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Abstract: In this paper, we extend the framework of the convergence of
stochastic approximations. Such a procedure is used in many methods such
as parameters estimation inside a Metropolis Hastings algorithm, stochastic
gradient descent or stochastic Expectation Maximization algorithm. It is
given by

θn+1 = θn +Δn+1Hθn (Xn+1),

where (Xn)n∈N is a sequence of random variables following a paramet-
ric distribution which depends on (θn)n∈N, and (Δn)n∈N is a step se-
quence. The convergence of such a stochastic approximation has already
been proved under an assumption of geometric ergodicity of the Markov
dynamic. However, in many practical situations this hypothesis is not sat-
isfied, for instance for any heavy tail target distribution in a Monte Carlo
Metropolis Hastings algorithm. In this paper, we relax this hypothesis and
prove the convergence of the stochastic approximation by only assuming a
subgeometric ergodicity of the Markov dynamic. This result opens up the
possibility to derive more generic algorithms with proven convergence. As
an example, we first study an adaptive Markov Chain Monte Carlo algo-
rithm where the proposal distribution is adapted by learning the variance
of a heavy tail target distribution. We then apply our work to the Inde-
pendent Component Analysis when a positive heavy tail noise leads to a
subgeometric dynamic in an Expectation Maximization algorithm.
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1. Introduction

A common problem across scientific fields is to find the roots of a non-linear
function h : Θ → R. Numerical schemes such as Newton’s methods have been
developed to provide a numerical solution to this equation. In statistics, the
problem is further increased by the fact that h is not known, but only noisy
values of it, or of its gradient. This problem appears across different domains
such as stochastic optimization [32, 37], Expectation Maximization algorithms
[3, 27] or reinforcement learning [1, 12] for instance. In all cases, solutions to
this problem often take the form of an iterative sequence (θn)n∈N that converges
towards a point θ∗ in the set of solutions of h(θ) = 0. The general class of
stochastic approximation methods, such as Robbins-Monro methods, falls within
this framework. These methods produce a sequence of the form:

θn+1 = θn +Δn+1ζn+1 ,

where ζn+1 is a noisy observation of h(θn): ζn+1 = h(θn) + ξn+1 with ξn+1 a
sequence of random variables. In that case, h is called the mean field. This pro-
cedure, first developed in [34], has been studied under various sets of hypotheses,
see [1, 11, 12, 15, 16, 20, 28] among many other works.

In this paper, we focus on the case of a state-dependent noise with a Marko-
vian dynamic. The sequence (ζn)n∈N takes the form of (Hθn(Xn))n∈N, with
h(θn) being the expectation of Hθn :

θn+1 = θn +Δn+1Hθn(Xn+1) . (1)

The sequence (Xn, θn)n∈N is a Markov chain on X × Θ. For all θ ∈ Θ, Hθ is a
function from the state space X to the parameter space Θ.

The assumption of state-dependent noise is met for instance in stochastic
gradient descent or Metropolis Hastings algorithms. Eq. (1) is also used as a
step in stochastic optimization algorithms where the parameter to estimate is
a function of θn. These algorithms include the Stochastic Approximation Ex-
pectation Maximization Markov Chain Monte Carlo (SAEM MCMC) algorithm
[2, 3, 17]. Eq. (1) also appears in some adaptive MCMC algorithms where the
proposal distribution depends on a parameter θ. They are used to adapt the
variance of the proposal across iterations for better sampling [5, 6, 23, 35].

The convergence of stochastic approximation algorithms has been studied in
[5] for state-dependent noise. Conditions to ensure convergence include control
of the fluctuations of the Markov Chain and of the regularity of the solution of a
Poisson equation. These conditions are difficult to verify in practice. Authors in-
troduce then a more restrictive, but more practical condition: the Markov chain
must satisfy drift conditions implying a geometric ergodicity of the chain. This
condition amounts to assuming the convergence of the kernel of the Markov
Chain towards its invariant distribution at a geometric rate. Further develop-
ments lead to prove the convergence of the SAEM MCMC algorithm [3], some
adaptive MCMC algorithms [5] and mini-batch MCMC [27] under the same
conditions.
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Nevertheless, the ergodicity condition is a limiting factor in practice. For in-
stance, the sequence (Xn)n∈N is often sampled using a Metropolis Hastings al-
gorithm. The ergodic condition is not met if one targets heavy tail distributions
such as Weibull or Pareto distribution [18, 21, 22, 24]. The models for inde-
pendent component analysis presented in [4] with non-Gaussian distributions of
the sources or the noise do not meet the condition either. These examples show
that these methods may be used in practice without any theoretical guarantee
of convergence.

This situation leads us to study the convergence of such stochastic algorithms
for Markov chains with a relaxed assumption of subgeometric ergodicity. The
convergence of adaptive MCMC algorithms under subgeometric constraints has
been studied in [7, 8, 36, 38]. To the best of our knowledge, there are no results
on the convergence for subgeometric Markovian dynamic in the general case.

In this paper, we propose a general set of hypotheses, under which we prove
the convergence of stochastic approximations with subgeometric Markovian dy-
namics. Our hypotheses are essentially about the rate of convergence of the
Markov Chain and the regularity of its kernel. Most of the polynomial rates
of convergence satisfy these hypotheses. Furthermore, the proof shows the reg-
ularity of the solution of the Poisson equation under the same subgeometric
conditions. We use this result to prove two corollaries. The first corollary proves
the convergence of a stochastic approximation used to adapt the variance of the
proposal within a Metropolis Hastings algorithm. We prove this convergence
for two different classes of heavy tail target distributions including the Weibull
and the Pareto distributions among others. The second corollary is about the
independent component analysis model where distributions with positive heavy
tails lead to a subgeometric ergodic Markov Chain in a Stochastic Approxima-
tion Expectation Maximization Monte Carlo Markov Chain (SAEM MCMC)
algorithm.

2. Stochastic approximation framework with Markovian dynamic

In this section, we summarize the stochastic approximation procedure in the
case of a Markovian dynamic with adaptive truncation sets. This procedure was
first described in [5]. In the following, we denote X the state space and Θ the
parameter space that we assume to be an open subset of Rnθ . Moreover, we
suppose that both are equipped with countably generated σ-fields B(X ) and
B(Θ).

In the next subsection, we present the framework of a stochastic approx-
imation producing a sequence of elements converging towards a solution of
h(θ) = 0 when there exist probability measures πθ such that, for any θ ∈ Θ,
h(θ) = Eπθ

(Hθ(X)) with Hθ : X �→ Θ.

2.1. Markovian dynamic

Let Δ = (Δn)n∈N be a non-increasing sequence of positive real numbers with
Δ0 ≤ 1 and set θc /∈ Θ and xc /∈ X two cemetery states. We also set, for all θ ∈ Θ
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the vector field Hθ : X �→ Θ. We then define a Markov chain Y Δ
n = (Xn, θn) on

X ∪ {xc} ×Θ ∪ {θc} by:

θn+1 =

{
θn +Δn+1Hθn(Xn+1) and Xn+1 ∼ Pθn(Xn, .) if θn ∈ Θ
θc and Xn+1 = xc if θn /∈ Θ .

(2)
Keeping notations and hypotheses labels from [5], we put the following hy-

pothesis on the transition probabilities (Pθ, θ ∈ Θ) and on the random vector
field H:

(A2) For any θ ∈ Θ, the Markov kernel Pθ has a single stationary
distribution πθ. In addition, H : Θ×X → Θ is measurable for all
(θ, x) ∈ Θ×X .

The existence and uniqueness of the invariant distribution can be verified
under the classical conditions of irreducibility and recurrence [33]. We also set
h(θ) =

∫
X Hθ(x)πθ(dx) the mean field of the stochastic approximation. This

allows us to recognize the usual stochastic approximation procedure:

θn+1 = θn +Δn+1(h(θn) + ξn+1)

where ξn+1 = Hθn(Xn+1)− h(θn) is the noise sequence.
We assume the mean field h satisfies the following hypothesis that amounts

to the existence of a global Lyapunov function:

(A1) h : Θ → R
nθ is continuous and there exists a continuously

differentiable function w : Θ → [0,+∞[ such that:

(i) there exists M0 > 0 such that

L := {θ ∈ Θ, 〈∇w(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, w(θ) < M0} ,

(ii) there exists M1 ∈ (M0,+∞] such that
WM1 := {θ ∈ Θ, w(θ) ≤ M1} is a compact set,

(iii) for any θ ∈ Θ \ L, 〈∇w(θ), h(θ)〉 < 0,
(iv) the closure of w(L) has an empty interior.

We denote by F = {Fn, n ≥ 0} the natural filtration of the Markov chain
(Xn, θn) and by P

Δ
x,θ the probability measure associated to the chain (Y Δ

n )
started from the initial conditions (x, θ) ∈ X × Θ. Finally, we denote by QΔn

the sequence of transition probabilities that generate the inhomogeneous Markov
chain (Y Δ

n ).

2.2. Truncation process

To ensure convergence of the sequence towards a root of h, the sequence (θn)n∈N

is required to remain in a given compact set. This assumption is rarely satisfied.



Convergence of stochastic approximations 1587

To alleviate this constraint, we introduce the usual trick which consists in re-
projecting on increasing compact sets. It is then proved that the sequence will
be projected only a finite number of times along the algorithm. Using this trick,
the sequence (θn)n∈N now remains in a compact set of Θ. We detail this process
below.

We assume that there exists (Kn)n∈N a sequence of compact subsets of Θ
such that ⋃

q≥0

Kq = Θ and Kq ⊂ int(Kq+1) .

Let (εn)n∈N be a sequence of non-increasing positive numbers and K be a
subset of X . Let Φ : X × Θ → K × K0 be a measurable function. We then
define the stochastic approximation algorithm with adaptive truncation sets as
a homogeneous Markov chain on X ×Θ× N× N by

Zn = (Xn,Θn, κn, νn) (3)

with the following transition at iteration n+ 1:

• If νn = 0, then draw (Xn+1, θn+1) ∼ QΔn(Φ(Xn, θn), .). Otherwise, draw
(Xn+1, θn+1) ∼ QΔn(Xn, θn, .).

• If |θn+1−θn| ≤ εn and θn+1 ∈ Kκn then set κn+1 = κn and νn+1 = νn+1.
Otherwise, set κn+1 = κn + 1 and νn+1 = 0.

To summarize this process, if our parameter θ leaves the current truncation
set Kκn or if the difference between two of its successive values is larger than a
time dependent threshold εn, we reinitialize the Markov chain by a value inside
K0: Φ(Xn, θn) and update the truncation set to a larger one Kκn+1 as well as
the threshold to a smaller one: εn+1. Hence, κn represents the number of re-
initializations before the step n while νn is the number of steps since the last
re-initialization.

The idea behind this truncation process is to force the noise to be small in
order for the drift h(θ) to dominate. We do so by forcing our algorithm to come
back to the center of Θ whenever the parameters become too large.

2.3. Control of the fluctuations and main convergence theorem

In this section, we state two last hypotheses about the control of fluctuations
before presenting the theorem proved in [5]. In that paper, the authors present
several conditions (A1 to A4) that imply the convergence of the stochastic ap-
proximation algorithm. It is those conditions that we will, in the next section,
verify under subgeometric ergodicity of the Markov chain.

We first define, for any compactK and any sequence of non-increasing positive
numbers (εk)k∈N, σ(K) = inf(k ≥ 1, θk /∈ K) and νε = inf(k ≥ 1, |θk − θk−1| ≥
εk). Moreover, for W : X → [1,∞) and g : X → R

nθ , we write

||g||W = sup
x∈X

|g(x)|
W (x)

.



1588 V. Debavelaere et al.

We can now present the hypothesis (A3):

(A3) For any θ ∈ Θ, the Poisson equation g − Pθg = Hθ − h(θ) has a
solution gθ. Moreover, there exist a function W : X → [1,+∞]
such that {x ∈ X ,W (x) < +∞} �= ∅, constants α ∈ (0, 1] and
p ≥ 2 such that for any compact subset K ⊂ Θ,

(i) the following holds:

sup
θ∈K

||Hθ||W <∞ (4)

sup
θ∈K

||gθ||W +||Pθgθ||W <∞ (5)

sup
θ,θ′∈K

||θ−θ′||−α (||gθ−gθ′ ||W +||Pθgθ−Pθ′gθ′ ||W )<∞ (6)

(ii) there exist constants {Ck, k ≥ 0} such that, for any k ∈ N,
for any sequence Δ and for any x ∈ X ,

sup
θ∈K

E
Δ
x,θ[W

p(Xk)1σ(K)≥k] ≤ CkW
p(x) (7)

(iii) there exist a sequence (εk)k∈N and a constant C such that
for any sequence Δ and for any x ∈ X ,

sup
θ∈K

E
Δ
x,θ[W

p(Xk)1σ(K)∧νε≥k] ≤ CW p(x) . (8)

This assumption concerns the existence and regularity of the Poisson equation
associated with each of the transition kernel Pθ. In [5], the authors show that
those conditions are verified under the hypothesis of geometric ergodicity of the
Markov chain. In the next sections, we will relax this ergodicity condition to be
able to consider subgeometric ergodic chains.

Finally, the last condition concerns the step size sequences:

(A4) The sequences (Δk)k∈N and (εk)k∈N are non-increasing, positive
and satisfy

∑∞
k=0 Δk = ∞, limk→∞ εk = 0 and

∞∑
k=1

Δ2
k +Δkε

α
k + (ε−1

k Δk)
p < ∞

where p and α are defined in (A3).

We can finally state the theorem proved in [5]:

Theorem 2.1. [5] Assume (A1)-(A4). Let K ⊂ X such that supx∈K W (x) < ∞
and such that K0 ⊂ WM0 (where M0 and WM0 are defined in (A1)) and let Zn

be as defined in (3). Then, for all (x, θ) ∈ X ×Θ, we have limk→∞ d(θk,L) = 0,
P
Δ
x,θ-a.s. where L is defined in (A1).
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Of the four conditions (A1) to (A4), (A3) is often the most difficult to verify
and we need more practical conditions. In particular, in [5], the authors show
that drift conditions imply (A3). However, those drift conditions are only true
for geometric ergodic Markov chains. In a lot of cases, this ergodicity is not
satisfied. To tackle this problem, we will, in the next section, state subgeometric
drift conditions and hypotheses on the rate of convergence that are sufficient
to ensure the validity of (A3). The new theorem then allows us to verify the
convergence in a broader range of cases, some of them being presented in sections
5 and 6.

3. Convergence of the stochastic approximation sequence under
subgeometric conditions

In this section, we state the drift conditions and hypotheses under which we will
work to prove the validity of (A3). Denote, for V : X → [1,∞), LV = {g : X →
R

nθ , ||g||V < ∞}.

(DRI) For any θ ∈ Θ, Pθ is ψ-irreducible and aperiodic. In addition,
there exist a function V : X → [1,∞) and a constant p ≥ 2 such
that, for any compact subset K ⊂ Θ, there exist constants b,
δ0 > 0, a probability measure ν, a concave, increasing function
φ : [1,∞) → (0,∞), continuously differentiable such that
limv→∞ φ′(v) = 0 and a subset C of X with

sup
θ∈K

PθV
p(x) + φ ◦ V p(x) ≤ V p(x) + b1C(x) ∀x ∈ X (9)

inf
θ∈K

Pθ(x,A) ≥ δ0ν(A) ∀x ∈ C, ∀A ∈ B(X ) . (10)

Remark 3.1. We could consider the following, more general, drift condition:
there exists m ∈ N

∗ such that

sup
θ∈K

Pm
θ V p(x) + φ ◦ V p(x) ≤ V p(x) + b1C(x) ∀x ∈ X

inf
θ∈K

Pm
θ (x,A) ≥ δ0ν(A) ∀x ∈ C, ∀A ∈ B(X ) .

The results we present in the following sections would still be verified under
such a drift condition. To adapt the proofs (and more precisely, the proof of the
lemma 4.6), we would then need to use the lemma B.3. of [5].

Under the condition (DRI), C is a small set and the Markov kernel Pθ verifies
a subgeometric drift condition [19]. In particular, it implies the existence of
a stationary distribution πθ for all θ ∈ K as well as a uniform subgeometric
ergodicity on all compacts of Θ. Hence, for all θ ∈ Θ, there exist a constant
Cθ and a sequence (rθ,k)k∈N such that, ∀q, s > 0 with 1/q + 1/s = 1 and
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∀f ∈ L(φ◦V p)1/s ,

r
1/q
θ,k ||P k

θ f − πθ(f)||(φ◦V p)1/s ≤ Cθ||f ||(φ◦V p)1/s .

Moreover, it has been showed in [18] that, under such a subgeometric ergod-
icity condition, we can choose a rate of convergence (rk)k∈N that only depends
on the function φ and so only on the fixed compact K. Similarly, it has been
proved that the constant Cθ is bounded on all compact K. Hence, there exist a
constant CK and a sequence (rk)k∈N such that, for all f ∈ L(φ◦V p)1/s and for all
θ ∈ K,

sup
θ∈K

r
1/q
k ||P k

θ f − πθ(f)||(φ◦V p)1/s ≤ CK||f ||(φ◦V p)1/s . (11)

We will see in the following that several hypotheses must be made on that
rate of convergence (rk)k∈N for the condition (A3) to be satisfied.

Remark 3.2. In general, we can consider any pair Ψ1 and Ψ2 of inverse Young
functions i.e. two strictly increasing continuous functions on R+ verifying for
all x, y in R+, Ψ1(x)Ψ2(y) ≤ x+ y. Under the subgeometric drift condition, we
then have, for all f ∈ LΨ2(φ◦V p):

Ψ1(rk)||P k
θ f − πθ(f)||Ψ2(φ◦V p) ≤ CK||f ||Ψ2(φ◦V p) .

In order to simplify the notations, we will only consider in the following the
pair of inverse Young functions Ψ1(x) = qx1/q and Ψ2(x) = sx1/s. The same
reasoning could be carried out for any other pair of Young functions by adapting
the hypotheses (H1) and (H2).

We now state several hypotheses that we will need in order to prove the con-
dition (A3). The first one concerns the choice of the inverse Young functions
with respect to the rate of convergence and the regularity of Hθ. With p as
defined in (DRI), we suppose:

(H1) For any compact K, there exist q > 0 and s ≥ p with 1/q + 1/s=1
such that:∑

k≥0

1

r
1/q
k

< ∞ and sup
θ∈K

||Hθ||(φ◦V p)1/s < ∞ .

Remark 3.3. We will show in section 5.3 that this hypothesis can be verified
even for polynomial rates of convergence (rk = kd with d > 2 in that example).
This hypothesis can be seen as a compromise in the choice of q and s between
the rate of convergence rk and the regularity of Hθ. The assumption s ≥ p is
necessary to control the V -norm by the (φ ◦ V p)1/s-norm.

We then need hypotheses on the regularity of Hθ and Pθ. Two of them are
similar to the ones presented in [5] while the first one will help us to conclude
on the validity of Eq. (6).
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(H2) For any compact K, there exists a constant β ∈ [0, 1] such that

(i) there exist Tθ,θ′ ∈ N
∗ and α ∈ (0, 1) such that

sup
θ,θ′∈K

Tθ,θ′ ||θ − θ′||β−α + ||θ − θ′||−α
∑

k≥Tθ,θ′

1

r
1/q
k

< ∞ .

(ii) there exists C such that for all x ∈ X ,

sup
θ,θ′∈K

||θ − θ′||−β |Hθ(x)−Hθ′(x)| ≤ CV p(x)

(iii) there exists C such that for all θ, θ′ ∈ K,

||Pθg − Pθ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s ||θ − θ′||β ∀g ∈ L(φ◦V p)1/s .

Remark 3.4. In the condition (H2-i), Tθ,θ′ is a positive integer. It implies in
particular β ≥ α.

This condition can be easily verified for r
1/q
k = kd with d > 1. Indeed, we

know that
∑∞

k=T
1
kd ∼ 1

(d−1)Td−1 . Hence, if 0 < α < 1, we choose Tθ,θ′ =

1 ∨
⌊
||θ − θ′||− α

d−1
⌋
and we have:

||θ − θ′||−α
∞∑

k=Tθ,θ′

1

kd
∼θ→θ′

1

d− 1
.

Moreover, if ||θ − θ′|| ≤ 1, Tθ,θ′ ||θ − θ′||β−α = ||θ − θ′||β−α− α
d−1 . Choosing α

such that β − α− α
d−1 > 0 i.e. α < β d−1

d allows us to conclude.

Finally, due to the subgeometric ergodicity, we are unable to iterate the drift
condition without making divergent quantities appear. This iteration was how-
ever one of the keys of the proof of the condition 8. To overcome this problem,
we add one last hypothesis on the behaviour of φ on the petite set C defined by
assumption (DRI):

(H3) there exists δ > 0 such that, ∀x ∈ C,

φ ◦ V p(x) ≥ δV p(x) .

Remark 3.5. It is interesting to remark that asking for this condition on the
whole set X implies the geometric ergodicity of the chain. However, we only ask
it on the petite set C on which we have some freedom. In fact, in most cases,
this condition will be easy to verify. Indeed, according to the theorem 16.1.9. of
[19], we can choose C = {V p ≤ d} with d > 0. Hence, if this set is compact (true
if V is continuous and V (x) −→x→∞ ∞) and if (φ ◦ V p)1/s/V p is continuous,
(H3) is verified.
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We can now state our major theorem:

Theorem 3.1. Assume (DRI) and (H1)-(H3). Then, the condition (A3) is
verified. In particular, if (A1), (A2) and (A4) are also verified we can apply the
theorem 2.1 to conclude that limk→∞d(θk,L) = 0

4. Proof of the theorem 3.1

4.1. Sketch of proof

The proof follows the principal ideas of [5]. However, due to the fact that our
Markov chain is no longer supposed to be geometric ergodic, we need several
new arguments. In particular, the behaviour of φ on the petite set C and the
hypotheses on the rate of convergence (rk)k∈N will be of the upmost importance.

The first important result is the fact that we are able to dominate the V -
norm by the (φ ◦ V p)1/s-norm under the hypothesis (H1). This is particularly
important as we need to choose W = V in (A3) to be able to find an upper
bound of the expectation of W p(Xk)1σ(K)∧νε≥k (see Eq. (8)). Hence, we use
this control of the V -norm to control the different quantities in Eq. (4), (5) and
(6) using the rate of convergence given by Eq (11). This control is given by the
lemma 4.1.

Using this lemma, we can control the norm of the solution of the Poisson
equation using the subgeometric ergodicity. This is explained lemma 4.2.

We then want to prove the condition (6) (lemma 4.5). Using once again a
decomposition of the solution of the Poisson equation, we see that we need
regularity conditions on θ �→ Pθ and h. The regularity of θ �→ Pθ is given by the
condition (H2) while we prove the Hölder continuity of h in lemma 4.4.

Finally, while the condition (7) is easily proved by iterating the drift condi-
tion, we still need to prove the condition (8). In [5], the authors prove it using
the same argument which does not hold anymore for us as this iteration can
make appear divergent quantities. That is why we need to state the condition
(H3). It is under this final condition that we are able to iterate an upper bound
of the drift and prove (8) in lemma 4.6.

After this final step, we have all the tools necessary to prove the theorem 3.1.
We will now present and prove with details the different lemmas introduced

above and implying each of the conditions in (A3) before proving the theorem
3.1.

4.2. Proof of Eq. (5)

First, using (H1), we show that we can control the V -norm using the (φ ◦ V p)1/s-
norm:

Lemma 4.1. Assume (H1). Then, there exists C > 0 such that, for all g ∈
L(φ◦V p)1/s ,

||g||V ≤ C||g||(φ◦V p)1/s .
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Proof. φ is concave and increasing so, ∀v ≥ 1, φ(v) ≤ φ′(1)(v − 1) + φ(1) ≤ cv
with c a positive constant. Hence, for all x ∈ X , since s ≥ p and V (x) ≥ 1,

(φ ◦ V p)1/s(x) ≤ c1/sV p/s(x) ≤ c1/qV (x)

which allows us to verify the announced inequality.

We can now prove the equation (5).

Lemma 4.2. Suppose (DRI). Then, the Poisson equation g−Pθg = Hθ − h(θ)
has a solution gθ. Moreover, under (H1),

sup
θ∈K

||gθ||V < ∞ and sup
θ∈K

||Pθgθ||V < ∞ .

Proof. The proposition [21.2.4] of [19] states the existence of a solution gθ of the
Poisson equation under the subgeometric ergodicity conditions (DRI) verifying:

gθ(x) =
∑
k≥0

(
P k
θ Hθ(x)− h(θ)

)
.

Moreover, we know that for any compact K, there exist a constant C and a
convergence rate (rk)k∈N independent of θ ∈ K such that, for all f ∈ L(φ◦V p)1/s ,
for all θ ∈ K,

r
1/q
k ||P k

θ f − πθ(f)||(φ◦V p)1/s ≤ C||f ||(φ◦V p)1/s .

Hence, using lemma 4.1,

r
1/q
k ||P k

θ f − πθ(f)||V ≤ r
1/q
k C||P k

θ f − πθ(f)||(φ◦V p)1/s

≤ C||f ||(φ◦V p)1/s .

Since h(θ) = πθ(Hθ) and using (H1), we have that:

||gθ||V ≤
∑
k≥0

||P k
θ Hθ − h(θ)||V ≤ C||Hθ||(φ◦V p)1/s

∑
k≥0

1

r
1/q
k

< ∞ .

Finally, we can use the same argument for Pθgθ to prove that supθ∈K||Pθgθ||V <
∞.

4.3. Proof of Eq. (6)

We now want to prove the condition given by Eq. (6). In particular, we need
the hypotheses on the regularity in θ of Hθ and Pθ presented in condition (H2).
We begin by proving two lemmas implying the Hölder continuity of h.

Lemma 4.3. Assume (DRI), (H1) and (H2). Then, there exists a constant C
such that, for all g ∈ L(φ◦V p)1/s and any k ≥ 0,

sup
θ,θ′∈K

||θ − θ′||−β ||P k
θ g − P k

θ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s .
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Proof. This result is a consequence of (H2-iii). Indeed, we can write, for all θ,
θ′ in K, all k ∈ N and all g ∈ L(φ◦V p)1/s ,

P k
θ g − P k

θ′g =

k−1∑
j=0

P j
θ (Pθ − Pθ′)(P k−j−1

θ′ g(x)− πθ′(g)) .

But, using Eq. (11), we know that, for any l ≥ 0,

sup
θ∈K

||P l
θ − πθ||(φ◦V p)1/s ≤ C

r
1/q
l

.

Hence, supl∈N,θ∈K ||P l
θ||(φ◦V p)1/s < ∞.

Finally, using this result and (H2-iii),

||P k
θ g − P k

θ′g||(φ◦V p)1/s ≤ C||θ − θ′||β
k−1∑
j=0

||P k−j−1
θ′ g(x)− πθ′(g)||(φ◦V p)1/s

≤ C||θ − θ′||β ||g||(φ◦V p)1/s

k−1∑
j=0

1

r
1/q
k−j−1

.

We obtain the result using the convergence of the sum of the 1/r
1/q
j .

We now prove that h is β-Hölder. We will use this property to finally be able
to prove (6).

Lemma 4.4. Assume (DRI), (H1) and (H2). Then,

sup
θ,θ′∈K

||θ − θ′||−β |h(θ)− h(θ′)| < ∞ .

Proof. We use the following decomposition of |h(θ)−h(θ′)| for x0 ∈ X , (θ, θ′) ∈
K2 and k ∈ N:

|h(θ)− h(θ′)| = |A(θ, θ′) +B(θ, θ′) + C(θ, θ′)|

with:

A(θ, θ′) = h(θ)− P k
θ Hθ(x0) + P k

θ′Hθ′(x0)− h(θ′)

B(θ, θ′) = P k
θ Hθ(x0)− P k

θ′Hθ(x0)

C(θ, θ′) = P k
θ′Hθ(x0)− P k

θ′Hθ′(x0) .

From lemma 4.3, hypotheses (H2-ii) and (DRI), we obtain the following in-
equalities:

|A(θ, θ′)| ≤ C

r
1/q
k

sup
θ∈K

||Hθ||(φ◦V p)1/s(φ ◦ V p)1/s(x0)

|B(θ, θ′)| ≤ C||Hθ||(φ◦V p)1/s ||θ − θ′||β(φ ◦ V p)1/s(x0)
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|C(θ, θ′)| ≤
∫
X
P k
θ′(x0, dy)|Hθ(y)−Hθ′(y)|

≤ C||θ − θ′||β
∫
X
P k
θ′(x0, dy)V

p(y)

≤ C||θ − θ′||βV p(x0) .

Hence, using the fact that supθ∈K ||Hθ||(φ◦V p)1/s < ∞ and (φ ◦ V p)1/s ≤ cV p,
we find

|h(θ)− h(θ′)| ≤ CV p(x0)

(
||θ − θ′||β +

1

r
1/q
k

)
.

Finally, because 1

r
1/q
k

→ 0, there exists k ∈ N such that 1

r
1/q
k

< ||θ − θ′||β

which concludes the proof.

Finally, we can state the condition (6).

Lemma 4.5. Assume (DRI), (H1) and (H2). Then,

sup
θ,θ′∈K

||θ − θ′||−α (||gθ − gθ′ ||W + ||Pθgθ − Pθ′gθ′ ||W ) < ∞ .

Proof. Using (H2-iii), lemmas 4.3 and 4.4, we have that, for x ∈ X , k ∈ N and
θ, θ′ ∈ K,

Dk(x, θ, θ
′) := |P k

θ Hθ(x)− h(θ)− P k
θ′Hθ′(x) + h(θ′)|

≤ |P k
θ Hθ(x)− P k

θ Hθ′(x)|+ |P k
θ′Hθ′(x)− P k

θ Hθ′(x)|+ |h(θ)− h(θ′)|
≤ C||θ − θ′||β(φ ◦ V p)1/s(x)

where we have used the fact that (φ ◦ V p)1/s(x) ≥ φ(1) > 0.
On the other hand, using the ergodicity of the Markov Chain (11) and (H1),

there exists c > 0 such that

Dk(x, θ, θ
′) ≤ c

r
1/q
k

(φ ◦ V p)1/s(x) .

Hence for t = 0 or 1 and any T ≥ t by splitting the sum at k = T and using the
two upper bounds found above, we have:

||θ − θ′||−α||P t
θgθ − P t

θ′gθ′ ||V ≤ C||θ − θ′||−α||P t
θgθ − P t

θ′gθ′ ||(φ◦V p)1/s

≤ C||θ − θ′||−α
∑
k≥t

||Dk(., θ, θ
′)||(φ◦V p)1/s

≤ C

⎛
⎝(T − t)||θ − θ′||β−α + ||θ − θ′||−α

∑
k≥T

1

r
1/q
k

⎞
⎠ .

Hence, we can use (H2-i) to conclude the proof.



1596 V. Debavelaere et al.

Remark 4.1. Here, we have in fact proved that, under the hypotheses (DRI),
(H1) and (H2), the solution of the Poisson equation is α-Hölder.

Finally, under (DRI), (H1) and (H2), we are able to prove the first item of
(A3). We still have to prove the second and third item. The second item is easily
proved using the drift condition:

E
Δ
x,θ(V

p(Xk)1σ(K)≥k) ≤ E
Δ
x,θ

[
E
Δ
x,θ(PV p(Xk−1)|Fk−1)

]
≤ E

Δ
x,θ(V

p(Xk−1)) + b ≤ V p(x) + kb

and we conclude using the fact that for any x ∈ X , V p(x) ≥ 1.
Hence, we only need to prove the last item of (A3).

4.4. Proof of Eq. (8)

Under geometrical ergodicity, iterating the drift condition is enough to prove the
necessary inequality. However, in the subgeometric case, this iteration can make
appear a divergent sum. To overcome this difficulty, we will use the condition
(H3).

Lemma 4.6. Assume (DRI) and (H3). Then, there exist a sequence (εk)k∈N

and a constant C such that for any sequence Δ and for any x ∈ X ,

sup
θ∈K

E
Δ
x,θ[V

p(Xk)1σ(K)∧νε≥k] ≤ CV p(X) .

Proof. Using (DRI) and (H3), we have that, for all x ∈ X ,

PV p(X) ≤ V p(x)− φ ◦ V p(x) + b1C(x) .

Hence, if x /∈ C, PV p(x) ≤ V p(x) and, if x ∈ C, PV p(x) ≤ (1− δ)V p(x) + b.
We first consider the case δ ≥ 1. In that case, if x ∈ C, PV p(x) ≤ b. Hence,

by induction, EΔ
x,θ

(
V p(Xk)1σ(K)∧ν(ε)≥k

)
≤ V p(x) + b.

If δ < 1, we note τk = Card(Xi|Xi ∈ C for 1 ≤ i ≤ k) the number of elements
(Xi)1≤i≤k belonging to C. Then,

E
Δ
x,θ

(
V p(Xk)1σ(K)∧ν(ε)≥k

)
= E

Δ
x,θ

(
E
Δ
x,θ

(
PV p(Xk−1)1σ(K)∧ν(ε)≥k

∣∣∣Fk−1

))
≤ E

Δ
x,θ

(
(1− δ1Xk−1∈C)V

p(Xk−1) + b1Xk−1∈C
)

Hence, at each iteration i ≤ k − 1, if Xi ∈ C, we multiply the expression by
(1−δ) and add b. Such a case happens τk−1 times. Otherwise, we keep the same
expression as before, but at the rank i− 1. By iterating, we have:

E
Δ
x,θ

(
V p(Xk)1σ(K)∧ν(ε)≥k

)
≤ E

Δ
x,θ

(
(1− δ)τk−1V p(x) + b

τk−1−1∑
i=0

(1− δ)i

)

≤ V p(x) +
b

δ
.

Since V p(x) ≥ 1, we can conclude the proof.
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4.5. Proof of Theorem 3.1

We can now finalize this section by proving the theorem 3.1 using the lemmas
previously presented.

Proof. Using lemma 4.1 and hypothesis (H1), we immediately obtain the first
inequality in hypothesis (A3-i). The next two conditions are given respectively
by 4.2 and 4.5. The last conditions are a consequence of lemma 4.6.

5. Example: Symmetric Random Walk Metropolis Hastings
(SRWMH)

5.1. Presentation of the algorithm

The SRWMH is a popular algorithm allowing for sampling from a distribution π.
It consists in simulating a Markov Chain (Xn)n∈N whose stationary distribution
is π. The user chooses a symmetric proposal distribution q. At each step, if the
chain is currently at x, a candidate y for Xn+1 is proposed using q(x− .). This
candidate is then accepted with probability:

α(x, y) =

{
1 ∧ π(y)

π(x) if π(x) �= 0

1 otherwise.
(12)

If the candidate is rejected, the chain stays at its current location x. The tran-
sition kernel of this Markov Chain is: ∀x ∈ X , ∀A ∈ B(X ),

P (x,A) =

∫
A

α(x, y)q(x− y)λLeb(dy) +1A(x)

∫
X

(1−α(x, y))q(x− y)λLeb(dy) .

(13)
The choice of the proposal distribution q is of crucial importance. In particu-

lar, proposal distributions with a too small or too large covariance matrix lead
to a highly correlated Markov Chain. To overcome this difficulty, the authors of
[23] have proposed to learn the covariance matrix while sampling the Markov
Chain leading to adaptive MCMC samplers. We note θ = (μ,Γ) and we suppose
that we can choose qθ such that V ar(qθ) = Γ. For instance, if we choose to work
with Gaussian distributions, qθ is the density of the distribution N (0,Γ). We
then write Pθ the kernel of the SRWMH when the proposal is qθ.

We can then adapt the value of Γ using the following algorithm:{
μn+1 = μn +Δn+1(Xn+1 − μn)
Γn+1 = Γn +Δn+1

(
(Xn+1 − μn)(Xn+1 − μn)

T − Γn

) (14)

withXn+1 ∼ Pθn(Xn, .) where θn = (μn,Γn) and with (Δn)n∈N a non-increasing
sequence of step sizes such that

∑∞
n=1 Δn = ∞ and, for some b > 0,

∑∞
n=1 Δ

1+b
n <

∞.
This procedure is in fact a stochastic approximation:

θn+1 = θn +Δn+1Hθn(Xn+1)
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with

Hθ(x) = (x− μ, (x− μ)(x− μ)T − Γ) . (15)

Moreover, assuming that
∫
X x2π(dx) < ∞, one can verify that:

h(θ) =
(
μπ − μ, (μπ − μ)(μπ − μ)T + Γπ − Γ

)
with μπ and Γπ respectively the mean and variance of π.

This algorithm has already been studied in [5]. In that paper, the authors
make a hypothesis on the tail properties of the target distribution that im-
plies the geometric ergodicity of the Markov Chain Pθ. Under this hypothesis,
the authors prove that the conditions (A1)-(A4) are verified and so prove the
convergence of the algorithm.

Within our framework, we are able to loosen the hypothesis on π to give
conditions under which we have a subgeometric ergodicity of the Markov Chain
Pθ while still guaranteeing convergence of the algorithm.

In [5], the verification of the condition (A1) does not use the behaviour of
the tail of π. Hence, it will stay true in our case and we can state it here:

Proposition 5.1. Let

w(μ,Γ) = −
∫
X
log

(
π(x)

φμ,Γ(x)

)
π(dx)

where φμ,Γ is the normal density of mean μ and variance Γ. Then, w verifies
(A1). Furthermore, L is reduced to a single point θπ := (μπ,Γπ).

To prove (A3), we need some hypotheses on the behaviour of π. In particular,
we will verify that we can apply the theorem 3.1 under two different sets of
hypotheses. The first contains among others the Weibull distributions while the
second one includes the Pareto distributions. Those two sets of hypotheses as
well as the proof of the condition (A3) are detailed in the following subsections.

5.2. First family of distributions (including the Weibull one)
satisfying our assumptions

In [18] and [22], the authors present a set of hypotheses on the target and pro-
posal distributions that imply the subgeometric ergodicity of the Markov Chain.
The first hypothesis concerns the target distribution:
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(E1) The target density π is continuous and positive on R
d and there

exist m ∈ (0, 1), r ∈ (0, 1), positive constants di, Di, i = 0, 1, 2 and
R0 < ∞ such that, if |x| ≥ R0, x �→ π(x) is twice continuously
differentiable and 〈

∇π(x)

|∇π(x)| ,
x

|x|

〉
≤ −r

d0|x|m ≤ − lnπ(x) ≤ D0|x|m

d1|x|m−1 ≤ |∇ lnπ(x)| ≤ D1|x|m−1

d2|x|m−2 ≤ |∇2 lnπ(x)| ≤ D2|x|m−2 .

Among others, the Weibull distribution on R+ π : x �→ βηxη−1 exp(−βxη)
with β > 0 and η ∈ (0, 1) verifies those conditions.

We also need some conditions on the proposal distribution:

(E2) There exist ε > 0 and r < ∞ such that y < r =⇒ qθ(y) ≥ ε.
Moreover, qθ is symmetric, bounded away from zero in a
neighborhood of zero, and is compactly supported. We also assume
that there exist C > 0 and β ∈ (0, 1) such that for all (θ, θ′) ∈ Θ2,∫

X

|qθ(z)− qθ′(z)|λLeb(dz) ≤ C|θ − θ′|β .

Remark 5.1. The compactly supported condition could be relaxed with appro-
priate moment conditions.

We can now prove the following theorem:

Theorem 5.1. Let π and qθ be distributions satisfying (E1) and (E2) and
consider the process defined in (14) with ε and Δ two sequences verifying (A4).
Then, (A1), (A2) and (A3) are verified. Moreover, θn → θπ w.p. 1 where θπ :=
(μπ,Γπ) is the unique stationary point of (θn)n∈N.

Proof. According to the theorem 3.1 of [18], if (E1) and (E2) are satisfied,
there exists ξ0 such that for all ξ ≤ ξ0, there exist c > 0, W := π−ξ and

φ : x �→ cx(1 + ln(x))−2 1−m
m verifying:

PW + φ ◦W ≤ W + b1C .

Hence, we have a subgeometric drift condition. It is then possible to compute
the associated rate of convergence: rk = exp(ck

m
2−m ).

As stated in proposition 5.1, the condition (A1) is verified and (A2) is satisfied
using the theorem 2.2 of [35].

We will prove (A3) using the theorem 3.1.
First, the condition (DRI) is verified with V 2 = π−ξ and p = 2. Indeed, the

drift condition is given above while the existence of small sets is ensured given
the continuity of π and hypothesis (E2) (see Theorem 2.2 of [35]).



1600 V. Debavelaere et al.

We then verify the hypothesis (H1). Given the value of rk, the sum of the

r
1/q
k will be finite for any q > 0. Moreover, supθ∈Θ ||Hθ||(φ◦V 2)1/s < ∞ if and

only if x2πξ/s(x)(1 − ξ lnπ(x))
2(1−m)

sm < ∞. This will be true for any s > 0 as
π(x) ≤ exp(−D0x

m).
Concerning (H2), as discussed in remark 3.4, (H2-i) is verified for polynomial

rates of convergence kd with d > q. Using the fact that r
1/q
k > kd for k big

enough, we can conclude that (H2-i) is verified in this case.
To verify (H2-ii), we remark that

|Hθ(x)−Hθ′(x)| ≤ |μ− μ′|(1 + |μ+ μ′|+ 2|x|) + |Γ− Γ′| .

Since ||x||V 2 < ∞, we obtain the inequality (H2-ii) for any β ≤ 1.
We now interest ourselves in (H2-iii). Using the definition of the kernel Pθ,

we have that

|Pθg(x)− Pθ′g(x)| ≤
∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|g(x+ z)λLeb(dz)

+ g(x)

∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|λLeb(dz)

≤ ||g||(φ◦V 2)1/s(φ ◦ V 2)1/s(x)
(∫

X

α(x, x+ z)|qθ(z)

− qθ′(z)| (φ ◦ V 2)1/s(x+ z)

(φ ◦ V 2)1/s(x)
λLeb(dz)

+

∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|λLeb(dz)
)
.

Hence, writing Ψ := (φ ◦ V 2)1/s, we need to study:

α(x, x+ z)
Ψ(x+ z)

Ψ(x)
=

(
1 ∧ π(x+ z)

π(x)

)
π−ξ(x+ z)(1− ξ lnπ(x+ z))−

2(1−m)
m

π−ξ(x)(1− ξ lnπ(x))−
2(1−m)

m

.

But, if π(x+ z) ≥ π(x), this function is always less than 1.
If π(x + z) ≤ π(x), we use the growth of the function Φ(u) = u1−ξ(1 −

ξ ln(u))−
2(1−m)

m for u in a compact and ξ small enough. Hence, we deduce once
again that the function is less than 1.

Finally,

|Pθg(x)− Pθ′g(x)| ≤ 2||g||(φ◦V 2)1/s(φ ◦ V 2)1/s(x)

∫
X

|qθ(z)− qθ′(z)|λLeb(dz) .

Hence, the hypothesis (E2) allows us to conclude on the validity of (H2-iii).
Finally, we just have the hypothesis (H3) to prove. According to the theorem

16.1.9 of [19], C can be chosen as {V ≤ d} with d ∈ [0,∞). But, V 2 converges
towards infinity at infinity and is continuous so, C is compact. Hence, because
φ◦V 2

V 2 is continuous, there exists a lower bound of φ◦V 2

V 2 on C and (H3) is verified.
All the hypotheses of the theorem 3.1 are thus verified and we can apply it

to conclude.
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Hence, we have proven the convergence of the Metropolis Hastings algorithm
under a subgeometric ergodicity condition. In the next subsection we will inter-
est ourselves in the case where the rate of convergence is not only subgeometric
but polynomial and, once again, prove the convergence of a stochastic approxi-
mation.

5.3. Second usual family (including the Pareto distribution) covered
by our framework

In [22], the authors give other conditions on the target density for the SRWMH
kernel to be subgeometric ergodic when we work in R:

(E3) π is continuous on R and there exist some finite constants α > 1,
M > 0, C > 0 and a function ρ : R → [0,∞) verifying
limx→∞ ρ(x) = 0 such that for all |x| > M , π is strictly decreasing
and, for all y ∈ {z ∈ R |π(x+ z) ≤ π(x)},∣∣∣∣π(x+ y)

π(x)
− 1 + αyx−1

∣∣∣∣ ≤ C|x|−1ρ(x)y2 .

This class of distributions contains in particular the Pareto distributions (π(x) ∝
x−α) as well as many heavy tail distributions. We also need some hypotheses
on our proposal:

(E4) There exist ε > 0 and r < ∞ such that y < r =⇒ qθ(y) ≥ ε.
Moreover, qθ is symmetric and there exists ξ ≥ 1 such that∫
|y|ξ+3qθ(y)dy < ∞.

Under those conditions, we can state the following proposition, proved in [22].

Proposition 5.2. Assume (E3) and (E4). Set u = ξ ∧ α + 1 and W : x �→
1 + |x|u. Then, there exist c > 0 and a small set C such that, if we set φ : x �→
cx1−2/u,

PθW (x) + φ ◦W (x) ≤ W (x) + b1C .

Under such a drift condition, we are able to deduce the rate of convergence
using the value of φ [18]: for all k ∈ N, rk ∝ ku/2−1.

Theorem 5.2. Let π and qθ be distributions on R satisfying (E3) and (E4) with
ξ ∧ α > 5 and consider the model defined in (14) with ε and Δ two sequences
verifying (A4). Assume also that (H2-iii) is verified. Then, (A1), (A2) and
(A3) are verified. Moreover, θn → θπ w.p. 1 where θπ := (μπ,Γπ) is the unique
stationary point of (θn)n∈N.

Remark 5.2. In this theorem, we suppose that (H2-iii) is verified. This condi-
tion depends on the function π. Given the functions V and φ chosen here, we
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need, ∀x, z ∈ R,⎧⎨
⎩ π(x+ z) ≤ π(x) =⇒ π(x+z)

π(x)

(
1+|x+z|u
1+|x|u

)u−2
us ≤ C

π(x+ z) ≥ π(x) =⇒ |x+ z| ≤ C|x| .
(16)

Other conditions can appear if V or φ have another form. It was the case in
the previous subsection where we have been able to prove this condition under
the hypotheses (E1) and (E2). We prove this particular condition (H2-iii) in the
next section in the case of the Pareto distribution.

Proof. (A1) is stated in proposition 5.1.
Under (E3) and (E4), Pθ is ψ-irreducible (see theorem 2.2 of [35]). Hence, we

have existence and uniqueness of the invariant distribution πθ. Moreover, H is
measurable. Hence, (A2) is verified.

We still need to verify (A3). To do so, we will use the theorem 3.1 and prove
the hypotheses (DRI) and (H1)-(H3).

The proposition 5.2 and the theorem 2.2 of [35] give us the validity of (DRI)
with p = 2 and W = V 2.

We now prove (H1). First,
∑

k≥0
1

r
1/q
k

is finite for any q < u−2
2 . Moreover,

recalling that 1/s + 1/q = 1, that (φ ◦ V p)1/s = (1 + |x|u)u−2
us and that Hθ is

quadratic, for any K compact of R×R
∗
+, supθ∈K ||Hθ||(φ◦V 2)1/s < ∞ if and only

if q > u−2
u−4 . Hence, we need to choose q such that:

u− 2

u− 4
< q <

u− 2

2
. (17)

Since u > 6, such a q exists. Moreover, because u−2
2 > 2 = p, we can also

choose s > p. Hence, the condition (H1) is verified.

Concerning (H2), as discussed in remark 3.4, (H2-i) is verified if u/2−1
q > 1

which is true given Eq. (17).
Concerning (H2-ii), we have that

|Hθ(x)−Hθ′(x)| ≤ |μ− μ′|(1 + |μ+ μ′|+ 2|x|) + |Γ− Γ′| .

Since ||x||V 2 < ∞ because u ≥ 1, we obtain the inequality (H2-ii) for any β ≤ 1.
Hence, we only have to prove (H3) to conclude. According to the theorem

16.1.9 of [19], C can be chosen as {V ≤ d} with d ∈ [0,∞). In particular,
since V 2(x) = 1 + |x|u, there exists d1 > 0 such that {V ≤ d} = [0, d1]. But,

x �→ (φ◦V 2)1/s(x)
V 2(x) is continuous hence, bounded on the compact [0, d1]. Thus,

(H3) is verified.

We have proved the convergence of the Metropolis Hastings algorithm under
a set of hypotheses implying a polynomial rate of convergence. In the next
section, we show that those hypotheses are verified for the Pareto distribution
with a scale parameter more than 5.
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5.4. Application to the Pareto distribution

In this application, we choose to study the case where the target distribution π
is a Pareto distribution and the proposal qθ is a normal distribution N (0,Γ). As
showed in [22], the Pareto distribution π(x) ∝ |x|−α verifies the condition (E3).
Moreover, (E4) is satisfied for any ξ > 0. Hence, when applying the theorem
5.2, we only need to assume α ∧ ξ > 5 i.e. α > 5.

We now show that the Pareto distribution verifies the condition (H2-iii):

Lemma 5.3. Suppose that π is a Pareto distribution with shape α > 5 and,
for θ = (μ,Γ), qθ is the normal distribution N (0,Γ). Then, if Pθ is the kernel
defined in (13) and K is a compact of R

∗
+, there exists C such that for all

θ, θ′ ∈ K and for all g ∈ L(φ◦V p)1/s

||Pθg − Pθ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s |θ − θ′|β .

Proof. As done in the proof of the theorem 5.1, writing Ψ = (φ ◦ V p)1/s, we
need to find an upper bound to:∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|Ψ(x+ z)

Ψ(x)
λLeb(dz)

=

∫
X

(
1 ∧ |x|α

|x+ z|α
)

(1 + |x+ z|α+1)
α−1

s(α+1)

(1 + |x|α+1)
α−1

s(α+1)

|qθ(z)− qθ′(z)|λLeb(dz) .

But, if |x+ z|α ≤ |x|α,

(1 + |x+ z|α+1)
α−1

s(α+1)

(1 + |x|α+1)
α−1

s(α+1)

≤ 1 .

Similarly, if |x+z|α ≥ |x|α, using Eq. (17), we have that s > 1 ≥ α−1
α . Hence,

|x|α
|x+ z|α

(1 + |x+ z|α+1)
α−1

s(α+1)

(1 + |x|α+1)
α−1

s(α+1)

≤
∣∣∣1 + z

x

∣∣∣−α
(
1 +

∣∣∣1 + z

x

∣∣∣α+1
) α−1

s(α+1)

is bounded since u �→ u−α(1 + uα+1)
α−1

s(α+1) is bounded on [1,+∞).
Finally, there exists C > 0 such that:

|Pθg(x)− Pθ′g(x)| ≤ C||g||(φ◦V p)1/s(φ ◦ V p)1/s(x)

∫
X

|qθ(z)− qθ′(z)|dz .

But it has already been proved in [5] that, if qθ is the normal distribution of
variance Γ then, for any Γ,Γ′ in a compact subset K of R∗

+,∫
R

|qθ(z)− qθ′(z)|dz ≤ 1

Γmin
|Γ− Γ′|

where Γmin is the minimum value of K which allows us to conclude for any
β ≤ 1.
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Theorem 5.4. Suppose that π is a Pareto distribution with shape α > 5 and,
for θ = (μ,Γ) ∈ Θ = R×R

∗
+, qθ is the normal distribution N (0,Γ). Let (Zn)n∈N

be the Markov chain as described in 3 with Pθ defined in (13) and H defined
in (15). Suppose that (Δn)n∈N and (εn)n∈N are two sequences verifying (A4).
Then, θn → θπ = (μπ, θπ) w.p. 1.

Proof. It is a consequence of the theorem 5.2 and lemma 5.3. All the conditions
have already been proved.

Thus, we have been able to prove the convergence of an adaptive MCMC
algorithm targeting distributions for which the theorem proved in [5] was not
enough to conclude.

6. Application to independent component analysis

Independent component analysis (ICA) is a method which aims at representing
a data set of random vectors as linear combinations of a fixed family of vectors
with independent random weights. ICA follows somehow the same goal as the
Principal Component Analysis (PCA). However, PCA imposes orthogonality
between principal components which amounts to supposing that the observed
vectors follow a Normal distribution. As for the ICA, it assumes a more gen-
eral statistical model where the observations are decomposed on components
weighted by independent random coefficients. It is sometimes called source sep-
aration. ICA has a large range of applications in medical image analysis [13, 14],
computer vision [9, 10, 30], computational biology [29, 31], etc.. This method is
also used to map the data set onto a smaller space (not orthogonal) as one can
choose the number of components in the linear combination.

This method writes an observation X ∈ R
d as:

X =

p∑
j=1

βjaj + ε = Aβ + ε , (18)

where A := (a1, ..., ap) ∈ R
d×p is a parameter, (β1, ..., βp) are independent

scalars whose law qm must be specified and ε is the additive noise.

In a lot of cases, ε is supposed to follow a normal distribution. This ap-
proximation enables to develop easily many estimation algorithms. However,
numerical images are rather affected by a positive valued noise (MRI images for
instance). Moreover, the Gaussian assumption reduces the study to very rapidly
decreasing noise. In this example, to take into account these two bottlenecks of
the Gaussian noise, we choose to model our data with a positive noise with
heavy tail: the Weibull distribution.

We suppose that each coordinate of ε satisfies: εj ∼ W(λ0, η0) with λ0 ∈ R
∗
+

and η0 ∈ (0, 1).

To estimate A, we will use a Monte Carlo Markov Chain – Stochastic Ap-
proximation Expectation Maximization (MCMC-SAEM) algorithm introduced
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in [25]. For this algorithm to converge, we need our joint distribution to belong
to the curved exponential family i.e. to be of the following form:

q(X,β,A) = φ(A) + 〈S(X,β), ψ(A)〉 ,

where S(x, β) is called the sufficient statistic of the model.
However, it can be seen that the joint likelihood does not verify this hy-

pothesis here. A usual work around, first introduced in [26], is to consider that
all vectors of A: (aj)1≤j≤p are random vectors following a Gaussian prior. The
goal is then to estimate the mean of this prior. This writes, for each vector aj :
aj ∼ N (a0,j , σ

2
AId).

If X is a data set of n observations (X1, ..., Xn), we finally have, writing
A0 = (a0,1, ..., a0,p) ∈ R

d×p:

log q(X,β,A,A0) =

n∑
i=1

p∑
j=1

(
(η0 − 1) log(Xi

j − (Aβi)j)−
(
Xi

j − (Aβi)j

λ0

)η0
)

+

n∑
i=1

qm(βi)− ||A−A0||2
σ2
A

+ C

(19)

where ||A−A0||2 =
∑p

j=1 ||aj − a0,j ||22.
The joint distribution now belongs to the curved exponential family. Indeed,

it can be written as:

log q(X,β,A,A0) = φ(A0)+ < S(X,β,A), ψ(A0) > +S̃(X,β,A)φ̃(A0)

with:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(A0) =
||A0||2
σ2
A

+ C

S(X,β,A) = A

ψ(A0) = −2A0

S̃(X,β,A) =
∑n

i=1

∑p
j=1

(
(η0 − 1) log(Xi

j − (Aβi)j)−
(

Xi
j−(Aβi)j

λ0

)η0
)

+
∑n

i=1 qm(βi) + ||A||2
σ2
A

ψ̃(A0) = 1

The maximum of the log-likelihood can then be expressed as a function
of the sufficient statistics: the maximum of q(X,β,A, θ) is reached for A0 =

θ̂(S(X,β,A)) = A.
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Then, the MCMC-SAEM algorithm consists in the following steps:
(i) Simulation of β,A using a Metropolis Hastings algorithm targeting the con-
ditional distribution q(β,A|X, θk−1).
(ii) Stochastic approximation of the sufficient statistics:

Sk = Sk−1 +Δk(A− Sk−1) .

(iii) Maximization of the conditional distribution using the sufficient statistics:

θk = θ̂(Sk).

Remark 6.1. A fourth step not indicated above for clarity is the truncation
process executed as described in section 2.2 and allowing our parameters to stay
on compact sets.

We can easily see that the described procedure is a particular case of the
theorem 2.1 with Ps the kernel of the Metropolis Hastings algorithm targeting
q(β,A|X, θ̂(s)) and with

Hs(β,A) = S(X,β,A)− s .

This problem has been tackled for instance in [4]. In that paper, the au-
thors propose several distributions for β leading to geometrically ergodic Markov
Chains. Using theorem 3.1, we are now able to tackle distributions leading to
subgeometric ergodic chains which enables to introduce models with higher vari-
ability. We provide here an example of such a chain and prove convergence of
the associated ICA parameters.

In the following, we suppose that all coordinates of β follow a Weibull distri-
bution: ∀i ∈ [|1, n|], ∀j ∈ [|1, p|], βi

j ∼ W(λ1, η1) with λ1 ∈ R
∗
+ and η1 ∈ (0, 1).

Other distributions with heavy tails such as the Pareto distribution would yield
to similar results.

Theorem 6.1. Assume (A4), (A1i) and that the proposal distribution in the
Metropolis Hastings algorithm verifies (E2). Define l(θ) = log

∫
q(X,β,A, θ)dβdA

and L′ = {θ ∈ θ̂(S)|∂θl(θ)) = 0}. We then have d(θk,L′) → 0.

Remark 6.2. Most of the work has in fact already been done in section 5.2.
Indeed, the proof of the hypothesis (A3) follows the exact same steps as in 5.2
and thus will not be detailed here.

Note that Condition (A1i) remains an assumption of the theorem as in many
cases.

Proof. We first check the conditions (A1) (ii), (iii) and (iv). Let w(s) = −l(θ̂(s)).
As showed in [17], this function verifies (A1) (iii) and (iv). Moreover, the authors
prove that L = L′.

It is then easy to verify (A1)(ii) by remarking that w(s) →||s||→∞ ∞. Since
w is continuous, (A1)(ii) is verified for any M1 > 0.

Concerning (A2), the theorem 2.2 of [35] gives the ψ-irreducibility of the
Markov Chain and thus the existence of the unique stationary distribution πθ.
The measurability of Hθ is immediate.



Convergence of stochastic approximations 1607

We can easily verify that (E1) is true for m = η0 ∨ η1. Hence, we can follow
the exact same proof as in theorem 5.1 to prove that (H1), (H2) and (H3) are
verified and thus the condition (A3) by theorem 3.1.

(A4) being supposed, we can apply the theorem 2.1 to conclude the proof.

Hence, this simple example shows that the algorithm can be applied not only
on simulation algorithms but also on optimization algorithms such as Expecta-
tion Maximization or stochastic gradient which are involved in many machine
learning and deep learning methods.

7. Conclusion

In this paper, we relaxed the condition of geometric ergodicity previously needed
to ensure the convergence of stochastic approximations with Markovian dynam-
ics. We provide therefore theoretical guarantees for a wider class of algorithms
that are used in practice.

Our main result proves the convergence of these stochastic approximations
for Markov Chains which are only subgeometric ergodic assuming hypotheses on
the rate of convergence and the drift condition. A corollary is the convergence of
a Metropolis Hastings algorithm with adapted variance, first in the case of the
Weibull distribution with a shape parameter between 0 and 1 and then in the
case of the Pareto distribution with a shape parameter more than 5. Another
corollary applies to the convergence of a Stochastic Approximation Expectation
Maximization algorithm when subgeometric Markov Chains appear. These re-
sults suggest that the main theorem could be used to show the convergence of
a broader range of algorithms for which the geometric ergodicity is not verified.
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