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Abstract

We prove a quenched functional central limit theorem for a one-dimensional random
walk driven by a simple symmetric exclusion process. This model can be viewed as
a special case of the random walk in a balanced random environment, for which the
weak quenched limit is constructed as a function of the invariant measure of the
environment viewed from the walk. We bypass the need to show the existence of this
invariant measure. Instead, we find the limit of the quadratic variation of the walk
and give an explicit formula for it.
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1 Introduction

We prove a quenched functional central limit theorem for a one-dimensional random
walk driven by a simple symmetric exclusion process. The model belongs to the class of
random walks in dynamical random environments. Recent works have studied examples
where the environment is an interacting particle system, including independent random
walks [14], the contact process [8] and the simple symmetric exclusion process (SSEP).

To define a random walk driven by the SSEP, one fixes parameters p1, p0, ρ ∈ [0, 1],
λ0, λ1 > 0 and makes the random walk jump from x ∈ Z to x + 1 at time t at rate
λ1p1ηt(x) + λ0p0(1− ηt(x)), where ηt(x) is the state of the exclusion process (either 0 or
1) at site x and time t, started from equilibrium at density ρ. The rate for a jump from x

to x− 1 is λ1(1− p1)ηt(x) + λ0(1− p0)(1− ηt(x)). Several cases were studied. The results
in [17] and [15] that we are about to cite were proven for a discrete-time random walk,
but we believe that the continuous-time results we state are true as well. In [17], laws
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Symmetric random walk driven by SSEP

of large numbers and Gaussian fluctuations are proven for λ0 = λ1 sufficiently large or
sufficiently small and appropriate assumptions on p0 and p1. When λ0 = λ1, [10] proves
that the limiting speed, if any, is strictly between λ0(2p0 − 1) and λ1(2p1 − 1). In [15] it
is proven that, for λ0 = λ1 = 1 the law of large numbers holds for all ρ, with only two
possible exceptions, and when the speed is not zero a Gaussian central limit theorem
holds. Moreover, when p0 = 1− p1 (as in [2] and [17]) and ρ = 1/2 it was shown in [15]
that the speed is zero, but it is an interesting open problem to determine the scale of
the fluctuations in this case and there are several competing conjectures: in [19] it is
conjectured that under the scaling t3/4 the limiting process is a fractional Brownian
motion with Hurst index H = 3/4; in [12], it is conjectured (for a related continuous
model) that the fluctuations are either of order t1/2 (for a fast particle) or t2/3 (for a slow
particle); on the other hand in [16] and [18], it is conjectured that for either fast or slow
particle dynamics the fluctuations are always of order t1/2 for time t sufficiently large.

Here we allow λ0 6= λ1 but assume p0 = p1 = 1
2 . In this setting, the random walk

is a time-change of a simple symmetric random walk. The law of large numbers is
immediate, and the problem is to prove convergence to Brownian motion and compute
the variance of this limiting Brownian motion at time t. We perform this computation
when the environment starts in equilibrium at density ρ ∈ [0, 1]. With those assumptions,
our model falls into the class of balanced dynamic random environments. For this class
of models an invariance principle was proved in [9]. In this paper we give an entirely
different proof of the invariance principle for this particular model. Since random walks
in balanced environments are martingales, the key to proving an invariance principle is
in proving that the quadratic variation grows linearly. In all previous proofs of invariance
principles for random walks in (static or dynamic) environments this was accomplished
by proving the existence of an invariant measure for the environment viewed from
the particle that was absolutely continuous with respect to the initial measure on
environments (see e.g., [22, 13, 6, 9]). In this paper, however, we are able to prove
the linear growth of the quadratic variation without any reference to the existence of
invariant measures for the environment viewed from the particle. Not only does this give
a simpler proof of the invariance principle for this particular model, but it also enables
us to compute explicitly the scaling constant in the invariance principle and allows us to
obtain quantitative estimates on the rate of convergence for the quadratic variation, see
(3.54).

Since the underlying dynamic environment in our model has only two types of sites
(particles/holes), the key to analyzing the growth rate of the quadratic variation is to
compute the asymptotic fraction of time, limt→∞ t−1

∫ t
0
ηXs(s) ds. We accomplish this by

providing an explicit function ϕ and explicit constants a and b such that Lϕ ≈ aξ0 + b,
where ξx(t) := ηt(x + Xt) and L denotes the generator of the process (ξ(t))t≥0, the
environment as seen by the walk. This technique of estimating additive functionals∫ t
0
g(ξ(s)) ds by solving the equation g(ξ) ≈ a + b u(ξ) was introduced in [21]. In the

context of random walks in random environments, it has been used in [1], [20] and [23],
among other works.

2 Model and statement of the theorem

Let ρ, λ ∈ [0, 1] and T > 0 be fixed throughout the paper. Denote by µ =
⊗

x∈Z Ber(ρ)
the probability measure on {0, 1}Z under which the random variables {ηx}x∈Z are i.i.d.
of mean ρ. We consider a nearest-neighbour random walk on Z, driven by the simple
symmetric exclusion process (SSEP) with initial distribution µ. Define the joint law of
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Symmetric random walk driven by SSEP

the random walk and the SSEP by the Markov generator

Ljointf(η, x) =
∑
y∈Z

[
f
(
ηy,y+1, x

)
− f (η, x)

]
+ [(1− λ)ηx + (1− ηx)] [f(η, x+ 1) + f(η, x− 1)− 2f(η, x)]

(2.1)

acting on local functions f : Z× {0, 1}Z → R (a function f : {0, 1}Z → R is called local
if f(η) is a function of finitely many of the variables {ηx}x∈Z). The random walk jumps
from a particle at rate 1− λ and from a hole at rate 1 to one of its neighbors.

For k ∈ Z and η ∈ {0, 1}Z, let θkη denote the element of {0, 1}Z defined by (θkη)x =

ηx+k. We use this to define the environment process viewed from the walk ξ(t) = θXtη(t).
This is a Markov process, and its generator L acts on local functions as follows:

Lf(ξ) = Lssepf(ξ) + [(1− λ)ξ0 + (1− ξ0)] [f(θ1ξ) + f(θ−1ξ)− 2f(ξ)] , (2.2)

where

Lssepf(ξ) :=
∑
y∈Z

[
f
(
ξy,y+1

)
− f (ξ)

]
(2.3)

is the generator of the SSEP with rate 1.
Define the quenched probability P η(·) on Z× [0,∞) as the probability measure of the

random walk on underlying environment η = {ηt, t ≥ 0}. By (2.1), we have for t, h ≥ 0,

P η (Xt+h −Xt = ±1|Xt) = h [(1− λ)ηXt(t) + (1− ηXt(t))] + o(h). (2.4)

Define the annealed measure P(·) on the same space as

P(·) =
∫
Pη(·) dQµ(η) (2.5)

where Qµ is the distribution of SSEP {η(t)}t≥0 with the initial distribution η(0) ∼ µ,
Our main theorem gives a quenched invariance principle of the walk with explicit

scaling parameter(the variance).

Theorem 2.1. Let (Xt, η(t))t≥0 be the Markov process generated by Ljoint, started from
X0 = 0 and η(0) ∼ µ. Then, for Qµ− almost every η, under the quenched measure P η,
the sequence of processes (

Xnt

σ(ρ)
√
n
: t ∈ [0, T ]

)
n∈N

(2.6)

converges in distribution, with respect to the J1 Skorohod topology, to a standard
Brownian motion, where

σ2(ρ) = 2− 4λρ

2− λ(1− ρ)
. (2.7)

This theorem will follow from the next one, which gives the asymptotic fraction of
time that the walk spent on top of particles.

Theorem 2.2. Keep the assumptions of Theorem 2.1. Let ξ(t) = θXtη(t). Then, for
Qµ-almost every η, under the quenched measure P η,

lim
t→∞

1

t

∫ t

0

(2− λξ0(s))(ξ0(s)− ρ) ds = 0 in probability. (2.8)

Or equivalently,

lim
t→∞

1

t

∫ t

0

ξ0(s) ds =
2ρ

2− λ+ λρ
in probability. (2.9)
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Theorem 2.2 shows the convergence under the quenched measure, which automati-
cally implies the same convergence result under the annealed measure. Moreover, the
rate of convergence under the annealed measure has an upper bound estimation, which
is also a key tool to prove Theorem 2.2. This rate of convergence result is shown as
follows.

Theorem 2.3. Keep the assumptions of Theorem 2.1. Let ξ(t) = θXtη(t). For any ε > 0,
there exist T = T (ε) > 0 and C = C(ε) > 0, such that for any t > T ,

P

[
1

t

∣∣∣ ∫ t

0

(2− λξ0(s))(ξ0(s)− ρ) ds
∣∣∣ ≥ ε] ≤ Ct− 1

15 . (2.10)

3 Proofs

The key observation is that Xt is a mean-zero martingale with respect to the filtration
generated by (Xt, η(t))t≥0. Its predictable quadratic variation is given by the formula

〈X〉t =
∫ t

0

2− 2λξ0(s) ds. (3.1)

More explicitly, we have

Eη
[
X2
t − 〈X〉t |(Xr, η(r)), r ≤ s

]
= X2

s − 〈X〉s , P η − a.s. (3.2)

for any t ≥ s ≥ 0 and all η.
We claim that if limt→∞ t−1 〈X〉t → a in probability, for some positive a > 0, then

the sequence
(
Xnt√
n

: t ∈ [0, T ]
)
n∈N

converges in distribution to a Brownian motion of

variance a, with respect to the J1 Skorohod topology on the space D([0, T ];R). This
follows from the Martingale Functional Central Limit Theorem, [11] Theorem 7.1.4.
Therefore we only need to prove that limt→∞ t−1

∫ t
0
ξ0(s) ds exists in probability. This

follows from Theorem 2.2, since if (2.8) holds, then

lim
t→∞

1

t

∫ t

0

(2− λ+ λρ) ξ0(s) ds = 2ρ in probability, (3.3)

whence limt→∞ t−1
∫ t
0
ξ0(s) ds =

2ρ
2−λ+λρ .

Although in Theorem 2.2 the convergence holds quenched, we will prove the con-
vergence in the annealed measure first. Our proof will yield a estimate on the rate of
convergence that is strong enough that allows us to deduce the quenched convergence
from it.

Before we start our proofs, we remind the readers that there are some technical
lemmas that will be used throughout the proofs. Those lemmas are introduced in section
4 as well as their proofs. But we will use them in section 3 without mentioning too much
in order to make the proof less tedious.

3.1 Proof of the asymptotic limit of ξ(t) under the annealed measure

Our goal is to prove the following theorem.

Theorem 3.1. Under the assumptions of Theorem 2.1, under the annealed measure P,

lim
t→∞

1

t

∫ t

0

(2− λξ0(s))(ξ0(s)− ρ) ds = 0 in probability. (3.4)

Given x ∈ Z and ` ∈ N, denote

−→
ξ `x :=

ξx+1 + · · ·+ ξx+`
`

,
←−
ξ `x :=

ξx−1 + · · ·+ ξx−`
`

. (3.5)
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For any choice of positive integers ` and n one can write

1

t

∫ t

0

(2− λξ0(s))(2ξ0(s)− 2ρ) ds (3.6)

=
1

t

∫ t

0

(2− λξ0(s))(2ξ0(s)− ξn(s)− ξ−n(s)) ds (3.7)

+
1

t

∫ t

0

(2− λξ0(s))(ξn(s)−
−→
ξ `n(s) + ξ−n(s)−

←−
ξ `−n(s)) ds (3.8)

+
1

t

∫ t

0

(2− λξ0(s))(
−→
ξ `n(s) +

←−
ξ `n(s)− 2ρ) ds (3.9)

We are going to choose n and ` depending on t in such a way that all three integrals on
the right-hand side converge to 0 in probability, as t→∞. It turns out one can choose

n = btαc for some α ∈ (
1

2
,
2

3
), 1� `� t

n
. (3.10)

Proposition 3.2. Under the assumption of Theorem 2.1, assume (3.10). Under the
annealed measure

lim
t→∞

1

t

∫ t

0

(2− λξ0(s))(2ξ0(s)− ξn(s)− ξ−n(s))ds = 0 (3.11)

in probability.

The proof strategy is to show that the integrand is in the range of the generator and
use this to rewrite the integral as the sum of a martingale and a vanishing term. The
martingale is then shown to vanish too, by means of an explicit bound on its quadratic
variation.

Thus we seek a function ψn,` such that Lψn,`(ξ) = (2− λξ0)(2ξ0 − ξn − ξ−n). We start
the search by computing

Lξx = [ξx+1 + ξx−1 − 2ξx] [ξ0(1− λ) + (1− ξ0)] + (ξx+1 − ξx) + (ξx−1 − ξx)
= (2− λξ0)(ξx+1 + ξx−1 − 2ξx).

(3.12)

Let k > 0. Sum from x = −k + 1 to x = k − 1 to get

L

(
k−1∑

x=−k+1

ξx

)
= (2− λξ0) (ξk − ξk−1 + ξ−k − ξ−k+1) . (3.13)

Sum from k = 1 to k = n to get

L

(
n∑
k=1

k−1∑
x=−k+1

ξx

)
= (2− λξ0) (−2ξ0 + ξn + ξ−n) . (3.14)

Define

ψn,`(ξ) := −
n∑
k=1

k−1∑
x=−k+1

(ξx − ρ), (3.15)

the following process is a mean zero martingale with respect to the filtration generated
by ξ(s)s≥0:

Ms(ψn,`) := ψn,`(ξ(s))− ψn,`(ξ(0))−
∫ s

0

(2− λξ0(r))(2ξ0(r)− ξn(r)− ξ−n(r)) dr. (3.16)

We need separate arguments to control the terms ψn,`(ξ(t))−ψn,`(ξ(0))
t and 1

tMt(ψn,`).
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Lemma 3.3. Under the assumptions of Theorem 2.1, assume (3.10). With ψn,` given by
(3.15),

lim
t→∞

1

t
E|ψn,`(ξ(t))| = 0.

Proof. Rewrite ψn,`(ξ) = n(ξ0 − ρ) +
∑n
k=1(n− k)(ξk + ξ−k − 2ρ). It suffices to prove

lim
t→∞

1

t
E
∣∣∣ n∑
k=1

(n− k)(ξk(t)− ρ)
∣∣∣ = 0. (3.17)

Notice that the trivial pointwise bound is of order n2, which is much bigger than t. The
idea is that when k is large the variables ξk(t)− ρ are approximately independent and
have mean zero. Recall that ξx(t) = ηx+Xt(t), where η(t) is a stationary SSEP and Xt is
the random walk. Then

E
∣∣∣ n∑
k=1

(n− k)(ξk(t)− ρ)
∣∣∣ ≤ n2P (|Xt| > n) +E

∣∣∣ sup
|j|≤n

n∑
k=1

(n− k) (ηk+j(t)− ρ)
∣∣∣. (3.18)

By Lemma 4.3, the first term is of order t3n−4. It then follows from our assumption
(3.10) that limt→∞ t−1n2P (|Xt| > n) = 0, as we need.

To bound the second term, write

1

t
E
∣∣∣ sup
|j|≤n

n∑
k=1

(n− k) (ηk+j(t)− ρ)
∣∣∣

=

∫ ∞
0

P

(∣∣∣ sup
|j|≤n

n∑
k=1

(n− k) (ηk+j(t)− ρ)
∣∣∣ > βt

)
dβ

≤δ +
∑
|j|≤n

∫ ∞
δ

P

(∣∣∣ n∑
k=1

(n− k) (ηk+j(t)− ρ)
∣∣∣ > βt

)
dβ

≤δ + 2
∑
|j|≤n

∫ ∞
δ

exp

(
− t

2

n3
β2

2

)
dβ

≤δ + 12
n

5
2

t
· exp

(
− t

2

n3
δ2

2

)
=δ + 12 t

5α
2 −1 · exp

(
−δ

2t2−3α

2

)
.

(3.19)

The fourth line is by Lemma 4.1, the fifth line is by lemma 4.2, and the last line is by
(3.10).

Now choose δ = t−(
2
3−α), we get an upper bound of E

∣∣∣∑n
k=1(n− k)(ξk(t)− ρ)

∣∣∣ as

1

t
E
∣∣∣ n∑
k=1

(n− k)(ξk(t)− ρ)
∣∣∣ ≤ c0 (t2−4α + tα−

2
3

)
(3.20)

for some constant c0 > 0 and t large enough. Let t→∞, the right hand side converges
to zero, this finishes the proof of (3.17).

The next lemma controls 1
tMt(ψn,`).

Lemma 3.4. Under the assumptions of Theorem 2.1, assume (3.10). With ψn,` given by
(3.15) and Mt(ψn,`) given by (3.16),

lim
t→∞

t−2E
[
M2
t (ψn,`)

]
= 0. (3.21)
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Proof. There is an explicit formula for the predictable quadratic variation of Mt(ψn,`):

〈M·(x)〉t =
∫ t

0

∑
x∈Z

[
ψn,`

(
ξx,x+1(s)

)
− ψn,` (ξ(s))

]2
ds (3.22)

+

∫ t

0

(1− λξ0(s)) [ψn,` (θ1ξ(s))− ψn,` (ξ(s))]2 ds (3.23)

+

∫ t

0

(1− λξ0(s)) [ψn,` (θ−1ξ(s))− ψn,` (ξ(s))]2 ds. (3.24)

Our goal is to prove limt→∞ t−2E 〈M·(ψn,`)〉t = 0. To bound the first term, notice that[
ψn,`

(
ξx,x+1

)
− ψn,` (ξ)

]2
= 0 if |x| > n and no greater than 1 if |x| ≤ n, so the integrand

is much smaller than 2tn. The second term demands more work while the third term has
the similar proof as the second one. To start, we compute

− ψn,`(θ1ξ) + ψn,`(ξ) =

n∑
k=1

ξk −
0∑

k=−n+1

ξk. (3.25)

It is enough to prove

lim
t→∞

sup
s≤t

t−1E

( n∑
k=1

ξk(s)−
0∑

k=−n+1

ξk(s)

)2
 = 0. (3.26)

The expectation above is small by the same reason that (3.17) is small: the random
variables ξk(s), for large k, are approximately independent of mean ρ. We follow the
same method of proof.

t−1E

( n∑
k=1

ξk(s)−
0∑

k=−n+1

ξk(s)

)2


≤ n2

t
P (|Xs| > n) + t−1E

 sup
|j|≤n

(
n∑
k=1

ηk+j(s)−
0∑

k=−n+1

ηk+j(s)

)2
 (3.27)

By Lemma 4.3, the first term is of order t2

n4 , so it vanishes as t→∞. The second term is
bounded, for any δ > 0, by

δ +
∑
|j|≤n

∫ ∞
δ

P

[ n∑
k=1

ηk+j(s)−
0∑

k=−n+1

ηk+j(s)

]2
≥ βt

 dβ

≤ δ + 2
∑
|j|≤n

∫ ∞
δ

exp

(
− βt

10n

)
dβ

≤ δ + 60n2

t
exp

(
− δt

10n

)
= δ + 60t2α−1 exp

(
−δt

1−α

10

)
.

(3.28)

The second line is by Lemma 4.1. Choose δ = t−
1−α
2 , we then get an upper bound

t−1E

( n∑
k=1

ξk(s)−
0∑

k=−n+1

ξk(s)

)2
 ≤ c1( t2

n4
+ t

α−1
2

)
(3.29)
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for some constant c1 > 0 and t large enough.
Collect all the above upper bounds we have

1

t2
E
[
M2
t (ψn,`)

]
≤ 2n

t
+ c1

(
t2

n4
+ t

α−1
2

)
= 2tα−1 + c1(t

2−4α + t
α−1
2 ). (3.30)

By the assumption 3.10, the upper bound vanishes as t→∞.

Proof of Proposition 3.2. By Chebyshev inequality, for any ε > 0, notice that ξ(0) = η(0),
there exists some constant c2 > 0 such that

P

[∣∣∣ψn,`(ξ(0))
t

∣∣∣ ≥ ε] ≤ E
[
ψ2
n,`(ξ(0))

]
ε2t2

=
E
[
(
∑n
k=1(n− k)(ηk(0)− ρ))

2
]

ε2t2
≤ c2
ε2
t2α−2.

(3.31)
The last inequality uses the fact that {ηk(0)− ρ}k∈Z is an i.i.d mean zero sequence. The
cross terms above will vanish after taking the expectation.

Use this upper bound, together with (3.16), (3.20), and (3.30) for any ε > 0,

P

[
1

t

∣∣∣ ∫ t

0

(2− λξ0(s))(2ξ0(s)− ξn(s)− ξ−n(s)) ds
∣∣∣ ≥ ε] ≤ C0(ε)t

γ1 (3.32)

where constant C0(ε) > 0 and

γ1 = max

{
2α− 2, α− 1,

α− 1

2
, 2− 4α, α− 2

3

}
< 0 (3.33)

due to assumption (3.10). Hence Proposition 3.2 is proved.

The next proposition shows the limit of the second part of the decomposition (3.6).

Proposition 3.5. Under the assumption of Theorem 2.1, assume (3.10). Under the
annealed measure,

lim
t→∞

1

t

∫ t

0

(2− λξ0(s))(ξn(s)−
−→
ξ `n(s) + ξ−n(s)−

←−
ξ `−n(s)) ds = 0 (3.34)

in probability.

Proof. We show that the integrand is in the range of the generator and split the integral
into a martingale term plus a vanishing term. Notice that

ξx −
−→
ξ `x =

`−1∑
j=0

`− j
`

(ξx+j − ξx+j+1) (3.35)

and

ξx −
←−
ξ `x =

`−1∑
j=0

`− j
`

(ξx−j − ξx−j−1). (3.36)

From (3.13), we get

(2− λξ0)
(
ξn −

−→
ξ `n + ξ−n −

←−
ξ `−n

)
= −Lϕn,`(ξ), (3.37)

where

ϕn,`(ξ) :=

`−1∑
j=0

`− j
`

n+j∑
x=−n−j

ξx. (3.38)

The process
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Ms(ϕn,`) := ϕn,`(ξ(s))− ϕn,`(ξ(0))−
∫ s

0

Lϕn,`(ξ(r)) dr (3.39)

is a martingale with respect to the filtration generated by (ξ(s))s≥0. To prove (3.34), we
show that |ϕn,`| � t and 〈M·(ϕn,`)〉t � t2. For the first term,

|ϕn,`(ξ)| ≤
`−1∑
j=0

`− j
`

(2n+ 2j + 1) ≤ C
(
`n+ `2

)
(3.40)

for some C > 0, so it follows from (3.10) that limt→∞ t−1|ϕn,`(ξ)| = 0 for any ξ ∈ {0, 1}Z.
It remains to prove that t−1Mt(ϕn,`)→ 0 in probability. We prove this by controlling

the second moment of Mt(ϕn,`) through its predictable quadratic variation

〈M·(ϕn,`)〉t =
∫ t

0

∑
x∈Z

[
ϕn,`

(
ξx,x+1(s)

)
− ϕn,` (ξ) (s)

]2
ds+

+

∫ t

0

(1− λξ0(s)) [ϕn,` (θ1ξ(s))− ϕn,` (ξ(s))]2 ds

+

∫ t

0

(1− λξ0(s)) [ϕn,` (θ−1ξ(s))− ϕn,` (ξ(s))]2 ds.

(3.41)

We claim that,

lim
t→∞

t−2 〈M·(ϕn,`)〉t = 0. (3.42)

Let ak :=
∑`−1
j=k

`−j
` . Then

ϕn,`(ξ) = a0

n∑
j=−n

ξj +

`−1∑
k=1

ak (ξn+k + ξ−n−k) . (3.43)

It’s easy to see that

[
ϕn,`

(
ξx,x+1

)
− ϕn,` (ξ)

]2 ≤ `−1∑
k=0

1{|x|=n+k}(ak − ak+1)
2 ≤ ` (3.44)

and
[ϕn,` (θ1ξ)− ϕn,` (ξ)]2 ≤ (2a0)

2 ≤ C`2 (3.45)

for some C > 0 independent of ` and n.
These bounds imply

〈M·(ϕn,`)〉t ≤ 3
(
tl + Ct`2

)
. (3.46)

Hence, by (3.39), (3.40), (3.46), for any ε > 0,

P

[
1

t

∣∣∣ ∫ t

0

(2− λξ0(s))(ξn(s)−
−→
ξ `n(s) + ξ−n(s)−

←−
ξ `−n(s)) ds

∣∣∣ ≥ ε] ≤ C1(ε)
l + ln+l2

t
(3.47)

for some C1(ε) > 0. By (3.10) the right hand side of (3.47) indeed converges to zero.

Remark 3.6. Proposition 3.5 gives the convergence under the annealed measure. But
one can see from the key upper bounds (3.40) and (3.46) are deterministic. This implies
that the convergence holds not only in the annealed sense, but also in the quenched
sense, i.e. under P η for all η ∈ [0, 1]N ×R+.
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Proposition 3.7. Under the assupmtion of Theorem 2.1, assume (3.10). Under the
annealed measure

1

t

∫ t

0

(2− λξ0(s))(
−→
ξ `n(s)− ρ) ds→ 0 (3.48)

in probability as t→∞. The same holds if
−→
ξ `n is replaced by

←−
ξ `−n.

Proof. Define, for m > 0, the event

Am :=

{
max
s≤t
|Xs| < m

}
. (3.49)

Then

E

[(
1

t

∫ t

0

(2− λξ0(s))(
−→
ξ `n(s)− ρ) ds

)2
]

≤ 4P(Acm) +
1

t

∫ t

0

E
[
1Am(2− λξ0(s))2(

−→
ξ `n(s)− ρ)2

]
ds

(3.50)

We will prove that, for t
1
2 � m� n, the upper bound in the last equation vanishes

as t → ∞. To bound the second term, we apply the Lateral Decoupling Lemma ([15],
Proposition 4.1). To do so, we need the random variable inside the expectation to be a
function of the exclusion process only. Thus we rewrite the expectation as

E
[
1Am(2− λξ0(s))2(

−→
ξ `n(s)− ρ)2

]
=
∑
|k|<m

E
[
(2− ληk(s))2E

(
1{Am,Xs=k}|Ft

)
(−→η `n+k(s)− ρ)2

]
,

(3.51)

where Ft is the filtration generated by (ηs)s∈[0,t]. If m � n and (3.10) holds, we can
apply Proposition 4.4 with H = t, f1(η) = (2− ληk(s))2 1

2E
(
1{Am,Xs=k}|Ft

)
and f2(η) =

(−→η `n+k(s)−ρ)2 for all |k| < m. Note that the support of f1 is contained in [−m,m]× [0, t] ⊂
[m − t,m] × [0, t], and the support of f2 is contained in [n + k, n + k + `] × [0, t] ⊂
[n + k, n + k + t] × [0, t], and by (3.10) and the assumption that t1/2 � m � n the
horizontal separation of these boxes is n + k −m � tα

′
for any α′ ∈ ( 12 , α). Therefore,

applying Proposition (4.4) it holds that

E
[
1Am(2− λξ0(s))2(

−→
ξ `n(s)− ρ)2

]
=
∑
|k|<m

E
[
(2− ληk(s))2E

(
1{Am,Xs=k}|Ft

)
(−→η `n+k(s)− ρ)2

]
≤ 4m · exp

(
−t2α

′−1
)
+
∑
|k|<m

E
[
1{Am,Xs=k}(2− ληk(s))

2
]
E
[
(−→η `n+k(s)− ρ)2

]
≤ 4m · exp

(
−t2α

′−1
)
+

4

`
.

(3.52)

Using this bound in (3.51), together with Lemma (4.3), we get

E

[(
1

t

∫ t

0

(2− λξ0(s))(
−→
ξ `n(s)− ρ) ds

)2
]
≤ 4m · exp

(
−t2α

′−1
)
+

4

`
+
c3t

3

m6
(3.53)

for some c3 > 0 and t large enough. If t
1
2 � m � n and (3.10) holds then the upper

bound vanishes as t→∞. By Chebyshev inequality, this finishes the proof.

One can get Theorem 3.1 immediately from propositions 3.2, 3.5, and 3.7.
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3.2 Proof of the asymptotic limit of ξ(t) under the quenched measure

First recall (3.32), (3.47) and (3.53). By choosing adequate α, ` and m, one can get
an explicit upper bound on the rate of convergence in (2.8).

Proof of Theorem 2.3. Let α = 0.6, ` = t0.2 and m = t0.55. Then,for any ε > 0 and for
large enough t, one can check

P

[
1

t

∣∣∣ ∫ t

0

(2− λξ0(s))(ξ0(s)− ρ) ds
∣∣∣ ≥ ε] ≤ C(ε)t− 1

15 (3.54)

for some C(ε) > 0.

The next lemma shows how to get the convergence in probability under the quenched
measure Qµ − a.s. from the annealed measure.

Lemma 3.8. Under the assumptions of Theorem 2.1, let Yt =
∫ t
0
(2− λξ0(s))(ξ0(s)− ρ) ds

for t > 0 and Qµ defined in section 2. Then for any ε, δ > 0, there exists tη(ε, δ) > 0 such
that

Qµ [{P η (|Yt| ≥ εt) < δ} for ∀t > tη(ε, δ)] = 1. (3.55)

Proof. Define a sequence {tk}k≥1 as tk = k16. By (3.54), we have for k large enough,

P [|Ytk | ≥ εtk] ≤ C(ε)k−
16
15 . (3.56)

By Chebyshev inequality,

Qµ [P
η [|Ytk | ≥ εtk] ≥ δ] ≤

1

δ
P [|Ytk | ≥ εtk] ≤

C(ε)

δ
k−

16
15 . (3.57)

the upper bound is summable for k. Thus by Borel-Cantelli lemma,

Qµ [{P η [|Ytk | ≥ εtk] ≥ δ} i.o.] = 0. (3.58)

For any t ≥ 1, it must lie in the interval [tk, tk+1) for some k. Notice that Yt has bounded
increments, which means |Ys − Yr| ≤ 2|s− r| for any s, r > 0. This gives the upper bound

|Yt|
t
≤ |Ytk |+ 2(tk+1 − tk)

tk
. (3.59)

Let kε > 0 satisfy 2(tkε+1 − tkε)t−1kε < ε, for any k > kε and t ∈ [tk, tk+1), {|Yt|/t ≥ 2ε}
implies {|Ytk |/tk ≥ ε}. Define Aε,δ that Acε,δ = {{P η [|Ytk | ≥ εtk] ≥ δ} i.o.}. Choose any
η ∈ Aε,δ, there exists kη(ε, δ) such that for all k > kη(ε, δ)

P η [|Ytk | ≥ εtk] < δ. (3.60)

Pick tη(2ε, δ) = tkε ∨ tkη(ε,δ) then by the above argument we have for all t ∈ [tk, tk+1), k ≥
kε ∨ kη(ε, δ),

P η [|Yt| ≥ 2εt] ≤ P η [|Ytk | ≥ εtk] < δ (3.61)

which finishes the proof since Pµ (Aε,δ) = 1.

In the last part of this section we prove Theorem 2.2.

Proof of Theorem 2.2. From Lemma 3.8, we just need one more step to reach our final
goal. To see this, for any ε > 0, let

Aε =

∞⋂
n=1

Aε, 1n . (3.62)
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We have Pµ (Aε) = 1 since it is a intersection of countably many sets while each has
probability 1. Choose any η ∈ Aε, for any n ≥ 1,

P η [|Yt| ≥ εt] <
1

n
(3.63)

holds for all t > tη(ε,
1
n ). Thus t−1|Yt| converge to zero in probability under P η.

4 Technical lemmas

Lemma 4.1 ([7], Theorem 2.8). Let ζ1, ζ2, . . . be i.i.d. random variables with |ζ1| ≤ 1 and
Eζ1 = 0. Then, for any λ > 0,

P

∣∣∣∑
j≤n

bjζj

∣∣∣ > λ

 ≤ 2 · exp

(
− λ2

2
∑
j≤n b

2
j

)
. (4.1)

Lemma 4.2. For any δ > 0,∫
δ

exp

(
− x2

2σ2

)
dx ≤

√
2πσ2 · exp

(
− δ2

2σ2

)
. (4.2)

Proof. For any λ > 0,∫
δ

exp

(
− x2

2σ2

)
dx ≤ e−λδ

∫ ∞
δ

exp

(
λx− x2

2σ2

)
dx

≤ exp

(
−λδ + λ2σ2

2

)∫ ∞
−∞

exp

(
−
(
x− λσ2

)2
2σ2

)
dx

=
√
2πσ2 exp

(
−λδ + λ2σ2

2

)
.

(4.3)

Choosing λ = δ/σ2 gives the desired bound.

Lemma 4.3. For any positive γ and t,

P

(
sup
s≤t
|Xs| ≥ γ

)
= O

(
t3

γ6

)
. (4.4)

Proof. The first observation is that X is a martingale, so Doob’s Lp-inequality gives

P

(
sup
s≤t
|Xs| ≥ γ

)
≤
(
6

5

)6 E
(
X6
t

)
γ6

. (4.5)

To bound the sixth moment, we compare our random walk with a simple symmetric
walk: let Y1, . . . , Yn be i.i.d. random variables with P (Y1 = ±1) = 1/2 and let Jt denote
the number of times that X jumps during the time interval [0, t]. Then Xt =

∑Jt
k=1 Yk in

distribution, whence

E
(
X6
t

)
= E

∑
i≤Jt

Y 6
i + 15

∑
i<j≤Jt

Y 2
i Y

4
j + 90

∑
i<j<k≤Jt

Y 2
i Y

2
j Y

2
k


≤ E

(
Jt + 15J2

t + 90J3
t

)
.

(4.6)

Since Jt is stochastically dominated by a mean t Poisson random variable, the last
expectation is bounded by a multiple of t3.
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The next lemma comes from [15]. To get the version stated below, one only needs to
change the last line of the original proof, using (4.2).

Proposition 4.4 (Lateral Decoupling, [15] Proposition 4.1). Let f1, f2 : {0, 1}Z ×R+ →
[0, 1] be measurable functions and H, y, α > 0. Let B1 = [−H, 0] × [0, H] ⊂ R2 and
B2 = [y, y +H]× [0, H] ⊂ R2. Assume f1 is supported on B1, that is, if the trajectories
η, η′ : Z×R+ → {0, 1} satisfy ηx(s) = η′x(s) for all (x, s) ∈ B1 then f1(η) = f1(η

′). Assume
f2 is supported on B2. Finally, denote by Pρ the law of SSEP started from equilibrium at
density ρ ∈ (0, 1), that is, started from the product measure ⊗x∈ZBer(ρ). Let Eρ be the
expectation with respect to Pρ.

Then y ≥ Hα implies

Eρ [f1f2] ≤ Eρ [f1]Eρ [f2] + C e−H
2α−1

(4.7)

for some C > 0.
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