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Abstract: This paper derives a new randomization procedure by condi-
tioning Efron’s (1971) biased coin design to a prespecified final balance. The
new procedure remains a function of the original bias parameter which now
controls the probability of intermediate balance rather than final balance.
As the sample size increases, the design’s selection bias and intermediate
balance are similar to those of the original biased coin, but unlike the origi-
nal biased coin it always guarantees final balance. It is also shown that the
permuted block design for equal allocation is a special case of the new pro-
cedure when used in blocks. The latter can substitute the permuted blocks
with the added benefit of reducing the expected number of deterministic
assignments. The new design is also noteworthy since it shows that a ran-
domization procedure with new properties can be obtained by conditioning
an existing one to a subset in its allocation space. New relationships among
existing designs can be established in the process, further elucidating the
protean nature of randomization.
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1. Introduction

Efron’s (1971) biased coin design is the oldest restricted randomization proce-
dure proposed to mediate between balance and randomness of treatment assign-
ments in clinical trials. A balanced design, which assigns an equal number of
subjects across treatment groups, is optimal under a series of classical statistical
models since it minimizes the variance of the treatment effect estimators and
maximizes power of the associated hypothesis tests [1]. An unpredictable allo-
cation procedure is desirable to minimize bias in estimation, particularly with
open label trials [1]. Randomness of an allocation procedure can be described
by the expected number of deterministic assignments and the selection bias,
which is the bias due to the intentional guessing of the treatment allocations by
the investigator [5, 12, 16]. Balance and randomness of allocation procedures,
although both desirable features, are typically attained at the expense of one
another through a trade-off [1, 16]. On one extreme, complete randomization
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Fig 1. The allocation space of the permuted block design with b = 2 for n = 8. There are
36 possible sequences that are equiprobable. Each down arrow indicates an assignment to the
treatment group, while an arrow to the right indicates an assignment to the control group.
The allocation probabilities are indicated on the arrows. All sequences start from the node
(0, 0) and end at (8, 4). The first element in each node summarizes the number of subjects
allocated so far, and the second number tallies how many of these have been randomized to
the treatment group.

is unpredictable since it randomizes subjects using a fair coin but has a non-
nengligible probability of imbalance. On the other, the permuted block design
eliminates unbalanced designs but is highly predictable. The permuted block de-
sign employs equiprobable randomization subsequences of length 2b, i.e., blocks
of size 2b that assign b subjects to treatment and b subjects to control at a
time [12] (Figure 1). The biased coin design was introduced as an alternative to
both complete randomization and the permuted blocks to mitigate the balance–
randomness trade-off.

To define the biased coin design, let T1, . . . , Tn be a randomization sequence,
where Tj = 1 if subject j is randomized to the treatment group and Tj = 0

otherwise, j = 1, . . . , n and n is a positive integer. Denote N1(j) =
∑j

i=1 Ti as
the number of subjects randomized to the treatment group after j assignments.
The biased coin design with 1/2 ≤ p ≤ 1 makes the j + 1st assignment to the
treatment group as follows:

P{Tj+1 = 1|N1(j)} =

⎧⎪⎨
⎪⎩
1/2, N1(j) = j/2,

p, N1(j) < j/2, j = 0, 1, . . . , n− 1,

1− p, N1(j) > j/2.

(1.1)

When p = 1/2, randomization is complete. When p = 1, the randomization
corresponds to the permuted block design with block size 2, where every other
assignment is deterministic. When p < 1, the design is fully randomized with
each subject being assigned to a treatment randomly. Efron suggested p = 2/3
as a suitable trade-off between randomness and balance [6]. Although the origi-
nal intent of the biased coin was to force a sequential experiment to be balanced,
balance is enforced only probabilistically. The same is true with its direct exten-
sions: the biased coin with imbalance tolerance and the accelerated biased coin
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Fig 2. The allocation space of the maximal procedure with a maximum tolerated imbalance
of 2 and n = 8. There are 54 possible sequences that are equiprobable. The most extreme
imbalance that may occur prior to the final assignment is 2 in nodes (2, 2), (4, 3), (6, 4), and
−2 in nodes (2, 0), (4, 1), (6, 2). By comparison, nodes (4, 3) and (4, 1) are not part of the
allocation space of the permuted block design in Figure 1.

design ([16], p. 51). For example, with a sequence of 2n1 = 100 assignments
and p = 2/3, the probability of final balance with Efron’s biased coin is 0.5
compared to 0.08 for complete randomization. In the same example, when the
permuted block design is used in blocks of size 4 [4, 13] the probability of final
balance is 1 but the expected number of deterministic assignments is on average
2n1/(b+1) ≈ 33 [2]. These examples show that the biased coin design improves
the probability of balance compared to complete randomization, but does not
guarantee it as the permuted block design. The improvement in the probability
of balance comes without adding any deterministic assignments. Despite that,
the permuted block design is still the most popular procedure for clinical trials
[3]. Aside from being recommended by the International Conference on Harmo-
nization Guideline E9 [8], the permuted block design’s popularity could also be
explained by the use of centralized allocation schedules in global, multisite trials
which has reduced the perceived risk of selection bias. Balance throughout the
trial, on the other hand, has remained fundamental and the permuted block
design guarantees that in theory, if all blocks are filled. Clearly, if selection bias
is a concern as is in open label and single site studies, the biased coin or other
design alternatives could be better than the permuted block design [9]. Berger,
Ivanova, and Deloria Knoll (2003) devised the maximal procedure as such an
alternative [2, 17].

The maximal procedure reduces the expected number of deterministic as-
signments compared to the permuted blocks by increasing the allocation space
relative to the permuted block design but constraining it to the same maximum
intermediate and final balance as the permuted block design (see example in
Figure 2). The intermediate imbalance is the unequal number of subject allo-
cated across treatment groups that may occur at any time prior to the final
assignment, while the final balance is an equal number of treatment allocations
at the end of the trial. Preventing severe intermediate imbalance is necessary
to avoid time trends, and to maintain optimal design properties in case of early



4030 V. P. Johnson

Fig 3. The random allocation rule for 2n1 = 8. There are
(
8
4

)
possible sequences that are

equiprobable. The random allocation rule for 2n1 assignments is the same as one permuted
block with b = n1.

stopping [1]. The maximal procedure is also a member of a class of procedures
with a maximum tolerated imbalance, which is the most extreme imbalance
allowable during the course of a trial [3]. These are called maximum tolerated
imbalance procedures.

Other well known procedures that guarantee final balance are the random
allocation rule [16] and the truncated binomial design [5]. The random allo-
cation rule is the random mechanism used to fill the blocks in the permuted
block design, but can be viewed as a randomization procedure in itself. It yields
equiprobable sequences, but does not control the intermediate imbalance (see
example in Figure 3). The truncated binomial design allocates successive treat-
ments independently with probability 0.5, as in complete randomization, until
n1 allocations of one kind have been made. Afterwards, all remaining assign-
ments are deterministic. This procedure does not have equiprobable sequences
and does not control the intermediate imbalance. To visualize the truncated
binomial design for n = 8, one would change all allocation probabilities in Fig-
ure 3 to 0.5 except for those at the boundary which remain 1. A summary of all
procedures introduced so far is included in Tables 1 and 2.

This paper derives a new procedure that guarantees final balance by condi-
tioning the biased coin design to yield only balanced sequences as in the case
of the random allocation rule, the maximal procedure and the permuted block
design. The new randomization scheme remains a function of the original bias
parameter p which now serves as a parameter for controlling the probability of
intermediate balance rather than final balance. With this modification, the new
design maintains similar selection bias and intermediate balance as the original
biased coin but is self-correcting towards the end when balance must be met.
The gain in final balance comes at the expense of adding less than 2 determinis-
tic assignments on the average, which is less than that of the random allocation
rule with the same sample size. An important adaptation is the option to use
this procedure in multiple blocks, similar to the permuted block design, with
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Table 1

Summary of randomization procedures for equal allocation that are discussed in this paper.
The procedures aim to randomize n = 2n1 subjects to two groups.

Procedure Definition

CR Allocates each subject with a fair coin.

BCD Allocates subjects using a fair coin when the allocations in each arm are
equal, and a biased coin otherwise to favor the underrepresented arm.

PBD Allocates subjects in blocks of size 2b at a time; within a block b subjects
are assigned to each arm by any random order.

MP Allocates n1 subjects to each arm in any random order such that the
intermediate imbalance is at most b.

RAR Allocates n1 subjects to each arm in any random order.

TBD Allocates subjects with a fair coin until n1 subjects are randomized to
one of the arms, then assigns the rest to the other arm.

CR, complete randomization; BCD, biased coin design; PBD, permuted block design;
MP, maximal procedure; RAR, random allocation rule; TBD, truncated binomial design.

the clear benefit of reducing predictability, while ensuring balance periodically
throughout the trial.

This paper builds on the work in Plamadeala and Rosenberger (2012) who
developed the idea of sampling sequences from conditional reference sets under
Efron’s biased coin design with the purpose of approximating conditional ran-
domization tests. The current paper treats the sampling mechanism obtained
in their work as a randomization mechanism, provides closed form expressions
for the allocation probabilities and analyzes several properties. The result in
this paper is noteworthy since it shows how a new randomization procedure
can be obtained by conditioning an existing one to a subset in its original allo-
cation set. In this process, new connections among existing procedures can be
established. Section 2 introduces the new method and describes its properties.
Section 3 compares it to other procedures that ensure final balance, while Sec-
tion 4 outlines several implications on inference. The paper ends with a short
discussion.

2. The conditional biased coin design

The idea of conditioning a randomization procedure to achieve a prespecified
final imbalance was formally described in Plamadeala and Rosenberger (2012) in
the context of approximating conditional randomization tests. In the simplest
and well known case, conditioning the complete randomization to the set of
sequences that achieve final balance leads to the random allocation rule. For
restricted procedures defined as φj+1(mj) = P{Tj+1 = 1|N1(j) = mj}, mj =
0, . . . , j, this can be seen as follows. Assume only sequences with n1 allocations
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Table 2

Comparison of randomization procedures for equal allocation that are discussed in this
paper. The procedures aim to randomize n = 2n1 subjects to two groups.

Forces Forces
final intermediate Equiprobable Deterministic

Procedure balance balance sequences assignments

CR No No Yes No
BCD No No No No
PBD Yes Yes Yes Yes
MP Yes No Yes Yes
RAR Yes No Yes Yes
TBD Yes No No Yes

CR, complete randomization; BCD, biased coin design; PBD, permuted
block design; MP, maximal procedure; RAR, random allocation rule;
TBD, truncated binomial design.

to treatment and n − n1 allocations to control are allowed. To achieve such
a sequence, Tj+1 must be conditioned on both N1(j) = mj and N1(n) = n1,
which yields ζj+1(mj , n1) = P{Tj+1 = 1|N1(j) = mj , N1(n) = n1}, mj =
max(0, j − (n− n1)), . . . ,min(j, n1):

ζj+1(mj , n1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φj+1(mj)
P{N1(n) = n1|N1(j + 1) = mj + 1}

P{N1(n) = n1|N1(j) = mj}
,

j = 1, . . . , n− 1,

φj+1(mj)
P{N1(n) = n1|N1(1) = 1}

P{N1(n) = n1}
, j = 0.

(2.1)

Note that equation (2.1) is Theorem 2.1 in [14]. Thus, for complete randomiza-
tion which has φj+1(mj) = 1/2 and with n = 2n1:

ζj+1(mj , n1) = (1/2)

(
n− j − 1

n1 −mj − 1

)
(1/2)n−j−1

(
n− j

n1 −mj

)
(1/2)n−j

=
n1 −mj

n− j
, j = 0, . . . , n− 1,mj = max(0, j − n1), . . . ,min(j, n1),

the expression for the random allocation rule. This establishes the relationship
between complete randomization and the random allocation rule, in the sense
that the random allocation rule for a sequence of size 2n1 is the complete ran-
domization assignment conditioned on the set of sequences assigning n1 subjects
to each treatment group. For example, to obtain the random allocation rule in
Figure 3, one sequentially conditions the complete randomization assignments
for a sequence of size n = 8 to the set {N1(8) = 4}.

For the biased coin design, Plamadeala and Rosenberger (2012) derived the
exact conditional probabilities necessary to evaluate (2.1) numerically, but do
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not provide the closed form expression of (2.1). Specifically, they derived the
conditional distribution P{N1(n) = n1|N1(j) = mj}, where n is a positive inte-
ger, n1 = 0, . . . , n, j = 0, . . . n−1 and mj = max(0, n1−(n−j)), . . . ,min(j, n1).
For the special case n1 = n/2, pn,j(mj) = P{N1(n) = n1|N1(j) = mj} is:

pn,j(mj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn1−mj

n1−j+mj∑
l=0

n1 −mj − l

n1 −mj + l

(
n1 −mj + l

l

)
ql, mj < j/2,

pn1−mj

n1−mj−1∑
l=0

n− j − 2l

n− j + 2l

(
n1 −mj + l

l

)
ql, mj = j/2,

pn1−j+mj

n1−mj∑
l=0

n1 − j +mj − l

n1 − j +mj + l

(
n1 − j +mj + l

l

)
ql,

mj > j/2,

(2.2)
with 1/2 ≤ p ≤ 1 and q = 1− p. The exact unconditional distribution of N1(n)
was derived by Markaryan and Rosenberger (2010):

P{N1(n) = n1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn1

2

n1∑
l=0

n− n1 − l

n− n1 + l

(
n− n1 + l

l

)
qn−2n1+l−1, n1 < n/2,

pn1

n1−1∑
l=0

n− 2l

n+ 2l

(
n1 + l

l

)
ql, n1 = n/2,

pn−n1

2

n−n1∑
l=0

n1 − l

n1 + l

(
n1 + l

l

)
q2n1−n+l−1, n1 > n/2,

(2.3)
where n is a positive integer, n1 = 0, . . . , n, 1/2 ≤ p ≤ 1 and q = 1 − p.
Theorem 2.1 below gives the closed form of (2.1) with the biased coin when the
final assignments must be in balance, which is introduced as an entirely new
randomization procedure and is the main result of this paper. This procedure
will be referred to as the conditional biased coin design. In all expressions below,
the paper adopts the convention that a sum is treated as 0 when its upper limit
is smaller than its lower limit.

Theorem 2.1. Let n1 be a positive integer, j = 0, . . . , 2n1−1, mj = max(0, j−
n1), . . . ,min(j, n1), 1/2 ≤ p < 1, and q = 1 − p; for p = 1 set the range of mj

as that of N1(j) in (1.1). Let Tj+1 be an allocation made according to Efron’s

biased coin design with bias parameter p and N1(j) =
∑j−1

i=0 Ti+1. Define a new

allocation Tj+1 with N1(j) =
∑j−1

i=0 Ti+1 which makes an assignment to group 1
with the following probability:

P{Tj+1 = 1|N1(j) = mj} = P{Tj+1 = 1|N1(j) = mj , N1(2n1) = n1}
= ζj+1(mj , n1).
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Fig 4. The allocation space of the conditional biased coin with p = 2/3 for 2n1 = 8. There

are
(
8
4

)
possible sequences that are not equiprobable.

The new restricted procedure has ζj+1(mj , n1) given by:

ζj+1(mj , n1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2, mj = j/2,

n1−j+mj∑
l=0

n1−mj−1−l
n1−mj−1+l

(
n1 −mj − 1 + l

l

)
ql

n1−j+mj∑
l=0

n1−mj−l
n1−mj+l

(
n1 −mj + l

l

)
ql

, mj < j/2,

n1−mj−1∑
l=0

n1−j+mj−l
n1−j+mj+l

(
n1 − j +mj + l

l

)
ql+1

n1−mj∑
l=0

n1−j+mj−l
n1−j+mj+l

(
n1 − j +mj + l

l

)
ql

, mj > j/2.

(2.4)

Proof. See Appendix A.

Figure 4 illustrates the allocation space of the conditional biased coin de-
sign with p = 2/3 and a total sample size of 2n1 = 8 assignments. Each down
arrow indicates an assignment to the treatment group, while an arrow to the
right indicates an assignment to the control group. All sequences start from the
node (0, 0) and end at (8, 4). The first element in each node summarizes the
number of subjects allocated so far, and the second number tallies how many
subjects have been randomized to the treatment group. The allocation prob-
abilities are indicated on the arrows and were computed exactly using (2.4).
In this example, it is observed that the design is symmetric about the alloca-
tion ray, which is the sequence of diagonal nodes with intermediate balance:
(0, 0), (2, 1), (4, 2), (6, 3), (8, 4). Also, the allocation probabilities are not con-
stant, and at times of intermediate imbalance in favor of the control group,
the allocation probabilities to the treatment group are all larger than the bias
parameter p = 2/3. In addition, the design on Figure 4 has the same determin-
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istic assignments as the permuted block design with b = 4 and 2n1 = 8, but
the allocation sequences are not equiprobable as in the permuted block design.
To generate a random sequence following the conditional biased coin procedure
one would simply have to apply (2.4) sequentially, the same way (1.1) is used
to obtain a random sequence following the original biased coin design.

Similarly to the original biased coin design, when p = 1 with a total sample
size of 2n1 assignments, the conditional biased design becomes the permuted
block design with n1 blocks of size 2. In such a design every other assignment
is deterministic, which is undesirable. When p = 1/2, the design is the random
allocation rule for equal allocation, or equivalently the permuted block design
with a single block of size 2n1. To see this analytically, when n1 ≤ n/2 and
p = 1/2 in (2.3):

n1∑
l=0

n− n1 − l

n− n1 + l

(
n− n1 + l

l

)
(1/2)n−n1+l =

(
n

n1

)
(1/2)n,

from which a new identity for the binomial coefficient follows:

(
n

n1

)
=

n1∑
l=0

n− n1 − l

n− n1 + l

(
n− n1 + l

l

)
2n1−l. (2.5)

One can then use (2.5) in (2.4) to show that the conditional biased coin design
with p = 1/2 reduces to the random allocation rule for equal allocation.

As already observed in Figure 4, similarly to the original biased coin design,
the conditional biased coin design is symmetric in the allocation probabilities.
This is formally stated in the following corollary.

Corollary 2.1. Let ζj+1(mj , n1) be defined as in (2.4). For any pair (mj ,m
′
j),

such that mj < j/2, m′
j > j/2 and j −m′

j = mj,

1− ζj+1(mj , n1) = ζj+1(m
′
j , n1).

Proof. See Appendix B.

Also, it is evident from (1.1) and (2.4) that following intermediate balance
both designs make the next assignment with probability 1/2. It may not be
immediately obvious that given the same intermediate imbalance in favor of the
control group and the same parameter p, 1/2 ≤ p < 1, the conditional biased
coin design makes the next allocation to the treatment group with a probability
at least as large as that of the biased coin design, provided this assignment is
in the allocation space of the conditional biased coin.

Corollary 2.2. Let n1 = 1, 2, . . . , n = 2n1, j = 1, . . . n − 1, mj = max{0, j −
n1}, . . . ,min{j, n1} and p ∈ [1/2, 1]. When mj < j/2,

ζj+1(mj , n1) ≥ φj+1(mj),

with ζj+1(mj , n1) and φj+1(mj) = P (Tj+1 = 1|N1(j) = mj) defined in (2.4)
and (1.1), respectively.
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Fig 5. The probability of intermediate balance for the biased coin design with p = 2/3,
BCD(2/3), and p = 3/4, BCD(3/4), the conditional biased coin design with p = 2/3,
CBCD(2/3), and p = 3/4, CBCD(3/4), and the permuted block design (PBD) with one
block and a total sample size of 2n1 = 20 assignments.

Proof. See Appendix C.

Furthermore, for finite n1 and the same parameter p, 1/2 ≤ p ≤ 1, the
conditional biased coin design has a probability of intermediate balance at least
as large as that of the biased coin design (Figure 5). To see this in general, let
P{N1(j) = j/2} be the probability of intermediate balance after j assignments
in a sequence of a finite number of 2n1 assignments for the biased coin, n1 =
2, 3, . . . and j = 2, 4, . . . , 2n1 − 2. In the case of the conditional biased coin with
the same p, the probability of intermediate balance at j is:

P{N1(j) = j/2} = P{N1(j) = j/2|N1(2n1) = n1}

=
P{N1(2n1) = n1|N1(j) = j/2}

P{N1(2n1) = n1}
P{N1(j) = j/2}

=
P{N1(2n1 − j) = n1 − j/2}

P{N1(2n1) = n1}
P{N1(j) = j/2}

≥ P{N1(j) = j/2}, (2.6)

where the second equality is due to the Markovian property of N1(j). The
conclusion follows by noting that the ratio of probabilities in the second line
is at least 1 because P{N1(2n1) = n1} is a nonincreasing function of n1 (by
Theorem 1 in Efron (1971)). For the conditional biased coin, P{N1(j) = j/2}
is not monotonic in j by design (Figure 5). For very large even n1 and j = n1,
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P{N1(j) = j/2} ≈ P{N1(j) = j/2} because the ratio of probabilities in (2.6)
approaches 1 by equation 3.3 in Efron (1971). This indicates that the designs
behave similarly as the sample size increases. Finally, the allocation probability
to Tj+1 = 1 when mj < j/2 in (2.4) are decreasing in q, 0 ≤ q ≤ 1/2, or
equivalently increasing in p. As with the original biased coin, this implies that
increasing values of p shrink the distribution of N1(j) toward balance, which
leads to the following corollary.

Corollary 2.3. The probability of intermediate balance for the conditional bi-
ased coin design is nondecreasing in p, 1/2 ≤ p ≤ 1.

Proof. See Appendix D.

Corollary 2.3 establishes that the role of p in the new design is that of control-
ling the intermediate imbalance. An important property of any randomization
procedure is preserving the allocation ratio at each assignment. In the equal
allocation case, this is preserving the 1 to 1 allocation ratio at each step such
that every subject has the same chance of assignment to the treatment regard-
less of order of entry (Kuznetsova and Tymofyeyev, 2012). For the biased coin
design, the allocation preserving property is expressed as P (Tj+1 = 1) = 1/2,
j = 0, . . . , n − 1. The allocation preserving property for the conditional biased
coin design is P (Tj+1 = 1) = P (Tj+1 = 1|N1(2n1) = n1) = 1/2. This property
holds for the conditional biased coin design for all 1/2 ≤ p ≤ 1 and is due to
the symmetry in the allocation probabilities.

When a clinical trial is planned, the total sample size is often prespecified as a
result of power calculations. If the total number to be randomized is known and
randomization is unstratified, the conditional biased coin design is a straight-
forward application, provided equal allocation is also used in the trial. While
unstratified randomization does not incorporate any covariates and uses a single
randomization, stratified randomization with equal allocation aims to achieve
balance between treatment groups within all strata formed by a set of known
covariates by implementing a separate randomization within each stratum (see
Chapter 7 in [16] on stratified randomization). If stratification by covariates is
involved, the total final number of subjects ultimately accrued in each stratum
may be unknown. In this case, it may be more practical to randomize subjects in
small blocks of size 2b using the conditional biased coin design to fill the blocks
in each stratum, with the anticipation that the last block within any stratum
may not be complete. This is similar to the stratified blocked randomization,
which uses the permuted block design within each stratum to ensure balance
([16], p. 137). In general, the conditional biased coin design in blocks can be
used when the total sample size is not known in advance. Figure 6 illustrates
the case for 2n1 = 8, 2b = 4 and p = 2/3. Unlike the permuted block design
with 2b = 4 and 2n1 = 8, the sequences for the design in Figure 6 are not
equiprobable. Because the probability of intermediate balance is nondecreasing
in p, blocks filled using the conditional biased coin design with p > 1/2 have
better intermediate balance than the permuted block design (see Figure 5 and
Corollary 2.3).
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Fig 6. The allocation space of the conditional biased coin design with p = 2/3 for n = 8 and
2b = 4. There are 36 possible sequences that are not equiprobable. For comparison, with the
same block size the permuted block design yields equiprobable sequences and makes the second
assignment towards balance within any block with probability 2/3. For any 1/2 ≤ p < 1,
the conditional biased coin design with 2b = 4 makes the second assignment towards balance
within any block with probability 1/(2− p).

The covariance matrix of T1, . . . , Tn is introduced next. This covariance ma-
trix is used when deriving the variance of test statistics under the randomization
model ([16], pp. 109–110). The result below follows from the allocation preserv-
ing ratio property and a direct evaluation of the covariance of Ti and Tj . It is a
special case of Lemma 4.2 in [14] when n = 2n1. Define:

fj,b =

j−1∑
b=0

pn,j(b+ 1)φj(b)P (N1(j − 1) = b|N1(i) = a+ 1),

where pn,j(b+ 1) is given by (2.2), φj(b) = P (Tj = 1|N1(j − 1) = b) is given by
(1.1), P (N1(j−1) = b|N1(i) = a+1) is given by Theorem 2.2 in Plamadeala and
Rosenberger (2012), n1 is a positive integer and n = n1. For any 1 ≤ i ≤ j ≤ n
the (i, j)th entry of the covariance matrix, σij , is:

σij =

⎧⎪⎨
⎪⎩

1

P (N1(n) = n1)

i−1∑
a=0

φi(a)P (N1(n) = a)fj,b − 1/4, i = 1, . . . , j − 1,

1/4, i = j.

This is an exact evaluation of the covariance matrix, albeit computational, where
each matrix component is a sum of probability products, some of which are
probabilities describing the original biased coin. The proof is already sketched
in Plamadeala and Rosenberger (2012); however, several detailed steps on how
to obtain E(TiTj) are given in Appendix E.

3. Selection bias

Selection bias is the bias in estimating the treatment effect due to the intentional
guessing of the treatment allocations by the investigator when the randomization
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mechanism is known and the randomization is not centralized with subjects
being allocated sequentially [5, 12]. Blackwell and Hodges (1956) quantified
selection bias by the maximum expected number of correct guesses in excess
of what is expected by chance, which is also called the expected selection bias
factor, E(F ). The expected selection bias factor is always computed under a
guessing strategy that maximizes the expected number of correct guesses. In
complete randomization, E(F ) = 0 regardless of guessing strategy. Blackwell
and Hodges (1956) formally prove that the truncated binomial design minimizes
E(F ) amongst all procedures sequentially assigning subjects in a block of a
prespecified size. This would have to follow since the truncated binomial design
behaves like complete randomization for at least the first n1 assignments.

Another metric for selection bias is the expected number of deterministic as-
signments. This assesses selection bias when the investigator tries to influence
patient selection only when the next allocation is known with certainty [12]. It
is not necessarily true that a higher expected number of deterministic assign-
ments implies a higher E(F ). This section uses both metrics to compare the
conditional biased coin design with and without blocks to the permuted block
design with a block size of 2b = 4, the maximal procedure with a maximum
tolerated imbalance of 2, the random allocation rule, and the truncated bino-
mial design. When the total sample size is an even integer, all these procedures
achieve final balance with probability 1. The permuted block design with a block
size of 2b = 4 was chosen in this comparison since this design is used in practice
[4, 13].

3.1. The expected number of deterministic assignments, En1(D)

For the conditional biased coin design, the exact expression of the expected
number of deterministic assignments in a sequence of size 2n1 is:

En1(D) =

n1∑
i=1

2iζ2n1−i(n1 − 1, n1)P{N1(2n1 − i− 1) = n1 − 1|N1(2n1) = n1}

=

n1∑
i=1

i

n1−i∑
l=0

n1 − 1− l

n1 − 1 + l

(
n1 − 1 + l

l

)
ql+i−1

n1−1∑
l=0

n1 − l

n1 + l

(
n1 + l

l

)
ql

, (3.1)

where ζ2n1−i(n1−1, n1) is given in (2.4) and the probability in the first line was
first expanded then evaluated with (2.3) and (2.2).

Proposition 3.1. For En1(D) defined in (3.1) and 1/2 ≤ p < 1

lim
n1→∞

En1(D) = 1/p. (3.2)

Proof. The proof is provided in Appendix F.
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Table 3

The expected number of deterministic assignments in a sequence of 2n1 trials, En1(D)

n1 CBCD(3/4) CBCD(2/3) RAR TBD MP CBCD(3/4)a PBDa

2 1.20 1.25 1.33 1.50 1.33 1.20 1.33
4 1.30 1.41 1.60 2.19 2.00 2.40 2.67
6 1.32 1.45 1.71 2.71 2.67 3.60 4.00
8 1.33 1.48 1.78 3.14 3.33 4.80 5.33
10 1.33 1.49 1.82 3.52 4.00 6.00 6.67
12 1.33 1.49 1.85 3.87 4.67 7.20 8.00
14 1.33 1.49 1.87 4.18 5.33 8.40 9.33
16 1.33 1.50 1.88 4.48 6.00 9.60 10.67
18 1.33 1.50 1.89 4.75 6.67 10.80 12.00
20 1.33 1.50 1.90 5.01 7.33 12.00 13.33
50 1.33 1.50 1.96 7.96 17.33 30.00 33.33
300 1.33 1.50 1.99 19.54 100.67 180.00 200.00
∞ 1.33 1.50 2.00 ∞ ∞ ∞ ∞

CBCD, conditional biased coin design; RAR, random allocation rule; TBD, truncated
binomial design; MP, maximal procedure with maximum tolerated imbalance of 2;
PBD, permuted block design; a block size 4.

As already mentioned, when p = 1 and the total number of allocations is 2n1,
the conditional biased design becomes the permuted block design with n1 blocks
of size 2, where every other assignment is deterministic and En1(D) = n1.

For the conditional biased coin design randomizing in blocks of size 4, (3.1)
is evaluated first for one block with n1 = 2, which reduces to (3 − 2p)/(2 − p).
This is then multiplied by the total number of blocks to obtain the expected
number of deterministic assignment for the entire design. Efron’s biased coin is
fully randomized when p < 1, and thus En1(D) = 0.

For the permuted block design En1(D) = 2n1/(b+ 1) [2]. It follows that for
the random allocation rule this expectation is 2n1/(n1 + 1). For the maximal
procedure with a maximum tolerated imbalance of 2, the expected number of
deterministic assignments is (n1 + 2)/3 [2]. For the truncated binomial design,
the expected number of deterministic assignments is [5]:

n1∑
i=1

2i

(
2n1 − 1− i

n1 − 1

)
0.52n1−i = n1

(
2n1

n1

)
/22n1−1.

Table 3 compares these procedures with respect to En1(D). The analytical limit
of En1(D) as n1 increases is provided under n1 = ∞.

From Table 3, the permuted block design has the highest expected number
of deterministic assignments followed by the conditional biased coin design with
p = 3/4 and a block size of 4, the maximal procedure and the truncated bino-
mial design. In all four cases, the expectation increases with n1, but at a lower
rate for the truncated binomial design. In the case of the random allocation rule
the expectation converges to 2 as the sample size increases. The expectation
converges to a constant less than 2 in the case of both the conditional biased
coin design with p = 2/3 and p = 3/4, with the latter having the smallest ex-
pected number of deterministic assignments of all considered procedures. The
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limiting value 1/p is a good approximation even for small sample sizes. The
reduction in the number of expected number of deterministic assignments by
the conditional biased coin design compared to the random allocation rule and
permuted block design is a direct consequence of having non-equiprobable se-
quences. Since randomization in small blocks forces balance periodically with
each complete block, at least one assignment within a block is deterministic –
the last one. Consequently, the expected number of deterministic assignments
within a block is at least one, and over the entire sequence this expectation is at
least as large as the total number of blocks. In the conditional biased coin design
without blocks the sequences with deterministic assignments are very rare and
only the last assignment in the entire sequence is deterministic. This explains
the large difference in the En1(D) values between the conditional biased coin
with and without blocks in Table 3.

3.2. The expected selection bias factor, E(F )

For all procedures considered, except the truncated binomial design, the con-
vergence strategy maximizes the expected number of correct guesses, or always
guessing towards balance, which is the same as guessing the treatment that was
least allocated so far. This is reasonable since at each step the least assigned
treatment has the larger allocation probability at the next assignment. In the
case of the truncated binomial design, to maximize E(F ) one can adopt any
strategy until n1 allocations of one kind have been made, since both treatments
have an equal probability of assignment at the next allocation; then identify
appropriately the tail allocations.

For Efron’s biased coin, the exact expression of E(F ) is provided in [11] and
its asymptotic approximation is n1(p/q−1)/(2p/q) [6]. In the case of the condi-
tional biased coin design, the exact value of E(F ) can be computed as follows.
Let Iζj≥1/2 = 1 if ζj(mj−1, n1) ≥ 1/2 and zero otherwise, where ζj(mj−1, n1) is
given by (2.4). Further, denote:

f{ζj(mj−1, n1)} = (1− Iζj≥1/2)(1− ζj(mj−1, n1)) + Iζj≥1/2ζj(mj−1, n1).

Then, in a sequence of 2n1 assignments:

E(F ) =

2n1∑
j=1

min(j,n1)∑
i=max(0,j−n1)

f{ζj(i, n1)}P{N1(j − 1) = i|N1(2n1) = n1} − n1,

where the probability inside the sum is first expanded then computed using (2.3)
and (2.2). For the conditional biased coin design randomizing in blocks of size
4, E(F ) = n1(3− p)/(8− 4p).

The closed form expression for E(F ) in the case of the truncated binomial
design is given in [5] as:

n1

(
2n1

n1

)
/22n1 ∼ (n1/π)

1/2,
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Table 4

The average expected selection bias factor in a sequence of 2n1 trials, E(F )/n1

BCD CBCD CBCD CBCDa

n1 p = 3/4 p = 3/4 p = 2/3 RAR TBD MP p = 3/4 PBDa

2 0.28 0.45 0.44 0.42 0.38 0.42 0.45 0.42
4 0.30 0.41 0.38 0.33 0.27 0.38 0.45 0.42
6 0.31 0.39 0.35 0.29 0.23 0.36 0.45 0.42
8 0.32 0.37 0.33 0.26 0.20 0.35 0.45 0.42
10 0.32 0.37 0.32 0.23 0.18 0.35 0.45 0.42
12 0.32 0.36 0.31 0.22 0.16 0.35 0.45 0.42
14 0.32 0.36 0.30 0.20 0.15 0.35 0.45 0.42
16 0.33 0.35 0.29 0.19 0.14 0.34 0.45 0.42
18 0.33 0.35 0.29 0.18 0.13 0.34 0.45 0.42
20 0.33 0.35 0.29 0.17 0.13 0.34 0.45 0.42
50 0.33 0.34 0.26 0.12 0.08 0.34 0.45 0.42
300 0.33 0.33 0.25 0.05 0.03 0.33 0.45 0.42
∞ 0.33 n/a n/a 0 0 0.33 0.45 0.42

n/a, analytical limit not available; BCD, biased coin design; CBCD, conditional
biased coin design; RAR, random allocation rule; TBD, truncated binomial design;
MP, maximal procedure with maximum tolerated imbalance of 2;
PBD, permuted block design; a block size 4.

The quantity following the symbol ∼ is the approximation using Stirling’s for-
mula for large factorials and an ∼ bn is written when limn→∞(an/bn) = 1.
Matts and Lachin (1988) provided the expression for the permuted block design
which is:

B(22b−1/

(
2b

b

)
− 1/2) ∼ B(πb/4)1/2,

where 2b is the block size and B is the number of blocks, B = 2n1/(2b). Thus
E(F ) is:

22n1−1/

(
2n1

n1

)
− 1/2 ∼ (πn1/4)

1/2

for the random allocation rule. For the maximal procedure with maximum tol-
erated imbalance of 2, E(F ) = (2n1 + 1)/6.

In Table 4, the limit of the average expected selection bias E(F )/n1 as n1 in-
creases is provided under n1 = ∞ where available. The average selection bias of
the conditional biased coin design with p = 3/4 is comparable to that of the orig-
inal biased coin with p = 3/4 even for small values of n1. For large n1, they both
appear to converge to the same limit, which was confirmed in separate simula-
tions with other values of p > 1/2. This indicates that both biased coins behave
similarly for medium to large sample sizes and the main difference is whether
final balance is enforced. The conditional biased coin design with p = 3/4 and
block size 4 has a higher average selection bias than both the permuted block
design with the same block size and the maximal procedures design. However,
when not used in blocks the average selection bias of the conditional biased coin
design with p = 3/4 is comparable to that of the maximal procedure with a
maximum tolerated imbalance of 2 (Table 4). In separate numerical studies, it
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Fig 7. Trade-off plot for the conditional biased coin design for various values of p and three
block sizes. The permuted block with the same block size corresponds to p = 1/2. The values
for p are in increments of 0.05, from 0.5 to 0.9.

was observed that the probability of the intermediate imbalance exceeding 2
for the conditional biased coin design with p = 3/4 is less than 0.1 even for n1

as small as 10, which explains its similarity to the maximal procedure with a
maximum tolerated imbalance of 2.

For unstratified randomization, the decision about the choice of p for the
conditional biased coin design is similar to that for the biased coin, with the
difference that the balance–randomness trade-off is with respect to the interme-
diate balance rather final balance. A larger value of p brings the assignments
closer to intermediate balance but higher predictability as is the case when
p = 1, while a lower p leads to lower probability of intermediate balance but
more randomness as is the case when p = 1/2. Since for medium to large sample
sizes both biased coin designs behave similarly in terms of selection bias and
intermediate balance, the recommendations of p = 2/3 from the original biased
coin is also feasible for the conditional biased coin, but other values may work
as well. If selection bias is a concern and balance on several known prognostic
covariates is paramount, stratified randomization with the conditional biased
coin in blocks of size 6 or even 8 with p = 6/10, p = 2/3 or p = 3/4 is bet-
ter than the usual permuted blocks with the same block size when it comes to
deterministic assignments: in a conditional biased coin block, Eb(D) < 1.5 for
any of these block and p combinations, while in a permuted block Eb(D) ≥ 1.5
for block sizes above 6. To assess the overall balance-randomness trade-off, a
trade-off plot (Section 8.4.1 in [16]), which graphs the selection bias and a bal-
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ance criterion simultaneously, can be used to choose the p parameter for a given
block size. In Figure 7, the balance criterion on the y-axis is the variance of the
imbalance halfway through the block divided by half the block size, which has
a minimum of 0 for very large block sizes and p > 1/2 and has a maximum
value of 1 for a block of 2. The selection bias criterion on the x-axis is the ex-
pected selection bias factor within one block, E(F )/b, which approaches 0 for
large block sizes with p = 1/2, and has a maximum value of 1/2 for a block size
of 2. In this figure, the selection bias values were rescaled to match the range of
the imbalance metric. After rescaling, both criteria are treated equally impor-
tant: a one unit decrease on the x-axis is ascribed the same importance as one
unit decrease on the y-axis, but other importance rules can be assumed ([16],
p. 152). In Figure 7, points closest to the origin provide the desired trade-off.
Thus, a conditional biased coin block of size 6 and p = 6/10 will provide the best
trade-off between intermediate imbalance and randomness, and also have fewer
deterministic assignments than the permuted block. The permuted block with
the same block size corresponds to p = 1/2 on the plot. Large block sizes are
not recommended with the permuted blocks [9], as balance deteriorates with
increasing block size if the block is not filled. However, with the conditional
biased coin design, a block size of 8 and 10 with p = 7/10 (points not shown
for block size 10) can provide comparable trade-off and intermediate balance
as that with block size of 6 and p = 6/10. Figure 7 also shows the conditional
biased coin design for a sample size of 2n1 = 100, marked with “Block size
100”. A value of p = 6/10 gives the best trade-off, which is close to Efron’s
recommendation for the original biased coin. If selection bias is not a concern,
a block size of 4 or 6 with p = 3/4 or p = 4/5 will provide better balance than
the stratified permuted blocks counterpart by Corollary 2.3 (see simulation in
Section 4). A block size of 2 is not recommended with either block design since
the potential for unblinding is very high. As with other design parameters, the
choice of p and the block size has to be optimized given the individual trial
requirements.

In summary, the conditional biased coin design in blocks is applicable any
time the permuted block design is an option. The conditional biased coin de-
sign without blocks is applicable in unstratified designs with prespecified sample
sizes and equal allocation, where Efron’s biased coin design is applicable. The
material gain with the conditional biased coin compared to Efron’s biased coin
is the enforcement of perfect balance at the end, while maintaining comparable
or better intermediate balance and comparable selection bias. The conditional
biased coin design in blocks emerges as a better option compared to the per-
muted block design for equal allocation when it comes to forcing intermediate
balance periodically, achieving final balance, but also reducing the total number
of deterministic assignments.

4. Inference

Inference about the treatment effect in a clinical trial may be conducted via
traditional hypothesis testing based on population models or re-randomization
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tests [16]. The fundamental difference between the two inference approaches is
that re-randomization tests frame the treatment assignments as random and
the treatment outcomes as fixed, while in a population model the treatment
outcomes are realizations of a random variable at fixed values of the treat-
ment assignments ([16], p. 101). Various aspects related to the conduct of re-
randomization tests under different randomization procedures have already been
thoroughly covered in Chapter 6 of Rosenberger and Lachin (2015). Recent de-
velopments about the impact of different randomization procedures on popular
hypothesis tests have been made by Shao et al. (2010), Shao and Yu (2013), and
Ye and Shao (2020). This section addresses the implications of using the condi-
tional biased coin design with hypothesis testing and several problems specific
to the conditional biased coin design as a basis for inference.

4.1. Model-based inference with the conditional biased coin design

Since common hypothesis tests have been developed under complete random-
ization, there has been a concern if the Type 1 error of these tests is inflated
from using other randomization procedures [19, 20, 21]. Shao et al. (2010) pro-
vide a sufficient condition for a hypothesis test to maintain its Type 1 error
when the response depends on a set of covariates and the randomization is not
complete: if the allocation procedure and the response are conditionally inde-
pendent given the set of covariates, a hypothesis test which is valid under fixed
treatment allocation will maintain its Type 1 error under the new procedure
and the error rate will be the same as when the allocations are fixed. This is
the case for any restricted randomization procedure ([16], p. 179) applied in
unstratified designs and discussed in this paper. However, when randomization
is stratified, this condition may not hold. Shao et al. (2010) have shown that
under stratified randomization with Efron’s biased coin design the two-sample
t-test is conservative. Shao and Yu (2013) and Ye and Shao (2020) extend the
same conclusions with Wald’s test and the score test in misspecified generalized
linear models and misspecified proportional hazards models, respectively. If all
covariates used in the randomization are included in the model and the model is
correctly specified the test from the proper analysis of covariance model, Wald’s
and score tests are valid under stratified randomization [19, 20, 21].

A simulation is carried out to investigate the Type 1 error rate and power of
the test about the treatment effect under the conditional biased coin design and
the following linear model, which is similar to model (12) in Shao et al. (2010):

Yij = μj + β1Zi1 + β2Zi2 + βT
3 Zi3 + βT

4 Zi4 + eij , i = 1, . . . , 384, j = 1, 2.
(4.1)

The covariates Zi1 and Zi2 are binary with the prevalences 0.1 and 0.9 for Zi1,
and 0.33 and 0.67 for Zi2. Their coefficients are β1 = 1 and β2 = 3. The covariate
Zi3 is discrete and has four levels with prevalences 0.5, 0.3, 0.1 and 0.1, and co-
efficient vector β3 = (0, 1, 2, 5)T . The covariate Zi4 is also discrete and has three
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Table 5

Simulated Type 1 error and power under model (4.1) for two-sided α = 0.05 tests using
stratified and unstratified randomization with 2n1 = 384 in 10,000 runs.

Unstratified Randomization

BCD(p = 4/5) CBCD(p = 4/5) CBCD(p = 4/5)a PBDa

d Tt Tt Tt Tt

0.0 0.0503 0.0536 0.0537 0.0464
0.3 0.2204 0.2223 0.2198 0.2230
0.4 0.3688 0.3626 0.3520 0.3613
0.5 0.5150 0.5080 0.5153 0.5198
0.6 0.6702 0.6688 0.6699 0.6626
0.7 0.8033 0.8011 0.7989 0.8039

Stratified Randomization

BCD(p = 2/3) BCD(p = 4/5) CBCD(p = 4/5)a PBDa

d Tt Tpa Ta Tt Tpa Ta Tt Tpa Ta Tt Tpa Ta

0.0 0.0038 0.0161 0.0516 0.0011 0.0091 0.0495 0.0009 0.0007 0.0493 0.0015 0.0074 0.0504
0.3 0.1338 0.4592 0.8329 0.1019 0.4572 0.8330 0.0839 0.4536 0.8327 0.0976 0.4589 0.8326
0.4 0.2954 0.7506 0.9706 0.2713 0.7721 0.9732 0.2605 0.7751 0.9717 0.2751 0.7723 0.9755
0.5 0.5238 0.9249 0.9998 0.5344 0.9370 0.9985 0.5338 0.9503 0.9982 0.5206 0.9403 0.9989
0.6 0.7455 0.9876 >0.9999 0.7774 0.9917 0.9998 0.7859 0.9935 0.9999 0.7614 0.9906 >0.9999
0.7 0.8948 0.9984 >0.9999 0.9256 0.9994 >0.9999 0.9355 0.9997 >0.9999 0.9234 0.9993 >0.9999

BCD, biased coin design; CBCD, conditional biased coin design; PBD, permuted block design; Tt, t-test; Tpa, analysis
of covariance test from the misspecified analysis of covariance model; Ta, analysis of covariance test from the correct
analysis of covariance model; a block size 6; d = μ1 − μ2, the treatment effect size.

levels with prevalences 0.45, 0.3, 0.25, and coefficient vector β4 = (0, 1, 1.5)T .
The covariates are independent and eij are N(0, 1). The simulation investigates
both stratified and unstratified randomization. The four covariates form 48 pos-
sible independent strata and stratified randomization is used to balance the two
treatment groups across these covariates. Stratified randomization in blocks of
6 is performed with the permuted block design and the conditional biased coin
design with p = 4/5, as well as Efron’s biased coin design with p = 2/3 and
p = 4/5. Since some of the strata have low probabilities of occurring, many
blocks will not be filled potentially leading to treatment imbalances overall in
the study and across the covariates. Unstratified randomization is implemented
with Efron’s biased coin design and the conditional biased coin design with
p = 4/5, as well as randomization in blocks of size 6 with the conditional biased
coin design with p = 4/5 and the stratified permuted block design.

The power and Type 1 error rates for the hypothesis H0 : μ1 −μ2 = 0 versus
H0 : μ1−μ2 �= 0 for the t-test and the analysis of covariance tests with both cor-
rect and misspecified models are shown in Table 5. The misspecified analysis of
covariance model omits factor Zi1, but controls for Zi2 and dichotomized forms
of Zi3 and Zi4. Factor Zi3 was dichotomized by combining the least prevalent
3 levels and Zi4 was dichotomized by combining the least prevalent 2 levels.
The results in Table 5 show that the t-test under all unstratified designs pre-
serves the Type 1 error because the subject allocations are independent of the
responses and covariates. The t-test under these procedures are also equally
powerful. The same is true when the model is correctly specified under strat-
ified randomization: the test about the treatment effect preserves the nominal
Type 1 error and is equally powerful across all stratified procedures. However,
the t-test and the misspecified test from the analysis of covariance model are
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Fig 8. The simulated distributions for the t-test statistic when μ1 − μ2 = 0.7 in model (4.1)
and stratified randomization using the biased coin design (BCD), the conditional biased coin
(CBCD) with block size 6 and the permuted block designs (PBD) with block size 6.

conservative under all stratified randomization procedures in Table 5. Shao et
al. (2010) show that under the stratified Efron’s biased coin design this is due
to the numerator of the t-test statistic having a smaller variance than the one
prescribed by the t-test, which produces a null distribution that has a smaller
variance than the T distribution referenced under the null. A similar effect on
the variance of the numerator appears to hold under all other stratified pro-
cedures considered in this simulation, which explains the test error rates in
Table 5. That is, the null distributions for the t-statistic with the conditional
biased coin design and the permuted block design and stratified randomization
also incur a variance reduction which explains the reduced Type 1 error rates
in Table 5. Furthermore, the impact on the error rates appears to depend on
the magnitude of this variance reduction under each procedure, which must be
established analytically. For example, Efron’s biased coin design with stratified
randomization and p = 2/3 has the lowest power at d = 0.7 in Table 5 and
the widest distribution in Figure 8. The stratified permuted block design and
the conditional biased coin design in blocks with p = 4/5 are the most pow-
erful and have the narrowest distributions in Figure 8. Although the stratified
permuted block design and the conditional biased coin design in blocks with
p = 4/5 appear to behave similarly both in terms of simulated long-run power
at d = 0.7 and simulated distributions in Figure 8, the latter produces better
overall allocation balance at the end of the study (Figure 9) and across individ-
ual covariates (e.g., Figure 12 in Appendix G), which is necessary to minimize
biases due to subject heterogeneity ([16], p. 133). The reverse relationship holds
for the Type 1 error: the stratified procedure with the widest null distribution
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Fig 9. The simulated probability of final imbalance under model (4.1) and stratified random-
ization using the biased coin design (BCD), the conditional biased coin (CBCD) with block
size 6 and the permuted block designs (PBD) with block size 6. The final imbalance metric D
is the absolute difference between the final number of assignments in each treatment arm.

for the t-statistic, i.e, with the least reduction in the variance of the t-test nu-
merator, is the least conservative in Table 5 (null distribution plots not shown).
Here it must be noted that the conditional biased coin design in blocks produces
the most conservative test of all. Robust tests that preserve the nominal Type
1 error under model misspecification and stratified randomization have been
proposed [19, 20, 21], but it is unclear if their power would be impacted the
same way as that of conventional hypothesis tests. This is an interesting topic
for further research.

4.2. Re-randomization tests with the conditional biased coin design

First, the re-randomization test with the conditional biased coin design is de-
fined. Let T = (T1, . . . , T2n1)

′ be a randomization sequence following the con-
ditional biased coin design, where Ti = 1 if subject i is assigned to treatment
1 and Ti = 0 if subject i is randomized to treatment 2, i = 1, . . . , 2n1. Also,
let x = (x1, . . . , x2n1)

′ be a vector corresponding to the realized responses for
a primary endpoint. A valid level–α test about the hypothesis of no treatment
effect can be built by permuting T in all possible ways [14]. Each such permu-
tation has a probability that is obtained by sequentially applying (2.4). While
any metric for the treatment effect can be used, the family of linear rank tests is
amenable to the conduct of re-randomization tests [16]. Using the score vector
a = (a1 − ā, . . . , a2n1 − ā)′, where ai is some function of the ranks of the ith
response xi and ā = Σ2n1

i=1ai/2n1, the form of the standardized linear rank test
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statistic is ([16], pp. 105–113; also see Section 6.5 in [16] for different options for
the score function):

a′T√
a′Σa

. (4.2)

The quantity in the denominator of (4.2) is the square root of the variance for
a′T , which involves Σ, the exact covariance matrix of T1, . . . , T2n1 , given in
Section 2.

The null distribution of the statistic in (4.2) coincides with that from the
conditional re-randomization test following the original biased coin given final
balance in 2n1 assignments. This is because, by definition, the conditional re-
randomization test following the original biased coin permutes the treatment
assignments to include only sequences that have the same imbalance as the one
observed ([14], [16]), in this case no imbalance, while by construction, the condi-
tional biased coin design generates only sequences from the original biased coin
that achieve final balance. However, this distribution is different from that of
the unconditional re-randomization test following the original biased coin where
the statistic is not conditioned on the final balance (see Section 6.9.1 in [16] for
more on unconditional re-randomization tests.) For small to moderate sample
sizes, Hollander and Peña (1988) provide an algorithm to compute exactly the
conditional re-randomization distribution following Efron’s biased coin, or as
pointed above, the distribution of (4.2). Plamadeala and Rosenberger (2012)
showed how to approximate these tests for large sample sizes via Monte Carlo
by drawing sequences T using (2.1) sequentially and evaluating (4.2) for each
sequence. Computation wise, the improvement provided in this paper is the
closed form expression of (2.1) given by (2.4) when there is no imbalance with
an even number of allocations. It is important to re-emphasize at this point that
the sampling mechanism to approximate the re-randomization test and the ran-
domization mechanism (2.4) are one and the same. The difference is that when
used for randomization purposes during the conduct of the trial (2.4) is applied
to obtain only one sequence, while when used for sampling purposes during the
analysis of the trial it is applied to generate as many sequences as the Monte
Carlo sample size. With both the Monte Carlo and the exact method, the test
p-value is the proportion of sequences with statistic values as extreme or more
extreme than the one observed.

An important question is whether the statistic in (4.2) has an asymptoti-
cally standard normal distribution. Smythe and Wei (1983) pointed out that
the unconditional re-randomization test following the original biased coin is not
asymptotically normal. When investigating the conditional re-randomization
test for the original biased coin, Hollander and Peña (1988) provide a con-
jecture that it also lacks asymptotic normality; that is (4.2) lacks asymptotic
normality. Their claim is based on an example showing the exact distribution
of (4.2) for 2n1 = 50 and 2n1 = 70, p = 2/3 and an extreme score vector
a = (1− ā, 2− ā, . . . , 2n1− ā)′, obtained by applying simple ranks on a response
vector with a very strong time trend. This example is replicated in Figure 10
using the Monte Carlo method for both sample sizes alongside the simulated
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Fig 10. Approximate re-randomization distributions using a Monte Carlo sample size of
10,000 for the linear rank statistic with simple ranks and a strong time trend following the
conditional biased coin design with p = 2/3, 2n1 = 50, 70, and 300, together with the standard
normal distribution.

cumulative distribution for a much larger sample size, 2n1 = 300. While in this
example it is not possible to distinguish the 2n1 = 50 and 2n1 = 70 curves
either with the exact method, as they have shown, or the Monte Carlo approx-
imation as in [14], the 2n1 = 300 curve is somewhat distinct from the 2n1 = 50
curve, but still distant from the standard normal. This additional example also
points to a convergence distribution that is likely not standard normal, and sup-
ports the conjecture that the re-randomization distribution of the linear rank
statistic following the conditional biased coin design with p > 1/2, equivalently
the conditional re-randomization distribution following the original biased coin
design given final balance, is not asymptotically standard normal. Thus, when
computing p-values for these re-randomization tests it may be more suitable to
use the Monte Carlo or the exact method rather than reference the standard
normal distribution.

5. Discussion

The original intent of Efron’s biased coin design (1.1) was to force a sequential
random assignment to be balanced; however, its probability of final balance is
not 1 for a bias p ∈ [1/2, 1). By conditioning (1.1) to the subset of sequences that
are balanced, the conditional biased coin design (2.1) guarantees final balance
while also controlling the intermediate imbalance. The permuted block design for
equal allocation was shown to be a special case of the conditional biased coin
design when (2.1) is used to randomize in blocks. In general, the conditional
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biased coin with blocks and p ∈ (1/2, 1) can substitute the permuted block
design for equal allocation with the added bonus of a reduced expected number
of deterministic assignments.

Although the parameter space for p in (1.1) is [1/2, 1], the results in (2.3) and
(2.2) also hold for 0 ≤ p ≤ 1 since (2.3) and (2.2) find the probability mass on a
set by partitioning it into disjoint subsets of sequences having the same number
of allocations made with probabilities p, q and 1/2. This implies a conditional
biased coin design with an expanded parameter space to include 0 ≤ p < 1/2,
which has no practical value for the biased coin design since the probability
mass is shifted towards extreme sequences, away from intermediate and final
balance. In the conditional biased coin design, however, p < 1/2 impacts only
the intermediate balance and enables the search for 0 ≤ p ≤ 1 that minimizes
the design’s expected selection bias factor E(F ) in a sequence of 2n1 trials.

One can also derive a result similar to (2.4) for the unequal allocation case
and p > 1/2. However, in the unequal allocation case the conditional biased coin
with p > 1/2 does not preserve the allocation ratio and thus is not recommended
for use in clinical trials. On the other hand, both the random allocation rule and
the permuted block design for unequal allocation do preserve the unconditional
allocation ratio. Proschan, Brittain, and Kammerman (2011) and Kuznetsova
and Tymofyeyev (2012) discuss the problems arising from the use of randomiza-
tion procedures not preserving the allocation ratio. Biased coin randomization
procedures for unequal allocation that also preserve the allocation ratio are
provided in [9] and [10].

Appendix A: Proof of Theorem 2.1

Applying (2.2) directly to (2.1), in the case of mj = j/2:

ζj+1(mj , n1) =
1

2

P (N1(n) = n1|N1(j + 1) = mj + 1)

P (N1(n) = n1|N1(j) = mj)

=
1

2

pn1−j+mj

n1−mj+1∑
l=0

n1 − j +mj − l

n1 − j +mj + l

(
n1 − j +mj + l

l

)
ql

pn1−mj

n1−mj−1∑
l=0

n− j − 2l

n− j + 2l

(
n1 −mj + l

l

)
ql

=
1

2

pn1−mj

n1−mj+1∑
l=0

n1 −mj − l

n1 −mj + l

(
n1 −mj + l

l

)
ql

pn1−mj

n1−mj−1∑
l=0

2n1 − 2mj − 2l

2n1 − 2mj + 2l

(
n1 −mj + l

l

)
ql

, j = 2mj

=
1

2
,
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where the second to last equality follows from the substitution j = 2mj . Simi-
larly, for mj < j/2,

ζj+1(mj , n1) = p
P (N1(n) = n1|N1(j + 1) = mj + 1)

P (N1(n) = n1|N1(j) = mj)

= p

pn1−mj−1

n1−j+mj∑
l=0

n1 −mj − 1− l

n1 −mj − 1 + l

(
n1 −mj − 1 + l

l

)
ql

pn1−mj

n1−j+mj∑
l=0

n1 −mj − l

n1 −mj + l

(
n1 −mj + l

l

)
ql

=

n1−j+mj∑
l=0

n1 −mj − 1− l

n1 −mj − 1 + l

(
n1 −mj − 1 + l

l

)
ql

n1−j+mj∑
l=0

n1 −mj − l

n1 −mj + l

(
n1 −mj + l

l

)
ql

.

Finally, for mj > j/2,

ζj+1(mj , n1) = (1− p)
P (N1(n) = n1|N1(j + 1) = mj + 1)

P (N1(n) = n1|N1(j) = mj)

= (1− p)

pn1−j+mj

n1−mj−1∑
l=0

n1 − j +mj − l

n1 − j +mj + l

(
n1 − j +mj + l

l

)
ql

pn1−j+mj

n1−mj∑
l=0

n1 − j +mj − l

n1 − j +mj + l

(
n1 − j +mj + l

l

)
ql

=

n1−mj−1∑
l=0

n1 − j +mj − l

n1 − j +mj + l

(
n1 − j +mj + l

l

)
ql+1

n1−mj∑
l=0

n1 − j +mj − l

n1 − j +mj + l

(
n1 − j +mj + l

l

)
ql

.

Note that for p = 1, ζj+1(mj , n1) is the same as (1.1).

Appendix B: Proof of Corollary 2.1

Let ζj+1(mj , n1) be defined as in (2.4). It must be shown that for any pair
(mj ,m

′
j), such that mj < j/2, m′

j > j/2 and j −m′
j = mj , 1− ζj+1(mj , n1) =

ζj+1(m
′
j , n1).

Following the substitution m′
j = j − mj in ζj+1(m

′
j , n1), it is noted that

ζj+1(j−mj , n1) and ζj+1(mj , n1) have identical denominators. Thus, it is suffi-
cient to show that their numerators sum up to the denominator of ζj+1(mj , n1):

n1−j+mj∑
l=0

n/2−mj − 1− l

n1 −mj − 1 + l

(
n1 −mj − 1 + l

l

)
ql+
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n1−j+mj−1∑
l=0

n/2−mj − l

n1 −mj + l

(
n1 −mj + l

l

)
ql+1 =

n1−j+mj∑
l=0

n/2−mj − l

n1 −mj + l

(
n1 −mj + l

l

)
ql.

Resubstituting for l + 1 in the second term above, the sum becomes:

1 +

n1−j+mj∑
l=1

n1 −mj − 1− l

n1 −mj − 1 + l

(
n1 −mj − 1 + l

l

)
ql+

n1−j+mj∑
l=1

n1 −mj + 1− l

n1 −mj − 1 + l

(
n1 −mj − 1 + l

l − 1

)
ql.

The final result follows after collecting the two sums and rewriting:

n1 −mj − 1− l

n1 −mj − 1 + l

(
n1 −mj − 1 + l

l

)
+

n1 −mj + 1− l

n1 −mj − 1 + l

(
n1 −mj − 1 + l

l − 1

)
=

n1 −mj − l

n1 −mj + l

(
n1 −mj + l

l

)
.

Appendix C: Proof of Corollary 2.2

Let n1 = 1, 2, . . . , n = 2n1, j = 1, . . . n−1, mj = max{0, j−n1}, . . . ,min{j, n1}
and p ∈ [1/2, 1]. It must be shown that when mj < j/2, ζj+1(mj , n/2) ≥
φj+1(mj), with ζj+1(mj , n/2) and φj+1(mj) = P (Tj+1 = 1|N1(j) = mj) defined
in (2.4) and (1.1), respectively.

The claim is that when mj < j/2:

ζj+1(mj , n/2) ≥ φj+1(mj),

ζj+1(mj , n/2) ≥ p.

By the result of Appendix B, this is equivalent to showing that:

1− ζj+1(m
′
j , n/2) ≥ p,

ζj+1(m
′
j , n/2) ≤ 1− p,

where m′
j > j/2, m′

j = j −mj . First note that the equality holds at p = 1. Let
p ∈ [1/2, 1). By the above, one must show that:

n/2−m′
j−1∑

l=0

n/2− j +m′
j − l

n/2− j +m′
j + l

(
n/2− j +m′

j + l

l

)
ql+1

n/2−m′
j∑

l=0

n/2− j +m′
j − l

n/2− j +m′
j + l

(
n/2− j +m′

j + l

l

)
ql

≤ 1− p



4054 V. P. Johnson

n/2−m′
j−1∑

l=0

n/2− j +m′
j − l

n/2− j +m′
j + l

(
n/2− j +m′

j + l

l

)
ql+1

(1− p)

n/2−m′
j∑

l=0

n/2− j +m′
j − l

n/2− j +m′
j + l

(
n/2− j +m′

j + l

l

)
ql

≤ 1.

This follows after noticing that the difference between the numerator and de-
nominator is:

−
2m′

j − j

n− j

(
n− j

n/2−m′
j

)
qn/2−m′

j < 0,

since m′
j > j/2. Thus, for p ∈ [1/2, 1) the inequality is strict ζj+1(mj , n/2) >

φj+1(mj).

Appendix D: Proof of Corollary 2.3

Let 1/2 ≤ p1 < p2 ≤ 1. It must be shown that for j = 2, 4, . . . , 2(n1 − 1) and
n1 = 2, 3, . . .:

Pp2{N1(j) = j/2|N1(2n1) = n1} ≥ Pp1{N1(j) = j/2|N1(2n1) = n1}.

The proof is by contradiction. Assume the following is true:

Pp2{N1(j) = j/2|N1(2n1) = n1} < Pp1{N1(j) = j/2|N1(2n1) = n1}.

Let j be finite and n1 → ∞. Upon expanding the left hand side of the inequity
and taking the limit in the assumed inequality:

lim
n1→∞

Pp2{N1(j) = j/2|N1(2n1) = n1} =
lim

n1→∞
Pp2{N1(2n1 − j) = n1 − j/2}

lim
n1→∞

Pp2{N1(2n1) = n1}

× Pp2{N1(j) = j/2}
= Pp2{N1(j) = j/2},

since both the numerator and the denominator converge to 1− (1− p2)/p2 (by
equation 3.3 in [6]). Repeating the same with the right hand side leads to:

lim
n1→∞

Pp2{N1(j) = j/2|N1(2n1) = n1}< lim
n1→∞

Pp1{N1(j) = j/2|N1(2n1) = n1}

Pp2{N1(j) = j/2} < Pp1{N1(j) = j/2},

which is a contradiction since P{N1(j) = j/2} is nondecreasing in p (by Theo-
rem 3 in [6]).
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Appendix E: Deriving E(TiTj) for the covariance matrix

Let Ti and Tj be the ith and jth assignments from a sequence of allocations
generated by the conditional biased coin design, 1 ≤ i < j ≤ n. Then:

Cov(Ti, Tj)
= E(TiTj)− E(Ti)E(Tj)
= P (Ti = 1, Tj = 1)− P (Ti = 1)P (Tj = 1)

= P (Ti=1, Tj=1|N1(n) = n1)− P (Ti = 1|N1(n) = n1)P (Tj = 1|N1(n) = n1),

where Ti and Tj are the corresponding ith and jth assignment from the original
biased coin. It remains to expand each component of this difference.

P (Ti = 1, Tj = 1|N1(n) = n1) =
P (Ti = 1, Tj = 1, N1(n) = n1)

P (N1(n) = n1)

The numerator of the above expression is expanded separately by rewriting it
as a sum of probabilities over disjoint sets then using the Bayes rule:

P (Ti = 1, Tj = 1, N1(n) = n1) =

=

i−1∑
a=0

P{N1(i− 1) = a, Ti = 1, Tj = 1, N1(n) = n1}

=
i−1∑
a=0

j−1∑
b=0

P{N1(i− 1) = a, Ti = 1, N1(j − 1) = b, Tj = 1, N1(n) = n1}

=

i−1∑
a=0

j−1∑
b=0

P{N1(n) = n1|N1(i− 1) = a, Ti = 1, N1(j − 1) = b, Tj = 1}×

× P{N1(i− 1) = a, Ti = 1, N1(j − 1) = b, Tj = 1}

=

i−1∑
a=0

j−1∑
b=0

P{N1(n) = n1|N1(j) = b+ 1}

× P{N1(i− 1) = a, Ti = 1, N1(j − 1) = b, Tj = 1}.

The last equality follows from the Markovian property of N1(n). Further appli-
cations of the Bayes theorem and the Markovian property, leads to:

=

i−1∑
a=0

j−1∑
b=0

P{N1(n) = n1|N1(j) = b+ 1}

× P{Tj = 1|N1(i− 1) = a, Ti = 1, N1(j − 1) = b}×
× P{N1(i− 1) = a, Ti = 1, N1(j − 1) = b}

=

i−1∑
a=0

j−1∑
b=0

P{N1(n) = n1|N1(j) = b+ 1} × P{Tj = 1|N1(j − 1) = b}
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× P{N1(j − 1) = b|N1(i− 1) = a, Ti = 1} × P{N1(i− 1) = a, Ti = 1}

=
i−1∑
a=0

j−1∑
b=0

P{N1(n) = n1|N1(j) = b+ 1} × P{Tj = 1|N1(j − 1) = b}×

× P{N1(j − 1) = b|N1(i) = a+ 1} × P{N1(i− 1) = a, Ti = 1}

=

i−1∑
a=0

j−1∑
b=0

P{N1(n) = n1|N1(j) = b+ 1} × P{Tj = 1|N1(j − 1) = b}×

× P{N1(j − 1) = b|N1(i) = a+ 1}
× P{Ti = 1|N1(i− 1) = a}P{N1(i− 1) = a}.

The probabilities are now relabeled, then rearranged:

=

i−1∑
a=0

j−1∑
b=0

pn,j(b+ 1)× φj(b)× P{N1(j − 1) = b|N1(i) = a+ 1}

× φi(a)P{N1(i− 1) = a}

=

i−1∑
a=0

φi(a)P{N1(i− 1) = a}

×
j−1∑
b=0

pn,j(b+ 1)× φj(b)× P{N1(j − 1) = b|N1(i) = a+ 1}

=

i−1∑
a=0

φi(a)P{N1(i− 1) = a}
j−1∑
b=0

fj,b.

Finally,

E(TiTj) = P (Ti = 1, Tj = 1)

= P (Ti = 1, Tj = 1|N1(n) = n1)

=
P (Ti = 1, Tj = 1, N1(n) = n1)

P (N1(n) = n1)

=

∑i−1
a=0 φi(a)P{N1(i− 1) = a}

∑j−1
b=0 fj,b

P (N1(n) = n1)
.

The remaining quantity E(Ti) = P (Ti = 1) = P (Ti = 1|N1(n) = n1) = 1/2, by
the allocation ratio preserving property.

Appendix F: Proof of Proposition 3.1

Some new notation is introduced. Let Dn be the absolute difference between
the number of subjects assigned to control and N1(n), the number assigned to
treatment, after n allocations using Efron’s biased coin design:

Dn = |N1(n)− (n−N1(n))| = |2N1(n)− n|.
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Assume 1/2 ≤ p < 1 and define r = p/(1− p). Equation 3.3 in [6] states that:

lim
n1→∞

P (D2n1 = 0) = (r − 1)/r.

By the definition of Dn, this is equivalent to:

lim
n1→∞

P (D2n1 = 0) = lim
n1→∞

P (N1(2n1) = n1) = (r − 1)/r. (F.1)

Equation 3.2 in [6] and the fact that the Markov chain Dn has period 2 give:

lim
n1→∞

P (D2(n1−1)−(i−1) = i− 1) = (r2 − 1)/ri, i ≥ 2. (F.2)

The limit of the sum in the first line of (3.1) is examined at i = 1 and i ≥ 2
separately, then the results are summed at the end.

For i = 1, the first line in (3.1) becomes:

2iζ2n1−i(n1 − 1, n1)P{N1(2n1 − i− 1) = n1 − 1|N1(2n1) = n1} =

p
P{N1(2n1 − 2) = n1 − 1}

P{N1(2n1) = n1}
,

which converges to p as n1 tends to infinity, since the ratio of the two probabil-
ities converges to 1 by (F.1).

For i ≥ 2, the sum in the first line of (3.1) is expressed as:

n1∑
i=2

iqpi
2P{N1(2n1 − i− 1) = n1 − 1}

P{N1(2n1) = n1}
=

n1∑
i=2

iqpi
P (D2(n1−1)−(i−1) = i− 1)

P (D2n1 = 0)
,

where the following relationship was used:

2P{N1(2n1 − i− 1) = n1 − 1} = P (D2(n1−1)−(i−1) = i− 1).

Using (F.2), r = p/(1− p), 1/2 ≤ p < 1, 0 < p/r < 1:

lim
n1→∞

n1∑
i=2

iqpi
P (D2(n1−1)−(i−1) = i− 1)

P (D2n1 = 0)
=

∞∑
i=2

iqpi
(r2 − 1)/ri

(r − 1)/r
,

The limit of En1(D) is:

lim
n1→∞

En1(D) =

= lim
n1→∞

p
P{N1(2n1 − 2) = n1 − 1}

P{N1(2n1) = n1}
+ lim

n1→∞

n1∑
i=2

iqpi
P (D2(n1−1)−(i−1) = i− 1)

P (D2n1 = 0)

= p+

∞∑
i=2

iqpi
(r2 − 1)/ri

(r − 1)/r
,

= p+
pq(r2 − 1)

(r − 1)

∞∑
i=2

i(p/r)i−1,

= 1/p.
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Appendix G: Supplemental figures

Fig 11. The general form of the conditional biased coin design with a block size 6, 1/2 ≤ p < 1.
When p = 1/2 this an usual permuted block.

Fig 12. The simulated probability of imbalance for the binary covariate Z2 in model (4.1)
and stratified randomization using the biased coin design (BCD), the conditional biased coin
(CBCD) and the permuted block designs (PBD) with block size 6. The imbalance metric q is
the absolute difference between the proportions of subjects assigned to the treatment arm in
each level of factor Z2.
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