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Abstract

We show that nontrivial bi-infinite polymer Gibbs measures do not exist in typical
environments in the inverse-gamma (or log-gamma) directed polymer model on the
planar square lattice. The precise technical result is that, except for measures
supported on straight-line paths, such Gibbs measures do not exist in almost every
environment when the weights are independent and identically distributed inverse-
gamma random variables. The proof proceeds by showing that when two endpoints of
a point-to-point polymer distribution are taken to infinity in opposite directions but
not parallel to lattice directions, the midpoint of the polymer path escapes. The proof
is based on couplings, planar comparison arguments, and a recently discovered joint
distribution of Busemann functions.
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1 Introduction

1.1 Directed polymers

The directed polymer model is a stochastic model of a random path that interacts
with a random environment. In its simplest formulation on an integer lattice Zd, positive
random weights tYxuxPZd are assigned to the lattice vertices and the quenched probabil-
ity of a finite lattice path π is declared to be proportional to the product

ś

xPπ Yx. In the
usual Boltzmann-Gibbs formulation we take Yx “ e´βωx so that the energy of a path is
proportional to the potential

ř

xPπ ωx and the strength of the coupling between the path
π and the environment ω is modulated by the inverse temperature parameter β.

The directedness of the model means that some spatial direction u P Rd represents
time and the admissible paths π are required to be u-directed. One typical example

*O. Busani was supported by EPSRC’s EP/R021449/1 Standard Grant. T. Seppäläinen was partially supported
by National Science Foundation grant DMS-1854619 and by the Wisconsin Alumni Research Foundation.

†University of Bonn, Germany. E-mail: busani@iam.uni-bonn.de
‡University of Wisconsin-Madison, United States. E-mail: seppalai@math.wisc.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP731
https://ams.org/mathscinet/msc/msc2020.html
mailto:busani@iam.uni-bonn.de
mailto:seppalai@math.wisc.edu


Non-existence of bi-infinite polymers

would be to require that the steps of π are of the form p˘ei, 1q P Z
d for i P t1, . . . , d´ 1u.

In this example the time direction is u “ ed, space is the pd´ 1q-dimensional lattice Zd´1,
and π is a simple random walk path in space-time. Another common choice is to restrict
the steps of π to directed basis vectors teiu1ďiďd so that time proceeds in the diagonal
direction u “ e1 ` ¨ ¨ ¨ ` ed.

This model was introduced in the statistical physics literature by Huse and Henley in
1985 [23] as a model of the domain wall in an Ising model with impurities. Since the
polymer can be viewed as a perturbation of a simple random walk, a natural question
to investigate is whether the walk is diffusive across large scales. The early rigorous
mathematical work by Imbrie and Spencer [24] and Bolthausen [8] in the late 1980s
established that in dimensions d ě 4 (one time dimension plus at least three spatial
dimensions) the path behaves diffusively for small enough β. This behavior is now known
as weak disorder. Later work [13, 28] established that in lower dimensions d P t2, 3u
or if β is large enough, the polymer model exhibits strong disorder, characterized by
localization. Excellent reviews of this development can be found in [12, 19].

Since the early interest in the phase transition between weak and strong disorder,
the study of directed polymers has branched out in several directions. The discovery
of exactly solvable 1+1 dimensional models, the first of which were the O’Connell-Yor
Brownian directed polymer [30] and the inverse-gamma, or log-gamma, polymer [33], led
to rigorous proofs that directed polymers are members of the Kardar-Parisi-Zhang (KPZ)
universality class [9, 10, 34]. This had been expected since directed polymers are positive
temperature analogues of directed last-passage percolation, for which predictions of
KPZ universality were first rigorously verified [3, 26]. On KPZ we refer the reader to the
recent reviews [16, 17, 31, 32].

Through Feynman-Kac-type representations, directed polymers provide solutions
to stochastic partial differential equations. Early work in this direction by Kifer [27]
connected a polymer in the weak disorder regime with a stochastic Burgers equation.
The significant current example of this, which also takes us back to the study of KPZ
universality, is the connection between the continuum directed random polymer and
the stochastic heat equation with multiplicative noise, whose logarithm is the Hopf-Cole
solution of the KPZ equation. We refer to Corwin’s review [15].

1.2 Infinite polymers

Another natural direction of polymer research is the limit as the path length is taken
to infinity. This limit can be readily taken in weak disorder. This can be found in the
work of Comets and Yoshida [14]. In strong disorder the existence of limiting infinite
quenched polymer measures was first proved in 1+1 dimensions for the inverse-gamma
polymer in [22].

The limiting quenched probability distributions on infinite-length polymer paths
can be naturally described as the Gibbs measures whose finite-dimensional conditional
distributions are given by the quenched point-to-point polymer distributions Qx,ypπq “
Z´1
x,y

ś

uPπ Yu. Here π is a path between points x and y and the partition function
Zx,y “

ř

π

ś

uPπ Yu normalizes Qx,y to be a probability distribution on the paths between
x and y. (This notion is developed precisely in Section 2.)

This Gibbsian point of view arose prominently in the work of Bakhtin and Li [5] who
studied a 1+1 dimensional model with a Gaussian random walk. They used polymer
Gibbs measures to construct global solutions to a stochastic Burgers equation on the
line, subject to random kick forcing at discrete time intervals. Their sequel [4] showed
that as the temperature is taken to zero, the Gibbs measures concentrate around the
geodesic of the corresponding directed percolation model.

Janjigian and Rassoul-Agha [25] developed aspects of a general theory of polymer

EJP 27 (2022), paper 14.
Page 2/40

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP731
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-existence of bi-infinite polymers

Gibbs measures for i.i.d. vertex weights and directed nearest-neighbor paths on the
discrete planar square lattice Z2. We work in their setting, with a specialized choice of
weight distribution.

1.3 Bi-infinite polymers

The work cited above addressed the existence and uniqueness of semi-infinite Gibbs
measures. These are measures on semi-infinite, or one-sided infinite, paths, with fixed
initial point. The existence of bi-infinite Gibbs measures was left open. These would
be measures on bi-infinite paths that satisfy the Gibbs property. The problem can be
viewed as an analogue to the notorious open problem of the non-existence of bi-infinite
geodesics in first passage percolation, which in turn, is related to the ground states of
the Ising model with random exchange constants [2, Section 4.5]. It also generalizes
previous results on the non-existence of bi-infinite geodesics in zero temperature.

In this paper we assume that the i.i.d. vertex weights tYxuxPZ2 on the planar lattice
Z2 have inverse-gamma distribution. Then we prove that, for almost every choice of
weights, nontrivial bi-infinite Gibbs measures do not exist. Trivial bi-infinite Gibbs
measures do exist, by which we mean ones that are supported on bi-infinite straight
lines.

The key tools of the nonexistence proof are the following.

(i) Planar comparison inequalities, reviewed and proved in Appendix A.

(ii) KPZ wandering exponent 2{3 of the polymer path, quoted in Appendix B.3 from
[33].

(iii) A jointly stationary bivariate inverse-gamma polymer from the forthcoming work
[20] of the second author and W. L. Fan, developed in full detail in Appendix B.2.

From these ingredients and coupling arguments we derive a bound on the speed of decay
of the probability that a polymer path from far away in the southwest to far away in the
northeast goes through the origin. This bound is given in Theorem 4.6 at the end of
Section 4. The KPZ fluctuation bounds on polymer paths enable us to deduce this result
from local point-to-point estimates and a coarse-graining step.

Item (iii) above is the joint distribution of two Busemann functions of the polymer
process. We do not use the Busemann functions themselves in this paper and hence do
not develop them. We refer the reader to [5, 22, 25].

A methodological point to emphasize is that our proof does not rely on any integrable
probability features of the inverse-gamma polymer, such as those developed in [10, 18].
The KPZ fluctuation estimates of Appendix B.3 were proved in [33] with techniques that
are the same in spirit as the arguments in the present paper.

It is reasonable to expect that non-existence of bi-infinite Gibbs measures extends
to general weight distributions, since the present proof boils down to path fluctuations
which are expected to be universal in 1+1 dimensions under mild hypotheses. However,
currently available techniques do not appear to yield sufficiently sharp estimates to
prove this result in general polymer models. Specifically, items (ii) and (iii) from the list
above force us to work with an exactly solvable model.

The zero-temperature counterpart of our result is the non-existence of bi-infinite
geodesics in first-passage or last-passage percolation models. This has been proved for
the planar exponential directed last-passage percolation model [6, 7]. The organization
of our estimates mimics our zero-temperature proof in [6].
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1.4 Organization of the paper

Section 2 develops enough of the general polymer theory from [25] so that in Section
2.3 we can state the main result Theorem 2.8 on the nonexistence of bi-infinite inverse-
gamma polymer Gibbs measures. Along the way we apply results from [25] to prove
for general weights that infinite polymers have to be directed into the open quadrant,
unless they are rigid straight lines (Theorem 2.6). This result will also contribute to the
proof of the main Theorem 2.8.

Section 3 gives a quick description of the ratio-stationary inverse-gamma polymer and
derives one estimate - that under the annealed measure, with high probability, stationary
polymers will leave far from the characteristic ξ on the order of OpN2{3q when perturbing
the density ρpξq properly on the order of OpN1{3q.

The heart of the proof is in Section 4. A coarse-graining argument decomposes the
southwest boundary of a large 2N ˆ 2N square into blocks of size N2{3. Two separate
estimates are developed.

(a) The first kind is for the probability that a polymer path from an N2{3-block denoted
by I goes through the origin and reaches the diagonally opposite block pI of size
N19{24. This probability is shown to decay by controlling it with random walks that
come from ratio-stationary polymer processes (Lemma 4.4).

(b) The second estimate (Lemma 4.5) controls the paths from I through the origin that
miss pI. Such paths are rare due to KPZ bounds according to which the typical path
remains within a range of order N2{3 around the straight line between its endpoints.

Section 4 culminates in Theorem 4.6 that combines the estimates.
Section 5 combines Theorem 4.6 with the earlier Theorem 2.6 to complete the proof

of Theorem 2.8. The estimates for paths that go through the origin are generalized to
other crossing points on the y-axis by suitably shifting the environment.

Since the background polymer material will be at least partly familiar to some readers,
we have collected these facts in the appendix. Appendix A covers polymers on Z2 with
general vertex weights and Appendix B specializes to inverse-gamma weights. Appendix
C states a positive lower bound on the running maximum of a random walk with a small
negative drift that we use in a proof. This result is quoted from the technical note [11]
that we have published separately.

1.5 Notation and conventions

Subsets of reals and integers are denoted by subscripts, as in Zą0 “ t1, 2, 3, . . .u and
Z2
ą0 “ pZą0q

2. Ja, bK denotes the integer interval ra, bs X Z if a, b P R, and the integer
rectangle pra1, b1s ˆ ra2, b2sq XZ

2 if a, b P R2.
For points x “ px1, x2q and y “ py1, y2q in R2, the `1 norm is |x|1 “ |x1|` |x2|, the inner

product is x ¨ y “ x1y1 ` x2y2, the origin is 0 “ p0, 0q, and the standard basis vectors are
e1 “ p1, 0q and e2 “ p0, 1q. We utilize two partial orders:

(i) the coordinatewise order: px1, x2q ď py1, y2q if xr ď yr for r P t1, 2u, and

(ii) the down-right order: px1, x2q ď py1, y2q if x1 ď y1 and x2 ě y2.

Their strict versions mean that the defining inequalities are strict: px1, x2q ă py1, y2q if
xr ă yr for r P t1, 2u, and px1, x2q ă py1, y2q if x1 ă y1 and x2 ą y2.

Sequences are denoted by xm:n “ pxiq
n
i“m and xm:8 “ pxiq

8
i“m for integersm ď n ă 8

and also generically by x‚. An admissible path x‚ in Z2 satisfies xk ´ xk´1 P te1, e2u.
Limit velocities of these paths lie in the simplex re2, e1s “ tpu, 1´ uq : u P r0, 1su, whose
relative interior is the open line segment se2, e1r .
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The notations E and P refer to the random weights (the environment) ω, and oth-
erwise Eµ denotes expectation under probability measure µ. The usual gamma func-
tion for ρ ą 0 is Γpρq “

ş8

0
xρ´1e´x dx, and the digamma and trigamma functions are

ψ0 “ Γ1{Γ and ψ1 “ ψ10. X „ Gapρq if the random variable X has the density function
fpxq “ Γpρq´1xρ´1e´x on Rą0, and X „ Ga´1

pρq if X´1 „ Gapρq.
We often omit t¨u, for example, we write N2{3e1 P Z

2.

2 Polymer Gibbs measures

2.1 Directed polymers

Let pYxqxPZ2 be an assignment of strictly positive real weights on the vertices of Z2.
For vertices o ď p in Z2 let Xo,p denote the set of admissible lattice paths x‚ “ pxiq0ďiďn
with n “ |p ´ o|1 that satisfy x0 “ o, xi ´ xi´1 P te1, e2u, xn “ p. Define point-to-point
polymer partition functions between vertices o ď p in Z2 by

Zo,p “
ÿ

x‚PXo,p

|p´o|1
ź

i“0

Yxi . (2.1)

We use the convention Zo,p “ 0 if o ď p fails. The quenched polymer probability
distribution on the set Xo,p is defined by

Qo,ptx‚u “
1

Zo,p

|p´o|1
ź

i“0

Yxi , x‚ P Xo,p. (2.2)

When the weights ω “ pYxq are random variables on some probability space pΩ,A,Pq,
the averaged or annealed polymer distribution Po,p on Xo,p is defined by

Po,ppAq “

ż

Ω

ÿ

x‚PA

Qωo,ppx‚qPpdωq for A Ď Xo,p. (2.3)

The notation Qωo,p highlights the dependence of the quenched measure on the weights. It
is also convenient to use the unnormalized quenched polymer measure, which is simply
the sum of path weights:

Zo,ppAq “
ÿ

x‚PA

|p´o|1
ź

i“0

Yxi “ Zo,pQo,ppAq for A Ď Xo,p. (2.4)

A basic law of large numbers object of this model is the limiting free energy density.
Assume now the following:

the weights pYxqxPZ2 are i.i.d. random variables and

Er| log Y0|
p s ă 8 for some p ą 2.

(2.5)

Then there exists a concave, positively homogeneous, nonrandom continuous function
Λ : R2

ě0 Ñ R that satisfies this shape theorem:

lim
nÑ8

sup
xPZ2

ě0: |x|1ěn

logZ0,x ´ Λpxq

|x|1
“ 0 P-almost surely. (2.6)

(See Section 2.3 in [25].) In general, further regularity of Λ is unknown. In certain
exactly solvable cases, including the inverse-gamma polymer we study in this paper, the
following properties are known:

Λ is differentiable and strictly concave on the open interval se2, e1r . (2.7)
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Fix the base point o “ 0 (the origin) and consider sending the endpoint p to infinity
in the quenched measure Q0,p. Fix a finite path x0:n P X0,y where 0 ď y ď p and
n “ y ¨ pe1 ` e2q. To understand what happens as |p|1 Ñ8 it is convenient to write Q0,p

as a Markov chain:

Q0,ptX0:n “ x0:nu “
1

Z0,p

ˆ n´1
ź

i“0

Yxi

˙

Zxn,p “
n´1
ź

i“0

Zxi`1,pYxi
Zxi,p

(2.8)

with initial state X0 “ 0, transition probability π0,ppx, x ` eiq “ Z´1
x,pZx`ei,pYx for p ‰

x P J0, pK, and absorbing state p. The formulation above reveals that when the limit of
the ratio Zx`ei,p{Zx,p exists for each fixed x as p tends to infinity, then Q0,p converges
weakly to a Markov chain. When p recedes in some particular direction, this can be
proved under local hypotheses on the regularity of Λ. See Theorem 3.8 of [25] for a
general result and Theorem 7.1 in [22] for the inverse-gamma polymer.

The limiting Markov chains are examples of rooted semi-infinite polymer Gibbs
measures, which we discuss in the next section.

2.2 Infinite Gibbs measures

In this section we adopt mostly the terminology and notation of [25]. To describe
semi-infinite and bi-infinite polymer Gibbs measures, introduce the spaces of semi-infinite
and bi-infinite polymer paths in Z2:

Xu “ txm:8 : xm “ u, xi P Z
2, xi ´ xi´1 P te1, e2uu

and X “ tx´8:8 : xi P Z
2, xi ´ xi´1 P te1, e2uu.

Xu is the space of paths rooted or based at the vertex u P Z2. The indexing of the paths
is immaterial. However, it adds clarity to index unbounded paths so that xk ¨ pe1`e2q “ k,
as done in [25]. We follow this convention in the present section. So in the definition of
Xu above take m “ u ¨ pe1 ` e2q. The projection random variables on all the path spaces
are denoted by Xipxm:nq “ xi for all choices ´8 ď m ď n ď 8 and i in the correct range.

Fix ω P Ω and m P Z. Define a family of stochastic kernels tκωk,l : l ě k ě mu on
semi-infinite paths xm:8 through the integral of a bounded Borel function f :

κωk,lfpxm:8q “

ż

fpym,8qκ
ω
k,lpxm:8, dym,8q

“
ÿ

yk:lPXxk,xl

fpxm:k yk:l xl:8qQ
ω
xk,xl

pyk:lq.
(2.9)

In other words, the action of κωk,l amounts to replacing the segment xk:l of the path with
a new path yk:l sampled from the quenched polymer distribution Qωxk,xl . The argument
xm:k yk:l xl:8 inside f is the concatenation of the three path segments. There is no
inconsistency because yk “ xk and yl “ xl Q

ω
xk,xl

-almost surely. The key point is that the
measure κωk,lpxm:8, ¨q is a function of the subpaths pxm:k, xl:8q.

Note that the same kernel κωk,l works on paths xm:8 for any m ď k and also on the
space X of bi-infinite paths by replacing m with ´8 in the expressions above. With
these kernels one defines semi-infinite and bi-infinite polymer Gibbs measures. Let
FI “ σtXi : i P Iu denote the σ-algebra generated by the projection variables indexed by
the subset I of indices.

Definition 2.1. Fix ω P Ω and u P Z2 and let m “ u ¨ pe1 ` e2q. Then a Borel probability
measure ν on Xu is a semi-infinite polymer Gibbs measure rooted at u in environment
ω if for all integers l ě k ě m and any bounded Borel function f on Xu we have
Eνrf |FJm,kKYJl,8J s “ κωk,lf . This set of probability measures is denoted by DLRωu .

EJP 27 (2022), paper 14.
Page 6/40

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP731
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-existence of bi-infinite polymers

Definition 2.2. Fix ω P Ω. Then a Borel probability measure µ on X is a bi-infinite Gibbs
measure in environment ω if for all integers k ď l and any bounded Borel function f on
X we have Eµrf |FK´8,kKYJl,8J s “ κωk,lf . This set of probability measures is denoted by
ÐÝÑ
DLR

ω
.

An equivalent way to state µ P
ÐÝÑ
DLR

ω
is to require

ż

X

fpX´8:kqgpXk:lqhpXl:8q dµ “

ż

X

fpX´8:kqpκ
ω
k,lgqpX´8:k, Xl:8qhpXl:8q dµ

for all bounded Borel functions on the appropriate path spaces. For µ P DLRωu the
requirement is the same with X replaced by Xu and with ´8 replaced by m.

Remark 2.3 (Gibbs measures on lattices). The acronym DLR comes from Dobrushin,
Lanford and Ruelle, who introduced Gibbs measures in the late 1960s. The conditions
that define Gibbs measures are known as the DLR equations in statistical physics. See
the monographs by Georgii [21] and Simon [35] for basic theory of Gibbs measures on
lattices. Note though that the Gibbs measures of Definition 2.2 on bi-infinite paths do
not fit exactly the theory of Gibbs measures of Markovian specifications indexed by Z in
Chapters 10–11 of [21]. The reason is that the path space X is not a Z-indexed product
space and the stochastic kernel κωk,lpx´8:8, ¨q “ Qωxk,xlp¨q is not defined for all pairs of
boundary points pxk, xlq, but only when xk and xl can be connected by a nearest-neighbor
path.

The issue addressed in our paper is the nonexistence of nontrivial bi-infinite Gibbs
measures. For the sake of context, we state an existence theorem for semi-infinite Gibbs
measures.

Theorem 2.4. [25, Theorem 3.2] Assume (2.5) and (2.7). Then there exists an event
Ω0 such that PpΩ0q “ 1 and for every ω P Ω0 the following holds. For each u P Z2

and interior direction ξ P se2, e1r there exists a Gibbs measure Πω,ξ
u P DLRωu such that

Xn{n Ñ ξ almost surely under Πω,ξ
u . Futhermore, these measures can be chosen to

satisfy this consistency property: if u ¨ pe1 ` e2q ď y ¨ pe1 ` e2q “ n ď z ¨ pe1 ` e2q “ r,
then for any path xn:r P Xy,z,

Πω,ξ
u pXn:r “ xn:r |Xn “ yq “ Πω,ξ

y pXn:r “ xn:rq.

Uniqueness of Gibbs measures is a more subtle topic, and we refer the reader to
[25]. Since the Gibbs measure Πω,ξ

u satisfies the strong law of large numbers Xn{nÑ ξ,
we can call it (strongly) ξ-directed. In general, a path xm:8 is ξ-directed if xn{nÑ ξ as
nÑ8.

We turn to bi-infinite Gibbs measures. First we observe that there are trivial bi-infinite
Gibbs measures supported on straight line paths.

Definition 2.5. A path x‚ is a straight line if for a fixed i P t1, 2u, xn`1 ´ xn “ ei for all
path indices n.

If x‚ is a bi-infinite straight line then µ “ δx‚ is a bi-infinite Gibbs measure because the
polymer distribution Qu,u`mei is supported on the straight line from u to u`mei. More
generally, any probability measure supported on bi-infinite straight lines is a bi-infinite
Gibbs measure.

The next natural question is whether there can be bi-infinite polymer paths that are
not merely straight lines but still directed into ei. That this option can be ruled out is
essentially contained in the results of [25]. We make this explicit in the next theorem. It
says that under both semi-infinite and bi-infinite Gibbs measures, up to a zero probability
event, ei-directedness even along a subsequence is possible only for straight line paths.
Note that (2.11) covers both ei- and p´eiq-directedness.
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Theorem 2.6. Assume (2.5). There exists an event Ω0 Ď Ω such that PpΩ0q “ 1 and for
every ω P Ω0 the following statements hold for both i P t1, 2u:

(a) For all u P Z2 and ν P DLRωu , with m “ u ¨ pe1 ` e2q,

ν
 

lim
nÑ8

n´1|Xn ¨ e3´i| “ 0
(

“ νtXn “ u` pn´mqei for n ě mu. (2.10)

(b) For all µ P
ÐÝÑ
DLR

ω
,

µ
 

lim
|n|Ñ8

|n´1Xn ¨ e3´i| “ 0
(

“ µtX´8:8 is an ei-directed bi-infinite straight lineu.
(2.11)

Proof. Let the event Ω0 of full P-probability be the intersection of the events specified in
Lemma 3.4 and Theorem 3.5 of [25].

Part (a). We can assume that the left-hand side of (2.10) is positive because the event
on the right is a subset of the one on the left. Since A “ tlimnÑ8 n

´1|Xn ¨ e3´i| “ 0u

is a tail event, it follows that rν “ νp¨|Aq P DLRωu . The path space Xu is compact in the
product topology because once the initial point u is fixed, each coordinate xi has a finite
range. Hence rν is a mixture of extreme members of DLRωu . (This is an application of
Choquet’s theorem, discussed more thoroughly in Section 2.4 of [25].) This mixture can
be restricted to extreme Gibbs measures that give the event A full probability.

By Lemma 3.4 and Theorem 3.5 of [25], an extreme member of DLRωu that is not
directed into the open interval se2, e1r must be a degenerate point measure Πei

u , which is
the probability measure supported on the single straight line path pu` pn´mqeiqn:něm.
We conclude that rν “ Πei

u .
Let us show how we deduce (2.10). Let Bei

u “ tXn “ u` pn´mqei for n ě mu be the
event that from u onwards the path is an ei-directed line. Then by conditioning,

νpBei
u q “ νpBei

u XAq “ rνpBei
u qνpAq “ νpAq.

Part (b). Consider first the case n Ñ 8. Let m P Z and x ¨ pe1 ` e2q “ m. Suppose
µpXm “ xq ą 0. Then, by Lemma 2.4 in [25], µx “ µp¨|Xm “ xq P DLRωx . Part (a) applied
to µx shows that

µtXm “ x, lim
nÑ8

n´1|Xn ¨ e3´i| “ 0u “ µtXn “ x` pn´mqei for n ě mu. (2.12)

By summing over the pairwise disjoint events tXm “ xu gives, for each fixed m P Z,

µt lim
nÑ8

n´1|Xn ¨ e3´i| “ 0u “ µtXn “ Xm ` pn´mqei for n ě mu.

The events on the right decrease as mÑ ´8, and in the limit we get

µt lim
nÑ8

n´1|Xn ¨ e3´i| “ 0u “ µtXn “ Xm ` pn´mqei for all n,m P Zu

which is exactly the claim (2.11) the case nÑ8.
The case nÑ ´8 of (2.11) follows by reflection across the origin. Let ω “ pYxqxPZ2

and define reflected weights rω “ prYxqxPZ2 by rYx “ Y´x. Given µ P
ÐÝÑ
DLR

ω
, define the

reflected measure rµ by setting, for m ď n and xm:n P Xxm,xn , rµpXm:n “ xm:nq “ µpXi “

´x´i for i “ ´n, . . . ,´mq. Then rµ P
ÐÝÑ
DLR

rω
. Directedness towards ´ei under µ is now

directedness towards ei under rµ, and we get the conclusion by applying the already
proved part to rµ.
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Moving away from the ei-directed cases, the non-existence problem was resolved
by Janjigian and Rassoul-Agha in the case of Gibbs measures directed towards a fixed
interior direction:

Theorem 2.7. [25, Thm. 3.13] Assume (2.5) and (2.7). Fix ξ P se2, e1r . Then there exists
an event Ωbi,ξ Ď Ω such that PpΩbi,ξq “ 1 and for every ω P Ωbi,ξ there exists no measure

µ P
ÐÝÑ
DLR

ω
such that as nÑ8, Xn{nÑ ξ in probability under µ.

We assumed (2.7) above to avoid introducing technicalities not needed in the rest of
the paper. The global regularity assumption (2.7) can be weakened to local hypotheses,
as done in Theorem 3.13 in [25].

The results above illustrate how far one can presently go without stronger assump-
tions on the model. The hard question left open is whether bi-infinite Gibbs measures
can exist in random directions in the open interval se2, e1r . To rule these out we restrict
our treatment to the exactly solvable case of inverse-gamma distributed weights.

That only directed Gibbs measures would need to be considered in the sequel is
a consequence of Corollary 3.6 of [25]. However, we do not need to assume this
directedness a priori and we do not use Theorem 2.7. At the end we will appeal to
Theorem 2.6 to rule out the extreme slopes. As stated above, Theorem 2.6 does not seem
to involve the regularity of Λ. But in fact through appeal to Theorem 3.5 of [25], it does
rely on the nontrivial (but provable) feature that Λ is not affine on any interval of the type
sζ, e1s (and symmetrically on re2, ηr ). This is the positive temperature counterpart of
Martin’s shape asymptotic on the boundary [29] and can be deduced from that (Lemma
B.1 in [25]).

2.3 Bi-infinite Gibbs measures in the inverse-gamma polymer

A random variable X has the inverse gamma distribution with parameter θ ą 0,
abbreviated X „ Ga´1

pθq, if its reciprocal X´1 has the standard gamma distribution
with parameter θ, abbreviated X´1 „ Gapθq. Their density functions for x ą 0 are

fX´1pxq “
1

Γpθq
xθ´1e´x for the gamma distribution Gapθq and

fXpxq “
1

Γpθq
x´1´θe´x

´1

for the inverse gamma distribution Ga´1
pθq.

(2.13)

Here Γpθq “
ş8

0
sθ´1e´s ds is the gamma function.

Our basic assumption is:

The weights pYxqxPZ2 are i.i.d. inverse-gamma distributed

random variables on some probability space pΩ,A,Pq.
(2.14)

The main result is stated as follows.

Theorem 2.8. Assume (2.14). Then for P-almost every ω, every bi-infinite Gibbs mea-
sure is supported on straight lines: that is, µ P

ÐÝÑ
DLR

ω
implies that

µpX´8:8 is a bi-infinite straight lineq “ 1.

Due to Theorem 2.6(b), to prove Theorem 2.8 we only need to rule out the possibility
of bi-infinite polymer measures that are directed towards the open segments s´e2,´e1r

and se2, e1r . The detailed proof is given in Section 5, after the development of preliminary
estimates. For the proof we take Yx to be a Ga´1p1q variable. We note that there is
no loss of generality due to our choice of the parameter 1 as using a different scale
amounts to multiplying the weights by a scalar due to the scaling properties of the
Gamma distribution.

EJP 27 (2022), paper 14.
Page 9/40

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP731
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-existence of bi-infinite polymers

For the interested reader, we mention that the semi-infinite Gibbs measures of the
inverse-gamma polymer are described in the forthcoming work [20]. Earlier results
appeared in [22] where such measures were obtained as almost sure weak limits of
quenched point-to-point and point-to-line polymer distributions.

3 Stationary inverse-gamma polymer

The proof of Theorem 2.8 relies on the fact that the inverse-gamma polymer possesses
a stationary version with accessible distributional properties, first constructed in [33].
This section gives a brief description of the stationary polymer and proves an estimate.
Further properties of the stationary polymer are developed in the appendixes.

Let pYxqxPZ2 be i.i.d. Ga´1p1q weights. A stationary version of the inverse-gamma
polymer is defined in a quadrant by choosing suitable boundary weights on the south
and west boundaries of the quadrant. For a parameter 0 ă α ă 1 and a base vertex o,
introduce independent boundary weights on the x- and y-axes emanating from o:

Iαo`ie1
„ Ga´1

p1´ αq and Jαo`je2
„ Ga´1

pαq for i, j ě 1. (3.1)

The above convention, that the horizontal edge weight Iα has parameter 1 ´ α while
the vertical Jα has α, is followed consistently and it determines various formulas in the
sequel.

For vertices p ě o define the partition functions

Zαo,p “
ÿ

x‚PXo,p

|p´o|1
ź

i“0

rYxi with weights rYx “

$

’

’

’

’

’

&

’

’

’

’

’

%

1, x “ o

Yx, x P o`Z2
ą0

Iαx , x P o` pZą0qe1

Jαx , x P o` pZą0qe2.

(3.2)

Note that now a weight at o does not count. The superscript α distinguishes Zαo,p from
the generic partition function Zo,p of (2.1). The stationarity property is that the joint
distribution of the ratios Zαo,x{Z

α
o,x´ei is invariant under translations of x in the quadrant

o`Z2
ě0. See Appendix B.2 for more details.

The quenched polymer distribution corresponding to (3.2) is given by Qαo,ppx‚q “

pZαo,pq
´1

ś|p´o|1
i“0

rYxi for x‚ P Xo,p, and the annealed measure is Pαo,ppx‚q “ ErQ
α
o,ppx‚qs.

It will be convenient to consider also backward polymer processes whose paths
proceed in the southwest direction and the stationary version starts with boundary
weights on the north and east. For vertices o ě p let pXo,p be the set of down-left paths

starting at o and terminating at p. As sets of vertices and edges, paths in pXo,p are

exactly the same as those in Xp,o. The difference is that in pXo,p paths are indexed in the
down-left direction.

For o ě p, backward partition functions are then defined with i.i.d. bulk weights as

pZo,p “
ÿ

x‚P pXo,p

|o´p|1
ź

i“0

Yxi (3.3)

and in the stationary case as

pZαo,p “
ÿ

x‚P pXo,p

|o´p|1
ź

i“0

rYxi with weights rYx “

$

’

’

’

’

’

&

’

’

’

’

’

%

1, x “ o

Yx, x P o´Z2
ą0

Iαx , x P o´ pZą0qe1

Jαx , x P o´ pZą0qe2.

(3.4)
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The independent boundary weights Iαo´ie1
and Jαo´je2

(i, j ě 1) have the distributions
(3.1).

We define functions that capture the wandering of a path x‚ P Xo,p. The (signed)
exit point or exit time τo,p “ τo,ppx‚q marks the position where the path x‚ leaves the
southwest boundary and moves into the bulk, with the convention that a negative value
indicates a jump off the y-axis. More generally, for 3 vertices o ď v ă p, τo,v,p “ τo,v,ppx‚q

marks the position where x‚ P Xo,p enters the rectangle Jv ` e1 ` e2, pK, again with a
negative sign if this entry happens on the west edge tv ` e1 ` je2 : 1 ď j ď pp´ vq ¨ e2u.
Here is the precise definition:

τo,v,ppx‚q “

#

´maxtj ě 1 : v ` je2 P x‚u, if x‚ X pv ` pZą0qe2q ‰ H

maxti ě 1 : v ` ie1 P x‚u, if x‚ X pv ` pZą0qe1q ‰ H.
(3.5)

Exactly one of the two cases above happens for each path x‚ P Xo,p. The exit point from
the boundary is then defined by τo,p “ τo,o,p.

An analogous definition is made for the backward polymer. For o ě v ą p and
x‚ P pXo,p,

pτo,v,ppx‚q “

#

´maxtj ě 1 : v ´ je2 P x‚u, if x‚ X pv ´ pZą0qe2q ‰ H

maxti ě 1 : v ´ ie1 P x‚u, if x‚ X pv ´ pZą0qe1q ‰ H.

The signed exit point from the northeast boundary is pτo,p “ pτo,o,p.

The remainder of this section is devoted to an estimate needed in the body of the
proof. First recall that the digamma function ψ0 “ Γ1{Γ is strictly concave and strictly
increasing on p0,8q, with ψ0p0`q “ ´8 and ψ0p8q “ 8. Its derivative, the trigamma
function ψ1 “ ψ10, is positive, strictly convex, and strictly decreasing, with ψ1p0`q “ 8

and ψ1p8q “ 0. These functions appear as means and variances:

for η „ Ga´1
pαq, Erlog ηs “ ´ψ0pαq and Varplog ηq “ ψ1pαq. (3.6)

In the stationary polymer Zαo,p in (3.2), the boundary weights are stochastically larger
than the bulk weights. Consequently the polymer path prefers to run along one of the
boundaries, its choice determined by the direction pp ´ oq{|p ´ o|1 P re2, e1s. For each
parameter α P p0, 1q there is a particular characteristic direction ξpαq P se2, e1r at which
the attraction of the two boundaries balances out. For ρ P r0, 1s this function is given by

ξpρq “
´ ψ1pρq

ψ1pρq ` ψ1p1´ ρq
,

ψ1p1´ ρq

ψ1pρq ` ψ1p1´ ρq

¯

P re2, e1s. (3.7)

The extreme cases are interpreted as ξp0q “ e1 and ξp1q “ e2. The inverse function
ρ “ ρpξq of a direction ξ “ pξ1, ξ2q P re2, e1s is defined by ρpe2q “ 1, ρpe1q “ 0, and

´ξ1ψ1p1´ ρpξqq ` ξ2ψ1pρpξqq “ 0 for ξ P se2, e1r .

The function ρpξq is a strictly decreasing bijective mapping of ξ1 P r0, 1s onto ρ P

r0, 1s, or, equivalently, a strictly decreasing mapping of ξ in the down-right order. The

significance of the characteristic direction for fluctuations is that τo,p is of order |p´ o|2{31

if and only if p´ o is directed towards ξpαq, and of order |p´ o|1 in all other directions.
These fluctuation questions were first investigated in [33].

We insert here a lemma on the regularity of the characteristic direction.

Lemma 3.1. There exist functions φ ą 0 and B ą 0 on p0, 1q such that, whenever
ρ0 P p0, 1q and |δ ´ ρ0| ă ρ1 “

1
2 pρ0 ^ p1´ ρ0qq,

ξ2pρ0 ` δq

ξ1pρ0 ` δq
´
ξ2pρ0q

ξ1pρ0q
“ φpρ0qδ ` fpρ0, δq (3.8)
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Non-existence of bi-infinite polymers

where the function f satisfies

|fpρ0, δq| ď Bpρ0qδ
2. (3.9)

The functions φ, φ´1 and B are bounded on any compact subset of p0, 1q.

Proof. As the function ψ1 is smooth on p0,8q

ξ2pρ0 ` δq

ξ1pρ0 ` δq
´
ξ2pρ0q

ξ1pρ0q
“
ψ1p1´ pρ0 ` δqq

ψ1pρ0 ` δq
´
ψ1p1´ ρ0q

ψ1pρ0q

“ ´ δ
ψ11p1´ ρ0qψ1pρ0q ` ψ

1
1pρ0qψ1p1´ ρ0q

ψ1pρ0q
2

` fpρ0, δq

where ψ11 ă 0 and f satisfies (3.9).

Recall that to prove Theorem 2.8, our intention is to rule out bi-infinite polymer
measures whose forward direction is into the open first quadrant, and whose backward
direction is into the open third quadrant. The main step towards this is that, as N
becomes large, a polymer path from southwest to northeast across the square J´N,NK2,
with slope bounded away from 0 and 8, cannot cross the y-axis anywhere close to the
origin.

To achieve this we control partition functions from the southwest boundary of the
square J´N,NK2 to the interval J “ J´N2{3e2, N

2{3e2K on the y-axis, and backward
partition functions from the northeast boundary of the square J´N,NK2 to the interval
pJ “ e1 ` J shifted one unit off the y-axis.

Let ε ą 0. We establish notation for the southwest portion of the boundary of the
square J´N,NK2 that is bounded by the lines of slopes ε and ε´1. With W for west
and S for south, let BNW “ t´Nu ˆ J´N,´εNK, BNS “ J´N,´εNK ˆ t´Nu, and then
BN “ BN,ε “ BNW Y BNS . The parameter ε ą 0 stays fixed for most of the proof, and
hence will be suppressed from much of the notation. We also let oi “ p´N,´εNq and
of “ p´εN,´Nq. A lattice point o “ po1, o2q P B

N is associated with its (reversed)
direction vector ξpoq “ pξ1poq, 1´ ξ1poqq P se2, e1r and parameter ρpoq P p0, 1q through the
relations

ξpoq “

ˆ

o1

o1 ` o2
,

o2

o1 ` o2

˙

(3.10)

and indirectly via (3.7):

ρpoq “ ρpξpoqq ðñ ξpρpoqq “ ξpoq. (3.11)

For all o P BN we have the bounds

ξpoq P
”´ 1

1` ε
,

ε

1` ε

¯

,
´ ε

1` ε
,

1

1` ε

¯ı

“ rξi, ξf s.

If we define the extremal parameters (for a given ε ą 0) by

ρi “ ρpoiq “ ρ

ˆ

1

1` ε
,

ε

1` ε

˙

and ρf “ ρpof q “ ρ

ˆ

ε

1` ε
,

1

1` ε

˙

then we have the uniform bounds

0 ă ρi ď ρpoq ď ρf ă 1 for all o P BN “ BN,ε. (3.12)

For o P BN define perturbed parameters (with dependence on r,N suppressed from
the notation):

ρ‹poq “ ρpoq ´ rN´
1
3 and ρ‹poq “ ρpoq ` rN´

1
3 . (3.13)
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The variable r can be a function of N and become large but always rpNqN´1{3 Ñ 0 as
N Ñ 8. Then for N ě N0pεq the perturbed parameters are bounded uniformly away
from 0 and 1:

0 ă ρ0pεq ď ρ‹poq ă ρ‹poq ď ρ1pεq ă 1 for all o P BN “ BN,ε and N ě N0pεq. (3.14)

We consider the stationary processes Zρ
‹
poq

o,‚ and Zρ‹poqo,‚ . Our next lemma shows that
the perturbation r can be taken such that, for all o P BN and x P J “ J´N2{3e2, N

2{3e2K,
on the scale N2{3 the exit point under Qρ

‹
poq

o,x is far enough in the e1 direction, and under

Q
ρ‹poq
o,x far enough in the e2 direction, with high probability.

Lemma 3.2. For each ε ą 0 there exist finite positive constants cpεq, C0pεq, C1pεq and
N0pεq such that, whenever 1 ď d ď cpεqN1{3, C0pεqd ď r ď cpεqN1{3, N ě N0pεq, o P BN ,
and y ą 0, we have the bounds

P
!

sup
xPJ

Qρ‹poqo,x

`

τo,x ě ´dN
2
3

˘

ą y
)

ď C1pεqy
´1r´3 (3.15)

and
P
!

sup
xPJ

Qρ
‹
poq

o,x

`

τo,x ď dN
2
3

˘

ą y
)

ď C1pεqy
´1r´3. (3.16)

Proof. We prove (3.16) as (3.15) is similar. We turn the quenched probability into a form
to which we can apply fluctuation bounds. The justifications of the steps below go as
follows.

(i) The first inequality below is from (A.14).

(ii) Observe that the path leaves the boundary to the left of the point o` dN2{3e1 if and
only if it intersects the vertical line o` dN2{3e1 ` je2 at some j ě 1.

(iii) Move the base point from o to o ` dN2{3e1 and apply (A.5). By the stationarity
(Lemma B.1), the new boundary weights on the axes emanating from o` dN2{3e1

have the same distribution as the original ones. This gives the equality in distribu-
tion.

(iv) Choose an integer ` so that the vector from o ` dN2{3e1 ´ `e2 to N2{3e2 points in
the characteristic direction ξpρ‹poqq. Apply (A.5) and stationarity.

sup
xPJ

Qρ
‹
poq

o,x

`

τo,x ă dN
2
3

˘

ď Q
ρ‹poq

o,N2{3e2

`

τo,N2{3e2
ă dN

2
3

˘

“ Q
ρ‹poq

o,N2{3e2

`

τo,o`dN2{3e1,N2{3e2
ă 0

˘ d
“ Q

ρ‹poq

o`dN2{3e1,N2{3e2

`

τo`dN2{3e1,N2{3e2
ă 0

˘

“ Q
ρ‹poq

o`dN2{3e1´`e2,N2{3e2

`

τo`dN2{3e1´`e2,N2{3e2
ă ´`

˘

.

We show that ` ě c0pεqrN
2{3 for a constant c0pεq. Let o “ ´pNa,Nbq, with ε ď a, b ď 1.

Lemma 3.1 gives the next identity. The O-term hides an ε-dependent constant that is
uniform for all ρpoq because, as observed in (3.12), the assumption o P BN bounds ρpoq
away from 0 and 1.

N2{3 `Nb` `

Na´ dN2{3
“
ξ2pρ

‹poqq

ξ1pρ‹poqq
“
b

a
` φpρpoqqrN´1{3 `Opr2N´2{3q.

From this we deduce

` “ φpρpoqqarN2{3 ´
b

a
dN2{3 ´N2{3 ´ φpρpoqqrdN1{3 `Opr2N1{3q `Opr2dq.
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Recall from Lemma 3.1 that φpρpoqq ą 0 is uniformly bounded away from zero for o P BN .
For a small enough constant cpεq and large enough constants C0pεq and N0pεq, if we
have 1 ď d ď cpεqN1{3, C0pεqd ď r ď cpεqN1{3 and N ě N0pεq, the above simplifies to
` ě c0pεqrN

2{3.
We can derive the final bound.

P
!

sup
xPJ

Qρ
‹
poq

o,x

`

τo,x ă dN
2
3

˘

ą y
)

ď P
!

Q
ρ‹poq

o`dN2{3e1´`e2,N2{3e2

`

τo`dN2{3e1´`e2,N2{3e2
ă ´`

˘

ą y
)

ď y´1E
”

Q
ρ‹poq

o`dN2{3e1´`e2,N2{3e2

`

τo`dN2{3e1´`e2,N2{3e2
ă ´cpεqrN2{3

˘

ı

“ y´1P
ρ‹poq

o`dN2{3e1´`e2,N2{3e2

`

τo`dN2{3e1´`e2,N2{3e2
ă ´c0pεqrN

2{3
˘

ď C1pεqy
´1r´3.

The final inequality comes from Theorem B.6.

4 Estimates for paths across a large square

After the preliminary work above we turn to develop the estimates that prove the
main theorem. Throughout, d “ pd1, d2q P Z

2
ě1 denotes a pair of parameters that control

the coarse graining on the southwest and northeast boundaries of the square J´N,NK2.
For o P BN let

Io,d “ tu P BN : |u´ o|1 ď
1
2d1N

2
3 u.

Let oc P Io,d denote the minimal point of Io,d in the coordinatewise partial order, that is,
defined by the requirement that

oc P Io,d and oc ď u @u P Io,d.

This setting is illustrated in Figure 4.1.
On the rectangle Joc, Ne2K we define coupled polymer processes. For each u P Io,d

we have the bulk process Zu,‚ that uses Ga´1
p1q weights Y . Two stationary comparison

processes based at oc have parameters ρ‹pocq and ρ‹pocq defined as in (3.13). Their
basepoint is taken as oc so that we get simultaneous control over all the processes based
at vertices u P Io,d.

Couple the boundary weights on the south and west boundaries of the rectangle
Joc, Ne2K as described in Theorem B.4 in Appendix B.2. In particular, for k, ` ě 1 we have
the inequalities

Yoc`ke1
ď I

ρ‹pocq
oc`ke1

ď I
ρ‹pocq
oc`ke1

and Yoc``e2
ď J

ρ‹pocq
oc``e2

ď J
ρ‹pocq
oc``e2

. (4.1)

For all these coupled processes we define ratios of the partition functions from the
base point to the y-axis, for all u P Io,d and i P J´N2{3, N2{3K:

Jui “
Zu,ie2

Zu,pi´1qe2

, J
ρ‹pocq
i “

Z
ρ‹pocq
oc,ie2

Z
ρ‹pocq
oc,pi´1qe2

and J
ρ‹pocq
i “

Z
ρ‹pocq
oc,ie2

Z
ρ‹pocq
oc,pi´1qe2

. (4.2)

Recall that J “ J´N
2
3 e2, N

2
3 e2K.

Lemma 4.1. For 0 ă y ă 1, define the event

Aoc,d,y “

"

inf
xPJ

Qρ‹pocqoc,x

`

τoc,x ă ´d1N
2
3

˘

ě 1´ y , inf
xPJ

Qρ
‹
pocq

oc,x

`

τρ
‹
pocq

oc,x ą d1N
2
3

˘

ě 1´ y

*

.

(4.3)
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Under the assumptions of Lemma 3.2 for d “ d1 we have the bound

P
`

Aoc,d,y
˘

ě 1´ C1pεqy
´1r´3. (4.4)

On the event Aoc,d,y, for any m,n P J´N2{3, N2{3K such that m ă n we have the inequali-
ties

p1´ yq
n
ź

i“m`1

J
ρ‹pocq
i ď

n
ź

i“m`1

Jui ď
1

1´ y

n
ź

i“m`1

J
ρ‹pocq
i @u P Io,d. (4.5)

Proof. Bound (4.4) comes by switching to complements in Lemma 3.2. We show the
second inequality of (4.5). The first inequality follows similarly. Let u P Io,d. The first
inequality in the calculation (4.6) below is justified as follows in two cases. Recall the
notation (2.4) for restricted partition functions Zo,ppAq.

(i) Suppose u “ oc ` je2 for some 0 ď j ď d1N
2{3. Apply (A.6) in the following setting.

Take Z
p2q
u,‚ to be Zu,‚. Let Zp1qu,‚ use the same bulk weights Y . On the boundary Z

p1q
u,‚

takes Y p1qu``e2
“ J

ρ‹pocq
u``e2

on the y-axis, and on the x-axis takes any Y p1qu`me1
ă Yu`me1

for
1 ď m ď ´u ¨ e1. Then the second inequality of (A.6) followed by the second inequality of
(A.10) gives

Zu,ie2

Zu,pi´1qe2

ď
Z
p1q
u,ie2

Z
p1q
u,pi´1qe2

ď
Z
p1q
u,ie2

`

τu,ie2
ă j ´ d1N

2
3

˘

Z
p1q
u,pi´1qe2

`

τu,pi´1qe2
ă j ´ d1N

2
3

˘

.

Next observe that the condition τu,‚ ă j ´ d1N
2
3 ă 0 renders the boundary weights on

the x-axis u` pZą0qe1 irrelevant. Therefore we can replace Y p1qu`me1
with the stationary

boundary weights Iρ‹pocqu`me1
without changing the restricted partition functions on the

right-hand side. This gives the first equality below:

Z
p1q
u,ie2

`

τu,ie2 ă j ´ d1N
2
3

˘

Z
p1q
u,pi´1qe2

`

τu,pi´1qe2
ă j ´ d1N

2
3

˘

“
Z
ρ‹pocq
u,ie2

`

τu,ie2 ă j ´ d1N
2
3

˘

Z
ρ‹pocq
u,pi´1qe2

`

τu,pi´1qe2
ă j ´ d1N

2
3

˘

“
Z
ρ‹pocq
oc,ie2

`

τoc,ie2
ă ´d1N

2
3

˘

Z
ρ‹pocq
oc,pi´1qe2

`

τoc,pi´1qe2
ă ´d1N

2
3

˘

.

The second equality comes by multiplying upstairs and downstairs with the boundary
weights Jρ‹pocqoc``e2

for 1 ď ` ď j “ pu´ ocq ¨ e2.

(ii) On the other hand, if u “ oc ` ke1 for some 0 ď k ď d1N
2{3, then first by (A.9) and

then by applying the argument of the previous paragraph to u “ oc:

Zu,ie2

Zu,pi´1qe2

ď
Zoc,ie2

Zoc,pi´1qe2

ď
Z
ρ‹pocq
oc,ie2

`

τoc,ie2 ă ´d1N
2
3

˘

Z
ρ‹pocq
oc,pi´1qe2

`

τoc,pi´1qe2
ă ´d1N

2
3

˘

.

Now for the derivation.

n
ź

i“m`1

Jui “
n
ź

i“m`1

Zu,ie2

Zu,pi´1qe2

ď

n
ź

i“m`1

Z
ρ‹pocq
oc,ie2

`

τoc,ie2 ă ´d1N
2
3

˘

Z
ρ‹pocq
oc,pi´1qe2

`

τoc,pi´1qe2
ă ´d1N

2
3

˘

“

n
ź

i“m`1

Q
ρ‹pocq
oc,ie2

`

τoc,ie2 ă ´d1N
2
3

˘

Q
ρ‹pocq
oc,pi´1qe2

`

τoc,pi´1qe2
ă ´d1N

2
3

˘

¨

n
ź

i“m`1

Z
ρ‹pocq
oc,ie2

Z
ρ‹pocq
oc,pi´1qe2

“
Q
ρ‹pocq
oc,ne2

`

τoc,ne2
ă ´d1N

2
3

˘

Q
ρ‹pocq
oc,me2

`

τoc,me2
ă ´d1N

2
3

˘

n
ź

i“m`1

J
ρ‹pocq
i ď

1

1´ y

n
ź

i“m`1

J
ρ‹pocq
i .

(4.6)

EJP 27 (2022), paper 14.
Page 15/40

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP731
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-existence of bi-infinite polymers

Next we define the analogous construction reflected across the origin. Define east (E)
and north (N ) portions of the boundary by BNE “ tNu ˆ JεN,NK and BNN “ JεN,NKˆ tNu,
and combine them into pBN “ pBN,ε “ BNE Y B

N
N . Each point po “ ppo1, po2q P pB

N is associated
with a parameter ρppoq P p0, 1q and a direction ξppoq P se2, e1r through the relations in (3.11)
and (3.10). For each point po P pBN define the set

pI
po,d “

 

v P pBN : distpv, poq ď 1
2d2N

2
3

(

and the maximal point poc P pI
po,d in the coordinatewise partial order, defined by the

requirement that

poc P pI
po,d and v ď poc @v P pI

po,d.

As previously for sets Io,d on the southwest boundary, given now a northeast boundary

point po P pBN we construct a family of coupled backward partition functions from pI
po,d to

points on the shifted y-axis e1 ` Ze2. From each v P pI
po,d we have the backward bulk

partition functions pZv,‚ that use the i.i.d. Ga´1p1q weights Y . From the base point poc we

define two stationary backward polymer processes pZ
ρ‹ppocq
poc,‚

and pZ
ρ‹ppocq
poc,‚

with parameters

ρ‹ppocq “ ρppocq ´ rN
´ 1

3 and ρ‹ppocq “ ρppocq ` rN
´ 1

3 . Weights are coupled on the northeast
boundary according to Theorem B.4: for k, ` ě 1,

Y
poc´ke1

ď I
ρ‹ppocq
poc´ke1

ď I
ρ‹ppocq
poc´ke1

and Y
poc´`e2

ď J
ρ‹ppocq
poc´`e2

ď J
ρ‹ppocq
poc´`e2

. (4.7)

The boundary weights in (4.1) and in (4.7) above are taken independent of each other.
Ratio weights on the shifted y-axis are defined by

pJ vi “
pZv,e1`pi´1qe2

pZv,e1`ie2

, pJ
ρ‹ppocq
i “

pZ
ρ‹ppocq
poc, e1`pi´1qe2

pZ
ρ‹ppocq
poc, e1`ie2

and pJ
ρ‹ppocq
i “

pZ
ρ‹ppocq
poc, e1`pi´1qe2

pZ
ρ‹ppocq
poc, e1`ie2

. (4.8)

The collection of ration weights in (4.2) is independent of the collection in (4.8) above
because they are constructed from independent inputs.

We have this analogue of Lemma 4.1. pJ “ e1 ` J “ Je1 ´N
2
3 e2 , e1 `N

2
3 e2K is the

shift of the interval J in (4.3).

Lemma 4.2. For 0 ă y ă 1, define the event

B
poc,d,y “

"

inf
xP pJ

pQ
ρ‹ppocq
poc,x

`

pτ
poc,x ă ´d2N

2
3

˘

ě 1´ y, inf
xP pJ

pQ
ρ‹ppocq
poc,x

`

τ̂
poc,x ą d2N

2
3

˘

ě 1´ y

*

.

(4.9)
Under the assumptions of Lemma 3.2 for d “ d2 we have the bound

P
`

B
poc,d,y

˘

ě 1´ C1pεqy
´1r´3. (4.10)

On the event B
poc,d,y, for any m ă n in J´N2{3, N2{3K we have the inequalities

p1´ yq
n
ź

i“m`1

pJ
ρ‹ppocq
i ď

n
ź

i“m`1

pJ vi ď
1

1´ y

n
ź

i“m`1

pJ
ρ‹ppocq
i @v P pI

poc,d. (4.11)

Now we use partition functions from the southwest and northeast together. Let
o P BN , po P pBN and consider the polymers from points u P Io,d to the interval J on the

y-axis and reverse polymers from points v P pI
po,d to the shifted interval pJ “ e1 ` J .

Abbreviate the parameters for the base points as

ρ‹ “ ρ‹pocq, ρ‹ “ ρ‹pocq, λ‹ “ ρ‹ppocq, and λ‹ “ ρ‹ppocq. (4.12)
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For i P J´N2{3, N2{3K, take the Z-ratios from (4.2) and (4.8) and define

Xu,v
i “

Jui
pJ vi
, Y 1i “

Jρ‹i
pJ λ
‹

i

and Yi “
Jρ
‹

i

pJ λ‹i
. (4.13)

A two-sided multiplicative walk MpXq with steps tXju is defined by

MnpXq “

$

’

&

’

%

śn
j“1Xj n ě 1

1 n “ 0
ś0
j“n`1X

´1
j n ď ´1.

(4.14)

The ratios from (4.13) above define the walks

Mu,v “MpXu,vq , M 1 “MpY 1q and M “MpY q. (4.15)

Specialize the parameter y in the events in (4.3) and (4.9) to set

Ao,d “ A
o,d,

?
2´1
?

2

and B
po,d “ B

po,d,
?

2´1
?

2

.

Lemma 4.3. The processes

tM 1
m : m P J´N2{3, 0K u and tMn : n P J0, N2{3K u are independent. (4.16)

On the event Ao,d XBpo,d, for all u P Io,d and v P pI
po,d,

1
2M

1
n ďMu,v

n ď 2Mn for n P J´N
2
3 ,´1K

and 1
2Mn ďMu,v

n ď 2M 1
n for n P J1, N

2
3 K.

(4.17)

Proof. To prove the independence claim (4.16), observe first from the construction itself

that the collections tJρ‹i , Jρ
‹

i uiPJ´N2{3,N2{3K and t pJ λ‹i , pJ λ
‹

i uiPJ´N2{3,N2{3K are independent
of each other, as pointed out below (4.8). Then within these collections, Theorem B.4(i)

implies the independence of tJρ‹i uiď0 and tJρ
‹

i uiě1, and the independence of t pJ λ‹i uiě1

and t pJ λ
‹

i uiď0. With boundary weights on the southwest, the independence of tJρ‹i uiď0

and tJρ
‹

i uiě1 is a direct application of Theorem B.4(i) with the choice pλ, ρ, σq “ pρ‹, ρ‹, 1q.
After reflection of the entire setting of Theorem B.4 across its base point u, the boundary
weights reside on the northwest, as required for t pJ λ‹i uiě1 and t pJ λ

‹

i uiď0, and the direction
e2 has been reversed to ´e2. Hence the inequalities i ď 0 and i ě 1 in the independence
statement must be switched around.

To summarize, the collections tJρ‹i , pJ λ
‹

i uiď0 and tJρ
‹

i , pJ λ‹i uiě1 are independent of
each other, which implies the independence of tY 1i uiď0 from tYiuiě1.

We show the case n P J1, N2{3K of (4.17).

Mu,v
n “

n
ź

i“1

Xu,v
i

“

n
ź

i“1

Jui ¨
n
ź

i“1

p pJ vi q
´1

$

&

%

ď
?

2
śn
i“1 J

ρ‹
i ¨

?
2
śn
i“1p

pJ λ
‹

i q´1 “ 2
śn
i“1 Y

1
i “ 2M 1

n ;

ě 1?
2

śn
i“1 J

ρ‹

i ¨ 1?
2

śn
i“1p

pJ λ‹i q´1 “ 1
2

śn
i“1 Yi “

1
2Mn.

An analogous argument gives the case n P J´N2{3,´1K.

Each path that crosses the y-axis leaves the axis along a unique edge ei “ pie2, ie2`e1q.
Decompose the set of paths between u P BN and v P pBN according to the edge taken:

Xu,v “
ď

iPZ

Xi
u,v
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where the sets

Xi
u,v “ tπ P Xu,v : ei P πu (4.18)

satisfy Xi
u,v XX

j
u,v “ H for i ‰ j. Let

pu,vi “ Qu,vpX
i
u,vq “

Zu,ie2
Zie2`e1,v

Zu,v
(4.19)

be the quenched probability of paths going through the edge ei. We come to the
important step that bounds these edge probabilities in terms of the multiplicative walk
introduced above in (4.15). Namely, for all n P J´N2{3, N2{3K we claim that

pu,v0 ď pMu,v
n q´1. (4.20)

Here is the verification for n ě 1:

pu,v0 ď
pu,v0

pu,vn
“

Zu,0Ze1,v

Zu,ne2Zne2`e1,v

“

n
ź

i“1

Zu,pi´1qe2
Zpi´1qe2`e1,v

Zu,ie2Zie2`e1,v
“

n
ź

i“1

pJ vi
Jui

“

n
ź

i“1

pXu,v
i q´1 “ pMu,v

n q´1.

The case n ď ´1 goes similarly.
We are ready to derive the key estimates. The first one controls the quenched

probability of paths between Io,d and pI
po,d that go through the edge e0 from 0 to e1.

Lemma 4.4. Let r “ N
2
15 and d “ pd1, d2q “ p1, N

1
8 q. There exist finite positive constants

Cpεq and N0pεq such that, for all N ě N0pεq and o P BN with po “ ´o,

P
´

sup
u P Io,d, v P pI

po,d

pu,v0 ą N´1
¯

ď CpεqplogNq6N´2{5.

Proof. For any u P Io,d and v P pI
po,d, by (4.20) and (4.17),

tpu,v0 ą N´1u X pAo,d XBpo,dq Ď t max
nPJ´N2{3,N2{3K

Mu,v
n ă Nu X pAo,d XBpo,dq

Ď
 

max
´N2{3ďnď´1

M 1
n ă 2N, max

1ďnďN2{3
Mn ă 2N

(

X pAo,d XBpo,dq.
(4.21)

By the independence in (4.16),

P
`

max
u P Io,d, v P pI

po,d

pu,v0 ą N´1
˘

ď P
`

max
´N2{3ďnď´1

M 1
n ă 2N

˘

P
`

max
1ďnďN2{3

Mn ă 2N
˘

` PpAco,d YB
c
po,dq.

(4.22)

To apply the random walk bound from Appendix C, we convert the multiplicative
walks into additive walks. For given steps ξ “ tξiu define the two-sided walk Spξq by

Snpξq “

$

’

&

’

%

řn
i“1 ξi n ě 1

0 n “ 0

´
ř0
i“n`1 ξi n ă 0.

Recall the parameters defined in (4.12). With reference to (4.13) and (4.15), define the
additive walks

Sn “ logMn with steps ξi “ log Jρ
‹

i ´ log pJ λ‹i ,

S1n “ logM 1
n with steps ξ1i “ log Jρ‹i ´ log pJ λ

‹

i .
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With the bounds (4.4) and (4.10), (4.22) becomes

P
`

max
u P Io,d, v P pI

po,d

pu,v0 ą N´1
˘

ď P
`

max
´N2{3ďnď´1

S1n ă logp2Nq
˘

P
`

max
1ďnďN2{3

Sn ă logp2Nq
˘

` Cr´3.
(4.23)

We use Theorem C.1 to bound Ppmax1ďnďN2{3 Sn ă logp2Nqq. Since

ρ‹ “ ρpocq ` rN
´1{3 “ ρpocq `N

´1{5 and λ‹ “ ρppocq ´ rN
´1{3 “ ρppocq ´N

´1{5,

we can establish constants 0 ă ρmin ă ρmax ă 1 and N0pεq P Zą0 such that ρ‹, λ‹ P
rρmin, ρmaxs for all o P BN and N ě N0pεq. As |o ´ oc| ď

1
2d1N

2{3 and |po ´ poc| ď
1
2d2N

2{3,
the restriction of the slope to rε, ε´1s implies that there is a constant C “ Cpεq such that

|ρpocq ´ ρpoq| ď Cd1N
´1{3 and |ρppocq ´ ρppoq| ď Cd2N

´1{3.

Then, since ρpoq “ ρp´oq “ ρppoq,

|ρppocq ´ ρpocq| ď |ρppocq ´ ρppoq| ` |ρpocq ´ ρpoq| ď Cd2N
´1{3 ` Cd1N

´1{3 ď CN´5{24.

Hence

λ‹ ´ ρ
‹ “ ρppocq ´ ρpocq ´ 2rN´1{3

#

ď ´2N´1{5p1´ CN´1{120 q

ě ´2N´1{5p1` CN´1{120 q.

We conclude that for N ě N0pεq, the mean step of Sn satisfies

EpS1q “ E
“

log Jρ
‹

i ´ log pJ λ‹i
‰

“ ψ0pλ‹q ´ ψ0pρ
‹q P r´CN´{1{5, 0s

where the (new) constant C “ Cpεq works for all o P BN .
In Theorem C.1 set x “ plogNq2 to conclude that for N ě N0pεq

P
 

sup
1ďnďN2{3

2Sn ă plogNq2
(

ď CplogNq3N´1{5. (4.24)

This bound with the same constant C “ Cpεq works for all points o P BN and allN ě N0pεq.
Similarly one can show that

P
 

sup
´N2{3ďnď´1

2S1n ă plogNq2
(

ď CplogNq3N´1{5. (4.25)

The lemma follows by inserting these bounds and r “ N2{15 into (4.23).

The next lemma controls the quenched probability of paths from points u P Io,d that

go through the edge e0 from 0 to e1 but miss the interval pI
po,d on the northeast side of

the square J´N,NK2. The complement of pI
po,d on pBN is denoted by

pF
po,d “ tv P pB

N : |v ´ po|1 ą
1
2d2N

2
3 u.

Lemma 4.5. Let d “ pd1, d2q “ p1, N
1
8 q. There are finite constants Cpεq and N0pεq such

that, for all δ ą 0, N ě N0pεq and o P BN with po “ ´o P pBN ,

P
´

sup
u P Io,d, v P pF

po,d

pu,v0 ą δ
¯

ď Cpεqδ´1N´
3
8 . (4.26)
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Io,d
oc

o

poc

po
pI
po,d

pF1
po,d

pF2
po,d

Io,doc

o

poc
po

pI
po,d

pF1
po,d

pF2
po,d

Figure 4.1: The square J´N,NK2 with two possible arrangements of the segments Io,d,
pI
po,d and pF

po,d “ pF1
po,d Y

pF2
po,d on the boundary of the square. In both cases po “ ´o.

Proof. Define the sets of boundary points

B pF
po,d “ tv P pF

po,d : Du P pI
po,d such that |v ´ u|1 “ 1u

BIo,d “ tv P Io,d : Du P BNzIo,d such that |v ´ u|1 “ 1u,

Their cardinalities satisfy 1 ď |B pF
po,d| ď |BIo,d| ď 2. (For example, B pF

po,d is a singleton if
pI
po,d contains one of the endpoints pN, tεN uq or ptεN u, Nq of pBN .) We denote the points of

B pF
po,d by q1, q2 and those of BIo,d by h1, h2, labeled so that

q1 ď po ď q2 and h2 ď o1 ď h1.

Geometrically, starting from the north pole Ne2 and traversing the boundary of the
square J´N,NK2 clockwise, we meet the points (those that exist) in this order: q1 Ñ poÑ

q2 Ñ h1 Ñ oÑ h2 (Figure 4.2). The set pF
po,d can be decomposed into two disjoint sets

pF
po,d “ pF1

po,d Y
pF2
po,d

where

pF1
po,d “ tv P

pF
po,d : v ď q1u and pF2

po,d “ tv P
pF
po,d : v ě q2u.

We show that

P
´

sup
u P Io,d, v P pF1

po,d

pu,v0 ą δ
¯

ď Cpεqδ´1N´
3
8 . (4.27)

The same bound can be shown for pF2
po,d and the lemma follows from a union bound.

Recall the definition of Xi
u,v in (4.18) and define the set

X´u,v “
ď

iď0

Xi
u,v. (4.28)

For all u P Io,d and v P pF1
po,d, the pairs pu, vq and ph1, q1q satisfy the relation pu, vq ď

ph1, q1q defined in (A.11). By Lemma A.3 we can couple random paths πu,v „ Qu,v
and πh

1,q1 „ Qh1,q1 so that πu,v ď πh
1,q1 in the path ordering defined in Appendix A.3,
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simultaneously for all u P Io,d and v P pF1
po,d. Then πu,v P X0

u,v forces πh
1,q1 P X´h1,q1 , and

we conclude that

pu,v0 “ Qu,vpX
0
u,vq ď Qh1,q1

`

X´h1,q1

˘

for all u P Io,d, v P pF1
po,d.

Hence

the probability on the left of (4.27) ď PtQh1,q1pX
´

h1,q1q ą δu.

The last probability will be shown to be small by appeal to a KPZ wandering exponent
bound from [33] stated in Appendix B.3. To this end we check that the line segment
rh1, q1s from h1 to q1 crosses the vertical axis far above the origin on the scale N2{3.

For o P BN and po “ ´o P pBN , decompose hj “ o ` lj and qj “ po ` rj . These vectors
lj “ plj1, l

j
2q and rj “ prj1, r

j
2q satisfy

|lj |1 “
1
2d1N

2
3 , |rj |1 “

1
2d2N

2
3 , and rj1r

j
2 ď 0. (4.29)

Use first the definition of hj and then qji ´ h
j
i “ poi ` r

j
i ´ poi ` l

j
i q “ ´2oi ` r

j
i ´ l

j
i to

obtain

hj2 ´
qj2 ´ h

j
2

qj1 ´ h
j
1

hj1 “ o2 ´
qj2 ´ h

j
2

qj1 ´ h
j
1

o1 ` l
j
2 ´

qj2 ´ h
j
2

qj1 ´ h
j
1

lj1

“
o2r

j
1 ´ o1r

j
2

qj1 ´ h
j
1

´
o2l

j
1 ´ o1l

j
2

qj1 ´ h
j
1

` lj2 ´
qj2 ´ h

j
2

qj1 ´ h
j
1

lj1.

(4.30)

The first term on the last line is of order Θpd2N
2{3q because there is no cancellation in

the numerator. It is positive if j “ 1 and negative if j “ 2. This term dominates because
d2 “ N

1
8 " 1 “ d1.

Let y1e2 P rh
1, q1s, that is, y1 is the distance from the origin to the point where the

line segment rh1, q1s crosses the y-axis. We bound this quantity from below. In addition to

(4.29), utilize ´N ď oi ď ´εN , 2Nε ď qji ´h
j
i ď 2N and the slope bound ε ď

qj2´h
j
2

qj1´h
j
1

ď ε´1.

The last line of (4.30) gives

y1 “ h1
2 `

q1
2 ´ h

1
2

q1
1 ´ h

1
1

p´h1
1q ě

εN |r1|1

2N
´

´ N

2Nε
` 1` ε´1

¯

|l1|1

ě 1
4εd2N

2
3 ´ 2ε´1d1N

2
3 ě 1

8εd2N
2
3 .

(4.31)

The last inequality used pd1, d2q “ p1, N1{8q and took N ě p16ε´2q8. The wandering
exponent bound stated in Theorem B.5 gives

Ph1,q1pX
´

h1,q1q ď Cpεqd´3
2

for a constant Cpεq that works for all o P BN and N ě N0pεq. By Markov’s inequality

PtQh1,q1pX
´

h1,q1q ą δu ď Cpεqδ´1d´3
2 “ Cpεqδ´1N´3{8. (4.32)

The proof of (4.27) is complete.

We combine the estimates from above to cover all vertices on BN and pBN .

Theorem 4.6. There exist constants Cpεq, N0pεq such that for δ P p0, 1q and N ě δ´1 _

N0pεq,

P
´

sup
u P BN , v P pBN

pu,v0 ą δ
¯

ď Cpεqδ´1N´
1
24 .
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Figure 4.2: Illustration of the proof of Lemma 4.5. The path πu,v connects Io,d and
pF1
po,d through the edge e0 “ pp0, 0q, p1, 0qq. The path π h

1, q1 lies below πu,v and hence well
below the rh1, q1s line segment (dashed line).

Proof. As before, d “ p1, N
1
8 q. We first claim that for any o P BN ,

P
´

sup
uPIo,d , v P pBN

pu,v0 ą δ
¯

ď Cpεqδ´1N´
3
8 . (4.33)

This comes from a combination of Lemmas 4.4 and 4.5: since pBN “ pI
po,d Y pF

po,d,

P
´

sup
uPIo,d,v P pBN

pu,v0 ą δ
¯

ď P
´

sup
uPIo,d,v P pI

po,d

pu,v0 ą δ
¯

` P
´

sup
uPIo,d,v P pF

po,d

pu,v0 ą δ
¯

ď CpεqplogNq6N´
2
5 ` Cpεqδ´1N´

3
8 ď Cpεqδ´1N´

3
8 .

Next we coarse grain the southwest boundary BN . Let

ON “ BN X

´

 

p´N ` id1tN
2
3 u ,´Nq

(

iPZě0

ď

 

p´N,´N ` jd1tN
2
3 uq

(

jPZě0

¯

so that
!

sup
u P BN , v P pBN

pu,v0 ą δ
)

Ď

!

sup
o PON

sup
u P Io,d, v P pBN

pu,v0 ą δ
)

.

As |ON | ď Cpεqd´1
1 N1´ 2

3 “ CpεqN
1
3 , a union bound and (4.33) give the conclusion:

P
´

sup
u P BN , v P pBN

pu,v0 ą δ
¯

ď
ÿ

o PON
P
´

sup
u P Io,d, v P pBN

pu,v0 ą δ
¯

ď CpεqN
1
3 δ´1N´

3
8 “ Cpεqδ´1N´

1
24 .

5 Proof of the main theorem

Proof of Theorem 2.8. By Theorem 2.6(b), for almost every ω every bi-infinite Gibbs
measure µ satisfies

 

lim
|n|Ñ8

|n´1Xn ¨ e1| “ 0
(

Y
 

lim
|n|Ñ8

|n´1Xn ¨ e2| “ 0
(

“ tX‚ is a bi-infinite straight lineu µ-almost surely
(5.1)
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where X‚ “ X´8:8 is the bi-infinite polymer path under the measure µ. This equality
follows because Theorem 2.6(b) has these consequences for (5.1): the union on the
left is disjoint, the event on the right is a subset of the union on the left, and their
µ-probabilities are equal. The complement of the union on the left is the following event:
the limit points of |n|´1Xn lie in s ´ e2,´e1r when nÑ ´8 and in se2, e1r when nÑ8.
Thus to complete the proof we show the existence of an event Ω1 such that PpΩ1q “ 1 and
for each ω P Ω1, no µ P

ÐÝÑ
DLR

ω
assigns positive probability to this last property of the limit

points of |n|´1Xn.

We put ε back into the notation. For ε ą 0 let

Dε “ tξ P se2, e1r : ε
1{2 ď ξ2{ξ1 ď ε´1{2u.

Say that a bi-infinite path x‚ is p´Dεq ˆ Dε-directed if the limit points of |n|´1xn lie
in ´Dε when n Ñ ´8 and in Dε when n Ñ 8. Recall the definition of the edges
ei “ pie2, ie2 ` e1q and define these sets of bi-infinite paths:

Xε,i “
 

x‚ P X : x‚ is p´Dεq ˆDε-directed and x‚ goes through ei
(

.

We show the existence of an event Ω1 of full P-probability such that, for ω P Ω1, µ P
ÐÝÑ
DLR

ω
,

ε ą 0, and i P Z,

µpXε,iq “ 0. (5.2)

Assume this proved. Let εk “ 2´k. Then for ω P Ω1 and µ P
ÐÝÑ
DLR

ω
,

µtX‚ is s ´ e2,´e1rˆ se2, e1r -directedu ď
ÿ

kě1

µtX‚ is p´Dεkq ˆDεk -directedu

ď
ÿ

kě1

ÿ

iPZ

µ
`

Xεk,i
˘

“ 0,

which is the required result.

It remains to define the event Ω1 and verify (5.2). Recall the definition (4.19) of pu,vi .
Define translations Tx on weight configurations ω “ pYxq by pTxωqy “ Yx`y. Define

ξεN “ sup
uPBN,ε, vPpBN,ε

pu,v0 , Ω2ε “
 

lim
NÑ8

ξεN`rN2{3s
“ 0

(

and Ω1 “
č

kě1

č

iPZ

Tie2
Ω2εk .

By Theorem 4.6, ξεN Ñ 0 in probability as N Ñ8, and hence PpΩ1q “ PpΩ2εq “ 1.
A p´Dεq ˆ Dε-directed bi-infinite path intersects both BN,ε and pBN,ε for all large

enough N . (This is because Dε bounds the slopes by ε1{2 which is larger than ε.) Thus if
we let

XN,ε,i “ tx‚ P X
ε,i : x‚ X B

N,ε ‰ H, x‚ X pBN,ε ‰ Hu

then

Xε,i “
ď

mě1

č

Něm

XN,ε,i. (5.3)

Let ε “ 2´k for some k ě 1, ε1 “ ε{2, and abbreviate N1 “ N ` rN2{3s. In the scale
N1 consider the translated square ie2 ` J´N1, N1K2 centered at ie2, with its boundary
portions ie2 ` B

N1,ε
1

in the southwest and ie2 ` pBN1,ε
1

in the northeast. This translated
N1-square contains J´N,NK2 for all i P J´N2{3, N2{3K.

There exists a finite constant N0pεq such that |i| ` ε1N1 ď εN for all i P J´N2{3, N2{3K
and N ě N0pεq. Then every path x‚ P XN,ε,i necessarily goes through both ie2 ` B

N1,ε
1
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Figure 5.1: The inner N ˆ N square is centered at 0 while the outer N1 ˆ N1 square
is centered at ie2. The (thick, dark) boundary segments of the outer square cover the
(thick, light) boundary segments of the inner square. Thus the path through ie2 that
crosses BN,ε and pBN,ε is forced to also cross ie2 ` B

N1,ε
1

and ie2 ` pBN1,ε
1

.

and ie2 ` pBN1,ε
1

. In other words, x‚ is a member of the translate ie2 `X
N1,ε

1,0 of the
class of paths that go through the edge e0. This is illustrated in Figure 5.1.

On the event XN,ε,i let, in the coordinatewise ordering, XB “ inftX‚ X pie2 ` B
N1,ε

1

qu

be the first vertex of the path X‚ in ie2`B
N1,ε

1

and X
pB
“ suptX‚ X pie2`pBN1,ε

1

qu the last

vertex of the path in ie2 ` pBN1,ε
1

. Note that for u P pie2 ` B
N1,ε

1

q and v P pie2 ` pBN1,ε
1

q,
the event tXB “ u,X

pB
“ vu depends on the entire path X‚ only through its edges outside

ie2 ` J´N1, N1K2. Suppose µpXN,ε,iq ą 0 for some µ P
ÐÝÑ
DLR

ω
. Below we apply the Gibbs

property, recall the definition (4.18) of X0
u,v as the set of paths from u to v that take

the edge e0 “ p0, e1q, and write Qω so that we can include explicitly translation of the
weights ω.

µpXN,ε,iq ď µpie2 `X
N1,ε

1,0q

ď
ÿ

uPBN1,ε
1
, vPpBN1,ε

1

µpie2 `X
0
u,v |XB “ ie2 ` u,XpB

“ ie2 ` vqµpXB “ ie2 ` u,XpB
“ ie2 ` vq

“
ÿ

uPBN1,ε
1
, vPpBN1,ε

1

Qωie2`u,ie2`vpie2 `X
0
u,vqµpXB “ ie2 ` u,XpB

“ ie2 ` vq

ď max
uPBN1,ε

1
, vPpBN1,ε

1
Qωie2`u,ie2`vpie2 `X

0
u,vq “ max

uPBN1,ε
1
, vPpBN1,ε

1
Q
Tie2ω
u,v pX0

u,vq

“ max
uPBN1,ε

1
, vPpBN1,ε

1
pu,v0 pTie2

ωq “ ξε
1

N1
pTie2

ωq.

Then (5.3) gives, on the event Ω1,

µpXε,iq ď lim
NÑ8

µpXN,ε,iq ď lim
NÑ8

ξε
1

N1
˝ Tie2 “ 0.
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(5.2) has been verified. This completes the proof of the main result Theorem 2.8.

A General properties of planar directed polymers

This appendix covers some consequences of the general polymer formalism. We
begin again with the partition function with given weights Yx ą 0:

Zu,v “
ÿ

x‚PXu,v

|v´u|1
ź

i“0

Yxi for u ď v on Z2, (A.1)

with Zu,v “ 0 if u ď v fails.

A.1 Ratio weights and nested polymers

Keeping the base point u fixed, define ratio weights for varying x:

Ix “ Iu,x “
Zu,x

Zu,x´e1

and Jx “ Ju,x “
Zu,x

Zu,x´e2

.

The ratio weights can be calculated inductively from boundary values Iu`ke1
“ Yu`ke1

and Ju``e2
“ Yu``e2

for k, ` ě 1, by iterating

Ix “ Yx
`

1` Ix´e2
J´1
x´e1

˘

and Jx “ Yx
`

Jx´e1
I´1
x´e2

` 1
˘

. (A.2)

Let u ď v on Z2. On the boundary of the quadrant v `Z2
ě0, put ratio weights of the

partition functions with base point u:

Y
puq
v`ier

“
Zu,v`ier

Zu,v`pi´1qer

for r P t1, 2u and i ě 1.

The ratio weights dominate the original weights: Y puqv`ier
ě Yv`ier , and equality holds iff

v “ u`mer for some m ě 0.
Define a partition function Z

puq
v,w that uses these boundary weights and ignores the

first weight of the path: for k, ` ě 1 and w P v `Z2
ą0,

Zpuqv,v “ 1, Z
puq
v,v`ke1

“

k
ź

i“1

Y
puq
v`ie1

, Z
puq
v,v``e2

“
ź̀

j“1

Y
puq
v`je2

Zpuqv,w “

w1´v1
ÿ

k“1

ˆ k
ź

i“1

Y
puq
v`ie1

˙

Zv`ke1`e2,w `

w2´v2
ÿ

`“1

ˆ

ź̀

j“1

Y
puq
v`je2

˙

Zv`e1``e2,w.

For w P v `Z2
ą0 the definition from above can be rewritten as follows:

Zpuqv,w “
1

Zu,v

w1´v1
ÿ

k“1

Zu,v`ke1
Zv`ke1`e2,w `

1

Zu,v

w2´v2
ÿ

`“1

Zu,v``e2
Zv`e1``e2,w.

Thus for all u ď v ď w we have the identity

Zpuqv,w “
Zu,w
Zu,v

. (A.3)

Ratio variables satisfy

Iu,x “
Zu,x

Zu,x´e1

“
Zu,v Z

puq
v,x

Zu,v Z
puq
v,x´e1

“
Z
puq
v,x

Z
puq
v,x´e1

“ Ipuqv,x (A.4)
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with the analogous identity Ju,x “ J
puq
v,x .

Recall the definition (3.5) of τu,v,w. Let Qpuqv,w be the quenched path probability on

Xv,w that corresponds to the partition function Zpuqv,w. Then we have the identity

Qu,wpτu,v,w “ `q “ Qpuqv,wpτv,w “ `q for 0 ‰ ` P Z. (A.5)

Here is the derivation for the case where the path from u to w goes above v. Let k ě 1.
Apply (A.3) and (A.4).

Qu,wpτu,v,w “ ´kq “
Zu,v`ke2

Zv`e1`ke2,w

Zu,w
“
Zu,v

`
śk
j“1 Ju,v`je2

˘

Zv`e1`ke2,w

Zu,w

“

`
śk
j“1 J

puq
v,v`je2

˘

Zv`e1`ke2,w

Z
puq
v,w

“ Qpuqv,wpτv,w “ ´kq.

A.2 Inequalities for point-to-point partition functions

We state several inequalities that follow from the next basic lemma. The inequalities
in (A.6) below are proved together by induction on x and y, beginning with x “ u` ke1

and y “ u` `e2. The induction step is carried out by formulas (A.2).

Lemma A.1. Fix a base point u. Let tY p1qx u and tY p2qx u be strictly positive weights

from which partition functions Zp1qu,v and Z
p2q
u,v are defined. Assume that Y p1qu “ Y

p2q
u ,

Y
p1q
u`ke1

ď Y
p2q
u`ke1

, Y p2qu``e2
ď Y

p1q
u``e2

and Y
p1q
x “ Y

p2q
x for all k, ` ě 1 and x P u` Z2

ą0. Then
we have the following inequalities for x ě u` e1 and y ě u` e2:

Z
p1q
u,x

Z
p1q
u,x´e1

ď
Z
p2q
u,x

Z
p2q
u,x´e1

and
Z
p2q
u,y

Z
p2q
u,y´e2

ď
Z
p1q
u,y

Z
p1q
u,y´e2

. (A.6)

From the lemma we obtain the following pair of inequalities for z P u`Z2
ą0:

Zu,z
Zu,z´e1

ď
Zu`e1,z

Zu`e1,z´e1

and
Zu,z

Zu,z´e1

ď
Zu´e2,z

Zu´e2,z´e1

. (A.7)

The first inequality above follows from the first inequality of (A.6) by letting the weights
tY

p2q
u`je2

ujě1 tend to zero, and the second one by letting the weights tY p1qu´e2`ie1
uiě1 tend

to zero.

Lemma A.2. Let x, y, z P Z2 be such that x ď y and x, y ď z ´ e1 ´ e2. We then have

Zx,z
Zx,z´e1

ď
Zy,z

Zy,z´e1

(A.8)

Zy,z
Zy,z´e2

ď
Zx,z

Zx,z´e2

. (A.9)

Proof. (A.8) follows from repeated application of (A.7) along the steps e1 and ´e2 from
x to y. Inequality (A.9) follows similarly.

Since u`ke1 ě u and u` `e2 ď u for k, ` ě 0, inequalities (A.8)–(A.9) imply also these
for 1 ď k ă px´ uq ¨ e1 and 1 ď ` ă py ´ uq ¨ e2:

Zu,x
Zu,x´e1

ď
Zu,xpτu,x ě kq

Zu,x´e1pτu,x´e1 ě kq
and

Zu,y
Zu,y´e2

ď
Zu,ypτu,y ď ´`q

Zu,y´e2
pτu,y´e2

ď ´`q
for u ď x, y.

(A.10)

To illustrate the explicit proof of the first one:

Zu,xpτu,x ě kq

Zu,x´e1pτu,x´e1 ě kq
“

p
śk´1
i“0 Yu`ie1qZu`ke1,x

p
śk´1
i“0 Yu`ie1

qZu`ke1,x´e1

“
Zu`ke1,x

Zu`ke1,x´e1

ě
Zu,x

Zu,x´e1

.
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x1

y1

x2

y2
π1

π2

x1

y1

x2

y2

π1

π2

Figure A.1: On the left the pairs px1, y1q and px2, y2q satisfy px1, y1q ď px2, y2q, while on
the right this relation fails. Consistently with this, on the left the paths π1 P Xx1,y1 and
π2 P Xx2,y2 satisfy π1 ď π2 but on the right this fails.

A.3 Ordering of path measures

The down-right partial order ď on R2 and Z2 was defined by px1, x2q ď py1, y2q if
x1 ď y1 and x2 ě y2. Extend this relation to pairs of vertices px1, y1q, px2, y2q P Z2 ˆ Z2

as follows (illustrated in Figure A.1):

px1, y1q ď px2, y2q if x1 ď y1, x2 ď y2, x1 ď x2 and y1 ď y2. (A.11)

Extend this relation further to finite paths: π1 P Xx1,y1 and π2 P Xx2,y2 satisfy π1 ď π2

if the pairs of endpoints satisfy px1, y1q ď px2, y2q and whenever z1 P π1, z2 P π2, and
z1 ¨ pe1 ` e2q “ z2 ¨ pe1 ` e2q, we have z1 ď z2. Pictorially, in a very clear sense, π1 lies
(weakly) above and to the left of π2. See again Figure A.1.

Let µ and ν be probability measures on the finite path spaces Xx1,y1 and Xx2,y2 ,
respectively. We write µ ď ν if there exist random paths X1 P Xx1,y1 and X2 P Xx2,y2

on a common probability space such that X1 „ µ, X2 „ ν, and X1 ď X2. In other
words, µ ď ν if ν stochastically dominates µ under the partial order ď on paths. The
following shows that for fixed weights there exists a coupling of all the quenched polymer
distributions tQx,yuxďy on the lattice Z2 so that Qx,y ď Qu,v whenever px, yq ď pu, vq.

Lemma A.3. Let pYxqxPZ2 be an assignment of strictly positive weights on the lattice Z2.
Then there exists a coupling of up-right random paths tπx,yuxďy such that πx,y P Xx,y,
πx,y has the quenched polymer distribution Qx,y, and πx,y ď πu,v whenever px, yq ď pu, vq.

Proof. Let tUzuzPZ2 be an assignment of i.i.d. uniform random variables Uz „ Unifp0, 1q
to the vertices of Z2, defined under some probability measure P. For each pair x ď z

such that x ‰ z, define the down-left pointing random unit vector

V xpzq “

$

’

’

&

’

’

%

´e1, if
YzZx,z´e1

Zx,z
ě Uz

´e2, if
YzZx,z´e2

Zx,z
ą 1´ Uz.

(A.12)

If z “ x ` kei this gives V xpzq “ ´ei due to the convention Zu,v “ 0 when u ď v fails.
Hence any path that starts at some vertex y ě x distinct from x and follows the steps
from each z to z ` V xpzq terminates at x.

Since the paths from distinct points that follow increments V xpzq for a given x

eventually coalesce, a realization of tV xpzquzěx: z‰x defines a spanning tree T x rooted at
x on the nearest-neighbor graph on the quadrant x`Z2

ě0. For x ď y let πx,y P Xx,y be
the path that connects x and y in the tree T x. Then for any path x‚ P Xx,y, (A.12) implies
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that Qx,ypx‚q “ Ppπx,y “ x‚q. In other words, through the random paths tπx,yuxďy we
have a coupling of the quenched polymer distributions tQx,yuxďy.

Let x ď u. By Lemma A.2

YzZx,z´e1

Zx,z
ě
YzZu,z´e1

Zu,z
and

YzZu,z´e1

Zu,z
ě
YzZx,z´e2

Zx,z
.

Hence
tV xpzq “ ´e2u Ď tV

upzq “ ´e2u

and tV upzq “ ´e1u Ď tV
xpzq “ ´e1u.

(A.13)

It follows from (A.13) that two paths satisfy πx,y ď πu,v whenever px, yq ď pu, vq. This is
because if these paths share a vertex z, then their subsequent down-left steps satisfy
z ` V xpzq ď z ` V upzq.

Let o ď x. In the tree T o constructed above, the path from x down to o stays weakly
to the left of the path from x` e1 down to o. This gives the inequality below:

for vertices o ď x and k ě 1, Qo,xpte1
ě kq ď Qo,x`e1

pte1
ě kq, (A.14)

where

te1
“ pτo,xq

`.

A similar bound holds for te2
“ pτo,xq

´.

A.4 Polymers on the upper half-plane

The stationary inverse-gamma polymer process that is our tool for calculations will
be constructed on a half-plane. This section defines the notational apparatus for this
purpose, borrowed from the forthcoming work [20].

Define mappings of bi-infinite sequences: I “ pIkqkPZ and Y “ pYjqjPZ in RZą0 that
are assumed to satisfy

CpI, Y q “ lim
mÑ´8

0
ÿ

j“m

Yj

0
ź

i“j`1

Yi
Ii
ă 8. (A.15)

From these inputs, three outputs rI “ prIkqkPZ, J “ pJkqkPZ and rY “ prYkqkPZ, also
elements of RZą0, are constructed as follows.

Let Z “ pZkqkPZ be any function on Z that satisfies Ik “ Zk{Zk´1. This defines Z up
to a positive multiplicative constant. Define the sequence rZ “ p rZ`q`PZ by

rZ` “
ÿ

k: kď`

Zk
ź̀

i“k

Yi , ` P Z. (A.16)

Under assumption (A.15) the sum on the right-hand side of (A.16) is finite. To check this
choose a particular Z by setting Z0 “ 1. (Any other admissible Z is a constant multiple
of this one.) Then Zk “

ś0
i“k`1 I

´1
i for k ď ´1.

rZ` “
ÿ

k: kď`^0

Zk
ź̀

i“k

Yi `
ÿ

k: 1ďkď`

Zk
ź̀

i“k

Yi

“
ÿ

k: kď`^0

ˆ 0
ź

i“k`1

I´1
i

˙ˆ 0
ź

i“k

Yi

˙

C`pY q `
ÿ

k: 1ďkď`

Zk
ź̀

i“k

Yi

ď CpI, Y qC`pY q `
ÿ

k: 1ďkď`

Zk
ź̀

i“k

Yi ă 8 .
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For k P Z define

rIk “ rZk{ rZk´1, (A.17)

Jk “ rZk{Zk, (A.18)

rYk “ pI
´1
k ` J´1

k´1q
´1. (A.19)

The sequences rI, J and rY are well-defined positive real sequences, and they do not
depend on the choice of the function Z as long as Z has ratios Ik “ Zk{Zk´1. The three
mappings are denoted by

rI “ DpI, Y q, J “ SpI, Y q, and rY “ RpI, Y q. (A.20)

Beginning from rZk “ YkpZk ` rZk´1q we derive these equations:

rIk “ Yk

ˆ

Ik
Jk´1

` 1

˙

“
Yk
rYk
Ik (A.21)

and Jk “ Yk

ˆ

1`
Jk´1

Ik

˙

“
Yk
rYk
Jk´1. (A.22)

The last formula iterates as follows: for ` ă m,

Jm “ J`

m
ź

i“``1

Yi
Ii
`

m
ÿ

j“``1

Yj

m
ź

i“j`1

Yi
Ii
. (A.23)

We record two inequalities. From (A.21),

rIj ě Yj . (A.24)

If we start with two coordinatewise ordered boundary weights Ij ď I 1j (for all j) and use
the same bulk weights Y to compute vertical ratio weights J “ SpI, Y q and J 1 “ SpI 1, Y q,
the inequality is reversed:

J 1k “
rZ 1k
Z 1k

“
ÿ

j: jďk

Yj

k
ź

i“j`1

Yi
I 1i
ď

ÿ

j: jďk

Yj

k
ź

i“j`1

Yi
Ii
“ Jk. (A.25)

Further manipulation gives the next lemma. We omit the proof.

Lemma A.4. To calculate trIk, Jk, rYk : k ď mu, we need only the input tIk, Yk : k ď mu.

The next lemma is nontrivial and we include a complete proof.

Lemma A.5. The identity D
`

DpA, Iq, Y
˘

“ D
`

DpA,RpI, Y qq, DpI, Y q
˘

holds whenever
the sequences I, A, Y are such that the operations are well-defined.

Proof. Choose pZjq and pBjq so that Zj{Zj´1 “ Ij and Bj{Bj´1 “ Aj . Then the output of

DpA, Iq is the ratio sequence p rB`{ rB`´1q` of

rB` “
ÿ

k: kď`

Bk
ź̀

i“k

Ii.

Next, the output of DpDpA, Iq, Y q is the ratio sequence pHm{Hm´1qm of

Hm “
ÿ

`: `ďm

rB`

m
ź

j“`

Yj “
ÿ

k: kďm

Bk

m
ÿ

`“k

´

ź̀

i“k

Ii

¯´

m
ź

j“`

Yj

¯

.
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Similarly, define first

rZj “
ÿ

k: kďj

Zk

j
ź

i“k

Yi and rIj “
rZj
rZj´1

so that rI “ DpI, Y q. Let rY “ RpI, Y q and then

qB` “ DpA, rY q “
ÿ

k: kď`

Bk
ź̀

i“k

rYi.

Then the output of D
`

DpA,RpI, Y qq, DpI, Y q
˘

“ DpDpA, rY q, rI q is the ratio sequence
of

rHm “
ÿ

`: `ďm

qB`

m
ź

j“`

rIj “
ÿ

k: kďm

Bk

m
ÿ

`“k

´

ź̀

i“k

rYi

¯´

m
ź

j“`

rIj

¯

.

The lemma follows from H “ rH, which we verify by checking that for all k ď m,

m
ÿ

`“k

´

ź̀

i“k

Ii

¯´

m
ź

j“`

Yj

¯

“

m
ÿ

`“k

´

ź̀

i“k

rYi

¯´

m
ź

j“`

rIj

¯

. (A.26)

We fix k and prove this by induction on m. The case m “ k follows from (A.19) and
(A.21):

rYkrIk “
Yk

`

Ik
Jk´1

` 1
˘

1
Ik
` 1

Jk´1

“ IkYk.

To prove the induction step, we introduce two auxiliary quantities by adding terms
separately on the left and right of (A.26): let

Tm “ Jk´1

m
ź

j“k

Yj `
m
ÿ

`“k

´

ź̀

i“k

Ii

¯´

m
ź

j“`

Yj

¯

and

rTm “
m
ÿ

`“k

´

ź̀

i“k

rYi

¯´

m
ź

j“`

rIj

¯

`

´

m
ź

i“k

rYi

¯

Jm.

Repeated application of (A.22) implies that Jk´1

śm
j“k Yj “ p

śm
i“k

rYiqJm. Thus (A.26) is

equivalent to rTm “ Tm.
First observe that Tm`1 “ TmrIm`1 for m ě k. This follows from checking inductively

the pair of identities

Tm
śm
i“k Ii

“ Jm and
Tm`1

Tm
“ rIm`1 for m ě k.

This relies on the first equalities of the iterative formulas (A.21) and (A.22).
Now assume that rTm “ Tm. We show that rTm`1 “ rTmrIm`1 which then implies

rTm`1 “ Tm`1.

rTm`1 “

m
ÿ

`“k

´

ź̀

i“k

rYi

¯´

m
ź

j“`

rIj

¯

rIm`1 `

´

m
ź

i“k

rYi

¯

rYm`1
rIm`1 `

´

m
ź

i“k

rYi

¯

rYm`1Jm`1

“ rTmrIm`1 `

´

m
ź

i“k

rYi

¯

`

´JmrIm`1 ` rYm`1
rIm`1 ` rYm`1Jm`1

˘

.

The last expression in parentheses vanishes because JmrIm`1 “ Ym`1pIm`1 ` Jmq,
rYm`1

rIm`1 “ Ym`1Im`1 and rYm`1Jm`1 “ Ym`1Jm.
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B The inverse-gamma polymer

This section reviews the ratio-stationary inverse-gamma polymer introduced in [33]
and then constructs the two-variable jointly ratio-stationary process, which is a special
case of the multivariate construction from the forthcoming work [20].

B.1 Inverse-gamma weights

Recall the inverse gamma distribution from (2.13) and it’s mean from (3.6).

Lemma B.1. Define the mapping pI, J, Y q ÞÑ pI 1, J 1, Y 1q on R3
ą0 by

I 1 “ Y

ˆ

1`
I

J

˙

, J 1 “ Y

ˆ

1`
J

I

˙

, Y 1 “
1

I´1 ` J´1
. (B.1)

(a) pI, J, Y q ÞÑ pI 1, J 1, Y 1q is an involution.

(b) Let α, β ą 0. Suppose that I, J, Y are independent random variables with distribu-
tions I „ Ga´1

pαq, J „ Ga´1
pβq and Y „ Ga´1

pα` βq. Then the triple pI 1, J 1, Y 1q has
the same distribution as pI, J, Y q.

Proof. Part (b) follows by applying the beta-gamma algebra (see Exercise 6.50 on page
244 of [1]) to the reciprocals that satisfy

1

I 1
“ Y ´1 I´1

I´1 ` J´1
,

1

J 1
“ Y ´1 J´1

I´1 ` J´1
and

1

Y 1
“ I´1 ` J´1.

Lemma B.2. Let 0 ă ρ ă σ. Let I “ pIkqkPZ and Y “ pYjqjPZ be mutually independent
random variables such that Ik „ Ga´1

pρq and Yj „ Ga´1
pσq. Use mappings (A.20) to

define
rI “ DpI, Y q rY “ RpI, Y q and J “ SpI, Y q.

Let Vk “ ptrIjujďk, Jk, trYjujďkq.

(a) tVkukPZ is a stationary, ergodic process. For each k P Z, the random variables
trIjujďk, Jk, trYjujďk are mutually independent with marginal distributions

rIj „ Ga´1
pρq, rYj „ Ga´1

pσq and Jk „ Ga´1
pσ ´ ρq.

(b) rI and rY are independent sequences of i.i.d. variables.

Proof. We start by verifying (A.15) to guarantee that the processes rI, rY and J are almost
surely well-defined and finite. To this end we show that

0
ÿ

j“´8

Yj

0
ź

i“j`1

Yi
Ii
ă 8 with probability one. (B.2)

Rewrite the above as

0
ÿ

j“´8

Yj

0
ź

i“j`1

Yi
Ii
“

0
ÿ

j“´8

Yj e
ř0
i“j`1plog Yi´log Iiq “

0
ÿ

j“´8

e jδYj e
´jδ`

ř0
i“j`1plog Yi´log Iiq

(B.3)
where we can choose δ ą 0 to satisfy

Erlog Yi ´ log Iis “ ´ψ0pσq ` ψ0pρq ă ´3δ ă 0 (B.4)

because ψ0 is strictly increasing. Hence almost surely for large enough j ă 0,

0
ÿ

i“j`1

plog Yi ´ log Iiq ď 2jδ. (B.5)
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The estimate below shows that, for any δ ą 0, supjď0 e
jδYj is almost surely finite:

ÿ

jď´1

PpYj ě e´jδq “
ÿ

jď´1

Pplog Yj ě ´jδq ď
ÿ

jď´1

Erplog Yjq
2 s

j2δ2
ă 8.

The almost sure convergence of the series (B.2) has been verified. We turn to the proof
of the lemma.

Part (b) follows from part (a) by dropping the Jk coordinate and letting k Ñ 8.
Stationarity and ergodicity of tVku follow from its construction as a mapping applied to
the independent i.i.d. sequences I and Y .

The distributional claims in part (a) are proved by coupling prIk, Jk´1, rYkqkPZ with
another sequence of processes (indexed by N below) whose distribution we know. Let Z
be a fixed Ga´1

pσ ´ ρq variable that is independent of pI, Y q.
For each N ě 0, construct a process ppINk ,

pJNk´1,
pY Nk qkě´N`1 as follows. First let

pJN´N “ Z. Then iterate the steps

ppINk ,
pJNk ,

pY Nk q “ Θ
`

Ik, pJ
N
k´1, Yk

˘

for k ě ´N ` 1, (B.6)

where ΘpI, J, Y q “ pI 1, J 1, Y 1q is the involution (B.1) in Lemma B.1. We claim that for
each k P Z,

lim
NÑ8

pJNk “ Jk , lim
NÑ8

pINk “ rIk and lim
NÑ8

pY Nk “ rYk in probability. (B.7)

Applying (A.23) gives

Jk ´ pJNk “ pJ´N ´ pJN´N q
k
ź

i“´N`1

Yi
Ii
“ pJ´N ´ Zq

k
ź

i“´N`1

Yi
Ii

(B.8)

from which
| Jk ´ pJNk | ď e´NδpJ´N ` Zq e

Nδ`
řk
i“´N`1plog Yi´log Iiq (B.9)

where we chose δ ą 0 as in (B.4). Hence the last exponential factor above vanishes
almost surely as N Ñ8. The equation

Jk “
rZk
Zk

“
ÿ

j: jďk

Yj

k
ź

i“j`1

Yi
Ii

(B.10)

shows that tJku is a finite stationary process, and consequently e´NδJ´N Ñ 0 in proba-
bility. (B.9) implies the first limit in probability in (B.7).

To get the second limit in (B.7), apply (B.6) and the first limit as N Ñ8:

pINk “ Yk

ˆ

Ik
pJNk´1

` 1

˙

P
ÝÑ Yk

ˆ

Ik
Jk´1

` 1

˙

“ rIk. (B.11)

For the last limit in (B.7),

pY Nk “ pI´1
k `

`

pJNk´1q
´1

˘´1 P
ÝÑ

`

I´1
k ` J´1

k´1

˘´1
“ rYk. (B.12)

Next, we prove the following claim for each N ě 1:

for each m ě ´N ` 1, the random variables pIN´N`1, . . . ,
pINm ,

pJNm ,
pY Nm , . . . , pY N´N`1

are mutually independent with marginal distributions

pINk „ Ga´1
pρq , pJNm „ Ga´1

pσ ´ ρq, and pY Nj „ Ga´1
pσq.

(B.13)
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By construction pI´N , pJN´N , Y´N q „ Ga´1
pρq b Ga´1

pσ ´ ρq b Ga´1
pσq. The base

case m “ ´N ` 1 of (B.13) comes by applying Lemma B.1 to the mapping (B.6) with
k “ ´N ` 1.

Assume (B.13) holds for m. By the induction assumption and by the independence of
the ingredients that go into the construction,

pIN´N`1, . . . ,
pINm , pIm`1, pJ

N
m , Ym`1q, pY

N
m , . . . , pY N´N`1

are independent. Furthermore, pIm`1, pJ
N
m , Ym`1q „ Ga´1

pρqbGa´1
pσ´ρqbGa´1

pσq. By
Lemma B.1, the mapping (B.6) turns the triple pIm`1, pJ

N
m , Ym`1q into ppINm`1,

pJNm`1,
pY Nm`1q

„ Ga´1
pρq bGa´1

pσ ´ ρq bGa´1
pσq. Statement (B.13) has been extended to m` 1. The

proof of (B.13) is complete.
Part (a) follows from (B.7) and (B.13).

Next we take an i.i.d. inverse-gamma sequence Y and describe a distributional
fixed point of the mapping pI1, I2q ÞÑ

`

DpI1, Y q, DpI2, Y q
˘

. Let σ ą α1 ą α2 ą 0. Let
A1 “ pA1

j qjPZ, A2 “ pA2
j qjPZ, Y “ pYjqjPZ be mutually independent i.i.d. sequences with

marginals Akj „ Ga´1
pαkq for k P t1, 2u and Yj „ Ga´1

pσq. Define a jointly distributed
pair of boundary sequences by pI1, I2q “

`

A1, DpA2, A1q
˘

. From these and bulk weights
Y , define jointly distributed output variables:

rIk “ DpIk, Y q, Jk “ SpIk, Y q, and qY k “ RpIk, Y q for k P t1, 2u.

Lemma B.3. We have the following properties.

(i) Marginally I2 is a sequence of i.i.d. Ga´1
pα2q variables.

(ii) For fixed k P t1, 2u and m P Z, the random variables trIkj ujďm, Jkm, and tqY kj ujďm are

mutually independent with marginal distributions rIkj „ Ga´1
pαkq, Jkm „ Ga´1

pσ ´

αkq, and qY kj „ Ga´1
pσq.

(iii) For fixed k P t1, 2u, rIk and qY k are mutually independent sequences of i.i.d. random
variables with marginal distributions rIkj „ Ga´1

pαkq and qY kj „ Ga´1
pσq.

(iv) prI1, rI2q
d
“ pI1, I2q, in other words, we have a distributional fixed point for this joint

polymer operator.

(v) For any m P Z, the random variables tI2
i uiďm and tI1

j ujěm`1 are mutually indepen-
dent.

Proof. Parts (i)–(iii) come from Lemma B.2.
For part (iv), the marginal distributions of rI1 and rI2 are the correct ones by Lemma

B.3(iii). To establish the correct joint distribution, the definition of pI1, I2q points us
to find an i.i.d. Ga´1

pα2q random sequence Z that is independent of rI1 and satisfies
rI2 “ DpZ, rI1q. From the definitions and Lemma A.5,

rI2 “ DpI2, Y q “ D
`

DpA2, I1q, Y
˘

“ D
`

DpA2, RpI1, Y qq, DpI1, Y q
˘

“ D
`

DpA2, qY 1q, rI1
˘

.

By assumption A2, I1, Y are independent. Hence by Lemma B.3(iii) A2, qY 1, rI1 are inde-
pendent. So we take Z “ DpA2, qY 1q which is an i.i.d. Ga´1

pα2q sequence by Lemma
B.3(iii). This proves part (iv).

We know that marginally I1 and I2 are i.i.d. sequences. (A.16) and (A.17) show
that variables tI2

i uiďm are functions of ptA2
i uiďm , tI

1
i uiďmq which are independent of

tI1
j ujěm`1.
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u

x

Jλ

Jρ

u

v
Iα

Jα

u

vIα

Jα

Figure B.1: The independent ratio variables from Theorem B.4. Left: Jλ below x and Jρ

above x from part (i). Middle and right: Iα and Jα ratios on the two lattice paths from
part (ii).

B.2 Two jointly ratio-stationary polymer processes

Pick 0 ă λ ă ρ ă σ and a base vertex u “ pu1, u2q P Z
2. We construct two coupled

polymer processes Zλu,‚ and Zρu,‚ on the nonnegative quadrant u`Z2
ě0 such that the joint

process tpZλu,y{Z
λ
u,x, Z

ρ
u,y{Z

ρ
u,xq : x, y P u`Z2

ě0u of ratios is stationary under translations

px, yq ÞÑ px` v, y ` vq. Both processes use the same i.i.d. Ga´1
pσq weights tYxux Pu`Z2

ą0

in the bulk. They have boundary conditions on the positive x- and y-axes emanating from
the origin at u, coupled in a way described in the next theorem.

For α P tλ, ρu, we repeat here the definition of the process Zαu,‚ given earlier in
(3.2). On the boundaries of the quadrant we have strictly positive boundary weights
tIαu`ie1

, Jαu`je2
: i, j P Zą0u. Put Zαu,u “ 1 and on the boundaries

Zαu, u` ke1
“

k
ź

i“1

Iαu`ie1
and Zαu, u` le2

“

l
ź

j“1

Jαu`je2
for k, l ě 1. (B.14)

In the bulk for x “ px1, x2q P u`Z
2
ą0,

Zαu, x “
x1´u1
ÿ

k“1

ˆ k
ź

i“1

Iαu`ie1

˙

Zu`ke1`e2, x `

x2´u2
ÿ

`“1

ˆ

ź̀

j“1

Jαu`je2

˙

Zu`e1``e2, x

“
`

Zαu, x´e1
` Zαu, x´e2

˘

Yx.

(B.15)

Zαu,‚ does not use a weight at the base point u. Zx,y above is the partition function (A.1)
that uses the bulk weights Y . Define ratio variables for vertices x P u`Z2

ą0 by

Iαu,x “ Zαu,x{Z
α
u,x´e1

and Jαx “ Zαu,x{Z
α
u,x´e2

. (B.16)

The next theorem describes the jointly stationary process that is used in the proofs
of Section 4. Since those arguments work with the J -ratio variables on the y-axis, in
order to tailor this theorem to its application we construct the joint process on the right
half-plane and then restrict that process to the first quadrant. Consequently the upper
half-plane of Sections A.4 and B.1 has been turned into the right half-plane, and thereby
horizontal has become vertical. An important part of the theorem is the independence of
various collections of ratio variables. These are illustrated in Figure B.1.

Theorem B.4. Let 0 ă λ ă ρ ă σ and u P Z2. There exists a coupling of the boundary
weights tIλu`ie1

, Iρu`ie1
, Jλu`je2

, Jρu`je2
: i, j P Zą0u such that the joint process pZλu,‚ , Z

ρ
u,‚q

has the following properties.

(i) (Joint) The joint process of ratios is stationary: for each v P u`Z2
ě0,

"ˆ

Zλu,v`x
Zλu,v

,
Zρu,v`x
Zρu,v

˙

: x P Z2
ě0

*

d
“
 

pZλu,u`x, Z
ρ
u,u`xq : x P Z2

ě0

(

. (B.17)
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(On the right above the implicit denominators Zλu,u “ Zρu,u “ 1 were omitted.) The
following independence property holds along vertical lines: for each x P u`Z2

ą0,
the variables tJλx`je2

: u2 ´ x2 ` 1 ď j ď 0u and tJρx`je2
: j ě 1u are mutually

independent.

(ii) (Marginal) For both α P tλ, ρu and for each v “ pv1, v2q P u`Z
2
ě0, the ratio variables

tIαv`ie1
, Jαv`je2

: i, j P Zą0u are mutually independent with marginal distributions

Iαv`ie1
„ Ga´1

pσ ´ αq and Jαv`je2
„ Ga´1

pαq.

The same is true of the variables tIαv´ie1
, Jαv´je2

: 0 ď i ă v1 ´ u1, 0 ď j ă v2 ´ u2u.

(iii) (Monotonicity) The boundary weights can be coupled with i.i.d. Ga´1
pσq weights

tηu`ie1
, ηu`je2

: i, j ě 1u independent of the bulk weights Y so that these inequalities
hold almost surely for all i, j ě 1:

ηu`ie1 ď Iλu`ie1
ď Iρu`ie1

and ηu`je2 ď Jρu`je2
ď Jλu`je2

. (B.18)

Proof. We construct a joint partition function process pLλx, L
ρ
xqx Pu`Zě0ˆZ on the discrete

right half-plane u`Zě0 ˆZ with origin fixed at u. The restriction of this process to the
quadrant u`Z2

ě0 then furnishes the process pZλu,‚ , Z
ρ
u,‚q whose properties are claimed

in the theorem.
In the interior put i.i.d. Ga´1

pσq weights Y “ tYx : x1 ą u1u as before. (We write
some weight configurations with bold symbols to distinguish the notation of this proof
from earlier notation.) For α P tλ, ρu let Yλ “ tY λj ujPZ and Yρ “ tY ρj ujPZ be independent

sequences of i.i.d. variables with marginal distributions Y αj „ Ga´1
pαq, independent of

Y. From these we define the boundary weights Jλ “ tJλu`je2
ujPZ and Jρ “ tJρu`je2

ujPZ

on the y-axis through u by the equation pJρ,Jλq “ pYρ, DpYλ,Yρqq. D is the partition
function operator from (A.20). This gives a pair of coupled sequences pJρ,Jλq. Marginally
tJαu`je2

ujPZ are i.i.d. Ga´1
pαq.

For α P tλ, ρu define the partition function values on the y-axis centered at u by

Lαu “ 1 and
Lαu`je2

Lαu`pj´1qe2

“ Jαu`je2
for j P Z.

Complete the definitions by putting, again for α P tλ, ρu and now for x P u`Zą0 ˆZ,

Lαx “
ÿ

j:jďx2´u2

Lαu`je2
Zu`e1`je2,x, Iαx “

Lαx
Lαx´e1

and Jαx “
Lαx

Lαx´e2

. (B.19)

As in (A.16), the series converges because the boundary variables Jα are stochastically
larger than the bulk weights. This follows from the distributional properties established
below. The evolution in (B.19) satisfies a semigroup property from vertical line to line:
for each k ě 0 the values Lαx for x1 ě u1 ` k ` 1 satisfy

Lαx “
ÿ

j: jď x2´u2

Lαu`ke1`je2
Zu`pk`1qe1`je2,x. (B.20)

For k ě 0, denote the sequences of J -ratios on the vertical line shifted by ke1 by
Jα,k “ tJα,kj ujPZ “ tJαu`ke1`je2

ujPZ and the sequences of interior weights by Y k “

tY kj ujPZ “ tYu`ke1`je2ujPZ. Jα,0 is the original boundary sequence Jα we began with.
One verifies inductively that Jα,k “ DpJα,k´1, Y kq for each k ě 1 and α P tλ, ρu.

Apply Lemma B.3 with parameters pσ, α1, α2q “ pσ, ρ, λq. Directly from the defini-
tion pJρ,Jλq “ pYρ, DpYλ,Yρqq follows that pJρ,Jλq has the distribution of pI1, I2q in
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Lemma B.3. Repeated application of Lemma B.3(iv) implies the distributional equality

pJρ,k,Jλ,kq
d
“ pJρ,Jλq for all k ě 0. Equivalently, the joint distribution of the ratios along

a vertical line
"ˆ

Lλv`je2

Lλv
,
Lρv`je2

Lρv

˙

: j P Z

*

(B.21)

is the same for all v P u`Zě0ˆZ. The semigroup property (B.20) gives for both α P tλ, ρu

Lαv`x
Lαv

“
ÿ

j: jď x2

Lαv`je2

Lαv
Zv`e1`je2,v`x for all x P Zą0 ˆZ. (B.22)

The interior weights tYz : z1 ą v1u from which each Zv`e1`je2,v`x is computed above are

always i.i.d. Ga´1
pσq and independent of the boundary ratios

 Lαv`je2
Lαv

: j P Z
(

. Thus by
applying the mapping (B.22) to the interior weights and the boundary ratios (B.21), we
conclude that the entire joint process of ratios

"ˆ

Lλv`x
Lλv

,
Lρv`x
Lρv

˙

: x P Zě0 ˆZ

*

(B.23)

has the same distribution for all base points v P u`Zě0 ˆZ.
Lemma B.3(v) gives the property that, for any x P u`Zě0 ˆZ, the ratio variables

tJλx`je2
: j ď 0u and tJρx`je2

: j ě 1u are mutually independent. (B.24)

We claim that for α P tλ, ρu and for any new base point v P u`Zě0 ˆZ,

tIαv`ie1
, Jαv`je2

: i, j P Zą0u are mutually independent with marginal distributions

Iαv`ie1
„ Ga´1

pσ ´ αq and Jαv`je2
„ Ga´1

pαq.
(B.25)

Since the joint distribution is shift-invariant, we can take v “ u. As observed above, Jα is
a sequence of i.i.d. Ga´1

pαq random variables by Lemma B.3(i). Thus it suffices to prove
the marginal statement about tIαu`ie1

: i ě 1u because these variables are a function of
tJαu`je2

, Yu`pi,jq : i ě 1, j ď 0u which are independent of tJαu`je2
: j ě 1u.

The claim for tIαu`ie1
: i ě 1u follows from proving inductively the following statement

for each n ě 1:

tIαu`ie1
, Jαu`ne1`je2

: 1 ď i ď n, j ď 0u are mutually independent with

marginal distributions Iαu`ie1
„ Ga´1

pσ ´ αq and Jαu`ne1`je2
„ Ga´1

pαq.
(B.26)

Begin with the case n “ 1. From the inputs given by boundary weights tIj “ Jαu`je2
:

j ď 0u and bulk weights tYj “ Yu`e1`je2
: j ď 0u, equation (A.17) computes the ratio

weights trIj “ Jαu`e1`je2
: j ď 0u and equation (A.18) gives J0 “ Iαu`e1

. (Note here the
switch between “horizontal” and “vertical”.) Part of Lemma B.3(ii) then gives exactly
statement (B.26) for n “ 1. (The dual bulk weights qYj that also appear in Lemma B.3(ii)
are not needed here.)

Continue inductively. Assume that (B.26) holds for a given n. Then feed into the
polymer operators boundary weights tIj “ Jαu`ne1`je2

: j ď 0u and bulk weights tYj “
Yu`pn`1qe1`je2

: j ď 0u, all independent of tIαu`ie1
: 1 ď i ď nu. Compute the ratio weights

trIj “ Jαu`pn`1qe1`je2
: j ď 0u and J0 “ Iαu`pn`1qe1

. Lemma B.3(ii) extends the validity of
(B.26) to n` 1. Claim (B.25) has been verified.

To prove the full Theorem B.4 on the quadrant u`Z2
ě0, take the coupled boundary

weights tIαu`ie1
, Jαu`je2

: i, j ě 1, α P tλ, ρuu as constructed above. The partition function
process tZαu,x : x P u ` Z2

ě0u defined by (B.14)–(B.15) is then exactly the same as the
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restriction tLαx : x P u`Z2
ě0u of Lα. To verify this rewrite (B.15) as follows for x in the

bulk u`Z2
ą0:

Zαu, x “
x1´u1
ÿ

k“1

Lαu`ke1
Zu`ke1`e2, x `

x2´u2
ÿ

`“1

Lαu``e2
Zu`e1``e2, x

“

x1´u1
ÿ

k“1

ˆ

ÿ

j:jď0

Lαu`je2
Zu`e1`je2,u`ke1

˙

Zu`ke1`e2, x `

x2´u2
ÿ

`“1

Lαu``e2
Zu`e1``e2, x

“
ÿ

jď0

Lαu`je2

x1´u1
ÿ

k“1

Zu`e1`je2,u`ke1
Zu`ke1`e2, x `

x2´u2
ÿ

`“1

Lαu``e2
Zu`e1``e2, x

“
ÿ

`ďx2´u2

Lαu``e2
Zu`e1``e2, x “ Lαx .

Invariance (B.17) comes from the invariance statement about (B.23). The statement in
part (i) about independence comes from (B.24). The first statement of part (ii) of the
theorem comes from (B.25) and the second statement from (B.26).

As the last step we prove part (iii). The inequality Jρu`je2
ď Jλu`je2

comes directly

from (A.24), due to the construction pJρ,Jλq “ pYρ, DpYλ,Yρqq. Then (A.25) gives the
inequality Iλu`ie1

ď Iρu`ie1
because, in terms of the notation used above, the sequence

Iα,k “ tIαu`ke1`je2
ujPZ satisfies Iα,k “ SpJα,k´1, Y kq.

Let Fαpxq be the c.d.f. of the Ga´1
pαq distribution. It is continuous and strictly

increasing in x P p0,8q and strictly increasing in α. Thus Fσ´λpIλu`ie1
q „ Unifp0, 1q,

and we define ηu`ie1
“ F´1

σ pFσ´λpI
λ
u`ie1

qq „ Ga´1
pσq. Fσ´λpIλu`ie1

q ă FσpI
λ
u`ie1

q implies
ηu`ie1

ă Iλu`ie1
because F´1

σ is also strictly increasing.
Define analogously ηu`je2

“ F´1
σ pFρpJ

ρ
u`je2

qq.

B.3 Wandering exponent

We quote from [33] bounds on the fluctuations of the inverse-gamma polymer path.
The results below are proved in [33] with couplings and calculations with the ratio-
stationary polymer process, without recourse to the integrable probability features of
the inverse-gamma polymer.

Let the bulk weights pYxqxPZ2 be i.i.d. Ga´1
p1q distributed. Recall the definition of the

averaged path distribution P0,v from (2.3). On large scales the P0,v-distributed random
path X‚ P X0,v follows the straight line segment r0, vs between its endpoints. Typical
deviations from the line segment obey the Kardar-Parisi-Zhang (KPZ) exponent 2{3. The
result below gives a quantified upper bound. It is used in the proof of Lemma 4.5.

Given the endpoints 0 “ p0, 0q and v “ pv1, v2q ą 0 on Z2 and 0 ă h ă 1, let

Iv,h,b “ rhv ´ bN
2{3e2, hv ` bN

2{3e2s

be the vertical line segment of length 2bN2{3 centered at hv.

Theorem B.5. [33, Theorem 2.5] Let 0 ă s, t, κ ă 8 and 0 ă h ă 1. Then there exist
finite ps, t, κ, hq-dependent constants N0, b0 and C such that, whenever N ě N0, v P Z2

ą0

satisfies

|v ´ pNs,Ntq|1 ď κN2{3 (B.27)

and b ě b0, we have

P0,v

 

X‚ X Iv,h,b “ H
(

ď Cb´3. (B.28)

The parameter vector pN0, b0, Cq is bounded if ps, t, κ, hq is restricted to a compact subset
of R3

ą0 ˆ p0, 1q.
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We also state a KPZ bound on the exit point of the stationary polymer used in the
proof of Lemma 3.2. Take a parameter ρ P p0, 1q with characteristic direction ξpρq of (3.7).
Consider the ratio-stationary inverse-gamma polymer with quenched path measure Qρ0,v
and annealed measure P ρ0,vp¨q “ ErQ

ρ
0,vp¨qs, as developed in Section 3.

Theorem B.6. [33, Theorem 2.3]Let κ P p0,8q. There exist finite pρ, κq-dependent
constants N0, b0 and C such that, whenever N ě N0, v P Z2

ą0 satisfies

|v ´Nξpρq|1 ď κN2{3 (B.29)

and b ě b0, we have

P ρ0,v
 

τ0,v ě bN2{3
(

ď Cb´3. (B.30)

The parameter vector pN0, b0, Cq is bounded if pρ, κq is restricted to a compact subset of
p0, 1q ˆRą0. A similar bound holds for the left tail of τ0,v.

C Bound on the running maximum of a random walk

In this appendix we quote a random walk estimate from [11], used in the proof of
Lemma 4.4. For α, β ą 0 let Sα,βm “

řm
i“1X

α,β
i denote the random walk with i.i.d. steps

tXα,β
i uiě1 specified by

Xα,β
1

d
“ logGα ´ logGβ

with two independent gamma variables Gα „ Gapαq and Gβ „ Gapβq on the right. Denote
the mean step by µα,β “ EpX

α,β
1 q “ ψ0pαq ´ ψ0pβq.

Fix a compact interval rρmin, ρmaxs Ă p0,8q. Fix a positive constant a0 and let tsNuNě1

be a sequence of nonnegative reals such that 0 ď sN ď a0plogNq´3. Define a set of
admissible pairs

SN “ tpα, βq : α, β P rρmin, ρmaxs, ´sN ď α´ β ď 0u.

The point of the theorem below is that for pα, βq P SN the walk tSα,βm u1ďmďN has a
small enough negative drift that we can establish a positive lower bound for its running
maximum.

Theorem C.1. [11, Corollary 2.8] In the setting described above the bound below holds
for all N ě N0, pα, βq P SN , and x ě plogNq2:

P
 

max
1ďmďN

Sα,βm ď x
(

ď CxplogNqpµα,β _N
´1{2 q.

The constants C and N0 depend on a0, ρmin, and ρmax.
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