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Abstract: In the probabilistic framework of multivariate regular variation,
the first order behavior of heavy-tailed random vectors above large radial
thresholds is ruled by a homogeneous limit measure. For a high dimensional
vector, a reasonable assumption is that the support of this measure is con-
centrated on a lower dimensional subspace, meaning that certain linear
combinations of the components are much likelier to be large than others.
Identifying this subspace and thus reducing the dimension will facilitate
a refined statistical analysis. In this work we apply Principal Component
Analysis (PCA) to a re-scaled version of radially thresholded observations.

Within the statistical learning framework of empirical risk minimiza-
tion, our main focus is to analyze the squared reconstruction error for the
exceedances over large radial thresholds. We prove that the empirical risk
converges to the true risk, uniformly over all projection subspaces. As a
consequence, the best projection subspace is shown to converge in proba-
bility to the optimal one, in terms of the Hausdorff distance between their
intersections with the unit sphere. In addition, if the exceedances are re-
scaled to the unit ball, we obtain finite sample uniform guarantees to the
reconstruction error pertaining to the estimated projection subspace. Nu-
merical experiments illustrate the capability of the proposed framework to
improve estimators of extreme value parameters.
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1. Introduction

If one wants to analyze the tail behavior of an R
d-valued random vector X =

(X1, . . . , Xd) one usually assumes that X is regularly varying (if necessary after
a standardization of the marginal distributions), i.e. there exists a non-zero
measure μ on R

d \ {0} such that

μt(B) :=
P(X ∈ tB)

P(‖X‖ > t)
−−−→
t→∞

μ(B) < ∞ (1.1)

for all μ-continuous Borel sets B that are bounded away from the origin. This
definition does not depend on the choice of the norm ‖·‖ on R

d, but in what fol-
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lows we only consider the Euclidean norm. Convergence (1.1) may be understood
as a generalization to arbitrary dimension of a heavy-tail assumption regard-
ing a real-valued random variable. This mathematical framework is particularly
useful in situations where the focus is on ‘tail events’ of the kind {X ∈ C} where
the distance to the origin u = inf{‖x‖ : x ∈ C} is large, for some norm ‖ · ‖.
In a risk management context, the probability of such tail events is of crucial
importance. If the distance u is so large that few or no data are available in the
considered region C, all attempts to resort to empirical estimation are in vain.
One common idea behind statistical methods based on Extreme Value Theory
(EVT) is to use a small proportion of the available data (those with a compara-
tively large norm) to learn an estimate for μ, which may be used for quantifying
the probability of tail events.

1.1. Regular variation

A standard reference concerning the probabilistic aspects of regular variation
in the setting of EVT is [28], see also [27] for application-oriented examples.
Regular variation for Borel measures on Polish spaces has since been revisited
in [19] and [23]. It is well known that if convergence (1.1) holds true, then the
limit measure μ is homogeneous of order −α for some α > 0. Moreover, the norm
‖X‖ is regularly varying, too: P{‖X‖ > tx}/P{‖X‖ > t} → x−α as t → ∞ for
all x > 0.

Because the limit measure is homogeneous, after a polar transformation, it
can be decomposed into a so-called spectral (or angular) probability measure H
and an independent radial component, that is

μ
{
x ∈ R

d : ‖x‖ > r,
x

‖x‖ ∈ A
}
= r−αH(A), (1.2)

for all r > 0 and all Borel subsets A of the unit sphere. Whereas the literature
on the design and the asymptotics of flexible multivariate parametric or non-
parametric models for μ or integrated versions of it is plentiful (see e.g. [32, 13,
9, 15, 29], or [2] and the references therein), the issue of how to escape the curse
of dimensionality has only recently been raised (see below). One reason for this
may be that a major field of application of EVT concerns environmental, spatial
extremes such as heavy rainfalls, heat waves, droughts or floods. In this context,
max-stable or generalized Pareto spatial models are widely used ([25, 12, 30])
which have built in a priori information about the spatial dependence structure,
thus reducing the effective dimension.

1.2. Dimensionality reduction for extreme values, a brief overview

For applications such as e.g. anomaly detection or network monitoring where
no particular structure is known a priori, dimension reduction suggests itself as
a preliminary step before implementing any kind of statistical procedure. This
subject has recently received increasing attention. If d is moderate or large,
the measure μ (and hence H) will often exhibit some ‘sparse’ structure. For
example, if some of the components of X are asymptotically independent, i.e.
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for some index set I ⊂ {1, . . . , d} of size |I| ∈ {1, . . . , d− 1}

P

{
max
i∈I

|Xi| > t,max
i �∈I

|Xi| > t
}
= o

(
P

{
max
1≤i≤d

|Xi| > t
})

,

then μ is concentrated on {x = (x1, . . . , xd) : maxi∈I |xi| = 0 or maxi �∈I |xi| =
0}. More generally, one may consider the case where only a small number of
subsets of components {Ik ⊂ {1, . . . , d}, k = 1, . . . ,K} are likely to be large
simultaneously, while the other components remain small. Here, ‘small number’
is understood relatively to the 2d−1 non empty possible subsets of components.
This setting applies e.g. to heavy rainfalls in a spatial setting (storms are usually
localized, so that neighboring sites are more likely to be jointly impacted) or
of shocks to different assets of a financial portfolio. [5] proposes a clustering
approach combined with spherical data analysis to detect structures of this
type. [16, 17] propose an algorithm with moderate computational cost (linear in
the dimension and the sample size) and finite sample uniform guarantees. Their
error bounds are linear in d and scale as 1/

√
k, where k is the number of order

statistics of each component that are considered extreme during the training
step. A refinement of the latter framework is proposed in the yet unpublished
work of [34]. [6] and [7] aim at identifying subgroups of components for which
the probability of a joint excess over a large quantile is not negligible compared
to that of an excess by a single component. [10] use graphical models to reduce
the complexity of the extremal dependence structure. In a regression context,
[14] sets up a mathematical framework for tail dimension reduction suited to
the case where the distribution of the target variable above high thresholds only
depends on the projection of the covariates on a lower dimensional subspace.
Consistency of k-means clustering applied to the most extreme observations of
a data set has recently been proven in [20]. An overview of different concepts of
sparsity in EVT can be found in [11].

1.3. Principal component analysis (PCA) and support identification

Here we focus on finding a linear subspace on which μ is (nearly) concentrated.
In a classical setting, when ‖X‖ has finite second moments, PCA ([1]) is the
method of choice to determine such supporting linear subspaces if i.i.d. random
vectors Xi, 1 ≤ i ≤ n, with the same distribution as X are observed. Theoretical
guarantees obtained so far concern the reconstruction error ([21, 33, 4, 22, 26])
or the approximation error for the eigenspaces of the covariance matrix ([37]),
under the assumption that the sample space (or the feature space for Kernel-
PCA) has finite diameter or that sufficiently high order moments exist.

For motivation of our version of PCA, it is useful to keep the following working
hypothesis in mind, although it is not required for most results to hold.

Hypothesis 1. The vector space V0 = span(suppμ) generated by the support
of μ has dimension p < d.

Note that then the points (Xi/t)1{‖Xi‖ > t} are more and more concentrated
on a neighborhood of V0 as t increases, but usually they will not lie on V0. If
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the dimension p of V0 is known, then it suggests itself to approximate V0 by the
subspace of dimension p that is ‘closest’ in expectation to these points.

In PCA one measures the closeness by the squared Euclidean distance which
hugely alleviates the optimization problem as one may work with orthogonal
projections in the Hilbert space L2. However, this approach requires finite second
moments which cannot be taken for granted in the above setting. Indeed, if α < 2
then E(‖Xi‖2) = ∞. Hence, we will instead consider re-scaled vectors

Θi := ω(Xi)Xi, 1 ≤ i ≤ n, (1.3)

where ω : Rd → (0,∞) is a suitable scaling function. The most common choice
is ω(x) = 1/‖x‖, leading to Θi on the unit sphere which describes the direction
of Xi, and we will focus on this re-scaling when we derive finite sample bounds
on the reconstruction error (see Section 3). However, consistency results will be
proved for considerably more general scaling functions; cf. Section 2.

To the best of our knowledge, the only existing work considering PCA prop-
erly speaking for high dimensional extremes is the paper [8]. The authors discuss
a transformation mapping negative observations to small positive ones and apply
PCA in this transformed space. They also use a preliminary re-scaling involving
the norm of the transformed vector. They illustrate their approach with simula-
tions and real data examples, without deriving theoretical statistical guarantees.

1.4. Notation and risk minimization setting

To give a formal description of our method, we first introduce some notation.
All random variables are defined on some probability space (X ,A,P); the ex-
pectation with respect to P is denoted by E. For x ∈ R

d and t > 0, let

θ(x) = ω(x)x,

θt(x) = ω(x)x1{‖x‖ > t},
Θ = θ(X) = ω(X)X,

Θt = θt(X) = Θ1{‖X‖ > t}.

(1.4)

By P we denote the distribution of X and by Pt its conditional distribution
given that ‖X‖ > t, i.e. Pt(·) = P(X ∈ · | ‖X‖ > t}. Then P∞ := μ|(B1(0))c is
the weak limit of Pt(t·) (with B1(0) denoting the closed unit ball); cf. (1.1).

For any probability measure Q and any Q-integrable function f , we denote
the expectation of f with respect to Q by Qf or Q(f). By Et we denote the
conditional expectation (with respect to P) given ‖X‖ > t so that Et(f(X)) =
Pt(f), provided the expectations exist.

For any linear subspace V ⊂ R
d, let ΠV be the orthogonal projection onto V

(or the associated projection matrix), and let Π⊥
V be the orthogonal projection

onto the orthogonal complement V ⊥ of V .
To apply PCA to the re-scaled vectors, we have to assume that the scaling

function ω is chosen such that E(‖Θ‖2) = P (‖θ‖2) < ∞ and P∞(‖θ‖2) < ∞.
Note that this condition is always fulfilled if there exist β > 1− α/2 and c > 0
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such that ω(x) ≤ c‖x‖−β for all x ∈ R
d. For simplicity’s sake, in what follows

we will impose the following stronger homogeneity condition:

∃β ∈
(
1− α

2
, 1

]
∀λ > 0, x ∈ R

d : ω(λx) = λ−βω(x)

and cω := sup
x∈Sd−1

ω(x) < ∞,
(1.5)

where S
d−1 := {x ∈ R

d : ‖x‖ = 1} denotes the unit sphere. Note that then

‖θ(x)‖ ≤ cω‖x‖1−β . (1.6)

The choice ω(x) = ‖x‖−β seems natural, but different choices allow for focus-
ing on particular aspects of the extreme value behavior. For instance, if one
is only interested in the positive components of X, one may choose ω(x) =
‖x‖−β1[0,∞)d(x).

Hypothesis 1 is equivalent to the statement that infV :dim(V )=p R∞(V ) = 0
and infV :dim(V )=p′ R∞(V ) > 0 for all p′ < p where

R∞(V ) := P∞‖ΠV θ − θ‖2 = P∞‖Π⊥
V θ‖2

and the infima are taken over all linear subspaces of the specified dimension
(cf. Lemma 2.5). The risk R∞ may be interpreted as the expected reconstruc-
tion error in the limit model if the re-scaled observation Θ is replaced with its
lower dimensional approximation ΠV Θ. Since Pt(t·) → P∞(·) weakly, one may
approximate V0 by a subspace V ∗

t = V p∗
t of dimension p that minimizes the

conditional risk

Rt(V ) := Pt

(
‖Π⊥

V θ)‖2
)
= Et

(
‖Π⊥

V Θ‖2
)

(1.7)

given that ‖X‖ exceeds a high threshold t > 0. Note that V ∗
t may be of interest

even if Hypothesis 1 only holds approximately, in the sense that P∞ concentrates
most of its mass on a small neighborhood of a p-dimensional subspace.

It is natural to ‘estimate’ V ∗
t (and thus V0) by a minimizer of the correspond-

ing empirical risk

R̂t(V ) :=
1

Nt

n∑
i=1

‖Π⊥
V Θi‖21{‖Xi‖ > t} with Nt :=

n∑
i=1

1{‖Xi‖ > t}.

Here the threshold t must be chosen suitably, depending on the sample size. To
this end, often order statistics of the norms of the observed vectors are used,
and we follow this approach. Let X(j) = Xσ(j) where σ is a permutation of
indices such that ‖X(1)‖ ≥ ‖X(2)‖ ≥ · · · ≥ ‖X(n)‖. (For brevity, we suppress
the dependence on n in our notation of order statistics.) For 1 ≤ k ≤ n, denote
by t̂n,k = ‖X(k+1)‖ the empirical quantile of level 1 − k/n for ‖X‖. We define
the empirical risk for the subspace V related to the k largest observations as

R̂n,k(V ) := R̂t̂n,k
(V ) =

1

k

n∑
i=1

‖Π⊥
V Θi,t̂n,k

‖2 (1.8)
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where Θi,t = θt(Xi) in accordance with the notation introduced in (1.4). Here
and throughout the paper, we suppose that the c.d.f. of ‖X‖ is continuous in
the tail to avoid technicalities. Then we may assume w.l.o.g. that there are no
ties and thus exactly k observations have norm larger than t̂n,k. A minimizer of

R̂n,k(V ) among all linear subspaces of dimension p will be denoted by V̂n = V̂ p
n .

It is the main goal of the present paper to analyze the asymptotic and the finite
sample behavior of the empirical risk R̂n,k(V ) and its minimizer V̂n.

1.5. Outline

In Section 2 we will first show that the minimizer of the risk Rt based on a fi-
nite threshold t converges to the minimizer of the limit risk R∞, and thus under
Hypothesis 1 to V0, as t → ∞. Moreover, we show consistency of the empirical
risk minimizer V̂n under condition (1.5). In Section 3, we derive non-asymptotic
uniform bounds on the difference between the empirical risk and its theoreti-
cal counterpart for the most important scaling ω(x) = 1/‖x‖. Furthermore, we
construct uniform confidence bands for Rt(V ). The results obtained in a simu-
lation study are reported in Section 4. In particular, we explore the choice of the
dimension p based on empirical risk plots and the effect of a PCA projection
on estimators of probabilities expressed in terms of the spectral measure H.
All proofs and technical lemmas are postponed to Section 5, while an appendix
contains some details about the proof of a modification of a result by [4].

2. Consistency of risk minimizers

In this section, we first discuss how to calculate minimizers of the conditional
risk Rt given ‖X‖ > t and the empirical risk R̂n,k. Moreover, we prove that
these converge in some sense towards a minimizer of R∞.

It is well known that a point of minimum of V �→ E ‖Π⊥
V Y ‖2 can be derived

from the spectral analysis of the matrix of second (mixed) moments of Y :

Lemma 2.1. (i) Let Y be an R
d-valued random vector with E(‖Y ‖2) < ∞

and Σ := E(Y Y 
). Let λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 denote the eigenvalues
of Σ with corresponding orthogonal eigenvectors x1, . . . , xd. Then V ∗ =
span(x1, . . . , xp) minimizes E(‖Π⊥

V Y ‖2) among all linear subspaces V of
dimension p. In the case λp > λp+1 it is the unique minimizer.

(ii) If the scaling condition (1.5) holds and λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 denote the
eigenvalues of Σt := Et(ΘΘ
) with corresponding orthogonal eigenvectors
x1, . . . , xd, then V ∗ = span(x1, . . . , xp) minimizes Rt(V ) among all linear
subspaces V of dimension p. It is the unique minimizer if λp > λp+1.

(iii) If the scaling condition (1.5) holds and λn,1 ≥ λn,2 ≥ · · · ≥ λn,d ≥ 0 de-
note the eigenvalues of Σn,k := k−1

∑n
i=1(Θi,t̂n,k

Θ

i,t̂n,k

) with correspond-

ing orthogonal eigenvectors xn,1, . . . , xn,d, then

V̂n = span(xn,1, . . . , xn,p)

minimizes R̂n,k(V ) among all linear subspaces V of dimension p.
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A proof of assertion (i) can e.g. be found in [31], Theorem 5.3, where also
other optimality properties of the minimizers are given. Both the other results
follow directly by an application of (i) with Y equal to Θ conditional on ‖X‖ > t,
respectively a random variable according to the empirical distribution of those
Θi for which ‖Xi‖ > t̂n,k. If λp = λp+1, then the minimizer is not unique. With
m = min{i ∈ {1, . . . , p} : λi = λp} any minimizer V ∗

t of Rt can be represented as
V ∗
t = span(x1, . . . , xm−1, x̃m, . . . , x̃p) where x̃m, . . . , x̃p are orthogonal eigenvec-

tors to the eigenvalue λp and all these subspaces are minimizers. An analogous
statement holds for the empirical risk.

2.1. Asymptotic behavior of the conditional risk and its minimizer

Here we discuss the relationship between Rt and R∞ and their respective min-
imizers.

Proposition 2.2. Suppose that ω fulfills condition (1.5). Then, for any subspace
V of Rd, the suitably standardized associated finite threshold risk converges:

lim
t→∞

t2(β−1)Rt(V ) = R∞(V ).

In view of Proposition 2.2, one may ask whether a minimizer of R̃t :=
t2(β−1)Rt (which of course is also a minimizer of Rt) converges in some sense to
a minimizer of R∞. Denote by Vp the set of all subspaces of Rd of dimension p,
endowed with the metric

ρ(V,W ) := |||ΠV −ΠW ||| =
∣∣∣∣∣∣Π⊥

V −Π⊥
W

∣∣∣∣∣∣ := sup
x∈Sd−1

‖Π⊥
V x−Π⊥

Wx‖,

pertaining to the operator norm ||| · ||| of the projections.

Remark 2.3. Note that ρ(V,W ) also gives an upper bound on the Hausdorff
distance between V ∩ S

d−1 and W ∩ S
d−1. To see this, let x∗ ∈ V ∩ S

d−1 and
y∗ ∈ W ∩ S

d−1 be such that the Hausdorff distance equals infy∈W∩Sd−1 ‖x∗ −
y‖ = ‖x∗ − y∗‖. Then y∗ = ΠWx∗/‖ΠWx∗‖, ‖x∗ − ΠWx∗‖ ≤ ρ(V,W ) and
‖ΠWx∗‖2 ≥ 1− (ρ(V,W ))2. Hence

‖x∗ − y∗‖2 = ‖x∗ −ΠWx∗‖2 + ‖ΠWx∗ − y∗‖2

≤ (ρ(V,W ))2 + (1− ‖ΠWx∗‖)2

≤ (ρ(V,W ))2 +
(
1−

√
1− (ρ(V,W ))2

)2

= 2
(
1−

√
1− (ρ(V,W ))2

)
.

It can be shown that Vp is compact w.r.t. ρ (see Lemma 5.2) and that the

normalized conditional risk functions R̃t are uniformly Lipschitz continuous
(Lemma 5.3), from which the convergence of the risk minimizers follows by
standard arguments.
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Theorem 2.4. Suppose that ω satisfies condition (1.5) and that R∞ has a
unique minimizer V ∗

∞ in Vp. Then, for any minimizer V ∗
t of Rt in Vp, one has

lim
t→∞

ρ(V ∗
t , V

∗
∞) = 0.

Under Hypothesis 1, V0 is the unique minimizer of R∞ over Vp, that is if
we minimize the risk over linear subspaces with the correct dimension, as the
following result shows. Hence in this case, V ∗

t converges to V0.

Lemma 2.5. Under Hypothesis 1, for any subspace V ⊂ R
d of arbitrary di-

mension one has

R∞(V ) = 0 ⇐⇒ V0 ⊂ V.

Thus, V0 is the unique minimizer of R∞ in Vp, whereas on Vp̃ with p̃ > p the
points of minimum of the limit risk R∞ are not unique.

Proof. If V0 ⊂ V then V ⊥ ⊂ V ⊥
0 . By Hypothesis 1, P∞ is concentrated on V0,

which implies R∞(V ) = P∞‖Π⊥
V θ‖2 ≤ P∞‖Π⊥

V0
θ‖2 = 0.

Conversely, if R∞(V ) = 0, then 1 = P∞{Π⊥
V θ = 0} = P∞(V ). By definition

of P∞ and the homogeneity of μ, this means that the support of μ must be a
subset of V and thus V0 ⊂ V .

2.2. Convergence of the empirical risk and its minimizer

We now establish analogous consistency results for the empirical risk R̂n,k and
its minimizer. In what follows, let F‖X‖ be the c.d.f. of ‖X‖, F←

‖X‖ its generalized

inverse (quantile function) and define

tn,k := F←
‖X‖(1− k/n). (2.1)

We start with consistency of the standardized empirical risk.

Proposition 2.6. If ω satisfies condition (1.5), then t
2(β−1)
n,k R̂n,k(V ) → R∞(V )

in probability for all linear subspaces V of Rd.

The following main result of this section states the consistency of the empir-
ical risk minimizer.

Theorem 2.7. If ω satisfies condition (1.5) and R∞ has a unique minimizer
V ∗
∞ in Vp, then ρ(V̂n, V

∗
∞) → 0 in probability for all minimizers V̂n of R̂n,k in

Vp.

So far, we have proved weak consistency of both the standardized empirical
risk and the empirical risk minimizer under mild assumptions on the scaling
function ω. However, the rates of convergence may be arbitrarily slow. In the
next section, we establish bounds on the recovery risk under stronger conditions.
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3. Uniform risk bounds

Since a minimizer V̂t of the empirical risk R̂t (or V̂n of R̂n,k) differs from the min-

imizer of the true risk Rt, usually the so-called excess risk Rt(V̂t)−infV ∈Vp Rt(V )
will be strictly positive. We follow the common approach in the theory of
risk minimization to bound the excess risk by deriving uniform bounds on
|R̂t(V ) − Rt(V )| which hold with high probability for a fixed sample size n.
If these uniform bounds can be calculated from the observed data, they may
also be used to construct confidence intervals for the reconstruction error Rt(V̂t)
resp. Rtn,k

(V̂n).
As condition (1.5) does not guarantee any finite moments of Θ of order greater

than 2, and tight concentration inequalities are available only for subgaussian
distributions, we now assume that the scaling function ω satisfies the following
stronger condition:

ω(x) ≤ 1

‖x‖ , ∀x ∈ R
d, (3.1)

so that ‖θ(x)‖ ≤ 1 for all x ∈ R
d.

For classical PCA (and a kernel version thereof), [33] established uniform risk
bounds for bounded random vectors Zi, which were improved by the following
result by [4]. Assume ‖Zi‖ ≤ 1, and denote the empirical matrix of second
(mixed) moments by Σ̂n and the Hilbert-Schmidt norm on the space of matrices
by ‖ · ‖HS . Then, with probability greater than 1− δ,

∣∣∣ 1
n

n∑
i=1

‖Π⊥
V Zi‖2 − E ‖Π⊥

V Z‖2
∣∣∣ ≤

[
p

n− 1

( 1

n

n∑
i=1

‖Zi‖4 − ‖Σ̂n‖HS

)]1/2

+
( log(3/δ)

2n

)1/2

+
(p2 log(3/δ)

n3

)1/4

for all V ∈ Vp. One may try to derive uniform risk bounds in our extreme value
setting by applying this result to the random variables Zi = Θi,t = Θi1{‖Xi‖ >

t}, so that the left hand side is approximately equal to πt|R̂t(V )−Rt(V )| with

πt := P{‖X‖ > t}

if one ignores the difference between Nt and its expectation nπt. In the case
πt = o(n−1/2), however, the above upper bound will not even converge to 0
when it is divided by πt because of the second term. Hence this direct approach
does not give meaningful bounds for |R̂t(V )−Rt(V )|.

The reason for this inconsistency is that, unlike in the classical setting, most
of the random variables Zi will vanish as t increases, and the concentration
inequalities used in the proofs of the aforementioned bounds are too crude in
such a situation. However, we will take up ideas used by [4], with appropriate
modifications, to derive much tighter uniform bounds on |R̂n,k(V )−Rtn,k

(V )|.
Furthermore, we will derive uniform bounds on |R̂t(V ) − Rt(V )| which hold
conditionally on Nt = � and depend only on the data. These can then be used
to construct confidence bands for Rt(V ).
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If, for the time being, one neglects the difference between the empirical (1−
k/n)-quantile of ‖X‖ (i.e. t̂n,k) and the true quantile tn,k, then R̂n,k(V ) can be
approximated by R̄tn,k

(V ) where

R̄t(V ) :=
1

nπt

n∑
i=1

‖Π⊥
V Θi,t‖2. (3.2)

Denote the empirical distribution of the observed random vectors Xi, 1 ≤ i ≤ n,
by Pn, and recall the notation P for the distribution of X. For any threshold
t > 0, the maximal difference between the approximate empirical risk R̄t(V )
and the true risk Rt(V ) can be rewritten as

sup
V ∈Vp

|R̄t(V )−Rt(V )| = sup
V ∈Vp

1

πt

∣∣∣ 1
n

n∑
i=1

‖Π⊥
V Θi,t‖2 − E ‖Π⊥

V Θt‖2
∣∣∣

=
1

πt
sup
V ∈Vp

∣∣(Pn − P )‖Π⊥
V θt‖2

∣∣

=
1

πt
max(ϕ+

t (X1, . . . , Xn), ϕ
−
t (X1, . . . , Xn)) (3.3)

with

ϕ±
t (x1, . . . , xn) := sup

V ∈Vp

±
( 1

n

n∑
i=1

‖Π⊥
V θt(xi)‖2 − P‖Π⊥

V θt‖2
)
. (3.4)

To derive uniform bounds on on |R̂n,k(V ) − Rtn,k
(V )|, we thus first analyze

the error of the approximation of R̂n,k by R̄tn,k
(Lemma 5.5) and then bound

ϕ±(X1, . . . , Xn). For the latter step, we employ a version of the bounded dif-
ference inequality to conclude a concentration inequality for ϕ±(X1, . . . , Xn)
(Lemma 5.7) and combine this with an upper bound on its expectation (Lemma
5.8). This approach leads to our first uniform bound on the difference between
the empirical risk and its theoretical counterpart.

Theorem 3.1. If (3.1) holds, then for all u, v > 0

P

{
sup
V ∈Vp

|R̂n,k(V )−Rtn,k
(V )| ≥

[p ∧ (d− p)

k
Stn,k

]1/2
+ u+ v

}

≤ 2 exp
(
− ku2

2(1 + k/n+ u/3)

)
+ 2 exp

(
− kv2

2(1 + v/3)

)
(3.5)

with St := Et ‖Θ‖4 − πt tr(Σ
2
t ) and Σt := Et(ΘΘ
).

In particular, with probability greater than or equal to 1− δ,

sup
V ∈Vp

|R̂n,k(V )−Rtn,k
(V )|

≤
[p ∧ (d− p)

k
Stn,k

]1/2
+

2 log(4/δ)

3k
+

[( log(4/δ)

3k

)2
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+
2

k
(1 + k/n) log(4/δ)

]1/2
+

[( log(4/δ)

3k

)2

+
2

k
log(4/δ)

]1/2

≤
[p ∧ (d− p)

k
Stn,k

]1/2
+

[8
k
(1 + k/n) log(4/δ)

]1/2
+

4 log(4/δ)

3k
. (3.6)

Note that (3.6) also implies an upper bound on the excess risk:

Rtn,k
(V̂n)− inf

V ∈Vp

Rtn,k
(V )

≤ R̂n,k(V̂n)−Rtn,k
(V ∗

tn,k
) + sup

V ∈Vp

|R̂n,k(V )−Rtn,k
(V )|

≤ R̂n,k(V
∗
tn,k

)−Rtn,k
(V ∗

tn,k
) + sup

V ∈Vp

|R̂n,k(V )−Rtn,k
(V )|

≤ 2 sup
V ∈Vp

|R̂n,k(V )−Rtn,k
(V )|.

Remark 3.2. In the case ω(x) = 1/‖x‖, the upper bound in (3.6) simplifies to

[p ∧ (d− p)

k

(
1−(k/n) tr(Σ2

tn,k
)
)]1/2

+
[8
k
(1+k/n) log(4/δ)

]1/2
+
4 log(4/δ)

3k
.

Note that the upper bound in Theorem 3.1 cannot be calculated from the
data and can thus not directly be used to construct confidence intervals for
the true reconstruction error Rtn,k

(V̂n) or the minimal reconstruction error
infV ∈Vp Rtn,k

(V ). Therefore, we derive data-dependent bounds directly from (a
minor improvement of) the bound established by [4]. However, this result will
be applied to the conditional distribution of Θ given ‖X‖ > t and the resulting
bound is to be interpreted conditionally on the number Nt of exceedances over
the chosen threshold t.

Theorem 3.3. If condition (3.1) is met, for all � > 1, u, v > 0,

P

(
sup
V ∈Vp

|R̂t(V )−Rt(V )| ≥
[
(p ∧ (d− p))

( S̃t

�− 1
+

v

�

)]1/2
+ u

∣∣∣Nt = �
)

≤ 2 exp
(
− 2�u2) + exp

(
− ��/2�v2/2

)

with S̃t := N−1
t

∑n
i=1 ‖Θi,t‖4 − tr

(
(N−1

t

∑n
i=1 Θi,tΘ



i,t)

2
)
and �x� := max{k ∈

Z : k ≤ x}.
If, for all � > 1, constants u�, v� > 0 are chosen such that 2 exp

(
− 2�u2

�

)
+

exp
(
− ��/2�v2�/2

)
= 1− α, then

I�(V ) :=
[
R̂t(V )−Bt,�, R̂t(V ) +Bt,�

]
∩ [0,∞)

with

Bt,� :=
[
(p ∧ (d− p))

( S̃t

�− 1
+

v�
�

)]1/2
+ u�

defines a uniform level α confidence band for Rt(V ), V ∈ Vp, conditionally on
Nt = �. If one defines I0(V ) = I1(V ) = [0,∞), then INt(V ) defines a uniform
level α confidence band for Rt(V ), V ∈ Vp (unconditionally).
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Remark 3.4. In the statement about the confidence bands one may replace Bt,�

with

B̃t,� :=
[
(p ∧ (d− p))

S̃t

�− 1

]1/2
+

[
(p ∧ (d− p))

v�
�

]1/2
+ u�.

This half width of a confidence band is more suitable for (numerical) mini-
mization (as a function of u� and v�) under the constraint 2 exp

(
− 2�u2

�

)
+

exp(−��/2�v2�/2) = 1− α.

Remark 3.5. The conditional approach employed in Theorem 3.3 can also be
used to obtain a uniform risk bound similar to the one in Theorem 3.1:

P

{
sup
V ∈Vp

|R̂n,k(V )−Rtn,k
(V )| ≥

[
(1 + v)

p ∧ (d− p)

k
S∗
tn,k

]1/2
+ u+ 2v

}

≤ 2 exp
(
− 2ku2

1 + v

)
+ 2 exp

(
− kv2

2(1 + v/3)

)

with S∗
t := Et ‖Θ‖4 − tr(Σ2

t ). A comparison with Theorem 3.1 reveals that
the new bound may be tighter if S∗

tn,k
is substantially smaller than Stn,k

. This

will be the case if k/n is small and tr
(
(Et ΘΘ
)2

)
is not much smaller than

Et ‖Θ‖4.
So far, we have compared empirical risks with the true risk Rt for finite

thresholds t. A comparison with the limit risk R∞ would require second order
refinements of our basic assumption (1.1). Let Σt := Et(ΘΘ
) = Pt(θθ


) and
Σ∞ = P∞(θθ
). Denote the eigenvalues of Σt −Σ∞ by λΔ

t,1 ≥ λΔ
t,2 ≥ . . . ≥ λΔ

t,n.
Then standard calculations from classical PCA show that

sup
V ∈Vp

Rt(V )−R∞(V ) = sup
U

tr(U
(Σt − Σ∞)U) =

d−p∑
i=1

λΔ
t,i

where the second supremum is taken over all (d × (d − p))-matrices with or-

thogonal columns. Likewise, supV ∈Vp
R∞(V ) − Rt(V ) = −

∑d−p
i=1 λΔ

t,d+1−i and
hence

sup
V ∈Vp

|Rt(V )−R∞(V )| ≤ max
(∣∣∣

d−p∑
i=1

λΔ
t,i

∣∣∣,
∣∣∣

d∑
i=p+1

λΔ
t,i

∣∣∣)

= max
(∣∣∣

p∑
i=1

λΔ
t,i

∣∣∣,
∣∣∣

d∑
i=d−p+1

λΔ
t,i

∣∣∣).

Therefore, bounds on the difference between empirical risks and the limit
risk require additional assumptions on the spectrum of the difference Σt − Σ∞
between the matrix of second moments for the re-scaled exceedances over the
threshold t and the corresponding matrix in the limit model.

If one merely wants to compare the minimum risk for finite thresholds with
the minimum limit risk, which equal the sums of d − p smallest eigenvalues
of Σt resp. Σ∞, then somewhat weaker assumptions on the convergence of



920 H. Drees and A. Sabourin

the spectrum of Σt and Σ∞ are needed. In particular, under Hypothesis 1,
infV ∈Vp Rt(V )− infV ∈Vp R∞(V ) equals the sum of the smallest d− p eigenval-
ues of Σt.

4. Simulation study

4.1. The setting

We investigate the performance of our PCA procedure. In particular, we examine
how the standard non-parametric estimator of the spectral measure (defined via
(1.2)) based on the k largest observations

Ĥn,k :=
1

k

n∑
i=1

δθtn,k
(Xi)

(with θ(x) = x/‖x‖) is influenced if the data is first projected onto a lower
dimensional subspace using PCA:

ĤPCA
n,k :=

1

k

n∑
i=1

δθtn,k
(Π⊥

V Xi).

Here, δy is the Dirac measure with point mass at y and V denotes the subspace
picked by PCA based on the same number k of largest observations. It will
turn out that sometimes it is advisable to use a smaller number k̃ for the PCA
procedure; the resulting estimator of the spectral measure will be denoted by
ĤPCA

n,k,k̃
.

We simulate from different models of d-dimensional regularly varying vec-
tors for which the spectral measure is (approximately) concentrated on a p-
dimensional subspace. Since PCA is equivariant under rotations, w.l.o.g. we
assume that this subspace is spanned by the first p unit vectors. The depen-
dence between these p components is either described by a so-called Dirichlet

model or by a Gumbel copula Cϑ(x) = exp
(
−

( ∑p
i=1(− log xi)ϑ

)1/ϑ)
. In Ex-

ample 3.6 of [32] it is described how to simulate from the former model, while
the data according to the second model is generated using the transformation
method proposed by [35]. The marginal distributions are chosen as Fréchet with
c.d.f. exp(−x−α), α ∈ {1, 2}.

In addition, we have simulated observations from a Dirichlet model which are
then rotated in the plane spanned by two randomly chosen coordinates, one of
them among the first p coordinates, the other among the last d−p. The rotation
angle is uniformly distributed on the interval [−π/10, π/10]. Note that, unlike
in the first two models, Hypothesis 1 is not fulfilled here. By this means we
evaluate how sensitive PCA is to moderate deviations from the ideal situation.

In all cases, we add the modulus of a d-dimensional multivariate normal vector
with suitable variances and constant correlations 0.2. This way, it is ensured that
the support of the exceedances over high thresholds is not fully concentrated on
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the p-dimensional subspace. The variances are chosen equal to 105/d for α = 1
(i.e., if we start with unit Fréchet margins) and equal to 10/d for α = 2, so that
the sparsity assumption becomes apparent for the most extreme observations,
whereas large yet less extreme data points are more spread out.

In all settings, we simulate samples of size n = 1000 and examine the per-
formance of the PCA procedure based on Θ = X/‖X‖ for the k vectors with
largest norms for k ∈ {5, 10, 15, . . . , 200}. The results reported here are based
on 1000 simulations in each setting.

Write xj for the jth coordinate of a p-dimensional vector x. To measure the
performance of the spectral estimators, we calculate the errors of the result-
ing estimators of the following probabilities in the limit model, which can be
expressed in terms of the spectral measure:

(i) limu→∞ P(p−1
∑

1≤j≤p X
j/‖X‖ > t(i) | ‖X‖ > u)

= H{x : p−1
∑p

j=1 x
j > t(i)} for some t(i) ∈ (0, p−1/2)

(ii) limu→∞ P(min1≤j≤p X
j > u,maxp+1≤j≤d X

j ≤ u | ‖X‖ > u)

=
∫ (

(min1≤j≤p x
j)α − (maxp+1≤j≤d x

j)α
)+

H(dx)
(iii) limu→∞ P(X1 > u | max1≤j≤d X

j > u)
=

∫
(x1)α H(dx)/

∫
(max1≤j≤p x

j)α H(dx)
(iv) limu→∞ P(min1≤j≤d X

j > u | ‖X‖ > u) =
∫
(min1≤j≤d x

j)α H(dx)

The first probability is related to the c.d.f. of the mean contribution of the first
p coordinates to the norm of the random vector, thus quantifying, in some sense,
how strongly the norm is spread over the coordinates. Probability (ii) indicates
how likely it is that the first p components are all large, while this is not true
for any of the other components, given that the norm of the vector is large.
Probability (iii) specifies how likely it is that the first component is extreme,
given that any component is extreme. In a financial context, such probabilities
are used to quantify how strongly a specific market participant is exposed to a
failure of any market participant. Finally, probability (iv) specifies the minimal
contribution of any coordinate to the norm. Note that under Hypothesis 1 this
probability equals 0. The other true values are determined by Monte Carlo sim-
ulations with sample size of at least 107, unless they can be easily calculated
analytically; the approximation error is always smaller than 10−3. Throughout,
we assume α to be known since we are interested in the effect of the PCA proce-
dure on the estimator of the spectral measure, which should not be compounded
with the estimation error of the tail index.

We first investigate the performance of the estimators in models of moderate
dimension (d = 5, p = 2), before we examine high dimensional models (d =
100, p = 5).

4.2. Moderate dimensions

Throughout this subsection, vectors of dimension d = 10 are considered whose
extremes are approximately concentrated on a two-dimensional subspace.
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Fig 1. Mean empirical risk (left) and empirical risk for one sample (right) versus k for PCA
projecting onto a subspace of dimension 1 ≤ p̃ ≤ 10 in the Dirichlet model with parameter 3,
p = 2 and d = 10

We first discuss the simulation results for the Dirichlet model with all Dirich-
let parameters αi, 1 ≤ i ≤ p, equal to 3 and unit Fréchet margins. Figure 1
shows the mean empirical risk in the left plot as a function of k for the PCA
that projects onto a subspace of dimension p̃ ∈ {1, . . . , 10}. Since the mean em-
pirical risk cannot be observed if one analyzes a given data set, the right plot
shows the corresponding empirical risk for a single data set. The structure of
both plots is very similar: essentially, the mean empirical risk curves are just a
bit smoother. For this reason, in the remaining settings, we will only report the
mean empirical risk.

It is obvious from the risk plot that p̃ = 2 is a good choice, since there is a big
gap to the empirical risk for p̃ = 1, whereas the empirical risk almost vanishes
for small k and p̃ = 2, and the risk decreases more regularly for values p̃ > 2,
with no obvious structural breaks. The growing influence of the multivariate
normal component as k increases is manifest in these plots, since the empirical
risk quickly increases with k for all choices of p̃. This suggests to choose k rather
small to detect the sparsity in the model, a finding which will be corroborated
in the analysis of the estimator of the spectral measure below.

In Figure 2, the mean operator norm of the difference between the projec-
tion onto the true support of the limit measure μ and the projection onto the
subspace of dimension 2 chosen by PCA is plotted versus k. Again it becomes
obvious that for less extreme observations the approximation by a lower dimen-
sional vector is rather poor, which leads to a larger error for the projection
matrix estimated from these data. For k = 80, the norm has almost reached
its maximal value. However, one should keep in mind that the operator norm
measures the maximal distance between the projection of some vector y ∈ S

d−1

onto the estimated respectively the true subspace. If the underlying distribution
of X/‖X‖ puts little mass on vectors y for which the distance is large, the true
risk corresponding to the estimated subspace may still be small.
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Fig 2. Mean operator norm of the difference between the projection onto the true subspace
and the projection onto the two-dimensional subspace picked by PCA as a function of k in
the Dirichlet model with parameter 3, p = 2 and d = 10

Next we consider the estimators of the probabilities (i)–(iv), obtained by
replacing the spectral measure H either with Ĥn,k or ĤPCA

n,k . Since the PCA
estimator of the subspace supporting μ quickly deteriorates as k increases, in
addition we consider the estimators resulting from ĤPCA

n,k,10, that uses just the
largest 10 observations to estimate the supporting subspace.

Figure 3 displays the root mean squared errors (RMSE) of the resulting
estimators as a function of k. For very small values of k, all estimators perform
similarly. For probability (i) with t(i) = 0.65 (leading to a true value of about
0.684), both PCA based estimators have a considerably smaller RMSE than
the standard estimator for most k. In particular, the PCA based method using
just 10 largest observations to estimate the support of the spectral measure
clearly outperforms both other estimators (almost) irrespective of the number
of observations used for estimation of the spectral measure.

For the estimation of probability (ii) (≈ 0.309), the standard non-parametric
estimator performs best for k ≤ 40. The classical PCA using the same number
of order statistics in both steps performs better for larger values of k and its
minimum RMSE is a bit lower than that of the standard estimator. The PCA
based estimator which determines the support of μ from the largest 10 observa-
tions has a very stable RMSE, but its minimum is much larger than that both
of the other estimators.

In case (iii) (with true value of about 0.770), the RMSE of the standard
estimator and the estimator based on ĤPCA

n,k,10 are very similar for k up to about
80, but the latter is remarkably insensitive to the choice of k up to 200. This
feature might be useful in practical applications where the selection of k is often
tricky. In contrast, the PCA based procedure that uses the same number of
largest observations in both steps is even more sensitive to this choice than the
standard estimator.
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Fig 3. RMSE of the estimators of the probabilities (i)–(iv) based on Ĥn,k (black, solid),

ĤPCA
n,k (blue, dashed) and ĤPCA

n,k,10 (red, dash-dotted) versus k in the Dirichlet model with

parameter 3, p = 2 and d = 10

Fig 4. Mean empirical risk for PCA projecting onto a subspace of dimension 1 ≤ p̃ ≤ 10 (left)
and mean operator norm of the difference between the projection onto the true subspace and
the projection onto the subspace picked by PCA with p̃ = p (right) versus k in the Gumbel
model with parameter ϑ = 2, p = 2 and d = 10

Similarly, the classical PCA estimator of probability (iv) strongly depends
on the choice of k while both other estimators stably have a very low error.

Next we consider the model whose extremal behavior is described by the
Gumbel copula with ϑ = 2 and Fréchet marginal distributions with c.d.f. F (x) =
exp(−x−2), x > 0. The mean empirical risk and the mean operator norm of the
difference matrix are shown in Figure 4. Overall the picture is similar as for the
Dirichlet model, but the operator norm increases more slowly with k. Based on
the left plot, one will choose p̃ = 2.

Figure 5 displays the RMSE of the estimators of (i)–(iv) with PCA projecting
on two-dimensional subspaces. Here t(i) = 0.7 and the true values for (i)–(iv)

are 0.3813, 0.083, 1/
√
2 and 0. The relative performance of the estimators for
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Fig 5. RMSE of the estimators of the probabilities (i)–(iv) based on Ĥn,k (black, solid), ĤPCA
n,k

(blue, dashed) and ĤPCA
n,k,10 (red, dash-dotted) vs. k in the Gumbel model with parameter ϑ = 2,

p = 2 and d = 10

probability (iv) is very similar to the one in the Dirichlet model. The same is
true for the standard estimator of (i) and the PCA estimator that uses just
10 largest observations for estimating the support, but now the PCA estimator
that uses the same number k in both steps performs slightly worse than the
standard estimator. In contrast, both PCA based estimators of probability (ii)
outperform the standard estimator, while for probability (iii) all three estimators
perform similarly for k up to 100 where the usual PCA based estimator starts
to deteriorate. Again, for all probabilities, the RMSE of the estimator resulting
from ĤPCA

n,k,10 is remarkably insensitive against the choice of k.
Finally, we turn to the disturbed Dirichlet model where the observations are

randomly rotated by an angular up to π/10, leading to true values for (i)–(iv) of
0.653 (with t(i) = 0.65), 0.185, 0.770 and 0. The corresponding plots are shown
in the Figures 6 and 7. In view of the empirical risk, the choices p̃ ∈ {2, 3} seem
reasonable.

Again, the PCA procedure that uses the same largest observations in both
steps performs better for the larger choice of p̃, whereas the performance of
the other PCA procedure improves only for (ii), while it does not change much
for (iii) and it deteriorates a bit for (i) and (iv). The PCA estimators perform
better than the standard procedure for probability (i) and for (iii) if k is large
(for classical PCA only if p̃ = 3), whereas for (ii) overall the estimators perform
similarly well with the standard procedure performing better for small values of
k and the PCA estimators for larger values.
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Fig 6. Mean empirical risk for PCA projecting onto a subspace of dimension 1 ≤ p̃ ≤ 10
(left) and mean operator norm of the difference between the projection onto the true subspace
and the projection onto the subspace picked by PCA with p̃ = p (right) versus k for randomly
rotated Dirichlet observations with parameter 3, p = 2 and d = 10

Fig 7. RMSE of the estimators of the probabilities (i)–(iv) based on Ĥn,k (black, solid), ĤPCA
n,k

(blue, dashed) and ĤPCA
n,k,10 (red, dash-dotted) vs. k for randomly rotated Dirichlet observations

with parameter 3, p = 2 and d = 10; the upper plots correspond to PCA projections on
subspaces of dimension p̃ = 2, the lower to p̃ = 3
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Fig 8. Mean empirical risk for PCA projecting onto a subspace of dimension 1 ≤ p̃ ≤ 10 (left)
and mean operator norm of the difference between the projection onto the true subspace and
the projection onto the subspace picked by PCA with p̃ = p (right) versus k in the Dirichlet
model with parameter 3, p = 5 and d = 100

4.3. High dimensional models

We now compare the estimators when random vectors of dimension d = 100 are
observed whose extremes are concentrated near a p = 5 dimensional subspace.

Again, we start with the Dirichlet model, for which the mean empirical risk
for PCA projecting on a subspace of dimension p̃ ∈ {1, . . . , 10} are shown in the
left plot of Figure 8 and the mean operator norm of the difference between the
estimated and the true projection matrix in the right plot. Here the choice of
an appropriate dimension based on the empirical risk plot is less obvious than
in the lower dimensional setting, but one should clearly arrive at some value
p̃ between 4 and 6 and choose k not much larger than 50 for estimating the
support of the limit measure.

Figure 9 shows the RMSE of the different estimators of the probabilities (i)–
(iv) with t(i) = 0.4 and true values 0.573, 0.072, 0.584 and 0, respectively. Here,
we have used PCA with p̃ = 4 in the upper row, p̃ = 5 in the mid row and p̃ = 6
in the lower row. As expected, in most cases the PCA procedures perform worse
when they project on too low dimensional subspaces, yet in the cases (i) and (iv)
the differences are moderate. At first glance somewhat surprisingly, overall the
PCA procedures exhibit a better behavior for p̃ = 6 than for the “correct” value
p̃ = 5. This may be explained by the fact that the extra dimension offers the
opportunity to compensate for the difference between the subspaces minimizing
the true resp. the empirical risk. This difference is expected to be larger if the
dimension of the observed vectors is large, as can also be seen from the right
plot in Figure 8.

Again, the PCA based estimators for probability (i) outperform the stan-
dard procedure, but the other probabilities are more accurately estimated by
the standard procedures if p̃ ≤ 5 (though all estimators of (iv) perform rea-
sonably well). For p̃ = 6, the RMSE of both variants of PCA based estimators
of (ii) are very similar with a minimum value which is somewhat smaller than
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Fig 9. RMSE of the estimators of the probabilities (i)–(iv) based on Ĥn,k (black, solid), ĤPCA
n,k

(blue, dashed) and ĤPCA
n,k,10 (red, dash-dotted) vs. k in the Dirichlet model with parameter 3,

p = 5 and d = 100; the upper plots correspond to PCA projections on subspaces of dimension
p̃ = 4, the middle to p̃ = 5, and the lower to p̃ = 6

the minimum RMSE of the standard estimator. The performance of the stan-
dard estimator and the one based on classical PCA are almost identical for the
probability (iii), while the estimator with PCA based on just k = 10 largest
observations is less accurate, probably because it is difficult to estimate a sub-
space of dimension 6 based on just 10 observations. It might help to increase the
number of largest observations used to estimate the supporting subspace with
the dimension d, but we do not explore this idea here in order not to overload
the presentation.

For the high dimensional Gumbel model with d = 100 and p = 5, by and
large the findings are similar to the ones observed for the Dirichlet model so that
we do not show the corresponding plots. However, in this model p̃ = 4 can be
ruled out by the empirical risk plot and both PCA based estimators outperform
the standard estimator of (ii).

4.4. Conclusion

To sum up, while the PCA step does not always improve the estimator of the
spectral measure, for probability (i) the resulting estimators are superior to the
standard estimator and in most other cases they seem competitive if p̃ is cho-
sen appropriately. To this end, the plot of the empirical risk is a very useful
tool; this is particularly true for observations with moderate dimensions. For
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higher dimensional data, there may be some ambiguity about the dimension
of the subspace onto which the data should be projected. In case of doubt,
it is advisable to choose a higher dimensional subspace, in particular for the
PCA method that uses the same number of largest observations to estimate
the support and to calculate the estimator of the spectral measure. The PCA
estimators that determine the support based only on the largest 10 observa-
tions often exhibit a desirable insensitivity to the choice of largest observations
used to estimate the spectral measure, which makes them easier to apply in
practice.

5. Proofs

5.1. Proofs to Section 2

The following technical lemma comes in handy for the asymptotic analysis of
the conditional risk.

Lemma 5.1. Let f : Rd → R be a measurable function that is locally bounded,
P∞-a.e. continuous and satisfies lim sup‖x‖→∞ |f(x)|‖x‖−α̃ < ∞ for some α̃ <

α. Then limt→∞
∫
f(x/t)Pt(dx) =

∫
f(x)P∞(dx).

Proof. According to (1.1),

Pt(t · ) = P(X ∈ t · | ‖X‖ > t) → μ|(B1(0))c( · ) = P∞( · )

weakly. Let Yt and Y∞ be random vectors with distribution Pt(t · ) and P∞,
respectively. Since

∫
f(x/t)Pt(dx) = E f(Yt) and

∫
f(x)P∞(dx) = E(Y∞), the

assertion follows if the f(Yt) are asymptotically uniformly integrable (see [36],
Theorem 2.20).

By assumption f(Yt) can be bounded by a multiple of 1+‖Yt‖α̃. Now, for all
τ ∈ [0, α) and t ≥ t0 for some sufficiently large t0, integration by parts, regular
variation of u �→ uτ−1

P{‖X‖ > u} with index τ−α−1 and Karamata’s theorem
(see [3], Theorem 1.6.1) yield

E ‖Yt‖τ =

∫
‖x/t‖τ Pt(dx)

=
t−τ

P{‖X‖ > t}

∫ ∞

t

uτ
P
‖X‖(du)

=
τ

tτP{‖X‖ > t}

∫ ∞

t

uτ−1
P{‖X‖ > u} du

≤ 2
τ

α− τ
. (5.1)

In particular, supt≥t0 E ‖Yt‖α̃(1+ε) < ∞ for ε ∈ (0, α/α̃− 1), so that ‖Yt‖α̃ and
thus f(Yt) are asymptotically uniformly integrable.
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Proof of Proposition 2.2. Note that by the homogeneity of θ and (1.6),

t2(β−1)Rt(V ) = Pt(‖Π⊥
V t

β−1θ‖2) =
∫

f(x/t)Pt(dx)

with f(x) := ‖Π⊥
V θ(x)‖2 ≤ c2ω‖x‖2(1−β). Since 2(1− β) < α, Lemma 5.1 yields

the assertion.

The following two lemmas are crucial to prove convergence of the minimizers
of Rt.

Lemma 5.2. The set Vp of p-dimensional linear subspaces of Rd is compact
w.r.t. ρ.

Proof. We have to show that any sequence (Vn)n∈N in Vp has a convergent sub-
sequence. For each n, let (u1,n, . . . , up,n) be an orthonormal basis for Vn so that
ΠVnx = UnU



n x where Un denotes the matrix with columns uj,n. The vectors

(uj,n)1≤j≤p belong to the compact set (Sd−1)p. Thus there exists a subsequence
n� such that uj,n�

→ u0
j for all 1 ≤ j ≤ p. Since for all n, 〈uj,n, ui,n〉 = δi,j , we

also have 〈u0
j , u

0
i 〉 = δi,j and the u0

j , j ≤ p, form an orthonormal family in R
d.

Let V 0 be the space generated by the u0
j ’s and denote by U0 the matrix with

these columns. Then V 0 has dimension p, i.e. V 0 ∈ Vp, and by construction

ρ(Vn�
, V 0) = sup

x∈Sd−1

‖(Un�
U

n�

− U0U


0 )x‖ → 0.

which proves the claimed compactness.

Lemma 5.3. If ω satisfies condition (1.5), then for sufficiently large t0, the
standardized risks R̃t = t2(β−1)Rt, t ≥ t0, are Lipschitz continuous w.r.t. ρ with
a Lipschitz constant independent of t.

Proof. First note that
∣∣‖Π⊥

V θ(x)‖ − ‖Π⊥
W θ(x)‖

∣∣ ≤ ‖Π⊥
V θ(x) − Π⊥

W θ(x)‖ ≤
‖θ(x)‖ρ(V,W ). Recall the definition of Yt given in the proof of Lemma 5.1.
From (1.6) and (5.1) one may conclude that, for all γ ∈ (0, α/(1− β)), eventu-
ally

tγ(β−1)Pt‖θ‖γ ≤ cγω Et ‖X/t‖γ(1−β) = cγω E ‖Yt‖γ(1−β) ≤ 2cγω
γ(1− β)

α− γ(1− β)
.

(5.2)
Hence, for all subspaces V,W of Rd

|R̃t(V )− R̃t(W )| = t2(β−1)
∣∣∣Pt‖Π⊥

V θ‖2 − Pt‖Π⊥
W θ‖2

∣∣∣
≤ t2(β−1)Pt

(∣∣‖Π⊥
V θ‖ − ‖Π⊥

W θ‖
∣∣ ·

(
‖Π⊥

V θ‖+ ‖Π⊥
W θ‖

))

≤ 2t2(β−1)Pt‖θ‖2ρ(V,W )

≤ 4c2ω
2(1− β)

α− 2(1− β)
ρ(V,W )

which proves the assertion.
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Proof of Theorem 2.4. Suppose the assertion of the theorem were wrong. By
the compactness of Vp, then there exist a sequence tn → ∞ such that V ∗

tn

converges to some V∞ �= V ∗
∞. By Lemma 5.3, |R̃tn(V

∗
tn) − R̃tn(V∞)| → 0, and

by Proposition 2.2 |R̃tn(V∞) − R∞(V∞)| → 0 and |R̃tn(V
∗
∞) − R∞(V ∗

∞)| → 0.
Hence, for ε := R∞(V∞) − R∞(V ∗

∞), which is strictly positive by assumption,
and sufficiently large n, one may conclude a contradiction:

R∞(V∞) ≤ R̃tn(V∞) +
ε

4
≤ R̃tn(V

∗
tn) +

ε

2

≤ R̃tn(V
∗
∞) +

ε

2
≤ R∞(V ∗

∞) +
3ε

4
< R∞(V∞).

Therefore, the assertion must be correct.

Proof of Proposition 2.6. For simplicity, we assume that F‖X‖ is continuous in
the tail (so that there are no ties among the observed norms), but the proof
can be easily generalized using standard techniques from the theory of regular
varying functions. First we want to replace the random threshold t̂n,k with tn,k
in the definition of R̂n,k. Since Π

⊥
V is a contraction, the Hölder inequality yields

t
2(β−1)
n,k

∣∣∣R̂n,k(V )− 1

k

n∑
i=1

‖Π⊥
V Θi‖21{‖Xi‖ > tn,k}

∣∣∣

≤ 1

k
t
2(β−1)
n,k

n∑
i=1

‖Π⊥
V Θi‖2

∣∣1{‖Xi‖ > t̂n,k} − 1{‖Xi‖ > tn,k}
∣∣ (5.3)

≤
[1
k

n∑
i=1

t
(2+η)(β−1)
n,k ‖Θi‖2+η1{‖Xi‖ > tn,k ∧ t̂n,k}

]2/(2+η)

·
[1
k

n∑
i=1

∣∣1{‖Xi‖ > t̂n,k} − 1{‖Xi‖ > tn,k}
∣∣(2+η)/η

]η/(2+η)

.

where η > 0 is chosen such that (2 + η)(1− β) < α.
It is well known that t̂n,k/tn,k → 1 in probability. Thus there exists a sequence

δn ↓ 0 such that P{t̂n,k > (1− δn)tn,k} → 0. By (5.2) and the regular variation
of 1− F‖X‖

E

(
t
(2+η)(β−1)
n,k ‖Θ‖2+η1{‖Xi‖ > (1− δn)tn,k}

)

= t
(2+η)(β−1)
n,k P(1−δn)tn,k

‖θ‖2+η
(
1− F‖X‖((1− δn)tn,k)

)
= O

(
1− F‖X‖(tn,k)

)
= O(k/n).

In particular, k−1
∑n

i=1 t
(2+η)(β−1)
n,k ‖Θi‖2+η1{‖Xi‖ > tn,k∧t̂n,k} is stochastically

bounded.
Furthermore,

n∑
i=1

∣∣1{‖Xi‖ > t̂n,k} − 1{‖Xi‖ > tn,k}
∣∣(2+η)/η

=
∣∣∣

n∑
i=1

1{‖Xi‖ > tn,k} − k
∣∣∣,
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because there exist exactly k exceedances of t̂n,k, and either all non-vanishing
differences of the indicator functions equal 1 or all equal −1, depending on
whether t̂n,k < tn,k or t̂n,k > tn,k. Now, the last sum is binomially distributed
with parameters n and k/n. By the central limit theorem for triangular arrays,
the right hand side is of stochastic order k1/2.

A combination of these results show that

t
2(β−1)
n,k

∣∣∣R̂n,k(V )− 1

k

n∑
i=1

‖Π⊥
V Θi‖21{‖Xi‖ > tn,k}

∣∣∣ = OP

(
k−η/(2(2+η))

)
= oP (1)

(5.4)
uniformly for all subspaces V .

In view of Proposition 2.2, it thus suffices to show that

t
2(β−1)
n,k

∣∣∣1
k

n∑
i=1

‖Π⊥
V Θi‖21{‖Xi‖ > tn,k} −Rtn,k

(V )
∣∣∣

≤ t
2(β−1)
n,k

∣∣∣1
k

n∑
i=1

(
‖Π⊥

V Θi‖21{‖Xi‖ ∈ (tn,k, dn,k]}

− E
(
‖Π⊥

V Θi‖21{‖Xi‖ ∈ (tn,k, dn,k]}
))∣∣∣

+ t
2(β−1)
n,k

∣∣∣1
k

n∑
i=1

(
‖Π⊥

V Θi‖21{‖Xi‖ > dn,k}

− E
(
‖Π⊥

V Θi‖21{‖Xi‖ > dn,k}
))∣∣∣

=: Tn,1 + Tn,2 → 0

in probability, with dn,k := (log k)tn,k.
Let α∗ := 4(1− β) ∨ (α+ 1). Since Π⊥

V is a contraction, (1.6) implies

E(T 2
n,1) =

n

k2
t
4(β−1)
n,k Var

(
‖Π⊥

V Θ‖21{‖X‖ ∈ (tn,k, dn,k]}
)

≤ n

k2
t−α∗

n,k c4ω E
(
‖X‖α∗

1{‖X‖ ∈ (tn,k, dn,k]}
)
.

Similarly as in the proof of Lemma 5.1, we can bound the expectation using
integration by parts and Karamata’s theorem:

E
(
‖X‖α∗

1{‖X‖ ∈ (tn,k, dn,k]}
)

≤
∫ dn,k

0

zα
∗
P
‖X‖(dz)

= −dα
∗

n,k(1− F‖X‖(dn,k)) + α∗
∫ dn,k

0

zα
∗−1(1− F‖X‖(z)) dz

= dα
∗

n,k(1− F‖X‖(dn,k))
( α∗

α∗ − α
− 1 + o(1)

)

≤ 2α

α∗ − α
dα

∗

n,k(1− F‖X‖(dn,k))
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for sufficiently large n. Therefore, by the choice of dn,k,

E(T 2
n,1) = O

( n

k2
(log k)α

∗
(1− F‖X‖(dn,k))

)
= o

( (log k)α
∗

k

)
= o(1),

which implies the convergence in probability of Tn,1.

For the second term, we may similarly conclude from (5.2) and the definition
of tn,k that

E(Tn,2) ≤
n

k
t
2(β−1)
n,k 2E

(
‖Π⊥

V Θ‖21{‖X‖ > dn,k}
)

≤ 2
n

k
t
2(β−1)
n,k Edn,k

(
‖Θ‖2

)
(1− F‖X‖(dn,k))

≤ 8(1− β)c2ω
α− 2(1− β)

·
d
2(1−β)
n,k (1− F‖X‖(dn,k))

t
2(1−β)
n,k (1− F‖X‖(tn,k))

.

Because t �→ t2(1−β)(1−F‖X‖(t)) is regularly varying with index 2(1−β)−α < 0
and tn,k = o(dn,k), the right hand side tends to 0. Thus, also Tn,2 converges to
0 in probability, which concludes the proof.

Similarly as in the analysis of the conditional risk, the following result on the
equicontinuity in probability of the standardized empirical risk is central to the
consistency of the empirical risk minimizer.

Lemma 5.4. If ω satisfies condition (1.5), then for all ε > 0 there exists δ > 0
such that for sufficiently large n

P
{

sup
V,W∈Vp:ρ(V,W )≤δ

t
2(β−1)
n,k |R̂n,k(V )− R̂n,k(W )| > ε

}
≤ ε.

Proof. First note that in view of (5.4), it suffices to prove the assertion with
R̂n,k(V ) replaced by k−1

∑n
i=1 ‖Π⊥

V Θi‖21{‖Xi‖ > tn,k} and R̂n,k(W ) replaced
by the analogous expression.

Similarly as in the proof of Lemma 5.3, we have

1

k

n∑
i=1

(
‖Π⊥

V Θi‖2 − ‖Π⊥
WΘi‖2

)
1{‖Xi‖ > tn,k}

≤ 2

k

n∑
i=1

‖Π⊥
V Θi −Π⊥

WΘi‖ · ‖Θi‖1{‖Xi‖ > tn,k}

≤ 2

k
ρ(V,W )

n∑
i=1

‖Θi‖21{‖Xi‖ > tn,k}

≤ 2

k
ρ(V,W )c2ω

n∑
i=1

‖Xi‖2(1−β)1{‖Xi‖ > tn,k}
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for n sufficiently large. Hence, by Markov’s inequality, (5.2) and the definition
of tn,k,

P

{
sup

V,W∈Vp:ρ(V,W )≤δ

1

k
t
2(β−1)
n,k

n∑
i=1

(
‖Π⊥

V Θi‖2 − ‖Π⊥
WΘi‖2

)
1{‖Xi‖ > tn,k} > ε

}

≤ 2c2ωδn

εk
E

((‖X‖
tn,k

)2(1−β)

1{‖X‖ > tn,k}
)

=
2c2ωδ

ε
Etn,k

(‖X‖
tn,k

)2(1−β)

≤ 8(1− β)c2ωδ

ε(α− 2(1− β))
= ε

for δ := ε2(α− 2(1− β))/
(
8(1− β)c2ω

)
.

Proof of Theorem 2.7. Let R̃n,k := t
2(β−1)
n,k R̂n,k. Fix an arbitrary ε > 0 and let

M := {W ∈ Vp : ρ(V ∗
∞,W ) ≥ ε/2}. In view of Proposition 2.2 and Lemma

5.3, it is easily seen that R∞ is Lipschitz continuous w.r.t. ρ. Moreover, by
Lemma 5.2, M is a closed subset of a compact set and thus compact, too.
Hence, η := infW∈M R∞(W )−R∞(V ∗

∞) > 0, since the infimum is attained and
V ∗
∞ is the unique minimizer of R∞.

According to Lemma 5.4, there exists δ ≤ ε/2 and n0 such that for all n ≥ n0

with probability greater than 1− ε/4 one has

|R̃n,k(V )− R̃n,k(W )| ≤ η/4

for all V,W ∈ Vp such that ρ(V,W ) ≤ δ. Since Vp is compact, there exists a
finite cover of Vp by open balls with radius δ and centers W1, . . . ,Wm, say. By
Proposition 2.6, there exists n1 ≥ n0 such that with probability greater than
1− ε/2

|R̃n,k(Wj)−R∞(Wj)| ≤ η/4, ∀ 1 ≤ j ≤ m,

|R̃n,k(V
∗
∞)−R∞(V ∗

∞)| ≤ η/4.

Hence, there exists a (random) index j ∈ {1, . . . ,m} such that ρ(V̂n,Wj) < δ ≤
ε/2, and, on a set with probability greater than 1− ε,

R∞(Wj) ≤ R̃n,k(Wj) +
η

4
≤ R̃n,k(V̂n) +

η

2
≤ R̃n,k(V

∗
∞) +

η

2
≤ R∞(V ∗

∞) +
3η

4
.

By the definition of η, this implies Wj �∈ M and thus

ρ(V̂n, V∞) ≤ ρ(V̂n,Wj) + ρ(Wj , V
∗
∞) < ε.

Since ε > 0 was arbitrary, this concludes the proof.
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5.2. Proofs to Section 3

The proofs rely on some well-known facts about Hilbert spaces, which we recall
in a version specialized to the present setting. Let (ei)1≤i≤d be an arbitrary
orthonormal basis of Rd and denote by 〈 · , · 〉 the usual inner product on R

d.
The space of linear operators from R

d to R
d (i.e., d×d-matrices) equipped with

the inner product 〈A,B〉HS :=
∑d

i=1〈Aei, Bei〉 (which does not depend on the
chosen orthonormal basis) is a Hilbert space. The corresponding Hilbert Schmidt

norm can be expressed as ‖A‖HS =
( ∑d

i=1 ‖Aei‖2
)1/2

=
(
tr(AA
)

)1/2
with

tr denoting the trace operator. If, for any subspace W of Rd, the first dimW
vectors ei form an orthonormal basis of W , then one sees that

‖ΠW ‖HS =
√
dimW. (5.5)

Moreover, direct calculations show that

〈Ay, x〉 = 〈A, xy
〉HS . (5.6)

Finally, for independent centered random matrices Ai, 1 ≤ i ≤ n, one has

E

∥∥∥
n∑

i=1

Ai

∥∥∥2

HS
=

n∑
i=1

E ‖Ai‖2HS . (5.7)

We start with a uniform bound on the difference between R̂n,k and R̄tn,k
,

defined in (3.2).

Lemma 5.5. If (3.1) holds, then

P

{
sup
V ∈Vp

|R̂n,k(V )− R̄tn,k
(V )| ≥ v

}
≤ 2 exp

(
− kv2

2(1 + v/3)

)
.

Proof. In view of (5.3) and πtn,k
= k/n, we have for all V ∈ Vp,

|R̂n,k(V )− R̄tn,k
(V )| = 1

k

∣∣∣
n∑

i=1

‖Π⊥
V Θi‖2(1{‖Xi‖ > t̂n,k} − 1{‖Xi‖ > tn,k})

∣∣∣

≤ 1

k

∣∣∣
n∑

i=1

1{‖Xi‖ > tn,k} − k
∣∣∣.

By Bernstein’s inequality ([24, Theorem 2.7]), it follows that

P

{
sup
V ∈Vp

|R̂n,k(V )− R̄tn,k
(V )| ≥ v

}
≤ 2 exp

(
− (kv)2

2(k(1− k/n) + kv/3)

)

and hence the assertion.

We next prove concentration inequalities for ϕ±
t (X1, . . . , Xn) defined in (3.4),

using a version of the bounded difference inequality by [24, Theorem 3.8], which
we recall for convenience. For brevity’s sake, in what follows we use the notation
xi:j := (xi, . . . , xj) for a subvector of (x1, . . . , xn).
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Theorem 5.6. Let X1:n = (X1, . . . , Xn) be an i.i.d. sample taking its values
in some space E and ϕ : En → R be any measurable function. Consider the
positive deviation functions defined on Em, for any 1 ≤ m ≤ n, by

hm(x1:m) = E
(
ϕ(x1:m, Xm+1:n)− ϕ(x1:m−1, Xm:n)

)
.

Denote their maximum by

maxdev+ = max
1≤m≤n

sup
x1:m∈Em

hm(x1:m), (5.8)

and the maximal summed variance by

v̂ = sup
x1:n∈En

n∑
m=1

Varhm(x1:m−1, Xm). (5.9)

If both maxdev+ and v̂ are finite then, for all u ≥ 0,

P
{
ϕ(X1:n)− Eϕ(X1:n) ≥ u

}
≤ exp

(
− u2

2(v̂ +maxdev+u/3)

)
.

Lemma 5.7. Under (3.1), one has, for all u > 0,

P

{
ϕ±
t (X1, . . . , Xn) ≥ Eϕ±

t (X1, . . . , Xn) + u
}
≤ exp

(
− nu2

2(πt(1 + πt) + u/3)

)
.

Proof. The assertion follows immediately from Theorem 5.6 applied to ϕ±
t and

the following bounds:

hm(x1:m) = E
(
ϕ±
t (x1:m, Xm+1:n)− ϕ±

t (x1:m−1, Xm:n)
)

≤ 1

n
E

(
sup
V ∈Vp

∣∣∣‖Π⊥
V θt(Xm)‖2 − ‖Π⊥

V θt(xm)‖2
∣∣∣)

≤ 1

n
E

(
1{‖Xm‖ > t‖ or ‖xm‖ > t}

)

=
1

n
(πt ∨ 1{‖xm‖ > t})

≤ 1

n

and

n∑
m=1

Varhm(x1:m−1, Xm) ≤
n∑

m=1

Eh2
m(x1:m−1, Xm)

≤ 1

n
E(πt ∨ 1{‖X‖ > t})2

=
π2
t (1− πt) + πt

n

≤ πt(1 + πt)

n
.
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Next, the expectations Eϕ±
t (X1, . . . , Xn) are bounded using arguments from

[4].

Lemma 5.8.

Eϕ±
t (X1, . . . , Xn) ≤

[p ∧ (d− p)

n
πtSt

]1/2
with St defined in Theorem 3.1, provided condition (3.1) is satisfied.

Proof. Since, by (5.6), ‖ΠWx‖2 = 〈ΠWx, x〉 = 〈ΠW , xx
〉HS for any linear
subspace W and any x ∈ R

d, using the bilinearity of the inner product and the
Cauchy-Schwarz inequality in the Hilbert-Schmidt space, we obtain

±(Pn − P )(‖Π⊥
V θt‖2) =

〈
Π⊥

V ,±(Pn − P )(θtθ


t )

〉
HS

≤ ‖Π⊥
V ‖HS‖(Pn − P )(θtθ



t )‖HS .

Using (5.5) and taking the supremum over all V ∈ Vp and the expectation,
one arrives at

Eϕ±
t (X1, . . . , Xn) ≤

√
d− pE ‖(Pn − P )(θtθ



t )‖HS . (5.10)

One the other hand, by first rewriting ‖Π⊥
V θt‖2 = ‖θt‖2−‖ΠV θt‖2, analogously

one obtains

Eϕ±
t (X1, . . . , Xn) = E

(
sup
V ∈Vp

±(Pn − P )(‖Π⊥
V θt‖2)

)

= E
(
(Pn − P )‖θt‖2

)
+ E

(
sup
V ∈Vp

∓(Pn − P )(‖ΠV θt‖2)
)

≤ 0 + sup
V ∈Vp

‖ΠV ‖HS E ‖(Pn − P )(θtθ


t )‖HS

≤ √
pE ‖(Pn − P )(θtθ



t )‖HS . (5.11)

Now, by the Jensen’s inequality and (5.7),

E ‖(Pn − P )(θtθ


t )‖HS ≤

(
E ‖(Pn − P )(θtθ



t )‖2HS

)1/2

=
(
E

∥∥∥ 1

n

n∑
i=1

(
Θi,tΘ



i,t − E(ΘtΘ



t )

)∥∥∥2

HS

)1/2

=
( 1

n
E ‖ΘtΘ



t − E(ΘtΘ



t )‖2HS

)1/2

.

Combining this with (5.10) and (5.11), we arrive at

Eϕ±
t (X1, . . . , Xn) ≤

[p ∧ (d− p)

n
E ‖ΘtΘ



t − E(ΘtΘ



t )‖2HS

]1/2
. (5.12)

It remains to show that E ‖ΘtΘ


t −E(ΘtΘ



t )‖2HS = πt

(
Et ‖Θ‖4−πt tr(Σ

2
t )

)
.

From the representation of the Hilbert Schmidt norm by the trace operator and
the linearity of the latter, one may conclude by direct calculations that

E ‖ΘtΘ


t − E(ΘtΘ



t )‖2HS = tr

(
E(ΘtΘ



t − EΘtΘ



t )

2
)
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= tr
(
E(ΘtΘ



t )

2
)
− tr

(
(E(ΘtΘ



t ))

2
)

= tr
(
πt Et(ΘΘ
)2

)
− tr

(
(πt Et ΘΘ
)2

)
= πt Et tr

(
(ΘΘ
)2

)
− π2

t tr(Σ
2
t ).

Hence the assertion follows from

tr
(
(ΘΘ
)2

)
=

d∑
j=1

‖ΘΘ
ej‖2 =

d∑
j=1

d∑
l=1

(
Θ(l)Θ(j)

)2
= ‖Θ‖4

with ej denoting the jth unit vector.

Proof of Theorem 3.1. With R̄t(V ) defined in (3.2), we have

sup
V ∈Vp

|R̂n,k(V )−Rtn,k
(V )|

≤ sup
V ∈Vp

|R̂n,k(V )− R̄tn,k
(V )|+ sup

V ∈Vp

|R̄tn,k
(V )−Rtn,k

(V )|.

Recall from (3.3) that the second term can be written as

sup
V ∈Vp

|R̄tn,k
(V )−Rtn,k

(V )| = n

k
max(ϕ+

tn,k
(X1:n), ϕ

−
tn,k

(X1:n)).

Hence, Lemma 5.7, Lemma 5.8 and πtn,k
= k/n immediately yield

P

{
sup
V ∈Vp

|R̄tn,k
(V )−Rtn,k

(V )| ≥
[p ∧ (d− p)

k
Stn,k

]1/2
+ u

}

≤ 2 exp
(
− n(uk/n)2

2(k/n(1 + k/n) + uk/(3n))

)

= 2 exp
(
− ku2

2(1 + k/n+ u/3)

)
.

Combine this with the bound on the first term given by Lemma 5.5 to conclude
the proof of the first assertion.

Check that for

u :=
log(4/δ)

3k
+

[( log(4/δ)

3k

)2

+
2

k
(1 + k/n) log(4/δ)

]1/2

v :=
log(4/δ)

3k
+

[( log(4/δ)

3k

)2

+
2

k
log(4/δ)

]1/2

both exponential expressions on the right hand side of (3.5) equal δ/4, and so
the upper bound equals δ. Hence the remaining assertions follow from

√
a+ b ≤√

a+
√
b.

Proof of Theorem 3.3. Define i.i.d. random vectors Zi whose distribution equals
the conditional distribution of Θ given ‖X‖ > t. Recall that Θ(i) := θ(X(i))
where X(i) is the vector Xj with the ith largest norm among X1, . . . , Xn. Then,
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conditionally on Nt = �, the joint distribution of the empirical risk R̂t(V ) and

Θ(1), . . .Θ(�) equals the joint distribution of �−1
∑�

i=1 ‖Π⊥
V Zi‖2 and the order

statistics of Z1, . . . , Z�. Therefore, the proof of Theorem 3.1 of [4] (with M = 1
and L = 2) combined with arguments given in the proof of Lemma 5.8 show that
with probability at least 1− 2 exp

(
− 2�u2) − exp

(
− ��/2�v2/2

)
conditionally

to Nt = �,

sup
V ∈Vp

|R̂t(V )−Rt(V )| <

[p ∧ (d− p)

2�

( 1

�(�− 1)

�∑
i,j=1

‖Θ(i)Θ


(i) −Θ(j)Θ



(j)‖2HS + 2v

)]1/2
+ u (5.13)

Since the proof of Theorem 3.1 of [4] is quite tersely formulated in a more
abstract setting and it contains a minor inaccuracy, for convenience we give
more details of the proof of (5.13) in the Appendix.

Similarly as in the proof of Lemma 5.8, the first assertion thus follows from

�∑
i,j=1

‖Θ(i)Θ


(i) −Θ(j)Θ



(j)‖2HS

= 2�

�∑
i=1

‖Θ(i)Θ


(i)‖2HS − 2

�∑
i,j=1

〈Θ(i)Θ


(i),Θ(j)Θ



(j)〉HS

= 2�

�∑
i=1

‖Θ(i)‖4 − 2
∥∥∥

�∑
i=1

Θ(i)Θ


(i)

∥∥∥2

HS

= 2�2
(
1

�

�∑
i=1

‖Θ(i)‖4 − tr
((1

�

�∑
i=1

Θ(i)Θ


(i)

)2))

= 2�2
(
1

�

n∑
i=1

‖Θi,t‖4 − tr
((1

�

n∑
i=1

Θi,tΘ


i,t

)2))

where in the last step we have used that, on {Nt = �}, the set of non-vanishing
vectors Θi,t equals the set of non-vanishing random vectors Θ(i).

The remaining assertions are now obvious.

Proof of Remark 3.5. The (modified) proof of Theorem 3.1 of [4] shows that

P

(
sup
V ∈Vp

|R̂t(V )−Rt(V )| ≥
[p ∧ (d− p)

�
S∗
t

]1/2
+ u

∣∣∣Nt = �
)
≤ 2 exp

(
− 2�u2)

with S∗
t := Et ‖Θ‖4 − tr(Σ2

t ) (cf. (A.1) and (A.2)). Observe that R̄t(V ) =
NtR̂t(V )/(nπt). On the set Mt(v) := {|Nt − nπt| ≤ nπtv}, one thus has

sup
V ∈Vp

|R̄t(V )−Rt(V )| ≤ Nt

nπt
sup
V ∈Vp

|R̂t(V )−Rt(V )|+ v,
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since Rt(V ) ≤ 1. Moreover, for t = tn,k, it is shown in the proof of Theorem

3.1 that supV ∈Vp
|R̂n,k(V ) − R̄tn,k

(V )| ≤ v on the set Mtn,k
= {Ntn,k

∈ [k(1 −
v), k(1 + v)]} and that P(M c

tn,k
) ≤ 2 exp

(
− kv2/(2(1 + v/3))

)
. Hence,

P

{
sup
V ∈Vp

|R̂n,k(V )−Rtn,k
(V )| ≥

[
(1 + v)

p ∧ (d− p)

k
S∗
tn,k

]1/2
+ u+ 2v

}

≤ P

(
Mtn,k

∩
{

sup
V ∈Vp

|R̄tn,k
(V )−Rtn,k

(V )| ≥
[
(1 + v)

p ∧ (d− p)

k
S∗
tn,k

]1/2
+ u+ v

})

+ P(M c
tn,k

)

≤ P

(
Mtn,k

∩
{

sup
V ∈Vp

|R̂tn,k
(V )−Rtn,k

(V )| ≥
[p ∧ (d− p)

Ntn,k

S∗
tn,k

]1/2
+

ku

Ntn,k

})

+ P(M c
tn,k

)

≤
�k(1+v)�∑

�=�k(1−v)�
2 exp

(
− 2�(ku/�)2

)
P{Ntn,k

= �}+ P(M c
tn,k

)

≤ 2 exp
(
− 2ku2

1 + v

)
+ 2 exp

(
− kv2

2(1 + v/3)

)
.

Appendix: Details of the proof of (5.13)

Recall that Zi are iid random variables whose distribution equals the conditional
distribution of Θ given ‖X‖ > t. Let

φ±(z1, . . . , z�) := sup
V ∈Vp

±
(1

�

�∑
i=1

‖Π⊥
V zi‖2 − P‖Π⊥

V Z1‖2
)
.

First note that

∣∣φ±(z1:�)− φ±(z1:i−1, z̃i, zi+1:�)
∣∣ ≤ sup

V ∈Vp

1

�

∣∣‖Π⊥
V zi‖2 − ‖Π⊥

V z̃i‖2
∣∣ ≤ 1

�

for all z, z̃ ∈ B1(0). Thus a simple version of the bounded difference inequality
(see, e.g., Theorem 3.1 of [24]) gives

P
{
φ±(Z1:�)− Eφ±(Z1:�) ≥ u

}
≤ exp(−2�u2), ∀u > 0. (A.1)

Exactly in the same way as in the proof of Lemma 5.8 (cf. (5.12)), one obtains

Eφ±(Z1:�) ≤
[p ∧ (d− p)

�
E ‖ZZ
 − EZZ
‖2HS

]1/2

=
[p ∧ (d− p)

�

(
E ‖ZZ
‖2HS − ‖EZZ
‖2HS

)]1/2
. (A.2)
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Let Z̃ be an independent copy of Z. Then

E ‖ZZ
 − Z̃Z̃
‖2HS = 2E ‖ZZ
‖2HS − 2E〈ZZ
, Z̃Z̃
〉HS

with

E〈ZZ
, Z̃Z̃
〉HS = E
(
E(〈ZZ
, Z̃Z̃
〉HS | Z)

)
= E〈ZZ
,E Z̃Z̃
〉HS = ‖EZZ
‖2HS .

To sum up, so far we have shown that, for all u ≥ 0,

P

{
φ±(Z1:�) ≥

[p ∧ (d− p)

2�
E ‖ZZ
 − Z̃Z̃
‖2HS

]1/2
+ u

}
≤ exp(−2�u2).

Next consider the U-statistic U := (�(�− 1))−1
∑�

i,j=1 g(Zi, Zj) with

g(z, z̃) := ‖zz
 − z̃z̃
‖2HS ≤ (‖zz
‖HS + ‖z̃z̃
‖HS)
2 ≤ 4.

By equation (5.7) of [18], one has

P{U − EU ≥ 2v} ≤ exp
(
− 2��/2�(2v)2/16

)
= exp

(
− ��/2�v2/2

)
, ∀v ≥ 0,

with EU = E ‖ZZ
 − Z̃Z̃
‖2HS . Hence,

P

{
max

(
φ+(Z1:�), φ

−(Z1:�)
)
≥

[p ∧ (d− p)

2�

( 1

�(�− 1)

�∑
i,j=1

‖ZiZ


i − ZjZ



j ‖2HS + 2v

)]1/2
+ u

}

≤ 2 exp(−2�u2) + exp
(
− ��/2�v2/2

)
, ∀u, v ≥ 0.

This, in turn, is equivalent to (5.13), because the joint distribution of

max
(
φ+(Z1:�), φ−(Z1:�)

)
and

∑�
i,j=1 ‖ZiZ



i − ZjZ



j ‖2HS is the same as the

joint conditional distribution of supV ∈Vp
|R̂t(V )−Rt(V )| and

∑�
i,j=1 ‖Θ(i)Θ



(i)−

Θ(j)Θ


(j)‖2HS , given Nt = �.
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