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Sokolovská 83, CZ 18675 Prague 8, Czech Republic
e-mail: hudecova@karlin.mff.cuni.cz

2The Czech Academy of Sciences, Institute of Information Theory and Automation.
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1. Introduction

Symmetry not only makes the world beautiful and interesting, but also plays
a key role in mathematical statistics where it simplifies and reduces statistical
models via sufficiency. Statisticians already recognize several kinds of multivari-
ate symmetry; see, e.g., [22] for a survey. Nevertheless, there seem to be no
available results on testing axial symmetry of a given multivariate distribution
beyond dimension two except for the very recent permutation test in [12]. A ran-
dom vector Y with E‖Y ‖ < ∞ is here formally defined to be axially symmetric
around an axis with direction u when L{Y − E(Y )} = L{Ru(Y − E(Y ))} for
the orthonormal matrix Ru = 2uu� − I, satisfying Ruu = u and Ruv = −v
for all vectors v orthogonal to u.

To be more precise, a slightly similar test for the first eigenvector of a covari-
ance or scatter matrix is often used in the principal component analysis; see,
e.g., [6] and the references given there. In the bivariate case, a simple nonpara-
metric test for testing symmetry around a given line has been proposed only in
[20] and applied to testing exchangeability and symmetry around a coordinate
axis. Some tests of the latter hypotheses have already been discussed in the
non-parametric statistical literature; see, e.g., [10] and [18] for bivariate tests
and [23] for a multivariate test of conditional symmetry. Related symmetries
have also been studied for directional data [4].

Nevertheless, the problem of testing axial symmetry (about an arbitrary line)
becomes really interesting only in spaces beyond dimension two where axial
symmetry does not coincide with hyperplane symmetry. Furthermore, the as-
sumption of a particular axis of symmetry is often too restrictive. It would often
be more convenient to assume only its direction as there can never exist two
or more such axes parallel with one another. The tests presented below thus
nicely fill in the gap as they work for general distributions in any dimension
and assume only the axial direction under the null hypothesis. They can also
test conditional axial symmetry in a regression context with a few regressors
and responses, which also distinguishes them from possible competitors. That
is to say that a follow-up article [11] will describe various tests of symmetry
around a general subspace based on a completely different principle, only in the
mulivariate case (with no regressors), and with more stringent assumptions.

The presented tests originate from the directional quantile regression, intro-
duced in [7] and further elucidated in [19], that appears very useful even for
a single direction, namely for the direction of the assumed axis of symmetry.
Then it more or less resembles the ordinary quantile regression of [15] and [13],
but with stochastic regressors and applied to certain projections. The regression
framework behind the tests makes their regression extensions very intuitive and
straightforward.

Unfortunately, it turns out that the presence of response-dependent and
stochastic regressors makes the traditional inference about the regression quan-
tile process invalid except for some very special cases. Consequently, the tests
presented here had to be derived anew with the response-dependent and stochas-
tic regressors taken into consideration. Therefore, the results probably con-
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tribute something original even to the theory of ordinary quantile regression
with such type of regressors.

The tests are likely to become useful even in full generality because axial sym-
metry plays a key role in molecular symmetry (influencing chemical properties of
the matter) and because it naturally occurs whenever mirrors or reflections are
employed, e.g., in optics, acoustics, particle physics, astronomy, and crystallog-
raphy. For example, the applications might result from the law of reflection, the
axial rotation of heavenly bodies, the natural axial symmetry of simple living
organisms, the axial symmetry of electrostatic potential of symmetric molecules,
or from the radars rotating around an axis. The need for testing axial symmetry
might also arise in the same situations when rotational symmetry is investigated
for directional data; see [4] and the references therein. Furthermore, the condi-
tional axial symmetry is also closely linked to the directional predictability of
linear models with vector responses.

In any way, the test of (conditional) axial symmetry may be used to check
other common statistical hypotheses such as (conditional) symmetry about
a particular coordinate axis, (conditional) exchangeability, and equality of (con-
ditional) distributions or their scales, all that possibly up to a suitable shift.
The applications are further elaborated and illustrated in the text.

The rest of this article is organized as follows. Section 2 introduces the neces-
sary minimum regarding the directional regression quantiles of interest, Section 3
provides some motivation for the tests and for their use in various situations,
Section 4 mainly derives and discusses the tests for the null hypothesis of axial
symmetry about a line with a given direction in the location case, Section 5 ex-
tends the tests to a linear regression context, and concluding Section 6 illustrates
the achievements with a few representative examples and comparisons. The Ap-
pendix collects most of the technical remarks and the proofs of all the assertions.

2. Directional quantiles

Suppose that Y = (Y (1), . . . , Y (m))� ∈ R
m and X = (1, X(2), . . . , X(p))� =

(1,Z�)� ∈ Rp stand for a random vector of responses and for a random vector
of regressors, respectively, and that the following Assumption 1 holds in the
whole article.

Assumption 1. The joint probability distribution L of (Y �,Z�)� is abso-
lutely continuous with finite expectation, cumulative distribution function F ,
and probability density function f that is continuous, bounded, and positive in
the interior of a connected support.

In general, directional multivariate quantiles extend univariate quantiles to
multivariate spaces directionwise. In [7], the directional (regression) τ -quantile of
the m-dimensional response Y corresponding to the p-dimensional covariate X
is defined for any direction u ∈ Sm−1 := {v ∈ R

m : ‖v‖ = 1} and for any
quantile level τ ∈ (0, 1) as the unique hyperplane

πτu = {(y�, z�) ∈ R
m × R

p−1 : bτu
�y − aτu

�(1, z�)� = 0}
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where (bτu
�,aτu

�)� ∈ R
m+p solves the minimization problem

min
(b�,a�)�∈Rm+p, b�u=1

E{ρτ (b�Y − a�X)} (2.1)

where ρτ (x) = x(τ − I(x < 0)) = max{(τ − 1)x, τx} is the quantile check
function. Equivalently,

πτu = {(y�, z�) ∈ R
m × R

p−1 : u�y − cτu
�Γ�

uy − aτu
�(1, z�)� = 0}

where Γu is an m × (m − 1) matrix complementing u to an orthonormal ma-
trix and (cτu

�,aτu
�)� ∈ R

m+p−1 solves the unconstrained (standard quantile
regression) minimization problem

min
(c�,a�)�∈Rm+p−1

E{ρτ (u�Y − c�Γ�
uY − a�X)} (2.2)

with one scalar response u�Y and p + m − 1 scalar regressors grouped in
(Y �Γu,X

�)�. (It is basically a standard quantile regression problem when the
basis of the response space is changed from the canonical one to (u|Γu).) Then
bτu = u− Γucτu, cτu = −Γ�

u bτu, and the choice of Γu does not impact πτu.
The (regression) (τu)-quantile hyperplane πτu divides the space into the

upper and lower (τu)-quantile (regression) halfspaces H+
τu and H−

τu:

H+
τu = {(y�, z�)� ∈ R

m × R
p−1 : bτu

�y − aτu
�(1, z�)� ≥ 0} and

H−
τu = {(y�, z�)� ∈ R

m × R
p−1 : bτu

�y − aτu
�(1, z�)� < 0}.

In the location (multivariate) case with p = 1, both Z and z simply disappear
from all the definitions.

Think of the population necessary and sufficient conditions for (bτu
�,aτu

�)�

to solve (2.1):

0 =
1

1− τ
E

{
I(bτu

�Y − aτu
�X ≥ 0)X

}

− 1

τ
E

{
I(bτu

�Y − aτu
�X < 0)X

}
, (2.3)

Dτu =
1

1− τ
E

{
I(bτu

�Y − aτu
�X ≥ 0)Y

}

− 1

τ
E

{
I(bτu

�Y − aτu
�X < 0)Y

}
, (2.4)

1 = b�u, (2.5)

where Dτu = λτuu/{τ(1 − τ)} and λτu is the Lagrange multiplier associated
with (2.5).

The probability interpretation of the directional regression quantiles follows
from (2.3) thanks to the first unit coordinate of X:

τ = E
{
I(bτu

�Y − aτu
�X < 0)

}
. (2.6)

Consequently, (D�
τu,0

�)� can be interpreted as the vector linking the mass
centers μ(H−

τu) and μ(H+
τu) of H

−
τu and H+

τu through the overall center of mass
and pointing to H+

τu if f is interpreted as the mass density.
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Loosely speaking, the (regression) (τu)-quantile hyperplane πτu cuts off the
probability mass equal to τ and splits the space into two halfspaces with their
own probability mass centers whose mutual position is determined by the direc-
tion u up to certain scalar multiplier.

3. Motivation

For simplicity, first assume the purely multivariate case when L = L(Y ) is axi-
ally symmetric around an axis with direction u. Then the uniquely defined πτu,
cutting off the right amount of probability mass, must be orthogonal to u for
any τ ∈ (0, 1) because μ(H+

τu) − μ(H−
τu) is then parallel to u and the neces-

sary and sufficient conditions (2.3) to (2.5) are then satisfied for bτu = u, i.e.,
for cτu = 0. In other words, the axial symmetry around an axis with direction u
implies cτu = 0 for any τ ∈ (0, 1), which makes its testing by means of cτu and
its scalar functions very promising, especially for elliptical distributions:

Proposition 1. Consider random vector Y with distribution L(Y ) satisfying
Assumption 1.

(1) If L(Y ) is symmetric around an axis with direction u, then cτu = 0 for
any τ ∈ (0, 1).

(2) If L(Y ) is elliptically symmetric and cτu = 0 for any τ ∈ (0, 1), then
L(Y ) is symmetric around an axis with direction u.

(3) If L(Y ) is elliptically symmetric but not symmetric around an axis with
direction u, then cτu �= 0 is a constant vector independent of τ ∈ (0, 1).

The impact of such axial symmetry tests far exceeds their primary purpose
because they can also be employed

1. for testing the hypothesis of axial symmetry about a particular line in
direction u. That is to say that if the population distribution of Y is sym-
metric about an axis in direction u, then the particular axis of symmetry
is of the form E(Y ) + tu, t ∈ R. Testing the particularity should thus
involve a test of the mean vector after the test of the axial direction. After
a suitable affine transformation (turning the particular line of interest to
the last coordinate axis), one would only have to test that the first (m−1)
coordinates of the mean vector are zero.

2. for testing exchangeability after a suitable shift. If a multivariate distribu-
tion is exchangeable after a suitable shift, then it is symmetric around an
axis with direction u = (1, 1 . . . , 1)�/

√
m. The converse is true only in R

2.
3. for testing equality of independent univariate distributions up to their lo-

cation. Their joint distribution would then be exchangeable after a suitable
shift. Conversely, if the joint distribution of independent univariate distri-
butions is exchangeable, then the univariate distributions are the same.

4. for testing that independent univariate distributions are equally scaled on
condition that they can differ only in their location and scale parameters.

5. for testing equality of independent multivariate distributions (after a suit-
able shift) because then their univariate marginal distributions corre-
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sponding to any particular dimension must be independent and one could
test it with a compound test.

Of course, one can combine 1. with 2., 3., 4. and 5. if a particular knowledge
about the location is available.

In the regression case, the null hypothesis HS
0 (u) of axial symmetry around

an axis with direction u pertains to the conditional distribution:

HS
0 (u) : L{Y − E(Y |X)|X} = L{Ru(Y − E(Y |X))|X}, Ru = 2uu� − I,

almost surely. In the location case, it reduces to

HS
0 (u) : L{Y − E(Y )} = L{Ru(Y − E(Y ))}, Ru = 2uu� − I.

However, the following text focuses only on the null hypothesis

H0(u) : cτu = 0 for all τ ∈ (0, 1) (3.1)

because HS
0 (u) always implies H0(u) in the location case and because the two

hypotheses are equivalent for elliptical distributions; see Proposition 1.
Furthermore, all that easily extends to certain linear regression location-scale

models because Proposition 1 can easily be rephrased for conditional distribu-
tions L(Y |X = x) and because the conditional gradient conditions turn into
the unconditional ones if all the τ -quantiles of u′Y given X are linear in X,
thanks to E(·) = EXEY |X(·|X) used in (2.2).

In particular, the theory can be applied even to the following linear regression
common-scale model with parametric matrix B, parametric vector d �= 0, and
a centered absolutely continuous error term ε ∈ R

m, E‖ε‖ < ∞, independent
of absolutely continuous regressor vector X, E‖X‖ < ∞:

Y = BX + (d�X)ε. (3.2)

Then HS
0 (u) implies H0(u) for any u, ‖u‖ = 1, and the reverse is true for

elliptically distributed ε. If ε is elliptically distributed, but not around an axis
with direction u, then cτu �= 0 is a constant vector independent of τ ∈ (0, 1).

In fact, HS
0 (u) implies H0(u) for a given directional vector u even in a more

general model
Y = BX + Γug0(d0,X) +QD(X)Q�ε (3.3)

where Q = (u,Γu), D(X) = diag(g1(d1,X), . . . , gm(dm,X)) is an almost
surely regular diagonal matrix, g1(d1,X) = d�

1 X, g0, g2, . . . , gm are almost
surely non-zero scalar functions, and d0,d1, . . . ,dm are parametric vectors such
that d1 �= 0.

To sum up, HS
0 (u) can be tested by means of H0(u) not only in the location

case, but also in certain linear regression location-scale models such as (3.2)
and (3.3) described above. Consequently, the rest of the article deals only with
the problem of testing H0(u), which may be of independent interest. The pre-
sented theory for the regression case also covers models (3.2) and (3.3) thanks
to Remark 4 after Proposition 3, stated in the Appendix.
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Of course, the proposed asymptotic nonparametric tests are the most useful
when they have no simple parametric competitors, e.g., when the specification
of the underlying probability distribution is unknown or unrelated to the ax-
ial symmetry considered. In fact, they may sometimes be the only reasonable
options available in the multidimensional and regression cases.

In what follows, sample variants will usually be denoted with ̂ and the tests
will be called after their test statistics.

4. Location case

The asymptotic representation and distribution of ĉτu in the i.i.d. case is known
from [7] for any fixed τ ∈ (0, 1). If the assumptions were different, then H0(u)
of (3.1) could be tested, for example, by means of the rank score statistic of [16]
known from the ordinary quantile regression; see also Section 3.7.3 of [13]. The
same test statistic is also adopted here but its asymptotic distribution becomes
complicated by the presence of stochastic and response-dependent regressors,
and it does not follow directly from any known theory.

Consider τ ∈ (0, 1), i.i.d. vectors Y1, . . . ,Yn, Y = (Y1, . . . ,Yn)
� ∈ R

n×m,
Yn = n−1

Y
�1n, the rank score vector â(τ) ∈ R

n defined as

â(τ) := argmax{u�
Y

�a : n−11�
n a = (1− τ), a ∈ [0, 1]n},

and its centered modification b̂(τ) ≡
(
b̂1(τ), . . . , b̂n(τ)

)�
:= â(τ) − (1 − τ)1n.

The τ -indexed process

Ŝn(τ) :=
1√
n

n∑
i=1

Γ�
u (Yi −Yn)̂bi(τ) =

1√
n

n∑
i=1

Γ�
uYib̂i(τ) =

1√
n
Γ�
uY

�b̂(τ)

(4.1)
is the cornerstone on which the tests will be built.

Proposition 2. Assume H0(u) with Assumption 1, and E(‖Y‖2+δ) < ∞ for
some δ > 0.

(1) Then, for any τ ∈ (0, 1), Ŝn(τ) = Ŝ0
n(τ) + oP (1), where

Ŝ0
n(τ) :=

1√
n

n∑
i=1

Γ�
uYi[τ − I{u�Yi < F̂−1

u,n(τ)}] (4.2)

=
1√
n

n∑
i=1

Γ�
u [Yi − E(Y)][τ − I{u�Yi < F−1

u (τ)}] + oP (1), (4.3)

F−1
u (τ) is the τ -quantile of u�Y and F̂−1

u,n(τ) is its sample counterpart.

(2) If 0 < τ1 < τ2 < · · · < τk < 1, k ∈ N, then the vector Ŝn(τ1, . . . , τk) =(
Ŝn(τ1)

�, . . . , Ŝn(τk)
�)�

is asymptotically multivariate normal with mean

zero and block covariance matrix Σ(τ1, . . . , τk) =
(
Σij(τi, τj)

)k
i,j=1

where

Σij(τi, τj) = τiτjΓ
�
uVar (Y)Γu − τiCτj − τjCτi +Cmin{τi,τj}
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and Ct = E[Γ�
u {Y − E(Y)}{Y − E(Y)}�ΓuI{u�Y < F−1

u (t)}]. Conse-
quently, if Σ̂(τ1, . . . , τk) is a consistent estimator of Σ(τ1, . . . , τk), then

TD := Ŝ�
n (τ1, . . . , τk){Σ̂(τ1, . . . , τk)}−1Ŝn(τ1, . . . , τk)

D→ χ2
k(m−1). (4.4)

(3) If moreover E[Γ�
uYY�ΓuI{u�Y < F−1

u (τ)}] = τE(Γ�
uYY�Γu) for any

τ ∈ (0, 1), then Ŝn(τ)
D→ {Γ�

uVar (Y)Γu}1/2Bm−1(τ) and

TC := sup
τ∈[ε,1−ε]

T̂n(τ)
D→ sup

τ∈[ε,1−ε]

Q2
m−1(τ) (4.5)

for any ε ∈ (0, 0.5), where Bm−1(τ) is the (m− 1)-dimensional Brownian
bridge on [0, 1],

T̂n(τ) :=
1

τ(1− τ)
Ŝ�
n (τ)(Γ

�
uSYΓu)

−1Ŝn(τ), τ ∈ (0, 1), (4.6)

SY is the sample covariance matrix of Y computed from Y1, . . . ,Yn, and
Qm−1(τ) = ‖Bm−1(τ)‖{τ(1−τ)}−1/2 is the Bessel process of order m−1.

Simplification of Proposition 2 in certain cases, weakening its assumptions,
and good invariance properties of T̂n(τ) of (4.6) are discussed in Remarks 1 to 3

in the Appendix. In particular, T̂n(τ), τ ∈ (0, 1), is invariant with respect to
the choice of Γu, to shifts, to rotations (if (u,Γu) is rotated accordingly) and
to scale transformations preserving axial symmetry. The same invariance then
holds even for TC of (4.5).

As H0(u) implies a weaker null hypothesis H̃0(u) : cτiu = 0 for 0 < τ1 <
· · · < τk < 1, testing H0(u) can also be based on Proposition 2(2) and may be
beneficial at least in the family of elliptical distributions in view of Proposition 1.
This is also confirmed empirically in Section 6.

To sum up, H0(u) can be tested in the location case by means of the test
statistics TD and TC of (4.4) and (4.5) and their asymptotic distributions under
H0(u). Of course, test statistics asymptotically equivalent to TC or TD under
H0(u) can be used as well, and the corresponding assumptions must be fulfilled.

5. Regression case

Assume i.i.d. sample (Y �
i ,X

�
i )

�, i = 1, . . . , n, and write (ĉ�τu, â
�
τu)

� for the
sample analogue to (c�τu,a

�
τu)

�, Y for (Y1, . . .Yn)
� and X for (X1, . . . ,Xn)

�.

Consider H0(u) of (3.1), define centered regression rank score vector b̂(τ) =(
b̂1(τ), . . . , b̂n(τ)

)�
as

b̂(τ) := argmax{u�
Y

�a : X�a = (1− τ)X�1n, a ∈ [0, 1]n} − (1− τ)1n, (5.1)

and focus again on the τ -indexed process

Ŝn(τ) :=
1√
n

n∑
i=1

Γ�
uYib̂i(τ) =

1√
n
Γ�
uY

�b̂(τ) =
1√
n
Γ�
uY

�(In −MX)b̂(τ),
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where MX stands for the projection matrix MX = X(X�
X)−1

X
�.

Proposition 3. Assume the null hypothesis H0(u) with Assumption 1 and both
E(‖Z‖2+δ) < ∞ and E(‖Y‖2+δ) < ∞ for some δ > 0.

(1) Then, for any τ ∈ (0, 1), Ŝn(τ) = Ŝ0
n(τ) + oP (1) for

Ŝ0
n(τ) =

1√
n

n∑
i=1

{τ − I(u�Yi < a�τuXi)}{Γ�
uYi − Γ�

uH(τ)G(τ)−1Xi},

G(τ) = E{fu�Y|X(a�τuX)XX�}, H(τ) = E{fu�Y|X,Γ�
u Y(a�τuX)YX�},

fu�Y|X being the density of u�Y given X, and fu�Y|X,Γ�
u Y being the

density of u�Y given (X�,Y�Γu)
�.

(2) If 0 < τ1 < τ2 < · · · < τk < 1, k ∈ N, then vector Ŝn(τ1, . . . , τk) =(
Ŝn(τ1)

�, . . . , Ŝn(τk)
�)�

is asymptotically multivariate normal with zero

mean and block covariance matrix Σ(τ1, . . . , τk) =
(
Σij(τi, τj)

)k
i,j=1

, where

Σij(τi, τj) =E{τi − I(u�Y < a�τiuX)}{τj − I(u�Y < a�τjuX)}
×{Γ�

uY − Γ�
uH(τi)G(τi)

−1X}{Γ�
uY − Γ�

uH(τj)G(τj)
−1X}�.

Consequently, if Σ̂(τ1, . . . , τk) is a consistent estimator of Σ(τ1, . . . , τk),
then

TD := Ŝ�
n (τ1, . . . , τk){Σ̂(τ1, . . . , τk)}−1Ŝn(τ1, . . . , τk)

D→ χ2
k(m−1). (5.2)

(3) Furthermore, assume that u�Y = γ�Γ�
uY + α�X + φ(Γ�

uY)ε where
φ(Γ�

uY) is a real function linear in Γ�
uY, γ ∈ R

m−1 and α ∈ R
p are

vector parameters, and ε is independent with (Y�Γu,X
�)�. Then it holds

for any τi, τj ∈ (0, 1) that Σij(τi, τj) = (min{τi, τj}−τiτj)Γ
�
uWΓu, where

W = E[Y − E(YX�){E(XX�)}−1X][Y − E(YX�){E(XX�)}−1X]�.

In addition, Ŝn(τ)
D→ (Γ�

uWΓu)
1/2Bm−1(τ) and

TC := sup
τ∈[ε,1−ε]

T̂n(τ)
D→ sup

τ∈[ε,1−ε]

Q2
m−1(τ) (5.3)

for any ε ∈ (0, 0.5), where Bm−1(τ) is the (m− 1)-dimensional Brownian
bridge on [0, 1], Qm−1(τ) is the Bessel process of order m− 1,

T̂n(τ) :=
1

τ(1− τ)
Ŝ�
n (τ)(Γ

�
uŴΓu)

−1Ŝn(τ), τ ∈ (0, 1), (5.4)

and Ŵ is a consistent estimator of W.

Note that a natural consistent estimator of W is

Ŵ0 = n−1{Y− X(X�
X)−1

X
�
Y}�{Y− X(X�

X)−1
X

�
Y}
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and that the condition of Proposition 3(3) is satisfied if (Y�,Z�)� comes from
a multivariate normal distribution.

Remarks 4 and 5 in the Appendix further show that the assumption of Propo-
sition 3(3) can be weakened and that T̂n(τ) of (5.4) inherits all the good in-
variance properties from the location case and adds to them certain regression

invariance, if a reasonable estimator of Ŵ such as Ŵ0 is employed.
Testing H0(u) can be based on Proposition 3(2) because H0(u) implies

H̃0(u) : cτiu = 0 for 0 < τ1 < · · · < τk < 1 even in the regression case. It
may be beneficial especially if L(Y |X) is elliptical.

To sum up, if the assumptions are satisfied, then H0(u) can be tested in
the regression case by means of the test statistics TD and TC of (5.2) and (5.3)
using their asymptotic distributions underH0(u) stated ibidem. In principle, one
could then use any statistics asymptotically equivalent to TD or TC underH0(u).

6. Demonstrative examples

This section illustrates the new testing possibilities with a few carefully designed
and representative examples involving the test TC based on the whole quantile
process (4.5,5.3) and its χ2 modification TD based on a few particular quantiles
(4.4,5.2), both location and regression case, both elliptical and non-elliptical
distributions (with light and heavy tails), both large (n = 5 000) and not too
large (n = 100) data samples, responses with dimension m = 2, . . . , 20, and
regressors with dimension p = 1, . . . , 20.

The results have been obtained by means of the packages quantreg [14] and
ks [2] for R [24] where the latter package was employed only for the computation
of conditional densities. The reported p-values regarding the process-based test
TC have been calculated thanks to the algorithm for computing the tail probabil-
ities of restricted suprema of the squared standardized tied-down Bessel process
of any order [3].

For simplicity, the centered regression rank scores have been produced by
the function ranks of quantreg with score equal to tau. They slightly differ
from those of (5.1) for observations with zero residuals due to the weighting
performed by the function but it does not affect the asymptotic behavior of the
tests.

6.1. Simulated data

Fig. 1 shows the process {ĉτu}τ obtained from a random sample of size n = 5 000
from bivariate normal distribution N (0, 1) × N (0, 4) for two axial directions
where only one of them corresponds to an axis of symmetry. The left picture
strongly speaks for axial symmetry while the other vehemently denies it. The
pictures are in harmony with Proposition 1 and confirm that the tests may be
sensitive even to small departures from the null hypothesis of axial symmetry.

Figs. 2 to 4 use the process-based test TC with the sample variance-covariance
estimator and approximate the supremum over τ ∈ [0.05, 0.95] with the maxi-
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Fig 1. Quantile regression process {ĉτu}τ . The (scalar) coefficient estimates ĉτu, τ ∈
[0.01, 0.99], together with their 90% (pointwise) confidence band (vertical axis), and their
dependence on the quantile level τ (horizontal axis) for samples drawn from N (0, 1)×N (0, 4)
and u = (cos(α), sin(α))� where α = 0 (left) or α = π/60 (right).

Fig 2. Testing axial symmetry. The average of sample p-values from the process-based
tests TC of H0(u), u = (cos(α), sin(α), 0)� for α ∈ [0, π] (left), and their empirical dis-
tribution functions for α = 0 (right). The plots correspond to samples of n = 100 (thin)
and n = 200 (thick) independent observations drawn from the true model (Y1, Y2, Y3)� =
(ε1, ε2, ε3)� ∼ N (0, 1)×N (0, 4)×N (0, 9) that have been modeled only with the intercept (solid
black) or with the intercept and another regressor Z ∼ N (0, 1) independent of (ε1, ε2, ε3)�

(dotted or gray).

mum over a dense equispaced grid on the interval [0.05, 0.95], i.e., with a con-
servative (lower) estimate.

Fig. 2 presents average p-values obtained from 1 000 samples of size n = 100
or 200 of trivariate normally distributed responses from N (0, 1) × N (0, 4) ×
N (0, 9) with or without a single stochastic independent regressor following the
standard normal distribution. The individual p-values have been computed from
each sample for several directions in the form u = (cos(α), sin(α), 0)� for α ∈
[0, π], and their empirical distributions for the axial directional angle α = 0
(corresponding to the null hypothesis) are also reported.
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Fig 3. Testing equality of scale. The average of sample p-values from the process-based tests
TC for various scale factors R ∈ [1, 2] (left) and their empirical distribution functions under
the null hypothesis of R = 1 (right). The plots have been obtained for samples containing
n = 100 (thin), n = 200 (normal), and n = 400 (thick) observations drawn from the true
model (Y1, Y2)� = (ε1, Rε2)� with independent ε1 ∼ N (0, 1) and ε2 ∼ N (0, 1) that have
been modeled only with the intercept (solid black) or with the intercept and another regressor
Z ∼ U(−1, 1) independent of ε1 and ε2 (dotted or gray).

Next Fig. 3 similarly displays average p-values obtained for direction u =
(cos(π/4), sin(π/4))� from 1 000 bivariate random samples of size n = 100, 200,

or 400. Each sample Y i = (Y
(1)
i , Y

(2)
i )�, i = 1, . . . , n, comes from the bivari-

ate standard normal distribution and results in several individual p-values, each

computed from the responses (Y
(1)
i , RY

(2)
i )�, i = 1, . . . , n, for a scaling fac-

tor R ∈ [1, 2] and possibly also for one independent scalar regressor from the
uniform distribution on [−1, 1]. The null hypothesis of equally scaled marginal
distributions corresponds to the value R = 1 and to the reported empirical
distribution functions of the sample p-values.

The observed average p-values produced by the tests TC are slightly higher
than 0.55 under the null hypothesis in both cases, although they are always
based on 1 000 replications. This discrepancy diminishes with growing sample
sizes and occurs mainly due to the data samples too small for the asymptotic
approximation to hold perfectly, although the use of discrete approximation and
(upper) p-value estimates may also play a marginal role. Apart from the small
issue with the seemingly conservative size, the tests TC behave as expected,
which means in line with Propositions 1–3.

Fig. 4 presents empirical power for comparison with average p-values. It shows
the empirical power of the test TC obtained from 1 000 random samples of size
n = 5 000 coming from a twenty-dimensional distribution with independent
marginals for twenty-dimensional directions u = (cos(α), sin(α), 0, . . . , 0)� for
α ∈ [−π/60, π/60]. Two centered distributions were used: (heavy-tailed) t3 ×
2t3 × · · · × 20t3 and (light-tailed) L(1)× 2L(1)× · · · × 20L(1) where L denotes
the Laplace distribution. The plots employ the critical values for testing levels



2702 Š. Hudecová and M. Šiman

Fig 4. Test power. Empirical powers from the process-based test TC of axial symmetry around
a line in direction u = (cos(α), sin(α), 0, . . . , 0)� ∈ R20 for α ∈ [−π/60, π/60]. The plots cor-
respond to samples of size n = 5 000 of independent centered observations (Y1, Y2, . . . , Y20)�

with independent marginals, namely Yi ∼ i · t3 (left) and Yi ∼ i · L(1) (right), i = 1, . . . , n.
The critical values for testing levels 0.01 (black), 0.05 (dark gray), and 0.10 (light gray) come
from [3].

0.01, 0.05, and 0.10 obtained from the tables published in [3] (that produce
similar results as those of [1]).

The remaining figures illustrate the χ2-tests TD, based on the sample variance-
covariance matrix estimators. They use (m+p−1)-dimensional data samples of
size n obtained from the multivariate uniform distribution on [−2, 2]m+p−1 (U),
multivariate standard normal distribution (N ), and/or multivariate standard
t distribution with df degrees of freedom (tdf ). The first p − 1 dimensions are
taken for the stochastic regressor vectors Zi, the next m dimensions are con-
sidered as the error vectors εi, and the response vectors then follow the model
Y i = 1m + 1m1�

p−1Zi + εi + I[i > n/2]Δ1m, i = 1, . . . , n, where Δ = 0 for
each null hypothesis and Δ > 0 for each alternative considered. The tests them-
selves are based on nτ quantile levels τ equidistantly distributed in the interval
[ετ , 1 − ετ ] including its end points (and τ = 0.5 for nτ = 1). They check the
null hypothesis H0(u), u = (1,0�)�, of axial symmetry of the (conditional)
response distribution around an axis parallel with the first coordinate axis in
the response space.

The figures illustrate the dependence of the tests TD on ετ (Fig. 5), nτ

(Fig. 6), m (Fig. 7), p (Fig. 8), n (Fig. 9), Δ (Fig. 10), or on the data dis-
tribution (Fig. 11). Solid lines generally correspond to the test behavior under
the null hypothesis, dashed lines generally correspond to the test behavior under
the shift alternative with Δ = 0.5. The dimension of responses (m), the dimen-
sion of regressor vectors Xi = (1,Z�

i )
� including the first unit coordinate (p),

and the underlying distributions L of (Z�
i , ε

�
i )

�, i = 1, . . . , n, are indicated
below each picture when it makes sense; usually L ∈ {N} or L ∈ {U ,N , t7}.
Always n = 1 000 except for Fig. 9 that shows how the tests depend on the
number of observations n. If m = 4 and p = 2 or vice versa, then the regression
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Fig 5. Test dependence on the minimum quantile level (ετ ) considered. The average
sample p-values of the χ2-tests TD of axial symmetry (along the first coordinate axis) in
dependence on the minimum quantile level ετ ∈ {0.05, 0.10, . . . , 0.45} for Δ = 0 (the null
hypothesis, solid line) and Δ = 0.5 (an alternative, dashed line). The color lightens with the
order of the distribution in the list; the distribution mentioned first is thus always associated
with black.

Fig 6. Test dependence on the number of quantile levels (nτ ). The average sample p-
values of the χ2-tests TD of axial symmetry (along the first coordinate axis) in dependence
on the number nτ ∈ {1, 3, . . . , 15} of considered quantile levels, equidistantly spaced between
τ = 0.2 and τ = 0.8, for Δ = 0 (the null hypothesis, solid line) and Δ = 0.5 (the alternative,
dashed line). The color lightens with the order of the distribution in the list; the distribution
mentioned first is thus always associated with black.

variant of the tests uses the computationally demanding estimation of condi-
tional densities with the normal kernel and the bandwidth optimal for normal
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densities (for the sake of quick computation). The reported average p-values are
based on N = 1 000 replications in such cases and on N = 10 000 replications
in the others.

Fig. 5 uses the tests TD for two values of τ , τ = ετ and τ = 1−ετ , and shows
their dependence on ετ , ετ = 0.05, 0.10, . . . , 0.45. Accordingly, it seems quite
prudent to choose τ = 0.2 and τ = 0.8 for the two values of τ as a reasonable
compromise, at least for the alternatives considered here. This is why this couple
of quantile levels is used in the other settings whenever two values of τ are
employed, i.e., in Figs. 7 and 8.

Fig. 6 investigates the dependence of the tests TD on the number of quantile
levels considered. It uses τ = 0.5 for nτ = 1, and nτ equidistant values of τ
from the interval [0.2, 0.8] including its end points for nτ = 3, 5, . . . , 15. The
results are probably highly dependent on the choice of alternatives, but they
nevertheless indicate that nτ should not be chosen pointlessly too high; see
also Proposition 1. Therefore, the remaining pictures employ only nτ = 1 and
τ = 0.5 (Figs. 9, 10, and 11) or nτ = 2 and τ = 0.2 and 0.8 (Figs. 7 and 8).

Fig 7. Test dependence on the dimension of responses (m). The average sample p-values
of the χ2-tests TD of axial symmetry (along the first coordinate axis) in dependence on the
dimension of responses m ∈ {2, . . . , 20} for Δ = 0 (the null hypothesis, solid line) and Δ = 0.5
(the alternative, dashed line). The color lightens with the order of the distribution in the list;
the distribution mentioned first is thus always associated with black.

Fig. 7 displays the dependence of the tests TD on the dimension of responses
m = 2, . . . , 20, and Fig. 8 shows their behavior for different dimensions of the
regressor p = 1, . . . , 20. The power of the test grows withm under the considered
alternative, while it seems to be unaffected by changes in p.

Fig. 9 shows how the tests TD depend on the number of observations n =
100, . . . , 1 000, while Fig. 10 illustrates the dependence of the test on the shift Δ
in the data generating model. The observed dependences are as expected. Fi-
nally, Fig. 11 illustrates the test performance for the multivariate tdf distri-
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Fig 8. Test dependence on the dimension of regressors (p). The average sample p-values
of the χ2-tests of axial symmetry (along the first coordinate axis) in dependence on the di-
mension of regressors (including the intercept) p ∈ {1, . . . , 20} for Δ = 0 (the null hypothesis,
solid line) and Δ = 0.5 (the alternative, dashed line).

Fig 9. Test dependence on the number of observations (n). The average sample p-values of
the χ2-tests of axial symmetry (along the first coordinate axis) in dependence on the number
of observations n ∈ {100, 150, . . . , 1 000} for Δ = 0 (the null hypothesis, solid line) and
Δ = 0.5 (the alternative, dashed line). The color lightens with the order of the distribution
in the list; the distribution mentioned first is thus always associated with black.

bution and the average p-value is plotted as a function of degrees of freedom
df = 5, . . . , 20.

To sum up the simulation results, the χ2-tests TD behave as expected and
in harmony with the theory. They seem to be correctly sized at least for the
dimension of responses as high as m = 10 and for the dimension of regressors
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Fig 10. Test dependence on the shift (Δ) in the alternatives. The average sample p-values
of the χ2-tests TD of axial symmetry (along the first coordinate axis) in dependence on the
shift parameter Δ ∈ {0, 0.05, 0.1, . . . , 0.8} in the data generating model. The color lightens
with the order of the distribution in the list; the distribution mentioned first is thus always
associated with black.

as high as p = 10 when the conditional density estimation is not needed, n ≥
20(m + p), and nτ ≤ 5 or so, which covers the most typical situations. In
general, it can also be recommended not to choose nτ pointlessly too high and
ετ pointlessly too small. One should be more careful, though, if the density
estimation is required, i.e., in the non-normal regression case. Nevertheless, the
tests may then behave reasonably even for m + p − 1 = 4 if n is large enough
such as n = 1 000, at least in the cases considered here.

6.2. Test comparison

The general asymptotic tests presented here have no close competitors, perhaps
except for the follow-up tests for elliptical distributions; see [11] for the tests
and the comparison. Consequently, the comparison with other available tests is
possible only in very special cases.

The only known test working with general axes of symmetry is that of [20].
Therefore, it is used here as a benchmark with the two recommended values
of the auxiliary binning parameter k (namely k = 2 and k = 3). However, the
test is only bivariate and works with fixed axes instead of axial directions. It is
applied to the problem of testing symmetry of a bivariate normal distribution
(with zero mean, unit marginal variances and correlation �) around the x-axis
and compared there with the process-based test TC presented here for testing
level α = 0.05 in terms of empirical size (� = 0) and power (� > 0) obtained by
means of 10 000 simulated independent random samples with n = 60, 75, 100 or
150 observations. The benchmark empirical powers and sizes were copied from
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Fig 11. Test dependence on the degrees of freedom (df) of the t distribution used. The
average sample p-values of the χ2-tests TD of axial symmetry (along the first coordinate axis)
in dependence on the number of degrees of freedom df ∈ {5, 6, . . . , 20} of the multivariate t
distribution underlying the data for Δ = 0 (the null hypothesis, solid line) and Δ = 0.5 (the
alternative, dashed line).

the original Table 3 of [20] for maximum reliability. See Table 1 for the results.
The test TC appears conservative for the small sample sizes considered, which

is in line with Figs. 2 and 3. In spite of the fact, it still beats the benchmark
considerably in terms of empirical test power.

6.3. Real data

This section applies the process-based test TC to three real data sets for the
sake of illustration.

First, consider the famous Fisher’s Iris (flower) data set as included in R.
It consists of 50 samples from each of the three Iris species considered. Each
sample contains measurements regarding the length and the width of the sepals
and petals (in centimeters). Assume the null hypothesis that the probability
distribution of petal length is the same for all the three species up to a loca-
tion shift. According to Section 3, it can be tested by means of the presented
axial symmetry tests, direction u = (1, 1, 1)�/

√
3 and the combined sample

X1, . . . ,X50 where Xi = (X
(1)
i , X

(2)
i , X

(3)
i )� and X

(j)
i is the ith observation

(of petal length) from the jth sample. If the process-based test TC is applied,
then the null hypothesis is rejected with p-value about 0.0008. Similar results
can be obtained even for the petal width.

The axial symmetry of certain economic or financial data distributions may
have some meaningful economic interpretations; see, e.g., [21] for an applica-
tion to exchange rates. For example, consider 1146 log-returns of ten Forex 1M
exchange rates (AUD/CHF, AUD/JPY, EUR/CAD, EUR/CHF, GBP/CAD,
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Table 1

The table relates to the problem of testing symmetry of bivariate normal distribution (with
zero mean, unit marginal variances and correlation �) around the x-axis. It uses the test of
[20] with the two recommended values of the auxiliary binning parameter k (namely k = 2

and k = 3) as a benchmark, denoted as B(k = 2) and B(k = 3). The benchmark is compared
with the process-based test TC in terms of empirical power (for � > 0) or size (for ρ = 0)

for testing level α = 0.05, based on 10 000 simulations of independent samples with
n = 60, 75, 100 or 150 observations. The benchmark empirical sizes and powers were only
copied from the original Table 3 of [20] to minimize the chance of an error. The critical

values for TC were obtained from [1].

Test comparison for bivariate normal distribution and axial symmetry

� B(k = 2) B(k = 3) TC B(k = 2) B(k = 3) TC

n = 60 n = 75

0.0 0.0544 0.0506 0.0238 – 0.0457 0.0297

0.1 0.0726 0.0660 0.0538 – 0.0660 0.0692

0.2 0.1346 0.1223 0.1630 – 0.1398 0.2151

0.3 0.2464 0.2501 0.3825 – 0.2900 0.5018

0.4 0.4336 0.4451 0.6737 – 0.5305 0.7965

0.5 0.6478 0.6640 0.8975 – 0.7786 0.9636

0.6 0.8405 0.8682 0.9877 – 0.9382 0.9982

0.7 0.9549 0.9737 0.9997 – 0.9928 0.9998

n = 100 n = 150

0.0 0.0498 – 0.0324 0.0548 0.0515 0.0298

0.1 0.0737 – 0.0926 0.1033 0.0963 0.1327

0.2 0.1773 – 0.3106 0.2736 0.2878 0.4740

0.3 0.3705 – 0.6618 0.5686 0.6038 0.8620

0.4 0.6255 – 0.9230 0.8331 0.8721 0.9897

0.5 0.8500 – 0.9937 0.9728 0.9833 1.0000

0.6 0.9707 – 1.0000 0.9977 0.9995 1.0000

0.7 0.9985 – 1.0000 1.0000 1.0000 1.0000

GBP/USD, NZD/CHF, USD/CHF, USD/NOK, XAU/AUD) from 13/11/2014
19:11 to 14/11/2014 14:16, combined to one ten-dimensional sample in the same
order. Then the null hypothesis assuming both serial independence and ex-
changeability (up to a shift) would be rejected (for u = (1, 1, . . . , 1)�/

√
10)

by TC with the p-value much less than 0.01. The same null hypothesis applied
only to the bivariate sample corresponding to the first two exchange rates would
be rejected (for u = (1, 1)�/

√
2) with p-value less than 0.0005. The same conclu-

sion would be obtained for the bivariate sample of GBP/CAD and GBP/USD.
The null hypothesis assuming both serial independence and symmetry around
the last (and possibly shifted) coordinate axis (u = (0, . . . , 1)�) would also
be rejected in the ten-variate sample as well as in the two bivariate ones (all
p-values less than 0.0005).

If 626 (virtually serially uncorrelated) log-returns of four daily exchange rates
(AUD/CZK, CAD/CZK, EUR/CZK, USD/CZK) from 2/5/2017 to 30/10/2019
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were considered as a four-variate i.i.d. sample, then the null hypothesis of ex-
changeability would still be rejected with p-value less than 0.001. Similarly clear
rejection would be obtained also for the null hypothesis assuming axial symme-
try around the last coordinate axis or for the bivariate sample consisting only
of EUR/CZK and USD/CZK.

As the third possible application, consider the Australian athletes data set
ais contained in the R package DAAG [17]. Its subsets are used in both [12]
and [8] for testing certain symmetry hypotheses including axial symmetries. In
particular, the latter article tested (and rejected) the spherical symmetry of
the joint distribution of the logarithms of the red blood cell count, white blood
cell count and hemoglobin concentration, where all the three characteristics
were obtained for 202 athletes. There is no wonder the spherical symmetry
was rejected because the process-based test TC rejects the axial symmetry for
(coordinate) axial directions u = (0, 0, 1)� and u = (1, 0, 0)�, always with p-
value less than 0.0005. The results are in line with those regarding the spherical
symmetry of all the three bivariate marginals, reported in [8].

Appendix

This section contains the proofs of Propositions 1 to 3 as well as the technical
remarks commenting on them. The first three pertain to Proposition 2 while
the remaining two comment on Proposition 3.

Proof of Proposition 1. Obviously, (1) follows from the text preceding the propo-
sition. Claims (2) and (3) are proved here.

Suppose that Y is elliptically distributed with median μ = 0 and scatter
matrix Σ with det(Σ) = 1 without any loss of generality. Fix τ ∈ (0, 1) and
define symmetric matrix V := Σ−1/2.

Transformation W := VY leads to the spherically distributed random vec-
tor W and to the transformed gradient conditions (2.3) and (2.4) that turn
into

τ = EW

{
I(bτu

�V−1W − aτu < 0)
}
and

VDτu =
1

1− τ
EW

{
I(bτu

�V−1W − aτu ≥ 0)W
}

− 1

τ
EW

{
I(bτu

�V−1W − aτu < 0)W
}
,

which are the gradient conditions for the directional τ -quantile of W in the unit

direction v = Vu/‖Vu‖, with bτv(W ) = ‖Vu‖V−1�bτu(Y ). As the spherical
distribution of W is symmetric around axes in all directions (v not excluded),
necessarily bτv(W ) = v and cτu(Y ) = −Γ�

u bτu(Y ) = −Γ�
uV

2u/‖Vu‖2 =
−Γ�

uΣ
−1u/(u�Σ−1u), irrespective of τ ∈ (0, 1). Consequently, cτu = 0 if and

only if u is an eigenvector ofΣ, i.e., the directional vector of an axis of symmetry
of L(Y ).
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Proof of Proposition 2. The arguments mimic those of [5] and [16]. The definition
of â(τ) and its properties including n−11�

n â(τ) = (1− τ) imply

Ŝn(τ) =
1√
n

n∑
i=1

Γ�
u (Yi −Yn){âi(τ)− (1− τ)}

=
1√
n

n∑
i=1

Γ�
uYi{âi(τ)− (1− τ)}

=
1√
n

n∑
i=1

Γ�
uYi[τ − I{u�Yi < F̂−1

u,n(τ)}]

+
1√
n

n∑
i=1

Γ�
uYiI{u�Yi = F̂−1

u,n(τ)}{âi(τ)− 1}

where F̂−1
u,n(τ) is the sample τ -quantile of u�Y. As for the second term, say II,

sup
τ∈(0,1)

‖II‖ ≤ m√
n

max
i=1,...,n

‖Γ�
uYi‖ → 0

in probability because of the moment assumptions, and because its sum contains
no more than m nonzero summands almost surely. Consequently,

Ŝn(τ) = Ĝn{F̂−1
u,n(τ)}+oP (1) where Ĝn(a) =

1√
n

n∑
i=1

Γ�
uYi{τ−I(u�Yi < a)}.

Define further Gn(a) = E{Ĝn(a)}. The null hypothesis H0(u) and gradient
conditions (2.3) and (2.4) lead to E{Γ�

uYI(u�Y < a)} = Fu(a)E(Γ
�
uY) and

Gn(a) =
√
nΓ�

uE[Y{τ − Fu(a)}],

where Fu is the distribution function of u�Y. Then

Ĝn{F̂−1
u,n(τ)} = Ĝn{F−1

u (τ)}+
[
Gn{F̂−1

u,n(τ)} −Gn{F−1
u (τ)}

]
+Rn,

where Rn = [Ĝn{F̂−1
u,n(τ)} − Gn{F̂−1

u,n(τ)}] − [Ĝn{F−1
u (τ)} − Gn{F−1

u (τ)}]
= −Gn

{
gF̂−1

u,n(τ)
−gF−1

u (τ)

}
, where the empirical process Gn is defined as Gng =

1√
n
{
∑n

i=1 [g(Yi)− Eg(Y)]} and ga(y) = Γ�
uyI(u

�y < a). Since E‖Y‖2+δ <

∞, one can show similarly as in Example 19.6. of [25] that F = {ga(y) : a ∈ R}
is a Donsker class. Furthermore, it can be directly verified by means of the Hölder
inequality that if Ii(α) = E{gα,i(Y) − gF−1

u (τ),i(Y)}2, then Ii(F̂
−1
u,n(τ)) → 0 in

probability as n → ∞ for each component i = 1, . . . ,m−1. It then follows from
Lemma 19.24 of [25] that Rn = oP (1). The Taylor theorem for Gn and the
Bahadur representation of sample quantiles of [26] result in

Ĝn{F̂−1
u,n(τ)} = Ĝn{F−1

u (τ)}+ ∂Gn(a)

∂a
{F−1

u (τ)}{F̂−1
u,n(τ)− F−1

u (τ)}+ oP (1)
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= Ĝn{F−1
u (τ)} − fu{F−1

u (τ)}Γ�
uE(Y)

√
n{F̂−1

u,n(τ)− F−1
u (τ)}+ oP (1)

=
1√
n

n∑
i=1

Γ�
u {Yi − E(Y)}[τ − I{u�Yi < F−1

u (τ)}] + oP (1),

which proves (1) and implies (2) thanks to the Lindeberg-Lévy central limit
theorem, because

Ŝn(τ) =
1√
n

n∑
i=1

ξi(τ) + oP (1)

where ξi(τ) = Γ�
u {Yi − E(Y)}[τ − I{u�Yi < F−1

u (τ)}], i = 1, . . . , n, are inde-
pendent and identically distributed random vectors.

Assume ε ∈ (0, 0.5). A careful inspection of the previous steps reveals that
all the oP (1) terms considered above converge to 0 uniformly for τ ∈ [ε, 1− ε],

and thus supτ∈[ε,1−ε] ‖Ŝn(τ)− 1√
n

∑n
i=1 ξi(τ)‖ = oP (1). The assumption of (3)

leads to

Cov (ξi(s), ξi(t)) = (min{s, t} − st)Γ�
u {Var (Y)}Γu.

Consequently, the theory of Donsker classes, [25, Chapter 19], applied to the

process 1√
n

∑n
i=1 ξi(τ), implies that the process Ŝn indexed by τ ∈ [ε, 1−ε] con-

verges in distribution to the process {Γ�
u {Var (Y)}Γu}1/2Bm−1, where Bm−1

is the (m− 1)-dimensional Brownian bridge.

Remark 1. The assumption in Proposition 2(3) is satisfied whenever the condi-
tional quantile function of u�Y given Γ�

uY is linear in Γ�
uY because then u�Y

and Γ�
uY are independent under the null hypothesis H0(u). For example, this

happens if u�Y given Γ�
uY is normally distributed with the mean linear in Γ�

uY
and constant variance. This occurs, e.g., if Y is multivariate normal.

Remark 2. The proof of Proposition 2 suggests that the τ -indexed process Ŝn

still converges to a Gaussian process U even when the assumption in Proposi-
tion 2 (3) is violated. Therefore, the test statistic TC of (4.5) could be used for
testing H0(u) even in the general situation if the critical values were computed
from the more general process U, although it would be very computationally
demanding.

Remark 3. The test statistic T̂n(τ) of (4.6) does not depend on the choice of the
auxiliary matrix Γu. It is also invariant with respect to all the transformations
that preserve the axial symmetry, namely to certain shift, rotation and linear
scale transformations described below. Note that

T̂n(τ) =
1

nτ(1− τ)
b̂(τ)�YΓu(Γ

�
uSYΓu)

−1Γ�
uY

�b̂(τ)

thanks to (4.1).

Independence on the choice of Γu. Recall that Γu is a complement of u
to an orthonormal matrix. Consequently, if Δu is a different matrix such
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that (u|Δu) is orthonormal, then there must exist an (m − 1) × (m − 1)
regular matrix A such that Γu = ΔuA. Hence,

Γu(Γ
�
uSYΓu)

−1Γ�
u = ΔuA(A�Δ�

uSYΔuA)−1A�Δ�
u

= Δu(Δ
�
uSYΔu)

−1Δ�
u

and T̂n(τ) does not depend on the particular choice of Γu, because b̂(τ)
does not depend on it either.

Shift invariance. Assume shifted observations Ỹi = Yi − s, s ∈ R
m, grouped

into the matrix Ỹ = (Ỹ1, . . . , Ỹn)
�. The rank score vector does not de-

pend on the shift, because u�
Ỹ

�a = u�
Y

�a−u�s1�a = u�
Y

�a−n(1−
τ)u�s, and also the original and shifted observations are the same after

centering with their mean in (4.1). Therefore, T̂n(τ) remains the same
even for the shifted observations.

Rotation invariance. Assume ũ = Au, Γũ = AΓu, and Ỹi = AYi for an
orthonormal matrix Am×m, A�A = I = AA�. Then T̂n(τ) is the same
as if it were computed from rotated observations AYi for testing the axial
symmetry around a line in direction ũ. Indeed, the rank scores would be
the same thanks to Ỹ = YA� and ũ�

Ỹ
�a = u�

Y
�a, SAY = ASYA�,

and

YA�AΓu(Γ
�
uA

�SAYAΓu)
−1Γ�

uA
�AY

� = YΓu(Γ
�
uSYΓu)

−1Γ�
uY

�.

Scale invariance. Define orthonormal matrix Q = (u|Γu) and assume Ỹi =
QDQ�Yi where D = diag(d11, . . . , dmm) is a (real) regular diagonal ma-

trix with d11 > 0 and D−1 := diag(d22, . . . , dmm). Then T̂n(τ) also does
not change for the transformed observations. Indeed, the rank scores re-
main the same because Ỹ = YQDQ� and u�

Ỹ
�a = d11u

�
Y

�a. In addi-
tion, QDQ�Γu = ΓuD−1, SỸ = QDQ�SYQDQ�, and

ỸΓu(Γ
�
uSỸΓu)

−1Γ�
u Ỹ

�

= YQDQ�Γu(Γ
�
uQDQ�SYQDQ�Γu)

−1Γ�
uQDQ�

Y
�

= YΓuD−1(D−1Γ
�
uSYΓuD−1)

−1D−1Γ
�
uY

� = YΓu(Γ
�
uSYΓu)

−1Γ�
uY

�.

Proof of Proposition 3. The proof proceeds along the same lines as the proof of
Proposition 2. It turns out that

Ŝn(τ) =
1√
n

n∑
i=1

Γ�
uYi{τ − I(u�Yi < â�τuXi)}+ oP (1) = Ĝn(âτu) + oP (1)

where

Ĝn(a) =
1√
n

n∑
i=1

Γ�
uYi{τ − I(u�Yi < a�Xi)}.

Define Gn(a) := E{Ĝn(a)} =
√
n

[
τΓ�

uE(Y)− Γ�
uE{Fu�Y|X,Γ�

u Y(a�X)Y}
]

where Fu�Y|X,Γ�
u Y is the distribution function of u�Y given (X�,Y�Γu)

�.
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Then
∂Gn

∂a
= −

√
nΓ�

uE{fu�Y|X,Γ�
u Y(a�X)YX�},

∂Gn/∂a(aτu) =
√
nΓ�

uH(τ), and arguments analogous to those used in the

proof of Proposition 2 lead to Rn := {Ĝn(âτu) − Gn(âτu)} − {Ĝn(aτu) −
Gn(aτu)} = oP (1). The Bahadur representation for âτu under the null hypoth-
esis H0(u) can be derived, e.g., by means of the general approach described in
[9]:

√
n(âτu − aτu) =

1√
n

n∑
i=1

G(τ)−1{τ − I(u�Yi < a�τuXi)}Xi.

Then

Ĝn(âτu) = Ĝn(aτu)−Γ�
uH(τ)

√
n(âτu−aτu)+oP (1) =

1√
n

n∑
i=1

ηi(τ)+oP (1),

where ηi(τ) = {τ−I(u�Yi < a�τuXi)}{Γ�
uYi−Γ�

uH(τ)G(τ)−1Xi} and random
vectors η1(τ), . . . ,ηn(τ) are independent and identically distributed. The gradi-
ent conditions (2.3) and (2.4) imply E{η1(τi)} = 0 and Cov {η1(τi),η1(τj)} =

Σij(τi, τj), i, j = 1, . . . , k. In addition, supτ∈[ε,1−ε] ‖Ŝn(τ)− 1√
n

∑n
i=1 ηi(τ)‖ =

oP (1) for any ε ∈ (0, 0.5), similarly as in the location case.
If H0(u) holds with the additional assumption of (3), then γ = 0 and

φ(Γ�
uY) is a constant φ which does not depend on Γ�

uY. Therefore, with
the obvious meaning of symbols Fε, F

−1
ε , and fε, one has Fu�Y|X,Γ�

u Y(w) =

Fε{(w −α�X)φ−1}, and F−1
u�Y|X,Γ�

u Y
= a�τuX = F−1

ε (τ)φ+α�X, and con-

sequently fu�Y|X(a�τuX) = fu�Y|X,Γ�
u Y(a�τuX) = fε{(a�τuX−α�X)φ−1}/φ

= fε{F−1
ε (τ)}/φ. Then the matrix H(τ)G(τ)−1 = E(YX�){E(XX�)}−1 is in-

dependent of τ , and the rest follows similarly as in the proof of Proposition 2.

Remark 4. One can also assume in Proposition 3(3) that u�Y = γ�Γ�
uY +

α�X+φ(Γ�
uY,X)ε where φ(Γ�

uY,X) is a real function linear in (Y�Γu,X
�)�.

This assumption is satisfied, e.g., by the regression models (3.2) and (3.3). Then,
under the null hypothesis H0(u), φ(Γ

�
uY,X) =: φ(X) does not depend on Γ�

uY
and the statement holds with

W = E
[
Y − E{φ(X)−1YX�}[E{φ(X)−1XX�}]−1X

]
×

[
Y − E{φ(X)−1YX�}[E{φ(X)−1XX�}]−1X

]�
.

Remark 5. Statistic T̂n(τ) of (5.4) can be proved invariant with respect to the

choice of Γu in the same way as for p = 1. If Ŵ(Y,X) is a reasonable scatter

estimator satisfying Ŵ(YA�+1ns
�,X) = AŴ(Y,X)A� for any vector s ∈ R

m

and any regular matrix A ∈ R
m×m, then T̂n(τ) also inherits the shift, rotation,

and scale invariance from the location case. If Ŵ(Y+XA,X) = Ŵ(Y,X) for any

matrix A ∈ R
p×m, then T̂n(τ) is invariant with respect to the transformations

Y �→ Y +A�X, and if Ŵ(Y,XA) = Ŵ(Y,X) for any regular matrixA ∈ R
p×p,
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then T̂n(τ) is invariant with respect to the transformations X �→ A�X. It is
because the centered rank scores do not change with such transformations. Note

also that the sample variance-covariance matrix estimator Ŵ0(Y,X) exhibits all
the equivariance and invariance properties mentioned in this remark.
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