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Abstract: We revisit the problem of estimating the center of symmetry
0 of an unknown symmetric density f. Although Stone (1975), Van Ee-
den (1970), and Sacks (1975) constructed adaptive estimators of 6 in this
model, their estimators depend on external tuning parameters. In an effort
to reduce the burden of tuning parameters, we impose an additional re-
striction of log-concavity on f. We construct truncated one-step estimators
which are adaptive under the log-concavity assumption. Our simulations
indicate that the untruncated version of the one step estimator, which is
tuning parameter free, is also asymptotically efficient. We also study the
maximum likelihood estimator (MLE) of € in the shape-restricted model.
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1. Introduction

In this paper, we revisit the symmetric location model with an additional shape-
restriction of log-concavity. We let P denote the class of all densities on the real
line R. For any 0 € R, denote by Sy the class of all densities symmetric about
0. Then the symmetric location model P is given by

Psz{fep‘f(x;ﬁ):g(x—e),96R,g€80,1f<oo}, (1)

where Zy is the Fisher information for location. It is well-established that (Hu-
ber, 1964, Theorem 3) Z; is finite if and only if f is an absolutely continuous

density satisfying )
= f’(x))
/_DO (f(m) f(z)dr < oo,

where f’ is an Li-derivative of f. Also, in this case, Zy takes the form

= [ () s
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Estimation of € in P; is an old semi-parametric problem, dating back to Stein
(1956). From then on, the problem of estimating 8y in P, has been considered by
many early authors including, but not limited to, Stone (1975), Beran (1974),
Sacks (1975), and Van Eeden (1970). There are two main reasons behind the
assumption of symmetry in this model. First, as Stone has pointed out, if f
is totally unrestricted, 6 is not identifiable. Second, the definition of location
becomes unclear in the absence of symmetry (Takeuchi, 1975). The appeal of
the above model lies in the fact that adaptive estimation of 6 is possible in this
model (Stone, 1975). In other words, there exist consistent estimators of 6 in
Ps, whose asymptotic variance attains the parametric lower bound, which is
I;l in this case. See Sections 3.2, 3.3, and 6.3 of Bickel et al. (1998) for more
discussion on adaptive estimation in P;.

There are general classes of nonparametric estimators, which, following some
clever reconstruction, lead to adaptive estimators of # in Ps. Examples include
the one step estimator used by Stone, and the Hodges-Lehmann rank estimator
used by Van Eeden. Beran uses a linearized rank estimator introduced by Kraft
and Van Eeden (1970), where Sacks uses a linear functional of order statistics.
All these estimators involve various tuning parameters. The success of these
type of nonparametric estimators generally depend crucially on the choice of
the tuning parameters. (cf. Sacks (1975); see also Park (1990) for a thorough
empirical study of similar estimators in a closely related nonparametric problem,
the two-sample location problem.) However, no data-dependent method has
been prescribed to choose these tuning parameters. Therefore, despite attractive
theoretical properties, the implementation of the nonparametric estimators of
0y is not straightforward.

Although the tuning parameters stemming from different nonparametric ap-
proaches appear to be different, they generally fall in one of the following cat-
egories: (a) scaling parameter for approximating derivatives by quotient (e.g.
Beran, Sacks and Van Eeden), (b) bandwidth selection parameter if kernels
are used (e.g. Stone), (¢) the number of basis functions (e.g. Beran), (d) pa-
rameters arising due to truncation (e.g. the estimators of Stone and Sacks) or
data-partitioning (e.g., Van Eeden). We will elaborate a little bit on the first
three type of tuning parameters. They arise solely because the adaptive estima-
tors of Ay require estimating g, ¢’ (e.g. Stone, Van Eeden, and Beran), and in
some cases, higher derivatives (e.g. ¢”, Sacks). In fact, such tuning parameters
are unavoidable in nonparametric estimation of the above quantities. Moreover,
Hogg (1974) points out that in practice, nonparametric estimation of such func-
tions may be too slow. This is precisely where semi-parammeric models can help
because the additional structure can be exploited to construct computationally
efficient estimators of g and ¢’ without using tuning parameters.

If we impose an additional shape restriction of log-concavity on g, for instance,
the task of estimating g’ becomes much simple. The reason is, the class of log-
concave densities is structurally rich enough to admit a maximum likelihood
estimator (MLE) (Pal et al., 2007; Diimbgen and Rufibach, 2009). Similar results
hold for its subclasses, e.g. the class of all symmetric (about the origin) log-
concave densities as well (Doss and Wellner, 2019). The log-concave MLE type



Location estimation 2941

density estimators allow for computationally efficient estimation of the scores
without any tuning parameters. These score estimates can readily be used to
construct a one step estimator.

We show that under the log-concavity assumption, truncated versions of the
above-mentioned one step estimator are adaptive provided the truncation pa-
rameter 7, — 0 slowly enough. This truncation parameter is our only tun-
ing parameter, which also is introduced purely due to technical reasons in
the proof. Moreover, we empirically show that the efficiency of our estima-
tors monotonously increases as 7, — 0. In fact, the untruncated one step
estimator attains the highest efficiency, and also performs reliably under var-
ied settings. Thus, for practical implementation, the proposed estimator of
this paper is the untruncated one-step estimator, which is fully tuning pa-
rameter free. We also touch upon another important tuning parameter free
estimator of 6y, namely the MLE. In particular, we establish its existence
under the shape-constrained model. Our methods can be implemented using
the R package log.location which can be accessed at https://github.com/
nilanjanalaha/log.location.

The imposition of log-concavity on Ps may seem forced, but is not at all un-
natural. The class of log-concave densities, £C, is an important subclass of the
class of unimodal densities. Many common symmetric unimodal densities, e.g.
Gaussian, logistic, and Laplace, are log-concave. Unimodality is a reasonable as-
sumption in context of location estimation of symmetric densities. As Takeuchi
(1975) points out, in practice, multimodal densities generally result from uni-
modal mixtures. Separate procedures are available for the latter class. The diffi-
culty with the unimodality shape restriction, however, stems from the fact that
the corresponding density-class is still large, especially it is not structurally
rich enough to admit an MLE (Birgé, 1997). Therefore unlike the log-concavity
assumption, the unimodality assumption does not provide computational ad-
vantages. Hence, we impose the assumption of log-concavity on P, instead of
just unimodality.

Finally, this paper is an attempt towards bridging the gap between the sym-
metric location model and log-concavity. Although shape-constrained estimation
has a rich history, so far there has been little to no use of shape-constraints in
one-sample symmetric location problem. In fact, to the best of our knowledge,
Van Eeden (1970) is the only one to incorporate shape-constraints in treating
the problem considered here. Actually Van Eeden requires f to be log-concave
although her paper does not mention log-concavity. She requires the function
F(F~Y(u))/f(F~Y(u)) to be non-increasing in u € (0,1), which is equivalent
to f being log-concave (Bobkov, 1996, Proposition A.1). As made clear by our
earlier discussion, Van Eeden does not use shape-restricted tools tailored for log-
concave densities because they were not available at that time. We also want
to mention Bhattacharyya and Bickel (2013), who consider both location and
scale estimation in an elliptical symmetry model, which albeit bearing some
resemblance, is different from the model considered in this paper. Also, Bhat-
tacharyya and Bickel (2013)’s estimation procedure is completely different from
ours.
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1.1. Notation and terminology

For a concave function ¥ : R — R, the domain dom(t) will be defined as in
(Rockafellar, 1970, p. 40), that is, dom(y)) = {z € R : ¢(z) > —oo}. For any
concave function v, we say x € R is a knot of v, if either ¢'(x+) # ¢'(z—), or
x is at the boundary of dom(¢). We denote by K(1) the set of the knots of .
Unless otherwise mentioned, for a real valued function h, provided they exist,
R and h'(-—) will refer to the right and left derivatives of h, respectively. We
denote the support of any density f by supp(f) ={z € R : f(z) > 0}. We will
denote by int(A) the interior of a set A.

For a distribution function F', we let J(F') denote the set {z : 0 < F(z) < 1}.
For a sequence of distribution functions {F,},>1, we say F,, converges weakly
to F, and write F,, —4 F, if for all bounded continuous functions A : R — R,
we have nh_)rrgo [ hdF,, = [ hdF. For any real valued function h : R — R, we let

[|h]|x denote its Ly norm, i.e.

o 1/k
||h||k=(/ h<m>|kdx) ksl
— 00

For densities f1 and fs, the Hellinger distance H(f1, f2) is defined by

1

H?(f1, f2) = B /O;(fl(ﬂ?) — folx))?da.

We denote the order statistics of a random sample (Y1,...,Y,) by (Y1), ..., Y())-

As usual, we denote the set of natural numbers by N. We denote by C an
arbitrary constant which may vary from line to line. For two sequences z,, and
Yn, We write x, < y, if there exists a constant C' > 0 so that z,, < Cy,.

1.2. Problem set up

To formalize the set up, first, let us define

C = {¢:R~>[—oo,oo>

¢ is concave, closed, and proper}. (2)

We let SCy = Sy NC denote the class of all closed and proper concave functions
symmetric about 6 € R. Here a proper and closed concave function is as defined
in Rockafellar (1970), page 24 and 50. Letting £C denote the class of log-concave
densities

,CC::{feP

¢=logf e C},
we set SLCy = LC N Sy. Suppose we observe n independent and identically

distributed (i.i.d.) random variables X = X, ..., X,, with density fo = go(- —
6o) € Py, where

Poz{feP ‘ f(x;0) =g(x—0), 0 €R, g€ SLCo, If<oo} (3)
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is the symmetric log-concave location model. Our aim is to estimate the location
parameter 6.

Let us denote ¢¢ = log fy, and 1y = log gg. We let Fjy and G be the respective
distribution functions of fy and gg, and denote by Py the measure corresponding
to Fy. We denote the empirical distribution function of the X;’s by F,,, and write
P,, for the corresponding empirical measure.

We use the following convention throughout the paper while setting notations
for the one step estimators and the MLE. We use a hat on the quantities related
to the MLE. For example, we denote the MLE of 6y and gy by 6, and g,,
respectively. The similar quantities in the one-step estimator context will use
a tilde, e.g. 0, G, etc. Some quantities like hn, the MLE in LC, or fg, the
MLE in SLCy, will be introduced in context of the one step estimator, but their
notations use the hat instead of the tilde because they are MLEs.

The article is organized as follows. In Section 2, we introduce the one step
estimator, and discuss its asymptotic properties. In Section 3, we explore the
MLE of 6y in Py. We provide an empirical study in Section 4. The proofs are
deferred to the appendix.

2. One step estimator

Let 6,, be a preliminary estimator of fy. Had gy been known, a valid estimator
of 6y would be readily given by the one step estimator (see p. 71 of Van der

Vaart, 1998)
=) @
—0o0 fo

In fact, the above estimator is /n consistent with asymptotic variance Iﬁ)l (cf.
Theorem 5.45 of Van der Vaart, 1998). Suppose g, € Sp is an estimator of
go- Further suppose v¢,, = log g, is directionally differentiable on the support
of gn. The latter always holds if g, € £C (Theorem 0.6.3, Hiriart-Urruty and
Lemaréchal, 2004). Suppose 1/)’ is the right derivative of ¢,,. Defining z// to be
zero outside supp(gy ), we can define an estimator of 8y along the lines of (4) as

follows: _ B
0 It (o
Bro = 0, — / wdmx), (5)

where

7, = /_OO 0 (z — ,)2dF () (6)

is an estimator of the Fisher information Zz,. We will refer to é\mo as the un-
truncated one step estimator.

The asymptotic behavior of 7]1{1 can be hard to control in the tails, which
creates technical difficulties in the asymptotic analysis of 5,170. As we already
mentioned in the introduction, a common approach to tackle this problem is
trimming the extreme observations, which leads to a truncated one step estima-
tor similar to Stone.



2944 N. Laha

We let 7, denote the truncation parameter, which is usually a small positive
fraction. Denote by G, the distribution function corresponding to g,. Letting
&, be the (1 —mn,)-th quantile of G,,, we define the truncated one step estimator

as follows: Gt
N _ nt&n 1/ _ 0
6, = 0, — / Yn@ = 0n) e ). (7
0 —En In(nn)

Here fn(nn) is a truncated version of fn, given by

N On+&n B
Zum) = [ ne Bl @) ®)

Note that the symmetry of §, about 0 implies that —&, = G;-1(n,,). Ideally, we
should denote the one step estimator in (7) by 0, (,) but here we suppress the
dependence on 7, to avoid cumbersome notation. R

Ty, could also be estimated by a smoother version of Z,, (), ), namely,

R On+én _ B B
() = /9 = B — B

However, our simulations indicate that the estimator Z, (n) yields a more efficient
one-step estimator. Therefore, Z,,(n) is our preferred estimator for the Fisher
information.

2.1. Main result

The first main result of this paper states that if n,, — 0 at a sufficiently slow
rate, then the truncated one step estimator defined in (7) is adaptive for certain
choices of g,. However, we require a technical assumption on 1y to prove this
theorem.

Assumption A. There exists £ > 0 so that any directional derivative v, of g
satisfies

[6(2) = ¥o(y)| < klz —y|  for all z,y € int(dom(¢)).

Since 1y is concave, it is directionally differentiable everywhere on
int(dom(t)). If 1 is twice differentiable on int(dom(ty)), Assumption A in-
terprets as |1)(| < k. Control on the second derivative is often required in the
analysis of shape-restricted models (cf. Kuchibhotla et al., 2017; Mukherjee and
Sen, 2019). Simple algebra shows that common symmetric log-concave densities
like Gaussian, Laplace, and Logistic satisfy Assumption A. Later in Section 4, we
consider an example where Assumption A is violated. Whether Assumption A
is necessary is unknown to us, although Section 4 hints that the truncated one
step estimators may still be adaptive even under the violation of Assumption A.

Now we state the requirements for g,,. Later in this section, we demonstrate
how to build estimators which satisfy such conditions.
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Condition 1. Let y, = 0,(1) be a random sequence. The density estimator gy,
satisfies the followings:
(A) llgn — gollx —=p 0 and sup,cg [gn(x + yn) — go(2)| =5 0.
(B) For any compact set K C int(dom(%o)), supex |¥n(z+yn)—%o(z)| —p 0.
(C) Suppose z € int(dom(t))) is a continuity point of ¢{. Then

7/};(53 + Yn) —p 7/1(/)($)

Condition 1 (A) implies H(gn,g0) —p 0 because H(Gn,g0) S v/ l1gn — goll1-
However, we require stronger control over the rate of decay of the Hellinger error
H(gn, 90)-

Condition 2. There exists p € (0,1) so that H(gn, go) = Op(n~P).

Now we are ready to state our main theorem. The proof of Theorem 1 can
be found in Appendix B.

Theorem 1. Suppose fo € Py satisfies Assumption A and 0,, is a \/n-consistent
estimator of 0g. Let g, € SLCq be an estimator of gg which satisfies Conditions 1
and 2. Suppose 1, = Cn=2"'/5 where C > 0 is any constant, and p' € (0, p],
where p is as in Condition 2. Then the estimator 8, defined in (7) satisfies

V(b — 60) —a N(0,Z,").

A couple of remarks are in order. First, Theorem 1 requires g, € SLCy.
This automatically rules out most nonparametric density estimators including
the symmetrized kernel density estimator of Stone. Second, Theorem 1 requires
0, to be y/n-consistent. Stone and Beran impose similar conditions on their
preliminary estimators. The Z-estimator of the shift in the logistic location
shift model is y/n-consistent under minimal regularity conditions (cf. Example
5.40 and Theorem 5.23, Van der Vaart, 1998). When f; € Py, the sample mean
and the sample median also satisfy this requirement.

Now we give example of two §,’s, which satisfy the conditions of Theorem 1.

Partial MLE estimator g : For any 6 € R, the density class SLCy admits
an MLE (Theorem 2.1(C), Doss and Wellner, 2019). When 6 = 6,,, the MLE
in the class SLCy is a legitimate estimator of fo. We denote the corresponding

density by fgn. Then the centered density g; = f;n (-4 0,,) is a potential choice
for g, because gz € SLCo. We call this estimator a Partial MLE estimator to
distinguish it from the traditional MLE of go, which we will discuss in Section 3.
From Doss and Wellner (2019) it follows that loggs = 105, is a piecewise linear
concave function with domain [—a, a], where a = | X|(,).

Geometric mean type symmetrized estimator g3°*°¥": We denote by
ﬁn the MLE of fo among the class of all log-concave densities, which_exists
by Pal et al. (2007). The finite sample and asymptotic properties of h,, are
well-established (Diimbgen and Rufibach, 2009; Cule and Samworth, 2010). In
particular, logﬁn is piecewise linear with domain [X 1) X(n)]. However, the es-

timator ﬁn need not be symmetric about any 6 € R. A symmetrized version of
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~

h,, is given by

o 1/2
gIeosIm (z) .= CI°° <hn(0_n + 2)hn (6, — z)> , z€R (9)

where C9°° is a random normalizing constant. Here “geo” refers to the mode
of symmetrization, which is the geometric mean in this case. Since addition

preserves concavity, log (Tln(én + z)) +log (lALn(én — z)) is concave, which entails
that g9¢*s¥™ € SLCy. The support of g9¢>¥"™ takes the form [—a, a], where

a = rnln(X(n) - 0_n, én - X(l))

Observe that the support of gJ°>»*¥" is smaller than that of g , and it may also
exclude some data points. Simulations suggest that the performance of gg¢o-*¥™
can suffer, especially in small samples, due to the exclusion of data points.
Proposition 1 states that g and gg°>*¥™ satisfy Conditions 1 and 2, as
postulated. The proof of Proposition 1 can be found in Appendix C.

Proposition 1. Suppose fo € Po. Then g, = gz, and gV satisfy Condi-

n

tion 1 and Condition 2 with p =1/4 and 2/5, respectively.

The 4, corresponding to g, = Gp, and ggc>*¥™ is non-smooth since 1;71 is
piecewise linear in both cases. Such an estimator may not be the best choice in
small samples. Although a smoothed version of g, may perform better in small
samples, tuning of the smoothing parameter in a data dependent way may be
a non-trivial task. For the log-concave MLE h,,, however, Chen and Samworth
(2013) construct a well-behaved smoothing parameter in a completely data-
dependent way. This smoothing parameter is given by

Ani=1/32 — 02, (10)

where 32 is the sample variance and 72 is the variance corresponding to h,,,
that is

n

1 _ oo Y o0 —~ 2
52 = — Z:(Xz —X)? and 72 = / 22hy,(2)dz — (/ zhn(z)dz> .

That the right hand side of (10) is positive follows from (2.1) of Chen and
Samworth (2013). In light of the above, we construct a smooth g, which is
symmetric about zero although it is not log-concave.

Smoothed symmetrized estimator g;¥""*™: Let us define the smoothed
version of h,, by

N 1 [ - N
hem () = X_/ (2 = o(t/3n)dt, 2 €R, (11)
n J—oo

where ¢ is the standard normal density and A, is as defined in (10). We define
the smoothed symmetrized estimator by

_ BB+ ) By (B — 2)
= 5 .

gn"*"(2)

(12)
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It is natural to ask if similar data-dependent smoothing parameters exist for
g, and gge>*¥™ as well. Although a quantity analogous to A, can be defined
for these estimators, there is no guarantee that the former will be positive.
Nevertheless, data dependent smoothing of g can be an interesting direction
for future research.

It can be shown that g;¥""*™ satisfies Condition 1 and Condition 2 with
p = 1/5. Moreover, although g5¥™*™ is not log-concave, it leads to an adaptive
estimator of 6y for suitably chosen 7,,.

Theorem 2. Suppose fo € Py satisfies Assumption A, and 0,, is a \/n-consistent
estimator of 0y. Let g, = g,»™*™ and n, = Cn=2'"/5, where C > 0 and
p’ € (0,1/5]. Then the estimator 0,, defined in (7) satisfies

V(b — 60) —a N(0,Z;").

The proof of Theorem 2 can be found in Appendix D.

Remark 1. We suspect that the rate of decay of the Hellinger error of the esti-
mators gy and g;¥"™*™ is faster than our obtained rates, which are O,(—1/4)
and Op(—1/5), respectively. Our guess is based on the fact that the geometric
symmetrized estimator g2¢>*¥™ and the full MLE in Py (see Theorem 5) are
Hellinger consistent at the rate O,(n~2/%). The latter indicates that H (g, go)
is possibly O,(n=%/%) if g, is an equally good estimator of go. However, the
knowledge of p does not contribute much in the tuning of 7, for practical im-
plementation. Therefore, we do not pursue further theoretical investigation on
the best possible rate of 7, in this paper.

For convenience, we list the key differences among our three main estimators
of gg in Table 2.1.

TABLE 1
Comparison of different grn’s: here hy is the log-concave MLE, h;™ is the smoothed
log-concave MLE as defined in (11), and C3°° is the normalizing constant in (9).

Estimator (§n)  gn’ ™ 9z, gaeesym
Summary Smmothed Partial MLE GM type
symmetrized symmetrized
Formula 27 h™ (On +2) g, (2) C3%° (hn (0n + 2)
of gn(z) +hE™ (0, — 2)) Xhn(On, — 2))1/2
Log-concave No Yes Yes
Smooth Yes No No ~
Support R [_lx‘(n)v |X‘(’n)] [__a7 a]? a = mln(X<n) — On,

We close this section with a conjecture. It has previously been mentioned that
the lack of control on JJ;L at the tails make asymptotic analysis of the untruncated
estimator difficult. However, we conjecture that the untruncated estimator é\n,O
is also adaptive, i.e. \/ﬁ(é\mo —6p) —a N(O,If;l). Our simulations in Section 4
does not refute this conjecture.
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3. Maximum likelihood estimator (MLE)

In this section, we prove that the MLE of (6o, go) exists, and explore some of its
properties. Before going into further details, we introduce some new terminolo-
gies. Recall that by our definition of SCy, the class SCq consists of all proper
closed concave functions symmetric about the origin. For ¢ € SCy and 6 € R,
following Diimbgen et al. (2011) and Xu and Samworth (2019), we define the
criterion function for maximum likelihood estimation by

/ V(@ — 0)dF(z) — / V=0 gy, (13)

Following Silverman (1982), we included a Lagrange term to get rid of the
normalizing constant involved in density estimation. This is a common device
in log-concave density estimation literature (cf. Diimbgen and Rufibach, 2009;
Doss and Wellner, 2019).

We use the notation ¥, (6,1) to denote the sample version ¥(0,v,F,) of
U(0,, F). Thus,

/ O(x — 0)dF, (z) — / V(@=0) g, (14)

Let us denote the MLE of (6, go) by (0m n) when they exist. We also denote
1n, = log g,,. Observe that provided they exist, ( . ’(/Jn) satisfies

~ o~

(On, ) = argmax ¥, (0,1).
0ER HESCoH

For fixed 6 € R, denote by ¥y the maximizer of U, (0,%) in ¥ € SCy. Theorem
2.1(C) of Doss and Wellner (2019) implies the maximizer ¢y exists, is unique,

and that it satisfies -
/ V@) g = 1.
—o00

It is not hard to see that if the MLE (§m @n) exists, then

~ -~

0, = argmax ¥, (0,19) and @n = 1% .
OeR "

Note that g,, = ¥ is the MLE of 90, and fn = 0n(-— é\n) is the MLE of fo.
Theorem 3 implies that the the MLE ( s 1/Jn) exists when F,, is non-degenerate.
The proof of Theorem 3 can be found in Appendix F.
Theorem 3. When F,, is non-degenerate, the MLE (gn,zzn) of (Bo,10) exists.
If 0, is unique, then 0, € [X (1), X(n)]. Otherwise, we can find at least one
Gn S [X(l),X(n)],
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Observe that Theorem 3 does not inform whether 8, is unique. Since ¥ n(0,0)
may not be jointly concave in ¢ and 1, existence of a maximizer does not
automatically imply its uniqueness. For a particular choice of 0 however, the
estimator ¢, = ¢ is unique by Theorem 2.1(c) of Doss and Wellner (2019)
Therefore, if (6,11) and (6,1)5) both are MLEs of (A, ), we must have 11 =
Pa.

Although we can not theoretically prove the uniqueness of @L, we are unaware
of any set up which leads to non-unique MLE. Moreover, in all our simulations,
0 turned out to be unique, even when the underlying density fy was skewed or
non-log-concave. Considering this fact, in what follows, we refer to 6, as “the
MLE” instead of “an MLE”. We must remark that even if 6,, is not unique, all
our theorems still hold for each version of 6,,.

When F,, is degenerate, Lemma 1 entails that the MLE does not exist. How-
ever, for distributions with a density, probability of F, being degenerate is
zero. Therefore we will not worry about this particular situation. The proof
of Lemma 1 is delegated to Appendix E.

Lemma 1. Suppose F,, is degenerate, i.e. F,{xo} = 1 for some xg € R. Then
the MLE of (0o, 90) in Py does not exist.

The following theorem sheds some light on the structure of zzn This theorem
is a direct consequence of Theorem 2.1(c) of Doss and Wellner (2019), and hence
we skip the proof.

Theorem 4. Suppose (6 (Amzzn) 1s the MLE. For TF,, non- degenemte &n 18 piece-
wise linear with knots belonging to a subset of the set {0, :|:|X1 —0, [, ..., | X, —
0,}. Also, for z ¢ [—|X — 0, (s | X — 0, |(n ], we have ¥, (x) = —oo. Moreover
if 0 ¢ {£]|X1 —0,],..., %X — 0,]}, then ¢, (0+) = 0.

The MLE can be computed using our R package log.location, which im-
plements a grid search method to optimize ¥,,(6,1y) in 6.

3.1. Asymptotic properties of the MLE

For fo € Py, we showed that the one-step estimators are consistent. Theorem 5
(A) below shows that the MLE 6,, enjoys similar consistency property. In fact,
én is strongly consistent for 6y. Part A of Theorem 5 also entails that g, and
fn are strongly Hellinger consistent. Part B of Theorem 5 concerns the rate of
convergences. The proof of Theorem 5 is delegated to Appendix G.

Theorem 5. Suppose fo € Po. Then the following assertions hold:
(A) Asn — 00, 0, =45 00, H(fn, fo) —as. 0, and H(Gn, go) —ra.s. 0.
(B) Furthermore, |§n — 0| = 0,(n"%/%), H(fn,fo) = 0,(n=2/%), and
H(Gn, 90) = Op(n=?/%).
The rate of H(gn,g0) as given by Theorem 5 is standard for log-concave
density estimators. The MLEs in SLCy and LC have the same rate of Hellinger
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error decay (see Theorem 4.1(c) of Doss and Wellner, 2019). Moreover, this rate
probably can not be improved by any other estimator of gy. To see why, first
note that Theorem 1 of Doss and Wellner (2016) proves that the minimax rate of
Hellinger error decay in £C is O,(n~2/%). Remark 4.2 of Doss and Wellner (2019)
conjectures that the minimax rate of estimation in the constrained class SLCq
stays the same. Since estimation of gy in Py can not be easier than estimation
in the smaller class SLCy, it is likely that the minimax rate of estimating go in
Po is also O,(n=2/%).

However, the MLE 9\” probably convergences to 6y at a rate faster than
O,(n™2/5). Our simulations suggest that 6,, is \/n-consistent, based on which,
we conjecture that @\n is also an adaptive estimator of fy. In our model, the
low dimensional parameter of interest, i.e. #y, is bundled with the infinite di-
mensional nuisance parameter. Obtaining the precise rate of convergence for the
MLE in such semiparametric models is typically difficult (Murphy and Vaart,
2000). Nevertheless, since the MLE is tuning parameter free, finding its exact
asymptotic distribution will be an interesting future research direction.

4. Simulation study

(a) . (b) Density ©300-
ensity -

06 — Laplace 06 - ggﬁ L;:} 5
Logistic —SBr=25 | ®

Normal SB:r=35 £ 200-
04 /\\ 04 ey S
\ £

| @ 100-
0.2 / \ 02 G
w

4 2 0 2 4 2 0 2 4 2 4 6 8
X X r

Fi1c 1. (a) Plot of the standard Laplace, standard normal and standard logistic densities. (b)
Plot of the symmetrized beta density fo r, defined in (15), for different values of r. (¢) Plot
of Fisher information Ifo,7- vs v where fo is the symmetrized beta density.

This section compares the efficiency of our estimators and the coverage of the
resulting confidence intervals with that of Stone and Beran. The general set-up
of the simulation is as follows. We consider as gg the standard normal, standard
logistic, and standard Laplace density. We also consider a fourth density, namely
the symmetrized beta density, which is defined as follows:

r(+n/2)

22 r/2
fo(z) = for(x) = m (1 - 7) 1[—\/F,\/F](517)7 r>0. (15)
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Here I is the usual Gamma function. It is straightforward to verify that in this
case

/ — " 14 22
) = Tl rm @) and (e =~ e )

Some computation shows that r < 2 leads to Zy, = = oo. However for r > 2,
Tf,, < oo, and fo € Py. This is an example of a case where Assumption A fails
to hold because ¢{ is unbounded. We consider the symmetrized beta density
with » = 2.1 and 4.5.

See Figure la and 1b for a pictorial representation of the above-mentioned
densities. Figure lc displays the plot of Zy, = versus r for the symmetrized beta
density, which depicts that Zy, = decreases steeply for r > 2. This finding is
consistent with Zy, being co when fy is the uniform density on [—1,1].

We set 6y = 0, and generate 3000 samples of size n = 40, 100, 200, and
500 from each of the above-mentioned densities. We define the efficiency of an
estimator 6,, by

Efficiency(6,,) = %. (16)

In practice, we replace Var(6,) by its Monte Carlo estimate.

The shape-constrained estimators:

Along with the MLE and the untruncated one step estimator defined in (5), we
consider the truncated one step estimators with truncation level n = 1072, 1073,
and 107°. We select the sample mean as the preliminary estimator 6,, because it
exhibited slightly better overall performance than other potential choices of 6,,,
e.g. the median and the trimmed mean. We choose the partial MLE estimator
and the smoothed symmetrized estimator g;¥"*™ as the estimator of go because
simulations suggest that they perform significantly better than gZ¢o-s¥™.

Comparators: Stone and Beran’s estimators:

As mentioned earlier, Stone’s estimator is a truncated one step estimator which
uses symmetrized Gaussian kernels to estimate gg. Similar to Stone, we let the
corresponding truncation parameter and the kernel bandwidth parameter to be
dpns, and t,s,, respectively, where s,, is the median absolute deviation (MAD),
and d, > 0 and ¢, > 0 are tuning parameters. Following Stone, we take the
preliminary estimator to be the sample median.

As previously stated, Beran’s estimator is a rank-based estimator which de-
pends on the scores. Beran uses Fourier series expansion to estimate the scores,
which requires choosing (a) the number of basis functions (b, ), and (b) a scal-
ing parameter p,, which is used to approximate a derivative term by quotients
during the estimation of the Fourier coefficients. This estimator uses a prelimi-
nary estimator of 6y, which we take to be the sample median following Beran’s
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suggestion. In this case, the sum of squares of the estimated Fourier coefficients
is a consistent estimator of Zy, (see (3.3) of Beran, 1974).

For sample size n = 40, Stone uses d,, = 20 and ¢, = 0.60, but Beran
does not give any demonstration on how to choose the tuning parameters. To
choose some reliable values for the associated tuning parameters, we start with
some pre-selected grids, and employ a grid search procedure (see Appendix I for
more details). The selected tuning parameter is the maximizer of the estimated
efficiency among the grid, where the efficiency is estimated using one hundred
Monte Carlo replications. Of course, this procedure requires the knowledge of the
unknown distribution, and hence, not implementable in practice. However, our
procedure at least guarantees a reliable benchmark to compare the performance
of our estimators. We refer to the resulting tuning parameters as “optimal” for
the sake of simplicity. However, it should be kept in mind that these tuning
parameters depend on the chosen grid, and therefore, may be different from the
globally optimal tuning parameters if the grid selection is not accurate enough.
This could have been overcome by an exhaustive search but that is beyond the
scope of the current paper.

For each distribution and each sample size, we construct two versions of
the nonparametric estimators. The first version is based on the aforementioned
optimal tuning parameter, and the other version uses tuning parameters slightly
away from the optimal region. For convenience, we will refer to the second set of
tuning parameters as “non-optimal”. See Appendix I for more details on these
tuning parameters.

We should mention that neither Stone nor Beran construct confidence inter-
vals. However, both estimators rely on consistent estimators of Zy,, namely, the
estimator Ay, (ry, ¢,) of Stone (see (1.10) of Stone), and the squared Ly norm of
the estimated score in Beran. We use the above estimators of Z¢, to build the
respective confidence intervals of Stone and Beran.

Results:

Figure 2 implies that Stone and Beran’s estimators have high efficiency when
they are equipped with the optimal tuning parameters. In fact Stone’s estimator
has better efficiency than all other estimators in case of logistic and normal
distribution. However, even with the optimal tuning parameter, the coverage of
Stone’s confidence interval is quite low (see Figure 5). The coverage of Beran’s
confidence interval is comparatively better but still not as good as the shape-
constrained estimators (see Figure 3). The poor coverage of the nonparametric
confidence intervals is probably due to their smaller width, as shown by Figure 4.
We suspect that for our tuning parameters, the nonparametric estimators of
Z;, overestimate Zy,, leading to narrow confidence intervals. When the tuning
parameters are non-optimal, the nonparametric estimators suffer in terms of
both efficiency and the coverage. This is most evident in large samples because
in this case, their performance does not significantly improve with the sample
size. Figure 2 and 3 entail that all estimators have markedly poor performance
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in the symmetrized beta case when r = 2.1.

Let us turn our attention to the one step estimators now. Figure 2 underscore
that the efficiency of the one step estimators monotonously decreases with the
truncation, with the highest efficiency being observed at the truncation level
zero. However, the difference becomes smaller as the truncation level decreases.
In particular, at truncation level 1072, the difference almost vanishes. The one
step estimators with lower truncation level, i.e. n < 0.001, exhibit satisfactory
performance in terms of both efficiency and coverage (see Figure 2 and Figure 3).
The estimators with higher truncation level lag in terms of efficiency as expected,
although they exhibit superior coverage in some cases.

The additional gain in coverage that sometimes accompany higher levels of
truncation is probably due to slightly wider confidence intervals (see Figure 4).
Wider confidence intervals are expected with high levels of truncation since
the length of the confidence intervals, which is a constant multiple of Z,,(n)~!,
increases in 7. However, higher level of truncation may not always lead to a
better coverage, especially since high truncation level can also result in sig-
nificant loss of efficiency. See for instance the case of symmetrized beta with
r = 2.1, where the one step estimators with truncation 0.01 lags behind the
other one-step estimators in terms of both efficiency and coverage. This case
clearly demonstrates that the one step estimators with higher level of trunca-
tion are not always reliable. In contrast, the one step estimators with low level of
truncation, particularly the untruncated one step estimator, always exhibit sat-
isfactory performance. In view of above, we propose the untruncated estimator
for practical implementation.

Close inspection shows the smoothed symmetrized estimators have better
overall performance than the partial MLE estimators with the obvious exception
of Laplace distribution, which has a non-smooth density. Finally, we note that
the one step estimators with lower truncation level have better efficiency than
the MLE under all distributions except Laplace. However, when it comes to the
coverage of the confidence intervals, the MLE can be competitive with the best
one step estimators, especially in small samples.

In summary, the coverage of the nonparametric confidence intervals is not
satisfactory for the tuning parameters considered here, and the efficiency of the
nonparametric estimators depends crucially on the tuning parameters. For some
choices of tuning parameter, these estimators may exhibit excellent efficiency
but for other choices, they severely underperform. In contrast, our untruncated
one step estimator and the resulting confidence interval perform reasonably well
under all scenarios. The performance of the untruncated one-step estimator also
speaks in favor of our conjecture that it is an adaptive estimator. Although we
do not show the plots of the mean squared error (MSE) here, they depict the
same patterns as the efficiency plots in Figure 2.

We close this section with a remark on the necessity of Assumption A. The
symmetrized beta distributions do not satisfy Assumption A, but the one step
estimators still seem to be efficient when r = 4.5. Although the one step estima-
tors perform poorly in case of r = 2.1, they still perform better than Stone and
Beran’s estimators, whose asymptotically efficiency under this distribution is
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theoretically validated. Thus, our simulations do not refute the possibility that

Assumption A might be unnecessary.

. — Stone (0) — q=0 q=0.001 — MLE Stone (n)
EStimalor _ peran (o) — q=0.00001 — q=0.01 - Beran (1)

09

08

40 100 200 500 40 100 200 500

(a) Comparison plot when the one step estimators are the Partial MLE estimator

. — Stone (0) — q=0 q=0001 — MLE Stone (n)
EStmalor _ peran (o) — q=0.00001 — q=0.01 — Beran (1)

(b) Comparison plot when the one step estimators are the smoothed symmetrized

estimator

Fic 2. comparison of efficiency: the data-generating distributions are normal (topleft),
Laplace (topmiddle), Symmetrized beta with r = 2.1 (topright), and r = 4.5 (bottomleft),
and logistic (bottommaddle). For Stone’s and Beran’s estimators (in solid lines), (o) stands
for the optimal tuning parameter, and (n) corresponds to the non-optimal tuning parameter.
Here q stands for the truncation parameter n in our one-step estimators (in dashed lines).
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(a) Comparison plot when the one step estimators are the Partial MLE estimator
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(b) Comparison plot when the one step estimators are the smoothed symmetrized
estimator

F1G 3. Comparison of the coverage of the 95% confidence intervals: the data-generating distri-
butions are normal (topleft), Laplace (topmiddle), Symmetrized beta with r = 2.1 (topright),
and r = 4.5 (bottomleft), and logistic (bottommaiddle). Here q stands for the truncation pa-
rameter n in our one-step estimators. The errorbars are given by +2 standard deviation.
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(a) Comparison plot when the one step estimators are the Partial MLE estimator
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(b) Comparison plot when the one step estimators are the smoothed symmetrized
estimator

Fic 4. Comparison of the average confidence interval length (averaged across the 3000 Monte
Carlo samples): the data-generating distributions are normal (topleft), Laplace (topmiddle),
Symmetrized beta with r = 2.1 (topright), and r = 4.5 (bottomleft), and logistic (bottommad-
dle). For Stone’s and Beran’s estimators (in solid lines), (o) stands for the optimal tuning
parameter, and (n) corresponds to the non-optimal tuning parameter. Here q stands for the
truncation parameter n in our one-step estimators (in dashed lines). The errorbars are given
by £2 standard deviation.
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Fic 5. Comparison of the coverage of the 95% confidence intervals for Beran’s and Stone’s
estimators: the data-generating distributions are normal (topleft), Laplace (topmiddle), Sym-
metrized beta with r = 2.1 (topright), and r = 4.5 (bottomleft), and logistic (bottommiddle).
Here (o) stands for the optimal tuning parameter, and (n) corresponds to the non-optimal
tuning parameter. The errorbars are given by £2 standard deviation.

5. Discussion

In this paper, we show that under the additional assumption of log-concavity,
adaptive estimation of 6 is possible with only one tuning parameter. OQur sim-
ulations suggest that the tuning parameter-free untruncated one step estimator
may also be adaptive. This demonstrates the usefulness of log-concavity assump-
tion in semiparametric models in facilitating a simplified estimation procedure.
It is natural to ask what happens if the above shape restriction fails to hold.
This question can be answered building on the log-concave projection theory
developed by Diimbgen et al. (2011), Cule and Samworth (2010), Xu and Sam-
worth (2019), and Barber and Samworth (2020). See Laha (2019) for discussion
of the case when the log-concavity assumption is violated in our model Py. In
particular, it can be shown that, even if f ¢ Py, as long as f is symmetric about
0o, the MLE and the truncated one step estimators are still consistent under
mild conditions.
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Appendix

The appendix is organized as follows. Appendices B, C, and D contain the
proofs for the one step estimators, where Appendices E, F, and G contain the
proofs for the MLE. The proof of the main theorem is presented first, followed
by the auxiliary lemmas required for the proof. Some common technical facts,
which are used repeatedly in the proofs, are listed at the end in Appendix H.
Appendix I contains details on the selected tuning parameters for Stone and
Beran’s estimators.

Before proceeding any further, we introduce some new notations and termi-
nologies. For i = 1,...,n, consider the pseudo-observations Z; = X; — 6y. Note
that, if the X;’s have density fo, then the Z;’s have density go, and distribution
function Gy. We will denote the log—densmes corresponding to hgm, goymes™ gy
and ggeosvm by gb wsym S 1/)9 and z/;qeo SYm - respectively. As usual, (qﬁflm)’,
(wfbym smy 1/)9, and (1/1%8" Sym) will denote the corresponding right derivatives.
We remark in passing that there is nothing special about the right derivative,
and any L; derivative would have worked. However, we fix one specific version
to avoid future confusion. We denote the distribution functions of hsm, gy
and gg¢**¥™ by H;m7 Gsyms™and G9eosY™ | respectively.

The empirical process of the X;’s will be denoted by G,, = /n(F,, — Fp). For
any function h : R — R, and a measure Q) on R, we write Qh := fR hd@ provided
h is integrable with respect to ). Suppose H is a class of Q-measurable functions.
We denote by ||Q|l% the supremum SUPpey |Qh|. For the sake of simplicity, we
will denote 4, = 6y — 6,, and &, = 6y — Hn in our proofs.

For a measure P on R, we define the Lp; norm of the function % as

_ (/_Z |h(x)|de(x)>1/k, k> 1.

For any class of functions H, we will denote
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For two distribution functions F; and F; with densities f; and fs5, the total
variation distance between Fy and F3 is given by dpy (Fy, Fa) = || f1 — f2]1/2.
We define the Wasserstein distance between two measures p and v on R by

awr) = [ 1F) ~ Gl an

— 00

where F' and G are the distribution functions corresponding to u and v respec-
tively. This representation of dy (i, v) follows from Villani (2003), page 75. By
an abuse of notation, sometime we will denote the above distance by dw (F, G)
as well.

For two sets A and B, A x B will represent the Cartesian product. For any set
A C R, and =z € R, we use the usual notation A + = to denote the translated set
{y+x : y € A}. The notation A will refer to the closure of the set A. For any
function h, 1j(z)<c) Will denote the indicator function of the event h(x) < C.
For any set A, we let 14(z) be the indicator function of the event x € A. As
usual, we denote by ¢ the standard Gaussian density.

In some of our proofs, we will replace gZ¥™*™ by a more general mixture
density which satisfies Condition 3.
Condition 3 (Condition for gs¥"»*™). The density g, is symmetric about zero
and satisfies g, (z) = (g1n(x) + g2n(x))/2, where g1, and ga, are log-concave
densities. The densities G,, gin, and go, satisfy Conditions 1 and 2. Moreover,
supp(g1n) = supp(g2,) = R, and the p in Condition 2 is the same for §,, gin,
and gop,.

We will later show in Lemma C.1 that Eim(én +) and gsv™ "™ satisfy Condi-
tion 1, and in Lemma D.1, we will show that these densities satisfy Condition 2
with p = 1/5. Since h3™(6,, £ -) is the convolution of two log-concave densities,
it is log-concave. That g7¥™*™ satisfies Condition 3 follows immediately from
the above results.

We will frequently use the fact that if f is a log-concave density, then f >0
on J(F)={0 < F < 1} (cf. Theorem 1(iv) of Diimbgen et al., 2017). Therefore,
int(dom(log f)) = int(supp(f)) = int(J(F)). As a consequence, F'~! is strictly
increasing, and differentiable with derivative 1/f(F~1(t)) on (0,1) (see Fact 8).
Also, a log-concave f is continuous on int(dom(log f)), and thus int(J(F)), by
Theorem 10.1 of Rockafellar (1970). When fy € Py, furthermore, fy and g are
absolutely continuous on R by Theorem 3 of Huber (1964). We state some more
useful facts about log-concave densities below.

Fact 1 (Lemma 1 of Cule and Samworth (2010)). If f is a univariate log-concave
density, then there exists o > 0 and € R so that f(z) < e=®*1+8,

Fact 2. If f is log-concave, then f/F is non-increasing on J(F) and f/(1—F)
is non-decreasing on J(F).

Proof. This is a well known fact about log-concave densities. See for reference
Theorem 1 and Corollary 2 of Bagnoli and Bergstrom (2005). |

The following two facts will be very useful to lower bound g, on [—&,,&,].
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Fact 3. Suppose g, is a log-concave density satisfying Condition 1. Then for
any x € R, B B
gn(z) > wp, min(Gy,(z), 1 — Gp(2)),

where wy, > 0 satisfies wy, —p wo > 0. Here wy > 0 is a constant depending only
on go-

Proof. If G, (x ) is zero or one, then the statement trivially holds. Therefore, we
assume = € J(G,,), i.e. 0 < Gp(z) < 1. For ¢ € (0,1/2), Fact 2 implies

306 (@)) > 20(3,(G(1/2))) > 2min(a.1 - (G5 (1/2)
For q € (1/2,1), on the other hand, Fact 2 implies
9n(G1(9) 2 21 = 9)gn(GR 1 (1/2)) > 2min(g, 1 = 4)ga (G (1/2)).

Because G,,(z) € (0,1), replacing ¢ by G,,(z) we obtain that

~ (@) » , A—1/,7 ~

Gn(@) 2 G(C (Ga(@)) = 2(G1 (1/2) min (Gu(@),1 = Gul@)).  (18)
Here (a) uses the fact that g,(z) > 0 which follows since » € int(J(G,)) =
int(dom(w,,)). The rest of the proof follows setting w,, = 2§, (G, 1(1/2)), which
converges in probability to wy = 2¢¢(0) by Condition 1 and Fact 11. O

=

Fact 4. Suppose either g, satisfies Condition 3, or g, is a log-concave density
satisfying Condition 1. Then the assertions of Fact 3 hold.

Proof. If g, € LC, the proof follows from Fact 3. Therefore we consider the case
when g, satisfies Condition 3. Since the component densities g1, and gz, in
Condition 3 are log-concave, Fact 3 applies to them. Denote by G1,, and Gs,
the corresponding distribution functions. Equation 18 in the proof of Fact 3
implies

510() + 420(0) 2 0] G100 (1= G0, (0)) + Gan0) (1 = Ganl)) |,
where

b = 21 310 G (1/2) 520 (G5 (1/2) ) =, 2000

by the fact that gy, and go, satisfy Condition 1 and Fact 11. Since the function
(x,y) — xy is convex on {(z,y) : &,y > 0}, it follows that

in(a) > by 21 ; Gan (@) (1 _ Gin(@) ‘g Gz”“”) — b G (2)(1 = Cin(2)).

The proof follows noting z(1 — ) > min(z,1 — z)/2 for z € (0,1). O

Appendix B: Proof of Theorem 1

We first argue that it suffices to prove the theorem only for the case when 7,
equals Cn~2P/%, In the latter case, we would show /n(6, — 0p) —a N(O,I;Jl)

for n, = Cn=2P/> when H(§,,g0) = Op(n~P). Note that for any p’ € (0,p],
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H(jn,g0) = Op(n~"") trivially holds since H(§n,go) = Op(n~P). Therefore,
replacing p by p’ in what we just proved, v/n(8, — 6y) —q N(O,If_ol) would

follow identically for 7, = Cn~2/'/5. Thus, it is enough to consider the case
when 7, = Cn=2/5,
From (7) we obtain that

~ _ én""fn T _ N En 7! _
(6, — ) :/ U@ =0n) ey = [ 20 e g,
én_fn In(”n) _gn In(nn)

Denoting b6y = 0y — B, we observe that the above expression writes as

4 (2) = p(z = 8n) 5

= d(F,(z+0,) — Fy(z + 0,
[ OB g, : 4 ) - e+ )
Tin
Sl (2) ( iy ) Sl (2) = ¥h(2)
+ . fn(nn) folz+0,) —go(2) |dz+ . 7in(77n) go(z)dz
Ton T3p

&n / En )0
Yo(2) Yo(2 — 6n) _
"y fn(nn) gO(Z)dZ + /—En in(’f]n) d(Fn(z + en) FO (Z + en))

Tan Tsn

(19)

Observe that T3, and T}, vanish since z/;% and 1), are odd functions while g is
an even function.

The proof of Theorem 1 has three main steps. The first step uses Donsker
Theorem to show that the empirical process term 71, is op(nfl/z). The term
Ty, accounts for the bias due to the use of 8, instead of the true center 6y in the
construction of the scores. The second step of the proof shows that the order of

Ty, is same as 0,, = 0o—0,,. In particular, we will show that Tb,, = —0n (140, (1)).
Since 0, = O, (n~'/2), the above two steps lead to

The third step of the proof shows that the term /nT5,, is asymptotically nor-
mal with variance Ijiol. A rearranging of the terms in the above display then

establishes the desired asymptotic convergence of \/n(f,, — ). The rest of the
proof is devoted towards proving the above-mentioned three steps.

First step: asymptotic negligibility of /nT,:

First, let us denote 7,, = [0,, —&n, 0, +&,]. Recall that in Section 1.1 we denoted
the empirical process \/n(F, — Fy) by G,. Note that y/nT}, also writes as

_ Ontln o (@ = 00) = Gpla) o [ ha(@)
Vil = [ 7o A ) ) = / G,

(20)
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where by h,, we denote the function

ha(x) = (41, (x = 0,) = G ()17, (), z€R. (21)
Because 7, = O(n~2P/5), Lemma B.15 implies
sup [¢y, (¢ = 0)| = O, (n?/®). (22)
z€Tn

Thus @ZNJ; restricted to the compact set 7, is bounded. We can extend the function
x — 1/ (2)17, (z) to R in a way such that the resulting function @, is still
monotone and has the same bound. This can be done by setting u, to be
1;’;7,(97771 - fn) and '(Z;;L(én + gn) on the interva}s (—OO, én - gn] and [én + fna 00)7

respectively. Note also that we can replace ¢!, by 4, in the definition of h,, i.e.

hn () = (tn(x — 0n) — ¢4 ()17, (2).
Let us denote M,, = CnP/® for some C > 0 and define

U (M) = {u ‘R [-My, M,] | wis non—increasing}. (23)

Since [|Un |l = Op(n?/®), for sufficiently large C, i, (- — 0,) € U, (M,) with
high probability. Now define the class #H,,(C) by

Ha(C) = {h ‘R R ] h(@) = (u@) = (@) Ly ()s 1 € Un(My),
Ihllre < Cn=2/3(log )2, [kl < M,
[r1,72] C [#g — Clogn, by + Clogn] N int(dom(¢o))}.

The notation H,,(C) does not depend on M, because M, = CnP/® is also a
function of C.

We want to show that h,, € H,(C) with high probability for large n. Note
that

sup ()| = sup [%o(@)].
€T €[~81—En,—0n+En]

Lemma B.10 in conjunction with the fact that 1, = O(n~2*/%) implies

sup |¢g(z)| = Op(logn). (24)
2€Tn
Thus (22) and (24) imply [|An|lee = Op(nP/®). Lemma B.16 bounds the Lp, o
norm of h,, entailing ||k, | p, 2 = Op(n~=2P/>(logn)®/?). Lemma B.6 implies, on
the other hand,
li_>m P(ﬁl C [6p — Clogn, by + Clogn] N int(dom(qbo))) =1
n e}
Therefore, we conclude that given ¢ > 0, we can choose C' > 0 so large such that
P(hy, € Hp(C)) > 1 —1t.
Theorem 2.7.5 of Van der Vaart and Wellner (1996) (pp. 159) states that there
exists an absolute constant C’ > 0 so that for any € > 0 and any probability
measure R on the real line,

log N[ 1(€,Un (M), L2(Q)) < C'Me™". (25)



Location estimation 2965

On the other hand, using Theorem 2.7.5 of Van der Vaart and Wellner (1996), it
can also be shown that the class F; of all indicator functions of the form 1
where 21 < zo with 21, 29 € R, satisfies

log N} j(€, Fr, L2(Q)) < C"2¢7 . (26)
Using (25) and (26) we derive that
log N| j(e, Hn(C), La(Py)) S Mye .
For x < 1, the bracketing integral

~7[ ](z7Hn(O)7L2(P0)) = /0z \/1 + lOgN[ ](EaHn(C)a LQ(PO))dE

z1,22]1

z /My,
< 2Mn/ e V2 e,
0

which equals v/zMM,,. Let us also denote K,, = Cn~2*/>(logn)3/2. Note that
Hn(C)lpo2 = sup ) 12l 7.2 = K-

n

Then from Fact 9 it follows that

T (K, Hn(C), La( P,
ENGul, ) S T ) W€ La(Py)) (1 + T En PO L)

K2 /n

M)
which is bounded by a constant multiple of
VE,M, + K7 M0 < (logn)®/4n=7/1 4 (logn)=3/2pn=1/2,

Now fix ¢ > 0 and £ > 0. We can choose C' so large such that P(h,, ¢ H,(C)) <
&/2. Therefore

P( /_ O; o (2)AG () > t’)

< P( /_ h(a)dB (@) > 1 by € Hn(C)) + P<hn ¢ Hn(O))
/ ()G (x)

— 00

(a)
< E{ sup
heH,(C)
= Op((logn)**n /1) Jt' 1 ¢ /2,
which is less than ¢ for sufficiently large n. Here (a) follows from Markov in-
equality. Since ¢’ and £ are arbitrary, we conclude that [ h,,dG,, is o,(1). Finally

an application of Lemma B.17 leads to Z,(1,) —p Ly, and thus from (20),
V/nTi, = op(1) follows.

}/t’ +&/2

Second step: asymptotic limit of Tgn/én:

Let us define A,, = [—&,,&n — 5n], Observe that Tgn/gn can be written as

2—0n
w T g (z_gn) — g (Z) no g/ (t)dt
A ( ’ )dz _ [ Wz)/z @

—&n fn (nn) on —&n In(nn) On,
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t+5n _
/ Jh(2)dz
t

6nIn(nn)
bn(t)
where the last equality follows by Fubini’s Theorem since gg is absolutely con-
tinuous.

Note that (27) implies Tb,, = — [ bn(t)dt. The following lemma, which is
proved in Appendix B.1, establishes T3, —, —1, thus completing the proof of
the second step.

=—/uwmw dt,
R

oo

Lemma B.1. Under the set up of Theorem 1, Y, = / bo(t)dt =, 1 where
b (t) is as defined in (27). -

Third step: showing the asymptotic normality of Tk, :
A change of variable leads to

On+En 10
f%f/% %——%m—mm

(17n)
- /W fqio(nn / am nn Enle) 2%)

where C,, = (—00,60,, — &,] U [0, + &, 00]. The central limit theorem yields

/ ¢0 dGn Z ¢0 \/—[ (X’L)] —d N(07If0)'

Then from Lemma B.17 and Slutsky s theorem it follows that

/ ‘%( )dG (r) =4 N(0,Z;}1).

I (1) ’
Thus it suffices to show that the second term on the right hand side of (28)
is 0,(1). To that end, observe that 1 — 1¢, = 1¢: belongs to the class of all
indicator functions of the form Lzt 20]5 where z1 < z9 with 21,22 € R. Since
the latter class is Donsker by (26), Theorem 2.1 of Van der Vaart and Wellner
(2007) entails that the second term on the right hand side of (28) is of order
op(1) provided

Zo(nn) "2 / - 1o, (2)h(x)? fo(z)dz —, 0.

Since fn(nn) —p Ly, > 0 by Lemma B.17, we only need to show that the
integral in the last display is o,(1). Because Zy, < oo, Fact 12 implies that given

any € > 0, there exists ¢ > 0 so that Py(B) < o 1mphes [ 96% () fo(x)dx < €
for any Py-measurable set B C R. Thus the proof follows if we can show that
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Je. fo(z)dz = 0,(1). To that end, observe that

/C fo(l')dl‘: 1_F0(én+€n)+F0(§n_§n)

—p 1= Fy(00 + Gy (1) + Fo(6o + G5 ' (0))

by continuous mapping theorem because (a) 0, —, 6o, (b) & —, Go'(1)
by Lemma B.3, and (c) Fy is continuous. Since 6y + Gy (1) = F; (1) and
0o + G ' (0) = F; *(0), the proof follows. O

B.1. Proof of key lemmas for Theorem 1

Proof of Lemma B.1. Recall that we defined A,, = [~§,,&n — Sn} in the proof
of Theorem 1. Let us define A/, = [—&, — 2|d,|,&n + 2|6, |]. We also denote

/ 0 (025, (Odt and T, = / 0 ()25 (1)t
Ap+6n

First we will show that it suffices to consider almost sure convergence of Y,
along some suitably chosen subsequence. We claim that given any subsequence
of {n}, we can always obtain a further subsequence {ny}r>1 so that the set

M { enk —>k} 907 ngk (nnk) _>k If07 gnk _>k G ( )7 Wnk _>k w07

(log nk)ZH(gnk ) 90)2
infaL’G.A;L gnk (l’)

-1 0, lim Zy,, =Zj, fori=1,2, (29)
k—o0

l9ne — 9olloe =% 0, Aj,, C int(dom(zp)) for all sufficiently large nk}

has probability one, where w,, and wq are as in Fact 4. The claim follows directly
by Fact 6 noting
( ) 0 —p 0o.

(b) Zn (1) —>p Ty, by Lemma B.17.

(c) & —p Go'(1) by Lemma B.3.

(d) wn —p wo by Fact 4.

(e) Suppose &, = GiY(1 — n,/2). Then Lemma B.7 implies
supm[_gn/?&n}(gnk(aj))_l is 0,(n?/5). However, A/, C [~{,,&,] by Lem-
ma B.5 with probability tending to one since 6, = O,(n~'/?). Since
H(gn,g90) = Op(n~P) and p € (0,1), it follows that

(108 ) (g, 90
inf:cEA’n gn(z)

(f) Suppose &, = (Gn) "' (1L —1,/2). Lemma B.5 implies that with probability
tending to one, &, + 2|0, | < &,, which implies

€
Iln < I2n < 5 T/J;L(Z)an(z)dz g)ll Ifoa
—&n
where (a) follows from Lemma B.14 noting g,, € SLCy. On the other hand,

—p 0.
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Fatou’s lemma and Condition 1 indicates that
liminf Zo,, > Zy,, > / lim inf (lAn (z)@Z;(z)an(z))dz =1Iy,.

Therefore, Z1,,, Zon —p Ly, -
(g) 11Gn — 9olloo —p 0 by Condition 1.
(h) Since 8, = O,(n~'/?), Lemma B.6 yields P(A/, C int(dom(/g))) —n 1.
Suppose we can show that as & — oo, Y,, — 1 on M. Then it would
establish that every subsequence of n has a further subsequence n; along which
Yn, —*a.s. 1. Then Fact 7 would yield Y,, —, 1, as desired. For the sake of
simplicity, we will drop &k from the subscript from the definitions of M and Y,,, .
Now we derive some useful inequalities which hold on M. First, Lemma B.4
implies that

€ < —5log2 + 2plogn
n < .

Because w, —, wo > 0, there exists C' > 0 so that §, < Clogn for all suffi-
ciently large n on M. Equation 40, on the other hand, implies that 1) (&, 4|0x])]
is of the order of £,. Therefore for large enough C|

limsup sup ¥§(t) = [ (€n + [6,])| < Clogn  on M. (30)
n te A,

5wy,

Here the monotonicity of ¢, was used to obtain the last equality. Also note
that because A/, C int(dom(t)p)) for all sufficiently large n on M, we can apply
Lemma B.11 on gg to obtain

lim sup sup Ltl < lim sup e@(1°n1€n) @ 1 on M, (31)
n o ted, go(t + 0p) n
where (a) follows because On€n —n 0 00 M.

Next we will establish the pointwise convergence of b, (t) on M. Since |G, —
9ol — 0 on M, Lemma B.8(B) holds on M. Using Lemma B.8(B) and the
mean value Theorem, we can show that on M, (¢, (t+0,) — 1y (1)) /6 — ¥} (t)
for any ¢ € int(dom(to)) that is a continuity point of (. Because 9 is concave,
¥ is continuous Lebesgue almost everywhere on int(dom(wg)) (see Corollary
25.5.1 and Theorem 25.5 of Rockafellar, 1970). Also noting Zn (M) —n Iy, on
M, we obtain that

/t+6n 5
P (2)dz v
t —n gO(t)wO(t), Lebesgue a.e. ¢ € int(dom(t)) on M.

Since A,, C int(dom(ty)) for sufficiently large n, and &, — G5 '(1) on M, it
follows that 14, (t) converges t0 lint(dom(w,)) () Pointwise on M as well. Noting
96(t) = Yi(t)go(t) for all ¢t € int(dom(t)p)), we then obtain that on M,

bn (t) = 1AV,L (t)96 (t> ==, —'n 1int(dom(w0)) (t> %f‘go(ﬂ (32)

[¢]
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for all £ € R except a set of Lebesgue measure zero. The concavity of ¥, implies
that its right derivative 1/, is non-increasing. Hence, for any ¢ € int(dom(ty)),
we have,

min{%(w,@;(tm)} <

‘ /t+8
¢

< max {31,040+ 5.} (9

vielding o S\ L ()] + 9 (E+ 6,)]- (34)
Using (34), we can bound |b,(t)| noting
71 7 Sn
ba()] < 11t € Auleloo() 2 41 € 4,018 0)]g0(r) Lnl O

bin(t) ban (t)
Now defining

Torn(t) = 11t € Al (0)v/30 00 (¢go<t>—¢gn )

Toon(t) = 1[t € AL]|05 ()] g0 (t W)/

f

\/m <\/90 \/

go(t) 0L+ 00)1\/Gn(t + 6n)
go(t+,) L ()

Tozn(t) = 1[t € An]lhg ()| —————

Qz
A
~
+
C//

T24,n<t) = 1[t € An]‘wé(t”

we note that

bln(t) = TQLn (t) + T227n(t) and bgn (t) = ngyn(t) + T24,n(t).
Thus we can upper bound |b,(t)| by ¢y (t) where
en(t) = Tor,n(t) + Taon(t) + Tozn(t) + Toan(t).

Our aim is to apply Fact 10 (Pratt’s Lemma) with a,, = 0 to prove the current
Lemma. To this end, we first show that the following assertions hold on M:

Al. T5y 5 —5 0 and T3, —5 0 Lebesgue almost everywhere on R.

A2. [, To1n(t)dt —, 0 and [ Tos ,(t)dt —, 0.

A3. There are functions t9s : R — R and ¢94 : R — R so that Toy —,, 20 and
T54 —p, t24(t) Lebesgue almost everywhere on R.

A4. The functions t9o and t24 in A3 are integrable. Moreover, fR Tog n(t)dt —,
f]R t22 dt and f]R T24 n )dt —n fR t24 dt
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Let us denote ¢(t) = toa(t) + to4(t). Then Al-A4 imply that on M, ¢, (t) =,
¢(t) Lebesgue almost everywhere, ¢ is integrable, and [, ¢, (t)dt —,, [; c(t)dt.
Since |b,(t)] < cn(t) and (32) holds, Pratt’s Lemma (see Fact 10) yields

e <] Gal(l) / t2 / tdt
/ by, (t)dt —>n/ 790( )"Yo(t) =1 onM,
Gl (0) 1y,

which completes the proof of Lemma B.1.

— 00

Proof of A1 and A3:

Since [|gn — 9golloc —n 0 on M, Lemma B.8 implies that on M, the functions
Gn» gn(-+06,) converge pointwise to go, and 1, , 9, (-+0,,) converge to 1}, Lebesgue
almost everywhere on int(dom(typ)). Continuity of go implies go(t+0,) —n go(t)
for all ¢ € R. Using the above, it can be shown that

151,230 —n 0, To2.5,T24m —n 1int(dom(¢0))¢6290/If0 a.e. Lebesgue on M.
Proof of A2:
Using Cauchy-Schwarz inequality, the bound on go from Fact 1, and the bound

on ¥} from (30), we can show that there exists C' > 0 such that the following
holds for all sufficiently large n on M:

/ |T51,,(t)|dt

2\ 1/2
&n \/m - gn(t) i t 2~ £)dt 1/2
couen (¢ WIOVEON (oo
—&n—bn n(t) A, o (10)2
H(gn, Tin
< Clogn (Gn> 90) 737 1 7
(infmeAfn ﬁn(x)) n(nn)
which approaches zero as n — oo because
C(logn)H (g0, gn) -
: - 0 2/2 —n O, Iln, In('r]n) —n Ifo on M. (35)
(lnsz.A;,L gn(m))

by (29). The proof for T3, is similar. An application of the Cauchy-Schwarz
inequality, the bound on ¢} by (30) and the bound in (31) imply that the
following holds for all large n on M:

I Cllogm)Higo. 5n) (/ZM f;(t%n(t)dt)w

Ty (t)dt < 1
) ' } /2
—c0 (1nfxeA;L gn(x)> Z,(nn)
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C(logn)H(go,9n) VZ2n

1/2 in (1n)

(infmeA;, gn(m))

which converges to zero by (35) and the fact that Z,, —, Ty, on M, thus
completing the proof of A2.

Proof of Aj:

Let us define

Ta2n(t) = [Tozn(t)/g0(t)  and  Taan(t) = [Toa,n(t)]/g0(t)-
We will show that on M, for each € > 0, there exists o > 0 so that the follow-
ing bounds are true for any Gp-measurable set B C R satisfying fB go(t)dt < o:

limsup/ Ta2,n(t)go(t)dt < e and 1imsup/ Taa.n(t)go(t)dt < e. (36)
n B n B

Next, we will show that
lim sup/ Ta2,n(t)go(t)dt < oo and lim sup/ Taa.n(t)go(t)dt < co. (37)

If (36) and (37) hold, Fact 13 underscores that the sequences (722, )n>1 and
(T24,n)n>1 are uniform integrable with respect to the measure induced by Gy.
Then A4 follows from A3 and Theorem 16.13 of Billingsley (2012) (Vitali con-
vergence Theorem). Thus it suffices to show that (36) and (37) hold.

Note that since Iy, < oo, by Fact 12, given any € > 0, we can choose o > 0
so that for any Go-measurable set B C R satisfying |, 5 90(t)dt < o, the integral
J5 Yo(x)?go(x) < €Iy, = € (say). It will soon be clear why this choice of ¢
works. Using the Cauchy-Schwarz inequality in the third step, we calculate

/ Tozn(t)g0(t)dt = / Toa,(t)dlt = / 640 /go(D) DIV ()
5 B BNA, T, ()

1/2 S 172
l t)dt
< ( / %(t)2go(t)dt) ( M) ’
B An Ln(nn)
which is bounded by M/fn(nn) Noting Z1,, —y Ly, and 7, (1) —+n Ly, o0

M, we obtain

limnsup/BBQ,n(t)go(t)dt <\/€/I;, =€ on M.

Letting B = R, and repeating the above steps, we can show that

limsup/ Ta2n(t)go(t)dt <1 on M.
n i

For 724, the Cauchy-Schwarz inequality yields
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" 12 71/2
< Ve sup ( go(t)~ ) 2n__ (38)
teAn \ 9o (t + 671) T, (nn)

Here (a) follows because [, 9 (t)2go(t)dt < €. The fact that Zy,, Zo(1n) —n Ty,
on M, in conjunction with the bound in (31), implies

limsup/Tmtg t)dt < /€' /Z;, =€ on M.
824()0() /f

n

Thus (36) is proved. Letting B = R leads to limsup,, [ T24,n(t)go(t)dt < 1 on
M, thus finishing the proof of (37). O

B.2. Auzilliary lemmas for the proof of Theorem 1
B.2.1. Lemmas on &;:

Unless otherwise mentioned, for all the lemmas on &,, &, will denote G’; Y1—ny),
where the choice of g, should be clear from the context.

Lemma B.2. Suppose g, € So satisfies Conditions 1 and 2. Let n, = Cn=20/5,
where C' > 0 and p is as in Condition 2. Then for &, = G 1(1 —n,), we have

P([_fnvfn] C int(dom(wo))> 1

Proof of Lemma B.2. Using Fact 5 in step (a) we obtain that

- ~ (9
|Go(—£n) = Gu(=6)| < drv(Go, Gr) < V2H(Gns90) = Op(n7)
by Condition 2. Therefore Go(—&,) > Gn(—£n) + 0p(n"") > 1, + 0,(nP)

because F(F~1(q)) > ¢ for any distribution function F, and ¢ € (0,1). Since
N = Cn=2P/5 > n=P_ it follows that P(Go(—E€n) > 1n/2) — 1. Thus P(—&, €
int(dom(to))) —n 1. Since 9y € SCo, int(dom(t)g)) is an interval of the form
(—a,a) for some a > 0. Noting —¢,, € (—a,a) implies [—¢,,,&,] C (—a,a), the
proof follows. O

Lemma B.3. Consider the set up of Lemma B.2. Then &, —, Gg'(1) as
Nn — 0.

Proof of Lemma B.3. Note that G '(1) takes value in R U {c0}. Lemma B.2
implies P(¢, < Gy'(1)) — 1. Suppose, if possible, &, —p Gy (1) does not hold.
Then, since G ' is continuous on (0, 1), there exists t € (0,1) so that

limsup P(&, < Gyt (t)) > 0.

However, because 1, — 0, 1 — 5, > 2t for sufficiently large n, which yields
&, > G1(2t). Now by Fact 11 and Condition 1, G;;*(2t) —, G5 ' (2t). However,
Gyt(2t) > Gyt (t), where the strict inequality follows because go being log-
concave, is positive J(Gg). Therefore the proof follows by contradiction. 4

Lemma B.4. Suppose either G, € SLCy is a density satisfying Condition 1
and Condition 2, or gy, satisfies Condition 3. Let n, = Cn~2P/5 where p is as
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in Condition 2 (or Condition 3) and C > 0. Then
€6 < log2 + 2p(logn)/5

W,
where wy, is as in Fact 4. In fact, |§,] = Op(logn).

Proof of Lemma B.J. Observe that if §, € SLCo, then §,(G'(z)) > 0 for
z € (0,1). If g, satisfies Condition 3, then also the above holds because by
Condition 3, §, > 0 on R. Since §, is symmetric about zero, 0 = G, (1/2).
Noting &, = —G51(n,), we therefore derive that

i i 1/2 d 1/2 dz
=G 12 =Gl ) = | =<
¢ (1/2) = G (1) / . n(Ga(2)) </ v wnGa(Gr'(2)

where w,, is as in Fact 4. Because g, > 0 on J(én), it follows that G, is
continuous on J(G,,). Therefore, we have G, (G,,1(2)) = 2, implying

€ < log(1/2) — log(n,)  —log2 + 2p(logn)/5
n = - .
Wn Wn,

Since wy, —p wo > 0 by Fact 4, the proof follows. O

Lemma B.5. Consider the set up of Lemma B.J. Let &, = G (0, /2). Suppose
Yn 18 a sequence of non-negative random variables so that P(y, < 1,/(2g0(0))) —
1. Then

P([*gn — Yn>&n + yn] C [7£nygn]) — 1. (39)

Proof of Lemma B.5. Under our set up, g, is positive on the set J(G,). There-
fore the function G, ! is continuous on (0, 1). Hence the mean value theorem
implies

5 5 Tn TIn
G 1(77n) -G 1(77n/2) = = ESTE
! ! 29n(G (1) ~ 2l
for some t € [n,/2,m,]. Condition 1 implies that ||gnllcc —p [lg0lloc = 90(0).
Therefore, as n — oo,
~—1 _ -1 ) 1
n Tin 290(0)

Hence if y, < 17./(290(0)), then G (mn) — yn > Gt (1n/2) with probability
tending to one. Since g,, is symmetric about zero, we obtain that G, Y1—my)+
Yn < G, (1 —nyn/2) with probability tending to one. Since &, = G, (1 — n,,)

and &, = G, (1 — 1, /2), the proof follows. O

Lemma B.6. Consider the set up of Lemma B.4. Then for y, = op(n,), we
have

P(1=& = Iyl &n + yal] € int(dom(¥))) = 1.

Proof of Lemma B.6. Letting & = — ~Y(nn/2), and applying Lemma B.2,
we obtain P([—&,,&,] C int(dom(vyp))) — 1. Then the result follows from
Lemma B.5. O
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B.2.2. lemmas on g, and gy:

Lemma B.7. Suppose &, = G (1—n,) where §, € SLCy satisfies Condition 1.
Then
A. SUPgze[—¢,,60] gn(x) = O;D(l) and SUPze[—¢,,6n] gn(x)_l = Op(nrtl)'
B. 1, = logj, satisfies SUP,c[—¢, 6] Un(x) = Op(1). Forn, = Cn=2*/5 with
p € (0,1) and C > 0, we have supze[_gmgn](fz/;n(x)) = Op(logn).

Proof of Lemma B.7. The upper bound on g, follows from Fact 1 and Condi-
tion 1. For the upper bound on g, !, note that Fact 4 implies that

Gn(x) > w, min(G,(x), 1 — Gp(z)), forall z € R.

Since G, is a non-decreasing and 1 — G,, is a non-increasing function, any
x € [=&n, &y satisfies

gn(z) > wpmin(Gp (=€), 1 — én(gn)) = Wnln

because én(—fn) = 7),. Since the random variable w,, —, wo > 0 by Fact 4,
part A of the current lemma follows. Part B follows directly from Part A. O

Lemma B.8. Assume fy € Py. Suppose {Gn}n>1 i a sequence of log-concave
densities satisfying ||gn — gollococ —n 0. Then the followings hold for any y, —, 0:
(A) Let ¥y, =10g §n. Then iy (- + yn) —n Yo everywhere on int(dom(t))).
(B) (- + yn) —n ) Lebesgue almost everywhere on int(dom(v)). In par-
ticular, if x is a continuity point of 1y, then ¥, (x + yn) —>n V0.

Proof of Lemma B.S8. Since go is continuous, it follows that sup,ep |Gn(z+yn) —
go(x)| —n 0. Since for each = € int(dom(v))), there exists an open neighborhood
around z where [¢g| < 00, ¥n(z + yn) —n to(x) for each z € int(dom(y)).
Therefore part (A) follows. For part (B), first note that if 2 € int(dom(t))) is a
continuity point of ¢(, then ¢/, (z+y,) —n ¥, (z) by Theorem 25.7 of Rockafellar
(1970). Now since 1) is concave, g is continuously differentiable at z if it is
differentiable at = (Rockafellar, 1970, Corollary 25.5.1). However, a concave g
is differentiable Lebesgue almost everywhere on dom(¢g) (Rockafellar, 1970,
Theorem 25.5). Therefore, the lemma follows. O

B.2.3. Lemmas on gy:

Lemma B.9. Suppose gy satisfies Assumption A. Let k be as in Assumption A.
Then for any x € dom(vy), Vo satisfies

[0 ()| < [o(0)] + ra.
In particular, if n, = Cn™P forp € (0,1) and C > 0, then under the set up of
Lemma B.J, &, = G, Y (1 —n,) satisfies

sup  [1ho()| = Op((logn)?).
xe[_fnvgn]
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proof of Lemma B.9. Because 1y € SCy, zero is the mode of iy. Therefore, the
upper bound on g follows since 1g(z) < 1(0). For the lower bound, first note
that the concavity of 1 indicates that if z > 0 and = € dom(¢y), then

Yo (@) > 1ho(0) + ¥ (z—)a-.
By our notation, ¢j(z+) = v¥{(z). Noting Assumption A implies ¢¥§(z—) >
¥, (0—) — Kz, we derive
Yo(@) > 0(0) + B)(0-) — e

Since ¥§(0—) > 0, the above yields wo(x) > 1o(0) — ka? for all x > 0.
Since 1)y is symmetric about zero, we derive that (z) > 1o(0) — kx? for
all z € R. In conjunction with the fact that 1g(z) < 19(0), the latter implies
[Yo(z)| < [1o(0)| + ka? for all z € R. Since P([—¢,,&,] C dom(kg)) — 1 by

Lemma B.2, the rest of the proof follows noting &, = O,(logn) for n,, = n=2p/5
by Lemma B.4. O

Lemma B.10. Suppose v € SCy satisfies Assumption A. Further suppose n,
is as in Lemma B.9 and y,, > 0 satisfies y, = op(nn). Then

sup [¥6(2)] = Op(—log(mn))-
TE€[—En—Yn,En+yn]

Proof of Lemma B.10. Since 1y € SCy, ¢, attains its maxima on any interval at
the endpoints. Lemma B.6 implies [—&, —yn, En+yn] C dom(thg) with probability
approaching one. Therefore Assumption A implies

Uo(=&n — yn) < [¥G(0)] + K€l + yn)- (40)
Rest of the proof follows from Lemma B.4 and the fact that y,, = 0,(1). O
Lemma B.11. Under the set up of Theorem 1, there exists C > 0 so that if
b > 0 satisfies [—b — |0, b+ |0,|] C int(dom(vpg)), then
9o(t) < oSl (CHrbtriSa)
te[—b,b] go(t + 0p)

Proof of Lemma B.11. Recalling that we use v, to denote the right derivative
of ¥y, we obtain

go(t)

m = eXp(wo(t) — Po(t + 5n>)

(a) ~ -
< exp (|8 max{leb ()], [0 (¢ + )1}
where (a) follows from (33). If t, t — 4, € int(dom(%)g)), by Assummption A, it
also holds that |¢(t)| < ¥((0—) + &|t| and [ (t + 5pn)| < P{(0—) + K|t] + K|dy|.
Thus for C' = ¢{(0—), we obtain that
9o(t) < elBal(CHRIt+rIBL)
from which, the result follows. O
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B.2.}. Lemmas regarding &n:

Lemma B.12. Suppose g, satisfies Condition 1 and Condition 2 withp € (0,1).
Further suppose a,, and g, satisfies

sup  ([vo(x)| + [¢u(@)]) = Op((logn)?). (41)

TE[—an,an]

Then
/ " (Fn(2) — 0 (2))2 g0 (x)dx =0, ((log n)*n~2),

/ ($n(x) = Po(2))*gn(x)de =0, ((logn)*n=27).
In particular, if g, € SLCo, then (41) holds with a, = £,(Gn) = G711 —np),
where 1, = Cn=2*/5 for some C > 0.
Proof of Lemma B.12. We first invoke an algebraic fact. For any z,y > 0,

max(x,y)

(Vr —/9)* = min(a:,y)( - 1>2 = min(z,y) (e“ogm*logy‘/z - 1)2.

min(z, y)

Since for any z > 0, 2z and 22/2 are bounded above by e* — 1, it follows that

2
(e' log—logyl/2 _ 1) > (logz — logy)?/4, (logx — log y)*/82.

Thus
[ Vi@~ Vao@Pde > [ mingae).g0(0)) (Fne) — do(a) s
[ (il Vao@e > [ win(ue),90() (o) — dole))
! " (42)
Therefore,
| Gate) = nla) Paola)s

_ / " () — to(2)? (90 () — min(go(=), én@)))dx

—Qan

+f " (Gn(z) — to(2))? min(go(x), G (x))de

—an

@ /anr (O (@) — 0(2))2(90(x) — Gn ()15, <goyd + Op(n~2?)

—an

[ ) = ) (Vo ~ VT,

—Qan

T
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—2 /an (Gn() = %0(2))*VGu(2)(VGn (@) = V/90(2))1[3, <go)dz +Op(n~?P)

—an

T>
where (a) follows from (42) and Condition 2. We can upper bound 1o (z)—, ()]
noting

sup  [to(2) = Pu(2)] < sup  ([o(@)| + [$u(2)]) = Op((logn)?)

xE[_anaan] xe[_avuan]

by (41). Therefore Ty < O,((logn)?)H (Gn, go)?, which is O, (n=2P). On the other
hand, noting T, can be written as

T = /an ($n() = ¢o(2))*Vmin(ga(2), 9o(2)) (v/Fa(@) = Vg0(2)) 1[5, <gy)d2,

—Qan

by an application of the Cauchy-Schwarz inequality, we derive

an 1/2
|n<(/<m@—%@ﬁmmmm%wmﬁ H(Gn, g0),

which, by (42) and Condition 2, is O,(n~2P), thus completing the proof of the
first part.

It remains to show that (41) holds when §, € S£Cq and a, = G, (1 —1,).
Lemma B.9 entails that this a,, satisfies

s [¥0(z)] = Op((logn)?). (43)
TE|—an,an
The proof of the current lemma then follows noting Lemma B.7 implies

sup |ty ()| = Op(logn). O

TE [_fn 1571/]

B.2.5. Lemmas regarding 1[)%

Lemma B.13. Let p,, = n,/logn. Suppose g, is a log-concave density satisfy-
ing Condition 1 and Condition 2. Let a,, be a positive sequence satisfying (41)
such that a, = O,(logn),

[—n — P, an + pu] C int(dom(ihg)) N int(dom(iby,)), (44)

P(Gp(=an) > nn /4,1 — Gplay) > n,/4) — 1. (45)
Then a )
[ (50 = v4(2)) dz = O, ((tog )P0/,

an 5 )
[ (442 = () ale)dz = Oy((ogm)*n=01%)),
for any density p, such that ||pnlle = Op(1), where p is as in Condition 2.

In particular, the lemma holds if g, € SLCy and a, = fn(én) = é;l(l — M),
where 0, = Cn=2*/> for some C > 0.
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Proof of Lemma B.13. Since in is concave and p,, > 0, any z € dom(zﬂn) satis-
fies

Now suppose (44) holds. Then the quantities
_ 1/~1n(2 + pn) — Q/Zn(z) o '(/}0(2 + pn) — wO(Z)

AL (2) o - ,
and ) i
AL (2) = ¥nl2) = Z’:(z —pn)  Yo(2) - ﬁ:(z — pn)

are well defined for all z € [—ay, a,]. Recalling ¢/, (z) = ¢/, (2+) and ¥}(z) =
¥ (z+) by our notation, we can then show that under (44),

77Z;L(Z) o ¢6(z) (%) wﬂ(’z) — f:(z — pn) B ,IZ)O(Z) — f:(z - pn)

for all z € [—ap,ay], where (a) follows by (46), and (b) follows because
7/}0(2) 71/)0(27pn) - / /
i | (s —vie)ar

since Assumption A applies on the set [z — py,, 2] C int(dom(¢g)). Similarly, we
can show that

At (2) = kpp <UL (2) — h(2) for all z € [—ay, ay],
provided (44) holds. Thus we have established that
[01,(2) = ¥p(2)] < max{A(2), A, (2)} + kpn (47)
whenever (44) holds. Now observe that the integral ffaLn At (2)%dz is well de-
fined under (44), and equals

/“” (1/;n(z + ) —Un(2) oz +pn) — %(’Z))zdz

—o(2) < pt < Kipn /2

Ca Pn P
[ <1¢3n<z T pu) = ol + m)zdz - <w<>¢o<>)d
a, Pn —an Pn
(@ 2 an
= p’l%, min(gn(an + pn)a gn(_an + pn)) /an (1/fn(Z * Pn)
— %0(2 4 pn))?gn(z + pn)dz
b D [ () - )P
Pn mln(gn(an), gn(_an)) —an
®) Op((logn)*n—2)

B przy, mln(gn(an + pn)7 gn(_an - pn))7
where (a) follows because §, being log-concave, and hence unimodal, attains
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minimum over an interval at either of the endpoints; and (b) follows from

Lemma B.12 and the fact that a,, and p, are positive. Let us define
(logn)?n=2°

P% min(g, (an + pn)s Gn(—an — pn)) .

Since (44) holds with probability tending to one by our assumption, we can

write [*" AlF(2)2dz = Op(€n(pn)). Similarly, we can show that [*" A (z)dz

is Op(€n(prn)). The above, combined with (47), leads to

/ CWLe) — @)z <2 [ AL (22de 2 [ AL(2)%dz + dr2plan

= Op(en(pn)) + Op(ppan).
Note that p2a, = O(n~*"/°/logn) because p,, = n,/logn and a, = O,(logn)
by our assumption. Also, fzn (! (2) — ¥4(2))?pn(2)dz can be bounded by

en(pn) = (48)

a

2|f||oo( A (2)%dz+ [ A,J{(z)zdz) +2K2p2

—Qn —Qan

which is O, (e, (pn)) +0,(n~4/° /(log n)?) because | i || oo is Op(1) and p,, equals
1n/ log n. To prove the first part of the lemma, it only remains to show that

€n(pn) = Op((log n)3”74p/5)- (49)
Since a, — p, € int(dom(s,)) under (44), Fact 4 implies
gn(*an - pn) Z wnén(*an - pn) = wnén(*an) - Wn/ gn(z)dz

—Qn—Pn

under (44), where w;, is as in fact 4. Note that

—an
/ gn(2)dz
—Qnp—Pn

Also since P(Gy(—an) > n,/4) — 1 by our assumption, the followings hold
with probability tending to one,

< Pnllgnlloo-

gn(*an - pn) Z wn(nn/4 - pn”gn”oo) (Z) wnnn/87
where (a) follows because p,, = 0(n,,) and ||gn|lcc = Op(1) by Condition 1 and
Fact 1. However, since w,, —, wo by Fact 4, the last display implies g, (—a, —
pn) L is Op(1/ny,). Similarly, we can show that g, (a, +pn) ™! is Op(1/n,). Thus

g = Otz

TInPn,

follows. Since 1,, = n~2*/> and p,, = 1, /logn, (49) follows, thus completing the
proof of the first part of Lemma B.13.

Now suppose g, € SLCo and a,, = &,(Gp) = G ' (1 — n,,). They satisfy (41)
by Lemma B.12. Also &, = Op,(logn) by Lemma B.4. Noting p,, = o(n,), (44)
follows from Lemma B.5 and Lemma B.6. Since (45) trivially holds, second part
of Lemma B.13 also follows. O
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Lemma B.14. Suppose g, satisfies Condition 1 and Condition 2. Let a, be a
sequence of positive random variables satisfying

an = Op(logn), P(an € int(dom(wo))) —1, and ap —, Gy(1). (50)
Further suppose that g, and a, satisfy
| 0 = (220 = Oy((togmn ), (51)

where p is as in Condition 2. Then ffzn U (2)%Gn(2)dz —p Ly, In addition, if
gn € SLCy, then a, = «fn(én) = (én)_l(l — 1) where n, = Cn=2P/> for some
C > 0.

Proof of Lemma B.14. Note that

/a" (1/;;(2)2%(2) - w(l)(Z)ng(z))dz

—Qn

- / (@)~ 5(2)%u(2) + 2042 ()i (2)

—Qan

~U(2)73n(2) ~ U (2 00() ) dz

_ /_ " B0(2) — ()2 (2)dz 42 _a" o)W (2) — b (2))n(2)d2
[ UG - sl

It is clear that by our assumption, Ty = O, ((logn)3n~%/%), which is o0,(1).
Because v, is a non-increasing odd function, on any interval, |¢{| attains its

maximum at both end points. Therefore,
a

Tl < Wh(an)] | [0(2) — w0 (2)]Gn(2)d

—an

< 1 an) ( [ e - wa<z>>2gn<z>dz) "

—Qn

where (a) follows by the Cauchy-Schwarz inequality. Thus, |T2| < |[¢f(an)|v/T1-
However, Assumption A implies that [¢)(a,)| < [¢4(0)] + kan, = Op(logn)
provided a,, € int(dom(t)). By our assumption on a,, the latter holds with
probability tending to one. Hence,

Ty = O,(logn)\/Ty = O,((logn)>/*n=2/5) = 0,(1).
Finally, using the fact |1(a,)| = Op(logn) again, we bound |T3| by

. (@) . (®) _
Op((logn)*)drv (Gn, 90) < Op((logn)*)H(gn, g90) = Op((logn)*n") = 0,(1),
where (a) follows from Fact 5 and (b) follows noting H (g, go) = Op(n~P) by



Location estimation 2981

Condition 2. Thus we have shown that

[ (220 - h(2P00() dz = 0,(0).
Since a, —, G5 (1) by our assumption, noting G5 '(0) = —G5 (1), we also
obtain —a, —, Gy '(0). Hence,

an Go'(1)
WPy [ e (s = T,

—an G '(0)

which completes the proof of the first part of Lemma B.14. Second part of

Lemma B.14 follows noting &, = Op(logn) by Lemma B.4, &, € int(dom(t))

with probability tending to one by Lemma B.2, &, —, Go_l(l) by Lemma B.3,

and g, € SLCy satisfies (51) by Lemma B.13. O

Lemma B.15. Consider the set up of Theorem 1. Suppose n, = Cn~2P/5,
where C > 0 and p is as in Condition 2. Let y, be a sequence of positive
random variables such that P(|y,| < nn/(290(0))) — 1. Then

sup [9n ()] = Op(n;, /%) = Op(n?/P).
xe[_fn_yrmgn"!‘yn]

Proof of Lemma B.15. Let q € (0,1/2). Since §,, being log-concave, is positive

on int(J(G,)), using Fact 8 we obtain that

év_Ll(‘I) ~ q ~
[ B (@) 2gn(@)de = | 9L(Go(2)) e

Gn'(a/2) /2
Note that 1, is non-increasing and positive on (—o00, —z], and g,(—z) is positive
and non-decreasing on (—oo, —z]. Thus 1/, o G,;! is non-increasing. Therefore
o Gl (@ [Cn'-a/2)
d G @P s [ @ < (00 0
Gn'(a/2) Gn'(a/2)

where (a) follows because ¢ < 1 — ¢/2 for all ¢ € (0,1/2). Suppose ¢ = 7,,/2.
Note that &, = —G,;*(n,/2) and |¢},| is symmetric about zero. Then the last

display leads to
Gt (1= /4) _ )
1 0 (@) (2)d

Gr' (/4

V() <

) o

From Lemma B.14 it follows that the integral converges in probability to Zy,.
Therefore, |4/, (&,)] = Op(nn 1/ ?) which implies

sup [, (2)] = Oy, /?). (52)
we[*gn )s'n,]
The rest of the proof follows from (52) and Lemma B.5. O

Lemma B.16. Consider the set up of Theorem 1. Then |lhy||}, , =
O, (n=*"/5(logn)?), where h,, is as defined in (21).
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Proof of Lemma B.16. Note that ||h,[|3, , equals

En ~ _
/ (B1,(2) = (= — 8. folz + Bu)d2

—&n

< 2/5" (1/3;(2) fwé(z))2f0(z+§n)dz

e,
42 /_i” (wg(z ~ 5, — wg(z))Qfo(z +0,)dz
< 2/5§ (1[);(2) - 1/)6(2))29'0(2 —5,)dz
T
vz f z (40 = d) = 06(2)) g0tz = 8.

T>

T, is O,(n=*/5(logn)?) by Lemma B.13. Since Assumption A implies v} is
Lipschitz with constant x on its domain, Lemma B.6 entails that T5 is bounded
by

- &n -
2/{25,21/ go(z — 0,)dz
_577,

which is O,(n~!) since 4, = O,(n~1/2). Hence, the proof follows. O

B.2.6. Lemma on consistency of Fisher information fn(nn):

Lemma B.17. Under the set up of Theorem 1, I,,(1,) —p L5, where Zo(nn) is
as defined in (8).
of Lemma B.17 . Denoting 5y = 0 — f,,, we observe that

1Zo (1) — i-fo ()]

On+&n _
< [ d);L(l’ — on)2d(Fn - Fo)(l')
Orn—&n
T
‘/ J @) (900w = 5.) — go(a) ) d
T
‘ / (@) - gul@)) o] + ‘ / (x)de —Tp,| (53)
Ts Ty

Let us consider the term 7Ty first. Denoting M, = CnP/® as in the the proof
of the first step of Theorem 1, we recall the class of functions U, (M,,) defined



Location estimation 2983

in (23).
In the same way we showed that h,, € H,(C) with high probability in the
proof of the first step of Theorem 1, we can show that the function defined by

(@) =0, (x = 0,)1pg, ¢, g, ve,1 ()
is a member of the class

Vo (C) = {h :R—=R ’ h(z) = (@)1}, ) (2), u € Un (M),

[r1,72] C [0 — C'logn, By + Clogn| N int(dom(¢0))}

with high probability for all large n provided C' > 0 is sufficiently large. Us-
ing (25), (26) and following some standard calculations, we can show that

suplog N 1(e, Vo (C), L2(Q) S M7ie™ ",
Q

where the supremum is over all probability measures on R. Because bracketing
number is larger than covering number, it also follows that

suplog N (e, V,(C), L2(Q)) < M2e™!.
Q

The definition of U,,(M,) in (23) implies that the functions in V,(C) are uni-
formly bounded by M2. Since for any fixed € > 0,

M2 suplog N(e, Vo (C), La(Q)) S Me™t = O(n~ /%),
Q

Fact 14 leads to E||F,, — Fo|ly, () = o(1). Thus Markov inequality yields that
IFys— Follv, () = op(1). Since for large C', P(h,, € V,(C)) with high probability,
it can be shown that [ hnd(F,, — Fy) —, 0, which establishes Ty = o, (1).

Since the supremum of [¢)/,| over [—&,,&,] is O,(n?/®) by Lemma B.15, we
obtain that

~ (a) ~ b ~
Ty < Op(n**)dy (g0(-—52).90) < Op(n®/*)H (go(-~3,),g0) £ Op(6,0%/%),
which is 0,(1) because 8, = O,(n"'/2) and p € (0,1). Here (a) and (b) follow
from Fact 5 and Fact 15, respectively. In a similar way we can show that
T3 S Op(n2p/5)dTV(§nag()) S Op(nzp/5)H(gnng)v

which is O,(n=%"/%) by Condition 2. Finally, noting T} is also 0,(1) by Lem-
ma B.14, the proof follows from (53). O

Appendix C: Proof of proposition 1

We will first show that g and gg°>*¥"™ satisfy Condition 1. Then using this
result, we will show in Lemma C.2 and Lemma C.3 that g; and g§°>*¥™ satisfy
Condition 2, respectively. To show that Condition 1 holds for these two densities,
we prove a general Proposition which states that Condition 1 holds for all the
density estimators of gy we have discussed so far.
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Proposition 2. Suppose fo € P1 and 0, is a consistent estimator of 0. Then
Gn = Ga,» hn(0n £-), G3°O°Y™, b3 (0, £ -), and g™ ™ satisfy Condition 1.

The key step in proving Proposition 2 is showing that the L, consistency
in Condition 1(A) holds, which is established by Lemma C.1. The proof of
Lemma C.1 can be found in Appendix C.1.

Lemma C.1. Suppose 0, —p B0, and gy, is one among E%m(én +-), Tzn(Gn +),
Gpuem g™, and gg, . Then [|gn — goll1 —p 0.

Now we are ready to prove Proposition 2.

Proof of Proposition 2. As in the proof of Lemma C.1, one can show that it
suffices to prove Proposition 2 when 0, —4., 6, and y, —,..s 0. Hence, in
what follows, we assume that On —a.s. 0o, and y,, —>4.5. 0. First WeAwill verify
Condition 1 when g, € LC. Note that, this covers the case of g5 , hy (6, + ),
§aeos¥™ “and Eim(gni-). We will consider the case of g;¥" "™ separately because
the latter is not log-concave.

Assuming g, € LC, to verify part A of Condition 1, we first note that

19n (- +yn) = gollt < lgn(- +yn) — go(- +yn)llr + llg0 (- + yn) — goll1,

whose first term converges to zero almost surely by Lemma C.1. Also, since gq is
continuous, go(z + y,) converges to go(x) for each 2 € R. Therefore the second
term also converges to zero almost surely by Glick’s Theorem (Theorem 2.6,
Devroye, 1987). Thus we obtain that ||, (- +yn) — goll1 —>a.s. 0. Since gn (- +yn)
is log-concave, the above, combined with Proposition 2(c) of Cule and Samworth
(2010), yields that ||Gn (- + ¥n) — gollco —ra.s. 0 which completes the verification
of part A of Condition 1. As a consequence,

Un (4 yn) = 108(Gn (2 + yn)) —as. Yo(x), for each z € int(dom())).
Since 1, is concave for g, € L£C, Theorem 10.8 of Rockafellar (1970) entails
that the above pointwise convergence translates to uniform convergence on all
compact sets inside int(dom(tg)), which leads to

sup |'(;n(x + yn) - ¢0($)| —a.s. 0,
rzeK

proving part B of Condition 1. Since ’(ZJn is concave, Part C follows directly

from Part B by Theorem 25.7 of Rockafellar (1970). Thus we have established
Condition 1 for g, = g, , hn(0n =), §3°>*¥™, and hi™ (0, £ ).
Now we verify Condition 1 for g;¥™ ™. Part A of Condition 1 can be verified

noting (12) implies
2sup |G (2 + yn) — go(2)]
z€R
< sup |h2m(§n +x +yn) — go(z)| + sup |hfbm(§n —z+yn) — go(2)],
reR z€R

which converges to zero almost surely because, as we have already shown, the
log-concave density h2™ satisfies Condition 1(A).
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To prove part B, we observe that

sup (™™ (2 + yn ) — tho(x)
zeK

SuP, ek |9 (@ + yn) — go ()|

<
. . ~sym,sm :
min <£Q§< Jn (x +yn), wlgif( 9o (x))

)

whose numerator converges to zero almost surely by part A of Condition 1.
Thus, to verify part B of Condition 1 for gi¥™ ™ we only need to show that
the denominator of the term on the right hand side of last display is bounded
away from zero. To this end, notice that

: ~SYym,sm > s (Tsm(p
Tsm(g (a) .
hsm en - — Yn —a.s f )

n (On =2 —yn)) —a.s. nf go(z)

where (a) follows because we just showed that ﬁflm(én + -) satisfy Condition 1.
Now inf,ex go(x) > 0 because K is a subset of int(dom(tg)). Thus we have

verified part B of Condition 1 for g v™™.
Next note that h;™ is a smooth function, and it is also positive on R. There-
fore 1;¥™*™ and ¢;™ are differentiable on R. Therefore, for any x € R,

(G (@) = 20 (@Y 6, 40)) = (1= 0 (@6, =) 5

where g, (z) = h™ (0, + z)/235v™™ () < 1. Thus
(3™ (@ 4 yn) — 0(@)] < 0nl@ + ya)l(G57) (O + @ +ya) — ()]
+ (1= on(@ +y))( D) (Bn — & = ya) — 5 (—2)].

Since gy, is uniformly bounded by one, Condition 1(C) applied on the concave
function ¢2™(6,, +-) completes the verification of part C for ¢p2¥™-m. O

C.1. Auziliary lemmas for the proof of proposition 1

Proof of Lemma C.1. First we show that it suffices to prove the current lemma
when 6,, —,.s. 6. Suppose we are able to prove ||g, — go||1 is strongly consistent
when 6, —, 0. Since 6, —p 0, Fact 6 implies given any subsequence of
{én}nZh there exists a further subsequence {énk}kZI such that énk —a.s. 0o as
k — oo. Therefore, along this subsequence {ny }r>1, the L; distance between gy,
and go approaches zero almost surely. In that case, Fact 7 implies that ||g, —go |1
converges in probability to zero. Therefore, in what follows, we assume that
en —a.s. 00- -

We begin with the case of h2™. Theorem 1 of Chen and Samworth (2013)
implies that when fy has finite second central moment, we have

| @)~ @ a0 (59

— 0o

That fy has second central moment is immediate by Fact 1. Note that
1A (0 + ) = gollu < 1h3™ = folls + 1fo(On + ) — goll1,



2986 N. Laha

whose first term converges to zero almost surely by (55), and the second term

a b
1B+ = golls = (=50 +) — golls © VEH(g0(—dn +.90) £ b . 0
where (a) and (b) follow from Fact 5 and Fact 15, respectively. Thus we have
established that ||ﬁf[”(9} + ) — goll1 —a.s. 0. Since gg is symmetric about zero,
||ﬁf1m(67n — ) — goll1 —a.s. 0 follows. Because ||ﬁn — folli =a.s. 0 by Theorem 4
of Cule and Samworth (2010), the proof of ||h, (6n % ) — goll1 —va.s. O follows in
the same way.
The L; consistency of gZ¥™*™ also follows noting (12) implies

2[g58™=™ — golly < [BS™ (B + ) — golls + [BE™ (B — ) — goll1 —a.s. 0. (56)

Next, we consider the geometric mean estimator fgmsym. We have already
established -

| Tont0) = gola)ide 5. 0 (57)

which entails that the distribution functions of En(én + -) converge weakly to

Gy. The above, combined with Proposition 2(b) of Cule and Samworth (2010)

shows that (57) leads to almost sure convergence of h,, (6, + ) to go(z) almost

everywhere on R with respect to the Lebesgue measure. As a consequence, it
follows that

fgeo,sym(x)cgeo a5 V90()go(—2) = go(x) a.e. .

Recall from (9) that
C’Zeo = / \/}L\n(gn + x)/ﬁn (én — a:)da:

From Scheffé’s Lemma it follows that C9°° —, . f dGo = 1. We have thus estab-

lished that fgw’sym converges almost everywhere to gy almost surely. Therefore,
é%ym,sm converges weakly to Gy almost surely. The desired strong L; consis-
tency then follows from Proposition 2(c) of Cule and Samworth (2010).

To establish the L; consistency of the partial MLE estimator g , we appeal
to the projection theory developed in Xu and Samworth (2019). According to
this theory, CAT'(;,L can be interpreted as the the projection (w.r.t. Kullback-Leibler
divergence) of F,, x5 , the empirical distribution function of the X;—6,’s, onto
the space of the distribution functions with density in SL£Cq. This projection
operator has some continuity properties. In particular, if we can show that

dw(F, x_a,,Go) —a.s. 0, (58)
the desired L; consistency [|gg, — goll1 —a.s. 0 follows from Proposition 6 of
Xu and Samworth (2019) provided Gy is non-degenerate and it has first finite
moment. The non-degeneracy is trivial and the existence of first moment follows

from Fact 1. Hence, it is enough to prove (58) holds, for which, by Theorem 6.9
of Villani (2009), it suffices to show

/ " |eldF, x5, (@) o / " JeldGo(a), (59)

— 00 — 00
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and that F, y_ 5 converges to Gy weakly with probability one. Since 0, is
strongly consistent for 6y, and

(oo} [oe] _
| el @ = [l B
— 00 — 0o
for any d > 0, an application of Glivenko-Cantelli Theorem (for example, see
Theorem 2.4.1 of Van der Vaart and Wellner, 1996) yields
| le=8uld(E, - R

sup —a.s. 0.

én € [90 —d,e-‘rd}

On the other hand, strong consistency of 8,, implies |z — 6, < |z — 6| + 1 with
probability one for all sufficiently large n, where the latter is integrable with
respect to fy. Therefore, the dominated convergence theorem leads to

/ & — O dFo(2) e / & — ol dFy () = / 12]dGo(x),
which proves (59).

Our next step is to prove the weak convergence of F,, v 5 to Go. To this
end, we note that

Fox-0,(0) = Fa(o 4 00) = [ 1 sonn (EA(),

which converges almost surely to

| 1aran@)iFlz) = Golo)
by an application of basic Glivenko-Cantelli Theorem (seg Theorem 2.4.1 of
Van der Vaart and Wellner, 1996), and the fact that Fy(z+6,,) —a.s. Fo(x+6p)

for all € R. This establishes (58), which proves the strong L; consistency of
g, » thus finishing the proof of the current lemma. |

C.1.1. Lemmas on Hellinger error of g; and gj*>°V™:

Lemma C.2. Suppose fo = go(- — 0y) where go € SLCy and 6, — 0y =
Op(n~Y/2). Then H (g, g0) = Opln~1/%)

Proof of Lemma C.2. From Theorem 4.1 of Doss and Wellner (2019) it follows
that H(ga,, g0) = Op(n~2/%). The result will therefore follow by triangle inequal-
ity if we can show that H(gs,, 75, ) = Op(n*1/4). To that end, for any function
¢ : R— R, and distribution function G, we define the functional ® : (¢, G) — R
by

B(6, C) = / 6(x)dC(z) — / R (60)

— 0o — 0o

Recall that we defined 129 to be log gy for any 6 > 0. Denoting F,, y to be the
empirical distribution function of random variables Y7,...,Y,,, we observe that
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for any 0 > 0, 1y writes as (see (2.4) of Doss and Wellner, 2019)
1y = argmax &(, F,, x_g) = arg max (¢, B 746,—0),

$€SCo $€SCo
where Z = X — 0. Let us denote § = 0y — 0. Using Lemma C.4 we obtain that
argmax ®(¢,F,, z45) = argmax ®(¢, F)Y7" ), where
$€ESCo pel ’
FUm () = Frnzis(t) +1—=Fp z15(—2) () Fpz(x —06)+1—TFp z(—x —9)
n,Z+86\F) = 2 - 2

is the symmetrized version of F, z5. Here (a) follows because F,, z45(z) equals
F, z(xz — J). In particular, the choice § = 6, yields 6 = 0, which leads to

~

Yo, = argmaxyec ®(¢,F,"7"), where F,")'(z) = (F, z(z) + 1 = F, z(—2))/2.
When 6 = 6,,, on the other hand, § = 5n, which yields

{Z)\én = arg H’lED(@((,ZS,FSym )7 Fsym (1.) _ ]Fn,Z(x - 5n) +1— IF‘n,Z(_‘r - 571) )

beC n,Z+5n TL,Z-‘rSn 2
If we can show that F'Y7'(z) and Fiy;"+ 5 are non-degenerate with finite first
moment, then Theorem 1 of Barber and Samworth (2020) yields
dy (B0 TV )\ 1/2
~ o~ ’ 240y
BLH (s, )] S (e ) (61)
Fl7

where for any distribution function F, ep is defined by
€ — EF“Y - EF[Y]H
Here E'r is the expectation with respect to F'. Since Gg is non-degenerate, F,, 7
sym

is non-degenerate with probability one. Therefore both F;¥7(z) and IF:L"”Z':_ 5 are

non-degenerate with probabilty one. Also, because F,, z has finite first moment
for all n > 1, both Fiygl (z) and F*¥"" . have finite first moment for all n > 1.

n,Z—&-Sn
Therefore (61) holds.
Next, we show that epavm is bounded away from zero almost surely. To that

end, we first prove the side result that dw (F,"', Go) —a.s. 0. By (17),

dw (7. Go) = [ F22(0) - Golw)lda

— 00

)
_ /_OO ‘Fnz(x) + 12— Foz(=2) Golx)
which, due to the symmetry of gy about the origin, equals
/°° ‘Fnz(x) +1-Fyz(-2) Go(x)+1-Go(—2)
oo 2 2

)

< 1(/00 Iy () — Go(x)|da:+/oo o o (—2) — GO(—x)|dx>

T2 —00 —o0

/ " | z(e) - Go(a)) de,

— 00

IN
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which equals dy (F,,,z, Go). The latter converges to zero almost surely by Vara-
darajan’s Theorem (Dudley, 2003, Theorem 11.4.1) and the strong law of large
numbers. Therefore, dyw (F;Y7', Go) —4.s. 0 follows.

Proposition 1 of Barber and Samworth (2020) implies that if F and F’ are
distribution functions with finite first moment, then er > 0, and |ep — €p/| is
bounded by 2dw (F, F’). Now Gq being log-concave, has finite first moment.
Therefore we have eg, > 0. Also since Gy and F,”}" are non-degenerate, it
follows that

ersvn — €Go| < dw (FM7', Go),
which implies epvn > €Gy — 2dw (F,Y5', Go). We have just shown dy (IFff”Zn, Go)
converges to zero almost surely. Therefore epsvm > €g, /2 for sufficiently large n

almost surely. ~

If we can show that dy (F;y?,FZy;LSTL) = O,(8,), the proof of lemma C.2

follows from (61) because 6, = O,(n~/2). To that end, we use an alternative
representation of dy which is due to the Kantorovich-Rubinstein duality theo-
rem (cf. Theorem 2.5 Bobkov and Ledoux, 2014). For distribution functions Fy
and F, with finite first moment, it holds that

/ " h@)d(FL — Fy)

— 00

dw (F1, F») = sup
heLip,

where Lip; is the set of all real-valued functions A : R — R with Lipschitz
constant one. Therefore,

Sym SYym 1 <
dw(E s )= sw ol [ b@dEn e~ 5) + Frz(-2 - 6)
’ " heLip, —0

- [  h(@)d(F 2 (@) + Go(—2)
1

= s 5 [ (b)) = b))l 2(0) + Gal—a)

h€Lip, 2 —0

1 o0 ~
< sup + / (@ + 5,) — h(@)|d(Fn 2 (2) + Fo 2 (1))
heLip, 2 J—oo

(a) o0
215, / A7 () + Fuz(—2))d/2,
—00
which equals |d,|. Here (a) uses the fact that h is Lipschitz with Lipschitz
constant one. Therefore, the proof follows. o
Lemma C.3. Suppose fy € Py and 0,, — 0y = Op(n’l/z), Then the geomet-

ric mean estimator gn(z) = \/ﬁn(én + x)ﬁn(én —x)/C39°° satisfies H(Gn, go) =
O, (n=2/%).
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Proof of Lemma C.3. We first decompose H (g, go)? as follows:
2

H(Gn, g0)2 _/ <(\/h (B, + 2)hn (B —x)/cgm)m— go(x)> dz

2

2(Cge)t /_ h ((ﬁn(en + )b (6, — x))l/ . go($)> dz
)

oo

T

G @)
T

+2(C5°

We focus on T3 first. Note that

T = /OO ((ﬁn(9n+x)ﬁn(en—x))l/4— go(x)>2dx

— 00
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Ty is bounded by 2H (hn, fo)2 + 2H(fo, fo(- + 6,))2. Thus Ty; = O,(n=%/5)
follows noting (a) H (}Azn, fo) = O,(n=%/%) by Theorem 3.2 of Doss and Wellner
(2016), and (b) H(fo, fo(-40,)) = Op(8,) by Fact 15. Since (z —1)% < (22 —1)?
for z > 0, the term T}2 can be bounded by

/O; <\/ﬁn(‘7n + 3f)*\/ﬁn(gn - x)>2dfc = /o:o (\/ﬁn(x)\/ﬁn@én — x))de.

Since fo(200 — x) = fo(z), we can further bound Ti2 by a constant multiple of

| (Vi) - VR@) ot [~ (i@, 0~ (28, - ) s
/ (\/m fo( 290—x)) dx
<ttt o+ [~ (Yt~ 25 - V@) ao

= 8H (hn, fo)? +4H (fo(- +26,), fo)?,

whose first term is Op(n_4/5), and the second term, by Fact 15, is of order
0,(62). Thus similar to Ty, Tia is Op(n~*/%) as well. Therefore from (63) it
follows that Ty = O,(n=%/%).

Using the fact that (z — 1)? < (2% — 1)? for non-negative x, we obtain that
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Ty < (Cg°° —1)%, which equals

</ \/h Op + ) (0, x)dzl)Q
= (" Vit (i) Vo))

The Cauchy-Schwarz inequality implies that the term on the right hand side of
the above display is bounded by

/_Z (\/ﬁn(én — 1) = (O + x))Qdm
S [ (Vi —2) =\, ) o
# (it = 14 ) s
o IR OGN )

Clearly, the first two terms equal 4H(Em fo)?, which is O,(n=%/5). Since fy is
symmetric about 6y, we can show that fO(én —x) = f0(25n + 0,, + x), which
implies the third term equals H(fy, fo(- + 26,))2, which, by Fact 15, is of order
0,(52). Thus we have established that Ty is O, (n~*/%) as well, which also implies
that C9°° —, 1. Therefore, by Slutskey’s Theorem and (62), the proof follows.

O

Lemma C.4. Suppose F is non-degenerate and F has finite first moment.
Define

EV™(z) =271 (F(m) +1—F(20 — :v)>
Then it follows that arg max e sc, ®(¢, F') = argmax, e ®(¢, F;"™) where ® is
as defined in (60).
Proof of Lemma C./. First we will show that

argmax ®(¢, F) = arg max ®(¢, F,7"™). (64)
PESCy PESCy

Recall the definition of ¥ from (13). For any distribution function F and ¢ €
SCy, the following holds:

\I/(O,q/z,F):/ Y(z)dF (x / Y(z)dF (x / e? @) dy
/ Y(—x)dF (- / O(z)dF(z / e? @) dy
| v - o) - [~ e
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where the last step uses ¢ (z) = ¢¥(—z). By symmetry, it also follows that

%) 0
/ Y(2)d(F () — F(~z)) = / $(2)d(F(z) — F(—z)).
0 —00

Therefore, ¥(0,1), F) =271 /jo Y(x)d(F(x) — F(—x)) — /oo V@) g

Equation 13 implies ¥ (0,4, F') = ¥(0, ¢, F(- 4+ 0)). Therefore,

W0, 9, F —2—/ e )—F(e—x))—/_o;emdx
@ 2*1/700 Wz — 0)d(F(z) — F(26 — 2)) /o; V@ dz

— /_Oo V(2 — 0)dF;Y™(2) — /_Oo e FHdy = w(0,4, F;'™)  (65)

where (a) follows substituting 6 + x by z. Suppose ¥ € SCy and ¢ = (- — 0).
Equation 60 implies that for any ¢ € SCqy, (¢, F) = V(0,v¢, F), where ¢ =
@(- + 0). This, in conjunction with (65), yields that ®(¢, F') = ®(¢, F,¥™) for
any ¢ € SCy. Therefore, (64) follows.

Proposition  4(iii) of Xu and Samworth (2019) entails that
arg maX,ese, ®(¢, F') exists and is unique for a degenerate F' with finite first
moment. Under similar conditions on F, arg maxec ®(¢, F,;*™) also exists and
it is unique by Theorem 2.7 of Diimbgen et al. (2011). Therefore, it suffices to
prove arg max e ®(¢, F;?™) is in SCy because the latter implies

argmax ®(¢, Fy'™) = arg max (g, FU™),
$eSCy
which, in conjuction with (64), completes the proof of the current lemma.

Without loss of generality, we will assume 6 = 0. In that case, Fy¥" (z) =

(F(z)+1— F(—x))/2, which implies
dFg"" (x) = (dF(z) — dF (-x))/2 = —dF5"™ (). (66)

0Y™) can be written as

/ (a)dF"" (@ / $(2)dF™ () — / ¥ @ gy

[t [ [
@ / $(—a)dFS™ (o / () AFE™ () — /Zeqx%
b>/ $(=2) +6@) ypoym )_/m ) da,

where (a) uses (66) and (b) follows since

/ B(=2) +6(2) ypoum / O(=2) +6() 4 poum

For any concave function ¢ € C, note that ®(¢, F,
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by symmetry. Moreover, since exponential function is convex, we obtain

B(¢, ™) < / - wdﬂfw(@— / ¥ @rro-0)/2 g,
which proves that a ¢ € SCy maximizes ®(¢, Fy¥™) over C, as speculated.
Therefore, the proof follows. O

Appendix D: Proof of Theorem 2

Similar to Theorem 1, we can argue that it suffices to prove Theorem 2 for
the case when 1, is Cn=2P/°. For the rest of the proof, we will denote &, =
(Geymsm)=1(1 — ). First of all note that k™ (f, + -) and §&¥"*™ satisfy
Condition 1 by Proposition 2. Lemma D.1 in Appendix D.1 implies that these
densities also satisfy Condition 2 with p = 1/5. Since the proof of Theorem 2
closely follows the proof of Theorem 1, we will only highlight the differences.
Following the arguments in Theorem 1, we can represent —(én —0,,) as the sum
of the three terms Ti,,, To,, and T, where

T, — /Sn (/(qusﬂbym,sm)/(z) — 1)[)6(2 — gn) ~

e fn(ﬂn) d(Fn(z +0n) — Fo(z +0n)),

&n 7.sym,sm\/ P _
T = [ D (16 - ) )
—&n ITL (/’777«)
and T, is as in (19). The treatment of Tk, in this case will be identical to that
in Theorem 1. Hence it suffices to redo step one and step two of Theorem 1 only
in context of g ¥y™ ™.

Step one: showing Ty, = 0,(1):

The main difference in the analysis of 71, between Theorem 1 and here stems
from the fact that (1[),519’”’5’”)’ is no longer guaranteed to be monotone since
g™ is not log-concave. So one needs to be more careful before applying the
Donsker theorem to control the 77, term here. By construction, iALfLm and gy
are positive on the entire real line, and differentiable everywhere. Using (54),

we obtain the formula
(G (@) = 000 (G B ) = (1= (o) (G270~ ),

where g,(z) = ﬁzm(én + x)/2g5¥™5™(z). Note that (¢5™) (6, + -) is non-

~

increasing because h;™ is log-concave. On the other hand, because ﬁfbm is
smooth, and AJ™ > 0 on R, g, is differentiable with derivative
(R™) (O = @)h3™ (0 + @) + hy™ (0 — 2) (™)' (O + @)

/
on () = = = = = )
(3™ (On — 2) + b3 (0 + 2))?
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which is less than |(¢5™) (6, — )|+ |(¢5™) (6, + )| in absolute value. However,
Lemma D.6 implies that
sup  (I(65™) (B = )| + (&5 (Bu + 2)[) = Op(n?/®). (67)
xe[_gnvfn]
Therefore, on [—&,,, &,], the derivative of g,, is uniformly bounded by an O, (n?/°)
term. The same bound can be proved for 1 — g,, as well. Noting o, is a fraction,

we also deduce that ||gn]|ec and ||1 — on]|leo are bounded by one. For a convex
set X C R and a number M > 0, define the class of functions Dy, as(X) by

Dyt (X) = {h:X'—HR

h is differentiable on X, sup |h(x)|+ sup |h'(z)] < M}
reX reEX

As in the proof of Theorem 1, we let M,, = Cn?/5 where C' > 0 is a constant. Our
earlier discussion on g,, indicates that for sufficiently large C' > 0, g, and 1— g,
restricted to [—&,, &, belongs to Dy, s, ([—&n, &n]) with high probability as n —
0. Note also that (67) implies (¢5™) (0, %+ -) € U, (M,,) with high probability
for sufficiently large C' > 0, where U, (M,,) is as defined in (23). Therefore
it is not hard to see that for sufficiently large C' > 0, (ﬁiym’sm)’l[,gmgn] €
USY™ (M, —E€n, &) with high probability as n — oo, where for —oco <1y < 19 <
oo and C > 0, the class UY™(M,,,r1,72) is defined by

U™ (M, 11,72) = {h ‘R [=My, M) | h(x) = q1(z) f1(z) + g2(x) f2(z) for

z € [-r,r], and 0 o.w. where q1,q2 € Dy, ([r1,72]), f1. /2 € Un(Mn)}
(68)

It must be noted that in case of Theorem 1, we had z/;;l € U, (M,). Thus in
Theorem 2, U, (M,,) is replaced by UY™(M,,, =&, &n)-
Corollary 2.7.2 of Van der Vaart and Wellner (1996) implies

(rg —r1) M,

sup log Npj(€, Du,na, ([r1,72]), L2(Q)) S —————

where the supremum is over all probability measure @) on real line. On the other

hand, (25) implies supg, log N| j(e,Up (M), L2(Q)) S M, /e. Furthermore, (26)

entails that the bracketing entropy of the function-class F7, consisting of indi-

cator functions of the form 1, .., is of the order e~ 1. Therefore we can show

that

(7“2 - T I)Mn
€

Sgp IOg N[ ](67urSLym(MnaTlaTQ)aLQ(Q)) 5 (69)

Next, we replace the class H,,(C) in the proof of Theorem 1 by the class

HM(C) = {h:R»—)R h(w) = (u(@) = (@)L, rg) (), w € Up?™ (Mp,71,72),

7l p2 < Cn=2P2(logn)*2,  ||h]loc < My,

[r1,7m2] C [8g — C'logn, By + Clogn]N int(dom(¢o))},
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where we substituted the class U, (C) in H,(C) by the class UV (C,rq,r2).
Although the dependence of M,, on C' is suppressed by its notation, the former
is a function of C' and n. This validates that the set H:¥"™(C) depends only
on C and n, as indicated by the notation. Note that [—&,,&,] C int(dom(¢y))
by Lemma B.2, and &, is O,(logn) by Lemma B.4. Therefore proceeding as in
Theorem 1, but replacing Lemma B.16 by Lemma D.7, we can also show that
the function

ha(x) = ((D37"™™) (@ = 0,) = 64(2)) 15, —¢, 5, 46,1 (), w€R,  (70)
is a member of H:¥"(C') with high probability for sufficiently large n. Using (69)
in conjuction with (26) we can show that
C(logn)M,

€

Sup log Ny (e, 1™ (C), L2(Q)) S (71)

Since the bracketing entropy of H:¥™(C) differs from that of H, (C) only by
a poly-log term, so does the entropy integral. Also, noting g;¥"*™ yields a
consistent Z,,(n,) (see Lemma D.5) analogous to the log-concave §y,’s, rest of
the proof of T1 = 0,(1) follows in a similar fashion as that of Theorem 1.

Step two: showing T, —, —1:

Recall the function b, defined in (27). Because Tb,, = — [; by (t)dt, it suffices
to show that Y, = f]R by (t)dt —4.s. 1. The proof is not much different from
the proof of Lemma B.1. We will only point out where the current proof differs
from the proof of Lemma B.1. Suppose A,, and A/, are as defined in the proof
of Lemma B.1. Let us also introduce the integrals

I = /A G5 (O + 1) 2RI (6, + t)dt, T, = / G5 (B, 4 )R (0, + t)dt,

An+6n,
1, = / o (0, —t)2RE™ (0, —t)dt, T, = / ™ (B, — ) 2R (8, —t)dt.
A,
An+6n

The above integrals replace the integrals 7;,, and Zs,, in the proof of Lemma B.1.
We also define
g+ _ QognPH(B 00 +),90)°  — _ (logn)*H(A"™ (B — ), 90)”

" infoea hm (0, +2) " infoea hsm (8, — )
Similar to Lemma B.1, it can be shown that it suffices to show that every
subsequence has a further subsequence ny, along which, Y,, —,.. 1. We claim
that given any sequence, there exists a subsequence ny such that the set M¥™
has probability one, where we define M*¥™ to be the set on which the followings
hold: R
(a> gﬂk — bo, (b> Ink (nnk> —k Ifo? (C) €nk —k G§1<1)’ (d> Wn,, —> Wo, (e) ‘-77;:7
Tr =1 0, () I, T;, =i Iy, for i = 1,2, (g) A5 (O, £ ) — golloo — 0, (h)

ing? ing

g5y ™ — gollee — 0, (i) Aj,, C int(dom(thg)) for all sufficiently large k.




2996 N. Laha

Note that M?*¥™ is similar to the good set M in the proof of Lemma B.1. The
claim that there exists a sequence ny, so that P(M?®¥™) = 1 can be verified using
Fact 6 in the same way we verified a similar claim for M. The only difference
is that here we require Lemma D.5 for (b), Lemma D.6 instead of Lemma B.7
for (e), and Lemma D.5 instead of Lemma B.14 for (f). As in Lemma B.1, we
will show that Y,,, —, 1 on M®¥™. For the sake of simplicity, we drop k from
the subscripts.

The pointwise converges of b,, can be proved along the lines of (32). However,
Lemma B.8 can not be directly applied this time because g;¥™°™ is not log-
concave. On the other hand, Lemma B.8 does apply to hflm(ﬂn +-), because the
latter is log-concave. Exploiting the connection between (5¥"5™) and (¢&™)’
as given by (54), and arguing as in the proof of Proposition 2, we can show that
the assertions of Lemma B.8 still hold for gz¥™*™ on M*¥™. Thus (32) holds
for b, in case of g¥™-o™.

However, we can not bound b, using (33) because (5¥"5™)" is not monotone.
However, using (54), we can still bound

t+6n
[ ey

t+on _ . _
< [ (1@ @t 21+ 1G5 0 = 2) )
B (max{[(63") (B 4+t + 30)], (&) (B + 1)}
+ max{|(@5™) (B — ¢ = 8a)1,|(67) (B = D)} )

Using the above, it can be shown that |b,(t)| < |6} (¢)| + |b;, (t)|, where
b (1) = 1a, (D161 90 (1) (15 O + 1) + (D3 (Bu + £+ 80)] ) /T (),
b () = La, (O16(1) 90 (1) (16657 (B — )] + 1(657) (B — t = 3u)1 ) /T li)-

The proof will be complete by Pratt’s Lemma (Fact 10) if we can show that
there ex1sts 1ntegrable functions ct, c, s C and ¢~ so that \bﬂ < c b < e,
f]R t)dt =, [p et (t)dt, [o e, (t)dt =, [p e (t)dt, and ¢f —, + and e, —>n
B almost everywhere Lebesgue on MY, The functlons fens and ¢, can be
constructed in the same way we constructed ¢, for bounding b, in the proof
of Lemma B.1. Since the proof follows in a similar manner by replacing M by

M3Y™ and g, by ﬁff”(én + ), it is skipped. O

| /\

D.1. Auxiliary lemma for Theorem 2

In this subsection, &, will generally refer to En(GsYs™) = (Gsyms™)~1(1—p,).

Although g, can be either hsm(ﬁ + ) or gs¥™*™ its definition should be clear
from the context.

D.1.1. Lemmas on Hellinger error of g;v™°™:

Lemma D.1. Under the conditions of Theorem 2, H(Eim(én:b), 90)=0,(n=1/%)
and H(gs¥™*™, go) = Op(n=1/5).
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Proof of Lemma D.1. First of all note that 2H2(h:™, )2 is bounded by [[25™ —
foll1 which is not larger than

3 / / w(e = 1) fole — 1))t/ )] da

30 [T (o) = st = )0/t

< lhn = folls + X;l/ ’/ o(t/An) fo(2)dzdt|dzx
—0o0 —0o0 r—t
whose first term can be bounded using Fact 5, which yields

7 = folls < V2H (i, fo) = Op(n=*%)
by Theorem 3.2 of Doss and Wellner (2016) The second term

St [N e [ fiterdsatfas

<) / Pt/ o) i
v [T eIy ) do

= ([T A
w [T eIy )ao

A /“ﬂt' tﬁtfazmzdtdw

=t / ot/ ) / / o) dzdrds

.y / H3e ot/ A) / (=)l dzdt

= 40, E(1Z]] fo(60)
where Z ~ N(0,1). In the last step we used the fact [, [f5(2)|dz = 2fo(60)
which follows because fo € Py. Thus
HA (0", fo) = O0p(n”*/) + 0p(An). (72)
Our _next step is finding the rate of Xn To that end, note that because
/ g Thn(z)dz is the sample average (Corollary 2.3 of Diimbgen and Rufibach,
2009), (10) implies that A2 = Jg Z2d(F,, — H,) where H, is the distribution
function of //{n. Therefore,

/ 22d(F,, — Fp)

IN
>)

S I

b2 <

n

+ ‘/ ZQd(ﬁn — Fo) s
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whose first term is O, (n~1/2) by the central limit theorem because Iy has finite
second central moment. On the other hand, since the second term equals

/wam@¢ﬂmwa@+ Fol))dz

The Cauchy-Schwarz inequality indicates that its square is bounded by

)

[ee]

LH (b, fo)? / A (2) + fol2))dz.

— 00
The fourth moment of fy is finite by Fact 1. On the other hand, Theorem 4 of
Cule and Samworth (2010) implies that there exists a > 0 so that

[ e Nho(2) = fo(2)|dz —ra.s. 0.

Therefore it follows that [, z‘%n(z)dz = Op(1). Thus, we conclude Ao is
Op(l)H(ﬁn, fo), which is O,(n~'/?). Therefore, (72) yields that H(Eflm,fo) is
Op(n_l/ ®). Since the Hellinger distance is translation invariant,

H(3 (O ), 90) = HOR™ 90(=0n + ) < HBE™ fo) + H(g0(~0n + ), fo),
whose first term is O,(n~1/%), and second term is O,(|0, — 6y|) by Fact 15.
Because 0,, — 0y = O,(n~1/?), H(hsm (B, + ), 90) = O, (n=1/5) follows. Since go

~

is symmetric about zero, we can show that H(h5™(0,, — ), g0) = Op(n~1/%) as
well. Since 2go(z) = go(x) + go(—x), and

(Va+b—vVe+d)? < (Va—e)? + (\/5— \/3)2 for a,b,c,d > 0,
it follows that
H(G™ ™, g0) S H(hn(On + ), 90) + H(hn (0 — ), 90) = Op(n /). O

D.1.2. Lemmas on distance between G:V™™ and H:™ (6, +-):

Lemma D.2. Under the set up of Theorem 2,
(A) NG — Hy™ (0 £ -)lloo = Op(n?)

(B) sup ™ (0, £ )71 = Op(n 1Y),
e [_gn ;£n]

where p=1/5 and &, = (GS¥™*™)~1(1 — n,).

Proof of Lemma D.2. From the definition of total variation distance, it follows
that R - R R -
|Gsymsm — A0, + ) ||oo < dpy (GEY™5™ HE™ (0, £ ), which equals

2|2 = B (O )l < 2V2H (G By (B £ ),
where the last step follows by Fact 5. The proof of part (A) then follows noting
H(g™™ b (00 =) < H(G™™ g0) + H(B™ (0 £ ), 90) = Op(n ")
by Lemma D.1.
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For the proof of part (B), note that since Tlflm is log-concave, it attains its
minimum on any interval at one of the endpoints. Therefore

it BB, ) = i 0+ 60), 75 0~ 6,).
r€|—E&n én

Using Fact 4 in step (a), and part A of the current lemma in step (b), we can
show that

~ _ a ~ _ b -

B (O — €0 S BT (B — £2) S wn (G (—6,) — Oy(n 7)),
which, by definition of &,, equals wy,n, — Op(n~P). Since w,, —, wo > 0 by
Fact 4, and 1, = Cn=2P/5 it follows that hs™ (6, — &)~ = Op(n;1). In a
similar way, it can be shown that 7™ (f, + &,) "' = O,(n;1). Therefore, the
proof follows. U

D.1.3. Lemmas on (¢5) and (5ym=m) :

Lemma D.3. The conditions of Lemma B.12 and Lemma B.13 hold for
an = & = Eu(G™) = (G ™) TN (1 = ) and Go = B (B £ -).

Proof of Lemma D.5. Note that since ;¥ *™ satisfies Condition 3, Lemma B.9
entails that a, = §, satisfies (43). Moreover, Lemma D.2 (B) indicates that the
supremum of —@5™ (6, £ -) over [—ay,,a,] is O,(logn) for the above choice of
a,,. Also because ﬁflm satisfies Condition 1, (;Bﬁlm is bounded above. Therefore we
obtain that the supremum of |$5"(6,, & )| on [—an, a,] is O,(logn). Thus, we
conclude that (41) holds for our choice of a,, and §,. As a result, this (a,, gn)
pair satisfies the conditions of Lemma B.12.

For Lemma B.13, first note that a, = O,(logn) by Lemma B.4. Noting

dom(¢s™) = supp(ﬁflm) = R, we also obtain that (44) holds with probability
tending to one because

P([=60 = 1/ log . & + ./ log,] € int(dom(vn)) ) — 1

by Lemma B.6. Thus the conditions of Lemma B.13 are satisfied if (45) holds
for (&, hs™(0,, & -)). Now by Lemma D.2, with probability tending to one,

Hy™ (On—an) > G/ ™ (—an)=0p(n7?) = G ™ ((G/™*™) ™ (1)) —0p(n7),
which is 1, — 0,(n"P). Since 1, is O(n=2P/%), it follows that
P(ﬁ;’m(én —an) > nn/4) - 1.
Similarly we can show that
P(l — (0, + ay) > nn/4) S,
which implies (45) holds for a,, = &, when g, = ﬁfj”(én + ). The proof for

gn = Bim(én — ) follows in a similar way, which completes the proof of the
current lemma. O
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Lemma D.4. Suppose p, is a density so that ||pin]lce = Op(1). Let &, =
(Gsymsm)=1(1 —n,). Then p = 1/5 satisfies

En )
/ (e () = ¢p(2)) i (x)dx = Op((log n)®n~*7/7).
—&n

Proof of lemma D.. Using the representation of (¢5¥75™)" given by (54), we
obtain that

/ z (s (@) — v (a)) ()
= /_i" ((&Zymsm)/(ﬂc) — on(z)y(z) + (1 — Q”(x))wé(—$))2un(x)dx

<2 [7 0@ (187 O ) @) a1

—&n
+ 2/_? (1- Qn(x))2((¢~52m)'(9n —z) — w()(—x)fun(x)dx
@ e (.
L2 [ (@640 - i)

- _ 2
(@6 - 2) ~ vif-0)) frnla)as
which is O, ((logn)>n=*/%) by Lemma D.3 and Lemma B.13. Here (a) follows

because g, is a fraction. O

Lemma D.5. Suppose 1, = Cn=2/>, where p = 1/5 and C > 0. Let &, =
(Gsymsm)=1(1 —n,,). Then under the set up of Theorem 2,

En _ N B
/ (85) (B £ 2)2B5™ (B, £ 7) =, Iy, (73)
—&n
and c
/ (mssmy ()2 germesm (B, % ) =, T (74)
—&n

Proof of Lemma D.5. Tt suffices to show that the pairs (&,, h5™(F, + -)) and
(&n, g2¥™-™) satisfy the conditions of Lemma B.14. By Lemma D.3, a, = &,
satisfies the conditions of Lemma B.13, which entails that (a) a, is O,(logn)
and (b) (44) holds for a, with probability tending to one, where (44) implies
[~ayn,a,] C int(dom(¢)). Next, the condition a, = &, —, Gg'(1) holds by
Lemma B.3. Finally, (51) holds for ﬁflm(én +-) and gs¥"™*™ by Lemma D.3 and
Lemma D.4, respectively. Therefore the proof follows from Lemma B.14. O

Lemma D.6. Let &, = (Gv™™)~1(1 — n,,) where n, = Cn~2*/> for some
C > 0 and p = 1/5. Suppose y, is a sequence of random variables such that



Location estimation 3001
P(lyn| <11 /(290(0))) — 1. Then under the conditions of Theorem 2, we have
S {|<zzzym’sm>'<m>| (65 (O £ w>} = 0, (n""").
ZE[—En—Yn,Ent+Yn]

Proof of Lemma D.6. Note that (54) implies
(Grmemy @) < max {3 0, + )L IGY 6o - )1},
Therefore it suffices to bound |(¢5™)’(8,,)| only. Since the proof of (¢5™)’ (8, +-)

and (¢£™)'(0,,—-) are similar, we only show the proof for (¢£™)’(6,,+-). Denoting
Gn = b (0 + 1), ¥ = (65™) (0, + +), and G, = H™ (0, + -), note that the

following holds for any ¢ € (0,1/2) by Fact 8 because g, is positive on J(G,,):

Gy Ha) (e B C) R,
/ G (s = [ (G (2))de.
(

GEymasmy—1(q/2) Gn((GP¥™°™)=1(q/2))

Because (¢/,)? is non-increasing on (—oo, 0], the above yields
Gy =ta)
/. 912 )
(GR™™) =1 (q/2)

i é«sym,sm —1 2 _ _ = = :
Un (G )7 (9)” < Gn((GRY™"™)=H(q)) — Gn((GR™° ™)~ (q/2))

Letting ¢ = 7, /2, and denoting &, = (G55™)~1(1 — 7,,/2), we obtain that

= T \2 (Giym’sm)_l(nn/Q) ~, 9. - -
AL . G @)z | (/4 — 201G — G5,
(G ™) = (1, /4)

Now Lemma D.2 implies
/4= 2] G = GV o = 0 /4 = Op(nP),

whose dominating term is 7, /4. Also

(Geymesmy=l(p, /2) 5 (Gsymosmy=L(1—p,, /4) B
/ 3 (2 (2)de < / 30 (@) () de
(

GaV™ )= (00 /4)

(GRY™ ™) =1 /4)
which converges in probability to Zr, by Lemma D.5. Therefore ¢/, (&,) is
O, (77;1/2). The rest of the proof follows similar to the proof of Lemma B.15. O

Lemma D.7. Suppose g, satisfies Condition 2. Then under the set up of The-
orem 2,

En N - _
/_ ™Y @)~ (= = 30) ol + )z = Oyl log ),

Proof of Lemma D.7. The proof is similar to the proof of Lemma B.16. The

only difference is that one needs to use use Lemma D.4 instead of Lemma B.13
to bound T 0

D.1.4. Lemmas on consistency of Fisher information:

Lemma D.8. Under the set up of Theorem 1, fn(nn) —p Ly,
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Proof of Lemma D.S. The proof follows in the same way as Lemma B.17 by
replacing Lemma B.14 and Lemma B.15 by Lemma D.5 Lemma D.6, respec-
tively, and replacing the class of monotone functions U, (M,) by the class
U™ (M, 11, 72) defined in (68). O

Appendix E: Proof of Lemma 1

Proof of Lemma 1. For k > 1, we denote Ay to be the set [—1/(2k),1/(2k)],
and consider the sequence of functions {9y }x>1 € SCo defined by

() = {1og k, x € Ay

—00, 0. W.

Observe that
U, (xg, ;) =loghk —1 — 00, ask — oco.

Therefore, zo indeed is a candidate for the MLE of 6y. However, the MLE of
Yo, 1.e. wn, does not exist in this case. To verify, observe that if wn does exist

for some 9 € R, we also have
oo

@n(iﬁo - é\n) - / elzn(w)dx = \I’n(an{/;n) > khm ‘I’n(ffo,i/fk) = 00,
s —00
leading to @n(xo — én) = o0, which contradicts the fact that @n is a proper
concave function. Hence, we conclude that the MLE of (6, 0) does not exist
when F,, is degenerate. O

Appendix F: Proof of Theorem 3

To prove Theorem 3, it will be beneficial to prove a general result first. We begin
by stating a condition.

Condition 4. (Existence of log-concave projection.) F' is a non-degenerate dis-
tribution function with finite first moment.

Any F satisfying Condition 4 has a well-defined log-concave projection, i.e. its
projection (with respect to the KL divergence) onto the space of all distributions
with density in £C is a unique distribution function (Theorem 2.2, Diimbgen
et al., 2011). Note that F,, satisfies Condition 4 with probability one. We will
show that for any distribution function F' satisfying Condition 4,

(0" (F),y"(F)) = argmax ¥(0,9, F) (75)
0ERYESCo

exists where W is the criterion function defined in (13).
Proposition 3. If F satisfies condition /, then 0*(F) and ¢¥*(F) exist.

Observe that Proposition 3 implies the first part of Theorem 3 because if
F =TF,, (6*(F),¢*(F)) corresponds to the MLE (6,,3,). The second part of
Theorem 3 follows from Lemma F.1, which is proved in Appendix F.1.
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Lemma F.1. Suppose F is such that J(F) = (a,b) where a,b € R, and J(F) =
{0 < F < 1}. Then Under condition /, there exists at least one 0*(F') so that
0*(F) € [a,b].

Thus it remains to prove Proposition 3. To that end, we will need a continuity
result on the partially maximized criterion function
L(6;F) = sup W(0,%, F). (76)
$PeSCo

Lemma F.2. Suppose the distribution function F satisfies condition 4. Then
the map 0 — L(0; F) is continuous on R, where L(0; F) is as defined in (76).

The proof of Lemma F.2 can be found in Appendix F.1. Now we are ready
to prove Proposition 3.

Proof of Proposition 3. Let us define

LF)= swp  U(0,4,F). (77)
9ER,HESCo

Our first step is to show that L(F') is finite. From the definition of ¥ in (13), it

is not hard to see that

L(F) < sup (/_Z Y(x)dF(x) — /OO ew(w)dac>,

pee e
where C denotes the set of all real-valued concave functions. Theorem 2.2 of
Diimbgen et al. (2011) entails that under condition 4, the term on the right
hand side of the above display is finite. Therefore, L(F') < oo follows. To show
that L(F) > —oo, we note that the map x — —|z| € SCy. Therefore, (13)
and (77) lead to

L(F) > _/OO \|dF(z) — /DQ e lde > oo,

which follows from condition 4. Hence, we conclude that L(F') € R.

Now we have to show that there exist 8*(F) € R and ¢*(F) € SLCy such
that

V(O (F).0* (F).F) = sup_ W(0,9,F) = sup L(6: F) = L(F).
OER,YESLCo 0ER

Now there exists a sequence {0y }r>1 such that L(0y; F) 1 L(F) as k — oo.
Suppose the sequence {0j}r>1 is bounded. Then we can find a subsequence
{6k, }r>1 converging to some ¢’ € R. Since the map L(6; F') is continuous in 6
by Lemma F.2, we also have

L(0'; F) = lim L(bx,;F) = L(F),
r—00

which implies that ¢’ is a maximizer of L(6; F'). Now we invoke Proposition
4(iii) of Xu and Samworth (2019), which states that for each 6 € R, there exists
a unique log-density 1y, which maximizes ¥(6,v, F) in ¢ € SCy provided F
satisfies condition 4. It is not hard to see that (6’,1y ) will be a candidate for
(0*(F),y*(F)). Thus, to complete the proof, it remains to show that {0 }r>1
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is bounded. We will show that 8, —j Foo leads to L(0; F) — —oo, which
contradicts the fact that L(0y; F) = L(F') € R, thus completing the proof.

Consider 6}, — +oo. By Proposition 4(iii) of Xu and Samworth (2019), for
each 0, there exists a log-density 1y, € SCo such that L(6y; F) = U(0,vy,, F).
Now note that if e¥ € SLCy, then 1) satisfies

2ze¥(®) < / e?Adz <1 for any x > 0,

which implies |[¢)(z)| < —log |2z|. Noting ¢y, € SCq for each k > 1, we obtain
that

U (0,90, F) = /jo Yo, (x — 0)dF(z) —1 < 7/

—0o0

log <2x - 9k>dF(:c) —1.
Now if 8, — +00, using Fatou’s Lemma, we derive that
limsup L(0y; F) < f/ lim inf <log |z — 0k|>dF(x) — (log2+1),
k—oo —00 k—o0

which is —oo. This leads to the desired contradiction, which completes the proof.
|

F.1. Auzilliary Lemmas for Theorem 3

Proof of Lemma F.2. Observe that (13) implies ¥(6,, F') can also be written
as U(0,9, F) = U(0,v, F(-+0)). Hence, to prove Lemma F.2, it suffices to show
that as 0, — 0 € R,
L(eka) = sup @(O’¢’F( + ek)) —k Sup \I/(O,’Q/J,F( + 9)) = L(Q,F)
PeSCo PESCo
Proposition 6 of Xu and Samworth (2019) implies that under condition 4, the
convergence in the above display holds if the Wasserstein distance

Now by Theorem 6.9 of Villani (2009) (see also Theorem 7.12 of Villani, 2003), (78)
follows if (a) F'(- + 6x) converges weakly to F'(- + 6) as k — oo, and

(b) /Oo |z|dF (z + 0r) —k /OO |z|dF(x + 0).
Now (a) follows noting tihat for any bounded co;tinuous function h,

/OO Wz — 01)dF (z) = /Oo h(z — 0)dF(x)
by the dominated ;onvcrgencc theorem sinc; 0r — 0. For proving (b), first no-

tice that F' has finite first moment by condition 4. Therefore, another application
of the dominated convergence yields that as 6, — 6,

/ |x\dF(x+6k):/ & — 0| dF () %k/ |dF(z +0),

which proves (b), and thus completes the proof. ]
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Proof of Lemma F.1. We will show that if J(F') = (a,b), the functional 6 —
L(6; F') defined in (76) is non-decreasing in 6 on (—oo, a], and non-increasing in
6 on [b, 00). Suppose the above claim holds. Then clearly either L(6, F') attains
its maximum in [a, b] or L(A, F) = L(F) over an interval with nonempty overlap
with [a,b]. Here L(F) is as defined in (77). In either cases, one can find a
0*(F) € [a,b], which completes the proof of Lemma F.1

To show that L(6; F') is non-decreasing in 6 on (—o0,al, we first note that
for 8 < 0’ < a, and ¢ € SCq,

b b
/ ¥ — 0)dF (x) < / ( — 0)dF(z),

since 9 is non-increasing on [0,00), and 0 < z — 6’ < x — 0 for x > a. Therefore,
from (76), it is not hard to see that L(f; F') < L(#'; F'). Similarly we can show
that for 6 > 6’ > b,

b b
[ ot—0ar@ < [ - o)dr,

since 9 is non-decreasing on (—o0, 0], and z—6 < x—6" < 0 for 2 < b. Therefore,
L(6; F) < L(¢'; F), which completes the proof. |

Appendix G: Proof of Theorem 5

Before going into the proof, we will introduce some new notations and state
some lemmas that will be required later in the proof. We let G, and F, denote
the distribution functions corresponding to g, and f,, respectively. Also, we let
¢n denote the log-density log f,,. Also, we let 6, = 6y — 0,,.

Now we state a lemma which basically says that log f,, is uniformly bounded
above for sufficiently large n with probability one. This lemma is proved in
Appendix G.1.

Lemma G.1. Under the hypotheses of Theorem 5,

P(supsuplog fn(O) < oo) =1.

n xR

We first show that @n —a.s. 0o. In their proof of Theorem 3.1, Pal et al.
(2007) show that if a sequence of log-concave functions {f,},>1 (which can be
stochastic) satisfies

D log fu(Xi) = > log fo(X)) (79)
=1 =1

with probability one, we have H(f,, fo) —a.s. 0, provided

p(swtoe s = o 22)) =1

If we take f, = fn, we have sup,log fn(z) = ¢n(6n) = ¥n(0). Lemma G.1
entails that P(limsup,, ¥, (0) < co) = 1. Also, note that being the MLE of fj,
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J/‘\n automatically satisfies (79), which implies

H(fn, fo) ~a.s. 0. (80)
Denote by ﬁn the distribution of fn Because dTv(ﬁn,Fo) < \/iH(ﬁ“fo) by
Fact 15, (80) implies dry (Fyn, Fo) —a.s. 0, which indicates F,, —4 Fy almost
surely. In that case, Proposition 2 of Cule and Samworth (2010) implies that
there exists a > 0 so that

oo
/ colel
— 00

Therefore the moments of ]?n converges almost surely to that of fy. Notably, the
first moment of fy is 0y, and because g,, is symmetric about zero, we also have

/ zfn(2)de =0, + / (2 — 0,)Gn(x — 0,)dz = 0,,.

— 00

]?n(x) - fo(z)‘dx —a.s 0.

Thus é\n —+a.s. o follows. Since Ty, < oo, the density fy is absolutely continuous
(Theorem 3, Huber, 1964). Because fy is continuous, Proposition 2 of Cule and
Samworth (2010) yields another useful result which will be required later:

Fulz) - fo(x)’ —a.s. 0. (81)

sup
z€R

Next we show that H (G, go) —a.s. 0, which completes the proof of part A.
To that end, note that

2H?(Gn, 90) = / (\/gn - \/go (z—6 ) dz
< 4H(Fo fo)? / (\/90 )\/90(290))2d27

where the first term on the right hand side of the last display approaches zero
almost surely by (80). The integrand in the second term is also bounded above
by a constant multiple of go(z — én) + go(z — 6p), which converges to 2fy(2),
and is integrable. Therefore, using Pratt’s lemma (Fact 10), we deduce that
the second term also converge to zero almost surely. Hence H?(Gy,go) —ra.s. 0
follows. R

Now we turn to the proof of pat B, where we first establish that H(f,, fo) =
O,(n=%/%). To that end, we first introduce the class of functions

Pro = {f e LC ‘ sggf(fv) <M, ‘i&flf(w) > 1/M, supp(f) C Supp(fo)}-

We will show that without loss of generality, one can assume that fo € Paso
for some M > 0. To this end, we translate and rescale the data letting X; =
aX; + B, where a > 0 and 8 € R. Observe that the rescaled data has density
fo(x) = a1 fo((x — B)/c). Denote by fo., the MLE of fy based on the rescaled
data. Note that the MLE is affine-equivalent, which entails that fOn( ) =

a1 f,((x — B)/a). Noting Hellinger distance is invariant under affine trans-
formations, we observe that H( fn, fo) = H( fom fo) Therefore, it suffices to
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show that H(foyn,fo) —a.s. 0. Note that since fy is log-concave, int(dom(fy))
contains an interval. We can choose v and 8 in a way such that (r — §)/a lie
inside that interval for £ = +1. Then it is possible to find M > 0 large enough
such that
fol(z — B)/a) > a/M, for z =+1, yielding min(fo(—1), fo(1)) > 1/M.
The above implies inf,e[—1 1) fo(x) > 1/M, since fy, or equivalently fo is uni-
modal. Hence, without loss of generality, we can assume that there exists M > 0
such that fo(z) > 1/M for z € [—1,1]. We can choose M large enough such
that additionally, sup fo(z) < M. On the other hand, (81) implies
zeR

lim sup sup f?n(x) <M, and limfn(:l:l) > 1/M.

n z€R

Therefore, fo € Paro, and with probability one, fn € Puo as well for all
sufficiently large n. Doss and Wellner (2016) obtained the bracketing entropy of
the class Py 0. They showed that for any € > 0,

1OgN[ ](ﬁaPM,O7H) 5 671/2'

The rest of the proof for H(ﬁ“ fo) = O,(n2/%) now follows from an application
of Theorem 3.4.1 and 3.4.4 of Van der Vaart and Wellner (1996).

Now we turn to establishing the rate of convergences of én and g,. If z — 6y
is a continuity point of g, using the fact that 6,, —4.s. 6o, we obtain that

Vinle =6 ool —80) gy —a0)
(6 — 60) “ 290w — )

Noting g(, is continuous almost everywhere with respect to Lebesgue measure,
and using Fatou’s lemma and part A of the current theorem, we obtain that

/O; (\/go(x —0,) — \/90(33— 90)>2d:c § < dh (i — 0) >2dx 1
B )

lim inf =— =
" (0n — 6o)? go(z — b 4
(82)

with probability one. Now observe that

2H (o, f0)? = /O; (\/ Gn(x — 0,) — Vgo(x — 00)>2d:r

= 2H (Gn, 90)* + / (\/90(33 —0,) - \/90(55 - 90)>2d$ + T,

oo
—00

where
r=2 [ (Vale =8~ Vala =80 ) (Voole ~80) = Ve =) )

The inequality in (82) entails that for all sufficiently large n,

(é\’ﬂ - HO)QIfo
4

2H (fn, f0)? = 2H (G, 90)% + T as.
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We aim to show that the cross-term |T¢| is small. In fact, we show that
T
= 2‘ | — 5 = 0,(1). (83)
|0n — 60]* + H (gn, 90)
Suppose (83) holds. Then it follows that
H(ﬁla f0)2 > 2H(§na 90)2
0, — 00)*T R _
OO0 e o 1) H G g0 = 0,(1)(@, — 00)"
which completes the proof because Zy, > 0.
Hence, it remains to prove (83). To this end, notice that T, can be written as

7= [ (Vi@ - Voo ) (Vo) = ool + 80 b))

Recalling d,, = 0y — é\n, and noting g is absolutely continuous because fy € Py,
we can write

1T, :’2/: (W—W)(/Z 2%dt)d ’

Since go € Sp, we have

=2 [T (VEm - va@ ) ( [, sH i

_§n 2 gO (x + t

- [ (- wE) ([ )

0

A ()], s
- (vEw - vam) ([ s

yielding

|T|—2’/ (Jgn— \/—>(/ ( e th gé(x_ﬂ))dt)dx.

2v/go(z +1) 2v/go(x —t
Using the Cauchy-Schwarz inequality, we obtain that

Bl ([ (Vi) )

U0 et g NN Y
— - dt | dx :
0 —on 10l \2y/go(x +1)  2+/go(x — 1)
Since v/gn(z) — \/go(x) is an even function, the first term on the right hand
side of the last inequality is v2H (gy, go). Hence,

2 oo 0 / / o 2
% < / </ 1 < golw+1t)  golz—1) )dt) de,
8H (Gn, go)?02 0 —5, 100l \2/go(z +t)  2y/go(z — 1)
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which, noting

gpx+t) gz —1)
tHQ\/go(JﬁLt) 2/ go(z — 1)

is an even function for each x > 0, can be bounded above by

/ooo 5"'(/olénl (6i>2 (2\9/09(;: ft) - 2%:(30 i)t>>2dt> &

using the Cauchy-Schwarz inequality. Therefore, we obtain

it [ (et o [ ()
* gl —1) gy(z+1)

o Vgolz —t) \golx +1)

o0 2 o0 2
[ (Y [ (L), T
0 go(z +1) t 9o() 2
Now observe that for z € (—|d,],0),

196(2)/V/ 90(2)] = [¥6(2)1V/90(2) < [15(6n)]v/90(0) = O (1), (85)

since g € SCy, and 0, —4.5. 0. Hence, for t € (0, |6,]),
0o / 2 0o ’ 2
/ <go(xt))dz:/ (90(2)>dz
0 go(z — 1) —t 90(2)
0 2 oo 2
(LY s [ (L)'
/— ( go( ) Z+/0 9o(2) ?

< 0 |10(60)*/90(0) + T, /2

= |0n|0p(1) + I, /2,
where the last step follows from (85). Hence, for any ¢ € (0, |dy|),

[ () [ (S oo o

Our objective is to apply Fatou’s lemma on the third term on the right hand
side of (84). Therefore, we want to ensure that the integrand is non-negative.
Note that when = > |6,| and ¢ € (0,]d,|), we have x > ¢, which leads to

go(z —t)go(z +1t) > 0. (87)
Keeping that in mind, we partition the term
< goz—t) gz +1)
x
0 Vgolz —t) Vgola +1)
[ den o gh(z—1) _ghla+1)

-2

dx] dt. (84)

For t > 0,

50 V90 (z — t) \/go(x + 1) o Vgolz—1t) Vgolr+1)
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[T w—t) glztt)
/ D+ 1810,

5.1 v/ 90(z — t) \/go(x

where the last step follows from (85). The above combined with (84) and (86)
leads to

T2
limsup —*——
n 2H(/g\nv 90)25721
1 60| (¢ / +
< limsup—/ {|5n|0p(1)—|—1'f0 —2/ golz —t) go(z+1) da | dt
no 10al Jo joul V/90(x =) V/go(w +1)

= Op(l) limsup ‘5n| +If0

67 _ /
211m1nf— / (@—1) G+t dxdt
6n| Jo 6\\/90:5—75 Vo(z +1t)
67|

go(xz +1t) golz—1)

o0 —
— 0+, — 2liminf / 0 Vool Tﬁ Voole=t) o (88)
" [0n | n

Therefore, an application of Fatou’s Lemma and (87) yield
ol gh(x 1) ghlz—1)

t
it [ 70 Vao@ ) Vgole — 1) dx>/°°96(95)
PN |6n| ~Jo

Thus (88) leads to

o
N
>

2772

—_ = 1).

g, W
from which it is obvious that

2T, 2T,
> \/_‘ ,\| 5 S \/{_| | :Op(l),
|5n| +H(gn,90) 2H(9n790)|5n|

which proves (83) and thus completes the proof of part B of Theorem 5. |

G.1. Auzxilliary lemmas for Theorem 5

Proof of Lemma G.1. The proof is similar to the proof of Theorem 3.2 of Pal
et al. (2007). Since f, is piecewise linear, f, attains its maxima at some order
statistic, say X (). If m > n/2, set my = [n/4] where [z] is the greatest integer
less than or equal to 2. For m < n/2, we let mq = [3n/4] 4+ 1. Set K,, = mg or
n — my, accordingly as m > n/2 or < n/2. It is easy to see that n/K, — 4 as
n — oo. Also,

; f“(<m>))
InXm) < X X<mq)|<1+logﬁ(X<mq)) Y
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by Lemma 3 of Pal et al. (2007) (see our Lemma G.2). Now since
> to(Xi—00) <Y thn(Xi — 0y)
i=1 =1

< K108 (Fu(Xm,)) + (0 = K) og (Fo (X))
Fn(Xom)

K, log m < n<10g J?n(X(m)) - ln(t‘)o,wo)/n)- (90)

Combining (89) and (90) we obtain that

FoXom) = g (1 g (1087, ()~ Gl

~ Xy = Xy Ky
n/Kny = 1 1n (60, o)
= v 1o fu(X(m)) + (1— :
| X (m) = X(my)l TN X iy = Xy Kn
Therefore by Lemma 4 of Pal et al. (2007) (see our Lemma G.3),
~ 2n/Kn 27’L/Kn
O 1 S A
[ X (m) = Xm,)| [ X (m) = Xm,)|
2 1 (0o,
n (1 (o ¢0))
[ X (m) = Xmy)| Ky
which is finite by our choices of m, my and K. O

The following lemmas appear in Pal et al. (2007) as Lemma 3 and 4 respec-
tively.

Lemma G.2. Suppose f is a log-concave density. If 0 < f(x) < f(y) for

z,y € R, then
fy) < 118U W)/ f(@))
- ly — 2 '

Lemma G.3. Ifz,c1,c0 > 0 and x < ¢y logx + ¢a, then x < 2¢1 log(2¢1) 4 2¢5.

Appendix H: Technical facts

Below we list some facts which have been used repeatedly in our proofs. We
begin with a well-known fact on total variation distance.

Fact 5. Suppose F' and G are two distribution functions with densities f and
g, respectively. Then dr v (F,G) < 2H(f,g).

Fact 6 (Theorem 5.7 (ii) of Shorack (2000)). Suppose {X,}n>1 is a random
sequence. If X, satisfies X,, =, X for some random variable X, then there
exists a subsequence ny such that X,,, —4.s. X.

Fact 7 (Theorem 5.7 (vii) of Shorack (2000)). Suppose X,, is a sequence of
random variables. Then for some random variable X, X,, —, X if and only
if every subsequence {ny}x>1 contains a further subsequence {n,},>1 for which

Xn, —as X.
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Fact 8 (Proposition A.18 of Bobkov and Ledoux (2014)). Suppose the density
f is supported on an open interval (possibly unbounded). Then F~! is strictly
increasing, and F~Y(qa) — F~(q1) = qqf dt/f(F~Y(t)) for all0 < q1 < g2 < 1.

Fact 9. Suppose F is a class of measurable functions h such that [ h*dPy < €2
where ||h]|co < M for some constant M > 0. Then
MJ[ ](67 -7:3 LQ(PO))

€2\/n ’

EllGull» < Ji (e F, Lz(Po))(l T

where

Jp (e, F, Lo (Ry)) = / \/1 +log N{ 1(¢/, F, La(Py))de'.
0
Proof. Follows from Theorem 1.7.6 of Van der Vaart and Wellner (1996). O

The next fact is Pratt’s lemma (Pratt, 1960, Theorem 1). We state it here
for convenience.

Fact 10. Suppose (2, F,u) is a measure space and an, by, ¢, are sequences of
functions on Q converging almost everywhere to functions a,b,c respectively.
Also, all functions are integrable and [ andp — [adp and [c,dp — [ cdp.
Moreover, a, < b, <c,. Then fbnd,u — fbd,u.

Fact 11. Suppose (Fy,)n>1 and F are distribution functions satisfying ||F,, —
F|l — 0. Further suppose F has density f andt € int(supp(f)). Then |F,(t)—
F~1(t)] — 0.

Proof. Since F~! is continuous at ¢, this is essentially Lemma A.5 of Bobkov
and Ledoux (2014). O

The following is a property of integrable functions.

Fact 12 (Exercise 16.18 of Billingsley (2013)). Suppose P is a finite measure
on R and fR |h|dP < oo for some measurable function h. Then for each € > 0,
there exists o > 0 so that any P-measurable set B with P(B) < o satisfies
[ |h|dP < e.

The following is a sufficient (and necessary) condition for uniform integrabil-
ity.
Fact 13 (Exercise 16.19 of Billingsley (2013)). Suppose P is a finite measure
on R and (hy)n>1 is a sequence of P-measurable functions. Then (hyp)n>1 s
uniformly integrable if and only if (i) sup, >, [ |hn|dP < oo (i) given any € > 0,
there exists o > 0 so that any P-measurable set B with P(B) < o satisfies
SUP,>1 [z |hn|dP <.

The following fact is a Glivenko cantelli type result for a class of functions
Fn, changing with n.

Fact 14. Suppose F is a class of functions such that sup;cz ||fllee < M.
Further suppose for any fized € > 0, M2 supg log N (€, Fr, L2(Q)) = o(n) where
the supremum is over all probability measures on R. Then E|P, — P||z, — 0
as n — 00.
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Proof of Fact 14. The proof is similar to the proof of Theorem 2.4.3 of Van der
Vaart and Wellner (1996). Therefore we only highlight the differences. Suppose

Xq,..., X, % p. Consider also n independent Rademacher random variables
€1,.-.,€n. Using the symmetrization inequality (cf. Lemma 2.3.1 of Van der
Vaart and Wellner, 1996, ) and Fubini’s theorem, one can show that
1 n
- if (Xi
=Y if(Xi)

i=1

E|P, — P||#, < 2Ex E.

’
Fn

Yn(X)EYn(Xla-“vXn)

where Ex and E. denote the expectations with respect to P and the law of
€1, respectively. Fixing § > 0, and using the argument in the proof of Theorem
2.4.3 of Van der Vaart and Wellner (1996), we can show that

Y, (X) < (1+1og N(8, Fp, Lo(F ) /2 M\ /6 /0 + 6 (91)
where I, is the empirical distribution functlon of Xy,...,X,. Taking § = 1/2,
for sufficiently large n, we have Y,,(X) < 1 for any realizations of Xi,...,X,.

Therefore Y,,(X) is a bounded sequence. For any § > 0, (91) also implies that
lim,, oo Y, (X) < 4. Since 6 is arbitrary, this implies Y, (X) — 0 as n — o0
for any realization of X = Xj,..., X,,. Therefore, using dominated convergence
theorem we conclude that Ex[Y,,(X)] — 0. O

Fact 15. Suppose fo is a log-concave density with Iy, < co. Then H(fo(- +
y): fo) = O(lyl)-
Proof of Fact 15. Note that

o+ o = [ T (VR T - Va@)da

eS z+ly| | 2
—0o \Ja—pyl 2v/ fo(2)
which, by the Cauchy—SchwarZ inequality, is bounded above by

|y| :v+|y‘ fO (i) w [e’s) , ) B ,
/ / w Jo(z d do = 2 [oo ¢0(2)" fo(2)dz = [y|"L, /2,

where (a) follows by Fub1n1 s Theorem. Since Zy, < oo, the above is of order
O(lyl?). O

Appendix I: Tuning parameters for Stone and Beran’s estimators

Stone’s estimator has two tuning parameters d,, and t,. To find the optimal
(dn,tn) pair, we implement a grid search on a two dimensional grid. Each
point on the grid is of the form (d,t) where d € {10,20,30,...,80}, and ¢, €
{0.10,0.20,...,0.60}. For each distribution and each sample size, we estimate
the efficiency of each pair using one hundred Monte Carlo samples. The optimal
pair is the one that maximizes the estimated efficiency. Since Beran’s estimator
also uses two tuning parameters b, , and p,, we repeat the same procedure for
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finding its optimal tuning parameters. The only difference is that in this case,
the scaling parameter is chosen from the grid {0.10,0.20,...,1.50}, and the
number of basis functions is allowed to vary within the set {10, 20,...,50}. Ta-
ble 2 and 3 tabulate the optimal tuning parameters that we obtained following
the above-mentioned procedure.

TABLE 2
The optimal (dn,tn) pair for Stone’s estimattor

n Gaussian  Laplace Symmetric beta  Symmetric beta  Logistic
(r=21) (r=4.5)

40 (10, 0.80) (20, 0.60) (20, 0.60) (40, 0.80) (10, 0.80)

100 (50, 0.80) (20, 0.50) (40, 0.50) (30, 0.60) (10, 0.80)

200 (50, 0.80) (20, 0.50) (40, 0.50) (50, 0.60) (10, 0.80)

500 (60, 0.80) (10, 0.50) (20, 0.30) (30, 0.40) (30, 0.50)

TABLE 3
The optimal (be,n, pn) pair for Beran’s estimattor

n Gaussian  Laplace Symmetric beta  Symmetric beta  Logistic
(r=21) (r =4.5)

40 (10, 1.00) (40, 0.40) (10, 0.80) (40, 1.40) (10, 1.40)

100 (10, 1.00) (40, 0.20) (10, 0.40) (40, 1.20) (20, 1.40)

200 (10, 1.00) (40, 0.20) (40, 0.60) (40, 1.00) (25, 1.00)

500 (10, 0.60) (40, 0.20) (40, 0.60) (35, 0.80) (30, 1.00)

As mentioned previously, we consider another set of tuning parameters for
these nonparametric estimators. These tuning prameters, i.e. the non-optimal
tuning parameters, are provided in Table 4 and 5.

TABLE 4
The non-optimal (dn,tn) pair for Stone’s estimattor
n Gaussian  Laplace Symmetric beta  Symmetric beta  Logistic
(r=21) (r=4.5)
40 (30, 0.50) (50, 0.50) (40, 0.50) (50, 0.50) (50, 0.50)
100 (30, 0.50) (50, 0.50) (50, 0.50) (50, 0.50) (50, 0.50)
200 (30, 0.50) (50, 0.50) (50, 0.50) (50, 0.50) (50, 0.50)
500 (30, 0.50) (50, 0.50) (40, 0.50) (50, 0.50) (50, 0.50)
TABLE 5

The non-optimal (be,n, pn) pair for Beran’s estimattor

n Gaussian  Laplace Symmetric beta  Symmetric beta  Logistic
(r=21) (r =4.5)

40 (40, 0.20) (10, 0.40) (40, 0.20) (30, 0.20) (40, 0.20)

100 (40, 0.20) (10, 1.20) (40, 0.20) (35, 0.20) (40, 0.20)

200 (40, 0.20) (10, 1.20) (40, 0.20) (40, 0.20) (40, 0.20)

500 (40, 0.20) (10, 1.20) (40, 0.20) (40, 0.20) (40, 0.20)
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