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Abstract

Let O be chosen uniformly at random from the group of (N +L)× (N +L) orthogonal
matrices. Denote by Õ the upper-left N × N corner of O, which we refer to as a
truncation of O. In this paper we prove two conjectures of Forrester, Ipsen and Kumar
(2020) on the number of real eigenvalues N (m)

R of the product matrix Õ1 . . . Õm, where
the matrices {Õj}mj=1 are independent copies of Õ. When L grows in proportion to N ,
we prove that

E(N
(m)
R ) =

√
2mL

π
arctanh

(√
N

N + L

)
+O(1), N →∞.

We also prove the conjectured form of the limiting real eigenvalue distribution of the
product matrix. Finally, we consider the opposite regime where L is fixed with respect
to N , known as the regime of weak non-orthogonality. In this case each matrix in the
product is very close to an orthogonal matrix. We show that E(N (m)

R ) ∼ cL,m log(N)

as N → ∞ and compute the constant cL,m explicitly. These results generalise the
known results in the one matrix case due to Khoruzhenko, Sommers and Życzkowski
(2010).
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Products of truncated orthogonal random matrices

1 Introduction and main results

Research on products of random matrices started in 1960 with the work of Fursten-
berg and Kesten [22]. Early investigations concerned the properties and computation
of the Lyapunov exponents of products of random matrices when the dimension N is
fixed and the number of factors m tends to infinity, see e.g. [8, 12] and references
therein. More recently there were several new developments related to the opposite
regime, namely when the number of factors m is finite and the matrix dimension N

tends to infinity, or is also finite [5]. Early progress in this direction came with the
work of Burda et al. [10], who computed the spectral density for a product consisting of
independent non-Hermitian matrices whose elements are i.i.d. standard complex normal
random variables, the complex Ginibre ensemble, in the limit N →∞ and for finite m.
Subsequently, Akemann and Burda [2] discovered that the determinantal structure of the
eigenvalue point process known to hold for a single complex Ginibre matrix continues
to hold for products of such matrices. However, the correlation kernel that arises for
products is more complicated and has to be expressed in terms of Meijer G-functions.
The determinantal machinery allowed them to analyse the point process of eigenvalues in
various microscopic regimes for fixed m. A similar theory has been developed to analyse
products of truncated unitary random matrices [4, 1, 35]. Recently these developments
have been extended to study the question of double scaling limits as both m and N tend
to infinity simultaneously [3, 33, 34].

The focus of this paper will be on products of real random matrices. One of the
most well-studied examples consists of matrices whose elements are real i.i.d. standard
normal random variables, known as the real Ginibre ensemble. A distinguishing feature
of the real case is that there is a non-zero probability of finding purely real eigenvalues
and therefore the point process of eigenvalues consists of two correlated components of
purely real and complex conjugated points. This makes the study of real random matrices
considerably more challenging than their complex counterparts. The real Ginibre
ensemble was introduced in 1965 by Ginibre [25]. After the original paper there was little
progress until the work of Lehmann and Sommers [32] who obtained the joint probability
density function of all real and complex eigenvalues, later discovered independently by
Edelman [14]. These results paved the way for the calculation of correlation functions:
it was then discovered that the eigenvalues of the real Ginibre ensemble form a Pfaffian
point process [21, 40, 7]. Statistics of the real eigenvalues in particular have been
shown to arise in many diverse areas, notably in connection to annihilating Brownian
motions [43, 42, 37, 16], random dynamical systems [23] and recently to an inverse
scattering solution of the Zakharov-Shabat system [6]. Real eigenvalues of products
have been applied to physical problems [31, 26] and recently appeared in connection to
random Markov matrices [27]. The analogue of the results discussed above for products
of complex matrices also hold here: products of independent real Ginibre matrices are
again described by a Pfaffian point process [28, 18].

Much less is known about truncated orthogonal random matrices and their products.
Their study began in the single matrix case with the work of Khoruzhenko et al. [29] who
showed that the eigenvalues form a Pfaffian point process with an explicit correlation
kernel. Unlike the real Ginibre ensemble, there is a qualitatively distinct asymptotic
regime known as weak non-orthogonality, defined by truncating only a finite number
of rows and columns from the original orthogonal matrix. This asymptotic regime has
shown up in connection to the zeros of random Kac polynomials [17]. More recently, it
appeared in [36, 24] where it is related to the persistence exponent of the 2d diffusion
equation with random initial conditions. As with the real Ginibre ensemble, the Pfaffian
structure of a single truncated orthogonal random matrix has been extended to products
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Products of truncated orthogonal random matrices

of such matrices [28]. Using this integrable structure, the probability that all eigenvalues
of a product of truncated orthogonal random matrices are real was calculated in [20].
Simplified expressions for the correlation kernel of the Pfaffian point process were
obtained in the recent work [19].

We now discuss the main results of the paper. Let O denote a random orthogonal
matrix of size (N + L)× (N + L) sampled uniformly with respect to the Haar measure
on the orthogonal group and let Õ denote the upper-left N × N truncation of O. We
are interested in the product matrix X(m) := Õ1 . . . Õm where {Õj}mj=1 are independent

copies of Õ. In our first result we shall make the assumption that L grows in proportion
to N . Let L := LN →∞ be a sequence of positive integers such that

γ :=
LN
N
→ γ̃, N →∞, (1.1)

where γ̃ > 0. Throughout the paper we will suppress the N -dependence of L and γ

for notational convenience. We denote by N (m)
R the total number of real eigenvalues of

X(m).

Theorem 1.1. Let L := LN be such that hypothesis (1.1) holds and define α := 1
1+γ .

Then for any fixed m ∈ N, we have

E(N
(m)
R ) =

√
2mγN

π
arctanh(

√
α) +O(1), N →∞. (1.2)

Next we consider the individual real eigenvalues λ1, . . . , λn of X(m), where n = N
(m)
R .

The averaged global density of real eigenvalues is defined by

ρN (x) := E

 n∑
j=1

δ(x− λj)

 , (1.3)

and we denote its appropriately normalised version ρ̃N (x) = 1

E(N
(m)
R

)
ρN (x).

Theorem 1.2. Let L := LN be such that (1.1) holds and define α̃ = 1
1+γ̃ . Then for any

bounded continuous test function h and fixed m ∈ N, we have

lim
N→∞

∫ 1

−1

h(x)ρ̃N (x) dx =

∫ 1

−1

h(x)ρ(x) dx, (1.4)

where

ρ(x) =
1

2m arctanh(
√
α̃)

1

|x|1− 1
m (1− |x| 2m )

1
x∈(−α̃

m
2 ,α̃

m
2 )
. (1.5)

Furthermore, for any fixed x ∈ (−1, 1) \ {−α̃m
2 , 0, α̃

m
2 }, we have the pointwise limit

limN→∞ ρ̃N (x) = ρ(x).

Theorems 1.1 and 1.2 prove two conjectures of Forrester, Ipsen and Kumar [19,
Conjectures 4.1 and 4.2] and generalise the m = 1 asymptotic results of [29]. Theorem
1.1 goes further by providing a precise error bound on the remainder, see Remark A.2
for further discussion on this point. Results of the type (1.2), showing that on average
there are of order

√
N real eigenvalues go back to the work of Edelman et al. [15] in

the case of a single real Ginibre matrix, proving an earlier conjecture in [32]. Owing to
the mentioned developments linking products of real random matrices to Pfaffian point
processes in [28, 18], this was extended to products of independent real Ginibre matrices
in [39]. The ‘

√
N -law’ is expected to hold for a broad class of real random matrices [13].

On this point, for m = 1 Tao and Vu [41] used moment matching methods to extend the√
N estimate in [15] to a class of i.i.d. real random matrices. The fluctuations of N (1)

R
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Products of truncated orthogonal random matrices

about the
√
N -law have been investigated and are known to be Gaussian for the real

Ginibre ensemble [38, 30].

The limiting density (1.5) has a simple description in terms of its single matrix m = 1

version. If A is the random variable whose density is given by the m = 1 case of (1.5),
then the symmetrised power AmB gives the density (1.5) for any m ≥ 1, where B is
an independent Bernoulli random variable on {−1, 1}. This type of result is familiar
in the study of free probability [11] which is very effective at computing the complex
spectrum of a product matrix like X(m) in terms of the spectra of the individual factors.
However, methods of free probability do not seem to be applicable to the problems
solved in this paper regarding real eigenvalues. The main technical challenges in the
proofs of Theorems 1.1 and 1.2 arise in the evaluation of integrals (2.6) and (2.7) in
Corollary 2.2, whose asymptotics are not uniform due to singularities of the integrands
near the origin. This problem is common when dealing with products of random matrices
and is discussed in more detail in Section 2.1. It is likely that the technique we develop
is useful for other problems involving products of random matrices. For example, our
method applies equally well to real Ginibre matrices and this is sketched out in Appendix
A.

Finally we consider the regime of weak non-orthogonality, defined by fixing L and
letting N →∞. In this case one is only truncating a finite number of rows and columns,
and each matrix in the product is very close to an orthogonal matrix. The

√
N -law

discussed above does not hold for these matrices. We find

Theorem 1.3. Let L and m be fixed positive integers. Then as N →∞ we have

E(N
(m)
R ) ∼ 1

B
(
mL
2 , 1

2

) log(N), (1.6)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function.

The case m = 1 of Theorem 1.3 was obtained in the work of Khoruzhenko, Sommers
and Życzkowski [29]. We are not aware of the general m case given by Theorem 1.3
appearing in the literature, conjecturally or otherwise.

This paper is structured as follows. In Section 2 we begin by recalling the results of
[19] regarding the Pfaffian structure associated with products of truncated orthogonal
random matrices. Then we give an overview of the proof of Theorem 1.1, postponing the
full details until Section 3. Then in Section 4 we give the proof of Theorem 1.2 based
on the results obtained in Section 3. In Section 5 we prove Theorem 1.3. Section 6 is
devoted specifically to the asymptotic analysis of multiple integrals of Laplace type that
are needed throughout Sections 2, 3 and 4. Finally, Appendix A includes a discussion
about how the approach of the present paper is easily adapted to the case of products of
real Ginibre matrices.

2 Strategy of the proof and leading order asymptotics

The goal of this section is to discuss the key steps in the proof of Theorem 1.1 and
give a quick derivation of the leading asymptotics in (1.2). The starting point of the proof
is the fact that that the real eigenvalues of the product matrix X(m) = Õ1 . . . Õm form a
Pfaffian point process [28]. In the recent work [19] this has been simplified and explicit
formulae for the correlation kernel of the Pfaffian point process were identified.

Theorem 2.1 (Forrester, Ipsen and Kumar [19]). Define the function

S(x1, x2) :=

∫ 1

−1

dy (x1 − y)sgn(x2 − y)wL(x1)wL(y)fN−2,L(x1y), (2.1)
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where the weight function is

wL(x) =

(
L

2B(L2 ,
1
2 )

)m
2 ∫

[−1,1]m
δ(x− y1 . . . ym)

m∏
i=1

(1− y2
i )

L
2 −1 dyi, (2.2)

and

fN−2,L(x) =

N−2∑
n=0

(
L+ n

n

)m
xn. (2.3)

Then the real eigenvalues of X(m) form a Pfaffian point process with correlation functions
given by

ρ(k)(x1, . . . , xk) = Pf [K(xi, xj)]
k
i,j=1 , (2.4)

where the correlation kernel is of the form

K(xi, xj) =

(
D(xi, xj) S(xi, xj)

−S(xj , xi) Ĩ(xi, xj)

)
. (2.5)

In (2.5), D and Ĩ are certain anti-symmetric functions of xi and xj that are not required
here; see [19] for further details.

In particular, we have

Corollary 2.2. The one-point density of real eigenvalues ρN (x) in (1.3) is obtained by
taking x1 = x2 = x in (2.1), so that ρN (x) = S(x, x) and therefore

ρN (x) =

∫ 1

−1

dy |x− y|wL(x)wL(y)fN−2,L(xy). (2.6)

Furthermore, the expected number of real eigenvalues of X(m) is the total integral of
ρN (x), given by

E(N
(m)
R ) = 2

∫ 1

0

dx

∫ 1

−1

dy |x− y|wL(x)wL(y)fN−2,L(xy), (2.7)

where we used that ρN (x) is an even function of x.

Remark 2.3. It is well known that (2.2) has a probabilistic interpretation in terms
of products of independent scalar random variables. Namely, up to a constant of
proportionality, wL(x) is equal to the probability density function for a product of m
independent Beta

(
L
2 ,

L
2

)
random variables. Functions of the form (2.2) can also be

represented in terms of Meijer G-functions, see [4, 19] for further details.

2.1 Preliminary estimates

To prove Theorems 1.1 and 1.2, the idea is to obtain asymptotics of the functions
wL(x) and fN−2,L(xy) separately, and then insert the results into the explicit formulae
(2.6) and (2.7). Although this would appear to be a straightforward approach, particular
care must be taken with the estimates due to parts of the integral (2.7) where the
required asymptotics are not uniform. In particular, when m > 1 both wL(x) and
fN−2,L(xy) have singular terms in their asymptotics near the origin, while for m ≥ 1

the function fN−2,L(xy) undergoes a transition in its asymptotic behaviour near the
hyperbola xy = αm.

The purpose of this subsection is simply to detail our asymptotic results for wL(x)

and fN−2,L(xy) that are precise enough to prove Theorems 1.1 and 1.2.
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Products of truncated orthogonal random matrices

Remark 2.4. Throughout the paper, quantities c and C will always denote absolute
positive constants that only depend on fixed parameters such as m or κ (see below) and
do not depend on N , L or any variables of integration. Furthermore we deem the precise
value of these constants as unimportant and caution that their value may change from
line to line.

Proposition 2.5. Fix a small constant κ > 0 and a large constant M > 0. Then the
weight function satisfies the following estimate uniformly on |x| ∈ [M L−

m
2 , 1− κ],

wL(x) = dL,m(1− |x|2/m)
mL
2 −1|x| 1m−1

(
1 +O

(
1

|x| 2mL

))
, L→∞, (2.8)

where dL,m is defined by

dL,m =
1

2

√
L

πm

(
2π

B(L2 ,
1
2 )

)m
2

=
1

2

√
L

πm
(2πL)

m
4

(
1 +O

(
1√
L

))
, L→∞. (2.9)

Furthermore, for |x| ∈ [M L−
m
2 , 1] we have the crude estimate

wL(x) ≤ N c(1− |x| 2m )
mL
2 . (2.10)

To estimate fN−2,L(x) in (2.3) the idea will be to replace it with the infinite series

f∞,L(x) :=

∞∑
n=0

(
L+ n

n

)m
xn. (2.11)

Note that (2.11) converges absolutely inside the unit disc. We will show that the sum
(2.3) naturally splits into two contributions, the first coming from f∞,L(x) restricted to a
specific interval, and the second an error term coming from the tail of the sum.

Proposition 2.6. Under the hypotheses of Theorem 1.1 the following holds. We have
the following estimate as N →∞, uniformly on x ∈ [−1, 1] \ ((α− ω)m, (α+ ω)m),

fN−2,L(x) = f∞,L(x)1−(α+ω)m<x<(α−ω)m +
xN−1

x− αm
eN,m

(
1 +O

(
1√
Nω

))
, (2.12)

where ω may depend on N , and

eN,m :=
γ−mγN−

m
2 (1 + γ)mN(1+γ)− 3m

2

(2πN)
m
2

. (2.13)

In practice we will take ω = N−
1
2 , such that the big-O term in (2.12) is O(1).

The function f∞,L(x) can then be analysed separately in the limit L→∞.

Proposition 2.7. Fix a small constant κ > 0 and a large constant M > 0. Then the
function f∞,L(x) satisfies the following estimate as L→∞, uniformly on x ∈ [ML−m, 1−
κ],

f∞,L(x) = (1− x 1
m )−mL−1 L−

m−1
2

1

(2π)
m−1

2

1√
m
x−

m−1
2m

(
1 +O

(
1

x
1
mL

))
. (2.14)

Furthermore, on the interval x ∈ [0, 1) we have the crude estimate

f∞,L(x) ≤ (1− x 1
m )−m(L+1), (2.15)

while for x ∈ (−1, 0] we have

|f∞,L(x)| ≤ (1− |x| 1m )−m(L+1)e−cL|x|
1
m . (2.16)
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Products of truncated orthogonal random matrices

The proofs of Propositions 2.5, 2.6 and 2.7 are given in full in Section 6. As we
shall see, all the quantities involved have convenient integral representations that are
amenable to the Laplace or saddle point method for the asymptotic analysis of multiple
integrals. Although this is relatively standard, there is a threshold beyond which the
Laplace method breaks down, for example if 0 < x < L−

m
2 −ε for any ε > 0 in Proposition

2.5.

Remark 2.8. The decomposition (2.12) was inspired by analogous results for the trun-
cated exponential function given in [9]. At the level of pointwise asymptotics, the leading
terms in (2.8) and (2.14) were also derived in [4]. However, our situation requires more
precise estimates and uniform error bounds as given in the above three Propositions.
This is due to the specific integral form in (2.1) that is used to construct the correlation
kernel for products of truncated orthogonal matrices.

2.2 Proof of Theorem 1.1

A straightforward check shows that after formally substituting the asymptotics (2.8)
and (2.14) into (2.7), there is a critical point at y = x in the positive quadrant. Then
keeping xy < (α−N− 1

2 )m in accordance with (2.12), our main results are obtained by a
final saddle point computation.

To make this approach rigorous we need to remove some regions of the integration
in (2.7) where the mentioned asymptotics do not hold or otherwise give negligible
contributions. These include a small microscopic layer of width MN−

m
2 near the origin,

a small region near ±1 of fixed size κ > 0 and the entire negative y quadrant, see Lemmas
3.1, 3.3 and 3.4 for precise statements. The last of these Lemmas also shows that we can
always neglect the second term in (2.12). This results in the following approximation of
(2.7):

Lemma 2.9. For any κ > 0 sufficiently small and M > 0 a fixed large constant, we have
E(NR) = I+ +O(1) as N →∞, where

I+ = 2m2

∫ 1−κ′

N−1/2M ′
du

∫ 1−κ′

N−1/2M ′
dv |vm − um|wL(um)wL(vm)

× f∞,L((uv)m) (uv)m−1 1
uv<α−N−

1
2
,

(2.17)

and M ′ = M
1
m , 1− κ′ = (1− κ)

1
m .

Note that (2.17) is the integral (2.7) with the domain of integration restricted to
a certain subset of the positive quadrant, within which we have made the change of
variables x = um and y = vm. Throughout the paper we will frequently work in the u
and v coordinates instead of x and y coordinates as this turns out to greatly simplify the
presentation.

The advantage of the approximation (2.17) is that the asymptotics (2.8) and (2.14)
are now applicable and have uniform error bounds. As we explained, we may expect
the main contributions to come from a small δ-neighbourhood of the line v = u for some
fixed δ > 0. This motivates the introduction of the critical region:

A :=

{
(u, v) ∈ [M ′N−

1
2 , 1]2 : {|u− v| < δ} ∧ {uv < α−N− 1

2 }
}
. (2.18)

Combined with Lemma 2.9, the following Lemma immediately yields the proof of Theorem
1.1.

Lemma 2.10. Let I+,A denote the contribution of the integral (2.17) from the set A in
(2.18). Then I+ = I+,A +O(e−cN ) and

I+,A =

√
2mγN

π
arctanh(

√
α) +O(1), N →∞. (2.19)
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For simplicity, in this section we will just show the following estimate, contingent on
Lemma 2.9,

I+,A ∼
√

2mγ̃N

π
arctanh(

√
α̃), N →∞, (2.20)

where α̃ := 1
1+γ̃ , leaving the full proof of Lemmas 2.9 and 2.10 to Section 3. Inserting

(2.8) and (2.14) into (2.17) leads to the approximation

I+,A = Cm,L

∫ √
α−N−

1
2

N−1/2M ′
du

∫ min(u+δ,α−N
− 1

2
u )

u

dv

× vm − um

(uv)
m−1

2

TL(u, v)

(
1 +O

(
1

u2L

))
,

(2.21)

where

TL(u, v) =

[
(1− u2)(1− v2)

(1− uv)2

]mγN
2

(1− u2)−1(1− v2)−1(1− uv)−1. (2.22)

In (2.21) we used the symmetry of the set A to integrate only over the region {v > u}.
The pre-factor Cm,L is the result of collecting all the individual pre-factors from (2.14)
and (2.8), together with a factor 4m2 from (2.17) and the symmetry of A. Using the
standard asymptotics of the beta function, we have

Cm,L ∼ γ̃N
√

2mγ̃N

π
, N →∞. (2.23)

The contribution of the term O
(

1
u2L

)
in (2.21) will be analysed more precisely in the full

proof of Lemma 2.10. For now observe that since u > M ′N−
1
2 its contribution goes to

zero when N →∞ followed by M →∞; this is sufficient to neglect it at leading order.

Proceeding now with the saddle point asymptotics, we see that the function (2.22)
has a critical point at v = u. This motivates the change of coordinates v → v/

√
N + u in

(2.21) and using (2.23) we obtain

I+,A ∼ γ
√

2mγN

π

∫ √
α−N−

1
2

N−1/2M ′
du

∫ √Nmin(δ,α−N
− 1

2
u −u)

0

dv
√
NQ(u, v/

√
N)

× TL
(
u, u+ v/

√
N
)
,

(2.24)

where

Q(u, v) =
(u+ v)m − um

(u (u+ v))
m−1

2

. (2.25)

Regarding the integrand of (2.24), we have the easily derived pointwise limits

lim
N→∞

TL

(
u, u+ v/

√
N
)

=
exp

(
− mγ̃v2

2(1−u2)2

)
(1− u2)3

, (2.26)

lim
N→∞

√
NQ(u, v/

√
N) = mv. (2.27)

By (B.1) we have the uniform bound TL(u, u+ v/
√
N) ≤ Ce−cv2 . Regarding the function

Q(u, v) in (2.25), we use the Taylor expansion (B.4) and the fact that u > M ′N−
1
2 to see

that
√
NQ(u, v/

√
N) is uniformly bounded by a polynomial in v with finite degree. Hence
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we can apply the dominated convergence theorem and pass the limit inside the integrals
(2.24), leading to

I+,A ∼ γ̃
√

2mγ̃N

π

∫ √α̃
0

du

∫ ∞
0

dvmv
exp

(
− mγ̃v2

2(1−u2)2

)
(1− u2)3

(2.28)

=

√
2mγ̃N

π

∫ √α̃
0

du
1

1− u2
(2.29)

=

√
2mγ̃N

π
arctanh(

√
α̃), (2.30)

which is the desired leading order result for the number of real eigenvalues.

3 Proof of Lemmas 2.9 and 2.10

We now provide the key estimates that allow us to prove Lemmas 2.9 and 2.10. For
a subset E ⊂ [0, 1] × [−1, 1], we will denote IE as the integral (2.7) with the domain of
integration restricted to E. We begin with the proof of Lemma 2.9. This will be the
immediate consequence of the following smaller Lemmas that follow now.

Lemma 3.1. Let M > 0 be a large fixed constant and define

E1 :=

{
(x, y) ∈ [0, 1]× [−1, 1] : {x < MN−

m
2 } ∨ {|y| < MN−

m
2 }
}
. (3.1)

Then IE1
= O(1) as N →∞.

Proof. From the definition (2.2), we have

wL(x) = 2m−1

(
L

2B(L2 ,
1
2 )

)m
2 ∫

Ax

(
1− x2

m−1∏
i=1

y−2
i

)L
2 −1 m−1∏

i=1

(1− y2
i )

L
2 −1

yi
d~y, (3.2)

where Ax =
{
~y ∈ (0, 1)m−1 : |x| <

∏m−1
i=1 |yi| < 1

}
. Now using the inequality 1 − x2 ≤

e−x
2

,

wL(x) ≤ CL 3m
4

∫
[0,∞)m−1

exp

−(L
2
− 1

) x2

y2
1 . . . y

2
m−1

+

m−1∑
j=1

y2
j

 d~y

y1 . . . ym−1
, (3.3)

and changing variables yj → yjx
1
m we see that the last integral is precisely the weight

function (A.2) of the real Ginibre ensemble, see the equivalent formula (A.8). We
thus have the bound wL(x) ≤ CL

3m
4 wGin((L/2)

m
2 x) where we used that L

2 − 1 > L
4 .

Furthermore, we bound the sum |fN−2,L(xy)| in terms of the analogous Ginibre sum
(A.3) noting that

N−2∑
n=0

(
L+ n

n

)m
|xy|n ≤

N−2∑
n=0

(L+N)nm|xy|n

(n!)m
=

N−2∑
n=0

|(1 + γ)mNmxy|n

(n!)m
, (3.4)

so that by definition of (A.3) we have

|fN−2,L(xy)| ≤ fN−2((1 + γ)mNm|xy|). (3.5)

Then applying the change of variables x→ xL−m/2 and y → yL−m/2 exactly cancels the
large pre-factors coming from the weights and gives the bound,

IE1
≤ C

∫ M ′

0

dx

∫ ∞
0

dy (y +M)wGin(x)wGin(y)fN−2(c|xy|)

≤ C
∫ M

0

wGin(x)F (cx) dx

(3.6)
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where we used |x− y| < |y|+M (the sign of x and y is not relevant here) and defined

F (x) :=

∞∑
j=0

xj

(j!)m

∫ ∞
0

dy wGin(y)yj+1 +M

∞∑
j=0

xj

(j!)m

∫ ∞
0

dy wGin(y)yj . (3.7)

To conclude that IE1 = O(1) it suffices to check that F (x) is bounded on the compact set
[0,M ]. To compute F (x) we use the moment formula∫ ∞

0

dy yj+1wGin(y) =
(

2
j
2 Γ(j/2 + 1)

)m
. (3.8)

This follows directly from the definition of the Ginibre weight in (A.2). Therefore

F (x) =

∞∑
j=0

xj

(j!)m

(
2
j
2 Γ(j/2 + 1)

)m
+M

∞∑
j=0

xj

(j!)m

(
2
j−1
2 Γ(j/2 + 1/2)

)m
. (3.9)

It is straightforward to check that the radius of convergence of these power series is
infinite. Consequently F (x) defines an entire function of x (in particular it is continuous
and bounded on compact sets) and this implies that (3.6) is bounded. Therefore IE1 =

O(1) as required.

Now in the other regions outside E1 in the positive quadrant, the contribution to
(2.7) is exponentially small on any set which is uniformly bounded away from the main
diagonal.

Lemma 3.2. Fix a large constant M > 0. Uniformly on the domain (x, y) ∈ (MN−
m
2 , 1)2,

we have the bound

|x− y|wL(x)wL(y)fN−2,L(xy) ≤ N ce−c
′N(u−v)2 (3.10)

where u = x
1
m , v = y

1
m . Consequently, if the domain E ⊂ (MN−

m
2 , 1)2 is strictly bounded

away from the main diagonal x = y by some fixed δ > 0 independent of N , then we have
the exponential decay IE = O(e−cN ) as N →∞.

Proof. This follows immediately from putting together the individual bounds (2.10),
fN−2,L(xy) ≤ f∞,L(xy), (2.15) and (B.1), together with the fact that |x− y| ≤ 1.

Lemma 3.3. Consider the following small neighbourhood of the hyperbola xy = αm:

E2 :=

{
(x, y) ∈ [0, 1]2 : {(α−N− 1

2 )m < xy < (α+N−
1
2 )m}

}
. (3.11)

Then we have IE2
= O(1) as N →∞.

Proof. By symmetry we consider just the part of E2 where y > x. We will make use of the
bound fN−2,L(xy) ≤ f∞,L(xy) throughout the proof. Let us denote αm± := (α ±N− 1

2 )m

and split the integration domain as the disjoint union E2 ∩ {y > x} =
⋃3
j=1E2,j where

E2,1 =

{
αm− < x < tm,

αm−
x

< y <
αm+
x

}
, (3.12)

E2,2 =

{
tm < x < α

m
2
− ,

αm−
x

< y <
αm+
x

}
, (3.13)

E2,3 =

{
α
m
2
− < x < α

m
2

+ , x < y <
αm+
x

}
, (3.14)
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and t is any fixed constant such that α− < t <
√
α−. The main contribution will come

from a small neighbourhood of the point x = α
m
2
− , while the contribution from E2,1 is

exponentially small due to Lemma 3.2. On E2,2 and E2,3 the asymptotics (2.8) and (2.14)
can be applied and we mimic the steps that led to (2.21). Also shifting v → v+u, applying
(B.1) and Lemma B.2, we find

IE2,2
≤ CN 3

2

∫ √α−
t

du

∫ ∞
α−
u −u

dv ve−cNv
2

, IE2,3
≤ CN 3

2

∫ √α+

√
α−

du

∫ ∞
0

dv ve−cNv
2

.

(3.15)
The integrals over v are now explicit and we get

IE2,2
≤ CN 1

2

∫ √α−
t

du e−cN(
α−
u −u)2 = O(1), N →∞, (3.16)

where the O(1) bound follows from a standard Laplace approximation near the critical
point u =

√
α−. Evaluating the second integral in (3.15) we obtain IE2,3

≤ CN 1
2 (
√
α+ −√

α−) = O(1) as N →∞. This completes the proof of the Lemma.

We now show that the second term in (2.12) does not contribute to the leading order
asymptotics. Note that for the purposes of proving Lemma 2.9 we do not need to show
this on the union E′ = E1 ∪ E2 of the two negligible sets of Lemmas 3.1 and 3.3.

Lemma 3.4. Consider the contribution of the second term in (2.12) to the integral (2.7)
on the set D := [0, 1− κ]× [−1 + κ, 1− κ] \ E′, taking ω = N−

1
2 in Proposition 2.6. Then

J := 2

∫
D

dx dy |x− y|wL(x)wL(y) eN,m
(xy)N−1

xy − αm
= O(1), N →∞. (3.17)

Furthermore, consider the following thin layer near ±1 of width κ > 0,

E3 :=

{
(x, y) ∈ [0, 1]× [−1, 1] : {x > 1− κ} ∨ {|y| > 1− κ}

}
\ E′, (3.18)

and finally the remaining part of the negative-y quadrant

E4 := ([0, 1]× [−1, 0]) \ (E′ ∪ E3). (3.19)

Then for κ > 0 sufficiently small we have IE3 = O(e−cN ) and IE4 = O(1) as N →∞.

Proof. We begin with the estimate (3.17). Write J = J+ + J− where J+ (resp. J−)
denotes the contribution to J from y > 0 (resp. y < 0). First consider J+, on which we
bound the term |(xy − αm)−1| ≤ C

√
N due to the fact that the interval (α −N− 1

2 )m <

xy < (α + N−
1
2 )m lies outside the integration domain D. Inserting the asymptotics of

the weights (2.8) and extending the domain of integration to [0, 1]2, we arrive at

J+ ∼ CN
m+3

2 eN,m

∫ √α+ε

√
α−ε

du

∫ √α+ε

√
α−ε

dv |um − vm|

× (1− u2)
mγN

2 −1(1− v2)
mγN

2 −1(uv)m(N−1).

(3.20)

To obtain (3.20) we have noted that
√
α is a critical point of the integrand in both u

and v variables, so that contributions from outside the small ε-neighbourhood of
√
α are

exponentially suppressed. Applying the standard techniques of the Laplace method, we
obtain two factors of N−

1
2 coming from Taylor expanding near the critical point, and

an extra factor of N−
1
2 from the term |um − vm|. Then the leading contribution from

evaluating the integrand of (3.20) at both critical points gives an upper bound of order

O
(
N

m
2 eN,m(1− α)mγNαmN

)
= O(1), (3.21)
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where to deduce the O(1) bound, we inserted the explicit form of eN,m defined in (2.13),
keeping in mind that α := 1

1+γ .
The procedure for J− is exactly the same as for J+ except that since now xy is

negative, we can bound |xy − αm|−1 by an absolute constant. For the same reason the
term |x− y| in (2.7) is of no use in the bounds and we use the simple fact that |x− y| ≤ 2.
This results in an upper bound

J− ≤ CN
m
2 +1eN,m

∫ √α+ε

√
α−ε

du

∫ √α+ε

√
α−ε

dv

× (1− u2)
mγN

2 −1(1− v2)
mγN

2 −1(uv)m(N−1),

(3.22)

so that J− = O(1) as N →∞, by the same reasoning. This completes the proof of (3.17).
Regarding the set E3 in (3.18), in the above bounds for J+ and J− we saw that the

second term in (2.12) can be neglected outside E′ and gives an O(1) contribution. In fact
repeating these estimates restricted to the set E3 gives a contribution of order O(e−cN )

because E3 lies outside the saddle point region discussed below (3.20). For this to be
true we must choose κ > 0 small enough such that 1−κ >

√
α for all N sufficiently large,

which is guaranteed by hypothesis (1.1). Thus it remains to show the same estimate
for the first term in (2.12). For y > 0, the indicator function in (2.12) combined with
Lemma 3.2 gives the required exponential decay because E3 ∩ {xy < (α −N− 1

2 )m} is
uniformly bounded away from the main diagonal. When y < 0 we similarly note that
E3 ∩ {xy > −(α + N−

1
2 )m} is uniformly bounded away from the anti-diagonal x = −y.

Then IE3∩{y<0} = O(e−cN ) follows as in Lemma 3.2, using (2.16) in place of (2.15).
Finally we show that E4 in (3.19) is negligible. By (3.17) we can ignore the second

term in (2.12) and deal only with the first term f∞,L(xy). When y < 0 we change
variables with x = um and y = −(vm). Making use of the bound (2.16), we insert the
asymptotics of the weights (2.8). The combination of the main terms in (2.8) and (2.16)
is bounded using (B.1), namely for any δ > 0 we have(

(1− u2)(1− v2)

(1− uv)2

)mL
2

e−cLuv ≤ e−mL2 (u−v)2−cLuv

= e−δL(u2+v2)−L(m2 −δ)(u−v)2−L(c−2δ)uv

≤ e−δL(u2+v2),

(3.23)

where we took 0 < δ < min(m2 ,
c
2 ) in the final inequality. This gives

IE4 ≤ CL
m
2 +1

∫ 1

0

du

∫ 1

0

dv (um + vm)e−δL(u2+v2) + J = O(1), (3.24)

and this completes the proof of Lemma 3.4.

Proof of Lemma 2.9. This follows immediately from combining the three Lemmas 3.1,
3.3, 3.4 and noting the presence of the indicator function xy < (α−N− 1

2 )m in Proposition
2.6.

Proof of Lemma 2.10. We start from the expression (2.21), which after the shift v → v+u

we can write as

I+,A = Cm,L

∫ √
α−N−

1
2

N−1/2M ′
du

∫ min(δ,α−N
− 1

2
u −u)

0

dv e
mγN

2 φ(u,v)

× F (u, v)

(
1 +O

(
1

u2L

))
,

(3.25)
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where

φ(u, v) = log

(
(1− u2)(1− (v + u)2)

(1− u2(v + u)2)

)
, (3.26)

and in terms of (2.25),

F (u, v) = Q(u, v) (1− u2)−1(1− (v + u)2)−1(1− u(v + u))−1. (3.27)

The pre-factor outside (2.21) satisfies

Cm,L = γN

√
2mγN

π

(
1 +O

(
1√
N

))
, N →∞, (3.28)

where we made use of (2.9). Let us denote I
(1)
+,A the contribution of (3.25) where we

discard the error terms O(N−
1
2 ) in (3.28) and O

(
1
u2L

)
in (3.25); we will explain at the

end of the proof why I+,A = I
(1)
+,A + O(1) as N → ∞. We begin by Taylor expanding

F (u, v) and the action φ(u, v) near v = 0. A careful estimation of the remainder, see the
bound (B.4), shows that uniformly on u ∈ [0, 1− κ), we have

F (u, v) =
mv

(1− u2)3
+O(v2) +

m−1∑
j=0

O

(
v3+j

u2+j

)
, 0 < v < δ. (3.29)

Note that the singular powers of u in (3.29) should be handled carefully. We will show
below that they contribute at most O(1) as N →∞, due to the fact that the u-integration
starts at N−

1
2M ′, meanwhile the high powers of v give successively smaller contributions

to the Laplace asymptotics. In particular it is important that the summation in (3.29)
starts at v3/u2 and not v2/u, as the latter would give an estimate of order O(log(N))

instead of O(1).

For the action we have φ(u, v) = − v2

(1−u2)2 + E3(u, v) where E3(u, v) is a remainder

satisfying E3(u, v) = O(v3) uniformly on u ∈ [0, 1 − κ). Let us denote ξ = mγN
2 E3(u, v)

and F0 = mv
(1−u2)3 in what follows. Then we make the decomposition

eξF = F0 + (F − F0)eξ + (eξ − 1)F0 (3.30)

and thus write I(1)
+,A as the sum of three separate contributions coming from each term

in (3.30): I(1)
+,A = J1 + J2 + J3.

For the leading term J1, the integral over v is explicit and we obtain

J1 =

√
2mγN

π

∫ √
α−N−

1
2

N−1/2M ′
du

1

1− u2

−
√

2mγN

π

∫ √
α−N−

1
2

N−1/2M ′
du

e−
mγN

2 (min(δ,α−N
− 1

2
u −u))2

1− u2
.

(3.31)

In the second integral of (3.31), define by u∗− the unique positive solution of the equation

α−N− 1
2

u
= u+ δ. (3.32)

For u < u∗− the minimum in (3.31) is δ and this yields an exponentially small contribution.

For u > u∗−, the minimum is α−N−
1
2

u − u, which gives an integral of the form (3.16), so
that the second term in (3.31) is O(1). Meanwhile the first integral in (3.31) clearly gives
the correct leading term up to errors of order O(1) and so

J1 =

√
2mγN

π
arctanh(

√
α) +O(1), N →∞. (3.33)
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For J2 we use (B.1) and (3.29). The contribution from the error terms in (3.29) can then
be upper bounded by integrals of the form

m−1∑
j=0

N
3
2

∫ 1

N−
1
2M ′

du
1

u2+j

∫ ∞
0

dv v3+je−cNv
2

dv = O(1), N →∞ (3.34)

and

N
3
2

∫ 1

N−
1
2M ′

du

∫ ∞
0

dv v2e−cNv
2

dv = O(1), N →∞. (3.35)

Therefore J2 = O(1). For J3 we use |eξ − 1| ≤ |ξ|e|ξ| ≤ CNv3ecNδv
2

. Hence, choosing
δ > 0 small enough, the contribution of this error term gives rise to an integral of the
form

N
5
2

∫ 1

N−
1
2M ′

du

∫ ∞
0

dv v4e−cNv
2

dv = O(1), N →∞, (3.36)

and hence J3 = O(1). Finally, if we had included the error term O
(

1
Lu2

)
, we would gain

an additional power of N−
1
2 in all the estimates, due to the fact that

∫ 1

N−
1
2M ′

1
Lu2 du =

O(N−
1
2 ) and similarly in (3.34). The same is true had we included the error term of order

N−
1
2 in (3.28). Therefore these error terms can only contribute at most O(1) to I+,A and

this completes the proof of (2.19). The fact that I+ = I+,A + O(e−cN ) is an immediate
consequence of Lemma 3.2. This completes the proof of Lemma 2.10.

4 Convergence of the eigenvalue density

The goal of this section is to prove Theorem 1.2. Recall that

ρN (x) = wL(x)

∫ 1

−1

dy |x− y|wL(y)fN−2,L(xy). (4.1)

Proof of (1.4). Since h is bounded and the integrand of (2.6) is positive, by Lemmas 2.9
and 2.10 we immediately find that∫ 1

−1

h(x)ρ̃N (x) dx =
I−,A(h) + I+,A(h)

E(N
(m)
R )

+O(N−
1
2 ), N →∞, (4.2)

where the analogue of (2.21) is

I±,A(h) =
1

2
Cm,L

∫ √
α−N−

1
2

N−
1
2M ′

duh(±um)

∫ min(u+δ,α−N
− 1

2
u )

u

dv GL(u, v)E
(1)
L (u, v)

+
1

2
Cm,L

∫ √
α−N−

1
2

N−
1
2M ′

duh(±um)

∫ u

max(N−
1
2M ′,u−δ)

dv GL(v, u)E
(2)
N (u, v),

(4.3)

and

GL(u, v) =
vm − um

(uv)
m−1

2

TL(u, v). (4.4)

Here E(1)
L (u, v) = 1 +O((u2L)−1) and E(2)

L (u, v) = 1 +O((v2L)−1). Finally the limit (1.4)
follows from changing coordinates v → u + v√

N
(similarly to (2.24)) and again using

dominated convergence with the pointwise limits (2.26) and (2.27).

To obtain the pointwise limit of ρ̃N (x) requires some further estimates, but they follow
a similar pattern to the proofs of Section 3. For the remainder of this section we assume
that x is fixed and satisfies 0 < x < 1. As in Lemma 3.1, we start by showing that the
small region near y = 0 can be removed from the integration in (4.1).

EJP 27 (2022), paper 5.
Page 14/32

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP732
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Products of truncated orthogonal random matrices

Lemma 4.1. For any x ∈ (0, 1) we have

wL(x)

∫ MN−
m
2

−MN−
m
2

dy |x− y|wL(y)fN−2,L(xy) = O(e−cN ), N →∞. (4.5)

Proof. We start with the case that M2N
−m < y < MN−

m
2 for a large fixed M2 > 0. We

bound |x− y| ≤ 2 and |fN−2,L(xy)| ≤ f∞,L(|xy|). In this sense the sign of y is irrelevant
and we assume y > 0. Then we mimic the proof of Lemma 3.2 noting that∣∣∣∣wL(x)

∫ MN−
m
2

M2N−m
dy wL(y)fN−2,L(xy)

∣∣∣∣ ≤ N c

∫ MN−
1
2

0

dv wL(vm)e−N(u−v)2 (4.6)

where x = um. Since x > 0 is fixed, so is u > 0, and we have that u − v is uniformly
bounded away from zero and (4.5) follows on this range. When 0 < y < M2N

−m we use
(3.4) so that, with definitions (A.3) and (A.12), we have

fN−2,L(|xy|) ≤ fN−2(cLm|xy|) ≤ f∞(cLm|xy|) < C, (4.7)

where the last bound follows from the fact that for x > 0 fixed, |xy|Lm is bounded and
f∞ has infinite radius of convergence. Using estimates (4.7) and (2.10) on the left-hand
side of (4.5) completes the proof.

Lemma 4.2. For any x ∈ (0, 1) with x 6= (α̃)
m
2 , we have the following estimates as

N →∞,

wL(x)

∫
|y|>MN−

m
2

dy |x− y|wL(y) eN,m
(xy)N−1

xy − αm
1|y|<1 = O(e−cN ), (4.8)

wL(x)

∫
y<−MN−

m
2

dy |x− y|wL(y)f∞,L(xy)1|y|<1 = O(e−cN ). (4.9)

Furthermore, for any x > (α̃)
m
2 , we have ρN (x) = O(e−cN ). For 0 < x < (α̃)

m
2 , with

x = um, we have

ρN (x) =
m

x1− 1
m

∫ u+ε

u−ε
dv |um−vm|wL(vm)wL(um)f∞,L((uv)m) (uv)m−1 +O(e−cN ). (4.10)

Proof. Since the order of magnitude on the right-hand side of these bounds is at the
exponentially small scale, it suffices to make use of the crude estimates (2.10), (2.15)
and (B.1) (or (2.16) if y < 0). For example, the estimate (4.8) follows by repeating the
first steps in the proof of Lemma 3.4, noting that since x is strictly away from the critical
point located at x = (α)

m
2 we only obtain exponentially small contributions, as explained

below (3.20). For (4.9) we repeat the estimates in (3.23). Because the integral over u
is absent and u = x

1
m > 0 is fixed we again obtain exponentially small contributions

for (4.9). Next, when x > (α̃)
m
2 , the indicator function in (2.12) shows that there exists

δ > 0 independent of N such that y < α̃
m
2 − δ. Hence |y − x| is uniformly bounded away

from zero and ρN (x) = O(e−cN ) follows as in Lemma 3.2. The estimate (4.10) follows
similarly.

Corollary 4.3. For any x with 0 < x < (α̃)
m
2 , we have

lim
N→∞

ρN (x)

E(N
(m)
R )

=
1

2m arctanh(
√
α̃)

1

x1− 1
m (1− x 2

m )
. (4.11)

Proof. This follows from the estimate (4.10) and repeating the steps in Section 2.2,
starting at (2.17) and leading to (2.29).
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5 Regime of weak non-orthogonality

In this section we will consider the opposite case of (1.1), that is where L is a
fixed positive integer, while the size of the original orthogonal matrices from which we
truncate tends to infinity with N . Our goal is to prove Theorem 1.3 which gives the
log(N) growth of the expected number of real eigenvalues (and the explicit multiplicative
constant), as shown for the single matrix m = 1 case in [29]. It is reasonable to expect
that the real eigenvalue density in this regime also behaves similarly to [29], namely
that the real eigenvalues of the product matrix X(m) lie in a neighbourhood of the points
±1 of size 1

N and that after appropriate rescaling by this factor their density converges
to a well-defined limit. Proving this rigorously is beyond the scope of the present paper
and here we focus exclusively on the calculation of E(N

(m)
R ).

We will employ a slightly different approach based on earlier work of the third author
[39] and on an alternative exact formula for the expected number of real eigenvalues in
[19]. Specifically, it is shown there that the double integral in (2.7) can be computed as,

E(N
(m)
R ) = 2qL,m

N−2∑
j=0

(
L+ j

L

)m
(−1)jgj , qL,m =

(
LΓ(L2 )Γ(L+1

2 )

2
√
π

)m
, (5.1)

where gj is a particular instance of a Meijer G-function,

gj = Gm+1,m
2m+1,2m+1

(
1
2 , . . . ,

1
2 ; L2 + j + 1, . . . , L2 + j + 1, d j2e+ 1

d j2e, j + 1, . . . , j + 1; 1−L
2 , . . . , 1−L

2

∣∣∣∣ 1) . (5.2)

We refer to [19] and references therein for the precise definition of the Meijer G-
function and its basic properties. What is needed here is the following contour integral
representation which follows directly from the definition,

gj =
1

2πi

∫
γ

(
Γ( 1

2 + s)Γ(j + 1− s)
Γ(L+1

2 + s)Γ(L2 + 1 + j − s)

)m
1

d j2e − s
ds, (5.3)

where we may take the contour as the imaginary axis, γ = iR. The Meijer G-function
coefficients can alternatively be written as a real integral as follows.

Lemma 5.1.

gj =
1

Γ
(
L
2

)2m ∫
[0,1]2m

m∏
`=1

(1− t`)
L
2 −1(1− r`)

L
2 −1t

d j2 e−
1
2

` r
j−d j2 e
` 1r1...rm>t1...tm d~t d~r. (5.4)

Proof. We have the integral representations(
Γ
(

1
2 + s

)
Γ( 1+L

2 + s)

)m
=

1

Γ
(
L
2

)m ∫
[0,1]m

d~t

m∏
`=1

t
s− 1

2

` (1− t`)
L
2 −1,(

Γ(j + 1− s)
Γ(L2 + 1 + j − s)

)m
=

1

Γ
(
L
2

)m ∫
[0,1]m

d~r

m∏
`=1

rj−s` (1− r`)
L
2 −1.

(5.5)

Then inserting (5.5) into (5.3) and interchanging the order of integration, the proof is
complete after noting the inverse Mellin transform

1

2πi

∫
γ

(
m∏
`=1

t`
r`

)s
ds

d j2e − s
=

(
m∏
`=1

t`
r`

)d j2 e
1r1...rm>t1...tm . (5.6)

EJP 27 (2022), paper 5.
Page 16/32

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP732
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Products of truncated orthogonal random matrices

Lemma 5.2. We have the following estimates for even and odd indices:

jmLg2j = jmLgsym
j +

AL,m
j

+ o

(
1

j

)
, j →∞

jmLg2j+1 = jmLgsym
j − AL,m

j
+ o

(
1

j

)
, j →∞.

(5.7)

where

gsym
j =

1

2

(
Γ(j + 1)

Γ(j + 1 + L
2 )

)2m

(5.8)

and

AL,m =
1

Γ
(
L
2

)2m ∫
R2m

+

d~t d~r

m∏
`=1

t
L
2 −1

` r
L
2 −1

` e−t`−r`
t1 + . . .+ tm

2
1r1+...+rm<t1+...+tm . (5.9)

Proof. We first prove the expansion of g2j in (5.7). In the integral representation (5.4),

we replace the term
∏m
`=1 t

− 1
2

` with 1 + (
∏m
`=1 t

− 1
2

` − 1), considering the second term as
a perturbation. The contribution of the main term in (5.4) leads to an integral with
permutation invariance between the r` and t` variables. Hence the indicator function
can be dropped after multiplying by 1

2 . The integrals are then explicit and this gives
(5.8). In the perturbation term, we change coordinates t` → 1− t`

j and r` → 1− r`
j and

apply the dominated convergence theorem to take the limit j →∞ inside the integrals,
using that

lim
j→∞

j

(
m∏
`=1

(
1− t`

j

)− 1
2

− 1

)
=
t1 + . . .+ tm

2
. (5.10)

When j is odd the procedure is exactly the same, except the term that breaks the

symmetry is 1 + (
∏m
`=1 t

1
2

` − 1). Then we take the same limit in (5.10) except the exponent
is + 1

2 and this results in an overall minus sign on the right-hand side of (5.10). This
completes the proof of the expansions (5.7).

Lemma 5.3. For any L,m fixed, we have as N →∞,

E(N
(m)
R ) ∼ log(N) 2qL,m

2mL

(L!)m

(
2AL,m −

mL

4

)
. (5.11)

Proof. We decompose (5.1) as a sum over even and odd indices via E(NR) = Teven − Todd

and use Lemma 5.2. We have

Teven = 2qL,m

bN−2
2 c∑
j=0

(
L+ 2j

L

)m
g2j (5.12)

= 2qL,m

bN−2
2 c∑

j=j0

2mL

(L!)m

(
1 +

mL(L+ 1)

4j

)(
1

2
+
β

j
+
AL,m
j

+ o

(
1

j

))
(5.13)

for some constant β whose precise value is unimportant as we shall see below. To
derive this we have used the asymptotic expansion of a binomial coefficient and a similar
expansion to compute asymptotics of the coefficient g(sym)

j in (5.8). Similarly, we have

Todd = 2qL,m

bN−2
2 c∑

j=j0

2mL

(L!)m

(
1 +

mL(L+ 3)

4j

)(
1

2
+
β

j
− AL,m

j
+ o

(
1

j

))
. (5.14)

Then directly computing the difference Teven − Todd from (5.13) and (5.14) results in
several cancellations so that only terms proportional to 1

j remain. Collecting the terms
results in (5.11).
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Proof of Theorem 1.3. In Appendix C we compute the integrals AL,m in (5.9) explicitly.
We find that

AL,m =
Lm

8
+

1

2

Γ(mL)

Γ
(
mL
2

)2 2−mL. (5.15)

Inserting (5.15) into (5.11) and using the duplication formula for the Gamma function
completes the proof.

6 Laplace asymptotics

The purpose of this section is to prove the three Propositions 2.5, 2.6 and 2.7.

Proof of Proposition 2.5. After the scaling yj → yjx
1
m the integral in (2.2) takes the

following form:

I :=

∫
Ax

eKφ(~y)h(~y) d~y (6.1)

where K = L
2 − 1, ~y = (y1, . . . , ym−1), d~y = dy1 . . . dym−1, h(~y) = (y1 . . . ym−1)−1,

Ax =

{
~y ∈ [0, x−

1
m ]m−1 : x

1
m ≤

m−1∏
i=1

yi ≤ x−(1− 1
m )

}
, (6.2)

and the action, which depends implicitly on x throughout the proof, is

φ(~y) = log

(
1− x

2
m

y2
1 . . . y

2
m−1

)
+

m−1∑
j=1

log(1− x 2
m y2

j ). (6.3)

Although the asymptotic analysis of (6.1) is standard, special care has to be taken if x
depends on K such that x→ 0 as K →∞. One reason is that φ(~y) vanishes as x→ 0 and
this occurs at a rate x

2
m . As we shall see, provided that the combined quantity η := Kx

2
m

is large, the Laplace method is still applicable, for which we now give the details.
It is straightforward to check that the only critical point of (6.3) is ~y = (1, . . . , 1). Thus

for ε > 0 small, we split Ax into the region E := [1 − ε, 1 + ε]m−1 and its complement
Ax\E and denote the corresponding integrals IE and IEc respectively. Note that because
x < 1− κ, no matter how small we choose κ > 0, we can make ε > 0 small enough such
that E is contained strictly inside Ax. For IE we will Taylor expand the action at the
point ~y = ~1 up to the fourth derivative:

φ(~y) = φ(~1) +
1

2
(~y −~1)TH(~y −~1) + E3(~y −~1) +R4(~y) (6.4)

where H is the Hessian matrix of φ at ~1, E3(~y −~1) is the third order term in the Taylor
expansion of φ, and R4 is the remainder term that can be bounded in terms of fourth
order partial derivatives of φ.

We will denote in what follows ξ := K(E3(~y − ~1) + R4(~y)). A direct computation of
the third and fourth derivatives of φ shows that they are uniformly bounded on the set
E by a factor x

2
m times an absolute constant depending only on m and κ. Therefore we

have the following bounds for ~y ∈ E,

ξ(~y) = KE3(~y) +O(η|~y −~1|4), (6.5)

ξ(~y) = O(η|~y −~1|3), (6.6)

ξ(~y) = O(ηε|~y −~1|2). (6.7)
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The Hessian matrix H can be computed explicitly:

Hij = − 4x
2
m

(1− x 2
m )2
×

{
2, i = j

1, i 6= j
(6.8)

where i, j = 1, . . . ,m− 1. We have

det(−H) =
4m−1x

2(m−1)
m

(1− x 2
m )2(m−1)

m. (6.9)

To approximate IE , we note that on E the functions ξ and h are close to zero and 1

respectively, and make use of the trivial identity

eξh = 1 + (h− 1) + (h− 1)ξ + ξ + (eξ − 1− ξ)h. (6.10)

Then we can decompose IE = eKφ(~1)(I1 − I2 + I3 + I4 + I5 + I6), where after the shift
yj → yj + 1 we have

I1 =

∫
Rm−1

e
1
2K~y

TH~yd~y, I2 =

∫
Rm−1\[−ε,ε]m−1

e
1
2K~y

TH~yd~y, (6.11)

I3 =

∫
[−ε,ε]m−1

e
1
2K~y

TH~y(h̃(~y)− 1) d~y, I4 =

∫
[−ε,ε]m−1

e
1
2K~y

TH~y(h̃(~y)− 1)ξ̃(~y) d~y, (6.12)

I5 =

∫
[−ε,ε]m−1

e
1
2K~y

TH~y ξ̃(~y) d~y, (6.13)

and

I6 =

∫
[−ε,ε]m−1

e
1
2K~y

TH~y
(
eξ̃(~y) − (1 + ξ̃(~y))

)
h̃(~y) d~y, (6.14)

where h̃(~y) = h(~y +~1) and ξ̃(~y) = ξ(~y +~1). The integral I1 gives the leading order term:

eKφ(~1)I1 = (2π)
m−1

2
eKφ(~1)

K
m−1

2 det(−H)
1
2

=
1√
m

(2π)
m−1

2 2−m+1(1− x 2
m )Km+m−1η−

m−1
2 ,

(6.15)

where we remind that η := Kx
2
m . We must show that the relative error produced by

the other terms {Ij}6j=2 is no larger than the error term claimed in (2.8), namely that
Ij/I1 = O(η−1) for each j = 2, 3, 4, 5, 6. The smallest eigenvalue of −H will be helpful to
prove this and we denote it Γ1. From (6.8) we have that there is an absolute constant
cm > 0 depending only on m such that

Γ1 = cm
x

2
m

(1− x 2
m )2

. (6.16)

Then a standard diagonalisation of H followed by Cauchy-Schwarz gives the bound

e
1
2K~y

TH~y ≤ e− 1
2KΓ1|~y|2 ≤ e−cη|~y|

2

, (6.17)

for some constant c > 0. Applying this to I2, we upper bound by extending all integrations
to R except y1. These m− 2 integrations are explicit Gaussian integrals and yield

I2 ≤ Cη−
m−2

2

∫ ∞
ε

e−cηy
2
1 dy1 ≤ Ce−cη, (6.18)
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which implies I2/I1 = O(e−cη).
The estimation of I3, I4, I5 and I6 follows from Taylor expanding h̃(~y) and applying the

estimates on ξ in (6.5), (6.6) and (6.7). The degree of the monomials in ~y occurring in
these expansions will give a corresponding power of η−

1
2 after integration. For example,

in I3 we Taylor expand h̃(~y) near 0 to quadratic order, the linear terms produced giving
zero in the integration by symmetry. In the error term of quadratic order, we upper
bound by replacing the integration with Rm−1, use (6.17) and evaluate the resulting
Gaussian integral giving I3/I1 = O(η−1).

In I4 and I5 we apply the same approach, using |h̃(~y) − 1||ξ(y)| = O(η|~y|4), which
upon integration shows that I4/I1 = O(η−1). Then in I5 the third order terms contained
in ξ̃(~y) vanish in the integration by symmetry. The fourth order remainder term gives
a contribution of order O(η|~y|4). Thus I5/I1 = O(η−1). In I6 we apply the bound

|eξ̃ − 1− ξ̃| ≤ |ξ̃|
2

2 e|ξ̃| = O(η2|~y|6eηεC|~y|2), where in the last estimate we applied (6.6) and
(6.7). This implies that

I6 ≤ C
∫
Rm−1

e−η|~y|
2(c−Cε)η2|~y|6d~y, (6.19)

and choosing ε > 0 small enough to ensure c− Cε > 0, we also have I6/I1 = O(η−1).
Finally we treat the contribution from the complementary region Ec = Ax \ [1− ε, 1 +

ε]m−1 to the integral (6.1). Without loss of generality suppose that |y1 − 1| > ε. On this
region we will use the bound 1 + x ≤ ex, which implies that(1− x 2

m (y2
1 . . . y

2
m−1)−1

1− x 2
m

)
m−1∏
j=1

(
1− x 2

m y2
j

1− x 2
m

)K

≤ exp

(
−K x

2
m

1− x 2
m

ψ(~y)

)
, (6.20)

where the action ψ(~y) is independent of x and is given by

ψ(~y) =

m−1∑
j=1

y2
j +

1

y2
1 . . . y

2
m−1

−m. (6.21)

The function ψ(~y) has a unique global minimum at ~y = ~1 and ψ(~1) = 0. The integration
domain avoids the point ~1 and so there exists a constant cε > 0 such that ψ(~y) > cε for all
~y ∈ Ec. We thus obtain the bound

(1− x 2
m )−KmIEc ≤

∫
Rm−2

∫ ∞
1+ε

exp (−cη ψ(~y))
d~y

~y
(6.22)

≤ Ce−cη. (6.23)

This implies that IEc/I1 = O(e−cη). Repeating the estimate (6.22) on the full integration
interval gives the crude estimate (2.10).

Therefore the biggest error terms came from I3, I4, I5 and I6 and had a relative error
with I1 of order O(η−1), as required.

Proof of Proposition 2.6. We recall from the hypothesis of Theorem 1.1 that L := LN is
a sequence of positive integers such that γ := LN/N → γ̃ as N →∞ with γ̃ > 0. We also
recall that α := 1

1+γ . It will be important in what follows that due to the hypothesis on γ,
we can find N0 ∈ N and ε > 0 independent of N such that α < 1− ε for all N > N0.

We start from the integral representation(
L+ n

n

)
=

1

2πi

∮
C

(1− z)−L−1z−n−1 dz, (6.24)
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where C is any loop enclosing the origin and properly contained in a compact subset of
the open unit disc. Introducing z(m) := z1 . . . zm and d~z = dz1 . . . dzm, this implies that

fN−2,L(x) =
1

(2πi)m

∮
Cm

 m∏
j=1

(1− zj)−L−1

N−2∑
n=0

( x

z(m)

)n d~z

z(m)
(6.25)

=
1

(2πi)m

∮
Cm

 m∏
j=1

(1− zj)−L−1

 d~z

z(m) − x
(6.26)

− xN−1

(2πi)m

∮
Cm

 m∏
j=1

(1− zj)−L−1z−N+1
j

 d~z

z(m) − x
. (6.27)

Let us start with the exterior region defined by (α+ω)m < |x| ≤ 1 with α = 1
1+γ . We now

choose C to be the circle around the origin of radius α, noting that our hypothesis on
LN implies that for N > N0 the contour C lies in a compact subset of the unit disc and is
bounded away from the unit circle by some fixed δ > 0. This is fundamental and without
this assumption the asymptotics of fN−2,L and Theorem 1.1 can take a different form,
indeed recall Theorem 1.3.

The integrand in (6.26) is analytic inside the unit circle except at the point zm =

x/(z1 . . . zm−1), which by the choice of contour and condition on x lies outside C. There-
fore by Cauchy’s theorem we have

fN−2,L(x) = − xN−1

(2πi)m

∮
Cm

 m∏
j=1

(1− zj)−γN−1z−N+1
j

 1

z(m) − x
d~z (6.28)

= − xN−1

(2πi)m

∮
Cm

m∏
j=1

e−Nφ(zj)hx(~z) d~z, (6.29)

where φ(z) := γ log(1− z) + log(z) and

hx(~z) :=

 m∏
j=1

zj
1− zj

 1

z(m) − x
. (6.30)

The integral (6.29) can now be analysed with the Laplace method. We set zj = αeiθj with
θj ∈ [−π, π] for each j = 1, . . . ,m. A simple computation shows that θ = 0 is a critical
point of the function θ → φ(αeiθ) on [−π, π]. Now consider the region E := [−ε, ε]m
and denote the contribution to the integral in (6.29) coming from the set E as IE and
similarly denote the contribution from the complementary region Ec := [−π, π]m \E as
IEc . On E we Taylor expand the action

φ(αeiθ) = γ log

(
γ

1 + γ

)
+ log

(
1

1 + γ

)
+

1

2

1 + γ

γ
θ2 +O(θ3), |θ| < ε. (6.31)

Regarding the function hx(~z) in (6.30), we have

1

z(m) − x
=

1

αm − x

(
1 + αm

1− eiθ(m)

αmeiθ(m) − x

)
, (6.32)

where θ(m) = θ1 + . . . + θm. As the distance between αm and x is at least (α + ω)m −
αm ≥ mαm−1ω, the second term in the brackets in (6.32) is O(|θ(m)|ω−1). The linear
dependence on θj ’s will contribute an additional factor N−

1
2 in the Laplace method, so
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that this correction will contribute at order O
(

1√
Nω

)
. Taylor expanding the other terms

in (6.30), we see that

hx(~z) d~z = im
(γ(1 + γ))−m

αm − x

(
1 +O(~θω−1)

)
d~θ. (6.33)

Using (6.33) and (6.31) we obtain the approximation

IE =
eN,m
αm − x

(
N(1 + γ)

πγ

)m
2
(∫ ε

−ε
e−N

1+γ
γ θ2 dθ

)m(
1 +O

(
1√
Nω

))
(6.34)

=
eN,m
αm − x

(
1 +O(e−cN ) +O

(
1√
Nω

))
. (6.35)

On the other hand, the integral IEc is exponentially small relative to IE . To see this,
note that for z = αeiθ the action satisfies Re(φ(z)) = γ log |1 − αeiθ| + log(α) and that
this function is monotonically increasing in θ with the minimum obtained at θ = 0 with
Re(φ(α)) = φ(α). The monotonicity follows immediately from the formula |1− αeiθ|2 =

(1 − α)2 + 2α(1 − cos(θ)) and corresponding monotonicity of the log and square root
functions. On the set Ec there exists at least one ` = 1, . . . ,m such that θ` is bounded
away from the critical point at 0, i.e. |θ`| > ε, hence from the mentioned properties of
Re(φ(z)) there exists a constant cε > 0 such that Re(φ(αeiθ`)) − φ(α) > cε. The latter

inequality and (6.32) imply that IEc/IE = O
(
e−cεN

ω

)
. This completes the proof of the

Lemma in the exterior region (α+ ω)m < |x| < 1− κ.
For the region −(α + ω)m < x < (α − ω)m we follow the steps leading to (6.27) but

we use the big circle

CR =

{
−Rα+ (R+ 1)αeiθ : −π < θ ≤ π

}
. (6.36)

In this case we will use the following facts proved in Lemma B.4: Choosing R large
enough, in the integration over zm the pole at x/(z1 . . . zm−1) is strictly inside CR. Fur-
thermore, there exist absolute constants δ0 > 0 and c > 0 such that

inf
x∈[−(α+δ0)m,(α−ω)m]

inf
θk∈[−π,π],k=1,...,m

|z(m) − x| > cω > 0. (6.37)

Hence by Cauchy’s integral formula we get

fN−2,L(x) = f∞,L(x)− xN−1

(2πi)m

∮
CmR

 m∏
j=1

(1− zj)−L−1z−N+1
j

 1

z(m) − x
d~z, (6.38)

where

f∞,L(x) =
1

(2πi)m−1

∮
Cm−1
R

(
1− x

z1 . . . zm−1

)−L−1 m−1∏
j=1

(1− zj)−L−1 d~z

z1 . . . zm−1
, (6.39)

and the identity (6.39) follows from repeating the steps that led to (6.27) with N =∞
and again applying Cauchy’s integral formula. The estimation of the second term in
(6.38) can be obtained by repeating the same steps that led to (6.35), using (6.32) and
(6.37). In the complementary region Ec we have Re(φ(z)) = γ log |1 +Rα− (R+ 1)αeiθ|+
log |−Rα+(R+1)αeiθ| which again is an increasing function of θ with a unique minimum
at θ = 0. This is easy to see from the formulas

| −Rα+ (R+ 1)αeiθ|2 = α2(1 + 2R(R+ 1)(1− cos(θ)), (6.40)

|1 +Rα− (R+ 1)αeiθ|2 = (1− α)2 + 2(Rα(1 + (α+ 1)R) + α)(1− cos(θ)), (6.41)
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so that we again have a constant cε > 0 such that IEc/IE = O
(
e−cεN

ω

)
. This concludes

the proof of (2.12) when −(α+ δ0)m < x < (α− ω)m.

Proof of Proposition 2.7. In what follows, without loss of generality, we may take m ≥ 2

since for m = 1 the proposition is immediate. Consider the integral representation for
f∞,L(x) given in (6.39) with contour C given by the circle of radius x

1
m centered at the

origin. For each k = 1, . . . ,m − 1 we parameterise zk = x
1
m eiθk with θk ∈ [−π, π]. This

gives

f∞,L(x) =
1

(2π)m−1

∫
[−π,π]m−1

e−(L+1)φ(~θ) d~θ, (6.42)

where ~θ = (θ1, . . . , θm−1), d~θ = dθ1 . . . dθm−1 and the action is given by

φ(~θ) = log
(

1− x 1
m e−i(θ1+...+θm−1)

)
+

m−1∑
j=1

log
(

1− x 1
m eiθj

)
. (6.43)

It is straightforward to show that ~θ = ~0 is a critical point of φ(~θ). As we shall demonstrate
below, the main contribution to the integral (6.42) comes from a small neighbourhood of
this point that we denote E = [−ε, ε]m−1 for ε > 0 sufficiently small. The Hessian matrix
of φ at ~0 is given by

Hij =
x

1
m

(1− x 1
m )2
×

{
2, i = j

1, i 6= j
, (6.44)

where 1 ≤ i, j ≤ m − 1. On the set E, the considerations follow the proof of Theorem
2.2 identically, taking now η := Lx

1
m , and we omit the details. We restrict ourselves

to showing that the contribution from the complementary region Ec := [−π, π]m−1 \
[−ε, ε]m−1 is uniformly exponentially subleading and to proving the bounds (2.15) and
(2.16). By Lemma B.3 we have

|IEc | =

∣∣∣∣∣∣ 1

(2π)m−1

∫
Ec

(
1− x 1

m e−i
∑m−1
k=1 θk

)−L−1 m−1∏
j=1

dθj

(
1− x 1

m eiθj
)−L−1

∣∣∣∣∣∣ (6.45)

≤
(

1− x 1
m

)−m(L+1) 1

(2π)m−1

∫
Ec

e−
L

2π2 x
1
m

∑m−1
j=1 θ2j d~θ (6.46)

≤
(

1− x 1
m

)−m(L+1)

e−
Lx

1
m ε2

2π2 , (6.47)

which shows that IEc/IE = O(e−cη) for some c > 0.

The inequality (2.15) for x ∈ [0, 1) follows from

f∞,L(x) =

∞∑
n=0

((
L+ n

n

)
x
n
m

)m
≤

( ∞∑
n=0

(
L+ n

n

)
x
n
m

)m
=

1(
1− x 1

m

)m(L+1)
. (6.48)

To prove (2.16), let x ∈ [0, 1) and consider the integral representation for f∞,L(−x) in
(6.39) with contour C given by the circle of radius x

1
m centered at the origin. Setting

zk = x
1
m eiθk with θk ∈ [−π, π] for each k = 1, . . . ,m − 1 we split the domain [−π, π]m−1

into disjoint subsets

A` =

{
~θ ∈ [−π, π]m−1 : 2π` ≤

m−1∑
k=1

θk < 2π(`+ 1)

}
, (6.49)
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where ` = −bm−1
2 c − 1, . . . , bm−1

2 c. On the set A` we have

θ` :=

m−1∑
k=1

θk − π − 2`π ∈ [−π, π]. (6.50)

Applying Lemma B.3, with angle (6.50) we find

|f∞,L(−x)| ≤
bm−1

2 c∑
`=−bm−1

2 c−1

1

(2π)m−1

∫
A`

|1− x 1
m e−iθ` |−L−1

m−1∏
k=1

|1− x 1
m eiθk |−L−1 d~θ

≤ 1(
1− x 1

m

)m(L+1)

1

(2π)m−1

bm−1
2 c∑

`=−bm−1
2 c−1

∫
A`

e−
Lx

1
m

2π2 Ψ(~θ) d~θ,

where Ψ(~θ) =
(∑m−1

k=1 θk − π − 2π`
)2

+
∑m−1
k=1 θ2

k. The function Ψ(~θ) is minimised at

~θ∗ = (θ∗, . . . , θ∗) where θ∗ = π+2π`
m . Since Ψ(~θ∗) = 1

m (π + 2π`)
2 ≥ π2

m we obtain

|f∞,L(−x)| ≤ 1(
1− x 1

m

)m(L+1)
e−

Lx
1
m

2m . (6.51)

A The real Ginibre ensemble

Although we focus in this paper on the case of truncated orthogonal matrices, our
approach applies almost without change to a similar model defined as follows. Let
X(m) = G1 . . . Gm denote the product of m independent real Ginibre matrices of size
N ×N , that is each matrix in the product is independent and consists of independent
standard (real) Gaussian random variables. Like the truncated orthogonal matrices, they
are an integrable model whose eigenvalues (including the real ones) form a Pfaffian
point process [28, 18].

The analogues of exact formulae (2.7) and (2.6) are known from the work of Forrester
and Ipsen [18]. It is assumed in [18] that N is even in this context, and we make the
same assumption in what follows. There it is shown that

E(N
(m)
R ) =

N
3m
2

(2
√

2π)m

∫
R

dx

∫
R

dy |x− y|wGin(Nm/2x)wGin(Nm/2y)fN−2(Nmxy) (A.1)

where

wGin(Nm/2x) =

∫
Rm

exp

−1

2

m∑
j=1

λ2
j

 δ(xNm/2 − λ1 . . . λm) dλ1 . . . dλm, (A.2)

and

fN−2(Nmx) =

N−2∑
n=0

(Nmx)n

(n!)m
. (A.3)

Using this formula, we can derive analogues of Theorems 1.1 and 1.2 with an identical
approach used in the present paper.

Theorem A.1. Let N (m)
R denote the number of real eigenvalues of X(m) = G1 . . . Gm.

For any fixed m ∈ N, we have

E(N
(m)
R ) =

√
2Nm

π
+O(1), N →∞. (A.4)
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The leading term in Theorem A.1 was first proved in [39] using an approach similar
to the one used here in Section 5.

Remark A.2. When m = 1 a precise asymptotic expansion is known for E(NR), see [15],
and this shows that the O(1) estimate in (A.4) is optimal. Similarly, we believe that our
O(1) estimates in (A.4) and (1.2) are optimal for any fixed m ≥ 1. In [39] the estimate on
the remainder in (A.4) is at the less precise order O(log(N)), hence Theorem A.1 gives
an improvement on this result.

Now again from [18] we have that the appropriately scaled and normalised density of
real eigenvalues of the product matrix N−

m
2 G1 . . . Gm is given by

ρ̃N (x) =
1

E(N
(m)
R )

N
3m
2

(2
√

2π)m

∫
R

dy |x− y|wGin(N
m
2 x)wGin(N

m
2 y)fN−2(Nmxy). (A.5)

Theorem A.3. For any bounded continuous test function h, we have

lim
N→∞

∫
R

h(x)ρ̃N (x) dx =

∫
R

h(x)ρ(x) dx, (A.6)

where

ρ(x) =
1

2mx1− 1
m

1x∈(−1,1). (A.7)

Furthermore, for any fixed x ∈ R\{−1, 0, 1}, we have the pointwise limit limN→∞ ρ̃N (x) =

ρ(x).

The weak convergence (A.6) was also established in [39], proving a conjecture of
Forrester and Ipsen in [18].

Let us now explain the small changes required to prove Theorems A.1 and A.3 using
the techniques of the present paper. First note that the definition of the weight (A.2) can
be written in the equivalent form

wGin(N
m
2 x) = 2m−1

∫
[0,∞)m−1

exp

−N |x| 2m
2

 1

u2
1 . . . u

2
m−1

+

m−1∑
j=1

u2
j

 d~u

u(m−1)
, (A.8)

where u(m−1) = u1 . . . um−1. Then a saddle point analysis as in the proof of Proposition
2.5 gives the following result.

Proposition A.4. Fix a large constant M > 0. Then we have the following asymptotic
estimate as N →∞, uniformly on |x| ∈ [MN−

m
2 ,∞),

wGin(N
m
2 x) = N−

m−1
2 e−

Nm
2 |x|

2
m (4π)

m−1
2

√
m
|x|−

m−1
m

(
1 +O

(
1

N |x| 2m

))
. (A.9)

In fact the proof of Proposition A.4 is more straightforward than for Proposition 2.5,
because it is already immediate from (A.8) that η := N |x| 2m is the appropriate large
parameter in the Laplace asymptotics.

Regarding fN−2(Nmx) in (A.3), we mimic the proof of Proposition 2.6 almost identi-
cally. For instance, instead of (6.24), we use the integral representation

Nn

n!
=

1

2πi

∮
C

eNz z−n−1 dz, (A.10)

and follow all the steps identically, the main difference being that the saddle point is now
located at z = 1 instead of z = α. This leads to

EJP 27 (2022), paper 5.
Page 25/32

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP732
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Products of truncated orthogonal random matrices

Proposition A.5. As N →∞ we have the following estimate uniformly on x ∈ R \ ((1−
ω)m, (1 + ω)m),

fN−2(Nmx) = f∞(Nmx)1−(1+ω)m<x<(1−ω)m +
xN−1

x− 1
e′N,m

(
1 +O

(
1√
Nω

))
, (A.11)

where we take ω = N−
1
2 and e′N,m = emN (2πN)−

m
2 .

Now regarding the function,

f∞(Nmx) =

∞∑
n=0

(Nmx)n

(n!)m
, (A.12)

we insert the integral representation (A.10) and find that for x > 0, we have

f∞(Nmx) =
1

(2πi)m−1

∮
Cm−1

exp

(
Nx

1
m

(
m−1∑
k=1

zk +
1

z1 . . . zm−1

))
d~z

z(m−1)
, (A.13)

where z(m−1) = z1 . . . zm−1. The representation (A.13) is well-suited for applying the
Laplace method with large parameter η := Nx

1
m , in complete analogy with the proof of

Proposition 2.7.

Proposition A.6. Fix a large constant M > 0. Then we have the following estimate as
N →∞, uniformly on x ∈ (MN−m,∞),

f∞(Nmx) = (2π)−
m−1

2 x−
m−1
2m eNmx

1
mN−

m−1
2

1√
m

(
1 +O

(
1

x
1
mN

))
. (A.14)

Remark A.7. Analogously to Remark 2.8, at the pointwise level the asymptotics (A.9)
and (A.14) were derived in the context of products of independent complex Ginibre
matrices in [2].

Remark A.8. We make a remark on the m = 1 case of Proposition A.5. This corresponds
to studying asymptotics of a truncated exponential function and has been considered by
many authors. At the level of precision required in this paper, this appeared in [9], but
more precise asymptotics are known. The proof given in [9] directly motivated our proof
of Propositions 2.6 and A.5 that hold for any m ≥ 1.

Now with Propositions A.4, A.5 and A.6, the proofs in Sections 2.2 and 3 go through
in complete analogy and we omit the details. This is how we prove Theorems A.1 and
A.3.

B Miscellaneous bounds

Lemma B.1. For any (u, v) ∈ [0, 1]2, we have the inequality

(1− u2)(1− v2)

(1− uv)2
≤ e−(u−v)2 . (B.1)

Proof. Using the bound 1 + x ≤ ex for all x ∈ R we have

(1− u2)(1− v2)

(1− uv)2
= 1− (u− v)2

(1− uv)2
≤ e−

(u−v)2

(1−uv)2 ≤ e−(u−v)2 , (B.2)

where in the last inequality we used 1
1−uv ≥ 1 for all (u, v) ∈ [0, 1]2.
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Lemma B.2. Consider the function Q : [0,∞)2 → [0,∞) defined by

Q(u, v) =
(u+ v)m − um

(u(u+ v))
m−1

2

. (B.3)

Then for δ > 0 sufficiently small and M > 0 arbitrary, we have for (u, v) ∈ [0,M ]× [0, δ]

the uniform bound

Q(u, v) = mv +

m−1∑
j=0

O

(
v3+j

u2+j

)
. (B.4)

Furthermore, for any ε > 0, there is a constant Cε,M > 0 independent of u such that on
the domain (u, v) ∈ [ε,M ]× [0,M ] we have Q(u, v) ≤ Cε,Mv.

Proof. We have

Q(u, v) = u

(
1 + v

u

)m − 1(
1 + v

u

)m−1
2

=
(

1 +
v

u

)−m−1
2

m−1∑
j=0

(
m

j + 1

)
vj+1

uj
. (B.5)

This implies that Q(u, v) ≤ Cε,Mv provided u > ε. Taylor expanding near v = 0, we have

(
1 +

v

u

)−m−1
2

= 1− m− 1

2

v

u
+O

(
v2

u2

)
, 0 < v < δ. (B.6)

To obtain the uniform big-O term in (B.6) note that

d2

dv2

(
1 +

v

u

)−m−1
2

=

(
1 + v

u

)−m−1
2

4(u+ v)2
(m2 − 1) ≤ m2 − 1

4u2
. (B.7)

Then inserting (B.6) into (B.5) the term proportional to v2

u cancels and we obtain (B.4).

Lemma B.3. For θ ∈ [−π, π] and 0 ≤ x < 1, we have the inequality

1∣∣∣1− x 1
m eiθ

∣∣∣ ≤ 1

1− x 1
m

e−
x

1
m

2π2 θ
2

. (B.8)

Proof. The identity(
1− x 1

m

)2

∣∣∣1− x 1
m eiθ

∣∣∣2 =
1

1 +A(1− cos(θ))
, A :=

2x
1
m(

1− x 1
m

)2 , (B.9)

and the inequalities 1
1+y ≤ e

− y
1+y for y ≥ 0 and (1− cos(θ)) ≤ 2 show that

(
1− x 1

m

)2

∣∣∣1− x 1
m eiθ

∣∣∣2 ≤ e−
A

1+2A (1−cos(θ)). (B.10)

To conclude, we apply Jordan’s inequality 1 − cos(θ) ≥ 2
π2 θ

2 for θ ∈ [−π, π] and the
following bound to the right-hand side of (B.10),

A
1 + 2A

=
2x

1
m

(1− x 1
m )2 + 4x

1
m

≥ 1

2
x

1
m . (B.11)
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Lemma B.4. Let the circles CR be defined by

zk = −Rα+ (R+ 1)αeiθk , −π < θk ≤ π, (B.12)

and define z(m) := z1 . . . zm. Consider the parameters ω and α as in Proposition 2.6. Then
for R > 0 large enough, there exist absolute constants c > 0 and δ0 > 0 independent of
N such that

inf
x∈[−(α+δ0)m,(α−ω)m]

inf
θk∈[−π,π],k=1,...,m

|z(m) − x| > cω. (B.13)

Furthermore, for any x ∈ [−(α+ δ0)m, (α− ω)m] and for each k = 1, . . . ,m, we have that
xzk
z(m) belongs to the interior of CR.

Proof. We have

|zk|2 = 2α2R2(1− cos(θk)) + 2Rα2(1− cos(θk)) + α2, (B.14)

and clearly each |zk| ≥ α. When x > 0 we have

|z(m) − x| ≥ ||z(m)| − |x|| ≥ αm − (α− ω)m ≥ cω. (B.15)

We also have ∣∣∣∣ xz`z(m)

∣∣∣∣ ≤ (α− ω)m

αm−1
≤ α(1− ω/α)m < α, (B.16)

and therefore xz`
z(m) belongs to the interior of CR, as CR strictly includes any disc of radius

smaller than α.
If x ≤ 0, in particular when x is close to −αm we have to check that there is not

too much winding in the product z(m) that might allow φ := Arg(z(m)) = π. We start
by supposing that for at least one k = 1, . . . ,m, we have |θk| ≥ ε/R. Then for R large
enough and any fixed ε > 0

1− cos(θk) ≥ 1− cos(ε/R) ≥
( ε
R

)2 1

π
. (B.17)

Hence, for this k, inserting (B.17) into (B.14) gives |zk|2 ≥ α2(1 + ε2/2). Using this and
|zj | ≥ α shows that |z(m)| ≥ αm(1 + ε2/8). Furthermore |x| < αm(1 + cmδ0) for some
cm > 0 depending only on m. Then

|z1 . . . zm − x| ≥ ||z1| . . . |zm| − |x|| ≥ αm(ε2/8− cmδ0) > cω, (B.18)

which is valid for any ε >
√

8
√
cmδ0 + ω. Thus we see that by choosing δ0 small enough

we can allow arbitrarily small ε > 0. The same bound shows that for any ` = 1, . . . ,m, we
have

|xz`/z(m)| ≤ α1 + cmδ0

1 + ε2

8

< α, (B.19)

which implies that xz`/z(m) is strictly in the interior of CR. This bounds the region where
at least one of the |θk| ≥ ε/R. The complement of this region is where |θj | < ε/R for all
j = 1, . . . ,m. We claim that on this region

|Arg(z1 . . . zm)| = |Arg(z1) + . . .+ Arg(zm)| ≤ 2εm. (B.20)

To prove this we compute the argument of each zj ,

Arg(zj) = tan−1

(
sin(θj)

− R
R+1 + cos(θj)

)
. (B.21)
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By symmetry it suffices to assume θj ≥ 0. Using sin(x) ≤ x, we have for the numerator
sin(θj) ≤ θj ≤ ε/R. The cosine inequality cos(x) ≥ 1 − 2x/π gives for the denominator
− R
R+1 + cos(θj) ≥ 1

R+1 − 2ε/(πR) and clearly R
R+1 − 2ε/π > 1

2 . These bounds imply that

sin(θj)

− R
R+1 + cos(θj)

≤ 2ε. (B.22)

Now by monotonicity of tan−1 we have Arg(zj) ≤ 2ε and this implies (B.20). We thus
have

|z(m) − x|2 = |z|2 + x2 − 2|z|x cos(φ) ≥ α2m > ω, (B.23)

which holds for example if φ := Arg(z(m)) < π/2 (note that (B.20) implies φ < 2εm). We
also have

|Arg(z`x/z
(m))− π| ≤ 2mε,∣∣∣∣ z`xz(m)

∣∣∣∣ ≤ α(1 + δ0)m,
(B.24)

and choosing δ0 and ε small enough implies the strict inclusion of z`x/z(m) inside the
contour CR.

C Exact calculation of a multiple integral

In this section we compute the integral from (5.9) explicitly, namely the integral

AL,m =
1

Γ
(
L
2

)2m ∫
R2m

+

d~t d~r

m∏
`=1

t
L
2 −1

` r
L
2 −1

` e−t`−r`
t1 + . . .+ tm

2
1r1+...+rm<t1+...+tm . (C.1)

Lemma C.1. We have

AL,m =
mL

8
+

1

2

Γ(mL)

Γ
(
mL
2

)2 2−mL. (C.2)

Proof. By permutation invariance it is sufficient to consider the following

BL,m :=
1

Γ
(
L
2

)2m ∫
R2m

+

d~t d~r

m∏
`=1

t
L
2 −1

` r
L
2 −1

` e−t`−r` tm 1r1+...+rm<t1+...+tm , (C.3)

so that clearly AL,m = m
2 BL,m. We would also prefer to replace the tm with rm. Note

that if we replaced tm with tm+ rm, then by symmetry between the r` and t` variables we
can drop the indicator function after multiplying by a factor 1

2 . The remaining integrals
are explicit and we have

1

Γ
(
L
2

)2m ∫
R2m

+

d~t d~r

m∏
`=1

t
L
2 −1

` r
L
2 −1

` e−t`−r` (tm + rm)1r1+...+rm<t1+...+tm =
L

2
. (C.4)

We thus have BL,m = L
2 − FL,m where

FL,m :=
1

Γ
(
L
2

)2m ∫
R2m

+

d~t d~r

m∏
`=1

t
L
2 −1

` r
L
2 −1

` e−t`−r`rm 1r1+...+rm<t1+...+tm . (C.5)

To compute FL,m, we will integrate by parts in the variable rm, differentiating the factor

r
L
2
m and integrating e−rm . The second term in the integration by parts is thus completely

explicit, again by symmetry, and gives a contribution L
4 . Thus we have FL,m = L

4 −DL,m
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where DL,m is the boundary term of the integration by parts. To calculate this, we
parameterise the integration such that ~t ∈ Rm+ are unconstrained, while ~r satisfy the
constraints Km+1−` := {0 < rm+1−` < t1 + . . .+ tm− (r1 + . . .+rm−`)} where ` = 1, . . . ,m.
Setting rm = t1 + . . .+ tm − (r1 + . . .+ rm−1) results in the boundary term,

DL,m =
1

Γ
(
L
2

)2m ∫
Rm+

d~t

m∏
`=1

t
L
2 −1

` e−2t`

m−1∏
`=1

∫
K`

dr` r
L
2 −1

` (t(m) − r(m−1))
L
2 −1, (C.6)

where t(m) = t1 + . . .+ tm and r(m−1) = r1 + . . .+ rm−1. Then we integrate over each r`
variable, starting with rm−1, repeatedly using the formula∫ u

0

dr` r
a−1
` (u− r`)b−1 = ua+b−1 Γ(a)Γ(b)

Γ(a+ b)
, (C.7)

for each integral. We obtain

DL,m =
1

Γ
(
L
2

)2m
(
m−1∏
`=1

Γ
(
`L
2 + 1

)
Γ
(
L
2

)
Γ
(
`L
2 + L

2 + 1
) )∫

Rm+

d~t

m∏
`=1

t
L
2 −1

` e−2t`(t1 + . . .+ tm)
mL
2 . (C.8)

Now to compute the integrals over the t` variables we substitute the tm variable with
u = t1 + . . . + tm and parameterise such that u ∈ R+, while t1, . . . , tm−1 satisfy the
constraints Hm−j = {0 < tm−j < u − (t1 + . . . + tm−j−1} where j = 1, . . . ,m − 1. The
integrals over Hm−j are computed again using (C.7) repeatedly and we find

DL,m =
1

Γ
(
L
2

)2m
(
m−1∏
`=1

Γ
(
`L
2 + 1

)
Γ
(
L
2

)
Γ
(
`L
2 + L

2 + 1
) Γ

(
`L
2

)
Γ
(
L
2

)
Γ
(
`L
2 + L

2

) ) ∫ ∞
0

duumL−1e−2u (C.9)

=
1

Γ
(
L
2

)2m
(
m−1∏
`=1

Γ
(
`L
2 + 1

)
Γ
(
L
2

)
Γ
(
`L
2 + L

2 + 1
) Γ

(
`L
2

)
Γ
(
L
2

)
Γ
(
`L
2 + L

2

) ) 2−mLΓ(mL) (C.10)

=
Γ(mL)

mΓ(mL2 )2
2−mL, (C.11)

where we exploited the cancellation of successive terms in the products (C.10). Substi-
tuting (C.11) in the formula AL,m = mL

8 + m
2 DL,m concludes the proof of the Lemma.
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matrices. Phys. Rev. E (3), 82(4):040106, 4, 2010. MR2788023

[30] P. Kopel. Linear statistics of non-Hermitian matrices matching the real or complex Ginibre
ensemble to four moments. eprint = arXiv:1510.02987.

EJP 27 (2022), paper 5.
Page 31/32

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=0886674
https://mathscinet.ams.org/mathscinet-getitem?mr=2288197
https://mathscinet.ams.org/mathscinet-getitem?mr=2736204
https://mathscinet.ams.org/mathscinet-getitem?mr=1278483
https://arXiv.org/abs/1605.00623
https://mathscinet.ams.org/mathscinet-getitem?mr=1437734
https://mathscinet.ams.org/mathscinet-getitem?mr=1231689
https://mathscinet.ams.org/mathscinet-getitem?mr=4161126
https://mathscinet.ams.org/mathscinet-getitem?mr=3551633
https://mathscinet.ams.org/mathscinet-getitem?mr=4134827
https://mathscinet.ams.org/mathscinet-getitem?mr=3866607
https://mathscinet.ams.org/mathscinet-getitem?mr=0121828
https://mathscinet.ams.org/mathscinet-getitem?mr=3521630
https://arXiv.org/abs/1905.03154
https://mathscinet.ams.org/mathscinet-getitem?mr=0173726
https://mathscinet.ams.org/mathscinet-getitem?mr=3400913
https://mathscinet.ams.org/mathscinet-getitem?mr=3886008
https://mathscinet.ams.org/mathscinet-getitem?mr=2788023
https://arXiv.org/abs/1510.02987
https://doi.org/10.1214/21-EJP732
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Products of truncated orthogonal random matrices

[31] A. Lakshminarayan. On the number of real eigenvalues of products of random matrices
and an application to quantum entanglement. J. Phys. A: Math. Theor., 46:152003, 2013.
MR3043878

[32] N. Lehmann and H.-J. Sommers. Eigenvalue statistics of random real matrices. Phys. Rev.
Lett., 67:941–944, 1991. MR1121461

[33] D.-Z. Liu, D. Wang, and Y. Wang. Lyapunov exponent, universality and phase transition for
products of random matrices. eprint = arXiv:1810.00433.

[34] D.-Z. Liu and Y. Wang. Phase transitions for infinite products of large non-Hermitian random
matrices. eprint = arXiv:1912.11910.

[35] D.-Z. Liu and Y. Wang. Universality for products of random matrices I: Ginibre and truncated
unitary cases. Int. Math. Res. Not. IMRN, (11):3473–3524, 2016. MR3556416

[36] M. Poplavskyi and G. Schehr. Exact persistence exponent for the 2d-diffusion equation and
related Kac polynomials. Phys. Rev. Lett., 121:150601, 2018.

[37] M. Poplavskyi, R. Tribe, and O. Zaboronski. On the distribution of the largest real eigenvalue
for the real Ginibre ensemble. Ann. Appl. Probab., 27(3):1395–1413, 2017. MR3678474

[38] N. Simm. Central limit theorems for the real eigenvalues of large Gaussian random matrices.
Random Matrices Theory Appl., 6(1):1750002, 18, 2017. MR3612267

[39] N. Simm. On the real spectrum of a product of Gaussian matrices. Electron. Commun. Probab.,
22:1–11, 2017. MR3685239

[40] H.-J. Sommers and W. Wieczorek. General eigenvalue correlations for the Ginibre ensemble.
J. Phys. A: Math. Theor., 41(40), 2008. MR2439268

[41] T. Tao and V. Vu. Random matrices: universality of local spectral statistics of non-Hermitian
matrices. Ann. Probab., 43(2):782–874, 2015. MR3306005

[42] R. Tribe, S. K. Yip, and O. Zaboronski. One dimensional annihilating and coalescing particle
systems as extended Pfaffian point processes. Electron. Commun. Probab., 17:no. 40, 7, 2012.
MR2981896

[43] R. Tribe and O. Zaboronski. Pfaffian formulae for one dimensional coalescing and annihilating
systems. Electron. J. Probab., 16:no. 76, 2080–2103, 2011. MR2851057

Acknowledgments. We are grateful to an anonymous referee who pointed out to us
references [14, 32] and whose comments improved the presentation of the paper.

EJP 27 (2022), paper 5.
Page 32/32

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3043878
https://mathscinet.ams.org/mathscinet-getitem?mr=1121461
https://arXiv.org/abs/1810.00433
https://arXiv.org/abs/1912.11910
https://mathscinet.ams.org/mathscinet-getitem?mr=3556416
https://mathscinet.ams.org/mathscinet-getitem?mr=3678474
https://mathscinet.ams.org/mathscinet-getitem?mr=3612267
https://mathscinet.ams.org/mathscinet-getitem?mr=3685239
https://mathscinet.ams.org/mathscinet-getitem?mr=2439268
https://mathscinet.ams.org/mathscinet-getitem?mr=3306005
https://mathscinet.ams.org/mathscinet-getitem?mr=2981896
https://mathscinet.ams.org/mathscinet-getitem?mr=2851057
https://doi.org/10.1214/21-EJP732
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction and main results
	Strategy of the proof and leading order asymptotics
	Preliminary estimates
	Proof of Theorem 1.1

	Proof of Lemmas 2.9 and 2.10
	Convergence of the eigenvalue density
	Regime of weak non-orthogonality
	Laplace asymptotics
	The real Ginibre ensemble
	Miscellaneous bounds
	Exact calculation of a multiple integral
	References

