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Abstract: Deep learning has achieved notable success in various fields,
including image and speech recognition. One of the factors in the success-
ful performance of deep learning is its high feature extraction ability. In
this study, we focus on the adaptivity of deep learning; consequently, we
treat the variable exponent Besov space, which has a different smoothness
depending on the input location x. In other words, the difficulty of the
estimation is not uniform within the domain. We analyze the general ap-
proximation error of the variable exponent Besov space and the approxima-
tion and estimation errors of deep learning. We note that the improvement
based on adaptivity is remarkable when the region upon which the target
function has less smoothness is small and the dimension is large. Moreover,
the superiority to linear estimators is shown with respect to the convergence
rate of the estimation error.
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1. Introduction

Machine learning has attracted significant attention, and has been applied to
various fields. In particular, deep learning has been in the spotlight owing to
its notable success in different fields, for example, image and speech recognition
[21, 14]. Although its success has been confirmed experimentally, the reason
why deep learning functions well has not been fully understood theoretically.
This problem has been studied in a statistical context by many researchers, and
one of the approaches to this problem is the following nonparametric regression
problem:

Yi = f◦(Xi) + εi (i = 1, . . . , n),
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where (Xi, Yi)
n
i=1 are observations and εi is Gaussian noise. It is usually con-

sidered that f is contained in a function class F and one of the typical criteria
used to evaluate an estimator f̂ is

sup
f◦∈F

E[‖f◦(X)− f̂(X)‖2L2(PX)],

where the expectation is taken over the sample observation (Xi, Yi)
n
i=1. We call

this the worst-case estimation error. We can compare the convergence speed of
this quantity among the estimators. In particular, by comparing deep learning
with other estimators with respect to this value, the manner in which deep
learning works can be analyzed theoretically. Note that analyzing the worst-
case error is common in statistics as a theory of minimax-optimality; thus, it
has not been specialized to a deep learning setting [31, 34, 36, 20, 15, 27]. We

compare the worst-case error for an estimator f̂ with the infimum of the worst-
case error over all estimators given by

inf
f̂

sup
f◦∈F

E[‖f◦(X)− f̂(X)‖2L2(PX)],

where the infimum is taken for all measurable mappings that map n observations
to L2(PX). This is called the minimax optimal risk.

In previous studies on learning theory, these settings are considered on various
function classes, such as a Hölder space and Besov space. The worst-case error
analyses on these function classes have been studied for deep learning as well
as several other classic estimators, and their minimax optimal rates have been
extensively considered. For example, the rate of a Hölder space (Cβ(Ω), Ω ⊂ R

d:

bounded open domain) is n− 2β
2β+d [27, 20, 15], whereas that of a Besov space

(Bs
p,q([0, 1]

d)) is n− 2s
2s+d [19, 6, 5, 10]. Note that the definitions of a Hölder space

and Besov space are written in the following section. It was shown that deep
learning can achieve the near minimax optimal rate. Table 1 shows the results
of previous studies.

In recent studies, the approximation and generalization capabilities of deep
ReLU networks have been studied. In [35], the approximation error of deep ReLU
networks on a Hölder space is derived. In addition, [25] analyzed the estimation
error of deep ReLU networks on a Hölder space and derived the worst-case esti-
mation error that achieves a near optimal rate. [28] studied the approximation
and estimation errors on a Besov space that has a broader function class than a
Hölder class. [28] noted that deep learning is “adaptive,” that is, deep learning
can estimate each function effectively by capturing the local smoothness. Indeed,
we can see in the analysis by [28] that adaptivity is important for achieving the
near minimax optimal rate. In addition, although deep learning can achieve a
near optimal rate even if the spatial homogeneity of the target function smooth-
ness is low, no linear estimator can achieve the optimal rate in such a case. In
[16], the superiority was demonstrated when the target functions are piecewise

1Symbol Õ(·) indicates the order up to log factors.
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Table 1

Approximation and estimation errors of deep learning on function spaces on [0, 1]d. The
approximation and estimation errors are measured using the L2-norm and its square,

respectively. Here, N is the number of units in each layer of deep neural network and n is
the sample size. s and β are the parameters of smoothness, and d represents the dimension

of the domain where the function spaces are defined.

Function class Hölder(Cβ) Besov(Bs
p,q)

Approximation error Õ(N− β
d ) 1 Õ(N− s

d )
Author Yarotsky [35] Suzuki [28]

Estimation error Õ(n
− 2β

2β+d (logn)3) Õ(n
− 2s

2s+d (logn)3)
Author Schmidt-Hieber [25] Suzuki [28]

Function class variable Besov (B
s+β‖x−c‖α2
p,q )

Approximation error Õ(N− s
d (logN)−

s−δ
α )

Author This work

Estimation error Õ(n
− 2s

2s+d (logn)
− 2(sd−νd−3αs)

(2s+d)α )
Author This work

smooth functions. In addition, [13] showed the superiority for a function class
with discontinuity and sparsity.

In this study, we analyze the generalization capability of ReLU neutral net-
works on a variable exponent Besov space that has different conditions of smooth-
ness depending on coordinate x. Because the smoothness of the target function
depends on the input location x (we denote by s(x), i.e., the smoothness of the
target function at the location x), the difficulty of estimating the function is
not spatially uniform. This problem setting highlights the necessity of the adap-
tivity of the estimators in contrast to previous studies. In previous studies, the
estimation problem on this type of function class with non-uniform properties
over the input location x has not been analyzed. In addition, the approximation
theory of the variable exponent Besov space has not been studied, although the
wavelet decomposition in the variable exponent Besov space has been analyzed,
e.g., in [17]. Therefore, we first need to develop an approximation theory on the
variable exponent Besov space using the B-spline basis expansion. In section 3,
we derive the lower bound for the general s(x) and analyze the upper bound for
the approximation error in the case of s(x) = s+ β‖x− c‖α2 . In section 4, based
on the result in section 3, we derive the upper bounds of the approximation and
estimation errors of deep learning. As shown in Table 1, the upper bound of

the approximation error of deep learning is Õ(N− s
d (logN)−

s−δ
α ) and that of

the estimation error is Õ(n− 2s
2s+d (logn)−

2(sd−νd−3αs)
(2s+d)α ), where N is the number of

units in each layer of the neural network, n is the sample size, and ν is a con-
stant, which depends only on p, d. The polynomial order of the approximation
error depends on the minimum value of s(x), and the poly-log order becomes
significant when α is small, that is, the domain around the minimum value of
s(x) is small. Moreover, the influence of the poly-log order of the estimation
error increases if the dimension d is large and the area around the minimum
value of s(x) is small. In section 5, we show the superiority of deep learning over
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linear estimators for 0 < p < 2 or p = 2 and 0 < α < d
3 :

n− 2s
2s+d (log n)−

2(sd−νd−3αs)
(2s+d)α (log(logn))

2d(s−ν)
(2s+d)α � n− 2(s−ν)

2(s−ν)+d ,

where the left-hand side is the worst-case estimation error of deep learning,
and the right-hand side is the minimax optimal estimation error over all linear
estimators. The contributions of this paper are summarized as follows:

• For the analysis of the generalization ability of deep learning, we first
derive an approximation theory of the variable exponent Besov space us-
ing B-spline bases. We derive the lower bound of the approximation error
on the variable exponent Besov space with any continuous smoothness
function s(x). In addition, we derive the upper bound of the approxima-
tion error on the variable exponent Besov space with specific smoothness
function s(x) = s+ β‖x− c‖α2 .

• To clarify the adaptivity of deep learning, we derive the upper bound of
the approximation and estimation errors of deep learning. Subsequently,
we show that, as the region where the target function has less smoothness
is smaller, the approximation and estimation errors are further improved.
This result supports the adaptivity of deep learning.

• For a relative evaluation, we compare deep learning with popular linear
estimators, such as a least squares estimator, Nadaraya-Watson estimator,
and kernel ridge regression. We show the superiority of deep learning over
linear estimators with respect to the convergence of the estimation error.

2. Mathematical preparations

2.1. Notation

In this section, we introduce some of the notations used. Throughout this paper,
Ω denotes [0, 1]d. For a subset A in R

d, we define ‖f‖Lr(A) as the Lr-norm of a
measurable function f on A:

‖f‖Lr(A) :=

(∫
A

|f(x)|rdx
) 1

r

.

In particular, if A = Ω, we denote ‖·‖Lr(A) by ‖·‖r. Let (S,Σ, P ) be a pairing of
probability space S, σ-algebra Σ on S, and probability measure P . Furthermore,
let X(s) be a random variable on R

d with a probability distribution PX . For a
measurable function f , we define ‖f‖Lr(PX) as follows:

‖f‖Lr(PX) :=

(∫
S

|f(X(s))|rP (ds)

) 1
r

=

(∫
Rd

|f(x)|rPX(dx )

) 1
r

.

Let X be a quasi-normed space. We denote the unit ball of X by UX . That is,

UX := {x ∈ X | |‖x‖X ≤ 1}.
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We write the support of function f as

suppf := {x ∈ Rd | f(x) �= 0}.

Let A ⊂ R
d and x = (x1, x2, . . . , xd)

� ∈ A, p ∈ R. In addition, let a > 0 and T
be a mapping from R

d to R
d. Next, we introduce the following notations:

	a
 := min{n ∈ Z | a ≤ n},

�a� := max{n ∈ Z | a ≥ n},
‖x‖p := (xp

1 + xp
2 + · · ·+ xp

d)
1
p ,

diam(A) := sup
a,b∈A

‖a− b‖2,

dist(A, x) := inf
y∈A

‖y − x‖2,

B(x, a) := {y ∈ R
d | ‖y − x‖2 < a},

TA := {Ta | a ∈ A}.

2.2. Nonparametric regression and minimax optimal rate

In this paper, we consider the following nonparametric regression model:

Yi = f◦(Xi) + εi (i = 1, . . . , n), (1)

where (Xi, Yi)
n
i=1 is independently identically distributed (i.i.d.) and Xi ∼ PX .

Here, PX is a probability distribution on Ω. Moreover, the noise εi is i.i.d.
centered Gaussian noise, that is, εi ∼ N(0, σ2) (σ > 0). We assume that f◦

is contained in some function class F , that is, f◦ ∈ F . We want to estimate
function f◦ : [0, 1]d → R from the observed data (Xi, Yi)

n
i=1.

For the regression model (1), we use the following quantity to evaluate the
estimation for each f◦ ∈ F :

E[‖f◦(X)− f̂(X)‖2L2(PX)],

where f̂ : [0, 1]d → R is the function estimated from the observed data (Xi, Yi)
n
i=1

and the expectation is taken over the sample observation (Xi, Yi)
n
i=1. To eval-

uate the quality of estimator f̂ , we define the following worst-case estimation
error:

R(f̂ ,F) := sup
f◦∈F

E[‖f◦(X)− f̂(X)‖2L2(PX)]. (2)

Hereafter, we call R(f̂ ,F) an estimation error for simplicity. We can see from

the definition that R(f̂ ,F) is the worst-case estimation error for f◦ ∈ F . We

can evaluate the estimators based on the convergence rate of R(f̂ ,F) as the
sample size n increases.

We use the following lemma to derive the estimation error of deep learning.
Note that for a normed space (V, ‖ · ‖),F1 ⊂ V and δ > 0, we denote the
δ-covering [32] by N (δ,F1, ‖ · ‖∞), which represents the minimum number of
balls of radius δ needed to cover F1.
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Lemma 2.1 ([25], [13]). Let F1 be a function set and f̂ be the least squares
estimator in F1. That is,

f̂ = arg min
f∈F1

n∑
i=1

(Yi − f(Xi))
2. (3)

Assume that ‖f◦‖∞ ≤ F and every element f ∈ F1 satisfies ‖f‖∞ ≤ F for
some F ≥ 1. If N (δ,F1, ‖ · ‖∞) ≥ 3 for δ > 0, it then holds that

E[‖f̂ − f◦‖L2(PX)] ≤ C

[
inf

f∈F1

‖f − f◦‖2L2(PX)+

(F 2 + σ2)
logN (δ,F1, ‖ · ‖∞)

n
+ δ(F + σ)

]
.

In Lemma 2.1, the first term represents the approximation error, and the
second term represents the complexity of the model. To reduce the estimation
error, we need to set the complexity of the model such that the first and second
terms are balanced. It can be seen from this lemma that we need to derive the
approximation error to derive the estimation error. Therefore, we first discuss
the approximation error and then derive the estimation error using Lemma 2.1.

2.3. Adaptive approximation

There are two types of approximation methods, non-adaptive and adaptive.
For a set of target functions to be approximated, non-adaptive methods fix the
basis functions and only change the coefficients of the linear combination. By
contrast, adaptive methods change the basis functions and coefficients for each
target function. Deep learning is a type of adaptive method because, for each
target function, it constructs an appropriate feature extractor that operates as a
basis function tailored to each target function. Indeed, deep learning can achieve
an (almost) optimal approximation error rate that no non-adaptive method can
achieve. Here, we introduce the quantities for an evaluation of these methods
and some facts from previous studies.

We define quantities for evaluating both non-adaptive and adaptive methods.
We follow the definitions of such quantities presented in [8]. First, we introduce
the quantity used to evaluate a non-adaptive method. Let X be a quasi-normed
space defined on a domain D ⊂ R

d equipped with the norm ‖·‖X . Non-adaptive
methods are evaluated by the following N -term best approximation error (Kol-
morogov N -widths) with respect to the norm of X:

dN (W,X) := inf
SN⊂X

sup
f∈W

inf
g∈SN

‖f − g‖X ,

where the infimum is taken over all N -dimensional subspaces in X. In the defi-
nition of dN (W,X), each function in W is approximated by the fixed N dimen-
sional subspace SN . Thus, the N basis functions are fixed against the choice of
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f ∈ W , and only the coefficients of linear combinations are changed. Next, we
introduce two quantities (σN , ρN ) that evaluate the adaptive methods. Let W
and B be subsets of X. The approximation of W by B with respect to the X’s
norm is evaluated by the following quantity:

E(W,B,X) := sup
f∈W

inf
φ∈B

‖f − φ‖X .

Let Φ = {φk}k∈K be a subset of X indexed by a set K (φk ∈ X). We define
ΣN (Φ) such that it consists of all N linear combinations of the elements of Φ as

ΣN (Φ) :=

⎧⎨
⎩φ =

N∑
j=1

ajφkj : kj ∈ K

⎫⎬
⎭ .

Here, we define the quantity that evaluates the approximation by N linear
combinations of functions in Φ as follows:

σN (W,Φ, X) := E(W,ΣN (Φ), X).

In contrast to dN (W,X), for each function in W , we can choose N basis func-
tions from Φ and the coefficients of linear combinations adaptively. Let B be a
family of subsets in X. An approximation by B is evaluated using the following
quantity:

d(W,B, X) := inf
B∈B

E(W,B,X).

If B is the family of all subsets B such that the pseudo-dimension is at most N ,
we denote d(W,B, X) by ρN (W,X), which is called a non-linear n-width. Here,
the pseudo dimension of B is defined as the largest integer N such that there
exist points a1, . . . , aN ∈ D and b1, . . . , bN ∈ R that satisfy

|{sgn(y) | y = (sgn(f(a1) + b1), . . . , sgn(f(aN ) + bN )), f ∈ B}| = 2N ,

where sgn(x) = 1{x>0} − 1{x≤0}. Because the pseudo-dimension of any N -
dimensional vector space from a set in D to R is N (see [12]), ρN (W,X) can
evaluate non-adaptive and adaptive methods. Note that ifX = Lr(Ω), we denote
each quantity by dN (W )r, σN (W,Φ)r, and ρN (W )r.

It was shown that the approximation error on a Besov space and that on
other function spaces related to a Besov space can be improved through an
adaptive method. We take the example of a Besov space on Ω and see an im-
provement when using adaptive methods (see Definition 2.1 for the definition of
a Besov space). First, we determine the approximation error using non-adaptive
methods. The lower bound of the non-adaptive methods is

dN (UBs
p,q

)r �

⎧⎪⎨
⎪⎩
N− s

d+(
1
p− 1

r ) (1 < p < r ≤ 2, s > d( 1p − 1
r )),

N− s
d+

1
p− 1

2 (1 < p < 2 < r ≤ ∞, s > d
p ),

N− s
d (2 ≤ p < r ≤ ∞, s > d

2 ).
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(see [24, 22, 33]). For the functions in Bs
p,q, s controls the smoothness and

p controls the spatial homogeneity of the smoothness. In addition, q controls
the degree of emphasis on the local smoothness, although it dose not directly
influence the convergence rate. However, it was shown in [8] that an adaptive
method can achieve the optimal rate of approximation error. Specifically, it was

proved in Theorems 5.2 and 5.4 in [8] that, for 0 < p, q, r ≤ ∞ and d
(

1
p − 1

r

)
+
<

s, the optimal rate of the approximation methods containing adaptive methods
is

σN (UBs
p,q

,M)r, ρN (UBs
p,q

)r � N− s
d , (2.1)

where M is the set of all Md
k,j (see subsection 2.5) whose degree m satisfies

s < min{m,m − 1 + 1
p}, which do not vanish identically on Ω. Moreover, an

adaptive method can achieve the rate [8]. If parameter p that controls the spatial
homogeneity is small, some functions in Bs

p,q have smooth and rough parts
depending on the input location x. The usefulness of an adaptive method for
p < 2 can be interpreted such that adaptive methods can increase the resolution
of rough parts, which contributes to an effective approximation.

In addition, the improvement of the estimation using an adaptive method
was shown in [28] for a Besov space and a mixed-Besov space and in [29] for an
anisotropic-Besov space. By applying an adaptive method to the analysis of the
estimation error through deep learning, it was shown that the estimation error
could be improved. In [28] and [29], it was proven that the estimation error by
deep learning can achieve the minimax rate up to the poly-log order.

2.4. Besov space

In this section, we introduce the basic properties of the function spaces, in
particular, a Besov space and variable exponent Besov space. First, we define a
Besov space as follows:

Definition 2.1 (The definition of Bs
p,q(Ω)). Let 0 < p, q ≤ ∞, s > 0, r ∈ N and

r > s. We define the r-times difference as

Δr
h(f)(x) =

⎧⎨
⎩
Δh ◦Δh ◦ · · · ◦Δh︸ ︷︷ ︸

r

(f)(x) (x ∈ Ω, x+ rh ∈ Ω),

0 (otherwise),

where Δh(f)(x) = f(x+h)−f(x). The r-th module of the smoothness is defined
as follows:

ωr,p(f, t) = sup
h∈Rd:‖h‖2≤t

‖Δr
h‖p.

We define the following quantity using ωr,p(f, t):

|f |Bs
p,q(Ω) :=

⎧⎨
⎩
[∫ 1

0
(t−sωr,p(f, t))

q 1
t dt

] 1
q

(q < ∞),

supt>0 t
−sωr,p(f, t) (q = ∞).
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By using |f |Bs
p,q

(Ω), we define the norm as follows:

Bs
p,q(Ω) = {f ∈ Lp(Ω) | ‖f‖Bs

p,q(Ω) := ‖f‖p + |f |Bs
p,q(Ω) < ∞}.

Remark 2.1. We note some comments regarding the quantities in Defini-
tion 2.1.

• Operator Δh is similar to the differential, and if function f is an r-times

continuous differentiable function on R, it holds that limh→0
Δr

h(f)(x)
|h|r =

f (r)(x).
• For ωr,p(f, t), by applying the Hölder’s inequality, it can be easily con-

firmed that ωr,p(f, t) becomes larger as p increases.
• As s increases, t−s increases for t, which is close to 0. Therefore, when s

is larger, ωr,p(f, t) needs to be smaller for t, which is close to 0. Thus, we
can interpret that s controls the local smoothness.

• If r ∈ N satisfies r > s, the definition of Bs
p,q(Ω) does not depend on r.

It is known that some other function spaces can be reproduced from a Besov
space by taking some parameters to satisfy certain conditions. First, we define
a Hölder space and Sobolev space.

Definition 2.2 (Hölder space (Cβ(Ω))). Let β > 0 satisfy β /∈ N. In addition,
we define m := �β�. For the m-times continuous differentiable function f : Rd →
R, we define the norm of the Hölder space Cβ(Ω) as follows:

‖f‖Cβ(Ω) := max
|α|≤m

‖Dαf‖∞ + max
|α|=m

sup
x,y∈Ω

|Dαf(x)−Dαf(y)|
|x− y|β−m

,

where for α = (α1, α2, . . . , αd), we define |α| =
∑d

i=1 |αi|, and for α ∈ Z
d, we

define the derivative by Dαf(x) = ∂|α|f
∂α1x1,...,∂αdxd

. Using this norm, the Hölder
space is defined as follows:

Cβ(Ω) :=
{
f | m times differentiable and ‖f‖Cβ(Ω) < ∞

}
.

Definition 2.3 (Sobolev space (Wm
p (Ω))). Let m ∈ N and 1 ≤ p ≤ ∞. For

f ∈ Lp(Ω), we define the norm of the Sobolev space as follows:

‖f‖Wm
p (Ω) :=

⎛
⎝ ∑

|α|≤m

‖Dαf‖pp

⎞
⎠

1
p

,

where Dα is a weak derivative. Here, Wm
p (Ω) is defined as follows:

Wm
p (Ω) :=

{
f ∈ Lp(Ω) | ‖f‖Wm

p (Ω) < ∞
}
.

In [30], the relationships between a Besov space and other function spaces
are provided. In addition, the relationships between Besov spaces with different
parameters are written. We introduce some of them here. We note that for
normed vector spaces (V1, ‖ · ‖V1) and (V2, ‖ · ‖V2) such that V1 ⊂ V2, if the
inclusion map i : V1 → V2 is continuous, we denote V1 ↪→ V2.
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• For m ∈ N, Bm
p,1(Ω) ↪→ Wm

p (Ω) ↪→ Bm
p,∞(Ω).

• Bm
2,2(Ω) = Wm

2 (Ω).
• For 0 < s < ∞ and s /∈ N, Cs(Ω) = Bs

∞,∞(Ω).

• Let 0 < s < ∞, 0 < p, q, r ≤ ∞ with s > δ := d
(

1
p − 1

r

)
+
. Then,

Bs
p,q(Ω) ↪→ Bs−δ

r,q (Ω).

• Let C0(Ω) be the set of continuous functions on Ω. Then, for s > d
p ,

Bs
p,q(Ω) ↪→ C0(Ω).

Thus, a Besov space has close relationships between a Hölder space and
Sobolev space. We can obtain the properties of other function spaces by an-
alyzing the Besov space.

2.5. Decomposition of functions in Besov space by cardinal B-spline

For the analysis provided after this section, we introduce some facts regard-
ing the approximation on the Besov space and decomposition using a cardinal
B-spline basis researched in [3] and [8]. In this study, we mainly use the ap-
proximation theory of a Besov space with a cardinal B-spline basis, because
the authors in [35, 25] showed the effective approximation for polynomials us-
ing a deep ReLU network; thus, a B-spline cardinal basis is convenient for the
approximation theory when applying a deep neural network.

First, we introduce facts regarding Bs
p,q(Ω) studied in [3]. Let m ∈ N and N

be the univariate B-spline basis, i.e., N(x) := 1
m!

∑m+1
j=0 (−1)j

(
m+1
j

)
(x− j)m+ . In

addition, we define the tensor product of the B-splines as

Md
0,0(x) := N(x1)N(x2) · · ·N(xd)

and for k ∈ Z+ and j ∈ Z
d, we define the cardinal B-spline basis as

Md
k,j := Md

0,0(2
k(x− j)).

Λ(k) denotes the set of j in which Md
k,j does not vanish identically on Ω. Here,

it can be shown in the same manner as Corollary 2-2 in [8] that for all f ∈
Bs

p,q(Ω), there exists Qk(f) =
∑

j∈Λ(k) ck,jM
d
k,j(x), which satisfies the following

inequality:
‖f −Qk(f)‖r ≤ 2−k(s−δ), (2.2)

where s > δ = d
(

1
p − 1

r

)
+
and degree m of the cardinal B-spline basis satisfies

s < min{m,m − 1 + 1
p}. Additionally, we let Q−1 := 0 and qk := Qk − Qk−1,

and it is known that qk can be represented as follows:

qk =
∑

j∈Λ(k)

ak,jM
d
k,j .

Note that, throughout this paper, Qk(f) and qk(f) indicate the decomposition
of f above; if the decomposition target f is apparent, we denote these by Qk
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and qk. For s < min{m,m − 1 + 1
p}, by Theorem 5.1 and and Corollary 5.3 in

[3], f ∈ Bs
p,q(Ω) can be decomposed as follows:

f(x) =

∞∑
k=0

∑
j∈Λ(k)

ak,jM
d
k,j(x). (2.3)

Note that the convergence is with respect to the Bs
p,q(Ω) norm. Moreover, the

following norm equivalence holds:

‖f‖Bs
p,q(Ω) �

( ∞∑
k=0

2ksq‖qk‖qp

) 1
q

�

⎛
⎜⎝ ∞∑

k=0

⎛
⎝ ∑

j∈Λ(k)

|ak,j |p2(sp−d)k

⎞
⎠

q
p

⎞
⎟⎠

1
q

. (2.4)

2.6. Variable exponent Besov space

Next, we define a variable exponent Besov space. Here, we consider the case in
which only parameter s is variable and parameters p and q are fixed. Before the
definition of a variable exponent Besov space, we define the log-Hölder continuity
that is assumed for the function of smoothness.

Definition 2.4 (log-Höder continuity). For a function f : Ω → R, if f satis-
fies the following log-Höder continuity, we denote f ∈ Clog(Ω): there exists a
constant clog > 0 and

|f(x)− f(y)| ≤ clog

log(e+ 1
‖x−y‖2

)
(∀x,∀ y ∈ Ω). (2.5)

We can see that the log-Höder continuity is stronger than the continuity, and
is weaker than the Lipschitz continuity.

There are some methods to define a variable exponent Besov space. In this
study, we define this as follows:

Definition 2.5 (variable exponent Besov space B
s(x)
p,q (Ω)). Let s(·) ∈ Clog(Ω).

We assume 0 < infx∈Ω s(x) and let r := �supx∈Ω s(x)�+ 1. We define ω∗
r,p(f, t)

in a similar manner as the case of Bs
p,q(Ω):

ω∗
r,p(f, t) = sup

h∈Rd:‖h‖2≤t

‖t−s(·)Δr
h‖p. (2.6)

Next, we define |f |
B

s(x)
p,q (Ω)

as follows:

|f |
B

s(x)
p,q (Ω)

:=

{
[
∫ 1

0
(ω∗

r,p(f, t))
q 1
t dt ]

1
q (q < ∞),

supt>0 ω
∗
r,p(f, t) (q = ∞).

In the same manner as in Bs
p,q(Ω), the norm is defined as the sum of the Lp

norm and |f |
B

s(x)
p,q (Ω)

, that is,

Bs(x)
p,q (Ω) = {f ∈ Lp(Ω) | ‖f‖Bs(x)

p,q
:= ‖f‖p + |f |

B
s(x)
p,q

< ∞}.
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Note that for the case ofBs
p,q(Ω), t

−s is contained in the definition of |f |Bs
p,q(Ω);

whereas, in the case of a variable exponent, it is contained in the definition of
ω∗
r,p(f, t). By definition, we can see that the permissible smoothness changes

depending on x.

We can consider that the definition above is the smoothness parameter of the
Besov space s when replaced with variable s(x). From the definition, it holds
that

Bs(x)
p,q (Ω) ⊂ Bsmin

p,q (Ω),

where smin = minx∈Ω s(x). Note that we denote maxx∈Ω s(x) by smax and

minx∈Ω s(x) by smin. Other similar (probably equivalent) definitions of B
s(x)
p,q

have been studied by [18, 2].

Next, we introduce some properties of B
s(x)
p,q (Rd) that are studied in [1].

• We assume s0, s1 ∈ L∞(Rd), and for all x ∈ R
d, it holds that s0(x) ≥

s1(x). We let

s0(x)−
d

p0
= s1(x)−

d

p1
+ ε(x).

If infx∈Rd ε(x) > 0 is satisfied, it holds that

Bs0(x)
p0,q (Rd) ↪→ Bs1(x)

p1,q (Rd).

• For δ > 0, we assume that for all x ∈ R
d, it holds that

s(x)− d

p
≥ δmax

{
1− 1

q
0

}
.

By letting Cu(R
d) be the set of functions that are bounded and uniformly

continuous functions, it holds that

Bs(x)
p,q (Rd) ↪→ Cu(R

d).

• We assume that for all x ∈ R
d, s(x) satisfies s(x) < 1. We define the

Zygmund space Cs(x) as

Cs(x)(Rd) :=

{
f ∈ L∞(Rd)

∣∣∣∣∣ ‖f‖∞ + sup
x∈Rd,h∈Rd\{0}

|Δ1
hf(x)|

|h|s(x) < ∞
}
.

Then, it holds that

Bs(x)
∞,∞(Rd) = Cs(x)(Rd).

Thus, it is known that a variable exponent Besov space also reproduces other
function spaces by taking certain parameters to satisfy some conditions.
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3. Approximation theory of the variable exponent Besov space and
approximation error

3.1. Lower bound of approximation error

In this section, we evaluate the lower bound of the approximation error on the
unit ball of the variable exponent Besov space U

B
s(x)
p,q (Ω)

. In the main result

(Theorem 3.1), we will show that the polynomial order of the approximation

error on U
B

s(x)
p,q (Ω)

cannot be improved from N− smin
d for any s(x). To prove

Theorem 3.1, we show the following lemma.

Lemma 3.1. Let 0 < p, q ≤ ∞, a ∈ Ω, ξ > 0 and ε > 0. Suppose that
s(x) satisfies maxx∈[a−ξ,a+ξ]d s(x) < s + ε and f ∈ UBs+ε

p,q (Ω) satisfies suppf ⊂
[a − ξ

2 , a + ξ
2 ]

d. Then, there exists C > 0 that does not depend on f such that
‖f‖

B
s(x)
p,q (Ω)

≤ C‖f‖Bs+ε
p,q (Ω) holds.

Proof. For 0 < t < ξ
2r and ‖h‖2 ≤ t, Δr

h(f)(x) = 0 holds, where x ∈ Ω\[a −
ξ, a+ ξ]d. By (2.6) it holds that

ω∗
r,p(f, t) < t−(s+ε)ωr,p(f, t). (3.1)

Moreover, by applying a triangle inequality, we have

‖Δr
h(f)‖p � 2r‖f‖p.

Thus, for any t ∈ (0, 1], it holds that

ω∗
r,p(f, t) � 2rt−smax‖f‖p ≤ 2rt−smax‖f‖Bs+ε

p,q (Ω), (3.2)

where, for t ∈ (0, 1], we use t−s(x) < t−smax . Therefore, by (3.1) and (3.2), there
exists C0 > 0, and we have the following:

∫ 1

0

(ω∗
r,p(f, t))

q 1

t
dt=

∫ ξ
2r

0

(ω∗
r,p(f, t))

q 1

t
dt+

∫ 1

ξ
2r

(ω∗
r,p(f, t))

q 1

t
dt

≤
∫ ξ

2r

0

{t−(s+ε)ωr,p(f, t)}q
1

t
dt+

∫ 1

ξ
2r

{2r‖f‖Bs+ε
p,q (Ω)t

−smax}q 1
t
dt

≤C0
q‖f‖q

Bs+ε
p,q (Ω)

.

Note that C0 does not depend on f , but does depend on ξ and r. There-
fore, |f |

B
s(x)
p,q (Ω)

≤ C0‖f‖Bs+ε
p,q (Ω) holds, and we obtain ‖f‖

B
s(x)
p,q (Ω)

≤ (C0 +

1)‖f‖Bs+ε
p,q (Ω) ≡ C‖f‖Bs+ε

p,q (Ω). �

We want to expand the local argument around smin to the argument on Ω by
using the extension operator. To introduce the extension operator in Lemma 3.3,
we define the minimally smooth domain.
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Definition 3.1 (minimally smooth domain). Let S be an open set in R
d. Here,

S is a minimally smooth domain if there exists η > 0 and open sets Ui ⊂ R
d (i =

1, 2, . . .), such that the following conditions hold:
(i) For each x ∈ ∂S, ball B(x, η) is contained in one of (Ui)i,
(ii) Point x ∈ R

d is in at most N sets Ui, where N is an absolute constant, and
(iii) For each i, Ui ∩ S = Ui ∩ Si, where Si is a rotation of a Lipschitz graph
domain.
Note that Λ is a Lipschitz graph domain, if there exists a Lipschitz continuous
function φ : R

d−1 → R. That is, there exists L > 0, and for all x, y ∈ S,
|φ(x)−φ(y)|

‖x−y‖2
≤ L holds, and Λ can be written as follows:

Λ = {(u, v) : u ∈ R
d−1, v ∈ R and v > φ(u)}.

Here, (u, v) indicates that (u�, v)� for u ∈ R
d−1 and v ∈ R.

In [26], it is stated that all convex sets in R
d are minimally smooth domains.

For a better understanding of Definition 3.1, we prove that a cube is a minimally
smooth domain.

Lemma 3.2. Let A be the interior of [0, 1]d. Then, A is a minimally smooth
domain.

Proof. The value of x ∈ ∂A can be expressed as follows:

x =

d−1∑
i=1

tiwji + tjdwjd

(1 ≤ j1 < j2 < . . . < jd−1 ≤ d, jd = {1, · · · , d}\{ji}d−1
i=1 , tjd ∈ {0, 1}),

where {wi}di=1 is a standard basis in R
d and 0 ≤ ti ≤ 1 (i = 1, . . . , d− 1).

Let A
′

(0,...,0) be the image of A under an orthonormal transformation O(0,...,0)

that transfers (1, 1, . . . , 1) to (0, 0, . . . ,
√
d). We also define

D :=

{
d∑

i=1

tiwi

∣∣∣∣∣ 0 ≤ ti ≤
2

3

}
.

Here, we define h : Rd−1 → R as follows:

h(u) :=

⎧⎪⎪⎨
⎪⎪⎩
inf(u,v)∈∂A

′
(0,...,0)

v (if there exists v ∈ R that satisfies

(u, v) ∈ ∂A
′

(0,...,0)),

inf(u′ ,v)∈∂A
′
(0,...,0)

v + ‖u− u
′‖2 (otherwise),

where u
′
= arg min

∃v∈R,s.t.,(u′ ,v)∈∂A
′
(0,...,0)

‖u− u
′‖2. It is clear that h(u) is a Lipschitz

continuous function. We also let S(0,...,0) be the following:

S(0,...,0) := {(u, v) : u ∈ R
d−1, v ∈ R and v > h(u)}.
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For each point x in D, based on the definition of D and radius 1
3
√
d
, it holds

that

B

(
x,

1

3
√
d

)
∩A = B

(
x,

1

3
√
d

)
∩O−1

(0,...,0)S(0,...,0).

We define the vertex set of [0, 1]d as {z1, z2, . . . , z2d} ⊂ R
d. For each vertex

zj , through the translation that transforms zj into (0, . . . , 0), we can apply the
same argument as (0, . . . , 0) and obtain Szi ; it thus holds that

B

(
x,

1

3
√
d

)
∩A = B

(
x,

1

3
√
d

)
∩O−1

zj Szj , (3.3)

where x is in the neighborhood of zj , which corresponds to D. We set � ∈ N

such that it satisfies 1
2�

< 1
6
√
d
. For all x ∈ R

d with each coordinate xi =
j
2�

(1 ≤ i ≤ d, 0 ≤ j ≤ 2	), we number x of index k as x(k) and denote the

set of B(x(k), 1
3
√
d
) as {Uk}k=1,...,n. If we take 0 < η < 1

6
√
d
, condition (i) in

Definition 3.1 is satisfied. Condition (ii) in Definition 3.1 is also satisfied, and
condition (iii) is satisfied by (3.3). �
Lemma 3.3. Let S ⊂ R

d be a closed subset whose interior is a minimally
smooth domain. Then, for 0 < p, q ≤ ∞ and 0 < s, there exists an extension
operator E : f ∈ Bs

p,q(S) �→ E f ∈ Bs
p,q(R

d) such that

• E is a bounded mapping, that is, there exists a constant C that does not
depend on f ∈ Bs

p,q(Ω), and ‖E f‖Bs
p,q(R

d) ≤ C‖f‖Bs
p,q(S) holds.

• E f(x) = 0, where diam(S) = ξ and dist(S, x) > 6ξ.

Proof. Although [4] proved this for only 0 < p ≤ 1, it can also be proved for
1 ≤ p < ∞ using the technique in Theorem 6.6 in [4]. Furthermore, for p = ∞,
it can be proven in the same way as the case 0 < p ≤ 1. �

By using Lemma 3.1, Lemma 3.2, and Lemma 3.3, Theorem 3.1 can be
proven. We redefine M as the set of all Md

k,j , whose degree m satisfies smax <

min{m,m− 1 + 1
p}.

Theorem 3.1. Suppose smin > d
(

1
p − 1

r

)
+
. Then, for all ε > 0, it holds that

σN

(
U
B

s(x)
p,q

,M
)
r
, ρN

(
U
B

s(x)
p,q

)
r

� N− smin+ε

d .

Proof. Let s(a) = smin. By the continuity of s(x), for all ε > 0, there exists
ξ > 0 such that |x− a| < ξ ⇒ |s(x)− smin| < ε. Let Q := [a− ξ

14
√
d
, a+ ξ

14
√
d
]d.

By Lemma 3.2, Q is a minimally smooth domain. Thus, by applying Lemma 3.3,
there exists E f : Bsmin+ε

p,q (Q) → Bsmin+ε
p,q (Ω) that satisfies the two properties in

Lemma 3.3. Note that Lemma 3.3 can also be used for extending functions to
Ω because for a function, g : Rd → R, it holds that ‖g‖Bs

p,q(Ω) ≤ ‖g‖Bs
p,q(R

d).
By using these two properties and Lemma 3.1, it can be proven that the image
of the restriction mapping f ∈ U

B
s(x)
p,q (Ω)

�→ f |Q contains {f ∈ Bsmin+ε
p,q (Q) |

‖f‖
B

smin+ε
p,q (Q)

≤ 1
C }, where C > 0 is a constant.
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Let Ef be an approximation function of f . Here, the following inequality
clearly holds:

‖f − Ef‖Lr(Ω) ≥ ‖f − Ef‖Lr(Q).

Note that the set of functions that satisfy the condition with respect to ρN on Ω
are mapped subjective to the set of functions that satisfy the condition on Q by
the restriction. By applying (2.1), under each condition σN or εN , the following
inequality holds:

inf
Ef

sup
f∈B

s(x)
p,q (Ω)

‖f − Ef‖Lr(Ω) � inf
Ef

sup
f∈B

smin+ε
p,q (Q)

‖f − Ef‖Lr(Q)

� N− smin+ε

d .

Thus, the proof is completed. �

Remark 3.1. Theorem 3.1 indicates that even an adaptive method cannot

improve the polynomical order of an approximation error better than N− s+ε
d for

any ε > 0. However, it should be noted that the constant Cε hidden in � satisfies

limε→0 Cε = ∞. In contrast, by the inclusion relation B
s(x)
p,q (Ω) ⊂ Bsmin

p,q (Ω), it is

known that N− smin
d can be achieved [8]. Therefore, our interest is in improving

the rate by a factor slower than a polynomial order. In fact, we will show that
a poly-log order improvement can be realized.

3.2. Upper bound of approximation error

In this section, we analyze the approximation error using the adaptive method.
Because it is difficult to deal with a general s(x), we analyze a specific s(x)
defined by

s(x) = s+ β‖x− c‖α2 (α, β, s > 0, c ∈ Ω).

Throughout this paper, we fix parameters α, β, s > 0, c ∈ Ω. It is clear that
s(x) takes the minimum value at x = c, and as α decreases, the gradient of
s(x) around c becomes larger. We note in our analysis that the gradient of s(x)
around the minimum point is important for the order of the approximation error.
Thus, this form of s(x) is convenient and sufficient to characterize the approx-
imation of the variable exponent Besov space. Consider the case in which s(x)
takes the minimum value at several points, and the gradient of s(x) at each min-
imum point behaves as in a single minimum situation. The approximation error
of this case is the same as that of s(x), taking the minimum value at only one

point. For example, for d = 1, s(x) = 1+
√

|x− 1
4 |1[0, 12 ]

(x) +
√
|x− 3

4 |1[ 12 ,1]
(x)

falls in our analysis.
Let us determine whether s(x) satisfies the log-Hölder continuity. If α > 1, it

is clear that s(x) satisfies the log-Hölder continuity because s(x) is a Lipschitz
continuous function. Thus, it suffices to consider the case of 0 < α ≤ 1. Because
if we exclude the neighborhood of c, s(x) is a Lipschitz continuous function in
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Fig 1. Example in R
2: s(x) = 1 + 3 4

√
(x− 1

2
)2 + (y − 1

2
)2.

Ω, it suffices to consider a neighborhood of c. Based on the triangle inequality
and 0 < α ≤ 1, the following inequality holds:

‖x− c‖2 ≤ ‖y − c‖2 + ‖x− y‖2 ≤ (‖y − c‖α2 + ‖x− y‖α2 )
1
α .

Thus,

‖x− c‖α2 − ‖y − c‖α2 ≤ ‖x− y‖α2 .

Therefore, it holds that

|s(x)− s(y)| log
(
e+

1

‖x− y‖2

)
= β|‖x− c‖α2 − ‖y − c‖α2 | log

(
e+

1

‖x− y‖2

)

≤ β‖x− y‖α2 log

(
e+

1

‖x− y‖2

)
.

By limt→∞
log(e+t)

tα = 0, the log-Hölder continuity is confirmed.
Let qk =

∑
j∈Λ(k) ak,jM

d
k,j(x). Here, let A be a subset in R

d, and denote

the set of indexes j that satisfy suppMd
k,j ∩ A �= ∅ by ΛA(k). Moreover, let

mA,k := |ΛA(k)|. We reorder indexes j ∈ ΛA(k) as {vA,j}mA,k

j=1 such that the
coefficients are ordered in descending order. That is, the following inequality
holds:

|ak,vA,1
| ≥ |ak,vA,2

| ≥ · · · ≥ |ak,vmA,k
|.

Here, we denote

Gk(qk,m,A) :=
m∑
j=1

ak,vA,j
Md

k,vA,j
.

Subsequently, we let δ := d
(

1
p − 1

r

)
+
.

To prove the Theorem 3.2 that provides an upper bound of the approximation
error in the case of s(x) = s+ β‖x− c‖α2 , let us show Lemma 3.4.
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Lemma 3.4. Let 0 < p, q, r ≤ ∞, t > 0, A = [c − t, c + t]d, and s(x) =
s+ β‖x− c‖α. Suppose that s > δ and the degree of cardinal B-spline m satisfy

smax < min{m,m − 1 + 1
p}. Moreover, we let λ > 0, 0 < ε < d(s−δ)

δ , N �
2k̄d, k∗ = 	ε−1 log(λ2k̄d)
 + k̄, (k̄ + Nk)

∗ = 	ε−1 log(λ2k̄d)
 + k̄ + Nk, nk =
	λ2k̄d2−ε(k−k̄)
 and mk = 	λ2k̄d2−ε(k−k̄−Nk)
. For f ∈ U

B
s(x)
p,q (Ω)

, we define fN
as follows:
(i) Suppose that p ≥ r,

fN = Qk̄(f)1Ac +Qk̄+Nk
(f)1A,

(ii) Suppose that p < r,

fN = Qk̄(f)1Ac +

k∗∑
k=k̄+1

Gk(qk, nk, A
c)1Ac +Qk̄+Nk

(f)1A

+

(k̄+Nk)
∗∑

k=k̄+Nk+1

Gk(qk,mk, A)1A

= Qk̄(f)1Ac +

k∗∑
k=k̄+1

nk∑
j=1

ak,vAc,j
Md

k,vAc,j
1Ac +Qk̄+Nk

(f)1A

+

(k̄+Nk)
∗∑

k=k̄+Nk+1

mk∑
j=1

ak,vA,j
Md

k,vA,j
1A,

where Qk(·) is the approximation determined through a B-spline basis for the
functions in Bs

p,q(Ω) defined in subsection 2.5. Under this condition, the inequal-
ity below holds:

‖f − fN‖r �
{
2−k̄(s+βtα) + 2−(k̄+Nk)s (p ≥ r),

2−k̄(s+βtα) + 2−sk̄2−(s−δ)Nk (p < r).

The proof is given in Appendix A.1.

Theorem 3.2. Let s(x) = s + β‖x − c‖α2 and suppose 0 < p, q, r ≤ ∞ and
s > δ. For all f ∈ U

B
s(x)
p,q (Ω)

, there exists fN that is represented as an N linear

combination of cardinal B-spline times some indicator function and satisfies the
following inequality:

‖f − fN‖r � N− s
d

(
logN

log(logN)

)− s−δ
α

.

Proof. Let the degree m of cardinal B-spline satisfy smax < m. Note that

f ∈ B
s(x)
p,q ⇒ f ∈ Bs

p,q. In addition, let k̄ ∈ N satisfy N � 2k̄d.
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We take the adaptive approximation method around the minimum of s(x).
Let ak be a positive number depending on N , which will be fixed below. It is
clear that for ak > 0,

2k̄(s+βtα) ≥ ak2
k̄s ⇒ t ≥

(
1

β

) 1
α
(
log ak
k̄

) 1
α

.

Let t :=
(

1
β

) 1
α
(

log ak

k̄

) 1
α

, and let A := [c − t, c + t]d. We consider increasing

the resolution of B-spline in A, such that the number of B-splines on A satisfies
� 2k̄d. That is, the following formula holds:

2(k̄+Nk)d

(
log ak
k̄

) d
α

� 2k̄d.

Thus, Nk is defined as Nk = 	log
(

k̄
log ak

) 1
α 
. We have the approximation error

by Lemma 3.4,

‖f − fN‖r �
{
2−k̄(s+βtα) + 2−(k̄+Nk)s (p ≥ r),

2−k̄(s+βtα) + 2−sk̄2−(s−δ)Nk (p < r).

Therefore, it holds that

‖f − fN‖r � 2−k̄s

⎛
⎝ 1

ak
+

(
k̄

log ak

)− s−δ
α

⎞
⎠ .

Here, setting ak =
(

k̄
log k̄

) s−δ
α

, we then obtain the desired result. �

Remark 3.2. Here, β does not appear in the convergence rate in the Theo-
rem 3.2, but is hidden in the constant term. In addition, note that the constant
term in � is taken independent of c.

Remark 3.3 (approximation theory for general s(x)). The method in Theo-
rem 3.2 can be applied to a general s(x). Note that, if the measure of x satisfying
s(x) = smin is not 0, the method does not make sense, that is, the approxima-

tion error is not better than N− smin
d including a poly-log order. A summary of

the approximation method is as follows:

1. Set a positive integer ak, and increase the resolution of the domain

A =
{
x ∈ Ω | 2k̄s(x) ≤ ak2

k̄smin

}
as 2(k̄+Nk)dμ(A) � 2k̄d, where 2k̄d � N,

2. Fix ak so that 2k̄sminak � 2(k̄+Nk)smin .

It can be seen that the measure around the minimum point is important for
the approximation error rate of this method. This is controlled by exponent α
in s(x) = s + β‖x − c‖α2 . This also indicates that our analysis for the specific
choice of s(x) provides essential insight for more general situations.
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It can be seen that the poly-log part of the order N− s
d

(
logN

log(logN)

)− s−δ
α

de-

screases as α decreases. That is, as the gradient of s(x) around the minimum
point sharpens, the approximation error improves. Moreover, for r < p, the
poly-log order does not depend on dimension d. Thus, if d is large, the poly-
log factor has a relatively strong effect. The dependence of the poly-log order
on p can be interpreted as follows. Because p controls the homogeneity of the
smoothness of functions in a variable exponent Besov space, if p is small, the
number of B-spline bases for the adaptive method around the minimum of s(x)
should be larger.

The adaptive method in Theorem 3.2 is taken at around c. Note that, if c
is fixed and r ≤ p, the B-spline bases can be fixed in a non-adaptive manner,
that is, we may fix the bases independent of the target function f . Therefore,
the corollary below immediately follows.

Corollary 3.1. Let s(x) = s + β‖x − c‖α2 and suppose 0 < q, r ≤ ∞, p ≥ r.
Then,

dN

(
U
B

s(x)
p,q (Ω)

)
r

� N− s
d

(
logN

log(logN)

)− s
α

.

Proof. In the proof of Theorem 3.2, f ∈ B
s+β‖x−c‖α

2
p,q (Ω) can be approximated

by a fixed N linear combination of the B-spline basis times an indicator function.
�
Remark 3.4. Here, we evaluate how effective the adaptive approximation is to

improve the accuracy. We compare the approximation error of B
s+β‖x−c‖α

2
p,q (Ω)

with that of Bs+ε
p,q (Ω). By calculating the upper bound of ε that satisfies the

following inequality,

N− s+ε
d ≤ N− s

d

(
logN

log(logN)

)− s−δ
α

,

we can see that the approximation error by an adaptive method is equivalent

to that of Bs+ε
p,q (Ω), where ε =

log( log N
log(log N) )

(s−δ)d
α

logN . Therefore, it can be seen that
for N , which is not too large, the improvement using the adaptive method is
significant if α is small.

4. Approximation and estimation errors of deep learning

4.1. Approximation error of deep learning

In this section, we evaluate the approximation and estimation errors of deep

neural networks on B
s+β‖x−c‖α

2
p,q (Ω). We denote the ReLU activation function by

η(x) = max{x, 0}, where η(x) is operated in an element-wise manner for vector
x. We define the neural network with the ReLU activation, depth L, width W ,
sparsity constraint S, and norm constant B as follows:

Φ(L,W, S,B) := {(A(L)η(·) + b(L)) ◦ · · · ◦ (A(2)η(·) + b(2)) ◦ (A(1)x+ b(1)) |
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A(1) ∈ R
W×d, A(L) ∈ R

1×W , A(k) ∈ R
W×W (1 < k < L),

b(L) ∈ R, b(k) ∈ R
W (1 ≤ k < L),

L∑
j=1

(‖A(j)‖0 + ‖b(j)‖0) ≤ S, max
j

{‖A(j)‖∞ ∨ ‖b(j)‖∞} ≤ B},

where, for matrix A, ‖A‖∞ is the maximum absolute value of A and ‖A‖0 is
the number of non-zero elements of A.

We evaluate the worst-case approximation error of the deep neural networks
Φ(L,W, S,B) on U

B
s+β‖x−c‖2α

p,q
(Ω) with Lr norm. That is, the quantity we want

to evaluate is
sup

f◦∈U
B

s+β‖x−c‖α2
p,q (Ω)

inf
f̂∈Φ(L,W,S,B)

‖f◦ − f̂‖r.

We assume that there exists a density function of PX with respect to the
Lebesgue measure that is denoted p(x). Moreover, we assume that there exists
T > 0 such that p(x) ≤ T for all x ∈ Ω.

First, we use the lemma below. This indicates the approximation of the B-
spline function by a neural network.

Lemma 4.1 ([28]). Let m ∈ N be the degree of Md
0,0 and let c(d,m) be a

constant that depends only on d,m. For all ε > 0, there exists a neural network

M̄ ∈ Φ(L0,W0, S0, B0) with L0 := 3 + 2	log2( 3d∨m

εc(d,m)
) + 5
	log2(d ∨m)
,W0 :=

6dm(m+ 2) + 2d, S0 := L0W0
2 and B0 := 2(m+ 1)m that satisfies

‖Md
0,0 − M̄‖L∞(Rd) ≤ ε,

and for all x /∈ [0,m+ 1]d, M̄(x) = 0.

Theorem 4.1 indicates that the upper bound of the approximation error of
U
B

s+β‖x−c‖α2
p,q (Ω)

by a neural network. The proof is similar to that of Proposition

1 in [28]. The outline of the proof aims to approximate fN in Theorem 3.2 by a
neural network. The proof is presented in Appendix A.2.

Theorem 4.1. Suppose that 0 < r < ∞, 0 < p, q,≤ ∞, 0 < s < ∞, and
s(x) = s+ β‖x− c‖α2 . Furthermore, we assume that s > δ and m ∈ N satisfies

smax < min{m,m−1+ 1
p}. Let ν ∈ R be ν = 1

2 min{d(s−δ)
δ , 1}. For a sufficiently

large N , let ε > 0 satisfy

ε ≤ N
−{(ν−1+d−1)( d

p−s)
+
+ s

d}(logN)
− 1

α (
d
p−s)

+
−1− s−δ

α (log(logN))
s−δ
α .

Moreover, let W1 := 6dm(m+2)+4d+2, L = 4+3	log2( 3
d+1∨m

εc(d,m)
)+5
	log2(d+

1 ∨m)
,W = NW1, S = [(L− 1)W 2
1 + 1]N ,

AN := N
r{ s

d+(ν−1+d−1)( d
p−s)

+
}
(logN)

r
α (

d
p−s)

+
+r
(

logN
log(logN)

) 1
α (−d+1+sr−sδ)

,

BN := N
(ν−1+d−1)

(
1∨( d

p−s)
+

)
(logN)

1
α

(
1∨( d

p−s)
+

)
and B = O(AN ∨ BN ). It
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then holds that

sup
f◦∈U

B
s(x)
p,q (Ω)

inf
f̂∈Φ(L,W,S,B)

‖f◦ − f̂‖r � N− s
d

(
logN

log(logN)

)− s−δ
α

.

4.2. Estimation error of deep learning

First, for the estimation error, we confirm that the lower bound of the poly-

nomial factor is n
− 2smin

2smin+d if X takes a value around the minimum point of
s(x) with a certain probability. Let a satisfy s(a) = smin. We suppose that
there exists a constant t > 0 such that p(x) satisfies infx∈Q p(x) > 0, where
Q := [a − t

2 , a − t
2 ]

d. This assumption ensures that X takes values in the do-
main where the estimation is most difficult with a certain probability. Under
this assumption, we can obtain the inequality below:

E

[∫
Ω

(f(x)− f̂(x))2p(x)dx

]
≥ E

[∫
Q

(f(x)− f̂(x))2p(x)dx

]

� E

[∫
Q

(f(x)− f̂(x))2dx

]
,

where f̂ : [0, 1]d → R is the function that is estimated from the observed
data (Xi, Yi)

n
i=1 and the expectation is taken with respect to the observed data

(Xi, Yi)
n
i=1. Moreover, note that the following holds:

sup
f∈UBs

p,q(Q)

E

[∫
Q

(f(x)− f̂(x))2dx

]
� sup

g∈UBs
p,q(Ω)

E

[∫
Ω

(g(x)− ĝ(x))2dx

]
.

Here, the transformation from f into g and from f̂ into ĝ is based on the
translation and scale change of x. By the definition of a Besov space, it holds

that ‖f‖Bs
p,q(Q) � ‖g‖Bs

p,q(Ω). It is known that inf f̂ R(f̂ , Bs
p,q(Ω)) � n− 2s

2s+d

[19, 6, 5, 10]; thus, by the same argument as Theorem 3.1, for all s(x) it holds
that

∀ε > 0, inf
f̂

R(f̂ , Bs(x)
p,q (Ω)) � n

− 2(smin+ε)

2(smin+ε)+d .

Therefore, it is important to consider the poly-log order when determining the
difference in the convergence rate.

Now, we evaluate only the L2 norm risk, and thus introduce ν := d
(

1
p − 1

2

)
+

instead of δ.
To obtain the upper bound of the estimation error through a deep neural

network, we use the following lemma.

Lemma 4.2 ([25, 28]). The covering number of Φ(L,W, S,B) is bounded by

logN (δ,Φ(L,W, S,B), ‖ · ‖∞) ≤ S log(δ−1L(B ∨ 1)L−1(W + 1)2L)

≤ 2SL log((B ∨ 1)(W + 1)) + S log(δ−1L).
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Before the proof of Theorem 4.2, we introduce some notations. Let F > 0,
and we define Ψ(L,W, S,B) as follows:

Ψ(L,W, S,B) := {max{min{f, F},−F} | f ∈ Φ(L,W, S,B)}.

We can see that Ψ(L,W, S,B) is the clipping of Φ(L,W, S,B) by F . The clipping
is easily realized by the ReLU function as follows: η(x+ F )− η(x− F ).

Theorem 4.2. Suppose 0 < p, q ≤ ∞, 0 < s < ∞ and s > ν. If f◦ ∈
U
B

s+β‖x−c‖α2
p,q (Ω)

and ‖f◦‖∞ ≤ F , where F ≥ 1, letting (L, S,W,B) be as in

Theorem 4.1 with N � n
d

2s+d (log n)−
d(3α+2s−2ν)

(2s+d)α (log(log n))
2d(s−ν)
(2s+d)α , it holds that

E[‖f◦(X)− f̂(X)‖2L2(PX)] � n− 2s
2s+d (log n)−

2(sd−νd−3αs)
(2s+d)α (log(logn))

2d(s−ν)
(2s+d)α ,

where f̂ ∈ Ψ(L,W, S,B) is the least squares estimator for f◦ whose definition
is given in Eq.(3).

Proof. By Theorem 4.1, each parameter of the neural network satisfies L =
O(logN),W = O(N), S = O(N logN), and B = O(Nk(logN)l), where k, l ∈ R.
By applying Lemma 4.2, it holds that

logN (δ,Ψ(L,W, S,B), ‖ · ‖∞) � N logN{(logN)2 + log(δ−1)}.

Here, by ‖f◦‖∞ ≤ F , it holds that ‖f◦ −max{min{f̃ , F},−F}‖2 ≤ ‖f◦ − f̃‖2.
Therefore, by Theorem 4.1,

inf
f̃∈Ψ(L,W,S,B)

‖f◦ − f̃‖2 � N− s
d

(
logN

log(logN)

)− s−ν
α

.

In addition, because the density function p(x) satisfies p(x) ≤ T ,

inf
f̃∈Ψ(L,W,S,B)

‖f◦ − f̃‖L2(PX) � N− s
d

(
logN

log(logN)

)− s−ν
α

.

By applying Lemma 2.1 with δ = 1
n , we have

E[‖f̂−f◦‖2L2(PX)] � N− 2s
d

(
logN

log(logN)

)− 2(s−ν)
α

+
N logN{(logN)2 + logn)}

n
+
1

n
.

Here, we let N satisfy N � n
d

2s+d (log n)−
d(3α+2s−2ν)

(2s+d)α (log(log n))
2d(s−ν)
(2s+d)α ; conse-

quently, we can obtain the desired result. �

For p > 2, the poly-log order of estimation error is (log n)−
2s(d−3α)
(2s+d)α , and if

s = 1, it is (log n)−
2(d−3α)
(2+d)α . Thus, we can see that the influence of the poly-

log order increases as dimension d increases, and as α decreases. By contrast,
because the polynomial order is affected by the curse of dimensionality, we
can also see that the influence of the poly-log order increases as the dimension
increases.
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4.3. Numerical evaluation of the improvement of the estimation
error by adaptive approximation

The estimation error is improved by the adaptive method, and we numerically
evaluate the effect of the improvement. This numerical evaluation compares the
estimation error for the realistic number of observations when the parameters
change. We confirm that the improvement is significant if the parameters satisfy
certain conditions. In particular, we will see that the poly-log factor is signifi-
cant when α is small or d is large. Figure 2 represents the estimation error of

deep learning on B
s+β‖x−c‖α

2
p,q (Ω)

(
n− 2s

2s+d (log n)−
2(sd−νd−3αs)

(2s+d)α (log(log n))
2d(s−ν)
(2s+d)α

)
as green, the polynomial order of the estimation error of deep learning on

Bs+5
p,q (Ω)

(
n− 2(s+5)

2(s+5)+d

)
as orange, and that of Bs

p,q(Ω)
(
n− 2s

2s+d

)
as blue on

the log-log graphs with s = 1, 2 ≤ p. In each graph, the horizontal line repre-
sents the number of observations, and the vertical line represents the estimation
error. Figure 2(b) shows the case in which d is larger than that of Figure 2(a),
and Figure 2(c) shows the case in which α is smaller that of Figure 2(a).

Note that we only need to consider the inclination of the graphs here because
the constant factor is different in each graph. We can see that the improvement
due to the adaptive method is significant if d is large or α is small. Under
this condition, we can consider that the order of the convergence rate for the

estimation in B
s+β‖x−c‖α

2
p,q (Ω) is equivalent to that of Bs+5

p,q (Ω), if the number of
observations is realistic. Therefore, we can see that if α is small or d is large,
the estimation error is far better than that of Bs

p,q(Ω).

5. Superiority to linear estimator

In this section, we show the superiority of deep neural networks to linear esti-
mators by focusing on the adaptivity of such networks. A linear estimator is a
class of estimators that is linearly dependent on outputs (Y1, Y2, . . . , Yn). This
class includes some popular methods in the field of machine learning, for exam-
ple, linear regression, Nadaraya-Watson estimator, and kernel ridge regression.
Because kernel methods can be considered as a learning method using shallow
neural networks, we may regard this comparison as that between deep neural
networks and shallow neural networks.

Here, we define a linear estimator as follows:

Definition 5.1. The linear estimator is a class of estimators that can be written
as follows:

f̂(x) =

n∑
i=1

Yiϕi(x,X
n),

where Xn = (X1, X2, . . . , Xn) and ϕi(x,X
n) (i = 1, . . . , n) are measurable func-

tions.
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Fig 2. Numerical evaluation of the estimation error

This class includes the least squares estimator, Nadaraya-Watson estimator,
and kernel ridge regression. For example, the estimator from kernel ridge regres-
sion can be written as follows:

f̂(x) = k(x)�(K + λIn)
−1Y,

where λ > 0, and Y = (Y1, Y2, . . . , Yn)
�, k : Rd × R

d → R is a positive semi-
definite kernel, k(x) := (k(x,X1), k(x,X2), . . . k(x,Xn))

�, K = (k(Xi, Xj))i,j .
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Linear estimators were compared with deep learning in previous studies. It was
shown that deep learning is superior to any linear estimator for specific target
function classes F [28, 29, 13, 16].

Here, we introduce some properties of linear estimators. Whether the mini-
max optimal rate of a linear estimator is equivalent to that of a function space
that is larger than the original target function class F was considered in pre-
vious studies. Indeed, it was proved in [13] that the optimal minimax rate of a
linear estimator does not differ from that of a convex hull of the original target
function class:

inf
f̂ :linear

sup
f◦∈F◦

E[‖f◦ − f̂‖2L2(PX)] = inf
f̂ :linear

sup
f◦∈conv(F◦)

E[‖f◦ − f̂‖2L2(PX)], (5.1)

where the infimum is taken over the linear estimators and conv(F◦) is defined
as follows:

conv(F◦) :=

{
k∑

i=1

tifi

∣∣∣∣∣ t1, t2, . . . , tk ≥ 0,
k∑

i=1

ti = 1, f1, f2, . . . , fk ∈ F◦, k ≥ 1

}
.

In addition, under certain assumptions, this was shown not only for the convex
hull, but also for Q-hull [7, 5].

We define a function set G as follows:

G :=
⋃

c∈[0,1]d

U
B

s+β‖x−c‖α2
p,q (Ω)

.

Because we do not know the location of c in estimating a function in G, it is
difficult to identify which part of the function is less smooth (hard to estimate).
This setting is more natural than that in which the target is in U

B
s+β‖x−c‖α2
p,q (Ω)

.

We can see that the estimation in G requires more adaptivity to achieve better
accuracy. In addition, if p(x) satisfies the following condition,

there exists a ∈ Ω and t > 0 such that inf
x∈[a−t,a+t]d

p(x) > 0,

for any estimator, the lower bound of a polynomial factor of the estimation error

on G is n− 2s
2s+d . Thus, unless PX is a discrete measure, the lower bound of the

polynomial factor of the estimation error is n− 2s
2s+d .

The main theorem in this section is Theorem 5.1. This indicates the superi-
ority of a deep neural network over a linear estimator. The proof is provided in
Appendix A.3.

Theorem 5.1. Suppose that 0 < p ≤ 2, 0 < q ≤ ∞ and PX has a uniform
distribution. Then, if s > ν,

inf
f̂ :linear

sup
f∈G

E[‖f − f̂‖2L2(PX)] � n− 2(s−ν)
2(s−ν)+d .
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Note that, because the upper bound in Theorem 4.2 does not depend on
the location of c, the upper bound of the estimation error of deep learning

on G is n− 2s
2s+d (log n)−

2(sd−νd−3αs)
(2s+d)α (log(log n))

2d(s−ν)
(2s+d)α . Therefore, deep learning is

superior to the linear estimators for 0 < p < 2 or p = 2 and 0 < α < d
3 :

n− 2s
2s+d (logn)−

2(sd−νd−3αs)
(2s+d)α (log(log n))

2d(s−ν)
(2s+d)α (deep) � n− 2(s−ν)

2(s−ν)+d (linear).

This difference is due to the adaptivity. Although linear estimators cannot es-
timate adaptively the location of c because the basis functions are fixed, deep
learning can estimate the location of c adaptively. In addition, it can be seen
that the minimax optimal rate for the linear estimators do not have any addi-
tional poly-log order factor. That is, a linear estimator cannot induce a poly-log
order improvement that was attained by the adaptive method. These results
characterize the adaptivity of a deep neural network.

Remark 5.1. Let F be the target function class of the estimation. [13] showed
that the minimax rate of a linear estimator is equivalent to that of a convex hull
of F . In addition, [7, 5] showed that under some proper conditions, it is equal to
that of QHull of F . Here, to provide an intuitive understanding of Theorem 5.1,
we present another proof of Theorem 5.1. First, we define the following set:

M :=
{
tk,jM

d
k,j

∣∣∣ 0 ≤ |tk,j | ≤ 2−k(s− d
p ) (j ∈ Λ(k), k = 0, 1, . . .)

}
.

It follows, by Lemma A.2, that M ⊂ C1G for some C1 > 0. By (2.4), we have

conv(M) ⊂ C2U
B

s+d− d
p

1,1 (Ω)
,

for some C2 > 0. Note that the closure is taken with respect to the L2 norm. By
(5.1), the minimax optimal rate of the linear estimators for G does not exceed

the minimax rate of the linear estimators of B
s+d− d

p

1,1 (Ω). By proving it in the
same way as Theorem 5.1, it holds that the minimax rate of the linear estimators

for B
s+d− d

p

1,1 (Ω) has a lower bound

n
−

2(s+d− d
p
− d

2
)

2(s+d− d
p
− d

2
)+d = n− 2(s−ν)

2(s−ν)+d .

Therefore, Theorem 5.1 can be shown.
From the proof above, we can see that for the linear estimators, it is more

difficult to estimate the functions in G than B
s+d− d

p

1,1 (Ω). Because B
s+d− d

p

1,1 (Ω)
does not have any information about s(x), linear estimators cannot be adaptive
to the shape of s(x). For p > 2, if p is close to 2 and α is small, by the argument of
subsection 4.3, it is expected that deep learning is superior to linear estimators
for a realistic sample size. Of course, the convergence rate of the estimation error

of a linear estimator on B
s+ d

2− d
p

1,1 (Ω) is faster in a Landau symbol than that on

B
s+β‖x−c‖α

2
p,q (Ω).
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Related work

We note that there are some papers that investigated estimation problems for
a function class with variable smoothness. In the context of kernel density esti-
mation, [9] and [23] treated special Hölder spaces whose smoothness is locally
defined. Although the measurement of the estimation error and treated func-
tion space differ from this paper, estimators in [9] and [23] adapt to the variable
smoothness. The main idea that is common in both papers is adjusting band-
width locally so as to adapt to the local smoothness. This idea is similar to
that of this work which adjusts the resolution level of B-spline basis. However,
there are many differences between those works and this work. [9] and [23]
only treated the case d = 1. [9] restricted s(·) to 0 < s(·) ≤ 1 and Proposi-
tion 3.13 in [23] which is consistent with Theorem 3.1 only considered the case
0 < infx∈Ω s(x) ≤ 1. In addition, we suggested the relation between the poly-log
improvement of L2 estimation error and s(·) and d while Theorem 3.15 in [23]
gave the upper bound of estimation error in abstract form. Although those works
proved the pointwise convergence which is stronger than L2 convergence of this
work, we proved the convergence for a broader function class which includes the
function class equipped with locally Hölder smoothness. In addition, we gave
the approximation theory of B-spline basis for a variable exponent Besov space
which is broader than locally Hölder space and we proved the superiority to
linear estimators.

The nonparametric regression problem on a Besov space Bs
p,q(Ω) was studied

extensively and you may refer to Chapter 9, 10, 11 in [11] and Chapter 4.3,
Chapter 6.3 and Chapter 8.2 in [10]. In particular, adaptivity of wavelet thresh-
old estimators has been known [6, 5]. Wavelet threshold estimators adapt to the
spatially homogeneity of smoothness, and the nonlinearity of those estimators
improve the convergence rate when the parameter p is small. However, as far
as we know, the performance of wavelet shrinkage estimators in the variable
exponent setting has not been analyzed. We would like to defer this to a future
work.

Conclusion

We showed that the polynomial order of the approximation and estimation
errors cannot be improved from the order of the minimum value of s(x) and
that the adaptivity of deep learning yields a poly-log order improvement. This
improvement is remarkable when the dimension is large and the area around
the minimum value of s(x) is small, that is, the domain, where the estimation
is the most difficult, is small. In addition, we have shown that, for 0 < p ≤ 2, no
linear estimator can achieve the poly-log improvement, and we can ensure the
superiority to linear estimators with respect to the estimation error. Notably,
these results provide insight into the high performance of deep learning in the
application fields.
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Appendix A: Proofs

A.1. Proof of Lemma 3.4

Proof. (i) Suppose p ≥ r.

It holds that s(x) > s + βtα, where x ∈ Ac. Thus, by (2.1) we have the
following:

‖f1Ac −Qk̄1Ac‖r � 2−k̄(s+βtα).

Moreover, by (2.1), it holds that

‖f1A −Qk̄+Nk
1A‖r � 2−(k̄+Nk)s.

Therefore,

‖f − fN‖r � ‖f1Ac −Qk̄1Ac‖r + ‖f1A −Qk̄+Nk
1A‖r � 2−k̄(s+βtα) +2−(k̄+Nk)s.

(ii) Suppose p < r.

Because it holds that s(x) > s + βtα with x ∈ Ac, by applying the proof of
Theorem 3.1 in [8], we have

‖f1Ac −Qk̄1Ac −
k∗∑

k=k̄+1

nk∑
j=1

ak,vAc,j
Md

k,vAc,j
1Ac‖r � 2−k̄(s+βtα). (A.1)
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Next, we consider the case of x ∈ A. By (2.3), f ∈ B
s(x)
p,q can be decomposed

as follows:

f(x) =

∞∑
k=0

qk(f).

Note that, by the embedding Bs
p,q(Ω) ↪→ Bs−δ

r,q (Ω), if s > δ, it converges with

respect to the Lr norm. We define qk,A(f) as qk,A(f) :=
∑

j∈ΛA(k) ak,jM
d
k,j . We

also define sequence {a∗k,vA,j
} as follows:

a∗k,vA,j
=

{
ak,vA,j

(1 ≤ vA,j ≤ mk),

0 (mk ≤ vA,j).

By (2.4), the following holds:

‖qk,A −Gk(qk,mk, A)‖r � 2−
dk
r ‖ak,vA,j

− a∗k,vA,j
‖	r .

Moreover, by Lemma 5-1 in [8], we have

‖ak,vA,j
− a∗k,vA,j

‖	r � m
− δ

d

k ‖ak,vA,j
‖	p.

Combining the two formulas above with 2−
dk
p ‖ak,vA,j

‖	p � 2−sk, it holds that

‖qk,A −Gk(qk,mk, A)‖r � 2−sk2δkm
− δ

d

k . (A.2)

Moreover, for 0 < τ ≤ min{1, r} and the function sequence {fk}, it holds that

‖
∑

fk‖τr ≤
∑

‖fk‖τr . (A.3)

By applying (2.4), embedding Bs
p,q(Ω) ↪→ Bs−δ

r,q (Ω), (A.2) and (A.3), we have
the following inequality:

‖f1A −Qk̄+Nk
(f)1A −

(k̄+Nk)
∗∑

k=k̄+Nk+1

mk∑
j=1

ak,vA,j
Md

k,vA,j
1A‖τr

�
(k̄+Nk)

∗∑
k=k̄+Nk+1

‖qk,A(f)−Gk(qk,mk, A)‖τr +
∑

(k̄+Nk)∗≤k

‖qk‖τr

�
(k̄+Nk)

∗∑
k=k̄+Nk+1

2−τsk2τδkm
−τ δ

d

k +
∑

(k̄+Nk)∗≤k

2−τsk2τδk

� 2−k̄τδ2−τ(s−δ)(k̄+Nk)

(k̄+Nk)
∗∑

k=k̄+Nk+1

2−τ(s−δ−ε δ
d )(k−k̄−Nk)

+
∑

(k̄+Nk)∗≤k

2−τsk2τδk
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� 2−τδk̄2−τ(s−δ)(k̄+Nk) + 2−τ(s−δ)(k̄+Nk)
∗

� 2−τsk̄2−τ(s−δ)Nk .

Thus, we obtain

‖f1A −Qk̄+Nk
(f)1A −

(k̄+Nk)
∗∑

k=k̄+Nk+1

mk∑
j=1

ak,vA,j
Md

k,vA,j
1A‖r � 2−sk̄2−(s−δ)Nk .

(A.4)
Therefore, by (A.1) and (A.4), it holds that

‖f − fN‖r

� ‖f1Ac −Qk̄1Ac −
k∗∑

k=k̄+1

nk∑
j=1

ak,vAc,j
Md

k,vAc,j
1Ac‖r

+ ‖f1A −Qk̄+Nk
(f)1A −

(k̄+Nk)
∗∑

k=k̄+Nk+1

mk∑
j=1

ak,vA,j
Md

k,vA,j
1A‖r

� 2−k̄(s+βtα) + 2−sk̄2−(s−δ)Nk .

�
Remark A.1. We used the following property in the proof of Lemma 3.4: If
a domain A is a minimally smooth domain and infx∈A s(x) > s, ‖f − Qk‖r �
2−k(s−δ). This is followed by applying Lemma 3.3, and it holds that for all
f ∈ U

B
s(x)
p,q (Ω)

there exists C > 0 and g ∈ CUBs
p,q(Ω) that coincide with f for all

x ∈ A. Additionally, it holds that ‖g‖Bs
p,q(Ω) ≤ C‖f‖Bs

p,q(A).

A.2. Proof of Theorem 4.1

Before the proof of Theorem 4.1, we prove the following lemma.

Lemma A.1. Let ‖f‖∞ ≤ F and A = [c− t, c+ t]d. We define gi(xi) as

gi(xi) =η

(
1

ξ
(xi − c+ t) + 1

)
− η

(
1

ξ
(xi − c+ t)

)
− η

(
1

ξ
(xi − c− t)

)

+ η

(
1

ξ
(xi − c− t)− 1

)

with ξ ≤ min
{

εr

F rtd−1(d+1)
, t
2d

}
. Let g(x) =

∏d
i=1 gi(xi), and it then holds that

‖fg‖Lr(Ac) ≤ ε.

Proof. The Lebesgue measure of the area where g(x) �= 0 with x ∈ Ac is

(t+ ξ)d − td = td

{(
1 +

ξ

t

)d

− 1

}
.



1902 K. Tsuji and T. Suzuki

O
xi

y

1

1

Fig 3. Graph of gi(xi)

If ξ ≤ t
2d
, we have (1+ ξ

t )
d ≤ 1+d ξ

t +2d( ξt )
2 ≤ 1+(d+1) ξt . Thus, it holds that

(t+ ξ)d − td ≤ td(d+ 1)
ξ

t
= td−1(d+ 1)ξ.

Therefore,
‖fg‖rLr(Ac) ≤ F rtd−1(d+ 1)ξ ≤ εr.

�
By using Lemma A.1, we prove Theorem 4.1.

Proof. Note that ‖f‖Bs
p,q(Ω) ≤ ‖f‖

B
s(x)
p,q (Ω)

. For f ∈ U
B

s(x)
p,q (Ω)

, by applying

(2.4), we have

|ak,j | � 2
k( d

p−s)
+ , (A.5)

where f(x) =
∑∞

k=0

∑
j∈Λ(k) ak,jM

d
k,j(x). For t, which appears in the proof of

Theorem 3.2, we define A as A = [c − t, c + t]d. We use the approximation of
multiplication by the deep neural network below [35, 25, 28]:

For all ε > 0, let L = 	log2
(

3D

ε

)
+ 5
	log2(D)
, W = 6d, S = LW 2 and

B = 1. Then, there exists φmult(x1, x2, . . . , xD) ∈ Φ(L,W, S,B) that satisfies
the following two conditions:

1. sup
x∈[0,1]D

|φmult(x1, x2, . . . , xD)−
D∏
i=1

xi| ≤ ε,

2.∃i ∈ {1, 2, . . . , D}, xi = 0 ⇒ φmult(x1, x2, . . . , xD) = 0.

By applying this to M̄ in Lemma 4.1 and gi(xi) = η( 1ξ (xi−c+ t)+1)−η( 1ξ (xi−
c+ t))− η( 1ξ (xi − c− t)) + η( 1ξ (xi − c− t)− 1), we have

‖M̄g − φmult(M̄, g1, g2, . . . , gd)‖∞ ≤ ε,
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where g =
∏d

i=1 gi, c(d,m) = (2 + 2de (2e)m√
m

), L1 := 3 + 3	log2( 3
d+1∨m

εc(d,m)
) +

5
	log2(d + 1 ∨ m)
,W1 := 6dm(m + 2) + 4d + 2, S1 := L1W1
2 and B1 :=

max{2(m+ 1)m, 1
ξ}. We define M̃A ∈ Φ(L1,W1, S1, B1) as

M̃A := φmult(M̄, g1, g2, . . . , gd),

and M̃A satisfies the following condition:

‖Md
0,0g − M̃A‖∞ ≤ ε, ∃i, |xi − ci| ≥ t+ ξ ⇒ M̃A(x) = 0, (A.6)

where c = (c1, c2, . . . , cd). We can construct M̃Ac in the same manner from
gi

′
(xi) = 1 − η( 1ξ (xi − c + t)) + η( 1ξ (xi − c + t) − 1) + η( 1ξ (xi − c − t) + 1) −

η( 1ξ (xi − c− t)). M̃Ak,j
and M̃Ac

k,j
are defined in the same way as Mk,j .

Let fN be the function that appears in Theorem 3.2, the set of indexes
(k, j) that consist of fN be EN , and the set of indexes (k, j) that consist of

Qk̄+Nk
(f)1A,

∑(k̄+Nk)
∗

k=k̄+Nk+1

∑mk

j=1 ak,vA,j
Md

k,vA,j
1A and satisfy suppMd

k,j ∩ ∂A �=
∅ be EAN

. In the same manner, we define EAc
N
. Further, we similarly define

EB = EN\(EAN
∪ EAc

N
). We define f̃ as follows:

f̃ =
∑

(k,j)∈EAN

ak,jM̃Ak,j
+

∑
(k,j)∈EAc

N

ak,jM̃Ac
k,j

+
∑

(k,j)∈EB

ak,jM̃k,j .

Note that for (k, j) ∈ EB , we denote M̃k,j by

M̃k,j :=

{
M̃Ak,j

(suppMk,j ⊂ A),

M̃Ac
k,j

(suppMk,j ⊂ Ac).

In addition, for the simplicity, we allow to denote M̃Ak,j
and M̃Ac

k,j
by M̃k,j .

We let

f1 = 1A

∑
(k,j)∈EAN

ak,jM̃Ak,j
+ 1Ac

∑
(k,j)∈EAc

N

ak,jM̃Ac
k,j

+
∑

(k,j)∈EB

ak,jM̃k,j ,

and evaluate the error owing to the approximating indicator functions. First,
by applying (A.5) and the properties of Md

k,j , we have the following inequality:

|fN (x)− f1(x)| ≤
∑

(k,j)∈EN

|αk,j ||Md
k,j − M̃k,j(x)|

≤ ε
∑

(k,j)∈EN

|αk,j |1{Md
k,j(x) �= 0}

� ε(m+ 1)d2
(k̄+Nk)

∗( d
p−s)

+{1 + (k̄ +Nk)
∗}‖f‖Bs

p,q
, (A.7)
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where k̄+Nk = k̄+

⎡
⎢⎢⎢log

(
k̄

log( k̄
log k̄

)
s−δ
α

) 1
α

⎤
⎥⎥⎥. In addition, by definition, it holds

that

(k̄ +Nk)
∗ =

[
ν−1

(
log λ+ k̄d

)]
+ k̄ +

⎡
⎢⎢⎢⎢log

⎛
⎝ k̄

log( k̄
log k̄

)
s−δ
α

⎞
⎠

1
α

⎤
⎥⎥⎥⎥ .

Through a simple calculation, it holds that 1 ≤ log
(

k̄
log k̄

)
. Thus,

s− δ

α
≤ log

(
k̄

log k̄

) s−δ
α

.

By applying this inequality, for a constant C ∈ R, we have

(k̄ +Nk)
∗ ≤

[
ν−1

(
log λ+ k̄d

)]
+ k̄ +

⎡
⎢⎢⎢log

(
k̄

s−δ
α

) 1
α

⎤
⎥⎥⎥

= C + (dν−1 + 1)k̄ +
1

α
log k̄. (A.8)

Therefore, (A.7) is bounded as follows:

(A.7) � ε× 2(
d
p−s)+{(dν−1+1)k̄+ 1

α log k̄}{(dν−1 + 1)k̄ +
1

α
log k̄}

� ε×N
(ν−1+d−1)( d

p−s)
+(logN)

1
α (

d
p−s)

+
+1

.

By taking ε to satisfy

ε{N (ν−1+d−1)( d
p−s)

+(logN)
1
α (

d
p−s)

+
+1} ≤ N− s

d

(
logN

log(logN)

)− s−δ
α

(i.e., ε ≤ N
−{(ν−1+d−1)( d

p−s)
+
+ s

d}(logN)
− 1

α (
d
p−s)

+
−1− s−δ

α (log(logN))
s−δ
α ), it

holds that

‖fN − f1‖r � N− s
d

(
logN

log(logN)

)− s−δ
α

. (A.9)

Next, we evaluate the norm constant B. By applying (A.5) and (A.8), we
have

|ak,j | � N
(ν−1+d−1)( d

p−s)
+(logN)

1
α (

d
p−s)

+ .

Comparing this with 2(k+Nk)
∗
, we have

B � N
(ν−1+d−1)

(
1∨( d

p−s)
+

)
(logN)

1
α

(
1∨( d

p−s)
+

)
.
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Next, we evaluate the error by approximating the indicator functions, that
is, ‖f̃ − f1‖r. First, we consider EAN

. By a triangle inequality,

‖
∑

(k,j)∈EAN

ak,jM̃Ak,j
‖Lr(Ac) �‖

∑
(k,j)∈EAN

ak,j(M̃Ak,j
−Md

k,jg)‖Lr(Ac)

+ ‖
∑

(k,j)∈EAN

ak,jM
d
k,jg‖Lr(Ac).

Because ‖Md
k,jg − M̃Ak,j

‖∞ ≤ ε, the first term is bounded by

‖
∑

(k,j)∈EAN

ak,j(M̃Ak,j
−Md

k,jg)‖Lr(Ac) ≤ ε
∑

(k,j)∈EN

|ak,j |1{Md
k,j(x) �= 0}.

This term is already bounded in the process to obtain (A.9). The second term
is bounded with respect to ‖ · ‖∞ by being applied in the same way as (A.7)
and (A.8):

‖
∑

(k,j)∈EAN

ak,jM
d
k,j‖∞ � (m+ 1)d2

(k̄+Nk)
∗( d

p−s)
+{1 + (k̄ +Nk)

∗}‖f‖Bs
p,q

� {N (ν−1+d−1)( d
p−s)

+(logN)
1
α (

d
p−s)

+
+1

.

By taking each variable in Lemma A.1 to satisfy ε = N− s
d

(
logN

log(logN)

)− s−δ
α

,

F = N
(ν−1+d−1)( d

p−s)
+(logN)

1
α (

d
p−s)

+
+1

, t =
(

log(logN)
logN

) 1
α

, and

1

ξ
=O

(
N

r{ s
d+(ν−1+d−1)( d

p−s)
+
}
(logN)

r
α (

d
p−s)

+
+r
(

logN

log(logN)

) 1
α (−d+1+sr−sδ)

)
,

it holds that

‖
∑

(k,j)∈EAN

ak,jM
d
k,jg‖Lr(Ac) � N− s

d

(
logN

log(logN)

)− s−δ
α

. (A.10)

Following the same argument, we can obtain the same evaluation for EAc
N
. By

Theorem 3.2, (A.6), and (A.10), we have the following inequality:

‖f − f̃‖r � ‖f − fN‖r + ‖fN − f1‖r + ‖f̃ − f1‖r � N− s
d

(
logN

log(logN)

)− s−δ
α

.

Depth L is L = L1 + 1 because the approximation function is realized by the
linear combination of the approximation functions of B-spline. Moreover, it is
clear that width W is O(NW1) and sparsity S is (L− 1)W 2

1N +N because the
last layer combines all approximation functions of B-spline. �
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A.3. Proof of Theorem 5.1

Lemma A.2. ‖Md
k,0‖Bs+β‖x‖α2

p,q (Ω)
� 2k(s−

d
p ).

Proof. For simplicity of notation, we denote Md
k,0 by f . We let 0 < u < 1 and

suppose that
√
d(m+ 1)2−k ≤ 2−ku. By a triangle inequality,

(∫ 1

0

(ω∗
r,p(f, t))

q 1

t
dt

) 1
q

�
(∫ 2−ku

0

(ω∗
r,p(f, t))

q 1

t
dt

) 1
q

+

(∫ 1

2−ku

(ω∗
r,p(f, t))

q 1

t
dt

) 1
q

.

First, we evaluate the first term. For ‖h‖2 ≤ 2−ku, note that Δr
h(f)(x) = 0,

where ‖x‖2 ≥ 2−ku(r + 1), it holds that

ω∗
r,p(f, t) ≤ t−{s+β(2−ku(r+1))α} sup

h∈R:‖h‖2≤t

‖Δr
h(f)‖p,

where t ≤ 2−ku. By the definition of a Besov space,(∫ 2−ku

0

(ω∗
r,p(f, t))

q 1

t
dt

) 1
q

≤ |f |
B

s+β(2−ku(r+1))α
p,q (Ω)

. (A.11)

Next, we evaluate the second term. For t ≥ 2−ku, by
√
d(m+1)2−k ≤ 2−ku, we

have ‖Δr
h(f)‖∞ ≤ ‖f‖∞ ≤ 1 where 2−ku ≤ ‖h‖2 ≤ 1. Thus,

‖t−s(x)Δr
h(f)‖p ≤ t−smax2−k d

p (m+ 1)
d
p .

Therefore, we have the following inequality:

ω∗
r,p(f, t) ≤ max{ω∗

r,p(f, 2
−ku), t−smax2−k d

p (m+ 1)
d
p }.

By the definition of a Besov space,(∫ 1

2−ku

(ω∗
r,p(f, 2

−ku))q
1

t
dt

) 1
q

≤ |f |
B

s+β(2−ku(r+1))α
p,q (Ω)

. (A.12)

Here, we retake u to satisfy u < s
smax

, and it holds that

(∫ 1

2−ku

(t−smax2−k d
p (m+ 1)

d
p )q

1

t
dt

) 1
q

≤ C2kusmax2−k d
p < C2k(s−

d
p ), (A.13)

where C is a constant that does not depend on k. By (2.4),

|f |
B

s+β(2−ku(r+1))α
p,q (Ω)

� 2k(s+β(2−ku(r+1))α− d
p ).

By limk→∞ 2kβ(2
−ku(r+1))α = 1, for a sufficiently large k,

|f |
B

s+β(2−ku(r+1))α
p,q (Ω)

� 2k(s−
d
p ). (A.14)
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Thus, from (A.12), (A.13), and (A.14), we obtain the following:

(∫ 1

2−ku

(ω∗
r,p(f, t))

q 1

t
dt

) 1
q

� 2k(s−
d
p ). (A.15)

Therefore, from (A.11) and (A.15), |f |
B

s(x)
p,q (Ω)

� 2k(s−
d
p ). Since ‖f‖p � 2−k d

p ≤
2k(s−

d
p ), we obtain the desired result. �

By using Lemma A.2, we prove Theorem 5.1.

Proof. We follow the argument of Theorem 1 in [36], and Theorems 1 and 6 in
[29]. We summarize the argument of Theorem 1 in [36].
Let the partition that divides Ω into cubes, the lengths of which are 2−k, be B.
That is, let

Bj,k =

d∏
i=1

[2−k(ji − 1), 2−kji] (ji ∈ N, 1 ≤ ji ≤ 2k, i = 1, . . . , d)

and B =
⋃

1≤ji≤2k Bj,k. We also let Aj,k = {i;Xi ∈ Bj,k} and |Aj,k| =

card(Aj,k). If for 0 < α < β < 1, k ∈ N satisfies nα < 2kd < nβ , there ex-

ist some constants C,C
′
> 0, and the following two conditions hold:

1. |{xi | xi ∈ B (i ∈ {1, . . . , n})}| ≤ C
n

2kd
(∀B ∈ B),

2. D = {|Aj,k| ≤ C
′ n

2kd
; 1 ≤ ji ≤ 2k, i = 1, . . . , d}, P (D) = 1 + o(1).

Additionally, let F◦ be the function set on Ω and satisfy the following conditions
for Δ > 0:

1. There exists F > 0, and for all Bj,k ∈ B, there exists g ∈ F◦ that satisfies

g(x) ≥ ΔF (∀x ∈ Bj,k),

2. There exists C
′′
> 0 and f ∈ F ◦ satisfies

1

n

n∑
i=1

f(xi)
2 ≤ C

′′
Δ22−kd

on the event D.

Let the conditions above be condition A. In addition, we let

R∗ = inf
f̂ :linear

sup
f∈G

E[‖f − f̂‖2L2(PX)].

For 0 < α < β < 1, suppose that k ∈ N satisfies nα < 2kd < nβ and there exists
the function set F◦ that satisfies condition A. Then, there exists a constant
F1 > 0 such that at least one of the following inequalities hold for a sufficiently
large n:

F 2

4F1C
′′
2kd

n
≤ R∗,



1908 K. Tsuji and T. Suzuki

F 3

32
Δ22−kd ≤ R∗.

The argument above follows that in [36]. By using this, we prove the theorem.

Let Δ = 2−k(s− d
p ). In addition, we let ω = (ωj)j∈Λ(k) be a one-hot vector.

That is, there exists j ∈ Λ(k) that satisfies ωj = 1 and ωj′ = 0 (∀j
′ �= j). We

define fω as follows:

fω :=
∑

j∈Λ(k)

ΔωjM
d
k,j(x).

We take a sufficiently large k, and for each ωj , let cj ∈ supp Md
k,j . By the

argument in Lemma A.2, there exists a constant C1 that does not depend on j
and k, and it holds that fωj ⊂ C1U

B
s+β‖x−cj‖α2
p,q (Ω)

. It is clear that there exists fω

that satisfies condition A-1. Condition A-2 is satisfied because for any ω, there
exists B ∈ B such that

1

n

n∑
i=1

fω(xi)
2 � 1

n
Δ2|{i | xi ∈ B (i = 1, · · ·n)}| � C

′′
Δ22−kd

on the event D. If we take k that satisfies n � 2k(2(s−ν)+d), it holds that

R∗ � n− 2(s−ν)
2(s−ν)+d . �
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