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Abstract: A stochastic search method, the so-called Adaptive Subspace
(AdaSub) method, is proposed for variable selection in high-dimensional
linear regression models. The method aims at finding the best model with
respect to a certain model selection criterion and is based on the idea of
adaptively solving low-dimensional sub-problems in order to provide a so-
lution to the original high-dimensional problem. Any of the usual �0-type
model selection criteria can be used, such as Akaike’s Information Crite-
rion (AIC), the Bayesian Information Criterion (BIC) or the Extended BIC
(EBIC), with the last being particularly suitable for high-dimensional cases.
The limiting properties of the new algorithm are analysed and it is shown
that, under certain conditions, AdaSub converges to the best model accord-
ing to the considered criterion. In a simulation study, the performance of
AdaSub is investigated in comparison to alternative methods. The effective-
ness of the proposed method is illustrated via various simulated datasets
and a high-dimensional real data example.
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1. Introduction

Rapid developments during the last decades in fields such as information tech-
nology or genetics have led to an increased collection of huge amounts of data.
Nowadays one often faces the challenging scenario, where the number of possible
explanatory variables p is large while the sample size n can be relatively small.
In this high-dimensional setting with p possibly much larger than n (abbreviated
by p � n), statistical modelling and inference is possible under the assumption
that the true underlying model is sparse. Hence, we are particularly interested
in variable selection, that is we want to identify a sparse, well-fitted model with
only a few of the many candidate explanatory variables.

Although the proposed Adaptive Subspace method can be applied in a more
general setup, in this paper we focus on variable selection in linear regression
models with a response Y and explanatory variables X1, . . . , Xp, i.e.

Yi = μ+

p∑
j=1

βjXi,j + εi, i = 1, . . . , n, (1.1)

where εi are i.i.d. random errors, εi ∼ N(0, σ2), with variance σ2 > 0, μ ∈ R is
the intercept and β = (β1, . . . , βp)

T ∈ R
p is the vector of regression coefficients.

The matrix X = (Xi,j) ∈ R
n×p is the design or data matrix with its i-th row

Xi,∗ corresponding to the i-th observation and its j-th column X∗,j to the
values of the j-th explanatory variable. Let {Xj : j ∈ P} be the set of all
possible explanatory variables, where P = {1, . . . , p} is the corresponding set of
indices. Then, for S ⊆ P , let XS ∈ R

n×|S| denote the design matrix restricted
to the columns with indices in S and let βS ∈ R

|S| denote the coefficient vector
restricted to indices in S. Furthermore let S0 = {j ∈ P : βj �= 0} be the set of
indices corresponding to the true underlying model, the so-called true active set.

As already mentioned, a usual theoretical assumption in the high-dimensional
regime is the sparsity of the true model. Thus, for the linear model (1.1), the
cardinality of S0 is assumed to be small, that is s0 = |S0| � p. The aim is
to identify the active set S0, so a variable selection method tries to “estimate”
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S0 by some subset Ŝ ⊆ {1, . . . , p}. It is desirable that a selection procedure
has the following frequentist properties: The probability P (Ŝ = S0) of selecting
the correct model should be as large as possible and the procedure should be
variable selection consistent in the sense that P (Ŝ = S0) → 1 in an asymptotic
setting where n → ∞ and (possibly) p → ∞ with some specified rate. Although
the assumption that the “truth” is linear and sparse cannot be expected to hold
in practice, it is desirable to identify the “best” linear, sparse approximation to
the “truth” in order to find an interpretable model that avoids overfitting (see
e.g. van de Geer, Bühlmann and Zhou, 2011).

Many different methods have been proposed to solve the variable selection
problem in a high-dimensional situation, including the Lasso (Tibshirani, 1996)
and its variants (see Tibshirani, 2011, for an overview), the SCAD (Fan and
Li, 2001) or Stability Selection (Meinshausen and Bühlmann, 2010). Here we
propose an alternative approach, the Adaptive Subspace (AdaSub) method,
which tackles the original high-dimensional selection problem by appropriately
splitting it into many low-dimensional sub-problems, based on a certain form of
adaptive learning.

In Section 2 a selective overview of existing high-dimensional variable selec-
tion methods is given along with a motivation for the proposed new approach.
The AdaSub algorithm is presented in Section 3. Its limiting properties are anal-
ysed in Section 4 where it is shown that, under the ordered importance property
(OIP), AdaSub converges to the best model according to the adopted criterion
(Theorem 4.1). It is further argued that, even when OIP is not satisfied, AdaSub
provides a stable thresholded model. The performance of AdaSub is investigated
through low- and high-dimensional examples in Section 5, demonstrating that
AdaSub can outperform other well-established methods in certain situations
with small sample sizes or highly correlated covariates. In Section 6, the effec-
tiveness of AdaSub is further illustrated via a very high-dimensional real data
example with p = 22,575 explanatory variables. Finally, the results along with
directions for future work are discussed in Section 7.

2. Background and motivation

Many different methods have been proposed to solve the variable selection prob-
lem in a linear model. Classical selection criteria include the Akaike Information
Criterion AIC (Akaike, 1974) aiming for optimal predictions and the Bayesian
Information Criterion BIC (Schwarz, 1978) aiming at identifying the “true” gen-
erating model. The BIC can be obtained as an approximation to a fully Bayesian
analysis with a uniform prior on the model space. Chen and Chen (2008) ar-
gue that this model prior underlying BIC is not suitable for a high-dimensional
framework where the truth is assumed to be sparse. Therefore they propose a
modified version of the BIC, called the Extended Bayesian Information Criterion
(EBIC), with an adjusted underlying prior on the model space: For a fixed addi-
tional parameter γ ∈ [0, 1] and a subset S ⊆ P let the prior of the corresponding

model be π(S) ∝
(

p
|S|

)−γ
. If γ = 1, the model prior is π(S) = 1

p+1

(
p
|S|

)−1
and
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it gives equal probability to each model size, and to each model of the same
size. The choice γ = 1 also corresponds to a default beta-binomial model prior
providing automatic multiplicity correction (see Scott and Berger, 2010). For
γ = 0, the original BIC is obtained.

Similarly to the derivation of the BIC, for a subset S ⊆ P , the EBIC with
parameter γ ∈ [0, 1] is asymptotically obtained as

EBICγ(S) = −2 log
(
fβ̂S ,μ̂,σ̂2(Y |XS)

)
+

(
log(n) + 2γ log(p)

)
|S|, (2.1)

where fβ̂S ,μ̂,σ̂2(Y |XS) denotes the maximized normal likelihood under model

(1.1) with restricted design matrix XS (Chen and Chen, 2012). According to
EBIC, the active set S0 is estimated by Ŝ = argminS EBICγ(S). It has been
shown by Chen and Chen (2008) that, under a mild asymptotic identifiability
condition, the EBIC is variable selection consistent for a linear model if p =
O(nk) for some k > 0 and γ > 1 − 1

2k , where the size of the true active set
s0 = |S0| is assumed to be fixed. The result has been extended by Foygel and
Drton (2010) and Luo and Chen (2013) to the setting of a diverging number of
relevant explanatory variables.

The identification of the best model according to an �0-type selection crite-
rion leads to combinatorial optimization problems which are very difficult to
solve in the presence of many possible explanatory variables p, since there are
2p possible models for which the criterion has to be evaluated. In fact, best
subset selection with an �0-penalty is in general NP-hard (see e.g. Huo and Ni,
2007). Different alternatives have been proposed to circumvent the costly full
enumeration approach. Clever branch-and-bound strategies (see e.g. Furnival
and Wilson, 1974; Narendra and Fukunaga, 1977) reduce the number of model
evaluations and in practice allow an exact solution up to p ≈ 40. Very recently,
a mixed integer optimization approach has been proposed by Bertsimas, King
and Mazumder (2016) which practically solves problems with n ≈ 1000 and
p ≈ 100 exactly and finds approximate solutions for n ≈ 100 and p ≈ 1000.
Methods like classical forward-stepwise selection, genetic algorithms (see e.g.
Yang and Honavar, 1998) as well as the the more recently proposed “shotgun
stochastic search” algorithm of Hans, Dobra and West (2007) and the stochastic
regrouping algorithm of Cai, Tsay and Chen (2009) try to trace good models in
a heuristic way, but there is no guarantee that one obtains the optimal solution
according to the selected criterion.

In the 90’s the focus shifted from solving discrete optimization problems to
solving continuous, convex relaxations of the original problem. Tibshirani (1996)
proposes the celebrated Lasso, which solves a convex optimization problem with
an �1-penalty on the regression coefficients and then selects those variables whose
corresponding regression coefficients are non-zero in the optimal solution. Many
modifications of the Lasso have been proposed such as the Elastic Net (Zou and
Hastie, 2005) or the Group Lasso (Yuan and Lin, 2006) and efficient algorithms
for solving the corresponding optimization problems have been developed (see
e.g. Efron et al., 2004; Friedman et al., 2007). A drawback of �1-regularization
methods like the Lasso is that, in order to be variable selection consistent,
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they typically require quite strong conditions on the design matrix X. For the
Lasso in linear regression models, it has been shown that the design matrix
X has to satisfy the restrictive “Irrepresentable Condition” to obtain variable
selection consistency (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006).
Alternative methods like SCAD (Fan and Li, 2001) – yielding a non-convex
optimization problem – or the Adaptive Lasso (Zou, 2006) provide consistent
variable selection under weaker conditions. The performance of regularization
methods such as the Lasso, the Adaptive Lasso and SCAD strongly depends
on a sensible choice of their penalty parameters which control the sparsity of
the resulting estimators. In practice, penalty parameters are often tuned for
predictive performance via cross-validation (Shao, 1993; Feng and Yu, 2019);
alternatively, information criteria such as the EBIC can also be used for tuning
parameter selection in regularization methods (Fan and Tang, 2013).

A general problem with procedures based on either �0- or �1-type criteria is
that their optimal solution is not very stable with respect to small changes in the
sample. In particular, it has been noted that the discrete nature of the �0-penalty
can lead to “overfitting” of the criterion, if the optimization is carried out among
all possible 2p models (see e.g. Breiman, 1996; Loughrey and Cunningham,
2005). Another problem of �1-type criteria is that they do not provide any
information about the uncertainty concerning the best model, per se. Further,
it is well-known that standard confidence intervals for regression coefficients
are too narrow if the data-driven variable selection is not taken into account.
Recent works in post-selection inference aim to yield valid inference after high-
dimensional variable selection with methods including the Lasso (Zhang and
Zhang, 2014; Van de Geer et al., 2014; Dezeure et al., 2015).

Meinshausen and Bühlmann (2010) propose a procedure called Stability Se-
lection which addresses the particular issue of variable selection (in)stability.
It is based on the idea of applying a given variable selection method (e.g. the
Lasso) multiple times (say L times) on subsamples of the data. At the end, one
selects those explanatory variables whose relative selection frequencies exceed
some threshold (which is chosen in a way to control the false discovery rate).
The subsampling scheme is to draw subsets Il, l ∈ {1, . . . , L}, of size

⌊
n
2

⌋
with-

out replacement from {1, . . . , n} and then repeatedly consider the model (1.1)
with observations i ∈ Il only. Even though Stability Selection has nice theoret-
ical properties and also seems to be used more and more in practice, one might
observe that in a high-dimensional situation with p � n, Stability Selection
in combination with Lasso successively applies a possibly inconsistent selection
procedure on even more severe high-dimensional problems with p ≫

⌊
n
2

⌋
.

The main idea of the proposed AdaSub method is to successively apply a
consistent selection procedure (�0-type criteria like EBIC) on data with the
original sample size n and only a few q covariates (where q � min(n, p)). So the
concept behind AdaSub can be summarized as:

“Solve a high-dimensional problem
by solving many low-dimensional sub-problems.”

Two issues naturally arise in this regime: Which low-dimensional problems
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should be solved? And how can the information from the solved low-dimensional
problems be combined in order to solve the original problem? AdaSub links the
answers to those questions using a certain form of adaptive learning: In each
iteration of the algorithm, the solutions from the already solved low-dimensional
problems are used to propose (or more precisely “sample” in a stochastic way)
a new low-dimensional problem of potentially higher relevance. The construc-
tion is based on the principle that a significant explanatory variable for the full
model space should also be identified as significant in “many” of the considered
low-dimensional problems it is involved in.

The idea of applying variable selection methods subsequently to different
model subspaces appears also in other methods like the Random Subspace
Method (Ho, 1998; Lai, Reinders and Wessels, 2006), Tournament Screening
(Chen and Chen, 2009), the stochastic regrouping algorithm (Cai, Tsay and
Chen, 2009), the Bayesian split-and-merge (SAM) approach (Song and Liang,
2015), extensions of Stability Selection (Beinrucker, Dogan and Blanchard, 2016)
and DECOrrelated feature space partitioning (Wang, Dunson and Leng, 2016).
Relevant are also the PC-simple algorithm (Bühlmann, Kalisch and Maathuis,
2010) and Tilting (Cho and Fryzlewicz, 2012), which are discussed later in Sec-
tions 4 and 5. A characteristic feature of the proposed AdaSub method is that
it makes explicit and effective use of the information learned from the subspaces
already considered by using a certain form of adaptive stochastic learning. In
particular, the inclusion probabilities of the individual variables to be selected
in the subspaces are adjusted after each iteration of AdaSub, based on their cur-
rently estimated “importance”. Therefore, the sizes of the sampled subspaces
in AdaSub are not fixed in advance but are automatically adapted during the
algorithm. In addition, the solution of the sub-problems in AdaSub does not nec-
essarily rely on relaxations of the original �0-type problem (such as the Lasso
with an �1-penalty) or on heuristic methods (such as stepwise selection meth-
ods). These features distinguish AdaSub from other subspace methods that have
been previously considered in the literature.

3. The Adaptive Subspace (AdaSub) method

3.1. Notation and assumptions

We first introduce some general notation in a setting with a criterion-based
variable selection procedure. For the full set of explanatory variables {Xj : j ∈
P} we identify a subset S ⊆ P with the linear model (1.1) where the sum on
the right hand side is restricted to the indices j ∈ S; i.e. in matrix notation the
model induced by S is given by

Y = μ+XSβS + ε , (3.1)

where Y = (Y1, . . . , Yn)
T , μ = (μ, . . . , μ)T ∈ R

n and ε = (ε1, . . . , εn)
T with

error variance σ2 > 0. We consider the model spaceM = {S ⊆ P : |S| < n−2} .
Here we exclude subsets S ⊆ P with |S| ≥ n − 2 to avoid obvious overfitting
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and non-identifiability of the regression coefficients. Given that we have observed
some data D = (X,Y ), let CD : M → R be a certain model selection criterion.
In the following we will write C ≡ CD for brevity, but one should always recall
that the function C depends on the observed data D. We aim at identifying
the best model, which is assumed to be, without loss of generality, the one that
maximizes the given criterion C.

Example 3.1. Examples for C include posterior model probabilities (within
the Bayesian setup) or the negative AIC, BIC or EBIC (within the �0-penalized
criteria framework).

(a) To be more specific, in a fully Bayesian framework, posterior model prob-
abilities π(S | D) are proportional to

C(S) = π(Y |XS , S)π(S) , S ∈ M , (3.2)

where π(S) denotes the prior probability of model S and π(Y |XS , S) the
marginal likelihood of the data under model S. Maximizing C in equation
(3.2) corresponds to the identification of the maximum-a-posteriori (MAP)
model.

(b) In the context of linear regression, (negative) �0-type information criteria
with penalty parameter λn,p > 0 can be written as

C(S) = −
(
n · log

(
‖Y −XSβ̂S‖22/n

)
+ λn,p|S|

)
, S ∈ M . (3.3)

In particular, the penalty parameter choice λn,p = 2 corresponds to the
AIC, λn,p = log(n) corresponds to the BIC and λn,p = log(n) + 2γ log(p)
with γ ∈ [0, 1] corresponds to the EBICγ (see equation (2.1)). Maximizing
C in equation (3.3) yields the best model according to the particular �0-
type selection criterion. In this work we mainly focus on �0-type selection
criteria.

We define the function

fC : P(P) → M, fC(V ) := argmax
S⊆V, S∈M

C(S) , (3.4)

where P(P) = {V ⊆ P} denotes the power set of P = {1, . . . , p}. So for a given
V ⊆ P , fC(V ) is the best model according to criterion C among all models
included in V . In the following we will assume that fC is a well-defined function
which maps any V ⊆ P to a single model fC(V ) ∈ M. In the �0-penalized
likelihood framework (see equation (3.3)) this assumption almost surely holds if
the values of the covariates are generated from an absolutely continuous distri-
bution with respect to the Lebesgue measure (Nikolova, 2013); see Remark A.9
in Section A.1 for a further discussion of this assumption. Let

S∗ := fC(P) = argmax
S∈M

C(S) (3.5)

with s∗ = |S∗| denote the best model according to criterion C which is unique
under the made assumptions. Hereafter, S∗ will be referred to as the C-optimal
model.
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Remark 3.1. The following basic properties can immediately be derived from
the definitions of the function fC and the C-optimal model S∗:

(a) It holds fC(V ) ⊆ V for all V ⊆ P.
(b) It holds fC(V ) = S∗ if and only if S∗ ⊆ V .
(c) If fC(V ) ⊆ V ′ ⊆ V with V, V ′ ⊆ P, then it holds fC(V

′) = fC(V ).

Property (b) in Remark 3.1 already hints at a strategy for the identification
of the C-optimal model S∗: one aims to identify and solve those low-dimensional
sub-problems fC(V ) with V ⊇ S∗, i.e. V should include at least all important
variables according to the criterion C (i.e. the variables in S∗), so that fC(V ) =
S∗. This property will be particularly exploited in the theoretical analysis of the
proposed AdaSub algorithm in Section 4.

Finally, in the following let N denote the set of natural numbers and N0 =
N ∪ {0} the set of non-negative integers. For a set Ω and a subset A ⊆ Ω the
indicator function of A is denoted by 1A, i.e. we have 1A(ω) = 1 if ω ∈ A, and
1A(ω) = 0 if ω ∈ Ω \A.

3.2. The algorithm

We will now describe the generic AdaSub method, given as Algorithm 1.

Algorithm 1 Adaptive Subspace (AdaSub) method

Input:

• Data D = (X,Y )

• C : M → R model selection criterion (C ≡ CD)

• Initial expected search size q ∈ (0, p)

• Learning rate K > 0

• Number of iterations T ∈ N

Algorithm:

(1) For j = 1, . . . , p initialize selection probability of variable Xj as r
(0)
j := q

p
.

(2) For t = 1, . . . , T :

(a) Draw b
(t)
j ∼ Bernoulli(r

(t−1)
j ) indep. for j ∈ P.

(b) Set V (t) = {j ∈ P : b
(t)
j = 1}.

(c) Compute S(t) = fC(V (t)).

(d) For j ∈ P update r
(t)
j =

q+K
∑ t

i=1 1
S(i) (j)

p+K
∑ t

i=1 1
V (i) (j)

.

Output (Final subset selected by AdaSub):

(i) “Best” sampled model: Ŝb = argmax{C(S(1)), . . . , C(S(T ))}

(ii) Thresholded model for some threshold ρ ∈ (0, 1): Ŝρ = {j ∈ P : r
(T )
j > ρ}

A first version of the algorithm has been presented at the 31st International
Workshop on Statistical Modelling (Staerk, Kateri and Ntzoufras, 2016). Sup-
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pose that we have observed some data D = (X,Y ) and we want to identify
the C-optimal model. As described in Section 2, the basic idea of AdaSub is to
solve many low-dimensional problems (i.e. compute fC(V ) for many subspaces
V ⊆ P with |V | relatively small) in order to obtain a solution for the given
high-dimensional problem (i.e. identify S∗ = fC(P)). AdaSub is a stochastic al-
gorithm which in each iteration t, for t = 1, . . . , T , samples a subset V (t) ⊆ P of
the set of all possible explanatory variables P = {1, . . . , p} and then computes
S(t) = fC(V

(t)). The probability that j ∈ P is included in V (t) at iteration t is

given by r
(t−1)
j . The selection probabilities r

(t)
j are automatically adapted after

each iteration t in the following way:

r
(t)
j =

q +K
∑t

i=1 1S(i)(j)

p+K
∑t

i=1 1V (i)(j)
, (3.6)

where q ∈ (0, p) and K > 0 are tuning parameters of the algorithm.

If j ∈ V (t) but j /∈ S(t) = fC(V
(t)), then r

(t)
j < r

(t−1)
j , so the selection

probability of variable Xj decreases in the next iteration. If j ∈ V (t) and also

j ∈ S(t), then r
(t)
j > r

(t−1)
j , so the selection probability increases. If j /∈ V (t),

then obviously j /∈ S(t), so the selection probability does not change in the

next iteration. Note that r
(t)
j depends on the whole history (from iteration 1 up

to iteration t) of the number of times variable Xj has been considered in the
search (j ∈ V (i)) and the number of times it has been included in the best subset

(j ∈ S(i)). Clearly we have 0 < r
(t)
j < 1 for all t = 1, . . . , T and j ∈ P . So at

each iteration t each variable Xj has positive probability r
(t)
j of being considered

in the model search (j ∈ V (t)) and also has positive probability 1 − r
(t)
j of not

being considered (j /∈ V (t)).
As the final subset selected by AdaSub one can either (i) choose the “best”

sampled model Ŝb for which C(Ŝb) = max{C(S(1)), . . . , C(S(T ))}, or (ii) con-

sider the thresholded model Ŝρ = {j ∈ P : r
(T )
j > ρ} with some threshold

ρ ∈ (0, 1). While Ŝb is obviously more likely to coincide with the C-optimal
model S∗, it can be beneficial in terms of variable selection stability to consider
the thresholded model Ŝρ instead (with ρ relatively large). A detailed relevant
discussion follows in Section 4.

Note that we implicitly assume that it is computationally feasible to compute
S(t) = fC(V

(t)) in each iteration t. In fact, if the underlying “truth” is sparse
and the criterion used enforces sparsity, |V (t)| is expected to be relatively small.
Otherwise one might use heuristic algorithms in place of a full enumeration.
Alternatively, if |V (t)| is bigger than some computational bound UC , one might
replace V (t) by a subsample of V (t) of size UC . In the case of variable selection
in linear regression with C(S) = −EBIC(S) using the fast branch-and-bound
algorithm (Lumley and Miller, 2017) one might set UC ≤ 40. However, in the fol-
lowing we will assume that the original version of AdaSub (Algorithm 1) is used.

The AdaSub method requires that we initialize three parameters: q,K and T .
Here q ∈ (0, p) is the initial expected search size, which should be relatively small
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(e.g. q = 10). The initial expected search size q reflects our prior belief about the
sparsity of the problem, i.e. q should be a first rough “estimate” of the size of the

C-optimal model. We have E
(
|V (1)|

)
=

∑p
j=1 r

(0)
j = q, so the expected search

size in the first iteration is indeed q. In the following iterations t, t ∈ {2, . . . , T},
the expected search size is automatically adapted depending on the sizes of the
previously selected models S(i), i < t; see Section A.2 of the appendix for an
illustrative example. The parameter K > 0 controls the learning rate of the

algorithm. The larger K is chosen, the faster the selection probabilities r
(t)
j of

the variables Xj are adapted. Based on our experience with numerous simulated
and real data examples, we recommend the choices K = n and q ∈ [5, 15].
A more detailed discussion of the tuning parameters is given in Section 5.3,
where we investigate the performance of AdaSub with respect to the choices of
q and K in a simulation study. The number of iterations T ∈ N can be specified
in advance. Alternatively one might impose an automatic stopping criterion
for the algorithm, but we strongly advise to inspect the output of AdaSub
by appropriate diagnostic plots and assess the convergence of the algorithm
interactively; see Section A.3 of the appendix for suggested diagnostic plots.

4. Limiting properties of AdaSub

In this section we summarize theoretical results concerning the limiting prop-
erties of AdaSub while a detailed exposition and proofs of the results can be
found in the appendix to this paper. In particular, we address the question un-
der which conditions it can be guaranteed that AdaSub “converges correctly”
against the C-optimal model S∗ = fC(P).

Definition 4.1. For a given selection problem with model selection criterion
C, the AdaSub algorithm is said to converge to the C-optimal model S∗ if and
only if for all j ∈ P we have for the selection probability of explanatory variable
Xj that

r
(t)
j

a.s.→
{
1 , if j ∈ S∗,

0 , if j /∈ S∗,
for t → ∞ . (4.1)

By definition, AdaSub converges to the C-optimal model S∗ if the selec-

tion probabilities r
(t)
j converge almost surely against one (zero) for explanatory

variables included (not included) in S∗. The C-optimal convergence of Ada-
Sub implies that, for any fixed threshold ρ ∈ (0, 1), the thresholded model

Ŝρ = {j ∈ P : r
(T )
j > ρ} will coincide with the C-optimal model S∗ if the num-

ber of iterations T of AdaSub is large enough. Note that even when AdaSub
does not converge to the C-optimal model in the sense of Definition 4.1, it is
still possible that the C-optimal model is identified by AdaSub, by considering
the “best” model Ŝb found by AdaSub after a finite number of iterations.

We now introduce the so called ordered importance property (OIP) of a given
variable selection problem with criterion C, which turns out to be a sufficient
condition for the C-optimal convergence of AdaSub.
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Definition 4.2. Given that dataset D = (X,Y ) is observed, let CD : M → R

be a selection criterion with well-defined function fC and C-optimal model S∗ =
fC(P) = {j1, . . . , js∗} of size s∗ = |S∗|. Then the selection criterion C is said to
fulfil the ordered importance property (OIP) for the sample D, if there exists a
permutation (k1, . . . , ks∗) of (j1, . . . , js∗) such that for each i = 1, . . . , s∗ − 1 we
have

ki ∈ fC(V ) for all V ⊆ P with {k1, . . . , ki} ⊆ V. (4.2)

Theorem 4.1. Given that dataset D = (X,Y ) is observed, let CD : M → R

be a selection criterion with well-defined function fC and C-optimal model S∗.
Suppose that the ordered importance property (OIP) is satisfied. Then AdaSub
converges to the C-optimal model S∗.

We briefly describe the main idea behind OIP and the proof of Theorem
4.1: OIP assumes that there exists an k1 ∈ S∗ (the “most important” variable
Xk1) such that it is always selected to be in the best subset fC(V ) for all sets

V ⊆ P with k1 ∈ V . By Theorem A.3 of the appendix we conclude that r
(t)
k1

→ 1
(almost surely). Furthermore, by OIP there exists an k2 ∈ S∗ (the “second most
important” variable Xk2) such that it is always selected to be in the best subset
fC(V ) for all sets V ⊆ P with k1, k2 ∈ V . In other words, variable Xk2 is always
selected to be in the best subset as long as variable Xk1 is also considered. By

Theorem A.3 we similarly conclude that r
(t)
k2

→ 1 (a.s.). We continue in the

same way and obtain that r
(t)
ki

→ 1 (a.s.) for each i = 1, . . . , s∗ − 1. Now by the
definition of the map fC and the C-optimal model S∗ it holds fC(V ) = S∗ for
all V ⊆ P with S∗ ⊆ V (see Remark 3.1). Thus with Theorem A.3 we conclude

that r
(t)
ks∗

→ 1 (a.s.) and that r
(t)
j → 0 (a.s.) for each j ∈ P \S∗. In the appendix

of this paper we prove the C-optimal convergence of AdaSub under a slightly
different (weaker) sufficient condition OIP’ (see Definition A.1 and Theorem
A.6). For ease of presentation here we focused on the more intuitive version of
OIP in Definition 4.2. Theorem A.6 of the appendix implies Theorem 4.1 above.

Note that OIP requires only the existence of such a permutation of the vari-
ables with indices in S∗ and not its identification or uniqueness. So in order to
guarantee that OIP holds, we do not need to know any concrete permutation,
but only that such a permutation exists. On the other hand, this condition can-
not be easily checked, since we do not know the set S∗, which AdaSub actually
tries to identify. Despite this, note that if we observe that the AdaSub algo-
rithm does not converge to the C-optimal model, i.e. if there exists j ∈ P with

r
(t)
j → r∗j , r

∗
j ∈ (0, 1) with positive probability, then we can conclude that OIP is

not satisfied. In that situation we actually might not wish to select S∗ = fC(P),
since then there is no “stable learning path” in the sense of OIP. Instead, we
propose to consider the thresholded model Ŝρ for some large threshold value
(e.g. ρ = 0.9).

Indeed, even if OIP does not hold, Corollary A.8 of the appendix implies
that the thresholded model Ŝρ will (for fixed ρ ∈ (0, 1) and T large enough)
contain at least those variables in S∗ that are included in a maximal “learning
path” in the sense of OIP. Simulation studies (Section 5) show that in most of
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the cases when OIP is not satisfied the thresholded model Ŝρ provides a sparser
and more stable solution (with less false positives) in comparison to the “best”
model Ŝb found by AdaSub and in comparison to other competitive variable
selection procedures including the Lasso, the Adaptive Lasso and the SCAD
(e.g. Figure 4); see also the examples discussed in Sections A.2 and A.3 of the
appendix. In particular, simulation results with the BIC as the selection criterion
indicate that in “unstable” situations with small sample sizes (e.g. n ∈ {40, 60},
p = 30) the thresholded model Ŝρ leads to a large reduction in the mean number

of false positives in comparison to the “best” model Ŝb found by AdaSub and
particularly in comparison to the BIC-optimal model S∗ (see Figures 2, 13 and
14). Note that in practice the threshold ρ ∈ (0, 1) should not be chosen too close

to one, since otherwise the selection probabilities r
(T )
j of “important” variables

may not have exceeded that threshold after a finite number of iterations T ∈ N.
We observe that the choice ρ = 0.9 works empirically well in combination with
a sufficiently large number of iterations T (see Sections 5 and 6).

The idea behind the ordered importance property (OIP) is connected to
the concept of partial faithfulness (PF) underlying the PC-simple algorithm
for variable selection of Bühlmann, Kalisch and Maathuis (2010). In a random
design setting, let ρ(Y,Xj | XS) denote the partial correlation between the
response Y and variable Xj given the set of variables XS := {Xk : k ∈ S} for
some subset S ⊆ P . Bühlmann, Kalisch and Maathuis (2010) show that if the
covariance matrix of (X1, . . . , Xp) is strictly positive definite and if {βj : j ∈
S0} ∼ f(b)db, where f denotes a density on a subset of R|S0| of an absolutely
continuous distribution with respect to the Lebesgue measure, then the PF
property holds almost surely with respect to the distribution generating the
non-zero regression coefficients, which implies that for each j ∈ P we have

ρ(Y,Xj | XS) �= 0 for all S ⊆ P \ {j} ⇐⇒ j ∈ S0 = {k ∈ P : βk �= 0} . (4.3)

This means that any truly important variable Xj (i.e. βj �= 0) remains “im-
portant” when conditioning on any subset S ⊆ P \ {j} (i.e. the corresponding
partial correlation is non-zero). Therefore, if PF holds, one would hope that
the criterion C, which aims at identifying S0, does also satisfy the following
analogous property (for each j ∈ P):

j ∈ fC(V ) for all V ⊆ P with j ∈ V ⇐⇒ j ∈ S∗ = fC(P) . (4.4)

In the following, equation (4.4) is referred to as the finite-sample PF property
for the criterion C. Note that OIP is significantly weaker than the finite-sample
PF property in the sense that in order to have j = ki ∈ S∗, we do not need
to have j ∈ fC(V ) for all V ⊆ P with j ∈ V , but only for each V ⊆ P with
k1, . . . , ki ∈ V . Similarly, an OIP on the population level (which is a weaker
condition than the PF property) assumes that, if j = ki ∈ S0, then it holds
ρ(Y,Xj | XS) �= 0 for all S ⊆ P \ {j} with {k1, . . . , ki−1} ⊆ S. One cannot
generally expect that the PF property (4.3) on the population level implies the
finite-sample PF property (4.4) or the weaker OIP in the given finite sample
situation. But if OIP does not hold, then this indicates that the best model S∗
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according to the criterion C is not “stable” in the sense of (4.4) and that there
does not even exist a “learning” path (k1, . . . , ks∗), such that variable Xki is
selected to be important in each “relevant experiment” in which Xk1 , . . . , Xki

are considered.
Theorem 4.1 guarantees the correct convergence of AdaSub against the C-

optimal model S∗ as the number of iterations t diverges, provided that OIP
holds for the employed criterion C on the given dataset. However, it does not
address the speed of convergence in terms of the required number of iterations
to identify the C-optimal model S∗ as well as the number of iterations needed so
that the thresholded model of AdaSub Ŝρ equals the C-optimal model S∗. The
general analytical investigation of the speed of convergence under OIP is difficult
without further assumptions regarding the particular selection properties for
variables in the C-optimal model S∗. In Remark A.10 of Section A.1 of the
appendix we provide analytical results for the speed of convergence under the
finite-sample PF property (4.4), which can be viewed as a best case scenario
where variables Xj in the C-optimal model S∗ are always selected to be in the
best sub-model fC(V ) for all possible subspaces V ⊆ P with j ∈ P . Here, we
compare via simulations the best case scenario of the finite-sample PF property
with a worst case scenario under a minimal requirement of OIP. The minimal
OIP holds if there exists a unique OIP permutation (k1, . . . , ks∗) of variables in
S∗ = {k1, . . . , ks∗} such that, for i = 1, . . . , s∗, variable Xki is only selected to
be in the best sub-model fC(V ) if {k1, . . . , ki} ⊆ V , i.e. for i = 1, . . . , s∗ it holds

ki ∈ fC(V ) ⇐⇒ {k1, . . . , ki} ⊆ V . (4.5)

This means that, under minimal OIP, variable Xki is never selected to be in the
best sub-model fC(V ) if any of the variables Xk1 , . . . , Xki−1 are not included in
the subspace V (i.e. kl /∈ V for some 1 ≤ l < i).

Figure 1 illustrates the speed of convergence of AdaSub under the best case
scenario (finite-sample PF) and the worst case scenario (minimal OIP), with
respect to the number of covariates p, the number of variables s∗ in S∗, the
initial expected search size q and the learning rate K in AdaSub. The values of
these parameters are set to p = 2000, s∗ = 3, q = 10 and K = 200; however, in
order to investigate the individual effects on the required numbers of iterations
of AdaSub, in each plot one of these parameters is varied while the remaining
ones are held constant (at the values given above). It can be observed that the
mean numbers of iterations required to first identify the C-optimal model S∗

(left side of Figure 1) tend to be smaller than the mean numbers of iterations
required so that all variables in S∗ are included in the thresholded model Ŝρ

with threshold ρ = 0.9 (right side of Figure 1), as in the second case the selection

probabilities r
(t)
j of variables Xj with j ∈ S∗ have to be adjusted multiple times

in order to exceed the threshold ρ = 0.9.
Figure 1 further shows that the mean numbers of required iterations scale

approximately linearly with the number of possible covariates p under both
scenarios of finite-sample PF and minimal OIP (compare Remark A.10). The
discrepancy between the best case (finite-sample PF) and worst case scenario
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Fig 1. Speed of convergence of AdaSub under finite-sample PF and minimal OIP assumptions
in terms of mean numbers of iterations needed so that the best AdaSub model Ŝb equals the
C-optimal model S∗ (left side) and that the thresholded model Ŝ0.9 of AdaSub contains S∗

(right side). Empirical means are based on 500 simulations.

(minimal OIP) becomes more pronounced for an increasing number of variables
s∗ in the C-optimal model S∗: while mean numbers of required iterations scale
approximately logarithmically with increasing s∗ under the finite-sample PF
assumption (compare Remark A.10), the required iterations quickly increase
(non-linearly) with s∗ under the minimal OIP assumption. Note that the min-
imal OIP is a worst case scenario; in practice, when applying AdaSub with a
criterion such as the EBIC for a given dataset, the finite-sample PF property
often holds for a subset of the variables in S∗ (see also Figure 17), while some
of the variables in S∗ may only be selected when certain other variables are
also considered at the same time in V (t). Generally, the AdaSub method is very
efficient in sparse scenarios (with small s∗); on the other hand, the method is
not primarily designed for dense settings (with large s∗), which may occur less
likely in high-dimensional situations with limited sample sizes.
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Regarding the tuning parameters of AdaSub, the required iterations are ap-
proximately inversely proportional to the initial search size q under the finite-
sample PF assumption (compare Remark A.10); a similar decline, though at a
larger level, is observed under the minimal OIP assumption. For an increasing
learning rate K the required iterations are monotonically decreasing under the
finite-sample PF assumption, with the limiting case K → ∞ yielding the fastest
convergence under finite-sample PF (compare Remark A.10, d), as in this case

for j ∈ S∗ it holds r
(t)
j ≈ 1 for t > T

(1)
j , where T

(1)
j denotes the iteration in

which variable Xj is considered (and selected) in V for the first time. However,
there is an important trade-off between small and large learning rates K under
the minimal OIP assumption, as in this situation variables in the C-optimal
model S∗ may not always be selected when they are considered in the model
search. If for example an important variable Xj with j ∈ S∗ is not selected
when it is first considered in the model search (i.e. j ∈ V (t) but j /∈ S(t)), then

r
(t)
j = q

p+K is close to zero for large K, so variable Xj will probably not be
considered in the model search for a long time.

Note that the presented results regarding the speed of convergence of Ada-
Sub, with respect to the parameters p, s∗, q and K, are based on idealized best
case (finite-sample PF) and worst case (minimal OIP) scenarios. In practice,
the realized scenario between these two extremes (and thus the speed of con-
vergence) depends also on the properties of the employed selection criterion C
as well as on the characteristics of the particular data situation, including the
sample size n, the correlation structure and the signal strength of important
covariates. In particular, it can be observed that, with increasing sample size
n, variables in the C-optimal model tend to be selected more frequently for the
different sub-problems in AdaSub, so that the finite-sample PF property is more
likely to hold for a larger number of variables in the C-optimal model S∗ (see
Figure 17 in Section A.3), leading to a possibly faster convergence of the algo-
rithm. A more detailed discussion follows in Section 5 where the performance of
AdaSub is investigated in a simulation study for different selection criteria and
for various data situations.

Finally, we would like to emphasize that we have focused on the algorithmic
convergence of AdaSub against the best model S∗ according to a given criterion
C (as the number of iterations T diverges). Based on the presented analysis,
depending on the properties of the employed selection criterion C, one may
derive specific statistical consistency results for recovering the true underlying
model S0 = {j ∈ P : βj �= 0} (as the sample size n and the number of variables
p diverge with a certain rate). We briefly indicate how such a consistency result
can be obtained in case the employed selection criterion C is the (negative)
BIC.

For this, note that optimizing a given selection criterion C inside subspaces
V ⊆ P with S0 �⊆ V corresponds to variable selection in the situation of mis-
specified models. It has been shown that the BIC is a quasi-consistent criterion
in such situations under mild regularity conditions for the classical asymptotic
setting where the number of variables p is fixed and the sample size n diverges,
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i.e. with probability tending to one, the BIC selects the model that minimizes
the Kullback-Leibler divergence to the true model (see e.g. Nishii, 1988; Lv
and Liu, 2014; Song and Liang, 2015). By using such a result for each vari-
able selection sub-problem fC(V ) = argmaxS⊆V, S∈M C(S) for all possible sub-
spaces V ⊆ P , one can deduce that AdaSub in combination with the BIC yields
a variable selection consistent procedure for the classical asymptotic setting,
provided that the OIP condition on the population level (or alternatively the
more stringent PF condition (4.3)) is satisfied; this implies that, with prob-
ability tending to one, the thresholded model Ŝρ of AdaSub equals the true
model S0 when the sample size n and the number of iterations T go to infinity
for fixed p. The detailed investigation of the variable selection consistency of
AdaSub, including high-dimensional asymptotic settings where the number of
variables p diverges with the sample size n, is an interesting topic for future
work.

5. Simulation study

We have investigated the performance of AdaSub in extensive simulation stud-
ies and here we present some representative results. The discussion is divided
into three parts: First, we examine relatively low-dimensional simulation ex-
amples where it is feasible to identify the best model according to an �0-type
criterion C, so that it can be compared to the output of AdaSub. In the second
part, we apply AdaSub on high-dimensional simulation examples and compare
its performance with different well-known methods. Finally, we investigate the
algorithmic stability of AdaSub and the effects of the choice of its tuning pa-
rameters.

The following simulation setup is used: For a given sample size n ∈ N and
a number of explanatory variables p ∈ N we simulate the design matrix X =
(Xi,j) ∈ R

n×p with i-th row Xi,∗ ∼ Np(0,Σ), where Σ ∈ R
p×p is a positive

definite correlation matrix with Σk,k = 1 for k = 1, . . . , p. Here, we consider a
Toeplitz-correlation structure, i.e. for some c ∈ (−1, 1) let Σk,l = c|k−l| for all
k �= l. Results for further correlation structures are presented in Section A.3 of
the appendix.

In particular, we examine the case of independent covariates (c = 0) and
the case of highly correlated covariates (c = 0.9). For each dataset, we select
s0 ∈ {0, . . . , 10} and S0 ⊂ P of size |S0| = s0 randomly; then for each j ∈ S0 we
independently simulate β0

j ∼ U(−2, 2) from the uniform distribution on [−2, 2],

while we set β0
j = 0 for all j /∈ S0. The response Y = (Y1, . . . , Yn)

T is then simu-

lated via Yi
ind.∼ N(Xi,∗β

0, 1), i = 1, . . . , n, where β0 = (β0
1 , . . . , β

0
p)

T . We apply
AdaSub in combination with the (negative) EBICγ as a selection criterion for
different regularization constants γ ∈ [0, 1] (recall that γ = 0 corresponds to the
usual BIC). In AdaSub we use the “leaps and bounds” algorithm implemented
in the R-package leaps (Lumley and Miller, 2017) to compute at iteration t the
best model S(t) according to EBICγ contained in V (t).
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5.1. Low-dimensional setting

It is illuminating to analyse the performance of AdaSub in a situation where we
actually can compute the best model according to the criterion used (here BIC).
We are thus able to answer the question whether AdaSub really recovers the
BIC-optimal model. In order to compute the BIC-optimal model in reasonable
computational time using the “leaps and bounds” algorithm we set p = 30.
For a given correlation structure, the sample size n is increased from 40 to 200
in steps of size 20 and for each value of n we simulate 100 different datasets
according to the simulation setup described above. In AdaSub we set q = 5,
K = n and T = 2000.

Fig 2. Low-dimensional example (p = 30) with independent covariates (c = 0): Comparison

of thresholded model Ŝ0.9 (AdaSubThres) and “best” model Ŝb (AdaSubBest) from AdaSub
with BIC-optimal model S∗ (Best Subset BIC) in terms of mean number of false positives/
false negatives, relative frequency of selecting the true model S0, relative frequency of agree-
ment between AdaSub models and S∗, Mean Squared Error (MSE) and Root Mean Squared
Prediction Error (RMSE) on independent test set with sample size 100.

Figure 2 summarizes the results of the low-dimensional simulation study in
the case of independent explanatory variables. The BIC-optimal model S∗ tends
to select many false positives for small sample sizes and to overfit the data.
On the other hand, Ŝ0.9 and Ŝb from AdaSub yield sparser models and often
reduce the number of falsely selected variables in a situation where the BIC
is too liberal. This comes at the price of a slightly increased number of false
negatives (for small n), but the overall effect of selecting a sparser model with
AdaSub is beneficial for the given situation yielding higher relative frequencies
of selecting the true model S0, smaller Mean Squared Errors (MSE) and smaller
Root Mean Squared Prediction Errors (RMSE). Although the “best” sampled
model Ŝb from AdaSub identifies the BIC-optimal model more often than the
thresholded model Ŝ0.9 from AdaSub, the choice of Ŝ0.9 is beneficial for the
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given situation. When the sample size increases, the BIC-optimal model becomes
more “stable” and the relative frequencies that the models selected by AdaSub
agree with the BIC-optimal models tend to one. We note that the tendency
of AdaSub to suggest sparser models in unstable situations is also observed in
further simulations with different correlation structures of X (see Section A.3
of the appendix).

5.2. High-dimensional setting

We now turn to a high-dimensional scenario, in which both the sample size n
and the number of explanatory variables p tend to infinity with a certain rate.
In particular, we consider the setting p = 10 × n where n increases from 40
to 200 in steps of size 20 (and thus p increases from 400 to 2000). For each
pair (n, p) we simulate 500 datasets according to the simulation setup described
above. We compare the “best” model Ŝb from AdaSub and the thresholded
model Ŝρ with ρ = 0.9 from AdaSub with different well-known methods for
high-dimensional variable selection: We consider the Lasso, Forward Stepwise
Regression, the SCAD, the Adaptive Lasso, Stability Selection with Lasso and
Tilting. For the computation of the Lasso and the Adaptive Lasso we use the R-
package glmnet (Friedman, Hastie and Tibshirani, 2010), for Stability Selection
the R-package stabs (Hofner and Hothorn, 2017), for the SCAD the R-package
ncvreg (Breheny and Huang, 2011) and for Tilting the R-package tilting

(Cho and Fryzlewicz, 2016). In AdaSub we choose the EBICγ with parameter
γ = 0.6 or γ = 1 as the criterion C; additionally we set q = 10, K = n and
T = 5000. Note that p = O(nk) with k = 1, so that we have γ > 1 − 1

2k and
thus EBICγ is a variable selection consistent criterion for the given asymptotic
setting for both choices of γ ∈ {0.6, 1}. The choice of γ in EBICγ adds flexibility
regarding the focus of the analysis (as illustrated in Figures 3 and 4): if the
main aim is variable selection with a small number of selected false positives
then the choice γ = 1 is to be preferred inducing more sparsity, while the
choice γ = 0.6 yields more liberal variable selection which can be beneficial for
predictive performance.

For comparison reasons we also choose the regularization parameter of the
Lasso, the SCAD and Forward Stepwise Regression according to EBICγ (with
γ = 0.6 or γ = 1). Instead of the usual Lasso and SCAD estimators we use
versions of the Lasso-OLS-hybrid (see also Efron et al., 2004; Belloni and Cher-
nozhukov, 2013) where we compute the EBICγ-values of all models along the
Lasso-path (and the SCAD-path, respectively) using the ordinary least-squares
(OLS) estimators and finally select the model (with corresponding OLS estima-
tor) yielding the lowest EBICγ-value. The additional tuning parameter of the
SCAD penalty is set to the default value of 3.7 (as recommended in Fan and
Li, 2001). For the Adaptive Lasso we derive the initial estimator with the usual
Lasso where the regularization parameter is chosen using 10-fold cross-validation
and compute in the second step an additional Lasso path where the regulariza-
tion parameter is chosen according to EBICγ . In Section A.3 of the appendix
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the performance of the AdaSub models is additionally compared with Lasso,
Adaptive Lasso and SCAD estimators where the final regularization parame-
ters are tuned with cross-validation instead of using the EBICγ (see Figures 18
and 19). We make use of the complementary pairs version of Stability Selection
yielding improved error bounds (Shah and Samworth, 2013). The parameters for
Stability Selection are chosen such that the expected number of type I errors is
bounded by 1 (using the per-family error rate bound), while using the threshold
0.6 and considering 100 subsamples. The final estimator for Stability Selection
is the OLS estimator for the model identified by Stability Selection.

Relevant is also the adaptive variable selection approach of Cho and Fry-
zlewicz (2012) via Tilting. Note that this approach is conceptually different
from AdaSub in the sense that it builds a sequence of nested subsets S(1) ⊂
S(2) ⊂ . . . ⊂ S(m) by gradually adding explanatory variables based on “tilted”
correlations and then selecting Ŝ = argminS(i) EBICγ(S

(i)). For the Tilting
procedure we consider the version TCS2 based on rescaling rule 2 (see Cho and
Fryzlewicz, 2012) and we always use the EBICγ with γ = 1 for final model
selection, since we observe that the choice γ = 0.6 yields unreasonably large
numbers of false positives. Due to the increasing computational demand of Tilt-
ing for larger values of p, the maximum number of selected variables is set to
10 and results are only reported for p ≤ 1200 (i.e. n ≤ 120). Our simulations
confirm the observation in Cho and Fryzlewicz (2012) that Tilting tends to out-
perform the PC-simple algorithm, thus we do not report the detailed results for
the PC-simple algorithm here.

Figure 3 summarizes the results of the high-dimensional simulation study in
the case of independent explanatory variables. For γ = 0.6, the “best” model Ŝb

from AdaSub tends to include more false positives than the thresholded model
Ŝ0.9, while the number of mean false negatives in Ŝb is only slightly reduced
for small sample sizes. Thus, in this situation with a quite liberal choice of
the selection criterion EBIC0.6, considering the thresholded model is beneficial
and yields more “stable” variable selection than the “best” model according to
the criterion identified by AdaSub. On the other hand, for γ = 1, the EBICγ

criterion enforces more sparsity and the performance of the thresholded and
“best” model from AdaSub is very similar, with slight advantages of the “best”
model yielding on average less false negatives. For γ = 0.6, the SCAD selects
too many false positives if the sample size is small. On the other hand, Stability
Selection with the Lasso tends to reduce the number of mean false positives
in comparison to a single run of the Lasso (for γ = 0.6), but at the prize of
a larger number of mean false negatives, leading to an undesirable estimative
and predictive performance. Furthermore, when the aim is the identification of
the true underlying model, Stability Selection is uniformly outperformed by the
AdaSub models when considering EBIC1 as the selection criterion in AdaSub. As
might have been expected in a situation with independent explanatory variables,
the performance of Forward Stepwise Selection is quite similar to the “best”
model identified by AdaSub. In the considered setting it is generally observed
that the AdaSub models, Forward Stepwise Selection and the Adaptive Lasso in
combination with EBIC1 tend to yield the best results with respect to variable
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Fig 3. High-dimensional example (p = 10n) with independent covariates (c = 0): Compari-
son of thresholded model (AdaSubThres) and “best” model (AdaSubBest) from AdaSub with
Stability Selection (StabSel), Forward Stepwise, Lasso, Adaptive Lasso (AdaLasso), SCAD
and Tilting in terms of mean number of false positives/ false negatives, rel. freq. of selecting
the true model, mean comp. time, MSE and RMSE.

selection, while the AdaSub models with EBIC0.6 and Tilting with EBIC1 tend
to perform best with respect to estimation and prediction.

Figure 4 summarizes the results of the high-dimensional simulation study for
a Toeplitz-correlation structure with large correlation c = 0.9. In this setting
the thresholded model from AdaSub again tends to select significantly less false
positives than the “best” model from AdaSub (particularly for γ = 0.6), but
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Fig 4. High-dimensional example (p = 10n) with Toeplitz-correlation structure (c = 0.9):
Comparison of thresholded model (AdaSubThres) and “best” model (AdaSubBest) from Ada-
Sub with Stability Selection (StabSel), Forward Stepwise, Lasso, Adaptive Lasso (AdaLasso),
SCAD and Tilting in terms of mean number of false positives/ false negatives, rel. freq. of
selecting the true model, mean comp. time, MSE and RMSE.

at the prize of missing some truly important variables (particularly for γ = 1).
It is generally observed that the AdaSub models for EBIC1 tend to yield the
best variable selection results, while the “best” model selected by AdaSub for
EBIC0.6 tends to show the best predictive performance. Note that using a more
liberal selection criterion is beneficial for prediction in the given situation with
large correlations among the explanatory variables. The Adaptive Lasso per-
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forms generally well, but the AdaSub models with EBIC1 show a significantly
better variable selection performance. Similarly as in the independence case,
although Stability Selection reduces the number of false positives in compar-
ison to the usual Lasso, it is generally outperformed by the AdaSub models.
In contrast to the independence scenario, Forward Stepwise Selection does not
perform similarly to AdaSub, but tends to include more false positives on aver-
age. Tilting seems not to be competitive for the situation of highly correlated
covariates.

The summary of the results of additional simulations can be found in Sec-
tion A3 of the appendix for this paper. All in all the performance of AdaSub
is very competitive to state-of-the-art methods like the SCAD or the Adaptive
Lasso and can lead to improved results in situations with small sample sizes or
highly correlated covariates. Additionally, AdaSub tends to outperform Stabil-
ity Selection with the Lasso in all of the situations considered. We note that
the practical computational time needed for a decent convergence behaviour of
AdaSub is generally larger in comparison to the considered competitors except
for the Tilting method. However, the computational times for AdaSub (on an In-
tel(R) Core(TM) i7-7700K, 4.2 GHz processor) are not prohibitively large with
on average less than 30 seconds in all considered settings for up to p = 2000 vari-
ables and we are convinced that the extra computational time spent for AdaSub
can pay off in many practical situations, as illustrated in this simulation study.

5.3. Sensitivity analysis

In order to illustrate the effects of the tuning parameters q (the initial ex-
pected search size) and K (the learning rate) on the performance of AdaSub,
we specifically reconsider the high-dimensional simulation setting of Section 5.2
with n = 100 (p = 1000) and n = 200 (p = 2000) for the Toeplitz correla-
tion structure with high correlation c = 0.9 and the (negative) EBIC0.6 as the
selection criterion. For both values of n, 100 datasets are simulated as before
and for each dataset AdaSub is applied ten times with T = 5000 iterations and
specific choices of q and K: For the first five runs of AdaSub K = n is fixed
while q ∈ {1, 2, 5, 10, 15} is varied; for the remaining five runs q = 10 is fixed
while K ∈ {1, 100, 200, 1000, 2000} is varied.

In this sensitivity analysis we investigate the efficiency in terms of computa-
tional time and the effectiveness with respect to optimizing the given criterion
EBIC0.6 for the ten considered choices of q and K in AdaSub. In order to

evaluate the optimization effectiveness, we proceed as follows: Let Ŝ
(i,j)
b denote

the “best” model identified by the j-th run of AdaSub for the i-th dataset,
i = 1, . . . , 100, j = 1, . . . , 10. Furthermore, let

Ŝ
(i)
b = argmin

{
EBIC0.6

(
Ŝ
(i,1)
b

)
, . . . ,EBIC0.6

(
Ŝ
(i,10)
b

)}
denote the “best” model according to EBIC0.6 among all ten runs of AdaSub

for the i-th dataset. If Ŝ
(i,j)
b = Ŝ

(i)
b then the number of iterations needed to
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identify the “best” model Ŝ
(i)
b is considered as a measure for the effectiveness of

the j-th run of AdaSub; if Ŝ
(i,j)
b �= Ŝ

(i)
b then the j-th run of AdaSub counts as a

“failure” and the required number of iterations is set to the maximum number
of iterations (T = 5000).

Fig 5. Results of AdaSub for different choices of q (K = n fixed): Boxplots of the number of
iterations needed to identify the “best” model (left) and of the computational times (right).
In this context, the “best” model refers to the model with the smallest EBIC value among
all ten runs of AdaSub for that dataset. The number of times the “best” model has not been
identified is also reported (denoted by f for “failures”; in such cases 5000 is depicted as the
required number of iterations).

Figure 5 indicates that there is a trade-off between computational efficiency
and effectiveness regarding the choice of the initial expected search size q: If
q is small (e.g. q = 1), then the algorithm needs more iterations in order to
adapt the search sizes accordingly, while a larger value of q (e.g. q = 15) results
in larger sampled sub-problems, leading to an increased computational time.
However, note that AdaSub automatically adjusts the search sizes so that the
choice of q is not crucial for the limiting behaviour of AdaSub (for a large
number of iterations). In practice, we recommend to choose the search size
q ∈ [5, 15].

Figure 6 shows that there is another trade-off regarding the choice of the
learning rate K > 0: If K is small (e.g. K = 1), then we are learning slowly
from the data in order to sample more promising low-dimensional sub-problems,
resulting in a slow convergence of the algorithm. If instead K is large (e.g.
K = 2000), the algorithm might focus too quickly on specific classes of sub-
problems and thus often a larger number of iterations is needed to identify the
“best” model. It can be argued that a sensible choice of K depends on the
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Fig 6. Results of AdaSub for different choices of K (q = 10 fixed). The description of the
illustrated boxplots is as in Figure 5.

sample size n of the considered dataset, since larger sample sizes come with
less uncertainties regarding the “best” model and a faster convergence of the
algorithm might be achieved with larger values of K. We recommend to choose
the learning rate K = n; this choice of K is also supported by the results
in Figure 6 regarding the required number of iterations to identity the “best”
models. We refer to Staerk (2018, Sections 3.4, 3.5) for additional discussions
regarding the choice of K and q.

Since AdaSub is a stochastic algorithm, it is desirable that the selected mod-
els by AdaSub do not largely vary if one repeatedly runs the algorithm for
the same dataset and the same selection criterion, but with possibly different
choices of the tuning parameters of AdaSub. In order to investigate the algorith-
mic stability of AdaSub we consider the same setting as in the high-dimensional
simulation study of Section 5.2 and rerun the AdaSub algorithm ten times with
T = 5000 iterations for a particular dataset with random choices of K and q
from a sensible range. Here, we simulate 20 different datasets for each value of
n ∈ {40, 60, . . . , 200} (with p = 10n) for both the independence and Toeplitz
correlation structure and consider again the (negative) EBICγ with γ ∈ {0.6, 1}
as the selection criterion, yielding in total 2 × 2 × 10 × 20 × 9 = 7200 dif-
ferent runs of AdaSub. For each application of AdaSub, the initial expected
search size q is randomly generated from the uniform distribution U(5, 15)
and the learning rate K is randomly generated from the uniform distribution
U(n/2, 2n).

In Figure 7 it can be seen that the average relative frequencies of model
agreement for both the thresholded and the “best” model are reasonably large
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Fig 7. Sensitivity analysis for the tuning parameters q and K, assuming independence (c = 0)
and Toeplitz (c = 0.9) correlation structures: Mean relative frequency of model agreement
and mean variance of model sizes across the ten runs of AdaSub (averaged over 20 simulated

datasets for each sample size) for the thresholded model Ŝ0.9 (AdaSubThres) and the “best”

model Ŝb (AdaSubBest) for multiple runs of AdaSub with EBICγ for γ ∈ {0.6, 1}.

across different runs of AdaSub for the same datasets (with random choices
of q and K). Furthermore, the variances of the sizes of the AdaSub models
are small, indicating that the selected models are quite similar even if they
differ between certain runs of AdaSub. Note that the algorithmic stability of
AdaSub further improves with increasing samples size n, i.e. the relative fre-
quencies of agreement tend to one and the variances of model sizes tend to
zero.

6. Real data example

In this section we consider the application of AdaSub on (ultra)-high-dimensional
real data. For comparison reasons we examine a polymerase chain reaction
(PCR) dataset which has already been analysed in Song and Liang (2015).
They demonstrate that their Bayesian split-and-merge approach (SAM) per-
forms favourably in comparison to hybrid methods like (I)SIS-lasso and (I)SIS-
SCAD, so we do not include the results of these methods here. (I)SIS-lasso and
(I)SIS-SCAD are acronyms for the combination of a screening step with (It-
erated) Sure Independence Screening (Fan and Lv, 2008) and then a selection
step of the final model with lasso and SCAD, respectively. A special intention of
this section is to show that it is computationally feasible to apply the AdaSub
method even in the situation of ultra-high-dimensional data with ten thousands
of explanatory variables and that an additional screening step is not necessarily
needed.
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We consider the preprocessed PCR data from Song and Liang (2015), avail-
able in JRSS(B) Datasets Vol. 77(5), which consists of n = 60 samples (mice)
with p = 22,575 explanatory variables (expression levels of genes). Phospho-
enolpyruvat-carboxykinase (physiological phenotype) is chosen as the response
variable. For details concerning this data example we refer to Lan et al. (2006)
and Song and Liang (2015). We first apply the AdaSub algorithm with q = 5,
K = n and T = 500,000 and choose the (negative) EBIC0.6 as the selection
criterion (computational time approximately 20 minutes).

Fig 8. AdaSub for PCR-data. Plot of the evolution of EBICγ(S(t)) along iterations (t). The

red line indicates the EBICγ-value of the thresholded model Ŝ0.9.

The evolution of the values EBIC0.6(S
(t)) along the iterations (t) is given in

Figure 8a. The criterion EBIC0.6 seems to be too liberal for the given situa-
tion resulting in high uncertainty concerning the EBIC0.6-optimal model and
(possibly) failure of the OIP condition. The thresholded model Ŝ0.9 selected by
AdaSub consists of five variables (genes), while the “best” model Ŝb consists of
ten variables (genes); see Table 1 for a summary of the results.

Table 1

Results for PCR data in terms of selected genes and mean/median CV-errors for the final

model selected by SAM as well as the “best” models (Ŝb) and thresholded models (Ŝ0.9, Ŝ6)
from AdaSub for EBIC0.6 and EBIC1.

Model Selected variables (genes) Mean CV Median CV

SAM model 1429089 s at, 1430779 at, 1432745 at, 1437871 at, 1440699 at, 1459563 x at 0.084 0.044

EBIC0.6: Ŝb 1428239 at, 1433056 at, 1437871 at, 1438937 x at, 1440505 at, 0.030 0.012
1442771 at, 1444471 at, 1445645 at, 1446035 at, 1455361 at

EBIC0.6: Ŝ0.9 1437871 at, 1438937 x at, 1442771 at, 1446035 at, 1455361 at 0.116 0.056

EBIC0.6: Ŝ6 1428239 at, 1437871 at, 1438937 x at, 1442771 at, 1446035 at, 1455361 at 0.090 0.041

EBIC1: Ŝ0.9, Ŝb 1438937 x at 0.403 0.158

In order to compare the predictive performances of the selected models we
compute the mean and median leave-one-out-cross-validation squared errors
(CV-errors) for each fixed model as described in Song and Liang (2015). Note
that the CV-errors of the final models (with variables selected based on the
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full dataset) generally tend to underestimate the true generalization errors on
independent test data (compare Ambroise and McLachlan, 2002) and only serve
for a comparison of models with the same number of selected variables. It can
be seen that the CV-errors of the thresholded model Ŝ0.9 with five genes and
the CV-errors of the “best” model Ŝb with ten genes are of the same order or
even lower than the errors of the best SAM model with five and ten explanatory
variables, respectively (compare Figure 5 in Song and Liang, 2015). In order
to compare the final model from SAM to a model with six genes selected by
AdaSub we proceed in the following way: Let g : P → P be a permutation

such that r
(T )
g(1) ≥ r

(T )
g(2) ≥ . . . ≥ r

(T )
g(p). Assuming no “ties”, for k ∈ P we de-

fine Ŝk := {j ∈ P : g−1(j) ≤ k} to be the thresholded model from AdaSub
with exactly |Ŝk| = k variables. In Table 1 it can be seen that even though the
thresholded model Ŝ6 from AdaSub with six genes is totally different from the
model selected by SAM, it has similar predictive performance.

We now apply AdaSub with q = 5, K = n and T = 50,000 and choose the
(negative) EBIC1 as a selection criterion that enforces more sparsity (comp.
time approximately 1 minute and 30 seconds). The evolution of the values
EBIC1(S

(t)) along the iterations (t) is given in Figure 8b. Now Ŝ0.9 and Ŝb coin-
cide, consisting both of only one gene (1438937 x at). Note that for the criterion
EBIC0.6 the gene 1438937 x at is also included in the thresholded model Ŝ0.9, in
the “best” model Ŝb and in the thresholded model Ŝ1 with exactly one gene se-
lected by AdaSub, whereas it is not included in the final model selected by SAM.

7. Discussion

AdaSub has been introduced in order to solve the natural �0-regularized op-
timization problem for high-dimensional variable selection. If the ordered im-
portance property (OIP) is satisfied, then AdaSub converges against the op-
timal solution of the generally NP-hard �0-regularized optimization problem.
Furthermore, AdaSub provides a stable thresholded model even when OIP is
not guaranteed to hold. It has been demonstrated through simulated and real
data examples that the performance of AdaSub is very competitive for high-di-
mensional variable selection in comparison to state-of-the-art methods like the
Adaptive Lasso, the SCAD, Tilting or the Bayesian split-and-merge approach
(SAM). Furthermore, in the considered sparse high-dimensional settings, Ada-
Sub in combination with the EBIC as the selection criterion performs favor-
ably in comparison to widely used regularization methods tuned with cross-
validation (see Section A.3). It is notable that AdaSub outperforms Stability
Selection with the Lasso in many situations, which underpins the argument that
usual subsampling in combination with an �1-type method might not be opti-
mal in a high-dimensional situation. On the contrary, the application of adaptive
“subsampling” in the space of explanatory variables can efficiently reduce the
intractable �0-type high-dimensional problem to solvable low-dimensional sub-
problems even in very high-dimensional situations with ten thousands of possible
explanatory variables.
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In this paper we have focused on variable selection in linear regression mod-
els, but the proposed AdaSub method is more general and can for example be
applied to any variable selection problem in the framework of generalized linear
models (GLMs). The practical problem is then that – to the best of our knowl-
edge – there is no efficient algorithm like “leaps and bounds” which could be
used for solving the low-dimensional sub-problems for a GLM within reason-
able computational time. In particular, a full enumeration is costly since the
ML-estimators for the single models are not given in closed form, in general.
A possible solution would be to use heuristic algorithms in place of a full enumer-
ation in order to derive approximate solutions for the sub-problems. It is then
desirable to extent the convergence properties of AdaSub also to those situations.

Furthermore, even though we have focused on the EBIC as the selection crite-
rion, the AdaSub method is very general and can be combined with any other se-
lection criterion. It is also possible to use other variable selection methods such as
�1-type methods (like the Lasso) for “solving” the sampled sub-problems in Ada-
Sub. However, the theoretical results concerning the limiting properties of Ada-
Sub are based on the assumption of optimizing a discrete function on the model
space, so the presented limiting properties are not directly applicable for such al-
ternative methods. The investigation of the performance of AdaSub for different
choices of the selection procedure is an interesting topic for future research.

Another line of our current research concerns the further exploration of the
sufficient condition for the C-optimal convergence of AdaSub and particularly
attempts to relax OIP by weaker sufficient conditions. We want to emphasize
that in this work we have focused on the algorithmic convergence of AdaSub
against the best model according to a given criterion (as the number of iterations
T diverges). Based on the presented analysis, depending on the properties of the
employed selection criterion, one may derive specific model selection consistency
results (as the sample size n and the number of variables p diverge with a
certain rate), as indicated in Section 4. Furthermore, it would be desirable to
obtain more general theoretical results concerning the “speed of convergence” of
AdaSub. Finally, in subsequent work we develop modifications of the presented
algorithm for sampling from high-dimensional posterior model distributions in
a fully Bayesian framework.

Appendix

In Section A.1 of this appendix we provide the theoretical details concerning the
limiting properties of AdaSub. In Section A.2 we illustrate the application of the
AdaSub algorithm on a high-dimensional simulated data example and discuss
typical “diagnostic plots” for the convergence of the algorithm. In Section A.3
we present further results of the simulation study given in Section 5.

A.1. Theoretical details

In this section we theoretically investigate the limiting properties of AdaSub
(see Algorithm 1) by analysing the evolution (along the iterations t ∈ N) of the
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selection probabilities

r
(t)
j =

q +K
∑t

i=1 W
(i)
j

p+K
∑t

i=1 Z
(i)
j

, (A.1)

where Z
(i)
j = 1V (i)(j) and W

(i)
j = 1fC(V (i))(j) = 1S(i)(j) for j ∈ P , i ∈ N.

In order to describe the information available after iteration t of the AdaSub
algorithm, we define a filtration (F (t))t∈N0 on the underlying probability space
Ω of the process: Let F (0) := {∅,Ω} and for t ∈ N let

F (t) := σ(W
(1)
1 , Z

(1)
1 ,W

(1)
2 , Z

(1)
2 , . . . ,W (1)

p , Z(1)
p , . . . ,W (t)

p , Z(t)
p ) (A.2)

be the σ-algebra generated by W
(1)
1 , . . . , Z

(t)
p . Then by the construction of Ada-

Sub we have for t ∈ N0 and j ∈ P :

r
(t)
j = P (Z

(t+1)
j = 1 | F (t)) = 1− P (Z

(t+1)
j = 0 | F (t)) . (A.3)

In addition, for t ∈ N0 and j ∈ P we define

p
(t+1)
j := P (W

(t+1)
j = 1 | Z(t+1)

j = 1,F (t))

= 1− P (W
(t+1)
j = 0 | Z(t+1)

j = 1 ,F (t)) , (A.4)

where for events A,B ∈ F (t+1) the conditional probabilities under F (t) are

defined by P (A | F (t)) = E[1A | F (t)] and P (A | B,F (t)) = E[1A∩B | F(t)]
E[1B | F(t)]

almost

surely (a.s.) on the set {E[1B | F (t)] > 0}, while we set P (A | B,F (t)) = 0 a.s.
on {E[1B | F (t)] = 0}.

In the following, we will make repeated use of the following generalization
of Borel-Cantelli’s lemma and the strong law of large numbers, which is due to
Dubins and Freedman (1965).

Theorem A.1 (Dubins and Freedman, 1965). Let (Fn)n∈N0 be a filtration and
An ∈ Fn for n ∈ N. For i ∈ N define qi := P (Ai | Fi−1), then:

(a) On {
∑∞

i=1 qi < ∞} we almost surely have
∑∞

i=1 1Ai < ∞.
(b) On {

∑∞
i=1 qi = ∞} we have∑n

i=1 1Ai∑n
i=1 qi

a.s.−→ 1, n → ∞ .

A first simple but important observation is that, with probability 1, each
variable Xj with j ∈ P is considered infinitely many times in the model search
of AdaSub.

Lemma A.2. Let j ∈ P. Then it holds

P

( ∞∑
t=1

1V (t)(j) = ∞
)

= P

( ∞∑
t=1

Z
(t)
j = ∞

)
= 1 .
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Proof. Let (F (t))t∈N0 be the filtration given by equation (A.2). Fix j ∈ P and

for t ∈ N let A
(t)
j := {Z(t)

j = 1} ∈ F (t). For t ∈ N we have

q
(t)
j := P (A

(t)
j | F (t−1)) = r

(t−1)
j ≥ q

p+K(t− 1)

and therefore
∑∞

i=1 q
(i)
j

a.s.
= ∞. So by Theorem A.1 we conclude

∑t
i=1 1A(i)

j∑t
i=1 q

(i)
j

a.s.−→ 1, t → ∞ .

Since
∑∞

i=1 q
(i)
j

a.s.
= ∞, we also have

∞∑
i=1

1
A

(i)
j

=

∞∑
i=1

Z
(i)
j

a.s.
= ∞ .

The following theorem shows that the convergence of p
(t)
j as t → ∞ deter-

mines the convergence of r
(t)
j . This result will be the key ingredient needed for

the proof of the C-optimal convergence of AdaSub (Theorem 4.1).

Theorem A.3. For each j ∈ P we have: If p
(t)
j

a.s.→ p∗j as t → ∞ for some

random variable p∗j , then r
(t)
j

a.s.→ p∗j as t → ∞.

Proof. Fix j ∈ P and suppose that p
(t)
j

a.s.→ p∗j as t → ∞. We apply Theorem

A.1 again, but using a different filtration (G(t))t∈N0 , where

G(0) = σ
({

Z
(1)
j : j ∈ P

})
,

and

G(t) =σ
({

Z
(i)
j : j ∈ P , i = 1, . . . , t+ 1

}
∪

{
W

(i)
j : j ∈P , i=1, . . . , t

})
, t∈N.

Further let A
(t)
j := {W (t)

j = 1} ∈ G(t), for t ∈ N, with

q
(t)
j := P

(
A

(t)
j | G(t−1)

)
= P

(
W

(t)
j = 1 | G(t−1)

)
= p

(t)
j Z

(t)
j

and

Ω′ :=

{
ω ∈ Ω :

∞∑
i=1

Z
(i)
j (ω) = ∞

}
.

By Lemma A.2 we have P (Ω′) = 1. Let

Ω1 := {ω ∈ Ω′ : p
(t)
j (ω) → p∗j (ω), t → ∞ with p∗j (ω) ∈ (0, 1]}
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and

Ω2 := {ω ∈ Ω′ : p
(t)
j (ω) → p∗j (ω), t → ∞ with p∗j (ω) = 0} .

Then on Ω1 we have

∞∑
i=1

q
(i)
j =

∞∑
i=1

p
(i)
j Z

(i)
j

(a1)
=

∞∑
i=1

p
(lωi )
j = ∞ ,

where equality in (a1) holds since for each ω ∈ Ω1 there exists an increasing

sequence (lωi )i∈N with lωi ∈ N and Z
(lωi )
j (ω) = 1 for all i ∈ N. So on Ω1 we have

for t large enough (to avoid division by 0)

lim
t→∞

∑t
i=1 q

(i)
j∑t

i=1 Z
(i)
j

= lim
t→∞

∑t
i=1 p

(i)
j Z

(i)
j∑t

i=1 Z
(i)
j

= lim
t→∞

∑t
i=1 p

(lωi )
j

t
= p∗j ,

which holds for those increasing sequences (lωi )i∈N that additionally fulfil Z
(i)
j (ω)

= 0 for all i /∈ {l(ω)
k : k ∈ N}. Here we applied Cauchy’s limit theorem using

the fact that p
(lωi )
j → p∗j as i → ∞. Combining this result with Theorem A.1 it

follows that on Ω1 we have (for t large enough)

∑t
i=1 W

(i)
j∑t

i=1 Z
(i)
j

=

∑t
i=1 W

(i)
j∑t

i=1 q
(i)
j︸ ︷︷ ︸

a.s.→1

∑t
i=1 q

(i)
j∑t

i=1 Z
(i)
j︸ ︷︷ ︸

a.s.→p∗
j

a.s.−→ p∗j , t → ∞ .

Now on Ω2 ∩
{∑∞

i=1 q
(i)
j = ∞

}
we can use the same argument as above and

obtain ∑t
i=1 W

(i)
j∑t

i=1 Z
(i)
j

a.s.−→ p∗j , t → ∞ .

On Ω2 ∩
{∑∞

i=1 q
(i)
j < ∞

}
we almost surely have

∑∞
i=1 W

(i)
j < ∞ by Theorem

A.1, but since
∑t

i=1 Z
(i)
j

a.s.→ ∞ it also follows that

∑t
i=1 W

(i)
j∑t

i=1 Z
(i)
j

a.s.−→ 0 = p∗j , t → ∞ .

Noting that P (Ω1 ∪ Ω2) = 1 by assumption and combining the arguments on
Ω1 and Ω2, we conclude that on Ω we have

r
(t)
j =

q +K
∑t

i=1 W
(i)
j

p+K
∑t

i=1 Z
(i)
j

=

q

K
∑ t

i=1 Z
(i)
j

+
∑ t

i=1 W
(i)
j∑ t

i=1 Z
(i)
j

p

K
∑ t

i=1 Z
(i)
j

+ 1

a.s.−→ p∗j , t → ∞ .
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Definition A.1. Given that data D = (X,Y ) is observed, let CD : M → R be
a selection criterion with well-defined function fC and C-optimal model S∗ =
fC(P) = {j1, . . . , js∗} of size s∗ = |S∗|. Then the selection criterion C is said to
fulfil the ordered importance property (OIP’) for the sample D, if there exists a
permutation (k1, . . . , ks∗) of (j1, . . . , js∗) such that for each i = 1, . . . , s∗ − 1 it
holds

ki ∈ fC(V ) for all V ⊆ P \Ni−1 with {k1, . . . , ki} ⊆ V , (A.5)

where

N0 := {j ∈ P : j /∈ fC(V ) for all V ⊆ P} (A.6)

and

Ni := {j ∈ P : j /∈ fC(V ) for all V ⊆ P \Ni−1 with {k1, . . . , ki} ⊆ V } . (A.7)

Remark A.4. Note that S∗ = fC(V ) for all V ⊆ P with S∗ ⊆ V . Therefore
(A.5) always holds for i = s∗ since ks∗ ∈ S∗. Furthermore, we have

Ns∗ = {j ∈ P : j /∈ fC(V ) for all V ⊆ P \Ns∗−1 with S∗ ⊆ V } = P \ S∗ .

Remark A.5. Note that OIP’ of Definition A.1 is a weaker condition than OIP
of Definition 4.2 in Section 4 (i.e. OIP implies OIP’). Indeed, equation (4.2) of
Section 4 implies equation (A.5) since the required condition is only imposed on
a generally smaller set of subsets V .

The next theorem shows that OIP’ (and thus also OIP) is really a sufficient
condition for the C-optimal convergence of AdaSub against S∗.

Theorem A.6. Given that dataset D = (X,Y ) is observed, let CD : M → R

be a selection criterion with well-defined function fC and C-optimal model S∗.
Suppose that the ordered importance property (OIP’) is satisfied. Then AdaSub
converges to the C-optimal model in the sense of Definition 4.1.

Proof. Let S∗ = fC(P) = {j1, . . . , js∗} be the C-optimal model of size s∗ = |S∗|.
Since OIP’ is satisfied there exists a permutation (k1, . . . , ks∗) of (j1, . . . , js∗)
such that equation (A.5) holds for each i = 1, . . . , s∗ − 1 (with corresponding
sets N0 ⊆ N1 ⊆ . . . ⊆ Ns∗). Let j ∈ N0. Then by definition we have j /∈ fC(V )
for all V ⊆ P , so that

p
(t+1)
j = P (j ∈ fC(V

(t+1)) | j ∈ V (t+1),F (t)) = 0

for all t ∈ N0. With Theorem A.3 we conclude that r
(t)
j

a.s.→ 0 as t → ∞ for
j ∈ N0.

Now by OIP’ we have k1 ∈ fC(V ) for all V ⊆ P \N0 with {k1} ⊆ V , so that
for all t ∈ N0 we have

P (k1 ∈ fC(V
(t+1)) | k1 ∈ V (t+1), N0 ∩ V (t+1) = ∅,F (t)) = 1 .
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Note that by the independence of the Bernoulli trials in AdaSub we have

P (N0 ∩ V (t+1) = ∅ | k1 ∈ V (t+1),F (t)) = P (N0 ∩ V (t+1) = ∅ | F (t))

=
∏
l∈N0

(
1− r

(t)
l

)
a.s.→ 1

and therefore

P (N0 ∩ V (t+1) �= ∅ | k1 ∈ V (t+1),F (t)) = 1−
∏
l∈N0

(
1− r

(t)
l

)
a.s.→ 0 .

Thus we conclude with the law of total probability that

p
(t+1)
k1

= P (k1 ∈ fC(V
(t+1)) | k1 ∈ V (t+1),F (t))

= P (k1 ∈ fC(V
(t+1)) | k1 ∈ V (t+1), N0 ∩ V (t+1) = ∅,F (t))

×
∏
l∈N0

(
1− r

(t)
l

)
+ P (k1 ∈ fC(V

(t+1)) | k1 ∈ V (t+1), N0 ∩ V (t+1) �= ∅,F (t))

×
(
1−

∏
l∈N0

(
1− r

(t)
l

))
a.s.→ 1× 1 + 0 = 1, t → ∞ .

By Theorem A.3 we also obtain r
(t)
k1

a.s.→ 1 as t → ∞.
Now let j ∈ N1\N0. Then by definition we have j /∈ fC(V ) for all V ⊆ P\N0

with {k1} ⊆ V , so that

P (j ∈ fC(V
(t+1)) | j ∈ V (t+1), N0 ∩ V (t+1) = ∅, k1 ∈ V (t+1),F (t)) = 0

for all t ∈ N0. Note that again by the independence of the Bernoulli trials in
AdaSub we have

P (N0 ∩ V (t+1) = ∅, k1 ∈ V (t+1) | j ∈ V (t+1),F (t)) =
∏
l∈N0

(
1− r

(t)
l

)
× r

(t)
k1

a.s.→ 1 .

Thus we similarly conclude with the law of total probability that

p
(t+1)
j = P (j ∈ fC(V

(t+1)) | j ∈ V (t+1),F (t))

= P (j ∈ fC(V
(t+1)) | k1, j ∈ V (t+1), N0 ∩ V (t+1) = ∅,F (t))

×
∏
l∈N0

(
1− r

(t)
l

)
× r

(t)
k1

+ . . .
a.s.→ 0× 1 + 0 = 0, t → ∞ .

By Theorem A.3 we also obtain r
(t)
j

a.s.→ 0 as t → ∞ for j ∈ N1 \N0.
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Now by OIP’ we have k2 ∈ fC(V ) for all V ⊆ P \N1 with {k1, k2} ⊆ V , so
that for all t ∈ N0 we have

P (k2 ∈ fC(V
(t+1)) | k2 ∈ V (t+1), N1 ∩ V (t+1) = ∅, k1 ∈ V (t+1),F (t)) = 1 .

Note that again by the independence of the Bernoulli trials in AdaSub we have

P (N1 ∩ V (t+1) = ∅, k1 ∈ V (t+1) | F (t)) =
∏
l∈N1

(
1− r

(t)
l

)
× r

(t)
k1

a.s.→ 1 .

Thus we similarly conclude with the law of total probability that

p
(t+1)
k2

= P (k2 ∈ fC(V
(t+1)) | k2 ∈ V (t+1),F (t))

= P (k2 ∈ fC(V
(t+1)) | k1, k2 ∈ V (t+1), N1 ∩ V (t+1) = ∅, F (t))

×
∏
l∈N1

(
1− r

(t)
l

)
× r

(t)
k1

+ . . .
a.s.→ 1× 1 + 0 = 1, t → ∞ .

By Theorem A.3 we also obtain r
(t)
k2

a.s.→ 1 as t → ∞.
Proceeding by induction we similarly conclude that for each i = 2, . . . , s∗ − 1

we have r
(t)
j

a.s.→ 0 as t → ∞ for all j ∈ Ni \Ni−1; and for each i = 3, . . . , s∗ − 1

we have r
(t)
ki

a.s.→ 1 as t → ∞.
Note that ks∗ ∈ S∗ = fC(V ) for all V ⊆ P with {k1, . . . , ks∗} ⊆ V and that

Ns∗ = P \ S∗ (see Remark A.4). Therefore, by using the same arguments, we

also obtain r
(t)
ks∗

a.s.→ 1 as t → ∞ and r
(t)
j

a.s.→ 0 as t → ∞ for all j ∈ Ns∗ = P \S∗.
This completes the proof.

Corollary A.7. If |S∗| ≤ 1, then OIP is satisfied and therefore AdaSub con-
verges to the C-optimal model.

Corollary A.8. Let S∗ = {j1, . . . , js∗} and let D = {l1, . . . , ld} ⊆ S∗ be of
maximal cardinality |D| = d such that there exists a permutation (k1, . . . , kd) of
(l1, . . . , ld) such that for all i = 1, . . . , d we have

ki ∈ fC(V ) for all V ⊆ P \Ni−1 with {k1, . . . , ki} ⊆ V , (A.8)

where the sets N0, . . . , Nd are defined as in Definition 4.2. In particular we have

Nd = {j ∈ P : j /∈ fC(V ) for all V ⊆ P\Nd−1 with {k1, . . . , kd} ⊆ V } . (A.9)

Then for all j ∈ D we have r
(t)
j

a.s.→ 1, t → ∞ and for all j ∈ Nd we have

r
(t)
j

a.s.→ 0, t → ∞.

Proof. The proof is along the lines of the proof of Theorem A.6, using the
(partial) permutation (k1, . . . , kd) of variables in D ⊆ S∗ instead of the (full)
permutation (k1, . . . , ks∗) of all variables in S∗.
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Remark A.9. In Theorem A.6 it is assumed that the function fC is well-
defined, i.e. that the solutions S(t) = fC(V

(t)) are unique for all subspaces V (t) ⊆
P. In case of non-uniqueness of the solutions to sub-problems S(t) = fC(V

(t))
the AdaSub algorithm and the convergence result can be slightly adjusted (see
Staerk, 2018, Remark 4.4 for details). In particular, perfect multicollinearity
among a set of explanatory variables {Xj ; j ∈ S} with S ∈ M = {S ⊆ P :
|S| < n − 2} can lead to non-uniqueness of the solution to �0-type criteria;
in such a case it may generally be preferred to deal with the multicollinearity
issue before proceeding with data-driven variable selection, e.g. by reducing the
number of considered variables based on subject-matter knowledge or by aiming
to increase the sample size.

Finally, the following remark provides analytical results regarding the speed
of convergence of AdaSub under the finite-sample PF assumption.

Remark A.10. For m ∈ N and j ∈ P let

T
(m)
j = min

{
t ∈ N :

t∑
l=1

1V (l)(j) = m
}

(A.10)

denote the random number of iterations until variable Xj is considered m times
in the search of AdaSub. Furthermore, let

S∗
PF = {j ∈ S∗ : j ∈ fC(V ) for all V ⊆ P with j ∈ V } (A.11)

denote the set of variables in the C-optimal model S∗ for which the finite-sample
PF property holds.

(a) Since b
(i)
j = 1V (i)(j) are independent Bernoulli distributed with success

probability r
(0)
j = q

p for 1 ≤ i ≤ T
(1)
j (see step (2)(a) in Algorithm 1),

the number of iterations T
(1)
j until variable Xj with j ∈ P is considered

for the first time follows a geometric distribution with success probability

r
(0)
j = q

p and expectation E[T
(1)
j ] = p

q , i.e.

T
(1)
j = min

{
t ∈ N : b

(t)
j = 1

}
∼ Geo

(
q

p

)
. (A.12)

(b) Let j ∈ S∗
PF. Then, by the definition of AdaSub it holds r

(t)
j = q+Ki

p+Ki for

T
(i)
j ≤ t < T

(i+1)
j and i ∈ N. Thus, for j ∈ S∗

PF it holds that

T
(i+1)
j − T

(i)
j ∼ Geo

(
q +Ki

p+Ki

)
, (A.13)

since, for T
(i)
j < t ≤ T

(i+1)
j , variables b

(t)
j are independent Bernoulli dis-

tributed with success probability r
(t−1)
j = q+Ki

p+Ki . Hence, for m ≥ 1, it holds

E
[
T

(m)
j

]
= E

[
T

(1)
j

]
+

m−1∑
i=1

E
[
T

(i+1)
j − T

(i)
j

]
=

m−1∑
i=0

p+Ki

q +Ki
. (A.14)
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Let

Tρ,j = min
{
t ∈ N : r

(t)
j > ρ

}
(A.15)

denote the number of iterations until the thresholded model Ŝρ with thresh-
old ρ includes variable Xj. Under the assumption that j ∈ fC(V ) for all
V ⊆ P with j ∈ V , it holds

Tρ,j = T
(i(ρ))
j , with i(ρ) =

⌊
ρp− q

K(1− ρ)
+ 1

⌋
∈ N (A.16)

and thus we derive

E [Tρ,j ] = E
[
T

(i(ρ))
j

]
=

i(ρ)−1∑
i=0

p+Ki

q +Ki
. (A.17)

(c) Suppose that the finite-sample PF property (4.4) holds for the criterion
C, i.e. it holds S∗ = S∗

PF. Then the number of iterations needed so that

the thresholded model Ŝρ with threshold ρ includes all variables in the C-

optimal model S∗ (with |S∗| = s∗) can be written as Tρ = maxj∈S∗ T
(i(ρ))
j .

Thus, by using the result from (b), we obtain an upper bound on the ex-
pected number of required iterations

E [Tρ] = E

[
max
j∈S∗

T
(i(ρ))
j

]
≤

∑
j∈S∗

E
[
T

(i(ρ))
j

]
= s∗

i(ρ)−1∑
i=0

p+Ki

q +Ki
. (A.18)

Note that this is only a crude upper bound; in fact, in simulations (see
Figure 1) it is empirically observed that the mean number of iterations
E [Tρ] scales approximately logarithmically with the number of variables
s∗ in the C-optimal model S∗.

(d) Suppose that the finite-sample PF property (4.4) holds for the criterion C,
i.e. it holds S∗ = S∗

PF. Let

Tb = min
{
t ∈ N : S(t) = S∗

}
(A.19)

denote the number of iterations needed to identify the C-optimal model.
If there is no adaptation of the selection probabilities in the algorithm
(K = 0), then for all t ∈ N it holds

P
(
S(t) = S∗

)
=

(
q

p

)s∗

,

and thus

Tb ∼ Geo

((
q

p

)s∗
)

with E [Tb] =

(
p

q

)s∗

.
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However, in the limiting case K → ∞ of infinite adaptation, i.e. for j ∈ S∗

it holds r
(t)
j = q

p for 0 ≤ t < T
(1)
j and r

(t)
j = 1 for t ≥ T

(1)
j , we obtain

Tb = maxj∈S∗ T
(1)
j with expectation

E [Tb] = E

[
max
j∈S∗

T
(1)
j

]
≈ 1

2
+

1

log
(

p
p−q

) s∗∑
i=1

1

i
. (A.20)

Here we have used a result by Eisenberg (2008) regarding the expectation

of the maximum of independent geometrically distributed variables T
(1)
j ∼

Geo(q/p), j ∈ S∗, with approximation error of the expectation in (A.20)
bounded by 1

2 . Thus, under the finite-sample PF assumption with K → ∞,
the expected number of iterations E [Tb] grows logarithmically with s∗ (as
the harmonic series diverges logarithmically). Furthermore, with a Taylor

expansion the term 1/ log
(

p
p−q

)
in (A.20) can be approximated by p−q

q ,

showing that the expectation E [Tb] grows approximately linearly with p.

A.2. Illustrative example of AdaSub

In order to illustrate the performance of AdaSub in a high-dimensional set-
up, we consider a simulated example with p = 1000 and n = 60. We generate
one particular dataset D = (X,Y ) by simulating X = (Xij) ∈ R

n×p with
independent rows Xi,∗ ∼ Np(0,Σ), where Σkl = 0 for k �= l and Σkk = 1.
Furthermore, let

β0 = (0.4, 0.8, 1.2, 1.6, 2.0, 0, . . . , 0)T ∈ R
p

be the true vector of regression coefficients with active set S0 = {1, . . . , 5}. The
response Y = (Y1, . . . , Yn)

T is simulated via Yi
ind.∼ N(Xi,∗β

0, 1), i = 1, . . . , n.
We adopt the (negative) extended BIC (EBICγ) as the criterion C and consider
the tuning parameter choices γ = 0.6 and γ = 1 in EBICγ . For both cases,
we apply AdaSub with T = 10,000 iterations on the same dataset simulated as
above and choose q = 10 and K = n as the tuning parameters of AdaSub.

We present some typical “diagnostic plots” for the described simulated data
example, which are generally very helpful for examining the convergence of
the AdaSub algorithm. Figure 9 shows the evolution of the EBICγ(S

(t))-values
along the iterations t for γ = 0.6 and γ = 1 (recall that S(t) = fC(V

(t))
denotes the “best” submodel contained in V (t)), while the red lines indicate
the values of EBICγ for the thresholded model Ŝ0.9. For γ = 0.6 it is obvious

that the algorithm does not converge against the “best” sampled model Ŝb =
argmin{EBIC0.6(S

(1)), . . . ,EBIC0.6(S
(T ))} and thus OIP’ does not hold here.

The “best” model identified by AdaSub is given by Ŝb = {2, 3, 4, 5, 519, 731, 950},
while the thresholded model Ŝ0.9 = {2, 3, 4, 5, 950} with threshold ρ = 0.9 does
not include the “noise variables”X519 andX731 and is therefore closer to the true
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Fig 9. AdaSub for the high-dimensional simulated example. Plots of the evolution of
EBICγ(S(t)) along the iterations t for (a) γ = 0.6 and (b) γ = 1. The red lines indicate

the EBICγ-values of the thresholded model Ŝ0.9.

Fig 10. AdaSub for the high-dimensional simulated example. Plots of the evolution of r
(t)
j

(with j ∈ {1, . . . , 6, 519, 731, 950}) along the iterations t for (a) γ = 0.6 and (b) γ = 1.

underlying model. This is an example, where the thresholded model from Ada-
Sub reduces the number of false positives in a situation where the criterion used
is too liberal (compare Corollary A.8). On the other hand, for γ = 1, the algo-
rithm appears to have converged against the EBIC0.6-optimal model; the “best”
sampled model Ŝb and the thresholded model Ŝ0.9 agree: Ŝb = Ŝ0.9 = {2, 3, 4, 5}.
This indicates, that the model identified by AdaSub is “stable” in the sense of
OIP.

Figure 10 shows the evolution of some of the selection probabilities r
(t)
j along

the iterations t for γ = 0.6 and γ = 1. In both cases, the selection probabilities

r
(t)
j for j ∈ {2, 3, 4, 5} quickly approach the value of one while r

(t)
6 tends to

zero. On the other hand, r
(t)
1 tends to zero and hence the “signal variable” X1

is not selected in both cases (note that β1 = 0.4 is quite small). Additionally,

the evolution of the selection probabilities r
(t)
j for j ∈ {519, 731, 950} is shown.

While for γ = 1 these selection probabilities all tend to zero as desired, the
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behaviour is different for γ = 0.6: r
(t)
950 tends to one; r

(t)
519 and r

(t)
731 seem to

converge to values close but not exactly zero. This reflects a situation, where
OIP does not hold and variables X519 and X731 are not “stable” in the sense of
OIP.

Fig 11. AdaSub for the high-dimensional simulated example. Plots of the evolution of the
sizes of the sampled sets V (t) (grey dots) and the sizes of the selected subsets fC(V (t)) = S(t)

(red crosses) along the iterations t for (a) γ = 0.6 and (b) γ = 1.

Fig 12. AdaSub for the high-dimensional simulated example. Plots of the evolution of the
expected search size E|V (t)| along the iterations t for (a) γ = 0.6 and (b) γ = 1.

Figure 11 shows the evolution of the sizes of the sampled sets V (t) and the
sizes of the selected subsets S(t) along the iterations t; additionally, Figure 12

depicts the evolution of the expected search size E|V (t)| =
∑

j∈P r
(t−1)
j along

the iterations t for γ = 0.6 and γ = 1. Starting with initial expected search size
E|V (1)| = q = 10, the AdaSub algorithm automatically adjusts the expected
search sizes which, after some time, start to decrease with the number of itera-
tions. For γ = 0.6, the search sizes are a bit larger, since the criterion EBIC0.6

enforces less sparsity than EBIC1. The computation times for T = 10,000 itera-
tions of AdaSub were approximately 15.1 seconds for γ = 0.6 and 13.5 seconds
for γ = 1.
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A.3. Additional results of simulation study

We present further results of the simulation study given in Section 5. The low-
and high-dimensional simulation set-ups are as described in Section 5. In par-
ticular, the design matrix X = (Xi,j) ∈ R

n×p is simulated via Xi,∗ ∼ Np(0,Σ).
Here, we consider the following correlation structures between the explanatory
variables induced by the matrix Σ ∈ R

p×p:

(a) Toeplitz-Correlation Structure: For some c ∈ (−1, 1) let Σk,l = c|k−l|

for all k �= l.
(b) Equal-Correlation Structure: For some c ∈ [0, 1) let Σk,l = c for all

k �= l.
(c) Block-Correlation Structure: For some c ∈ (0, 1) and a fixed number

of blocks b ∈ N let Σk,l = c for all k �= l with (k − l) mod b = 0, and let
Σk,l = 0 otherwise.

Fig 13. Results for low-dimensional setting (p = 30) with Toeplitz-correlation structure

(c = 0.9): Comparison of thresholded model Ŝ0.9 (AdaSubThres) and “best” model Ŝb (Ada-
SubBest) from AdaSub with BIC-optimal model S∗ (Best Subset BIC) in terms of mean
number of false positives/ false negatives, relative frequency of selecting the true model S0,
relative frequency of agreement between AdaSub models and S∗, Mean Squared Error (MSE)
and Root Mean Squared Prediction Error (RMSE) on independent test set.

Figure 13 depicts the results in a low-dimensional situation (p = 30) with
large correlations between the explanatory variables (Toeplitz-correlation struc-
ture with c = 0.9). The relative frequency of agreement between the models
selected by AdaSub and the BIC-optimal model increases towards one when
the sample size increases, but the “convergence” is markedly slower than in the
independent case (see Figure 2). This shows that the models from AdaSub may
yield different (and in the given setting preferable) results in comparison to the
BIC-optimal model even if the sample size is moderately large.
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Fig 14. Results for low-dimensional setting (p = 30) with (a) equal-correlation structure and

(b) block-correlation structure: Comparison of thresholded model Ŝ0.9 (AdaSubThres) and

“best” model Ŝb (AdaSubBest) from AdaSub with BIC-optimal model S∗ (Best Subset BIC)
in terms of mean number of false positives/ false negatives, relative frequency of selecting the
true model S0, relative frequency of agreement between AdaSub models and S∗, Mean Squared
Error (MSE) and Root Mean Squared Prediction Error (RMSE) on independent test set.

Next, we consider an equal-correlation structure (correlation c = 0.7) and
a block-correlation structure (b = 10 blocks and c = 0.5 as the correlation
within blocks). Figure 14 shows the results of the low-dimensional examples,
while Figures 15 and 16 depict the results of the high-dimensional examples.
In the low-dimensional examples the observations are very similar to the other
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Fig 15. Results for high-dimensional setting (p = 10n) with equal-correlation structure
(c = 0.7): Comparison of thresholded model (AdaSubThres) and “best” model (AdaSubBest)
from AdaSub with Stability Selection (StabSel), Forward Stepwise, Lasso, Adaptive Lasso
(AdaLasso), SCAD and Tilting in terms of mean number of false positives/ false negatives,
rel. freq. of selecting the true model, mean comp. time, MSE and RMSE.

situations described; the high-dimensional examples further demonstrate, that
the performance of AdaSub is very competitive in comparison to the other
methods considered.

Figure 17 depicts additional results regarding the finite-sample PF property
(4.4) for the low-dimensional setting (p = 30) with the BIC and the high-
dimensional setting (p = 10n) with the EBICγ , γ ∈ {0.6, 1}, considering an
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Fig 16. Results for high-dimensional setting (p = 10n) with block-correlation structure (b = 10
blocks and c = 0.5): Comparison of thresholded model (AdaSubThres) and “best” model (Ada-
SubBest) from AdaSub with Stability Selection (StabSel), Forward Stepwise, Lasso, Adaptive
Lasso (AdaLasso), SCAD and Tilting in terms of mean number of false positives/ false neg-
atives, rel. freq. of selecting the true model, mean comp. time, MSE and RMSE.

independence correlation structure (c = 0) and a Toeplitz correlation structure
with large correlations (c = 0.9). Note that for a large number of variables p it is
computationally prohibitive to compute the C-optimal model S∗ and to assess
whether the finite-sample PF property holds for the criterion C, as one would
have to compute the best sub-models fC(V ) for all possible subspaces V ⊆ P .
Thus, here we check whether the finite-sample PF property is satisfied for all
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Fig 17. Additional results for low-dimensional setting (p = 30) with BIC and high-
dimensional setting (p = 10n) with EBICγ , γ ∈ {0.6, 1}, for independence correlation struc-
ture (c = 0) and Toeplitz correlation structure (c = 0.9): Mean proportion of variables inside

the “best” model Ŝ∗ for which the finite-sample PF property (4.4) empirically holds (ex-

cluding cases with Ŝ∗ = ∅), where the “best” model Ŝ∗ refers to S∗ in the low-dimensional

setting and to the best model Ŝb identified by AdaSub in the high-dimensional setting. Here,
PF empirically holds for variable Xj with j ∈ Ŝ∗, if j ∈ V (t) implies j ∈ fC(V (t)) for all
t = 1, . . . , T .

subspaces V (t) sampled by AdaSub after T = 5000 iterations. In particular,
we say that PF empirically holds for variable Xj with j ∈ Ŝ∗, if j ∈ V (t)

implies j ∈ fC(V
(t)) for all t = 1, . . . , T , where the “best” model Ŝ∗ refers to

the actual C-optimal model S∗ in the low-dimensional setting and to the best
model Ŝb identified by AdaSub in the high-dimensional setting (as an estimate
for S∗).

It can be observed that the mean proportion of variables in the “best” model
Ŝ∗, for which the PF property (4.4) empirically holds, tends to increase with the
sample size n for both the low- and high-dimensional settings. This indicates
that a faster convergence of AdaSub can be achieved for larger values of n, as
more “important” covariates in Ŝ∗ are always selected to be in the best sub-
model when considered in the model search of AdaSub. Figure 17 further shows
that the finite-sample PF property is less likely to hold in case of large correla-
tions between the covariates (Toeplitz structure with c = 0.9) in comparison to
the case of independent covariates (c = 0).

Finally, in the considered high-dimensional setting we additionally compare
the performance of the AdaSub models (for EBICγ with γ ∈ {0.6, 1}) with
regularization methods tuned via cross-validation for “optimal” predictive per-
formance, instead of applying the same criterion EBICγ for tuning parameter
selection (see Section 5). In particular, we reconsider the Lasso, the Adaptive
Lasso and SCAD where the penalty parameters are chosen with ten-fold cross-
validation via the one-standard error rule, i.e. the final estimator is obtained by



874 C. Staerk et al.

Fig 18. Results for high-dimensional setting (p = 10n) with (a) independent covariates and
(b) Toeplitz correlation structure: Comparison of thresholded model (AdaSubThres) and “best”
model (AdaSubBest) from AdaSub (for EBICγ with γ ∈ {0.6, 1}) with Lasso, Adaptive Lasso
(AdaLasso) and SCAD tuned with ten-fold cross-validation (CV) in terms of mean number of
false positives/ false negatives, rel. freq. of selecting the true model, mean comp. time, MSE
and RMSE.

selecting the largest penalty parameter which is within one standard error of
the minimal cross-validation error.

The results of the CV-tuned regularized estimators for the independence
correlation structure (c = 0) and the Toeplitz correlation structure (c = 0.9)
are depicted in Figure 18, while the results for the equal-correlation structure
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Fig 19. Results for high-dimensional setting (p = 10n) with (a) equal-correlation structure
and (b) block-correlation structure: Comparison of thresholded model (AdaSubThres) and
“best” model (AdaSubBest) from AdaSub (for EBICγ with γ ∈ {0.6, 1}) with Lasso, Adaptive
Lasso (AdaLasso) and SCAD tuned with ten-fold cross-validation (CV) in terms of mean
number of false positives/ false negatives, rel. freq. of selecting the true model, mean comp.
time, MSE and RMSE.

(c = 0.7) and the block-correlation structure (b = 10 blocks and c = 0.5)
can be found in Figure 19. It is apparent that the Lasso tends to select many
false positives, confirming the observation in Feng and Yu (2019) that tuning
the penalty parameter of the Lasso via ten-fold cross-validation is not optimal
when the aim is the identification of the true model. Even though it can be
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beneficial for variable selection to reserve a larger fraction of the observed data
for validation in the cross-validation procedure (Shao, 1993; Feng and Yu, 2019),
here we have considered ten-fold cross-validation in combination with the one-
standard error rule as a benchmark which is commonly used in practice (as
the default in the R-package glmnet). The CV-tuned SCAD estimator tends to
select less false positives than the Lasso in most of the cases, but still yields
considerably more noise variables than the AdaSub models. In contrast, the
Adaptive Lasso does not suffer from a very large number of false positives and
generally performs quite well in the considered settings.

Results in Figures 18 and 19 further show that the thresholded models Ŝρ

(with ρ = 0.9) from AdaSub yield the smallest mean numbers of false positives
in all considered scenarios, while the “best” models Ŝb identified by AdaSub
can provide favorable predictive performance at the price of slightly increased
numbers of false positives (especially for the choice γ = 0.6 in EBICγ). Regard-
ing the choice of γ for the selection criterion EBICγ in AdaSub, a smaller value
(γ = 0.6) is to be preferred if the main focus is predictive performance (mini-
mizing mean prediction error on test data), while a larger value (γ = 1) tends
to provide sparser models and the largest relative frequencies for the correct
identification of the true model.
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