iy (P(B) A Q(B.))

X

L
> 27" N |Rp, P(F) - Rp,, Q(F)] +2‘L”1
=1

FePp
L
< Kp {Z 2”’{
=1

+ 3 [Pt () B - QP B[

FeP,

P(Bu) = Q(By)|

(8.4)

4o Lp (P(Bm) A Q(Bm))]

< | [P(B) = Q)| + 272 (PUB) A QUB))
+ ZL:T“’
=1

It follows that

S [Pt ()1 B = QP 0 B .

FeP
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P
Wy (P, Q)

M
<2 M4 Y 2’”?{(2?‘1 + 1) [P(B) = Q(By)|

m=0

Frp2 P (P(Bm) A Q(Bm))}

M L
iy 3027327 3 P (F) 0 Bi) = QU (F) 01 Bun)|
m=0 =1

FeP;
M M
<27 b2 k) > 2P Krp27 Py 270m
m=0 m=0
M L
D SELD SR
m=0 =1

< e (2*‘”” 4 oMpe o-Lp 2MPL6),

where the second inequality holds by (8.2), (8.3) and that the cardinality of P,
is 2. Here, ¢y is a constant depending only on §, K and p. O

By (5.4), we have that
Py(By,) < 2PHOK2=(HO™  for m > 0.
and II(Fy | X4,...,X,) — 1 in probability, where
Fo = {P . P(B,,) < 2PF0 K2~ (PHOm for all m > 0}.

Suppose that a sufficiently small € > 0 is given. We will prove that for some
function g : (0,00) — (0,00), with g(e) | 0 as € ] 0,

H(W;’(P, Py) > g(e) ‘ Xy,. .. ,Xn) ~ 0 in probability.  (8.5)
Let M and L be the largest integer less than or equal to (log,e~')/(2p) and
log, €71, respectively. Then,
270M 4 o=Lp 4 9Mp e < 2060/(2P) 4 oPel 1\ [elog, e L. (8.6)
Let
Fpg = {P : P(n; (F) N Bo) — Po(m, (F) N By < e}
Funr = { P Po(m, (F) 1 Byn) = P(m, (F) N B) < e}

Then, by Lemma 8.6 and (8.6), there exists a constant ¢;, depending only on
6, K and p, such that

PeFy and Pe () () [) Fnrs N Fmr-)=F
m<M I<L FEP,
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implies that
WEP(P, Py) < 1 (2666/(21‘0) + 2P + /elog, e_l) = g(e).

Certainly, g(e) | 0 as € | 0. Since II(F§ | X1,...,X,) — 0 in probability and
the KL condition (1.3) holds, by Schwartz’s theorem (see Theorem 6.25 of [22]
if II depends on n), it is sufficient for (8.5) to construct a sequence ¢,, of tests
such that

Pogn + sup P(1—¢n) <e ™ (8.7)
PeFe

for some constant ¢ > 0 and every large enough n.
Let

p 1 i Pu(m, (F) N By,) — Po(m, (F) N Byy,) > €/2
mE+ 7Y 0 otherwise

s 1 ifPy(n ) (F)N By,) — Po(m, (F) N By, < —€/2
mF=700 otherwise.

Then, by the Hoeffding’s inequality,
2
(Podm,r+) V (Podmp,—) <e /2,

Also, for P € ffn’F)_i_’
P(1 = émr+) < P(]P’n(w;f(F) N By) — P(r; (F) N By) < —5/2) < ene/2
by the Hoeffding’s inequality. Similarly, for P € ‘an, P
P(1 = ¢mr—) < ene /2,
Therefore, if we define

= max max max \Vi _
¢n m<M 1<I Fepl(¢7n,F,+ ¢m,F7 ),

then,

Pobn < 3 3TN Po(bmps + bmop—) < 28PN L 4 1)(M 4 1)< /2,

m<M I<L FEP,

Since L, M and e does not depend on n, ¢, satisfies (8.7) for some ¢ > 0 and
large enough n, which completes the proof. O

8.4. Proof of Theorem 3.1

For a given sequence 9,,, let

Cot = {p: My(P) — My(Po) > 6, Moy (P) < K}
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Cn,2 = {p : Mp(PO) - Mp(P) > 6naM2p(P) S K}

and C, = C,,1 UCp 2. Then, it can be shown that

2

inf H2
nf (p,po) > 4K

as in the first proof of Theorem 2.2. For any measurable set C, let HfL be the
posterior distribution restricted and renormalized onto C, that is,

RS &
T / H ) (X;)dIl(p) for all measurable A C C

and let pf(z) = [, p(x)dIIS (p), where

_ (112
© = /C [T (xoa)

Since
Ln n
(C) p 1 ()(n)7
L,_1(C) Do
we have
B[LY2(C) | Ga| = L221(C) (1 = 312 (po, 5_1) ).
where G,_; is the o-algebra generated by Xi,...,X,_1. Since C, ; is convex,

we have HQ(pO,ﬁTCL"Jl) > 62 /(4K) for j = 1,2. Therefore,

2 n
ELY?(Cn;j) < (1 - ;—;(> < emendn

for all large enough n, where ¢; > 0 is a constant depending only on K. It
follows that L,(C, ;) is upper bounded by e~°2"%% with probability tending to
1 for some constant cy. Thus, if we take §,, = K'e, for large enough K’, the
proof is complete.

8.5. Proof of Theorem 3.2

Lemma 8.7. For positive constants a9, € and K, suppose that

P(Bp,) + Q(B,,) < K2-@P+)m g5 m > 0, (8.8)
and
K24 a) e

ENE (8.9)
form <M, FeP,l<L.

P, (F) N Bp) = Q(m, (F) N By | <

m
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Then,
L —(p+o)M
W2(P,Q) < K’ [2 P4 e 2~ (P +0) }

where K' is a constant depending only on a, K and p. If p > 1, condition (8.9)
can be replaced by a slightly weaker condition that

form <M, FeP, <L

(8.10)

Proof. By (8.8) and that W2(Rg,, P,Rp,, Q) < 2P, the summation in the right

hand side of (8.1) over m > M is bounded by a constant multiple of 2~ (P+)M
Since By € Py,

M
Z 2mp|P(B7n) - Q(B’H'L)|

Z 27| P(m,}(Bo) N Byn) — Q(P (3 (Bo) N Br)|

S

I /\

JZM:( ) =K 1— (1+a/2)"(M+Dp
€
Lo \2+a 1-(14a/2)~P ~

where the inequality holds by (8.9) with I = 0. Therefore,

Z 2" (P(Byn) A Q(By) )Wy (R, P. R, Q)
+K' (e + 2*(”*5)]‘4)

by Lemma 8.5, where K’ is a constant depending only on «, K and p. By (8.4),
the summation in the last display is bounded by

Ko sz: gmp [‘P(Bm) - Q(Bm)‘ yoLp (P(Bm) A Q(Bm))
" (8.11)
+ 22‘“’ > [Pt ()0 B - @t ()0 )

FeP,

Since the cardinality of P; is 2! and ;2 (I + 1)72 < oo, the first assertion
follows from (8.8) and (8.9).
If p > 1 and (8.9) is replaced by (8.10), we have

Zz Y ‘P “L(F)A Bp) — Q(r - (F) N Buy)

FeP,
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L
S IZ K2_l(p_1)(2 + a)_mpﬁ S ﬁ(2 + Oé)_mpf,.
=1
Therefore, we have the same conclusion with a different constant K. O

Lemma 8.8. If X1,..., X,, "3 P, then

P(P,(B) < P(B) — ¢) < exp (_ ne )

P(Pn(B) > P(B) +¢) < exp (‘W)

for everymn > 1 and € > 0.

Proof. See Theorem 1 of [28]. O

Before proving Theorem 3.2, we state and prove a similar one. Theorem
8.9 below is devised for eliminating the logarithmic term loge, ! in Theorem
3.2. Proofs of Theorem 3.2 and 8.9 are quite similar, so we do not provide all
details to avoid the repetition. We provide a detailed proof only for Theorem 8.9
because this contains the most technical part caused by the factors (I+1)~2 and
(14 1)~%. These factors appear for handling the last term in (8.11). If p > 1, we
need not consider these factors by the second assertion of Lemma 8.7. For p = 1,
we can avoid the technical factors (I + 1)~2 and (I + 1)7*, with an additional
logarithmic factor in the rate. If we want to eliminate the term loge, !, the
statement would become more complicated as Theorem 8.9. For conciseness we
decided to include Theorem 3.2 in the main texts rather than Theorem 8.9.

Theorem 8.9. Assume that the prior 11 satisfies the KL condition (1.4) for a
sequence €, with €, | 0 and €, > \/(logn)/n. Furthermore, assume that there
exist positive constants K and 6 such that

Py(m;}(F) N Bp) < 2= @p+Im  form >0,F € P, 1 >0

I+ 1)*

and II(FS | Xq,...,X,) — 0 in probability, where

Fn = ﬂ ﬂ ﬂ {P : P(ﬁ;Ll(F) N Bp,) < %2—(2”5)7,@}

m>01<L FEP, (+1)

and L is the largest integer less than or equal to (logy €, t)/p. Then, for some
constant K’ > 0,

11 (W;;(P, Py) > K'e,

Xq,... ,Xn) — 0 in probability. (8.12)
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Proof. Let M be the largest integer less than or equal to (p+d) 7! log, e, 1. Let
a > 0 be a sufficiently small constant such that (1 + a/2)% < 2°. For m < M
and F € P, with [ < L, let

(

2K, o

STyt 6"}
(

2K .
gt e

where K7 > 0 is a large constant described below. Then, by Lemma 8.7,

Pe ﬂ ﬂ m(fm,F,Jrnfm,F,f)Efr/L

m<MI<LFeP,

implies that WP (P, Py) < Kae, for some constant Kj. Since II(C,,) > e~men,
by Lemma 8.1, it is sufficient for (8.12) to construct a sequence ¢,, of tests such
that

Pyp, =0 and sup P(1—¢y) < e 3nen (8.13)
Pe(F})e

for every large enough n.
For m < M and F € P; with [ < L, let

{ L if Py (m, (F) N By) — Po(m,' (F) N Bi) > igyz (2 + ) ey
¢m,F,+ -

0 otherwise

b g = L if Py (7, (F) N Byn) — Po(m, (F) N Biy) < iz (2 4+ @) 7ey,
e 0 otherwise.

Then, by Lemma 8.8,

n

2{Py(m" (F) N Bp) + K1(1 +1)72(2 + o) ~™P¢,, /3}
If Py(m;}(F) N Bp) > Ki(1+1)72(2+ a)"™Pe¢, /3, then

~K3(1+1)"42+ a)"2mPne2
Potm r+ < exp [ i( )~ ) ] .

K2(14+1)"4(2 + a)~2mPne?
Popm, 4 < exp { il ) _1( ) }
4Py (mm (F) 1 Byy)
< exp [— Ki(2+ a)—Qmpnei] = exp {— 7[(1257’%6%] ;

4 K2~ @2ptd)m 4K

where 3 = 29(1 4+ a/2)72? > 1. Otherwise,

3
Pobmrs < exp [—Zm 122 a)mpnen}
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3 1 —92 1 plogo (24+a)
S exp |:ZK1n(_ 10g2 6;1 + 1) €n+ p+é S e*Kﬂlei
p
for large enough n, where the second inequality holds because m < M < (p +
§)"tlogy e, and I < L < (logy €,1)/p, and the third inequality holds because

plogy2+a) _log,(2+a)P 0 2+a)  (1+a/2)7
p+6 ~ log, 2pt9 an op+s 26 <t

Since €, > 4/(logn)/n, we have

P, < ML2" max max max P,
Z Z Z 0Pm, F+ < max max max 0Pm, F,+
m<M I<L FEP,

1 2/1 1/p
log, e ) — max max max F e — 0
82n €n m<M I<L FeP, 0Pm, .t

1
<5
p(p+9)
as n — oo provided that K is large enough. Also, if K is sufficiently large, for
PeFy gy with F € Py,

P(l - ¢m7F,+)
1

- P(wm%F) N By) - P(ry, (F) N Byy) < ‘uf—w@ + awpen)

K2 l 1 —4 2 —2mp,, 2 K2 m .
S exp |: 1( + ) _1( + Oé) nen:| S exp |: 1ﬂ ’fl62:| S 6737151
2P (tm (F) N Byn)

2K "

for large enough n, where the first inequality holds by Lemma 8.8. A similar
inequalities for Py@p, p— and P(1 — ¢, r—) can also be obtained. Therefore, if
we define

= max max max V _
¢n meM 1<L Fepl(¢m,F,+ d)m,F, )

and K is sufficiently large, then ¢,, satisfies (8.13) for all large enough n. This
completes the proof. O

Proof of Theorem 3.2 for p > 1. We first claim that if

Py(Bp,) < K2-@pH0m  for m >0

and TI(F§ | X1,...,Xn) — 0 in probability, where

Fo= {P . P(B) < K2—<2P+5>m},

m>0

then (8.12) holds for some constant K’. The proof of this claim is the same to
that of Theorem 8.9 if we replace F,, by Fy and eliminate the factors (I 4+ 1)72
and (I +1)~* in all equations, which is possible due to the second assertion of
Lemma 8.7.
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Once we adjust the constant K, two conditions of the claim is satisfied by
(5.4). Hence the proof is complete. |

Proof of Theorem 3.2 for p = 1. If (8.8) and (8.10) hold with p = 1, then it
holds that
Wi(P,Q) < K’ [2—L + Le+ 2—<1+5>M} . (8.14)

This can be proved as in Lemma 8.7. The only difference is that the last term
in (8.11) is bounded as

M L
I ORDY ‘P(w;ll(F) A Bu) — Q(rz (F) Bm)’

m=0 =1 FePp;
M 9 m )
S KKPE E E (m) S K LG,

m=0 =1

where K’ is a constant depending only on «, K and p.
As in the proof of Theorem 3.2, we next claim that if

Py(B,,) < K2-CHm  form >0

and II(F§ | X1,...,X,) — 0 in probability, where

Fo= () {P: P(Bn) < K2 GO},

m>0

then

H(WI’,’(P, Py) > K'e, loge, ’ Xq,... ,Xn) — 0 in probability

for some constant K’. To prove this, define L, M and « as in Theorem 8.9 with
p=1. Also, for m < M and F € P, with [ < L, let

FmFi= {P € Fo: P(r;} (F)N B,,) — Po(m,; (F) N B,,) < 2K1(2 + a)_men}
Fon e = {P € Fo: Po(r, (F)N B,) — P, (F)N B,,) <2K,(2+ a)men},

where K7 > 0 is a large constant as in the proof of Theorem 8.9. Then, by
(8.14),

Pe ﬂ ﬂ ﬂ (Fn,pe N Fmyp—) = F,,

m<M I<L FEP,

implies that sz(P, Py) < Kaeploge, ! for some constant Ky. Once we change
the definition of ¢, as

= InaX max max V _
on m<M I<L Fepl(¢m’F7+ ¢m,F, )a
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where

& 1 i Py(m, M (F)N By) — Po(m,H(F) N B) > K1(2 4 )™,

mE+ 70 otherwise

" 1 Py (r,, (F)N By,) — Po(m,H(F) N By,) < —K1(2+ a) ™€,
m,F— 0 otherwise,

the remaining proof of the claim is the same to that of Theorem 8.9.
Once we adjust the constant K, two conditions of the claim is satisfied by
(5.4). Hence the proof is complete. O

8.6. Proof of Theorem 4.1

Let F. = {P € Fo : W (P, Py) < €}. We will show that for every small enough
e > Ki4/(logn)/n and n > ng, there exists a test ¢ such that

P0¢ S e—K2n62 and PSEH}_)C P(l — d)) S e_KzngZ’ (815)
2e

where K7, Ko and ng are constants depending only on ¢g. Since II(K,,) > e*’“i,
(8.15) and Lemma 8.1 guarantees (4.1) for large enough constant K > 0.

Let € > 0 be given. Let N be the smallest integer greater than or equal to
e L. Let I; = [(j — De,je) for 5 =1,...,N —1 and Iy = [(N — 1)e, 1]. Let
L :ug;f—lfl forj=1,....,Nandk=1,...,N—j+1. Let .# and & be the
collections of every interval I;; and every finite union of I, respectively. Note
that the cardinalities of .# and % are N(N + 1)/2 and 2 — 1, respectively.

We first claim that for P € Fy,

P(Ijx) — Po(Ii) < % Vj, k implies that W (Py, P) < 2e. (8.16)

If B is either [0,1] or [0, (N — 1)e), it is obvious that P(B) < Py(B¢). Also, for
B = I}, for some (j, k), with B # [0,1] and B # [0, (N — 1)e),

Cp€

P(B) < Py(B) + -5 < Py(B°).

Thus, P(B) < Py(B°¢) for every B € .. For B € # — .%, we have B = U | B,
for some L > 2, where B; € .# and B;’s are e-separated. Thus,

L
Py(B%) = > Py(By) + (L — )ege.
=1

It follows by (8.16) that

P(B)=3 PB) <Y Po(B) + LZOG < ST Ry(B) + (L — 1)coe < Po(B9).
=1 =1 =1
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Thus, we have P(B) < Py(B¢) for every B € #. Next, for any Borel subset A
of [0,1], let J ={j : ANI; # 0} and C' = UjecsI;. Then, we have C' € # and
A C C C Ac. Therefore,

P(A) < P(C) < Py(C*) < Py(A).

This proves (8.16).
By (8.16), Then, Fo D Nj kFjk, where

.ij = {P : P(Ijk) - Po(Ijk) S 006/2}.
Define test functions ¢, as ¢, = 1 if

Cp€

P (L) > Po(Ljk) + v

and ¢;;, = 0 otherwise. Then, for every P € Fik» we have

P(1 = g3%) = P{Pu(lj) < Polln) + 5}

4
= P{PulLin) < P() + PolLjx) = P(L) + <5}
< P{Bu(L) < P - D} < enp [-29]

where the last inequality holds by the Hoeffding’s inequality. Let ¢ = max; i ¢;x.
Applying the Hoeffding’s inequality again, we have

N(N +1 ncte?
Pyp < Zpo¢jk < % exp [— g ]
gk (8.17)

2 2
< exp [2 log(e ! +1) — ok }

8

Therefore, we can choose constants K1, Ko > 0 and ng such that if
e > K14/ (logn)/n,

then the right hand side of (8.17) is bounded by exp(—Kane?) for every n > nyg.
This completes the proof of (8.15). O

8.7. Proof of Theorem 5.1

Lemma 8.10. There exist universal constants c1,co > 0 such that

for every e € (0,1].
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Proof. Note that

fe%s) 1 o)
I'(e) =/ e dr :/ xe‘le‘rder/ e dx.
0 0 1

It is easy to show that there exist constants a; and as such that
oo
a; < / e %dr < as
1

for every e € (0,1]. The assertion follows because e™! < e™® < 1 for every

z € (0,1] and fol ¢ty = e L. O

Lemma 8.11. Suppose that X ~ Beta(ae, a(l —¢€)), ae <1 and a(l —¢€) > 1.
Then,

P(X >t) < Cu(1 —1t*),
where Cy, is a constant depending only on «.
Proof. Let p be the pdf of X, that is,

_ ['(e)
P@) = F T e = o)

By Lemma 8.10,

aefl(l _ x)a(lfe)fl.

1 1
P(X >t)= / p(x)dx < cae/ rdy = c—a(l — 99,
t t @

where ¢, is a constant depending only on «. O

Lemma 8.12. Suppose that TI(K,,) > e " and €, > \/(logn)/n. Then, there
exists a universal constant K > 0 such that

H<|P(Bm) — Py(By)| < Ke,, Ym < Cloge;' | Xy, ... ,Xn) — 1 in probability

for every C > 0.
Proof. Let C > 0 be given. For eacn n and m < Cloge,, !, let

b = I<|Pn(Bm) — Py(Bp)| > Ken/Q),

where K is a universal constant described below. Using the Hoeffding’s inequal-
ity, it is not difficult to prove that

2 2 2 2
Poty, S e B /2 and - sup P(1 —1,) S e Kmen/2,
pPegy,

where G, = {P : |P(By,) — Po(Bn)| < Kep}. Let

On = max. Y-
m<C'log €,
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Then, we have

Pyo, S Clog egle*Kz’“i/2 —0 and sup P(1—¢,) < e*K%Ei/Q,

PcFe
where
Fo= () Gm
m<Clogen’
Thus, the proof is complete by Lemma 8.1 provided that K?2/2 > 3. U

Lemma 8.13. Let €, be a sequence such that €, — 0 and €, > \/logn/n. Let
H be the normal distribution with mean py and variance o%. For a Dirichlet
process mizture prior (5.2) with « > 1 and 0 = o, — 0, suppose that TI(KC,;,) >
e~ Also, for some p € [1,00), assume that Py(B,,) < K27P™ for every
m > 0, and that €, < An~—r/(2+2p) for every n, where K and A are constants.
Then,

H(P(Bm) <K'27P"Ym >0 Xy,..., Xn) 51 in probability,

where K’ is a large enough constant.

Proof. Let €, = Le,, and define /En as KC,, after replacing e, byfn7 where L is
a large constant described below. Then, II(KC,,) > II(K,,) > e~ "». Note that

G(B) ~ Beta(aH(B), a(l - H(B)))

for any Borel set B. Also, aH(B,,) <1 and a1 — H(B,,)) > 1 for every large
enough m, where
By, = (=00, 2™ U (2™ 00).
Thus, by Lemma 8.11, for any K’ > 2P,

I(G(By) > K'27"™) <I(G(B) > K’2:Pm) 5.18)
<I(G(Byn) > 277™) < Cy (1 — 27Pmel(Bm))

for every large enoug? m, where C\, is a constant depending only on «a. Note
that 1 — ®,(z) < e=* /(297 /2 where ®, is the cdf of ¢,, so we have

B < o] - (Ft) Do o (i) ).

Since 1 — e~® < z, the right hand side of (8.18) is bounded by

log 2 1 /27t — g \° 1727 g\
paCym |expq —= [ ————— +expl —= | ——
2 2 oy 2 OH
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< paCy exp{—C,, 22’"}

for every large enough m, where C,,, is a constant depending only on op.

Note that P is the convolution of G and N(0,02). If Y; = Ya + Y3, where Y
and Y3 are independent random variables following G and N (0, 02 ), respectively,
then

P(B,,) = Pr(|Y1] > 2™ 1) < Pr(|Ya| > 2™72) + Pr(|Ys] > 2™?)

<
<G(Bm-1)+2(1-2,,(2"7%).

Hence,

P(By,) < P(B,) < G(Bp-1) +2(1 - 2,,(2m72))
o 22(m72) o
< G(Bm—l) +exp | — < G(Bm—l) + 2fpm’
202

n

where the last inequality holds for every large enough m. It follows for any
constants C' > 0 and large enough n that

I(P(By,) > (K' +1)27*™ for some m > Clogé,")

< H(G( _1) > K'27P™ for some m > C’logggl)

= II(G(B,,) > K'277!"F) for some m > Cloge,* — 1)
< ) IO(GBn)>27M)

m>Clogé, ' —1

Cyy - :
S paCy, Z exp (—Cyy, 2°™) < paCy exp (—_4H 20 og 2> '

mZCloggglfl

B
B

If we take C' = (plog2)~*, the right hand side of the last display is bounded by

paCly, exp <— CZH ’gn2/p) )

Since €, < An~P/(2+2p) ne2 is bounded by a constant multiple of 6772/17 for
every n. Hence, if L is large enough, we have that

H(P(Bm) > (K’ +1)27P™ for some m > C'log€, ' | X1,... ,Xn) -0

in probability by Lemma 8.2.
Note that by Lemma 8.12,

H(|P(Bm) — Po(Bp)| < K"&, ¥m < Clog&; ' | X1, ... ,Xn) 1
in probability, where K" is a constant. Since
Py(By) + K¢, < (K + K")27P™

for every m < Clog¢, !, the proof is complete. O
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It is shown in the proof of Theorem 2 in [21] that II(K,) > e~ with €, =
en~2/>(logn)? for some constant ¢ > 0. For any p < 4, note that ¢, < n~?/(2+2p)

for all large enough n. Hence, the proof of Theorem 5.1 is complete by (5.4) and
Lemma 8.13. O

8.8. Proof of Theorem 7.1

Denote pe(z) = [ ko(z — 2)dG(z). We use the result of [36]. It is shown in the
proof of Theorem 2 in [36] that

W22<G7GO)
2(5—9) /(142 1/6 (s—2)/(1+2s)
<C inf |8+ |lpe — pa, 70T 0T 8){/ k(t)_th}
4€(0,1) _1/s

for any s > 2 and G with M3(G) < oo, where C'is a constant depending only on
s. Note that Theorem 2 of [36] assumed that G and Gy are discrete probability
measures with bounded supports, but finiteness of the second moment suffices
as discussed therein. The right hand side of the last display tends to zero as
Ipe — paylli — 0. It follows that for every e > 0,

H(W22(G7G0) > e Xl,...,Xn> — 0.

in probability. Since W2 (Pg, Pg,) < W2(G, Gy), the proof is complete. O
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