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1. Introduction

Suppose that we observe a undirected graph with adjacency matrix W = (Wij :
i, j ∈ [n]) (where [n] := {1, . . . , n} and n ≥ 3) with Wij ∈ {0, 1} and Wii = 0.
We assume the existence of points, x1, . . . , xn ∈ R

v, such that

P(Wij = 1 | x1, . . . , xn) = φ(‖xi − xj‖), (1)

for some non-increasing link function φ : [0,∞) �→ [0, 1]. The (Wij , i < j) are
assumed to be independent given the point set (x1, . . . , xn). We place ourselves
in a setting where the adjacency matrixW is observed, but the underlying points
are unknown. We will be mostly interested in settings where φ is unknown (and
no parametric form is known). Our most immediate interest is in the pairwise
distances

dij := ‖xi − xj‖. (2)

In general, when the link function is unknown, all we can hope for is to rank
these distances. Indeed, the most information we can aspire to extract from W
is the probability matrix P := (pij), where

pij := P(Wij = 1 | x1, . . . , xn), (3)

and even with perfect knowledge of P , the distances can only be known up to a
monotone transformation, since pij = φ(dij) and φ is in principle an arbitrary
non-increasing function. Recovering the points based on such a ranking amounts
to a problem of ordinal embedding (aka, non-metric multidimensional scaling),
which has a long history [19, 36, 37, 45].

Although this is true in general, we focus our attention on the ‘local setting’
where the link function has very small support. In that particular case, we are
able to (approximately) recover the pairwise distances up to a scaling. By fix-
ing the scale arbitrarily (since it cannot be inferred from the available data),
recovering the underlying points amounts to a problem of metric multidimen-
sional scaling [7]. Classical Scaling [42] is the most popular method for that
problem, and comes with a perturbation bound [5] which can help translate an
error bound for the estimation of the pairwise distances (up to scale) to an error
bound for the estimation of the points (up to a similarity transformation). We
thus focus our attention on the estimation of the pairwise distances (2).
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1.1. Related work

The model we consider in (1) is an example of a latent graph model and the
points are often called latent positions. In its full generality, the model includes
the planted partition model popular in the area of graph partitioning. To see
this, take r = 1 and let v denote the number of blocks and, with ek denoting
the k-th canonical basis vector, set xi = ek if i belongs to block k. The planted
partition model is a special case of the stochastic block model of Holland et
al. [18]. This is also a special case of our model, as can be seen by changing
ek to zs chosen so that φ(‖zs − z�‖) = pk�, where pk� denotes the connection
probability between blocks k and �. Mixed-membership stochastic block models
as in [2, 4, 44] are also special cases of latent graph models, but of a slightly
different kind. The literature on the stochastic block model is now substantial
and includes results on the recovery of the underlying communities; see, e.g.,
[1, 11, 16, 21, 26, 30, 38] and references therein.

Our contribution here is of a different nature as we focus on the situation
where the latent positions are well spread out in space, forming no obvious
clusters. This relates more closely to the work of Holland et al. [17]. Although
their setting is more general in that additional information may be available
at each position, without that additional information their approach reduces to
the following logistic regression model:

log
( pij
1− pij

)
= −dij ,

which is clearly a special case of (1) with link function the logistic function.
Sarkar et al. [31] consider this same model motivated by a link prediction prob-
lem where the nodes are assumed to be embedded in space with their Euclidean
distances being the dissimilarity of interest. In fact, they assume that the points
are uniformly distributed in some region. They study a method based on the
number of neighbors that a pair of nodes have in common, which is one of the
main methods for link prediction [22, 23]. Parthasarathy et al. [28] consider a
more general setting where a noisy neighborhood graph is observed: if (xi) are
points in a metric space with pairwise distances (dij), then an adjacency matrix,
W = (Wij), is observed, where Wij = 1 with probability 1 − p if dij ≤ r and
with probability q if dij > r, where p, q ∈ [0, 1] are parameters of the model.
Under fairly general conditions on the metric space and the sampling distribu-
tion, and additional conditions on (n, r, p), they show that the graph distances
computed based on W provide, with high probability, a 2-approximation to the
underlying distances in the case where q = 0. In the case where q > 0, the same
is true, under some conditions on (n, r, p, q), if W is replaced by W̃ = (W̃ij)

where W̃ij = 1 exactly when Nij/(Ni + Nj − Nij) ≥ τ , where τ is a carefully
chosen tuning parameter and where Ni := #{j : Wij = 1} (number of neighbors
of i) and Nij := #{k : Wik = Wjk = 1} (number of common neighbors of i
and j).

Scheinerman and Tucker [32] and Young and Scheinerman [46] consider what
they call a dot-product random graph model where pij = 〈xi, xj〉, where it is
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implicitly assumed that 〈xi, xj〉 ∈ [0, 1] for all i �= j. This model is a special
case of (1), with φ(d) = 1 − 1

2d
2. Sussman et al. [39] consider recovering the

latent positions in this model with full knowledge of the link function. They
devise a spectral method which consists in embedding the items {1, . . . , n} as
points in R

v, with v assumed known, as the row vectors of U(v)Θ
1/2
(v) , where

W = UΘV � is the SVD of W , and for a matrix A = (Aij) and an integer s ≥ 1,
A(s) = (Aij : i∨j ≤ s). They analyze their method in a context where the latent
positions are in fact a sample from a possibly unknown distribution. The same
authors extended their work in [40] to an arbitrary link function, which may be
unknown, although the focus is on a binary classification task in a setting where
for each i ∈ [n] a binary label yi is available.

Alamgir and von Luxburg [3, 43] consider the closely related problem of
recovering the latent positions in a setting where a nearest-neighbor graph is
available. They propose a method based on estimating the underlying density
denoted f . If f̂i denotes the density estimate at xi, a graph is defined on [n] with
weights wij = (f̂

−1/v
i + f̂

−1/v
j )/2, and dij is estimated by the graph distance

between nodes i and j.
Latent positions random graph models also play a role in the literature on

rankings1 [15, 25]. A typical parametric model represents each player i ∈ [n] by
a number xi such that the probability that i wins against j in a single game is
φ(xi − xj). Note that the link function is applied to the difference and not the
absolute value of the difference. For example, the Bradley–Terry–Luce model
[8, 24] uses the logistic link function. Suppose that multiple games are played
between multiple pairs of players. The result of that can be summarized as
(Wij : i �= j), where Wij is the number of games where i prevailed over j. This
is the weight matrix of a directed latent positions graph where the positions are
(x1, . . . , xn). We refer the reader to [27, 33] and references therein for theoretical
results developed for such models.

1.2. Our contribution

Graph distances are well-known estimates for the Euclidean distances in the
context of graph drawing [20, 35], where the goal is to embed items in space
based on an incomplete distance matrix. They also appear in the literature on
link prediction [22, 23] and are part of the method proposed in [43]. We examine
the use of graph distances for the estimation of the Euclidean distances (2). As
we shall see, the graph distances are directly useful when the link function φ is
compactly supported, which is for example the case in the context of a neighbor-
hood graph where φ(d) = I{d ≤ r} for some connectivity radius r > 0. In fact,
the method is shown to achieve a minimax lower bound in this setting (under a
convexity assumption). This setting is discussed in Section 2. In Section 3, we
extend the analysis to other (compactly supported) link functions. We end with
Section 4, where we discuss some important limitations of the method based on
graph distances and consider some extensions, including localization (to avoid

1Thanks to Philippe Rigollet for pointing out this out to us.
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the convexity assumption) and the use of the number of common neighbors (to
accommodate non-compact link functions). Proofs are gathered in Section 5.

1.3. The graph distance method

Given the adjacency matrix W , the graph distance (aka shortest-path distance)
between nodes i and j is defined as

δij := inf
{
� : ∃ k0, . . . , k� ∈ [n] s.t.

k0 = i, k� = j, and W (ks−1, ks) = 1, ∀s ∈ [�]
}
, (4)

where inf ∅ = ∞ by convention. Here and elsewhere, we will sometimes use the
notation W (i, j) for Wij , d(i, j) for dij , etc.

We propose estimating, up to a scale factor, the Euclidean distances (2) with
the graph distances (4). Indeed, since φ is assumed unknown, the scale factor
cannot be recovered from the data, as is the case in ordinal embedding, for
example. Therefore, estimates are necessarily up to an arbitrary scaling factor,
so that the accuracy of an estimator d̂ = (d̂ij) for d = (dij) is measured according

to how close we can make sd̂ and d in some chosen way by choosing the scale
s > 0 with (oracle) knowledge of d. For example, with mean squared error, this

leads to quantifying the accuracy of d̂ as follows

min
s>0

∑
i<j

(sd̂ij − dij)
2.

The graph distance method is the analog of the MDS-D method of Kruskal
and Seery [20] for graph drawing, which is a setting where some of the dis-
tances (2) are known and the goal is to recover the missing distances. Let E
denote the set of pairs i < j for which dij is known. MDS-D estimates the miss-
ing distances with the distances in the graph with node set [n] and edge set E ,
and with edge (i, j) ∈ E weighed by dij . This method was later rediscovered by
Shang et al. [35], who named it MDS-MAP(P), and coincides with the IsoMap
procedure of Tenenbaum et al. [41] for isometric manifold embedding. (For more
on the parallel between graph drawing and manifold embedding, see [10].)

As we shall see, the graph distance method is most relevant when the positions
are sufficiently dense in their convex hull, which is a limitation it shares with
MDS-D. For Ω ⊂ R

v and x1, . . . , xn ∈ R
v, define

ΛΩ(x1, . . . , xn) = sup
x∈Ω

min
i∈[n]

‖x− xi‖, (5)

which measures how dense the latent points are in Ω. We also let Λ(x1, . . . , xn)
denote (5) when Ω is the convex hull of {x1, . . . , xn}.
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2. Simple setting

In this section we focus on the simple, yet emblematic case of a neighborhood
(ball) graph, that is, a setting where the link function is given by φ(d) = I{d ≤ r}
for some r > 0. When the positions are drawn iid from some distribution, the
result is what is called a random geometric graph [29], but here we consider the
positions to be deterministic. In particular, the setting is not random.

We start with a performance bound for the graph distance method and then
establish minimax lower bound. Similar results are available in [6, 9, 28], among
other places, and we only provide a proof for completeness, and also to pave the
way to the more sophisticated Theorem 3.

Theorem 1. Consider a set of points x1, . . . , xn that satisfy Λ(x1, . . . , xn) ≤ ε.

Assume that φ(d) = I{d ≤ r} for some r > 0, and define d̂ij = rδij. If the
connectivity radius r is sufficiently larger than the density of the point set ε,
specifically if ε ≤ r/4, then

0 ≤ d̂ij − dij ≤ 4(ε/r)dij + r, ∀i, j ∈ [n],

which in particular implies that

⎡
⎣ 1(

n
2

) ∑
i<j

(d̂ij − dij)
2

⎤
⎦
1/2

≤ 4(ε/r)ρ+ r,

where ρ is the diameter of {x1, . . . , xn}.

In the statement, d̂ is not a true estimator in general as it relies on knowledge
of r, which may not be available, nor be estimable, if the link function is un-
known. Nevertheless, the result says that, up to that scale parameter, the graph
distances achieve a nontrivial level of accuracy. Compare with [28, Th 2.5], which
in the context of points on a Euclidean space as considered here says that, in
a stochastic setting where the points are generated iid from some distribution
supported on a convex set, maxij(d̂ij − dij) is bounded by r in the limit where
n → ∞ while r remains fixed.

For a numerical example, see Figure 1. In Figure 2 we confirm numerically
that the method is biased when the underlying domain from which the positions
are sampled is not convex. That said, the method is robust to mild violations of
the convex constraint, as shown in Figure 3, where the positions correspond to
n = 3000 US cities.2 (Computations were done in R, with the graph distances
computed using the igraph package, to which Classical Scaling was applied,
followed by a procrustes alignment and scaling using the package vegan.)

2These were sampled at random from the dataset available at simplemaps.com/data/

us-cities.

simplemaps.com/data/us-cities
simplemaps.com/data/us-cities
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Fig 1. A numerical example illustrating the setting of Theorem 1. Here n0 = 3000 po-
sitions were sampled uniformly at random from Ω0 := [0, 2] × [0, 1], n1 = 1000 from
Ω1 := [0.25, 0.75] × [0.25, 0.75], and n2 = 1000 from Ω2 := [1.25, 1.5] × [0, 1], for a total
of n = 5000 positions.

Fig 2. A numerical example illustrating the setting of Theorem 1 showing that the convexity
constraint is indeed required for the graph distance method to be unbiased. Here n = 5000
positions were sampled uniformly at random from Ω := [0, 2]× [0, 1] \ [0.5, 1.5]× [0.25, 0.75].

Remark 1. If we apply Classical Scaling to d̂, we obtain an embedding with
arbitrary scaling and rigid positioning, which are not recoverable when r is
unknown. Nevertheless, if we apply the perturbation bound recently established
in [5, Cor 2], the recovery of the latent positions is of order at most O(ε/r+ r).



On the estimation of latent distances using graph distances 729

Fig 3. A numerical example illustrating the setting of Theorem 1. The latent positions are
located at the coordinates of n = 3000 US cities and the connectivity radius varies (in degrees).

It turns out that the graph distance method comes close to achieving the
best possible performance (understood in a minimax sense) in this particularly
simple setting. Indeed, we are able to establish the following general lower bound
that applies to any method.

Theorem 2. Assume that φ(d) = I{d ≤ r} with r > 0 known. Then there
is a numeric constant c0 > 0 with the property that, for any ε > 0 and any
estimator3 d̂, there is a point set x1, . . . , xn such that Λ(x1, . . . , xn) ≤ ε and,
for at least half of the pairs i �= j,

|d̂ij − dij | ≥ c0

( ε

r ∨ ε
dij + r

)
, (6)

and also, for another numeric constant c1 > 0,

⎡
⎣ 1(

n
2

) ∑
i<j

(d̂ij − dij)
2

⎤
⎦
1/2

≥ c1

( ε

r ∨ ε
ρ+ r

)
,

where ρ is the diameter of the point set.

Thus, in the strictest sense, the graph distance method is, for this particular
link function, minimax optimal (in order of magnitude). It turns out that the
point configurations that we consider in the proof are all embedded on the real

3An estimator here is simply a function on the set of n-by-n symmetric binary matrices

with values in R
n(n−1)/2
+ .
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line and thus, in principle, can be embedded in any Euclidean space. It is also
the case that, for these particular configurations, it does not help if we know
that x1 < · · · < xn.

We speculate that a better error rate can be achieved (in probability) under a
stochastic model, for example, when x1, . . . , xn are drawn iid from the uniform
distribution on some ‘nice’ domain of a Euclidean space. On the other hand,
we anticipate that our performance analysis of the graph distance method is
essentially tight even then. To achieve a better performance, more sophisticated
methods need to be considered. Methods using neighbors-of-neighbors infor-
mation [28, 31] are particularly compelling, but in principle require knowing
(or perhaps estimating) the underlying density if it is unknown. We probe this
question a little further in Section 4.3 with some simple but promising numer-
ical experiments. (All we know about this approach is that it can lead to a
2-approximation [28].)

3. General setting

Beyond the setting of a neighborhood graph considered in Section 2, the graph
distance method, in fact, performs similarly when the link function is discon-
tinuous at the edge of its support, meaning when it drops abruptly to 0. A case
in point is when φ(d) = pI{d ≤ r} for p > 0 constant, which corresponds to a
random geometric graph with its edges independently deleted with probability
1− p. See Figure 4 for a numerical example illustrating this particular case.

More generally, we establish the performance of the graph distance method
when the link function is compactly supported. The bound we obtain is in
terms of how fast the function approaches 0 at the edge of its support. Note
that, unlike the setting of a neighborhood graph, the model is truly random
when the link function is not an indicator function, so that the statement below
is in probability.

Theorem 3. Assume that φ has support [0, r], for some r > 0, and define d̂ij =
rδij. Assume that, for some C0 > 0 and α ≥ 0, φ(d) ≥ C0(1− d/r)α for all d ∈
[0, r]. Then there are C1, C2 > 0 depending only on (α,C0) such that, whenever
r/ε ≥ C1(logn)

1+α, for any points x1, . . . , xn that satisfy Λ(x1, . . . , xn) ≤ ε,
with probability at least 1− 1/n,

0 ≤ d̂ij − dij ≤ C2

[
(ε/r)

1
1+α dij + r

]
, ∀i �= j, (7)

which in particular implies that

⎡
⎣ 1(

n
2

) ∑
i<j

(d̂ij − dij)
2

⎤
⎦
1/2

≤ C2

[
(ε/r)

1
1+α ρ+ r

]
,

where ρ is the diameter of {x1, . . . , xn}.
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Fig 4. Same setting as in Figure 3. Here we set r = 5 and vary p. In fact, to ease the
comparison, we coupled the different adjacency matrices in the sense that the (p = 0.2)-
matrix was built by erasing edges from the (p = 0.5)-matrix independently with probability
0.2/0.5 = 0.4.

Although we believe our performance analysis in (7) to be tight, we do not
know whether it is minimax optimal in any way.

For the graph distance, we expect it to be less accurate the slower the link
function φ approaches 0. This is borne out in some numerical experiments that
we performed. In those experiments, n = 5000 points were drawn uniformly at
random from [0, 1]2 considered as a torus to avoid boundary effects. (Clearly, our
results apply in this setting as well.) For each α ∈ {0, 0.1, . . . , 0.9, 1, 2, 3, 4, 5},
we computed a realization of the adjacency matrix with link function

φα(d) := cα
[
1 ∧ (2− 2d/r)α+

]
, cα :=

1

2

α2 + 3α+ 2

α2 + 5α+ 8
,

chosen so that P(Wij = 1) is the same regardless of α as long as r ≤ 0.5. In our
experiments, we chose r = 0.1. This was repeated 100 times. The results are
presented in Figure 5, where

relative error :=

⎡
⎣∑

i<j

(d̂ij − dij)
2/

∑
i<j

d2ij

⎤
⎦
1/2

. (8)

4. Discussion

The method based on graph distances suffers from a number of serious limita-
tions:
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Fig 5. Here n = 5000 points were drawn uniformly at random from the 2D unit torus. The
radius was set at r = 0.1 and the link function varied with α as specified in (8). The median
relative error is over 100 repeats. The density ε set at 0.025, as determined by simulation.

1. The positions need to span a convex set, although the method is robust
to mild violations of this constraint as exemplified in Figure 3.

2. Even in the most favorable setting of Section 2, the relative error is still of
order r, as established in (7). This is clearly tight for the graph distance
method, and although it matches the lower bound established in Theo-
rem 2, this bias could potentially be avoided when the positions are nicely
spread out, for example, as a random sample from some nice distribution
is expected to be.

3. The link function needs to be compactly supported. Indeed, the method
can be grossly inaccurate in the presence of long edges, as in the interesting
case where the link function is of the form

φ(d) = pI{d ≤ r}+ qI{d > r}, (9)

where 0 < q < p ≤ 1, as considered in [28].

We address each of these three issues in what follows.

4.1. Localization

A possible approach to addressing Issue 1 is to operate locally. This is well-
understood and is what lead Shang and Ruml [34] to suggest MDS-MAP(P),
which effectively localizes MDS-MAP [35]. (As we discussed earlier, the latter
is essentially a graph-distance method and thus bound by the convexity con-
straint.) More recent methods for graph drawing based on ‘synchronization’ also
operate locally [12, 13].

Experimentally, this strategy works well. See Figure 6 for a numerical exam-
ple, which takes place in the context of the rectangle with a hole of Figure 2.
We adopted a simple approach: we kept the graph distances that were below
a threshold, leaving the other ones unspecified, and then applied a method for
multidimensional scaling with missing values, specifically SMACOF [14] (ini-
tialized with the output of the graph distance method).
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Fig 6. Same setting as in Figure 2.

Fig 7. Here n = 2000 positions were sampled uniformly at random from Ω := [0, 2] × [0, 1].
For all i �= j, δij ∈ {1, 2, 3, 4, 5}, so that the graph distances are rather discrete, yet the
embedding computed by classical multidimensional scaling is surprisingly accurate.

4.2. Regularization

Regarding Issue 2, in numerical experiments we have found that the graph dis-
tances, although grossly inaccurate, are nevertheless useful for embedding the
points using (classical) multidimensional scaling. Thus, if one is truly interested
in estimating the Euclidean distances, one may use graph distances as rough
proxies for the underlying distances, apply multidimensional scaling, and then
compute the distances between the embedded points. For a numerical illustra-
tion, see Figure 7. This phenomenon remains surprising to us and we do not
have a good understanding of the situation.

4.3. Number of common neighbors

A possible approach to addressing Issue 3, as well as Issue 2, is to work with the
number of common neighbors, which provides an avenue to ‘super-resolution’
in a way, at least when the positions are sampled iid from a known distribution
such as the uniform distribution on a domain (known and convex). By this we
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mean that, say in the simple setting of Section 2, although the adjacency matrix
only tells whether two positions are within distance r, it is possible to gather all
this information to refine this assessment. Similarly, in the setting where (9) is
the link function, it is possible to tell whether two positions are nearby or not.
This sort of concentration is well-known to the expert and seems to be at the
foundation of spectral methods (see, e.g., [39, Prop 4.2]). We refer the reader to
[28, 31], where such an approach is considered in greater detail.

5. Proofs

5.1. Proof of Theorem 1

Fix i, j ∈ [n] distinct.
Let m := �dij/(r − 2ε)� and note that m(r − 2ε) ≤ dij ≤ (m + 1)(r − 2ε).

For s ∈ {0, . . . ,m + 1}, let zs = xi +
s

m+1 (xj − xi). We have z0 = xi and
zm+1 = xj , and z0, z1, . . . , zm+1 are on the line joining xi and xj and satisfy
‖zs−zs+1‖ ≤ r−2ε for all s. Let xks be such that ‖zs−xks‖ ≤ ε, with xk0 = xi

and xkm+1 = xj . Note that xks is well-defined since zs belongs to the convex hull
of {x1, . . . , xn} and we have assumed that Λ(x1, . . . , xn) ≤ ε. By the triangle
inequality, for all s ∈ {0, . . . ,m},

‖xks −xks+1‖ ≤ ‖xks − zs‖+‖zs− zs+1‖+‖zs+1−xks+1‖ ≤ ε+(r−2ε)+ ε ≤ r.

Hence, (xk0 , xk1 , . . . , xkm+1) forms a path in the graph, and as a consequence,
δij ≤ m+ 1. In turn, this implies that

d̂ij = rδij ≤ rm+ r ≤ r
dij

r − 2ε
+ r ≤ dij + 4(ε/r)dij + r,

using the fact that ε ≤ r/4.
Resetting the notation, let k0 = i, k1, . . . , k� = j denote a shortest path

joining i and j, so that � = δij . By the triangle inequality,

dij = ‖xk0 − xk�
‖ ≤

�−1∑
s=0

‖xks − xks+1‖ ≤ �r = rδij = d̂ij , (10)

using the fact that ‖xks − xks+1‖ ≤ r for all s.

5.2. Proof of Theorem 2

First term on the RHS of (6) We construct two point configurations that
yield the same adjacency matrix and then measure the largest difference between
the corresponding sets of pairwise distances. Assume that r ≤ 1/2 (without loss
of generality) and that m := r(n − 1) is an integer for convenience. We define
two configurations of points, both in Ω := [0, 1] (so that v = 1 here).
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• Configuration 1. In this configuration,

xi =
i− 1

n− 1
, i ∈ [n].

Note that ΛΩ(x1, . . . , xn) = 1/(2n− 2).

• Configuration 2. In this configuration,

xi =
(i− 1)(1− η(i− 1))

(n− 1)(1− η(n− 1))
, i ∈ [n].

for some η > 0 chosen small later on. When η ≤ 1/(2n − 3), which we
assume, xi is increasing with x1 = 0 and xn = 1. Note that

ΛΩ(x1, . . . , xn) =
1− η

(2n− 2)(1− η(n− 1))
.

The two configurations coincide when η = 0, but we will choose η > 0 in what
follows. Under Configuration 1, the adjacency matrix W is given by Wij =
I{|i − j| ≤ m}. For the design matrix to be the same under Configuration 2,
it suffices that x1 have (exactly) m neighbors (to the right) and that xn have
(exactly) m neighbors (to the left); this is because i �→ xi − xi−1 is decreasing
in this configuration. These two conditions correspond to four equations, given
by

xm+1 − x1 ≤ r, xm+2 − x1 > r, |xn − xn−m| ≤ r, xn − xn−m−1 > r.

We need only consider the first and fourth as they imply the other two. After
some simplifications, we see that the first one holds when r ≤ 1, while the fourth
holds when r ≤ 1−2/(n−1) and η ≤ 1/(2n−3+m(n−m−3)). Since r ≤ 1/2, r ≤
1−2/(n−1) when n ≥ 5, and we choose η = 1/(2n+m(n−m)) for example. Then
ΛΩ(x1, . . . , xn) ∼ 1/2n in Configuration 2 (same as in Configuration 1). We
choose n = nε just large enough that ΛΩ(x1, . . . , xn) ≤ ε in both configurations.
In particular, ε ∼ 1/nε as ε → 0. Since the result only needs to be proved for ε
small, we may take n as large as we need.

Now that the two designs have the same adjacency matrix, we cannot dis-
tinguish them with the available information. It therefore suffices to look at the
difference between the pairwise distances. Let d

(k)
ij denote the distance between

xi and xj in Configuration k. For i < j, we have

d
(1)
ij =

j − i

n− 1
, d

(2)
ij =

j − i

n− 1

1− η(j + i− 2)

1− η(n− 1)
.

In particular,
1

2
d
(1)
ij ≤ d

(2)
ij ≤ 2d

(1)
ij ,

by the fact that ηn ≤ 1/2. Also,

d
(1)
ij − d

(2)
ij =

j − i

n− 1

η(i+ j − n− 1)

1− η(n− 1)
,
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which leads to

|d(1)ij − d
(2)
ij | = d

(1)
ij

η|i+ j − n− 1|
1− η(n− 1)

≥ d
(1)
ij

ηn

1− η(n− 1)

|i+ j − n− 1|
n

≥ C(d
(1)
ij ∨ d

(2)
ij )

ε

ε ∨ r

|i+ j − n− 1|
n

,

for some universal constant C > 0, using the fact that ηn ≤ 1/2 and ηn �
1/(1 ∨ rn) � ε/(ε ∨ r), the latter because ε � 1/n in our construction. Since
|i+ j − n− 1| ≥ n/10 for most pairs of indices i < j, the following is also true

|d(1)ij − d
(2)
ij | ≥ (C/10)

ε

r ∨ ε
(d

(1)
ij ∨ d

(2)
ij ).

To conclude, since the two configurations have the same adjacency matrix, they
are indistinguishable solely based on that information, and so it must be that
for any estimator d̂, for most pairs i < j,

|d̂ij − dij | ≥ |d̂ij − d
(1)
ij | ∨ |d̂ij − d

(2)
ij |

≥ 1

2
|d(1)ij − d

(2)
ij |

≥ (C/20)
ε

r ∨ ε
dij ,

where dij denotes d
(k)
ij if the true configuration is Configuration k.

Second term on the RHS of (6) We construct again two point configura-
tions, also on the real line, that have the same adjacency matrix. We assume
that ε ≤ r for otherwise the first term in the RHS of (6) is of order � 1 for most
pairs of indices. In fact, we assume that q = r/ε is an integer for simplicity.

To any pattern y0 = 0 < y1 < · · · < ym = r with yj − yj−1 ≤ 2ε for all j,
associate the point set x1 < · · · < xn where xi = yimodm + �i/m�r. Note that
the x point set is built by repeating the y pattern. As can be readily seen, all
these point sets have the same adjacency matrix Wij = I{|i− j| ≤ m} and have
Λ bounded by ε. We now consider two particular cases. Take m even so that
m = 2q for some integer q > 0, and define the following configurations.

• Configuration 3. Here x1, . . . , xn is defined based on yj = jε for j =
1, . . . , q − 1 and yj = (q − 1)ε + (j − q + 1)η for j = q, . . . , 2q, where
η := ε/(q + 1).

• Configuration 4. Here the configuration is obtained by reversing the order
of the previous one, namely, x1, . . . , xn is based on yj = jη for j = 1, . . . , q
and yj = (j − q)ε for j = q + 1, . . . , 2q.

Let d
(k)
ij denote the distance between xi and xj in Configuration k. Letting

bi := imod 2q, we have

d
(3)
ij = (2q − bi)η + (q − 1− bi)+(ε− η)
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+ bjη + bj ∧ (q − 1)(ε− η) + r(�j/2q� − �i/2q� − 1),

d
(4)
ij = (2q − bi)η + (2q − bi) ∧ (q − 1)(ε− η)

+ bjη + (bj − q − 1)+(ε− η) + r(�j/2q� − �i/2q� − 1),

resulting in

|d(3)ij − d
(4)
ij |

= (ε− η) ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|bj − bi| if bi, bj ≤ q − 1 or bi, bj ≥ q + 1 or bi = bj = q,

|2q − bi − bj | if bi ≤ q − 1, bj ≥ q + 1 or bi ≥ q + 1, bj ≤ q − 1,

|bj − bi − 1| if bi = q, bj ≥ q + 1 or bi ≤ q − 1, bj = q,

|bj − bi + 1| if bi = q, bj ≤ q − 1 or bi ≥ q + 1, bj = q,

where for a real a, a+ := max(0, a). We have ε−η = qε/(q+1) = r/(q+1), and
elementary considerations confirm that for most i < j, the factor defined in the
curly bracket above is ≥ C(q + 1) for some universal constant C > 0. Hence,

|d(3)ij − d
(4)
ij | ≥ Cr for most pairs of indices, and this then implies as before that

for any estimator d̂, for most pairs i < j,

|d̂ij − dij | ≥ (C/2)r,

where dij denotes d
(k)
ij if the true configuration is Configuration k.

5.3. Proof of Theorem 3

In the following, C0, C1, C2 refer to the constants appearing in the statement
of Theorem 3, while c1, c2, . . . denote positive constants that only depend on
(α,C0). Since the result only needs to be proved for large r/ε, we will take this
quantity as large as needed. In what follows, we connect each node in the graph
to itself. This is only for convenience and has no impact on the validity of the
resulting arguments.

As before in (10), we have d̂ij ≥ dij for all i �= j. Recall the definition of
pij ≡ p(i, j) in (3). Let p0 = φ(r/2) > 0 and note that p0 ≥ C0(1/2)

α.

Special case Suppose that dkl ≤ r/2 for all k �= l. In that case, for all i �= j,
pij = φ(dij) ≥ φ(r/2) = p0. For (i, j, k) distinct, (xi, xk, xj) forms a path in the
graph if and only if WikWkj = 1, which happens with probability pikpkj ≥ p20.
Therefore, by independence,

P(δij > 2) ≤ P(WikWkj = 0, ∀k /∈ {i, j}) ≤ (p20)
n−2.

Therefore, by the union bound, with probability at least 1 − n2p2n−4
0 ≥ 1 −

n2 exp(−c1n), we have δij ≤ 2, implying d̂ij ≤ 2r, for all i �= j.

Henceforth, we assume that

max
i �=j

dij > r/2. (11)
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Claim 1. By choosing C1 large enough, the following event happens with prob-
ability at least 1− 1/n2,

A1 :=
{
d̂ij ≤ 9dij + 2r, for all i, j ∈ [n]

}
.

Take i, j such that dij ≤ r/4. We first note that there is j∗ such that d(i, j∗) >
r/4, for otherwise, for all k, l ∈ [n], dkl ≤ dki + dil ≤ r/4 + r/4 = r/2, which
would contradict our assumption (11).

Define

zs = xi + s
ε(xj∗ − xi)

d(j∗, i)
, s ∈ [m],

where m := �(r/4−ε)/ε�. By construction each zs is on the line segment joining
xi and xj∗ , and so belongs to the convex hull of x1, . . . , xn; hence, by the fact
that Λ(x1, . . . , xn) ≤ ε, there is is ∈ [n] be such that ‖xis − zs‖ ≤ ε. By the
triangle inequality,

d(i, is) = ‖xi−xis‖ ≤ ‖xi−zs‖+‖zs−xis‖ ≤ sε+ε ≤ mε+ε ≤ (r/4−ε)+ε = r/4,

and

d(is, j) ≤ d(is, i) + d(i, j) ≤ r/4 + r/4 = r/2.

Therefore, for each s ∈ [m], (xi, xis , xj) forms a path with probability at least
p20. By independence, therefore, there is such an s ∈ [m] with probability at
least 1− (1− p20)

m.
With the union bound and the fact that m ≥ r/5ε when r/ε is large enough,

we may conclude that, if C1 is chosen large enough, the event

A2 :=
{
d̂ij ≤ 2r for all i �= j such that dij ≤ r/4

}
,

has probability at least 1− 1/n2. Indeed,

P(Ac
2) ≤ n2(1− p20)

m ≤ n2 exp(−c2(r/5ε)) ≤ 1/n2,

eventually, when r/ε ≥ C1(logn)
1+α with C1 large enough.

Next, we prove that A2 implies A1, which will suffice to establish the claim.
For this, we consider the remaining case where i, j are such that dij > r/4.
Define z0 = xi and

zs = xi + s
ε(xj − xi)

d(j, i)
, for s ∈ [m],

where this time m := �dij/ε�. As before, for each s ∈ [m], there is is ∈ [n]
such that ‖xis − zs‖ ≤ ε. We let i0 = i and im = j. The latter is possible since
‖zm − xj‖ ≤ ε.

We have

d(is, is′) = ‖xis − xis′ ‖ ≤ ‖zs − zs′‖+ 2ε = ε|s− s′|+ 2ε, (12)
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so that, under A2,

d(is, is′) ≤ r/4 when |s− s′| ≤ h := �r/4ε− 2�,

implying that d̂(is, is′) ≤ 2r when |s− s′| ≤ h. Thus, by the triangle inequality,
under A2,

d̂(i, j) =

�m/h�−1∑
k=0

d̂(ikh, i(k+1)h) + d̂(i�m/h�h, j) ≤ �m/h�2r + d̂(i�m/h�h, j).

By the triangle inequality,

d(i�m/h�h, j) ≤ ‖z�m/h�h − xj‖+ ε =
∣∣dij − �m/h�hε

∣∣+ ε,

and it is not hard to verify that 0 ≤ dij − �m/h�hε ≤ (h + 1)ε, so that

d(i�m/h�h, j) ≤ (h + 2)ε ≤ r/4, implying under A2 that d̂(i�m/h�h, j) ≤ 2r.
Hence, under A2,

d̂(i, j) ≤ �m/h�2r + 2r ≤
(
(dij/ε)/(r/4ε− 3) + 1

)
2r ≤ 9dij + 2r,

when ε/r is small enough.
We have thus established Claim 1.
Claim 1, of course, falls quite short of what is stated in the theorem, but we

use it in the remainder of the proof. That said, the claim takes care of all pairs
(i, j) such that dij ≤ 2r. Thus, for the remainder of the proof, we only need
focus on i, j such that dij > 2r. Define m and z0, . . . , zm as before, and also the
corresponding is ∈ [n].

As before, (12) implies that

d(is, is′) ≤ r when |s− s′| ≤ h := �r/ε− 2�,

and in particular
d(is, j) ≤ r when s ≥ m− h.

(Note that we changed the definition of h.) Similarly, we have

d(is, j) = ‖xis − xj‖ ≥ ‖zs − zm‖ − ε = ε|s− s′| − ε,

so that
d(is, j) > r when s ≤ m− h+ 2.

For each 0 ≤ s ≤ m, define the random variable Hs by

Hs = max
{
0 ≤ k ≤ h ∧ (m− s) : W (is, is+k) = 1

}
.

This is a maximum since we have set W (k, k) = 1 for all ∈ [n]. Note that
H0, . . . , Hm are jointly independent random variables with support included in
{0, . . . , h}. Set S0 = 0, and for t ≥ 1, define recursively St = St−1 + HSt−1 .
Importantly, if HSt = 0, then St′ = St for all t

′ ≥ t. Based on {St}, define

T = inf{t : St > m− h},
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with the convention that inf ∅ = ∞.
Our first objective is to bound T in probability. Given t ≥ 1, we have

P(T > t) = P(St ≤ m− h)

= P(St ≤ m− h,HSt−1 = 0) + P(St ≤ m− h,HSt−1 > 0).

On the one hand,

P(St ≤ m− h,HSt−1 = 0) = P(St−1 ≤ m− h,HSt−1 = 0)

≤ P
(
∃ 0 ≤ s ≤ m− h : Hs = 0

)
≤ m max

0≤s≤m−h
P(Hs = 0).

On the other hand, we note that, when HSt−1 > 0, we necessarily have St ≥ t,
so that

P(St ≤ m− h,HSt−1 > 0) ≤ P(t ≤ St ≤ m− h).

Thus,
P(T > t) ≤ m max

s∈[m−h]
P(Hs = 0) + P(t ≤ St ≤ m− h). (13)

In what follows, we bound each term in the right hand side of (13).

Claim 2.1. For any s ∈ [m− h],

P(Hs ≤ a) ≤ P(H̄ ≤ a), a ≥ 0,

where H̄ is a random variable supported on {0, 1, . . . , h} with distribution func-
tion

P(H̄ ≤ a) =

h−a−1∏
k=0

(
1− φ(ε(h− k) + 2ε)

)
, 0 ≤ a ≤ h− 1.

Indeed, by independence,

P(Hs ≤ a) = P
(
W (is, is+a+1) = · · · = W (is, is+h) = 0

)
=

h−a−1∏
k=0

(1− p(is, is+h−k)) ,

and by the fact that φ is non-increasing and (12),

p(is, is′) ≥ φ(ε|s− s′|+ 2ε).

Claim 2.2. We have

P(H̄ ≤ a) ≤ exp
(
−c3(ε/r)

α(r/ε− 3− a)1+α
)
, 0 ≤ a ≤ h− 1. (14)

For any 0 ≤ a ≤ h− 1, we have

P(H̄ ≤ a) ≤ exp

(
−

h−a−1∑
k=0

φ(ε(h− k) + 2ε)

)
.
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Since φ is non-increasing, and using the lower bound we assume in the statement
of the theorem,

h−a−1∑
k=0

φ(ε(h− k) + 2ε) ≥
h−a−1∑
k=0

∫ h−k+1

h−k

φ(εy + 2ε)dy

=

∫ h+1

a+1

φ(εy + 2ε)dy

≥
∫ h+1

a+1

C0

(
1− εy + 2ε

r

)α

+

dy

= C0(ε/r)
α 1

1 + α
(r/ε− 3− a)

1+α
.

This proves (14).
With Claims 2.1 and 2.2, the first term on the right-hand side of (13) is

bounded by

mP(H̄ = 0) ≤ m exp
(
−c3(ε/r)

α(r/ε− 3)1+α
)
≤ m exp (−c4r/ε) ,

when r/ε is large enough.

Claim 2.3. For any 1 ≤ t ≤ m− h, and any t ≤ a ≤ m− h, we have

P (t ≤ St ≤ a) ≤ P
(
H̄0 + · · ·+ H̄t−1 ≤ a

)
,

where {H̄t} are iid copies of H̄.

First, if t = 1, we have

P(1 ≤ S1 ≤ a) = P(1 ≤ H0 ≤ a) ≤ P(H0 ≤ a) ≤ P(H̄0 ≤ a).

Next, fix t ≥ 2 and suppose that the claim is true at t − 1. Since t ≤ St ≤ a
implies that t− 1 ≤ St−1 ≤ a, we have

P(t ≤ St ≤ a) = P(t ≤ St ≤ a, t− 1 ≤ St−1 ≤ a)

= P(t ≤ St−1 +HSt−1 ≤ a, t− 1 ≤ St−1 ≤ a)

=

a∑
k=t−1

P(t ≤ k +Hk ≤ a, St−1 = k)

≤
a∑

k=t−1

P(Hk ≤ a− k)P(St−1 = k)

≤
a∑

k=t−1

P(H̄k ≤ a− k)P(St−1 = k)

≤
a∑

k=t−1

P(H̄t−1 ≤ a− k)P(St−1 = k),
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where we used the fact that {St−1 = k} is independent of Hk, and also the fact
that the H̄t are iid. We may assume, and we do so, that the {H̄t} are defined
on the same probability space as the {St}, and are independent of them. Then,

a∑
k=t−1

P(H̄t−1 ≤ a− k)P(St−1 = k)

= P(St−1 + H̄t−1 ≤ a, t− 1 ≤ St−1 ≤ a)

=

h∑
k=0

P(St−1 + k ≤ a, t− 1 ≤ St−1 ≤ a, H̄t−1 = k)

=

h∑
k=0

P(t− 1 ≤ St−1 ≤ a− k)P(H̄t−1 = k)

≤
h∑

k=0

P(H̄0 + · · ·+ H̄t−2 ≤ a− k)P(H̄t−1 = k)

= P(H̄0 + · · ·+ H̄t−1 ≤ a),

where the inequality comes from the recursion hypothesis. Thus the recursion
proceeds, and the claim is proved.

Claim 2.4. There exists a constant b0 > 0 and a constant c5 > 0 such that for
any 1 ≤ t ≤ m− h and any a ≥ νb0, we have

P
(
H̄0 + · · ·+ H̄t−1 ≤ th− ta

)
≤ exp

(
−c5tν

−1a
)
,

where ν := (r/ε)α/(α+1).

Define Ū = h− H̄ and Ūt = h− H̄t. We have

P
(
H̄0 + · · ·+ H̄t−1 ≤ th− ta

)
= P

(
Ū0 + · · ·+ Ūt−1 ≥ ta

)
For any 1 ≤ u ≤ h, we have

P
(
Ū ≥ u

)
= P

(
H̄ ≤ h− u

)
≤ exp

(
−c3(ε/r)

α(u− 1)1+α
)
,

using (14) and the fact that h ≤ r/ε− 2. Hence, Ū is stochastically bounded by
1 + νY , where Y is a random variable with distribution

P(Y ≥ y) = exp(−c3y
1+α), y ≥ 0.

Let {Yt : t ≥ 1} be iid with distribution that of Y . By construction, Ū0 + · · ·+
Ūt−1 is stochastically bounded t+ ν(Y0 + · · ·+ Yt−1), implying that

P
(
H̄0 + · · ·+ H̄t−1 ≤ th− ta

)
≤ P (Y0 + · · ·Yt−1 ≥ t(a− 1)/ν) .

By Chernoff’s bound,

P(Y1 + · · ·+ Yt−1 > tb) ≤ exp(−tζ(b)), ∀b ≥ 0,
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where ζ is the rate function of Y . In particular, there is c > 0 such that ζ(b) ≥ cb
for all b ≥ b0 := E(Y ) + 1. (Note that b0 is just another constant.) Thus, for a
such that (a− 1)/ν ≥ b0,

P (Y0 + · · ·Yt−1 ≥ t(a− 1)/ν) ≤ exp(−tc(a− 1)/ν),

which together with a− 1 ≥ a/2 (when r/ε is large) proves the claim.
With Claims 2.3 and 2.4, by choosing a = h− (m− h)/t, we obtain that the

second term on the right-hand side of (13) is bounded by

exp
(
−c5tν

−1a
)
,

whenever a ≥ νb0, which happens when t ≥ (m− h)/(h− νb0). This is the case
when t ≥ t∗ := 2dij/r, which may be seen using the fact thatm−h ≤ m ≤ dij/ε,
and that h − νb0 ≥ r/ε − 3(r/ε)α/(α+1)b0 ≥ r/2ε when r/ε is large enough. In
fact, when t ≥ t∗, the corresponding a satisfies a ≥ r/ε− 3− (dij/ε)/(2dij/r) ≥
r/2ε when r/ε is large enough, so that the right-hand side of (13) is bounded
by

exp
(
−c5tν

−1(r/2ε)
)
≤ exp

(
− tc6(r/ε)

1
1+α

)
,

when t ≥ t∗.
All combined, we have

P(T > t) ≤ n exp(−c4r/ε) + exp
(
− tc6(r/ε)

1
1+α

)
, ∀t ≥ t∗,

using the fact that m ≤ n. In particular, this implies that

P(T = ∞) ≤ n exp(−c4r/ε).

Let t◦ = t∗ + (5/c5b0) log n. Let C be the probability event defined by

C = {ST > Th− t◦νb0 and T ≤ t◦} .

We have

P (Cc) = P (ST ≤ Th− t◦νb0, T ≤ t◦) + P (T > t◦)

≤ P (t◦ ≤ St◦ ≤ t◦h− t◦νb0) + P (T > t◦)

≤ exp(−c5t
◦b0) + n exp(−c4r/ε) + exp

(
− t◦c6(r/ε)

1
1+α

)
,

using in the second line the fact that St ≥ t when T ≤ t, and that St − th −
(St−1 − (t− 1)h) = HSt−1 − h ≤ 0 for all t. The application of Claim 2.4 here is
valid when t◦ ≤ m−h. This is the case eventually as t◦ = 2dij/r+(5/c5b0) log n
and m− h ≥ dij/ε− r/ε+ 1 ≥ dij/3ε, with

2dij/r + (5/c5b0) logn

dij/3ε
≤ ε/r + c7b0(ε/r) log n ≤ 1,

using the fact that dij ≥ r and our lower bound on r/ε. When C1 is large
enough, C holds with probability at least 1− 1/n4, eventually.
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A joint control on VT and T is useful because of the following. Under {T <

∞}, (i, iS1 , . . . , iST
) forms a path in the graph, so that d̂(i, iST

) ≤ Tr. We also
have

dij ≥
T∑

t=1

‖zSt − zSt−1‖ =

T∑
t=1

ε(St − St−1) = ε(ST − S0) = εST .

Thus, under C,

dij ≥ εST ≥ εhT − εb0νt
◦ ≥ rT − (3 + b0ν)εt

◦ ≥ rT − 2b0νεt
◦,

eventually, using the fact that h ≥ r/ε− 3. Furthermore,

νεt◦ = (r/ε)α/(1+α)ε(2dij/r + (5/c5b0) log n)

= 2(ε/r)1/(1+α)dij +
[
(5/c5b0)(ε/r)

1/(1+α)(log n)
]
r

≤ 2(ε/r)1/(1+α)dij + (5/c5b0)C
−1/(1+α)
1 r

≤ 2(ε/r)1/(1+α)dij + r,

when C1 is large enough. Thus, under C,

d̂(i, iST
) ≤ Tr ≤ dij + 2b0νεt

◦ ≤ dij + c8((ε/r)
1/(1+α)dij + r).

And since, as in (12),

d(iST
, j) ≤ ε(m− ST ) + ε ≤ ε(h− 3) + ε ≤ ε(r/ε− 5) + ε ≤ r.

Using the union bound over all pairs suitable (i, j), we have established the
following.

Claim 2. By choosing C1 large enough, with probability at least 1 − 1/n2,

for all i, j ∈ [n] such that dij > 2r, there is k ∈ [n] such that d̂ik ≤ dij +
c8((ε/r)

1/(1+α)dij + r) and djk ≤ r. (We denote this event by A3.)

Assume that A1∩A3 holds, which happens with probability at least 1−2/n2

based on the two claims that we have established above. In that case, let i, j, k ∈
[n] be as in the last claim. Because A1 holds, djk ≤ r implies that d̂jk ≤ 11r.
Thus, with the union bound,

d̂ij ≤ d̂ik + d̂jk ≤ dij + c8((ε/r)
1/(1+α)dij + r) + 11r,

so that

d̂ij − dij ≤ c9((ε/r)
1/(1+α)dij + r).

This proves that (7) holds for all i, j ∈ [n] such that dij > 2r.



On the estimation of latent distances using graph distances 745

References

[1] Abbe, E. (2017). Community detection and stochastic block models: recent
developments. The Journal of Machine Learning Research 18 6446–6531.
MR3827065

[2] Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2008).
Mixed membership stochastic blockmodels. The Journal of Machine Learn-
ing Research 9 1981–2014.

[3] Alamgir, M. and Von Luxburg, U. (2012). Shortest path distance in
random k-nearest neighbor graphs. In International Coference on Machine
Learning (ICML) 1251–1258.

[4] Anandkumar, A., Ge, R., Hsu, D. and Kakade, S. M. (2013). A tensor
spectral approach to learning mixed membership community models. arXiv
preprint arXiv:1302.2684. MR3231594

[5] Arias-Castro, E., Javanmard, A. and Pelletier, B. (2020). Pertur-
bation bounds for procrustes, classical scaling, and trilateration, with ap-
plications to manifold learning. Journal of Machine Learning Research 21
15–1. MR4071198

[6] Bernstein, M., De Silva, V., Langford, J. C. and Tenenbaum, J. B.

(2000). Graph approximations to geodesics on embedded manifolds Tech-
nical Report, Technical report, Department of Psychology, Stanford Uni-
versity.

[7] Borg, I. and Groenen, P. (2013). Modern multidimensional scaling: the-
ory and applications. Springer Science & Business Media. MR2158691

[8] Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete
block designs: I. The method of paired comparisons. Biometrika 39 324–
345. MR0070925

[9] Chazal, F., Guibas, L. J., Oudot, S. Y. and Skraba, P. (2013).
Persistence-based clustering in riemannian manifolds. Journal of the ACM
60 41. MR3144911

[10] Chen, L. and Buja, A. (2009). Local multidimensional scaling for nonlin-
ear dimension reduction, graph drawing, and proximity analysis. Journal
of the American Statistical Association 104 209–219. MR2504374

[11] Chen, Y. andXu, J. (2016). Statistical-computational tradeoffs in planted
problems and submatrix localization with a growing number of clusters
and submatrices. The Journal of Machine Learning Research 17 882–938.
MR3491121

[12] Cucuringu, M. (2013). ASAP: An eigenvector synchronization algorithm
for the graph realization problem. In Distance Geometry 177–195. Springer.
MR3051954

[13] Cucuringu, M., Lipman, Y. and Singer, A. (2012). Sensor network
localization by eigenvector synchronization over the Euclidean group. ACM
Transactions on Sensor Networks 8 19.

[14] de Leeuw, J. and Mair, P. (2009). Multidimensional Scaling Using Ma-
jorization: SMACOF in R. Journal of Statistical Software 31.

https://www.ams.org/mathscinet-getitem?mr=3827065
https://arxiv.org/abs/arXiv:1302.2684
https://www.ams.org/mathscinet-getitem?mr=3231594
https://www.ams.org/mathscinet-getitem?mr=4071198
https://www.ams.org/mathscinet-getitem?mr=2158691
https://www.ams.org/mathscinet-getitem?mr=0070925
https://www.ams.org/mathscinet-getitem?mr=3144911
https://www.ams.org/mathscinet-getitem?mr=2504374
https://www.ams.org/mathscinet-getitem?mr=3491121
https://www.ams.org/mathscinet-getitem?mr=3051954


746 Arias-Castro, Channarond, Pelletier, Verzelen

[15] Fligner, M. A. and Verducci, J. S. (1993). Probability models and
statistical analyses for ranking data 80. Springer. MR1237197

[16] Hajek, B., Wu, Y. and Xu, J. (2016). Achieving exact cluster recovery
threshold via semidefinite programming. IEEE Transactions on Informa-
tion Theory 62 2788–2797. MR3493879

[17] Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent
space approaches to social network analysis. Journal of the American Sta-
tistical association 97 1090–1098. MR1951262

[18] Holland, P. W., Blackmond-Laskey, K. and Leinhardt, S.

(1983). Stochastic blockmodels: First steps. Social Networks 5 109–137.
MR0718088

[19] Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis. Psychometrika 29 1–27. MR0169712

[20] Kruskal, J. B. and Seery, J. B. (1980). Designing network diagrams.
In Conference on Social Graphics 22–50.

[21] Lei, J. and Rinaldo, A. (2015). Consistency of spectral clustering in
stochastic block models. The Annals of Statistics 43 215–237. MR3285605

[22] Liben-Nowell, D. and Kleinberg, J. (2003). The link-prediction prob-
lem for social networks. In Conference on Information and Knowledge Man-
agement (CIKM’03) 556–559.

[23] Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction prob-
lem for social networks. Journal of the Association for Information Science
and Technology 58 1019–1031.

[24] Luce, R. D. (2012). Individual choice behavior: A theoretical analysis.
Courier Corporation. MR0108411

[25] Marden, J. I. (1996). Analyzing and modeling rank data. CRC Press.
MR1346107

[26] Mossel, E., Neeman, J. and Sly, A. (2015). Consistency thresholds
for the planted bisection model. In ACM Symposium on the Theory of
Computing 69–75. MR3388184

[27] Pananjady, A., Mao, C., Muthukumar, V., Wainwright, M. J. and
Courtade, T. A. (2020). Worst-case vs average-case design for estimation
from fixed pairwise comparisons. The Annals of Statistics 48 1072–1097.
MR4102688

[28] Parthasarathy, S., Sivakoff, D., Tian, M. and Wang, Y. (2017).
A quest to unravel the metric structure behind perturbed networks. arXiv
preprint arXiv:1703.05475. MR3685725

[29] Penrose, M. et al. (2003). Random geometric graphs. Oxford University
Press. MR1986198

[30] Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and
the high-dimensional stochastic blockmodel. The Annals of Statistics 39
1878–1915. MR2893856

[31] Sarkar, P., Chakrabarti, D. and Moore, A. W. (2010). Theoretical
justification of popular link prediction heuristics. In International Confer-
ence on Learning Theory.

[32] Scheinerman, E. R. and Tucker, K. (2010). Modeling graphs using dot

https://www.ams.org/mathscinet-getitem?mr=1237197
https://www.ams.org/mathscinet-getitem?mr=3493879
https://www.ams.org/mathscinet-getitem?mr=1951262
https://www.ams.org/mathscinet-getitem?mr=0718088
https://www.ams.org/mathscinet-getitem?mr=0169712
https://www.ams.org/mathscinet-getitem?mr=3285605
https://www.ams.org/mathscinet-getitem?mr=0108411
https://www.ams.org/mathscinet-getitem?mr=1346107
https://www.ams.org/mathscinet-getitem?mr=3388184
https://www.ams.org/mathscinet-getitem?mr=4102688
https://arxiv.org/abs/arXiv:1703.05475
https://www.ams.org/mathscinet-getitem?mr=3685725
https://www.ams.org/mathscinet-getitem?mr=1986198
https://www.ams.org/mathscinet-getitem?mr=2893856


On the estimation of latent distances using graph distances 747

product representations. Computational Statistics 25 1–16. MR2586721
[33] Shah, N. B., Balakrishnan, S., Guntuboyina, A. and Wain-

wright, M. J. (2016). Stochastically transitive models for pairwise com-
parisons: statistical and computational issues. IEEE Transactions on In-
formation Theory 63 934–959. MR3604649

[34] Shang, Y. and Ruml, W. (2004). Improved MDS-based localization.
In INFOCOM 2004. Twenty-Third Annual Joint Conference of the IEEE
Computer and Communications Societies 4 2640–2651.

[35] Shang, Y., Ruml, W., Zhang, Y. and Fromherz, M. P. (2003). Lo-
calization from mere connectivity. In ACM International Symposium on
Mobile Ad Hoc Networking and Computing 201–212.

[36] Shepard, R. N. (1962). The analysis of proximities: Multidimensional
scaling with an unknown distance function. I. Psychometrika 27 125–140.
MR0140376

[37] Shepard, R. N. (1962). The analysis of proximities: Multidimensional
scaling with an unknown distance function. II. Psychometrika 27 219–246.
MR0173342

[38] Sussman, D. L., Tang, M., Fishkind, D. E. and Priebe, C. E.

(2012). A consistent adjacency spectral embedding for stochastic block-
model graphs. Journal of the American Statistical Association 107 1119–
1128. MR3010899

[39] Sussman, D. L., Tang, M. and Priebe, C. E. (2014). Consistent latent
position estimation and vertex classification for random dot product graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence 36 48–
57.

[40] Tang, M., Sussman, D. L. and Priebe, C. E. (2013). Universally consis-
tent vertex classification for latent positions graphs. The Annals of Statis-
tics 41 1406–1430. MR3113816

[41] Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). A global
geometric framework for nonlinear dimensionality reduction. Science 290
2319–2323.

[42] Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and
method. Psychometrika 17 401–419. MR0054219

[43] von Luxburg, U. and Alamgir, M. (2013). Density estimation from
unweighted k-nearest neighbor graphs: a roadmap. In Advances in Neural
Information Processing Systems 225–233.

[44] Yang, J. and Leskovec, J. (2013). Overlapping community detection at
scale: a nonnegative matrix factorization approach. In ACM International
Conference on Web Search and Data Mining 587–596.

[45] Young, F. W. and Hamer, R. M. E. (1987). Multidimensional scaling:
history, theory, and applications. Lawrence Erlbaum Associates, Inc.

[46] Young, S. J. and Scheinerman, E. R. (2007). Random dot product
graph models for social networks. In Algorithms and Models for the Web-
Graph 138–149. Springer. MR2504912

https://www.ams.org/mathscinet-getitem?mr=2586721
https://www.ams.org/mathscinet-getitem?mr=3604649
https://www.ams.org/mathscinet-getitem?mr=0140376
https://www.ams.org/mathscinet-getitem?mr=0173342
https://www.ams.org/mathscinet-getitem?mr=3010899
https://www.ams.org/mathscinet-getitem?mr=3113816
https://www.ams.org/mathscinet-getitem?mr=0054219
https://www.ams.org/mathscinet-getitem?mr=2504912

	Introduction
	Related work
	Our contribution
	The graph distance method

	Simple setting
	General setting
	Discussion
	Localization
	Regularization
	Number of common neighbors

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	References

