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Abstract: We consider the problem of both prediction and model selec-
tion in high dimensional generalized linear models. Predictive performance
can be improved by leveraging structure information among predictors. In
this paper, a graphic model-based doubly sparse regularized estimator is
discussed under the high dimensional generalized linear models, that uti-
lizes the graph structure among the predictors. The graphic information
among predictors is incorporated node-by-node using a decomposed rep-
resentation and the sparsity is encouraged both within and between the
decomposed components. We propose an efficient iterative proximal algo-
rithm to solve the optimization problem. Statistical convergence rates and
selection consistency for the doubly sparse regularized estimator are es-
tablished in the ultra-high dimensional setting. Specifically, we allow the
dimensionality grows exponentially with the sample size. We compare the
estimator with existing methods through numerical analysis on both simu-
lation study and a microbiome data analysis.
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1. Introduction

We consider a regularization method of high-dimensional generalized linear
model (GLM) [23] where the dimensionality greatly surpasses the sample size.
GLM is one of the most commonly used statistical methods for modeling, es-
timation, prediction and classification. It has been widely used in high dimen-
sional data analysis. Many traditional statistical tools are not well-suited for
the ultra-high dimensional data. Regularization methods have been widely used
in the literature. Hoerl and Kennard [12] proposed the ridge regression which
uses a ridge penalty to improve the estimation efficiency through a bias-variance
trade-off. Tibshirani [39] proposed the Lasso regression which includes the �1
penalty for both shrinkage and variable selection. Many theoretical properties of
�1 penalty for the high-dimensional GLM have been established, ranging from
estimation consistency [26], selection consistency [4], persistence property for
prediction [11] and risk consistency [41]. Other methods penalize the likelihood
function with folded nonconvex penalty functions including the smoothly clipped
absolute deviation (SCAD) [7, 8], the adaptive Lasso penalty [52] and the min-
imum convex penalty (MCP) [49]. The elastic net method was proposed by [53]
to perform variable selection where the variables could be highly correlated.
A more generalized Lasso penalty was proposed by [40] for some prespecified
modifying variables.

If the true sparsity structure comprises clusters or groups of predictors, one
can use group Lasso to select the coefficients [48, 27, 14, 10]. [44] discussed
the hierarchical sparse modeling which utilized the group Lasso and the latent
overlapping group Lasso penalty. Different from these works, we consider an
undirected graph structure among the predictors [46, 35, 51]. As predictors in
a neighborhood are connected, they are simultaneously effective or not effective
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for predicting the response. As an example, in the diagnosis of the metastatic
melanoma using commensal microbial composition information, the patients’
microbiomes are naturally correlated. Relevant microbiomes in the same neigh-
borhood of the underlying graph often either influence or not influence the clin-
ical response together, see [22]. Incorporating the structure information among
the microbiomes can lead to the construction of a better classifier.

In literature, many methods have utilized the edge-by-edge information in
the graph to solve the regression problem. For example, the method OSCAR in
[2] used the �∞ penalty for every pairs of predictors and the method GRACE
in [16] used the network-constrained penalty on the pairwise differences of the
connected predictors. Yu and Liu [46] proposed the sparse regression method
incorporating graph structure (SRIG) with a node-wise neighborhood based
penalty where the penalty term is distributed over all nodes instead of all
edges. In addition, they proposed an efficient computational method to solve
the node-wise penalty. Liu et al. [18] proposed a graph-based high dimensional
sparse linear discrimination analysis method which is specific for classification.
Recently, Zhou et al. (2019) extended the sparse regression leveraging graph-
ical structure to generalized linear models and establish the estimation error
and prediction error of the penalized estimator. Yu and Liu [46] and Zhou et
al. [51] assumed that all the components within each decomposition would be
shrunk to zero simultaneously. This assumption is restrictive and can be further
relaxed. It is known that while the predictors are correlated with each other in
a neighborhood, they may not be all important predictors to the response vari-
able. To overcome this, Stephenson et al. [36] proposed a doubly sparse method
(DSRIG) which encourages sparsity both within and among the decomposition
under linear regression model with fixed design matrix. They also applied the
doubly sparse method to the logistic regression [37] using the predictor duplica-
tion (PD) algorithm [27]. But the PD method is not very efficient and requires
large computing memory for models with high dimensional predictors or pre-
dictor graphs having large number of edges. Thus it is necessary to develop new
efficient optimization algorithm for doubly sparse graphic model-based GLMs.
Furthermore, no work has been done on finite sample bounds of the estimation
error and the model selection consistency in graphic model-based doubly sparse
generalized linear models. Accordingly, there is a great need to investigate these
statistical properties.

In this paper, theoretical investigation is presented for the doubly sparse
high-dimensional GLM estimators incorporating the graph structure through
a node-wise penalty. In general, the graphic structure can be either given or
estimated from the study samples. We generalize the sparse least squares es-
timator of [46] to allow for a wider class of loss functions as well as a more
general structured regularization. In terms of optimization, the constraint can
be expressed as a latent sparse group Lasso over neighborhood sets. Besides
using the predictor duplication method, we combine the fast iterative shrinkage
thresholding algorithm (FISTA) [1] with the proximal splitting methods [47, 46]
for solving the proximal operator. On the theoretical side, we establish the finite
sample bounds of the optimal estimation, in addition with the prediction error
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bound for random design with some regularity conditions. The classical result
of the estimation error bound of the penalized GLMs can be recovered if there
is no edge in the predictor graph. Moreover, the model selection consistency is
established for the ultra-high dimensional graphic model-based doubly sparse
GLMs. In the simulation studies and the real data application, we show that the
method can improve the performance in the aspects of estimation, prediction,
and model selection compared with the regularization methods without using
the predictors’ graphic structure.

The paper is organized as follows. In Section 2, we set up the basic notation
and introduce the penalization method. In Section 3, an efficient algorithm for
the optimization problem is presented. In Section 4, the main theoretical results
are provided. In Section 5 and 6, numerical simulations and an application
on a human microbiome dataset demonstrate the competitive performance of
the method. We provide some discussions in Section 7. Technical proofs are
contained in Appendix.

Notation Let Rp denote the p-dimensional real Euclidean space. Let f(n) �
g(n) indicate f(n) ≤ cg(n) for some positive constant; let f(n) � g(n) indicate
f(n) ≥ c′g(n) for some positive constant c′; f(n) � g(n) means that f(n) � g(n)
and f(n) � g(n) both hold true. Let vS ∈ R

S denote the vector v ∈ R
p restricted

to a subset S ⊆ {1, . . . , p}. For any vector x, let ‖x‖q = (
∑

j |xj |q)1/q denote
the Lq-norm of x with 1 ≤ q ≤ ∞. For a matrix M , let |||M |||2 denote the
spectral norms, and let |||M |||max := maxi,j |mij | denote the elementwise �∞-
norm of matrix M . Let ∇h denote a gradient or subgradient for any function
h : Rp → R. Let supp(V ) indicate the support of the vector V , and let |N |
indicate the cardinality of the set N . Let Bq(r) represent the centered ball of
radius r in �q norm for q, r > 0. Let sign(·) represent the sign function.

2. Methodology

We consider a common setting of GMLs. Let {(Xi, yi); i = 1, . . . , n} denote in-
dependent and identically distributed (i.i.d) samples, where yi is a response
variable and Xi = (xi,1, . . . , xi,p)

T is a p-dimensional covariate vector. Let
y = (y1, . . . , yn)

T ∈ R
n and X = (X1, . . . , Xn)

T. Throughout the paper, the
dimensionality p is allowed to grow with the sample size n. It is assumed that
the conditional density of yi given Xi is from the exponential family,

f(yi|Xi,β, φ) = exp

(
1

φ
(yiθi − b(θi)) + c(yi, φ)

)
with the functions b(·) and c(·, ·), the nuisance parameter φ, and the canonical
parameter θi = XT

i β, where β = (β1, . . . , βp)
T is the p-dimensional unknown

regression coefficient. By standard properties of exponential families [23], we
have E(y|Xi) = b′(θi) = μi. The canonical link function g(μi) = θi is used.

In our analysis, it is assumed that b′′(·) ≤ c for some constant c > 0. This
boundedness condition implies that yi has a bounded conditional variance. This
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condition is required to establish the estimation error bound. Similar condition
was assumed in [30], which is satisfied in many models including linear regres-
sion, logistic regression, and multinomial regression. Even though it does not
hold for Poisson regression, a truncated Poisson regression model will satisfy
this boundedness condition [45].

The population loss based on the negative log likelihood is formulated as

L(β) = −E log(P(Xi, yi)) = −E(log(P(Xi)))−
1

φ
E[yiX

T
i β − b(XT

i β)].

The empirical loss function takes the form Ln(β) = 1
φ · 1

n

∑n
i=1[b(X

T
i β) −

yiX
T
i β], and the population-level and empirical gradients are given by

∇L(β) = 1

φ
E[(b′(XT

i β)− yi)Xi], and ∇Ln(β) =
1

φ
· 1
n

n∑
i=1

[(b′(XT
i β)− yi)Xi].

Without loss of generality, we assume the nuisance parameter φ = 1 for the rest
of the paper. It can be verified that ∇L(β0) = 0 for the true parameter β0 of
the GLMs. We assume

∇2Ln(β) =
1

n

n∑
i=1

b′′(XT
i β)XiX

T
i � 0,

so Ln is convex.

Assume that the i.i.d. p-dimensional random variablesX1, . . . , Xp follow some
multivariate distribution with a zero mean and a covariance matrix Σ. De-
note the precision matrix Ω = Σ−1, which contains elements ωjk and assumed
to be sparse. Let G be an undirected predictor graph over the set of nodes
J = {1, 2, . . . , p}. The edge set E in the graphical model represents the condi-
tional dependence structure of the observed variables. When two predictors are
conditionally independent, they are not connected by an edge in the graph, i.e.,
ejk /∈ E ⇐⇒ Xj ⊥⊥ Xk | {Xl : l �= j, k}. Specifically, in a Gaussian graphical
model, there will be edges between any pair of nodes (j, k), j �= k, if ωjk �= 0. In
discrete graphical models which can be represented by a minimal exponential
family, Loh and Wainwright [20] investigated the connection between the sup-
port of a generalized inverse covariance matrix and the conditional independence
structure of the graph. In particular, they showed that for binary variables, the
inverse of the usual covariance matrix corresponds exactly to the edge structure
of the tree. For continuous but non-Gaussian distribution, Spantini et al. [34]
showed that if X1, . . . , Xp have a smooth and strictly positive density π(x), the
pairwise conditional independence of the random variables Xj and Xk can be
assessed by Xj ⊥⊥ Xk | {Xl : l �= j, k} ⇐⇒ ∂2

j,k log π(x) = 0, where Ω∗ denotes

the generalized precision matrix with elements Ω∗
jk = Eπ[|∂2

j,k log π(x)|]. Then
if Ω∗

jk = 0, j �= k, nodes j and k are conditionally independent, hence there’s no
corresponding edge (j, k) in G. Define Nj = {k : ejk ∈ E} to be a neighborhood
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set of the node j. Define the degree of node j be the size of its neighbourhood
dj = |Nj |. For any node k /∈ Nj , if ejk /∈ E and we assume that the node j will
not contribute to the decomposition of βk.

Given the predictor graph G, the neighbourhoods, Nj , j ∈ J , represent a set
of groups which are possibly overlapping. As was discussed in [51], under the
GLM settings, based on the inverse regression method from Theorem 2.1 of [6]
and Condition 3.1 of [17] we have

E(X | Y = y) = E
[
E
(
X | β0X

)
| Y = y

]
= E

[{
μ+

Σβ0(β0)T (X− μ)

(β0)TΣβ0

}
| Y = y

]
= μ+

Σβ0
E
[
(β0)T (X− μ) | Y = y

]
(β0)TΣβ0

= μ+Σβ0k(y),

where μ = E(X),Σ = Var(X) and k(y) =
E[(β0)T (X−μ)|Y=y]

(β0)TΣβ0 . Let η(y) =

μ+Σβ0k(y), then

β0 ∝ Σ−1(η(y)− μ) = Ω(η(y)− μ), (2.1)

where Ω is the precision matrix. Let the predictor graph G, be denoted by a p×p
adjacency matrix E, where Ejk = 1 for connected predictors j and k and Ejk = 0
otherwise. We always set Ejj = 1 for each j. Then, we have Nj = {k : Ejk = 1}.
Base on the connection between the conditional independence and the graphical
structure, by (2.1), β0 can be decomposed into

β0
1 = Θ

(1)
1 E11 +Θ

(2)
1 E12 + · · ·+Θ

(j)
1 E1j + · · ·+Θ

(p)
1 E1p,

β0
2 = Θ

(1)
2 E21 +Θ

(2)
2 E22 + · · ·+Θ

(j)
2 E2j + · · ·+Θ

(p)
2 E2p,

... (2.2)

β0
p = Θ(1)

p Ep1 +Θ(2)
p Ep2 + · · ·+Θ(j)

p Epj + · · ·+Θ(p)
p Epp,

where the term {Θ(j)
k : k ∈ Nj} arises from the marginal correlation between

the predictor j and the response. Let V
(j)
k = Θ

(j)
k Ekj for k ∈ Nj , then the

decomposition of the true coefficients β0 can be expressed as:

β0
1 = V

(1)
1 + V

(2)
1 + · · ·+ V

(j)
1 + · · ·+ V

(p)
1 ,

β0
2 = V

(1)
2 + V

(2)
2 + · · ·+ V

(j)
2 + · · ·+ V

(p)
2 ,

... (2.3)

β0
p = V (1)

p + V (2)
p + · · ·+ V (j)

p + · · ·+ V (p)
p ,

where V (j) = (V
(j)
1 , . . . , V

(j)
p )T depends on the interaction among predictors

(e.g., graphical structure) and the marginal correlation between the predictors
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and the response. The term {V (j)
k : k ∈ Nj} contains the contribution of the

predictor k to the response through the predictor j. Such contribution depends
on the strength of the conditional dependency relationship between j and k
and the marginal correlation between the predictor j and the response variable.

From the derivation in (2.3), V
(j)
k = Θ

(j)
k Ekj . If V

(j)
k = 0, then either there’s

no edge between the predictor j and k (e.g., Ekj = 0), or even though there’s
an edge between the predictor j and k (e.g., Ekj = 1) for each k ∈ Nj , but the

predictor j and the response variable are uncorrelated (e.g., Θ
(j)
k = 0).

Therefore, we assume a doubly sparse decomposition to help mitigate esti-
mation bias, which means there are only a small number of vectors V (j)s that
are nonzero, and even for the predictors with nonzero vectors V (j), there are a

small number of nonzero V
(j)
k s within the vector V (j)s. The underlying graph

G is assumed to be known or estimated from data. Therefore, under the GLM
setting and given the predictor graph G with neighborhoods N1, . . . ,Np, we
optimize the following penalized maximum likelihood objective function (2.4)
which induce sparsity both between and within V (j), j = 1, . . . , p.

min
β,V (1),...,V (p)

Ln(β) + λ

( p∑
j=1

[
τj‖V (j)‖2 + ξ‖V (j)‖1

])
,

subject to β =

p∑
j=1

V (j), supp(V (j)) ⊆ Nj , (2.4)

where λ ≥ 0 is the tuning parameter, τj is the positive group-specific weight,
and ξ is the mixing parameter which can be viewed as a trade-off weight that
balances the contributions of the �1 and �2 norms. We assume τj and ξ are
bounded. Different values of ξ correspond to different shapes of the constraints
[28]. We use the weight of the form τj ∝ dγj with 0 < γ < 1/2 and dj = |Nj |,
the size of the neighborhood. Here, we set γ < 1/2 for the possible overlapping
groups. This was also suggested in [27] and [51]. The penalty function R(β) :=∑p

j=1[τj‖V (j)‖2 + ξ‖V (j)‖1] can be viewed as the sparse group Lasso penalty
with additional constraints. The choice of tuning parameters will be discussed in
Section 5. The L1 component of (2.4) will control the sparsity within V (j) while
the L2 component of (2.4) will control the sparsity among the neighbourhoods.
It will be reduced to a sparse GLM incorporating graphic structure discussed in
[51] when ξ = 0. When the graph G has no edges, then the objective function
(2.4) will reduce to that of the GLM Lasso [41, 25]. Under the GLM settings,
Ln(β) is smooth, while R(β) is not smooth. Note that the penalty function
proposed in (2.4) is similar to a sparse group Lasso [32], but it shrinks the
decomposition V (j)s rather than directly penalizes the regression coefficients β.

3. Computation

Typically, the problem (2.4) can be transformed into a sparse group Lasso prob-
lem [32] and the predictor duplication (PD) method [27, 46] can be used to solve
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the problem. However, the PD method is not efficient because of large memory
requirement.

Therefore, we combine the FISTA with a proximal splitting method to solve
the problem which is stable and efficient. Given the positive weights τj and ξ,
for β ∈ R

p, denote

‖β‖G,τ = min
β=

∑p
j=1 V (j)

p∑
j=1

τj‖V (j)‖2 and ‖β‖S,ξ = min
β=

∑p
j=1 V (j)

p∑
j=1

ξ‖V (j)‖1,

where supp(V (j)) ⊆ Nj . Then, R(β) = ‖β‖G,τ +‖β‖S,ξ is a norm and therefore
convex. The optimization problem (2.4) is equivalently to the following problem

min
β

Ln(β) + λ(‖β‖G,τ + ‖β‖S,ξ). (3.1)

For the exponential family of distributions, the loss function Ln(·) is a contin-
uously differentiable function, then the gradient satisfies the Lipschitz property
with constant L, i.e.,

‖∇Ln(β1)−∇Ln(β2)‖2 ≤ L‖β1 − β2‖2.

As Ln is twice continuously differentiable, any bound on the operator norm of
∇2Ln is a Lipschitz constant for ∇Ln. Then, a simple tight global upper bound
for Ln is

Ln(β) ≤ Ln(β
0) + (β − β0)T∇Ln(β

0) +
L

2
‖β − β0‖22.

Consider that R contains a non-smooth L1 norm, a simple iterative strategy is
to minimize the upper bound for Ln at each iteration, without modifying R. At
iteration t+ 1, the updated β(t+1) is given by

β(t+1) =argmin
β

(β − β(t))T∇Ln(β
(t)) +

L

2
‖β − β(t)‖22 + λR(β)

= argmin
β

1

2
‖β − (β(t) − 1

L
∇Ln(β

(t)))‖22 +
λ

L
R(β)

= proxλR
L

(
β(t) − 1

L
∇Ln(β

(t)

)
,

where the associated proximal operator is defined as

proxλR
L
(h) = argmin

β

‖h− β‖22
2

+
λ

L
R(β). (3.2)

Thus to solve the optimization problem (3.1), we use the algorithm summarized
in the following Algorithm 1.
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Algorithm 1 FISTA for Regularized GLMs

Input: Initialize β = β(0) and L is the largest eigenvalue of ∇2Ln(β).

1: Take Z(1) = β(0) and α1 = 1, t = 1.
2: repeat
3: h(t) = Z(t) − 1

L
∇Ln(Z(t));

4: β(t) = prox λ
L
(‖β‖G,τ+‖β‖S,ξ)

(h(t));

5: αt+1 =
1+

√
1+4α2

t

2
;

6: Z(t+1) = β(t) + αt−1
αt+1

(β(t) − β(t−1));

7: until convergence.

It is shown in [1] that the convergence rate to the optimal solution is of
O(1/t2). With high dimensional p, the associated proximal step in Algorithm 1
is the most time consuming step. Following [47], we can solve the proximal step 4
by finding the projection via the Parallel Dykstra-like Proximal Method [5] and
converting the minimization problem (3.2) into a series of convex problems which
have closed form solutions. The details about Dykstra-like Proximal Splitting
Method is shown in the supplementary material. Based on this method, we
only need to know the graphical structure information about the neighbours
Nj for j = 1, . . . , p to identify the overlap groups, which is pre-determined and
unique. It is stable and very efficient for high-dimensional data, especially when
the predictor graph are not very dense and can be decomposed into several
disconnected components, see Example 1 in the simulations.

4. Theoretical properties

Denote J0 = {j : β0
j �= 0}, J c

0 = {j : β0
j = 0}, and s0 = |J0|. As R(β)

is convex and coercive, Rao et al. [28] proved that an optimal decomposi-
tion of β minimizing R(β) always exists but may not be unique. For each
β ∈ R

p, we denote V(β) as the set of all optimal decompositions of β. De-
fine K(β) = min(V (1),V (2),··· ,V (p))∈V(β)

∣∣{j : ∥∥V (j)
∥∥
2
�= 0

}∣∣, which denotes the

minimal number of nonzero V (j) among all the optimal decompositions of β.
Denote K = supsupp (β)⊂J0

K(β) the maximum nonzero group among all decom-
positions. There are at most dmax = maxj=1,...,p{dj} non-zero elements in all
nonzero V (j)s where dj = |Nj |. Note that the optimal decomposition of β is the
smallest decomposition for the associated penalty R(β). In order to prove the
main theorem, we first need to show the following property with regard to the
subgradient conditions for the optimization problem (2.4). This property can be
obtained directly by the Karush-Kuhn-Tucker (KKT) conditions.

Proposition 4.1. The necessary and sufficient condition for β̂ being the solu-
tion of (2.4) is that β̂ can be decomposed as β̂ =

∑p
j=1 V

(j) where V (j) satisfies

that, for all 1 ≤ j ≤ p, (i) V
(j)
N c

j
= 0; (ii) V

(j)
Nj

= 0 and ‖∇NjLn(β̂) + λhNj‖2 ≤

λτj with |hk| ≤ ξ for any k ∈ Nj; (iii) V
(j)
Nj

�= 0 and ∇NjLn(β̂) + λτj
V

(j)
Nj

‖V (j)
Nj

‖2

+
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λhNj = 0, where for any k ∈ Nj either V
(j)
k = 0 and then |∇kLn(β̂)| ≤ λξ, or

V
(j)
k �= 0 and then hk = ξ sign(V

(j)
k ).

These subgradient conditions are similar to those of [32] which were estab-
lished for a least squares loss function with group Lasso.

Assumption 1. The neighborhood Nj ⊆ J0 for each j ∈ J0.

Assumption 2. The covariates X1, . . . , Xn are i.i.d. samples from a zero mean
sub-Gaussian distribution with covariance matrix Cov(Xi) = Σ such that 0 <
ηl ≤ Λmin(Σ). Assume the Hessian of the cumulant function is uniformly bounded
that ‖b′′‖∞ ≤ c for some constant c > 0.

Remark 4.1. Assumption 1 implies that neighbors of important predictors are
also important predictors to the modelling of the response. This condition is also
assumed in [46]. Assumption 2 of sub-Gaussianality and low bounded eigenval-
ues is often used in high dimensional setting. This assumption was also used
to derive a lower bound of the Taylor-series error of the GLM log-likelihoods
with sub-Gaussian covariates in [26] and [43]. The boundedness assumption on
cumulant function b(·) is also assumed in [26]. From Assumption 2, we can ex-
tend the restricted strong convexity (RSC) condition for GLMs [26, 43] to the
current setting. That is, for any subset J ⊂ {1, 2, . . . , p} with |J | ≤ s0, and all
the optimal decompositions (V (1), . . . , V (p)) of any vector Δ that ‖Δ‖2 ≤ 1, we
have for some κl > 0 and κ2 ≥ 0,

Ln(β
0 +Δ)− Ln(β

0)−∇Ln(β
0)TΔ

≥ κl

∑
j∈J

(τj +
√

djξ)
2‖V (j)‖22 − κ2

log p

n
R2(Δ),

with probability tending to 1.

In the following, we establish the error bounds of the doubly sparse GLM
estimator.

Theorem 4.1. Under the Assumptions 1-2, let τmin = min1≤j≤p{τj}. If we
choose

λ(τmin + ξ) ≥ c0

√
dmax log p

n

with a positive constant c0 and R(β0) ≤ ρ with ρ ≤ c′
√
dmax

τmin+ξ

√
n

log p for some

positive constant c′, then with sample size n � s0 log p, any optimal solution β̂
of problem (2.4) satisfies

‖β̂ − β0‖2 ≤ λK
4κl(τmin ∧ ξ)

, R(Δ̂) ≤ 2λK
κl

,

with probability greater than or equal to 1−c1 exp(−c2 log p) for some c1, c2 > 0.
Here, κl is a positive constant that depends on ‖β0‖2, b(·), Λmin(Σ), and the
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sub-Gaussian parameters of the Xi, i = 1, . . . , n.

From the results above, we can see that our theoretical results do not de-
pend on any uniqueness assumption on the decomposition of β that mini-
mizes ‖β‖G,τ + ‖β‖S,ξ. In contrast to [27], our result depends only on K which
represents the maximal structured sparsity of such decompositions. We con-
sider the constraint R(β0) ≤ ρ to ensure the existence of local/global op-
tima which was also discussed in Loh and Wainwright [21]. Note that the set-

ting ρ ≤ c′
√
dmax

τmin+ξ

√
n

log p is feasible based on the assumption of sample size

n � s0 log p. The following corollary from Theorem 4.1 provides the prediction

error bound, which is defined as D(β̂,β) = 〈∇Ln(β̂)−∇Ln(β
0), β̂−β0〉. Note

that under our GLM model setting, this error measure D(β̂,β) is equivalent
to the symmetrized Bregman divergence defined by the cumulant function b(·)
[21].

Corollary 4.1. Under the same assumptions as Theorem 4.1, the prediction
error is bounded by

〈∇Ln(β̂)−∇Ln(β
0), β̂ − β0〉 ≤ 3λ2K

κl
.

Remark 4.2. Note that when there is no edge in the predictor graph G and
ξ = τi = 1 for each i, we have K = s0 and R(β̂ − β0) = ‖β̂ − β0‖1. If we

choose λ �
√

log p/n, then ‖β̂ − β0‖1 � s0
√

log p/n with probability at least
1− c1 exp(−c2 log p) for some c1, c2 > 0. In this case, we recover the rate in [21]
and [19] for high dimensional regularized M -estimators. However, from Theorem
4.1, the error bounds of our method depend on the minimal number of nonzero
optimal decomposition K rather than the true model size s0. If the true graph G
consists of disconnected complete sub-graphs and J0 is the union of K0 node sets
of those disconnected subgraphs, see Example 1 in Section 5, then K = K0. Our
method gives better results compared to the Lasso if K0 is much smaller than
s0. This demonstrates our method’s advantage over standard Lasso procedure
when the structure sparsity of the predictor graph is incorporated. From the
simulations, we find that our method indeed outperforms the GLM Lasso in all
the simulation settings. Moreover, in Corollary 4.1, considering the fixed design
linear regression, the expression 〈∇Ln(β̂) − ∇Ln(β

0), β̂ − β0〉 corresponds to

the commonly used error measure ‖X(β̂ − β0)‖22/n.

Next, we establish the model selection consistency of the doubly sparse high-
dimensional GLM estimation.

Assumption 3. The number of nonzero coefficients s0 = O(nδ1) and log p =
O(nδ2), and 0 < 3δ1 + δ2 < 1 for some constant δ1 and δ2.

Assumption 4. The subset of the Fisher information matrix corresponding to
the relevant covariates has bounded eigenvalues, i.e. Λmin(QJ0J0) ≥ Cmin for
some constant Cmin > 0.
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Assumption 5. There exists a constant ζ∈(0, 1) such that ‖QJ c
0 J0(QJ0J0)

−1‖∞
≤ 1− ζ.

Note that Assumption 3 allows for graphs and sample sizes in the “large p,
small n” regime, as long as the degrees are bounded, or grow at a sufficiently slow
rate. Assumption 4 ensures that the Fisher information matrix of the relevant
covariates is not singular. Assumption 5 refers to the incoherence condition
which requires that the large number of irrelevant covariates cannot be strongly
correlated with the subset of relevant covariates. The incoherence condition is
also assumed in [25] to obtain the �2-norm consistency of Lasso for fixed designs.
Analogous conditions are required for the success of the Lasso in the case of high
dimensional graphical model [24, 50, 29]. Under these assumptions, the proposed
method is model selection consistent for high dimensional setting.

Theorem 4.2. Under Assumptions 1-5, suppose the weight τj =
√
djmj for

each j, where
√
s0(

√
s0 maxj∈J0 mj ∨ ξ) = o(minJ c

0
mj), the tuning parameters

λ and the minimum absolute nonzero coefficient β0
min = minj∈J0 |β0

j | satisfy
that,

β0
min >

√
s0

Cmin

(√
log p

n
+ λ(max

j∈J0

τj + ξ)

)
,

and

s
1/2
0 λ (K/(τmin ∧ ξ))

2
+ ξ

minj∈J c
0
mj

→ 0,

Then as n → ∞ and n � s30 log p, there exists a solution β̂ of problem (2.4)

such that sign(β̂) = sign(β0) with probability tending to 1.

Remark 4.3. Note that the quantities τj and dj depend on n. If we set the tun-

ing parameter λ �
√

s0 log p/n, then β0
min has to be greater than C1n

(3c1+c2−1)/2

for some constants C1 > 0 and 0 < 3c1 + c2 < 1 to ensure the model selection
consistency. Compare to the estimation consistency in Theorem 4.1, we need the
assumption n � s30 log p. The extra factor of s20 is to ensure the consistency of
the sample Fisher information matrix. Note that the theoretical results in this
section requires the assumption that the true graph G is known. If the graph G is
unknown, then a data splitting procedure can be used to first estimate the graph
G and then the graph can be used to estimate the coefficient parameters.

5. Simulation study

In this section, we conduct simulations to compare the performance of the
graphic model-based doubly sparse generalized linear model (GDSGLM) with
other existing penalized methods, such as the Lasso, the ridge regression, the
elastic net (Enet), and the recently proposed method sGLMg [51]. Throughout
the simulation studies, we assume that the covariates are normally distributed



Graphical-model based high dimensional GLMs 2005

with zero mean. Different covariance structure are explored and the graph G is
given by the estimated precision matrix. We denote GDSGLM-O and sGLMg-O
as the GDSGLM and sGLMg methods with the knowledge of the true graphs.
We also present the so-called oracle estimation GLM-O by the maximum like-
lihood method based on the true subset of the predictors but not utilizing the
graph structure.

In general, the tuning parameter λ, the positive group-specific weight γ, and
the mixing parameter ξ in (2.4) can be chosen by a cross-validation (CV) pro-
cedure, like [15], but this may be time consuming for high dimensional settings.
Therefore, throughout the simulations, we simplify the cross-validation to select
one tuning parameter λ, while setting τj = dγj with γ = log(2)/{2 log(3)}, which
is suggested in [27, 51], and ξ = max(τj).

In the simulations, we generate the data from the logistic regression model,
that is y|X ∼ Bernoulli {p(Xβ)} and

p(Xβ) =
exp(Xβ)

1 + exp(Xβ)
.

For each example, our simulated data are divided into three sets such that a
training set, an independent validation set, and an independent test set. All
model fitting is based on training set. As we assume the predictors follow the
multivariate normal distribution, we estimate the graph structure by the graph-
ical Lasso method [9] using the training set, where the tuning parameter for the
graphical lasso is selected by huge.select function in R software. We use the
validation set to select the tuning parameters and use the independent test set
to compare different methods. For each example, we set the dimension p = 100.
We consider two cases of the sample size n: (I) 80/80/500, (II) 120/120/500,
where ./././ denote the sample sizes of the training sets, the validation sets, and
the independent test sets, respectively. To make comparisons, we consider the
following three different predictor structures in [46] and [51].

Example 1 (block diagonal Ω). Let p = 100, s0 = 15, and β0 = (1, 1, . . . , 1, 0,
0, . . . , 0)T . We generate the predictors as Xj = Wi + 0.4εj ,Wi ∼ N(0, 1), i =
[j/5], 1 ≤ j ≤ 15, where [.] is the ceiling function, and Xj ∼ i.i.dN(0, 1), 16 ≤
j ≤ 100, and εj ∼ i.i.dN(0, 1), j = 1, 2, . . . , 15.

Example 2 (banded Ω). Let p = 100, and β0 is the same as in Example
1. The predictors have a multivariate normal distribution with zero mean and
covariance Σ with Σij = 0.5|i−j|, ωii = 1.333, ωij = −0.667 for |i− j| = 1 and
ωij is zero otherwise.

Example 3 (sparse Ω). Let p = 100, and The predictors have a multivariate
normal distribution with zero mean and covariance Σ = Ω−1, where Ω = B+δI,
Bii = 0, Bij ∼ 0.5∗Binom(1, 0.05), i �= j. To ensure that Ω’s conditional number
equals p, we choose appropriate δ. We standardize Ω so that Ωii = 1. We set
β0 = Ωη, where η = (η1, . . . , ηp)

T with ηi = 5, i = 1, 2, 3, 4, for the top four
largest degrees of predictors graph and ηi = 0 otherwise.
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As we assume Xis are sub-Gaussian vectors, we consider another simulation
setting with non-Gaussian Xis following a uniform distribution.

Example 4 (block diagonal Ω). Let p = 100, and β0 is the same as Example
1. We generate the predictors as Xj = Wi + 0.75εj ,Wi ∼ Uniform[−1, 1], i =
[j/5], 1 ≤ j ≤ 15, where [.] is the ceiling function, and Xj ∼ i.i.d Uniform[−1, 1],
16 ≤ j ≤ 100, and εj ∼ i.i.d Uniform[−1, 1], j = 1, 2, . . . , 15.

We adopt the following measures to compare the performance of the different
approaches: the estimation consistency by �2 distance ‖β̂−β0‖2; the prediction
misclassification error (P), which is based on a test set; and false positive rate
(FPR) and false negative rate (FNR) for variable selection accuracy. All the
true predictor graphs (defined by Ω) in the above three examples are displayed
in Figure 1. We simulate 50 data sets for each example.

Fig 1. True predictor graphs of three simulation examples.

Tables 1 and Table 2 demonstrate the simulation results for the first example.
The results shows that the GDSGLM method has the best performance of the
estimation consistency, the misclassification error, the false positives rates and
the false negatives rates among all the competing methods. The performances of
sGLMg-O and GDSGLM-O are close to those of sGLMg and GDSGLM because
the estimated graph is very accurate. The performance of GLM-O method is
not very good due to the high correlation among predictors.

Table 1

Performance comparison of estimation and prediction for Example 1.

L2 distance Error
Methods (I) (II) (I) (II)
GLM-O 2.650 (0.104) 2.543 (0.103) 0.091 (0.004) 0.076 (0.003)
LASSO 3.125 (0.025) 2.970 (0.041) 0.128 (0.005) 0.113 (0.005)
Ridge 2.962 (0.034) 2.802 (0.030) 0.152 (0.005) 0.137 (0.004)
Enet 2.803 (0.047) 2.670 (0.042) 0.124 (0.004) 0.107 (0.004)

sGLMg 2.639 (0.051) 2.443 (0.049) 0.115 (0.004) 0.094 (0.004)
sGLMg-O 2.630 (0.051) 2.437 (0.049) 0.114 (0.004) 0.094 (0.004)
GDSGLM 2.069 (0.051) 2.010 (0.049) 0.075 (0.004) 0.069 (0.003)

GDSGLM-O 2.067 (0.051) 2.003 (0.049) 0.074 (0.004) 0.069 (0.003)

Tables 3 and Table 4 show the simulation results for the second example.
The GDSGLM method and the sGLMg method outperform the other non-
graph based methods. Moreover, by adding a �1 penalty, the proposed GDS-
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Table 2

Performance comparison of model selection for Example 1.

FPR FNR
Methods (I) (II) (I) (II)
GLM-O - - - -
LASSO 0.144 (0.011) 0.215 (0.015) 0.416 (0.028) 0.310 (0.018)
Ridge 0.990 (0.002) 0.990 (0.002) 0.000 (0.000) 0.000 (0.000)
Enet 0.271 (0.017) 0.337 (0.017) 0.083 (0.014) 0.040 (0.012)

sGLMg 0.181 (0.016) 0.117 (0.008) 0.000 (0.000) 0.000 (0.000)
sGLMg-O 0.180 (0.016) 0.115 (0.008) 0.000 (0.000) 0.000 (0.000)
GDSGLM 0.007 (0.003) 0.009 (0.003) 0.000 (0.000) 0.000 (0.000)

GDSGLM-O 0.004 (0.002) 0.003 (0.002) 0.000 (0.000) 0.000 (0.000)

Table 3

Performance comparison of estimation and prediction for Example 2.

L2 distance Error
Methods (I) (II) (I) (II)
GLM-O 2.064 (0.087) 1.719 (0.085) 0.126 (0.005) 0.117 (0.004)
LASSO 2.971 (0.035) 2.556 (0.044) 0.189 (0.005) 0.155 (0.004)
Ridge 2.963 (0.032) 2.736 (0.031) 0.201 (0.006) 0.181 (0.006)
Enet 2.841 (0.041) 2.544 (0.044) 0.178 (0.007) 0.153 (0.005)

sGLMg 2.655 (0.037) 2.374 (0.030) 0.165 (0.007) 0.139 (0.005)
sGLMg-O 2.571 (0.034) 2.306 (0.031) 0.152 (0.006) 0.133 (0.005)
GDSGLM 2.649 (0.036) 2.296 (0.054) 0.155 (0.006) 0.137 (0.004)

GDSGLM-O 2.559 (0.033) 2.202 (0.067) 0.133 (0.005) 0.117 (0.004)

Table 4

Performance comparison of model selection for Example 2.

FPR FNR
Methods (I) (II) (I) (II)
GLM-O - - - -
LASSO 0.153 (0.006) 0.192 (0.011) 0.243 (0.012) 0.115 (0.016)
Ridge 0.994 (0.002) 0.992 (0.002) 0.000 (0.000) 0.000 (0.000)
Enet 0.350 (0.015) 0.316 (0.012) 0.073 (0.017) 0.048 (0.011)

sGLMg 0.544 (0.017) 0.501 (0.015) 0.033 (0.006) 0.008 (0.004)
sGLMg-O 0.333 (0.013) 0.389 (0.014) 0.046 (0.010) 0.017 (0.005)
GDSGLM 0.538 (0.015) 0.487 (0.018) 0.033 (0.006) 0.012 (0.005)

GDSGLM-O 0.324 (0.016) 0.307 (0.044) 0.032 (0.009) 0.000 (0.000)

GLM method is better than the sGLMg method and it achieves the smallest
misclassification error and the lowest FPR and FNR.

Tables 5 and 6 display the comparative results for the third example. The re-
sults are consistent with the previous two examples. Compared with the sGLMg
(sGLMg-O) method, the GDSGLM (GDSGLM-O) method has smaller estima-
tion errors of the β and smaller misclassification errors for the prediction due to
the additional �1 penalty. Particularly, in the estimated predictor graph setting,
GDSGLM method even offers improved performance over sGLMg-O. We notice
that the GDSGLM method has a much smaller FPR with slightly higher FNR
compared to sGLMg. Tables 7 and 8 display the comparative results for the
non-Gaussian example. It is demonstrated that our method still outperforms all
the other methods for this non-Gaussian setting.
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Table 5

Performance comparison of estimation and prediction for Example 3.

L2 distance Error
Methods (I) (II) (I) (II)
GLM-O 2.622 (0.106) 2.038 (0.113) 0.148 (0.005) 0.135 (0.004)
LASSO 5.623 (0.079) 4.769 (0.116) 0.378 (0.014) 0.266 (0.009)
Ridge 6.048 (0.004) 6.017 (0.005) 0.464 (0.004) 0.462 (0.005)
Enet 5.954 (0.024) 5.677 (0.050) 0.433 (0.010) 0.356 (0.008)

sGLMg 4.296 (0.116) 3.780 (0.129) 0.258 (0.007) 0.189 (0.005)
sGLMg-O 3.987 (0.094) 3.123 (0.116) 0.214 (0.005) 0.149 (0.005)
GDSGLM 3.422 (0.172) 3.108 (0.238) 0.210 (0.005) 0.178 (0.006)

GDSGLM-O 2.735 (0.224) 2.552 (0.296) 0.169 (0.006) 0.152 (0.005)

Table 6

Performance comparison of model selection for Example 3.

FPR FNR
Methods (I) (II) (I) (II)
GLM-O - - - -
LASSO 0.197 (0.030) 0.344 (0.017) 0.654 (0.052) 0.254 (0.039)
Ridge 0.978 (0.004) 0.976 (0.005) 0.032 (0.012) 0.016 (0.009)
Enet 0.175 (0.034) 0.336 (0.036) 0.818 (0.031) 0.472 (0.058)

sGLMg 0.407 (0.024) 0.409 (0.025) 0.005 (0.004) 0.001 (0.001)
sGLMg-O 0.246 (0.035) 0.302 (0.034) 0.000 (0.000) 0.000 (0.000)
GDSGLM 0.291 (0.027) 0.320 (0.034) 0.082 (0.021) 0.048 (0.014)

GDSGLM-O 0.290 (0.024) 0.224 (0.025) 0.009 (0.006) 0.004 (0.004)

Table 7

Performance comparison of estimation and prediction for Example 4.

L2 distance Error
Methods (I) (II) (I) (II)
GLM-O 3.007 (0.096) 2.595 (0.097) 0.129 (0.003) 0.115 (0.002)
LASSO 2.998 (0.046) 2.661 (0.033) 0.171 (0.004) 0.139 (0.003)
Ridge 3.597 (0.003) 3.586 (0.002) 0.158 (0.003) 0.158 (0.002)
Enet 2.898 (0.036) 2.540 (0.032) 0.169 (0.004) 0.137 (0.003)

sGLMg 2.452 (0.032) 2.150 (0.039) 0.154 (0.004) 0.123 (0.003)
sGLMg-O 2.422 (0.034) 2.153 (0.039) 0.154 (0.004) 0.123 (0.003)
GDSGLM 2.191 (0.038) 1.995 (0.036) 0.127 (0.004) 0.114 (0.003)

GDSGLM-O 2.188 (0.039) 1.990 (0.037) 0.125 (0.003) 0.114 (0.003)

6. Real data example

Human microbiome has received great interest in medical research. The micro-
biome composition has been found to link to many aspects of human health. In
order to understand why only a subset of patients benefit from the immunother-
apy in cancer treatment, Matson et al. [22] conducted studies to find whether
or not some microbiome species are predictors which can be used to classify
metastatic melanoma patients’ response to the immunotherapy. The microbiome
sequencing data (16s sequencing) includes 38 cancer patients with 153 opera-
tional taxonomic units (OTUs). As the dataset is zero-inflated, we first filter
out the variables with more than 50 percent zero samples and combine the
same species. After pre-processing, we obtain 33 microbiome OTUs as the pre-
dictors. The goal of the study is to use the commensal microbial composition
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Table 8

Performance comparison of model selection for Example 4.

FPR FNR
Methods (I) (II) (I) (II)
GLM-O - - - -
LASSO 0.161 (0.007) 0.185 (0.010) 0.315 (0.012) 0.200 (0.012)
Ridge 1.000 (0.000) 1.000 (0.002) 0.000 (0.000) 0.000 (0.000)
Enet 0.202 (0.009) 0.233 (0.009) 0.225 (0.013) 0.137 (0.011)

sGLMg 0.212 (0.010) 0.177 (0.010) 0.004 (0.002) 0.000 (0.000)
sGLMg-O 0.215 (0.009) 0.173 (0.010) 0.000 (0.000) 0.000 (0.000)
GDSGLM 0.029 (0.005) 0.023 (0.005) 0.001 (0.001) 0.000 (0.000)

GDSGLM-O 0.024 (0.005) 0.016 (0.004) 0.001 (0.001) 0.000 (0.000)

Fig 2. Estimated graph of 33 OTUs features.

to predict the clinical response regarding whether or not the patients will ben-
efit from the immunotherapy. A doubly sparse logistic model incorporating the
graphical structure (2.4) is used to analyze the dataset.

We compare the performance of the GDSGLM method with sGLMg [51],
Lasso, ridge regression, Adaptive Lasso and Elastic net. We normalize the data
set and split the data sets equally into training data and test data. The cross
validation (CV) is used to compare different approaches. We use the graphical
Lasso [9] to estimate the predictor (OTUs) graph G only based on the training
data. Figure 2 shows the estimated graph structure of OTUs feature based on all
the data. The training set is used to build the models and the testing set is used
to measure all the error measures including the percentage of correct classifica-
tions (PCC), the specificity and sensitivity. An inner five-fold CV procedure is
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Table 9

Comparison for various methods on the microbiome sequencing dataset.

Methods Specificity Sensitivity PCC
LASSO 0.940 (0.122) 0.037 (0.110) 0.606 (0.112)
ALasso 0.881 (0.180) 0.053 (0.120) 0.576 (0.140)
Ridge 0.973 (0.066) 0.033 (0.095) 0.626 (0.075)
Enet 0.956 (0.093) 0.023 (0.090) 0.605 (0.103)

sGLMg 0.947 (0.083) 0.611 (0.326) 0.828 (0.120)
GDSGLM 0.924 (0.089) 0.775 (0.192) 0.913 (0.087)

used to select the tuning parameters [15]. We conduct the equal-splitting cross
validation process 50 times. Table 9 shows the average misclassification error
of all methods. The GDSGLM method provides the best classification with the
highest PCC and a much higher sensitivity but a relatively lower specificity.

Based on 50 times of two-fold cross validation, we obtain 100 models for each
method. The GDSGLM method selects about 16 OTUs on average. There are
five OTUs selected with more than 75 times by the GDSGLMmethod. In details,
the feature names are g Adlercreutzia [33], g Collinsella [38], g SMB53 [13],
g Odoribacter [31], and g Sutterella [3]. All these five bacteria species have been
shown to influence patients response to immunotherapy in literature. Further
biological experiments are required to check specifically whether these OTUs
are closely related to anti-PD-1 efficacy in patients with metastatic melanoma.

7. Discussion

In this paper, we investigate the doubly sparse penalized estimator for high di-
mensional GLMs using the graphical structure of the predictors. We establish
the tight finite sample bounds for both estimation and prediction. We also es-
tablish the model selection consistency under the ultra-high dimensional setting.
Relevant directions for future work include a generalization of the statistical con-
sistency results to nonconvex regularized M-estimators. Specifically, it would be
interesting to expand the theory to the minimization of nonsmooth hinge loss
function for classification.

In this paper, Assumption 1 assumes that the neighbors of true predictors are
true predictors as well. This assumption is somehow restrictive and it excludes
some common graphs, for example, the chain graphs. A sensitivity study is
discussed in [46], and it is shown that if Assumption 1 is not violated seriously,
the proposed method still has good performance. Here, we propose some future
directions on how to relax this assumption. Let |Nj ∩ Nk| = p∗ for j ∈ J0 and
k ∈ J c

0 . For example, we have p∗ ≤ 2 for the chain structure. The proof of
Theorem 4.1 needs to be modified by adding a small term δ(p∗) in the following
equation:∑
j∈J c

0

(τj(‖T (j)
Nj∩J c

0
‖2 + ‖T (j)

Nj∩J0
‖2) + ξ(‖T (j)

Nj∩J c
0
‖1 + ‖T (j)

Nj∩J0
‖1)

≤ 3
∑
j∈J0

(τj(‖T (j)
Nj∩J c

0
‖2 + ‖T (j)

Nj∩J0
‖2) + ξ(‖T (j)

Nj∩J c
0
‖1 + ‖T (j)

Nj∩J0
‖1) + 4δ(p∗),



Graphical-model based high dimensional GLMs 2011

where

δ(p∗) = ‖
∑
j∈J0

T
(j)
Nj∩J c

0
+

∑
j∈J c

0

T
(j)
Nj∩J0

‖G,τ + ‖
∑
j∈J0

T
(j)
Nj∩J c

0
+

∑
j∈J c

0

T
(j)
Nj∩J0

‖S,ξ

+ ‖
∑
j∈J0

S
(j)
Nj∩J c

0
+

∑
j∈J c

0

S
(j)
Nj∩J0

‖G,τ + ‖
∑
j∈J0

S
(j)
Nj∩J c

0
+

∑
j∈J c

0

S
(j)
Nj∩J0

‖S,ξ.

To extend the results in Theorem 4.1 to more general graphs, one has to control
the additional term δ(p∗), which warrants future investigation.

Appendix A: Proofs of main theorems

In this section, we provide the proofs of the main theorems stated in the paper.
The proof of Theorem 4.1 begins with the proofs of some technical lemmas. The
following Lemma is quoted from the Lemma 2 in [46].

Lemma A.1. For any predictor graph G and positive weights τ1, τ2, . . . , τp and
ξ, suppose V (1), V (2), . . . , V (p) is an optimal decomposition of β ∈ R

p, then
for any S ⊂ {1, 2, . . . , p}, {V (j) : j ∈ S} is also an optimal decomposition of∑

j∈S V (j).

A.1. Proof of Theorem 4.1

Proof. We first show that R(β) is a norm and decomposable with respect to
a pair of subspaces (M,M⊥). By Lemma 3.2 in [36], we note that R(β) ≥ 0
with equality only when β = 0. Then for u ∈ R\{0}, we have the positive
homogeneity, i.e., R(uβ) = |u|R(β). To demonstrate the triangle inequality,
let the set of vectors V (j), j = 1, . . . , p, be a decomposition of the regression
parameter vector β and let W (j), j = 1, . . . , p, be a decomposition of another
regression parameter vector θ. Then,

R(β + θ) =

p∑
j=1

[τj‖V (j) +W (j)‖2 + ξ‖V (j) +W (j)‖1]

≤ R(β) +R(θ).

Therefore, R(β) is a norm. If we have vectors β ∈ M and θ ∈ M⊥, then
β and θ will have supports that do not overlap. By Assumption 1, it follows
that any optimal decomposition of β, say V (j), j = 1, . . . , p, and any optimal
decomposition of θ, say W (j), j = 1, . . . , p, will also have supports that do not
overlap. As we have mutually exclusive sets, the triangle inequality will hold
with equality and R(β) is decomposable with respect to the subspaces M and
M⊥.

Next, we show that the event {λ ≥ 4R∗(∇Ln(β))} holds with a high proba-
bility. Define u to be a p× 1 vector and let uNj be constrained to have support
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matching V (j), i.e., uNj has non-zero elements k ∈ Nj . By the proof of Lemma
3 in [27], its dual norm satisfies

R∗(u)≤ max
j=1,...,p

1

ξ + τmin
‖uNj‖2≤

1

ξ + τmin
max

j=1,...,p

√
dj‖uNj‖∞=

√
dmax

ξ + τmin
‖u‖∞.

In the following, we show that there are universal constants (c, c1, c2) such
that

P

(
‖∇Ln(β

0)‖∞ ≥ c

√
log(p)

n

)
≤ c1 exp(−c2 log(p)).

For each 1 ≤ i ≤ n and 1 ≤ j ≤ p, define the random variable Zij :=
(b′(XT

i β
0)− yi)Xij . Our goal is to bound maxj=1,...,p | 1n

∑n
i=1 Zij |. Note that

P

(
max

j=1,...,p
| 1
n

n∑
i=1

Zij | ≥ δ

)
≤ P (Ac) + P

(
max

j=1,...,p
| 1
n

n∑
i=1

Zij | ≥ δ|A
)
, (A.1)

where

A =

{
max

j=1,...,p

{
1

n

n∑
i=1

X2
ij

}
≤ 2E[X2

ij ]

}
and E[X2

ij ] ≤ κ2
u. As n � log p, {Xij , j = 1, . . . , p} are sub-Gaussian, and the

squared Xijs are sub-exponential, there exist universal constants (c1, c2) such
that P (Ac) ≤ c1 exp(−c2n). We focus on the second term on the right side of
(A.1). For any t ∈ R, we have

logE[exp(tZij)|Xij ] = log(exp(tXijb
′(XT

i β
0))) · E[exp(−tXijyi)]

= tXijb
′(XT

i β
0) + (b(−tXij +XT

i β
0)− b(XT

i β
0)),

where b(·) is the cumulant generating function for the underlying exponential
family. Thus, by a Taylor series expansion, there exists some νi ∈ [0, 1] such
that

logE[exp(tZij)|Xij ] =
t2X2

ij

2
b′′(XT

i β
0 − νitXij) ≤

Ct2X2
ij

2
, (A.2)

where the inequality is based the boundedness of b′′(·). Consequently, condi-
tioned on the event A, the variable 1

n

∑n
i=1 Zij is a sub-Gaussian random vari-

able with the parameter less than or equal to κ = Cmaxj=1,...,p E[X
2
ij ] for each

j = 1, . . . , p. By a union bound, we have

P

(
max

j=1,...,p
| 1
n

n∑
i=1

Zij | ≥ δ|A
)

≤ p exp

(
−nδ2

2κ2

)
.

Then ∇Ln(β
0) ∈ R

p is zero-mean sub-Gaussian random vector. By the as-
sumption λ(τmin + ξ) ≥ c

√
dmax log p/n for some constant c, therefore, we
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have λ ≥ 4R∗(∇Ln(β)).
Next, there is an arbitrary optimal decomposition of β0 as S(1), S(2), . . . , S(p),

and an arbitrary optimal decomposition of β̂−β0 as T (1), T (2), . . . , T (p). Then,
by Assumption 1,

‖β̂ − β0‖G,τ + ‖β0‖G,τ − ‖β̂‖G,τ

= ‖
∑
j∈J0

T (j)‖G,τ + ‖
∑
j∈J c

0

T (j)‖G,τ + ‖
∑
j∈J0

S(j)‖G,τ − ‖β̂‖G,τ ,

‖β̂ − β0‖S,ξ + ‖β0‖S,ξ − ‖β̂‖S,ξ
= ‖

∑
j∈J0

T (j)‖S,ξ + ‖
∑
j∈J c

0

T (j)‖S,ξ + ‖
∑
j∈J0

S(j)‖S,ξ − ‖β̂‖S,ξ.

Furthermore,

‖β̂‖G,τ = ‖
∑
j∈J0

T (j) +
∑
j∈J c

0

T (j) +
∑
j∈J0

S(j)‖G,τ ,

≥ ‖
∑
j∈J0

S(j) +
∑
j∈J c

0

T (j)‖G,τ − ‖
∑
j∈J0

T (j)‖G,τ ,

= ‖
∑
j∈J0

S(j)‖G,τ + ‖
∑
j∈J c

0

T (j)‖G,τ − ‖
∑
j∈J0

T (j)‖G,τ ,

and similarly,

‖β̂‖S,ξ ≥ ‖
∑
j∈J0

S(j)‖S,ξ + ‖
∑
j∈J c

0

T (j)‖S,ξ − ‖
∑
j∈J0

T (j)‖S,ξ.

Hence,

‖β̂ − β0‖G,τ + ‖β0‖G,τ − ‖β̂‖G,τ ≤ 2‖
∑
j∈J0

T (j)‖G,τ ,

‖β̂ − β0‖S,ξ + ‖β0‖S,ξ − ‖β̂‖S,ξ ≤ 2‖
∑
j∈J0

T (j)‖S,ξ,

and

R(β̂ − β0) +R(β0)−R(β̂) ≤ 2

(
‖
∑
j∈J0

T (j)‖G,τ + ‖
∑
j∈J0

T (j)‖S,ξ
)
. (A.3)

Note that J0 = {j : β0
j �= 0} be the true support of β0, and the local optimal

error vector Δ̂ = β̂ − β0 where β̂ is an arbitrary local optimum of (3.1). Let

F(Δ̂) := Ln(β
0 + Δ̂)− Ln(β

0) + λ{R(β0 + Δ̂)−R(β0)},

then the optimal error Δ̂ = β̂ − β0 must satisfy F(Δ̂) ≤ 0. As the distribution
belongs to exponential family, Ln(β) is a convex and differentiable loss function.
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Using the mean value theorem, we have

〈∇Ln(β
0 + Δ̂)−∇Ln(β

0), Δ̂〉 = 1

n

n∑
i=1

(b′(〈Xi, β
0 + Δ̂〉)− b′(〈Xi, β

0〉))XT
i Δ̃

=
1

n

n∑
i=1

b′′(〈Xi, β
0〉+ ti〈Xi, Δ̂〉)(〈Xi, Δ̂〉)2,

where ti ∈ [0, 1]. From the proof of Proposition 2 in [26] and Theorem 9.36 in
[43], there exist positive constants κ1 and κ2 such that, for all Δ ∈ R

p with
‖Δ‖ ≤ 1,

Ln(β
0 +Δ)− Ln(β

0)−∇Ln(β
0)TΔ ≥ κ1‖Δ‖22 − κ2

log p

n
R2(Δ) (A.4)

with probability at least 1− c1 exp(−c2n) for some c1, c2 > 0. Then

F(Δ̂) = Ln(β
0 + Δ̂)− Ln(β

0) + λ{R(β0 + Δ̂)−R(β0)}

≥ 〈∇Ln(β
0), Δ̂〉+ κ1‖Δ̂‖22 − κ2

log p

n
R2(Δ̂) + λ{R(β0 + Δ̂)−R(β0)}

≥ 〈∇Ln(β
0), Δ̂〉+ κ1‖Δ̂‖22 − κ2

log p

n
ρR(Δ̂) + λ{R(β0 + Δ̂)−R(β0)}

Applyig the Cauchy-Schwarz inequality to the regularizer R and its dual R∗

gives the result that |〈∇Ln(β
0), Δ̂〉| ≤ R∗(∇Ln(β

0))R(Δ̂). According to the

assumption ρ ≤ c′
√
dmax

τmin+ξ

√
n

log p for some positive c′, and λ ≥ 4R∗(∇Ln(β))

yields |〈∇Ln(β
0), Δ̂〉| ≤ (λ/4)R(Δ̂), we have

0 ≥ F(Δ̂) ≥ κ1‖Δ̂‖22 −
λ

2
R(Δ̂) + λ{R(β0 + Δ̂)−R(β0)}, (A.5)

and

R(β̂ − β0) + 2(R(β0)−R(β̂)) ≥ 0.

Then, we have

R(β̂ − β0) ≤ 2{R(β̂ − β0) +R(β0)−R(β̂)}

≤ 4

(
‖
∑
j∈J0

T (j)‖G,τ + ‖
∑
j∈J0

T (j)‖S,ξ
)
.

By Lemma A.1, we have

‖
∑
j∈J0

T (j)‖G,τ + ‖
∑
j∈J0

T (j)‖S,ξ =
∑
j∈J0

τj‖T (j)‖2 +
∑
j∈J0

ξ‖T (j)‖1.

Then, by definition,∑
j∈J c

0

(τj‖T (j)‖2 + ξ‖T (j)‖1) ≤ 3
∑
j∈J0

(τj‖T (j)‖2 + ξ‖T (j)‖1).
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Note that the optimal decomposition of Δ must be a decomposition min-
imizing the norm R(·). For the vector Δ ∈ R

p, there exist a decomposition
U (j)’s such that the supports of U (j) do not overlap. Then, for any subset J ⊂
{1, 2, . . . , p} with |J | ≤ s0, and all the optimal decompositions (V (1), . . . , V (p))
of any vector Δ, we have⎛⎝∑

j∈J

(τj +
√
djξ)

2‖V (j)‖22

⎞⎠1/2

≤

⎛⎝ p∑
j=1

(τj +
√

djξ)
2‖V (j)‖22

⎞⎠1/2

≤
p∑

j=1

(τj +
√
djξ)‖V (j)‖2

≤
p∑

j=1

τj‖V (j)‖2 +
√
djξ‖V (j)‖1

≤
p∑

j=1

τj‖U (j)‖2 +
√
djξ‖U (j)‖1

≤
p∑

j=1

(τj + djξ)‖U (j)‖2

≤
√
K(τmax + dmaxξ)

⎛⎝ p∑
j=1

‖U (j)‖2

⎞⎠1/2

=
√
K(τmax + dmaxξ)‖Δ‖2.

From (A.4), we have with probability at least 1 − c1 exp(−c2n) for some
c1, c2 > 0,

Ln(β
0 +Δ)− Ln(β

0)−∇Ln(β
0)TΔ

≥ κl

∑
j∈J

(τj +
√

djξ)
2‖V (j)‖22 − κ2

log p

n
R2(Δ), (A.6)

for κl =
κ1

K(τmax+dmaxξ)2
and κ2 ≥ 0.

From (A.5) and (A.6),

F(Δ̂) ≥ κl

∑
j∈J0

(τj + ξ)2‖T (j)‖22 −
λ

2
R(Δ̂) + λ{R(β̂)−R(β0)}.

By F(Δ̂) ≤ 0, and adding λR(Δ̂) to both sides of the resulting inequality, we
have

λR(Δ̂) + 2κl

∑
j∈J0

(τj +
√

djξ)
2‖T (j)‖22

≤ 2λ(R(β̂ − β0) +R(β0)−R(β̂))
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≤ 4λ

(
‖
∑
j∈J0

T (j)‖G,τ + ‖
∑
j∈J0

T (j)‖S,ξ
)

= 4λ

(∑
j∈J0

τj‖T (j)‖2 +
∑
j∈J0

ξ‖T (j)‖1
)

≤ 4λ
∑
j∈J0

(τj +
√

djξ)‖T (j)‖2

≤ 4λK1/2

√∑
j∈J0

(τj +
√
djξ)2

∥∥T (j)
∥∥2
2
,

where the last inequality follows from for each j ∈ J0, there is at most K nonzero
T (j). Note that 2xy ≤ tx2 + y2/t for all t > 0. Then, we have

λR(Δ̂) + 2κl

∑
j∈J0

(τj +
√

djξ)
2‖T (j)‖22

≤ 4λK1/2

√∑
j∈J0

(τj +
√

djξ)2
∥∥T (j)

∥∥2
2

≤ 4tλ2K +
1

t

∑
j∈J0

(τj +
√

djξ)
2
∥∥∥T (j)

∥∥∥2
2
.

By choosing t = 1
2κ1′

, we obtain

R(Δ̂) ≤ 2λK
κl

.

Besides, we have

2‖β̂ − β0‖2 = 2‖
p∑

j=1

T (j)‖2

≤ ‖
p∑

j=1

T (j)‖2 + ‖
p∑

j=1

T (j)‖1

≤ ‖
p∑

j=1

τjT
(j) 1

τj
‖2 + ‖

p∑
j=1

ξT (j) 1

ξ
‖1

≤ R(Δ̂)

τmin ∧ ξ
≤ 2λK

κl(τmin ∧ ξ)

Then,

‖β̂ − β0‖2 ≤ λK
κl(τmin ∧ ξ)

.
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A.2. Proof of Corollary 4.1

Proof. According to the first order stationary condition in [21],

〈∇Ln(β̂) + ∂λR(β̂), β − β̂〉 ≥ 0, for all feasible β ∈ R
p.

Let β = β0 in the formula above, then

〈∇Ln(β̂)−∇Ln(β
0), β̂ − β0〉 ≤ 〈−∂λR(β̂)−∇Ln(β

0), β̂ − β0〉
≤ λ(R(β0)−R(β̂)) +R∗(∇Ln(β

0))R(Δ̂).

Note that J0 = {j : β0
j �= 0} be the true support of β0. By the condition that

λ ≥ 2R∗(∇Ln(β
0)), we obtain

〈∇Ln(β̂)−∇Ln(β
0), β̂ − β0〉 ≤ λ(R(Δ̂J0)−R(Δ̂J c

0
)) +

λ

2
R(Δ̂)

≤ 3λ

2
R(Δ̂J0)−

λ

2
R(Δ̂J c

0
)

≤ 3λ

2
R(Δ̂).

Then, substituting the �-2 bound with the result from Theorem 4.1 yields the
desired result.

First we provide a lemma of the bound of covariance matrices from sub-
Gaussian ensembles quoted from [43].

Lemma A.2. There are universal constants {cj}3j=1 such that, for any row-

wise sub-Gaussian random matrix X ∈ R
n×p, the sample covariance Σ̂ =

1
n

∑n
i=1 XiX

T
i satisfies the bounds

P

(
‖Σ̂− Σ‖2

σ2
x

> c1

(√
p

n
+

p

n

)
+ δ

)
≤ c2 exp(−c3nmin{δ, δ2})

for all δ > 0.

Proof. The proof can be obtained via a discretization argument in [43].

A.3. Proof of Theorem 4.2

Proof. By Proposition 4.1, it is known that β̂ is a solution if and only if the
estimator β̂ can be decomposed as β̂ =

∑p
j=1 V

(j), where V (j)’s satisfy the fol-

lowing conditions for all 1 ≤ j ≤ p : (i) V
(j)
N c

j
= 0; (ii) V

(j)
Nj

= 0 and ‖∇NjLn(β̂)+

λhNj‖2 ≤ λτj with |hNj | ≤ ξ; (iii) V
(j)
Nj

�= 0 and ∇NjLn(β̂)+λτjV
(j)
Nj

/‖V (j)
Nj

‖2+
λhNj = 0, where for k ∈ Nj either V

(j)
k = 0 and |∇kLn(β̂)| ≤ λξ, or V

(j)
k �= 0

and hk = ξ sign(V
(j)
k ). Throughout the proof, denote∇NjLn(β̂) = XT

Nj
(b′(Xβ̂)−

y).
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Denote Ĥ = {j : ‖V (j)
Nj

‖2 �= 0}. Then, we have∇NjLn(β̂)+λ(τjV
(j)
Nj

/‖V (j)
Nj

‖2+
ξW

(j)
Nj

) = 0 for each j ∈ Ĥ and ∇NjLn(β̂) + λ(τjZ
(j)
Nj

+ ξW
(j)
Nj

) = 0 for each

j /∈ Ĥ, where Z(j) and W (j) are p × 1 random vectors with ‖Z(j)
Nj

‖2 ≤ 1 and

|W (j)
k | ≤ 1, k ∈ Nj . As some predictors may reside in more than one neighbor-

hoods, following [46], the estimate needs to satisfy the conditions:

(i) τi1V
(i1)
j /‖V (i1)

Ni1
‖2+ξW

(i1)
j = τi2V

(i2)
j /‖V (i2)

Ni2
‖2+ξW

(i2)
j for each i1, i2 ∈ Ĥ

and j ∈ Ni1 ∩ Ni2 ;

(ii) τi1V
(i1)
j /‖V (i1)

Ni1
‖2 + ξW

(i1)
j = τi2Z

(i2)
j for each i1 ∈ Ĥ, i2 /∈ Ĥ and j ∈

Ni1 ∩ Ni2 ;

(iii) τi1Z
(i1)
j = τi2Z

(i2)
j for each for each i1, i2 /∈ Ĥ and j ∈ Ni1 ∩Ni2 .

Then, any solution β̂ satisfies the following equation

∇Ln(β̂) + λ(f̂ + ĥ) = 0, (A.7)

where for each 1 ≤ j ≤ p, f̂j = τjV
(j)
j /‖V (j)

Nj
‖2 if j ∈ Ĥ and f̂j = τjZ

(j)
j if

j /∈ Ĥ, and ĥj = ξ sign(V
(j)
j ), if V

(j)
j �= 0 and ĥj = ξW

(j)
j with |W (j)

j | ≤ 1, if

V
(j)
j = 0.
Define events

Ω1 = {‖β̂J0
− β0

J0
‖∞ < β0

min},
Ω2 = {‖f̂Nj‖2 < τj , j ∈ J c

0 }.

When event Ω1 occurs, we have sign(β̂j) = sign(β0
j ) for each j ∈ J0. If event

Ω2 occurs, we obtain V
(j)
Nj

= 0 for each j ∈ J c
0 . Furthermore, we know that

V
(j)
N c

j
= 0 for each j. Then, by Assumption 1, β̂J c

0
=

∑
j∈J c

0
V

(j)
J c

0
= 0. Thus, it

suffices to show that P (Ω1∩Ω2) → 1, which implies P (sign(β̂) = sign(β0)) → 1
as n → ∞.

Note that if events Ω1 and Ω2 occur, from equation (A.7), we have

∇J0Ln(β̂) + λ(f̂J0 + ĥJ0) = 0,

∇NjLn(β̂) + λ(f̂Nj + ĥNj ) = 0, j ∈ J c
0 .

Thus, by a Taylor expansion and Assumption 1, we have

∇J0Ln(β
0) +∇2

J0J0
Ln(β̄)(β̂J0

− βJ0
) + λ(f̂J0 + ĥJ0) = 0, (A.8)

∇NjLn(β
0) +∇2

NjJ0
Ln(β̄)(β̂J0

− βJ0
) + λ(f̂Nj + ĥNj ) = 0, j ∈ J c

0 ,

(A.9)

where β̄J0
lies on the line segment joining β̂J0

and β0
J0
. Then, by Assumption

4

β̂J0
− βJ0

= −(∇2
J0J0

Ln(β̄))
−1[∇J0Ln(β

0) + λ(f̂J0 + ĥJ0)], (A.10)
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f̂Nj = − 1

λ

(
∇NjLn(β

0)−∇2
NjJ0

Ln(β̄)(∇2
J0J0

Ln(β̄))
−1∇J0Ln(β

0)

)
+

(
∇2

NjJ0
Ln(β̄)(∇2

J0J0
Ln(β̄))

−1ĥJ0 − ĥNj

)
+∇2

NjJ0
Ln(β̄)(∇2

J0J0
Ln(β̄))

−1f̂J0 . (A.11)

By equation (A.10), we obtain

‖β̂J0
− β0

J0
‖∞

≤ ‖((∇2
J0J0

Ln(β̄))
−1 − (∇2

J0J0
L(β̄))−1)(∇J0Ln(β

0) + λ(f̂J0 + ĥJ0))‖∞
+ ‖(∇2

J0J0
L(β̄))−1(∇J0Ln(β

0) + λ(f̂J0 + ĥJ0))‖∞
≤ √

s0‖(∇2
J0J0

Ln(β̄))
−1 − (∇2

J0J0
L(β̄))−1)‖2(‖∇J0Ln(β

0)‖∞
+ λ(‖f̂J0‖∞ + ‖ĥJ0‖∞)) + ‖∇J0Ln(β

0)‖∞ + λ(‖f̂J0‖∞ + ‖ĥJ0‖∞)

� √
s0‖(∇2

J0J0
Ln(β̄))

−1 − (∇2
J0J0

L(β̄))−1)‖2

×
(
‖∇J0Ln(β

0)‖∞ + λ(max
j∈J0

τj + ξ)

)
+

√
s0

(
‖∇J0Ln(β

0)‖∞ + λ(max
j∈J0

τj + ξ)

)
,

where we use the fact that |f̂j | ≤ τj and |ĥj | ≤ ξ for each j in the last inequality.
Because the Xi’s are sub-Gaussian and b′′(·) is uniformly bounded by as-

sumption, then for any v, w ∈ R
p, the expression

vT∇2Ln(β̄)w =
1

n

n∑
i=1

b′′(XT
i β̄)v

TXi · wTXi

is the i.i.d. average of the product of sub-Gaussian variables b′′(XT
i β̄)v

TXi and
wTXi. By Lemma A.2, a standard discretization argument of the s0-dimensional
unit sphere yields

‖∇2
J0J0

Ln(β̄)−∇2
J0J0

L(β̄)‖2 �
√

s0
n

with probability at least 1− c1 exp(−c2s0). Moreover, for any invertible matrix
A and B, if ‖A−1‖‖A− B‖2 ≤ 1/2, then ‖A−1 − B−1‖2 = O(‖A−1‖‖A− B‖2.
Therefore, we have

‖(∇2
J0J0

Ln(β̄))
−1 − (∇2

J0J0
L(β̄))−1‖2 �

√
s0
n

as well. A similar argument shows that

max
j∈J c

0

‖eTj (∇2
J c

0 J0
Ln(β̄)−∇2

J c
0 J0

L(β̄))‖2 � max

{√
s0
n
,

√
log p

n

}
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with probability at least 1− c1 exp(−c2 min{s0, log p}).
Then based on Assumption 3 and 4,

√
s20/n → 0. According to the proof

of Theorem 4.1, we have ‖∇J0Ln(β
0)‖∞ ≤

√
log p
n with probability at least

1− c′1 exp(−c′2 log p). Thus,

‖β̂J0
− β0

J0
‖∞ �

√
s0

Cmin

(√
log p

n
+ λ(max

j∈J0

τj + ξ)

)
with probability at least 1− c′1 exp(−c′2 log p).

Hence, according to the assumption that β0
min >

√
s0

Cmin

(√
log p
n +λ(maxj∈J0 τj+

ξ)

)
, we have

P (Ω1) = P (‖β̂J0
− β0

J0
‖∞ < β0

min) ≥ 1− c′1 exp(−c′2 log p) → 1. (A.12)

Next, by (A.8) and (A.9), we have

Qn
J0J0

(β̂J0
− β0

J0
) = −∇J0Ln(β

0)− λ(f̂J0 + ĥJ0)−Rn
J0

Qn
NjJ0

(β̂J0
− β0

J0
) = −∇NjLn(β

0)− λ(f̂Nj + ĥNj )−Rn
Nj

,

where Qn
J0J0

= ∇2
J0J0

Ln(β
0), Qn

NjJ0
= ∇2

NjJ0
Ln(β

0) and the remainder Rn =

(∇2Ln(β̄)−∇2Ln(β
0))(β̂ − β0). Hence,

f̂Nj =
1

λ
Qn

NjJ0
(Qn

J0J0
)−1(∇J0Ln(β

0) +Rn
J0
) +Qn

NjJ0
(Qn

J0J0
)−1(f̂J0 + ĥJ0)

− 1

λ
(∇NjLn(β

0) +Rn
Nj

)− ĥNj .

Then, for each j ∈ J c
0 ,

‖f̂Nj‖2
τj

≤ 1

λτj

∥∥∥∥Qn
NjJ0

(Qn
J0J0

)−1

(
∇J0Ln(β

0) +Rn
J0

)∥∥∥∥
2

+
1

τj

∥∥∥∥Qn
NjJ0

(Qn
J0J0

)−1(f̂J0 + ĥJ0)

∥∥∥∥
2

+
1

λτj

∥∥∥∥∇NjLn(β
0) +Rn

Nj

∥∥∥∥
2

+
1

τj
‖ĥNj‖2

≤ 1

λτj

∥∥∥∥Qn
NjJ0

(Qn
J0J0

)−1

∥∥∥∥
2

(‖∇J0Ln(β
0)‖2 + ‖Rn

J0
‖2)

+
1

τj

∥∥∥∥Qn
NjJ0

(Qn
J0J0

)−1

∥∥∥∥
2

(‖f̂J0‖2 + ‖ĥJ0‖2)

+

√
dj

λτj

∥∥∥∥∇NjLn(β
0) +Rn

Nj

∥∥∥∥
∞

+

√
dj

τj
‖ĥNj‖∞
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≤
√
dj

λτj

∥∥∥∥Qn
NjJ0

(Qn
J0J0

)−1

∥∥∥∥
∞

√
s0(‖∇J0Ln(β

0)‖∞ + ‖Rn
J0
‖∞)

+

√
dj

λτj
(‖∇NjLn(β

0)‖∞ + ‖Rn
Nj

‖∞)

+

√
dj

τj

∥∥∥∥Qn
NjJ0

(Qn
J0J0

)−1

∥∥∥∥
∞

√
s0(max

j∈J0

τj + ξ) +

√
dj

τj
ξ.

Thus,

max
j∈J c

0

‖f̂Nj‖2
τj

≤
∥∥∥∥Qn

J c
0 J0

(Qn
J0J0

)−1

∥∥∥∥
∞

√
s0(‖∇J0Ln(β

0)‖∞ + ‖Rn
J0
‖∞) max

j∈J c
0

√
dj

λτj

+ (‖∇J c
0
Ln(β

0)‖∞ + ‖Rn
J c

0
‖∞) max

j∈J c
0

√
dj

λτj

+

∥∥∥∥Qn
J c

0 J0
(Qn

J0J0
)−1

∥∥∥∥
∞

max
j∈J c

0

√
dj
√
s0(maxj∈J0 τj + ξ)

τj

+ max
j∈J c

0

√
djξ

τj
.

By the proof of Theorem 4.1, we have ‖∇J0Ln(β
0)‖∞ ≤

√
log p
n with proba-

bility at least 1− c′1 exp(−c′2 log p).
Next, we consider the rate of ‖Rn‖∞,

Rn = (∇2Ln(β̄)−∇2Ln(β
0))(β̂ − β0)

=
1

n

n∑
i=1

[b′′(XT
i β̄)− b′′(XT

i )]XiX
T
i (β̂ − β0)

for some point β̄ = tβ̂ + (1 − t)β0. Using the mean value theorem and the
bounded condition of b′′′(·) gives

Rn =
1

n

n∑
i=1

b′′′(XT
i
¯̄β)Xi(β̄ − β0)TXiX

T
i (β̂ − β0),

where ¯̄β lies on the line segment between β̂ and β0. Then, for each j,

Rn
j =

1

n

n∑
i=1

b′′′(XT
i
¯̄β)Xij(β̄ − β0)TXiX

T
i (β̂ − β0).

Let ai = b′′′(XT
i
¯̄β)Xij and di = (β̄ − β0)TXiX

T
i (β̂ − β0), we have

|Rn
j | =

1

n
|

n∑
i=1

aidi| ≤
1

n
‖a‖∞‖d‖1.
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By assumption ‖a‖∞ ≤ M for some constant M > 0, and note that supp(β̂) ⊆
J0, then

1

n
‖d‖1 � tj

∥∥∥∥( 1

n

n∑
i=1

XiX
T
i

)
J0J0

∥∥∥∥
2

‖β̂J0
− β0

J0
‖22

�
(
Λmax(Σ) +

√
s0
n

)
‖β̂J0

− β0
J0
‖22

�
(
Λmax(Σ) +

√
s0
n

)
λ2

(
K

τmin ∧ ξ

)2

with probability at least 1 − c1 exp(−c2 min{s0, log p}), where the second in-
equality holds by a standard spectral norm bound on the sample covariance
matrix and the last inequality holds by Theorem 4.1. Therefore,

‖Rn‖∞
λ

� λ

(
K

τmin ∧ ξ

)2

. (A.13)

Finally, by Assumption 4 and 5, it remains to show that there are universal
constants (c1, c2) such that

P (‖Qn
J c

0 J0
(Qn

J0J0
)−1‖∞ ≥ 1− ζ/2) ≤ c1 exp(−c2 min{s0, log p}). (A.14)

We begin by decomposing the sample matrix as the sum Qn
J c

0 J0
(Qn

J0J0
)−1 =

T1 + T2 + T3 + T4 where we define

T1 :=Qn
J c

0 J0
((Qn

J0J0
)−1 − (QJ0J0)

−1), (A.15)

T2 :=(Qn
J c

0 J0
−QJ c

0 J0)(QJ0J0)
−1, (A.16)

T3 :=(Qn
J c

0 J0
−QJ c

0 J0)((Qn
J0J0

)−1 − (QJ0J0)
−1), (A.17)

T4 :=QJ c
0 J0(QJ0J0)

−1. (A.18)

By the incoherence condition 5, we have

‖T4‖∞ ≤ 1− ζ.

For T1,

‖T1‖∞ = ‖QJ c
0 J0(QJ0J0)

−1(Qn
J0J0

−QJ0J0)(Qn
J0J0

)−1‖∞
≤ ‖QJ c

0 J0(QJ0J0)
−1‖∞‖Qn

J0J0
−QJ0J0‖∞‖(Qn

J0J0
)−1‖∞

≤ s0(1− ζ)‖Qn
J0J0

−QJ0J0‖2‖(Qn
J0J0

)−1‖2

≤ (1− ζ)

√
s30
n

1

Cmin +
√

s0
n

≤ (1− ζ)

√
s30
n

2

Cmin

with probability at least 1− c1 exp(−c2s0), where the third inequality holds by
Lemma A.2. By Assumption 3, we have ‖T1‖∞ ≤ ζ/6 with probability at least
1− c1 exp(−c2s0). For T2,

‖T2‖∞ ≤ √
s0 max

j∈J c
0

‖eTj (Qn
J c

0 J0
−QJ c

0 J0)(QJ0J0)
−1‖2
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≤ √
s0 max

j∈J c
0

‖eTj (Qn
J c

0 J0
−QJ c

0 J0)‖2‖(QJ0J0)
−1‖2

≤ 2
√
s0

Cmin
max

{√
s0
n
,

√
log p

n

}
with probability at least 1− c1 exp(−c2 min{s0, log p}), where the third inequal-
ity holds by Lemma A.2. Based on Assumption 3, we have ‖T2‖∞ ≤ ζ/6 with
probability at least 1 − c1 exp(−c2 min{s0, log p}). For T3, a similar argument
shows that,

‖T3‖∞ ≤ √
s0 max

{√
s0
n
,

√
log p

n

}2

.

According to Assumption 3, we have ‖T3‖∞ ≤ ζ/6 with probability greater than
or equal to 1 − c1 exp(−c2 min{s0, log p}). Combining all the results above, we
conclude that (A.14) holds.

Therefore,

max
j∈J c

0

‖f̂Nj‖2
τj

≤ (1− ζ/2)
1

λ

√
s0 log p

n
max
j∈J c

0

√
dj

τj
+

1

λ

√
log(p− s0)

n
max
j∈J c

0

√
dj

τj

+ (1− ζ/2)
√
s0

(
K

τmin ∧ ξ

)2

λmax
j∈J c

0

√
dj

τj

+

(
K

τmin ∧ ξ

)2

λmax
j∈J c

0

√
dj

τj

+ max
j∈J c

0

√
djξ

τj
+ (1− ζ/2)

√
s0(maxj∈J0 τj + ξ)

minj∈J c
0
mj

with probability at least 1−c1 exp(−c2 min{s0, log p}). By the conditions λ(τmin+
ξ) ≥ c

√
dmax log p/n,

√
s0(

√
s0 maxj∈J0 mj ∨ ξ) = o(minJ c

0
mj) and

s
1/2
0 λ (K/(τmin ∧ ξ))

2
+ ξ

minj∈J c
0
mj

→ 0,

we obtain

1

λ

√
s0 log p

n
max
j∈J c

0

√
dj

τj
≤ c

√
s0

dmax

τmin + ξ

minj∈J c
0
mj

≤
√
s0(min1≤j≤p mj ∨ ξ)

minj∈J c
0
mj

→ 0,

√
s0(maxj∈J0 τj + ξ)

minj∈J c
0
mj

≤
√
s0(

√
s0 maxj∈J0 mj + ξ)

minj∈J c
0
mj

→ 0,

and

√
s0

(
K

τmin ∧ ξ

)2

λmax
j∈J c

0

√
dj

τj
≤ s

1/2
0 λ

minj∈J c
0
mj

(
K

τmin ∧ ξ

)2

→ 0.



2024 Y. Li et al.

Therefore,

P (Ω2) = P

(
max
j∈J c

0

‖f̂Nj‖2
τj

< 1

)
≥ 1− c1 exp(−c2 min{s0, log p}) → 1. (A.19)

By (A.12) and (A.19), we conclude that P (Ω1 ∩ Ω2) → 1 and P (sign(β̂) =
sign(β0)) → 1 as n → ∞.

Appendix B: Parallel Dykstra-like proximal algorithm

In this section, we describe the Parallel Dykstra-like proximal algorithm. Fol-
lowing [46], in order to find the proximity operator in step 4 of Algorithm 1, we
combined an alternative method via proximal splitting methods based on Par-
allel Dykstra-like proximal algorithm [5]. Following the proofs of Theorem 1 in
[47], the proxλ(‖β‖G,τ+‖β‖S,ξ)/L

(·) can be directly derived from proxλ‖β‖G,τ/L(·)
by soft thresholding. By the Lemma 1 and Lemma 2 in [42], the proximity op-
erator amounts to a projection operator onto the intersection of active groups.
Thus we can use the Parallel Dykstra-like proximal algorithm to find the pro-
jection. From the step 5 in Algorithm 2, the projection first enforces sparsity
within a neighbourhood by performing the element-wise soft thresholding and
then imposes sparsity among the neighbourhoods by performing the group soft

thresholding. Denote T (t) = {j : ‖ST(h(t)
Nj

, λξ/L)‖2 > λτj/L} as an active set,

where ST(t, λ) = sign(t)(|t| − λ)+ is a soft thresholding and (x)+ := max{0, x}
is the positive part function. h

(t)
Nj

is defined in Algorithm 1. The closed form
solution is given by

pj,nNj
= Proj λ

L (ξ‖·‖1+τj‖·‖2)
(zj,nNj

)

= Projλτj
L ‖·‖2

(
ST(zj,nNj

, λξ/L)

)
= wj,n

Nj
1(‖wj,n

Nj
‖2 ≤ λτj/L) +

λτjw
j,n
Nj

L‖wj,n
Nj

‖2
1(‖wj,n

Nj
‖2 > λτj/L),

where wj,n
Nj

= ST(zj,nNj
, λξ/L). Specifically, we note that the proximate operator

can be solved efficiently when the predictor graph G comprises disconnected
components.
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Algorithm 2 Parallel Dykstra-like proximal algorithm

1: Set x0 = h(t), zj,0 = x0 for j = 1, . . . , |T (t)|, n = 0.
2: repeat
3: for j = 1, . . . , |T (t)| do
4: pj,nNc

j
= zj,nNc

j
;

5: pj,nNj
= Proj λ

L
(ξ‖·‖1+τj‖·‖2)(z

j,n
Nj

);

6: xn+1 =
∑|T (t)|

i=1
pj,n

|T (t)| ;

7: for i = 1, . . . , |T (t)| do
8: zj,n = xn+1 + z(j,n) − p(j,n);

9: n = n+ 1;
10: until convergence;
11: return x.
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[24] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs
and variable selection with the lasso. The Annals of statistics 34 1436–1462.
MR2278363

[25] Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse repre-
sentations for high-dimensional data. The Annals of statistics 37 246–270.
MR2488351

[26] Negahban, S. N., Ravikumar, P., Wainwright, M. J., Yu, B.

et al. (2012). A unified framework for high-dimensional analysis of M -
estimators with decomposable regularizers. Statistical Science 27 538–557.
MR3025133

[27] Obozinski, G., Jacob, L. and Vert, J.-P. (2011). Group lasso with

https://www.ams.org/mathscinet-getitem?mr=2291503
https://www.ams.org/mathscinet-getitem?mr=3025130
https://www.ams.org/mathscinet-getitem?mr=4007753
https://www.ams.org/mathscinet-getitem?mr=1137117
https://www.ams.org/mathscinet-getitem?mr=3898276
https://www.ams.org/mathscinet-getitem?mr=3650403
https://www.ams.org/mathscinet-getitem?mr=3161456
https://www.ams.org/mathscinet-getitem?mr=3335800
https://www.ams.org/mathscinet-getitem?mr=3223057
https://www.ams.org/mathscinet-getitem?mr=2278363
https://www.ams.org/mathscinet-getitem?mr=2488351
https://www.ams.org/mathscinet-getitem?mr=3025133


Graphical-model based high dimensional GLMs 2027

overlaps: the latent group lasso approach. arXiv preprint 1110.0413.
MR3211304

[28] Rao, N., Nowak, R., Cox, C. and Rogers, T. (2015). Classification
with the sparse group lasso. IEEE Transactions on Signal Processing 64
448–463. MR3446222

[29] Ravikumar, P.,Wainwright, M. J. and Lafferty, J. D. (2010). High-
dimensional Ising model selection using �1-regularized logistic regression.
The Annals of Statistics 38 1287–1319. MR2662343

[30] Rigollet, P. (2012). Kullback–Leibler aggregation and misspecified gen-
eralized linear models. The Annals of Statistics 40 639–665. MR2933661

[31] Schirmer, M., Smeekens, S. P., Vlamakis, H., Jaeger, M., Oost-

ing, M., Franzosa, E. A., ter Horst, R., Jansen, T., Jacobs, L.,
Bonder, M. J. et al. (2016). Linking the human gut microbiome to in-
flammatory cytokine production capacity. Cell 167 1125–1136.

[32] Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2013). A
sparse-group lasso. Journal of Computational and Graphical Statistics 22
231–245. MR3173712

[33] Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D.,
Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H.

et al. (2017). Influence of diet on the gut microbiome and implications for
human health. Journal of translational medicine 15 73.

[34] Spantini, A., Bigoni, D. and Marzouk, Y. (2018). Inference via low-
dimensional couplings. The Journal of Machine Learning Research 19
2639–2709. MR3899768

[35] Stephenson, M. (2018). Doubly Sparse Regularized Regression Incorpo-
rating Graphical Structure Among Predictors, PhD thesis, University of
Guelph.

[36] Stephenson, M., Ali, R. A., Darlington, G. A. and Initia-

tive, A. D. N. (2019). Doubly sparse regression incorporating graphical
structure among predictors. Canadian Journal of Statistics. MR4035798

[37] Stephenson, M.,Ali, R. A.,Darlington, G. A., Schenkel, F. S. and
Squires, E. J. (2019). DSLRIG: Leveraging predictor structure in logistic
regression. Communications in Statistics-Simulation and Computation 1–
13.

[38] Temraz, S., Nassar, F., Nasr, R., Charafeddine, M., Mukherji, D.

and Shamseddine, A. (2019). Gut Microbiome: A Promising Biomarker
for Immunotherapy in Colorectal Cancer. International journal of molecu-
lar sciences 20 4155.

[39] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological) 58 267–
288. MR1379242

[40] Tibshirani, R. and Friedman, J. (2019). A pliable lasso. Journal of
Computational and Graphical Statistics just-accepted 1–18. MR4085876

[41] Van de Geer, S. A. et al. (2008). High-dimensional generalized linear
models and the lasso. The Annals of Statistics 36 614–645. MR2396809

[42] Villa, S., Rosasco, L., Mosci, S. and Verri, A. (2014). Proximal

https://arxiv.org/abs/1110.0413
https://www.ams.org/mathscinet-getitem?mr=3211304
https://www.ams.org/mathscinet-getitem?mr=3446222
https://www.ams.org/mathscinet-getitem?mr=2662343
https://www.ams.org/mathscinet-getitem?mr=2933661
https://www.ams.org/mathscinet-getitem?mr=3173712
https://www.ams.org/mathscinet-getitem?mr=3899768
https://www.ams.org/mathscinet-getitem?mr=4035798
https://www.ams.org/mathscinet-getitem?mr=1379242
https://www.ams.org/mathscinet-getitem?mr=4085876
https://www.ams.org/mathscinet-getitem?mr=2396809


2028 Y. Li et al.

methods for the latent group lasso penalty. Computational Optimization
and Applications 58 381–407. MR3201966

[43] Wainwright, M. J. (2019). High-dimensional statistics: A non-
asymptotic viewpoint 48. Cambridge University Press. MR3967104

[44] Yan, X. and Bien, J. (2017). Hierarchical sparse modeling: A choice of
two group lasso formulations. Statistical Science 32 531–560. MR3730521

[45] Yang, E., Ravikumar, P., Allen, G. I. and Liu, Z. (2013). On Poisson
graphical models. In NIPS 1718–1726.

[46] Yu, G. and Liu, Y. (2016). Sparse regression incorporating graphical
structure among predictors. Journal of the American Statistical Associ-
ation 111 707–720. MR3538699

[47] Yuan, L., Liu, J. and Ye, J. (2013). Efficient methods for overlapping
group lasso. IEEE transactions on pattern analysis and machine intelli-
gence 35 2104–2116.

[48] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 68 49–67. MR2212574

[49] Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax
concave penalty. The Annals of statistics 38 894–942. MR2604701

[50] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso.
Journal of Machine learning research 7 2541–2563. MR2274449

[51] Zhou, S., Zhou, J., Zhang, B. et al. (2019). High-dimensional gener-
alized linear models incorporating graphical structure among predictors.
Electronic Journal of Statistics 13 3161–3194. MR4010596

[52] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of
the American statistical association 101 1418–1429. MR2279469

[53] Zou, H. and Hastie, T. (2005). Regularization and variable selection via
the elastic net. Journal of the royal statistical society: series B (statistical
methodology) 67 301–320. MR2137327

https://www.ams.org/mathscinet-getitem?mr=3201966
https://www.ams.org/mathscinet-getitem?mr=3967104
https://www.ams.org/mathscinet-getitem?mr=3730521
https://www.ams.org/mathscinet-getitem?mr=3538699
https://www.ams.org/mathscinet-getitem?mr=2212574
https://www.ams.org/mathscinet-getitem?mr=2604701
https://www.ams.org/mathscinet-getitem?mr=2274449
https://www.ams.org/mathscinet-getitem?mr=4010596
https://www.ams.org/mathscinet-getitem?mr=2279469
https://www.ams.org/mathscinet-getitem?mr=2137327

	Introduction
	Methodology
	Computation
	Theoretical properties
	Simulation study
	Real data example
	Discussion
	Proofs of main theorems
	Proof of Theorem 4.1
	Proof of Corollary 4.1
	Proof of Theorem 4.2

	Parallel Dykstra-like proximal algorithm
	Acknowledgments
	References

