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Abstract

We study the totally asymmetric simple exclusion process (TASEP) on trees where
particles are generated at the root. Particles can only jump away from the root, and
they jump from x to y at rate rx,y provided y is empty. Starting from the all empty
initial condition, we show that the distribution of the configuration at time t converges
to an equilibrium. We study the current and give conditions on the transition rates
such that the current is of linear order or such that there is zero current, i.e. the
particles block each other. A key step, which is of independent interest, is to bound
the first generation at which the particle trajectories of the first n particles decouple.
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1 Introduction

The one-dimensional totally asymmetric simple exclusion process (TASEP) is among
the most studied particle systems. It is a classical model which describes particle
movements or traffic jams, studied by scientists from statistical mechanics, probability
and combinatorics over several decades. The model is simple but shows a variety of
phase transitions and phenomena such as the formation of shocks [17, 26]. It can be
briefly described as follows. A set of indistinguishable particles are individually placed
on distinct integer sites. Each site is endowed with a Poisson clock, independently of all
others, which rings at rate 1. Should a particle occupy a given site, the particle attempts
to jump one unit to the right when the site clock rings, and the jump is performed if and
only if the target site is unoccupied, otherwise it is suppressed. This last condition is
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TASEP on trees

the exclusion rule. One-dimensional TASEP is only a particular example of an exclusion
process, with a degenerate jump kernel on Z×Z given by p(x, x+ 1) = 1 for all x ∈ Z.
When different jump kernels are considered, exclusion processes can be defined on any
graph, including higher dimensional lattices or trees and they have also been studied
extensively; see for example [26].
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Figure 1: Snapshot of a Tree-TASEP evolution. Particles enter at the root at rate λ and
then move down the tree, i.e. their distance from the root can only grow. They attempt a
jump when the Poisson clock of an edge in front of them rings and the target site will be
the child associated to the edge. The jump is suppressed if the target site is occupied
(e.g. look at particle 1 attempting to jump at the occupied child) otherwise the jump is
performed (e.g. particle 2).

In this article we define the TASEP on (directed) rooted trees. This way the particle
system retains the total asymmetry of its one-dimensional analogue, while having more
space to explore. Figure 1 shows a snapshot of the evolution. In our setup, particles jump
only in the direction pointing away from the root under the exclusion rule and choose
their target site according to some jump kernel, that puts mass only on the children of
their current location. In addition, we create particles at the root at a constant rate
through a reservoir. Our underlying tree may be random as long as it doesn’t have leaves
so particles cannot be eternally trapped. We will restrict our attention to TASEP on
supercritical Galton–Watson trees without leaves, including the special case of regular
trees. Moreover, we will assume that the tree is initially empty.

Ideas to investigate the TASEP on trees can already be found in the physics literature
as a natural way to describe transport on irregular structures, like blood, air or water
circulations system; see [3, 31, 44]. Exclusion processes on trees, but with no forbidden
directions, were studied when the particles perform symmetric simple random walks;
see [9, 18].

One-dimensional TASEP provided an early connection between interacting parti-
cle systems and last passage percolation (LPP) on the two dimensional lattice, in an
i.i.d. exponential environment. Viewing the particle system as queues in series, one can
utilize Burke’s theorem to find a family of invariant LPP models; see [1]. These models
can be exploited to obtain, for example, sharp variance bounds for last passage times.
Burke-type theorems usually imply that the model in question is an integrable example
of the KPZ universality class; see [13] for an overview and articles [2, 11, 14, 32, 42] for
other lattice examples having Burke’s property. In particular, the exponential corner
growth model and the one-dimensional TASEP, which are linked through specific initial
conditions and a height function representation, provably exhibit the correct scalings
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and Tracy-Widom weak limits associated with the KPZ class [22]. Recently, it was shown
that for a large class of initial conditions, TASEP converges to the KPZ fixed point [30].

Coupling the TASEP to a growth model can be done via the current (or aggregated
current) of the particle system. The current states how many particles pass through a
certain site (or generation) by a given time. Our interests are two-fold. On one hand,
we fix a time window and we want to know the current across a given generation by
that time. The dual question is to fix a generation window and see how many particles
occupy sites in there, by a given time. We study both of these questions.

Finally, we investigate the law of the process in a finite region for large times to
derive properties of the limiting equilibrium measures. An important observation is that
once two particles are on distinct branches of the tree, they do not effect the transitions
of each other. We make use of this observation by locating where the particle trajectories
disentangle and the particles start to move independently. Quantifying the location of
disentanglement is a key step in our analysis. The proof utilizes combinatorial, geometric
and probabilistic arguments.

In the next subsection we give a formal introduction to the TASEP on trees and
present our results on the disentanglement, the current and the large time behaviour of
the particles. Our main results are Theorem 1.6, Theorem 1.17, Theorem 4.1, Theorem
4.3, Lemma 6.3, and Lemma 6.6.

1.1 Model and results

1.1.1 TASEP on trees.

We will work with Galton–Watson trees; see [28, Chapter 4] for a general introduction.
Let T = (V,E, o) be an infinite, locally finite, rooted tree with directed edges pointing
away from the root o, and let T be the set of all such trees.

Definition 1.1. Let µ be a distribution on N0 = N ∪ {0} and set p` := µ(`) for all ` ∈ N0.
A Galton–Watson tree with offspring distribution µ is a tree in T sampled as follows.
We start with the root o and draw a number of children according to µ. Then for each
child, we again draw a number of children according to µ independently, and iterate. All
edges in the tree are directed edges from parents to their respective children.

For the remainder of the paper, we assume that all Galton–Watson trees are super-
critical and without leaves, i.e.

m :=
∑
`≥0

`p` ∈ (1,∞) and p0 = 0 . (1.1)

Note that the Galton–Watson branching process with offspring distribution µ induces
a probability measure GW on T ; see [28, Chapter 4]. This includes the special case of
regular trees when µ is a Dirac measure.

Next, we fix a tree T = (V,E, o) ∈ T drawn according to GW. On this tree T, the
totally asymmetric simple exclusion process (TASEP) (ηt)t≥0 with a reservoir of
intensity λ > 0 and transition rates (rx,y)(x,y)∈E is given as follows. A particle at site x
tries to move to y at rate rx,y provided that (x, y) ∈ E. However, this move is performed
if and only if the target is a vacant site. Moreover, we place a particle at the root at rate
λ whenever the root is empty. We will choose the transition rates (rx,y)(x,y)∈E such that
(ηt)t≥0 is a Feller process; see [27] for an introduction. More precisely, (ηt)t≥0 will be
the Feller process on the state space {0, 1}V with generator

Lf(η) = λ(1− η(o))[f(ηo)− f(η)] +
∑

(x,y)∈E

rx,y(1− η(y))η(x)[f(ηx,y)− f(η)] (1.2)
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Figure 2: The 3-regular (or binary) tree satisfying a flow rule with rmin
j = rmax

j = 2−j−1.

for all cylinder functions f . Here, we use the standard notation

ηx,y(z) =


η(z) for z 6= x, y ,

η(x) for z = y ,

η(y) for z = x ,

and ηx(z) =

{
η(z) for z 6= x ,

1− η(z) for z = x ,
(1.3)

to denote swapping and flipping of values in a configuration η ∈ {0, 1}V at sites x, y ∈ V .
The following statement gives a sufficient criterion on the transition rates such that

the totally asymmetric simple exclusion process on T is indeed a Feller process.

Proposition 1.2 (c.f. Proposition A.1 in [18]). Assume that for GW-almost every tree in
T , the transition rates (rx,y) are uniformly bounded from above. Then for GW-almost
every tree T, the TASEP on T is a Feller process.

For a tree T ∈ T , let PT denote the law of the TASEP on T. Furthermore, we set

P = GW× PT

to be the semi-direct product where we first choose a tree T ∈ T according to GW and
then perform the TASEP on T. For x ∈ V , let |x| denote the shortest path distance to the
root. We set

Z` := {x ∈ V : |x| = `} (1.4)

and we will refer to Z` as the `th generation of the tree, for ` ∈ N0.
Throughout this article, we will consider the d-regular tree for some d ≥ 3 with

common rates per generation as an example. In this case, the offspring distribution µ is
the Dirac measure on d− 1 and we let the rates (rx,y)(x,y)∈E satisfy

rx,y = rx′,y′ (1.5)

for all (x, y), (x′, y′) ∈ E with |x| = |x′|; see Figure 2 for d = 3 and rx,y = 2−|x|−1. We say
the rates are homogeneous on the d-regular tree if

rx,y = (d− 1)−|x|−1. (1.6)

1.1.2 Conditions on rates

In the following, let the rates be bounded uniformly from above for GW-almost every
Galton–Watson tree, and let the tree be initially empty. We start with an upper bound on
the first generation at which the first n particles are located in different branches of the
tree, and hence behave like independent random walks. Throughout this section, we
will impose the following two conditions on the transition rates. Our first assumption
on (rx,y) is a non-degeneracy condition, which ensures that the particle system can in
principle explore the whole tree.
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Assumption 1.3 (Uniform Ellipticity (UE)). The transition rates on T are uniformly
elliptic, i.e. there exists an ε ∈ (0, 1] such that

inf

{
rx,y
rx,z

: (x, y), (x, z) ∈ E
}
≥ ε .

Note that (UE) guarantees that the first n particles will eventually move on different
subtrees of T and behave as independent random walks after a certain generation; see
Proposition 2.1. To state our next assumption, we define

rmin
` := min{rx,y : x ∈ Z`, y ∈ Z`+1, (x, y) ∈ E}
rmax
` := max{rx,y : x ∈ Z`, y ∈ Z`+1, (x, y) ∈ E} (1.7)

to be the minimal and maximal transition rates in generation ` for all ` ∈ N0. The
following assumption guarantees that the rates are not decaying too fast, which may
cause certain branches of the tree to become blocked for the particles.

Assumption 1.4 (Exponential decay (ED)). The transition rates decay at most expo-
nentially fast, i.e. there exist constants clow, κ > 0 such that for all ` ≥ 0

rmin
` ≥ κ exp(−clow`) .

At this point we want already to keep four quintessential examples in mind, that we
will use to highlight the results and to show different regimes of behaviour. They are all
on the d-regular tree which can be viewed as a Galton-Watson tree with µ ∼ δd−1 and
the rates are equal across their generation, making the tree endowed with the rates a
spherically symmetric object.

Example 1.5 (Uniform ellipticity and Exponential decay in four examples). Consider the
following four archetypes of rates on the d-regular tree for some d ≥ 3:

(C) (Constant rates) rx,y = 1. Assumption (UE) is satisfied with ε = 1 and (ED) is
satisfied with κ = 1 and any clow > 0.

(E) (Exponentially decaying, homogeneous, rates) rx,y = r|x| = (d − 1)−|x|−1. As-
sumption (UE) is satisfied with ε = 1 and (ED) is satisfied with κ = (d− 1)−1 and
clow = log(d− 1).

(S) (Slow rates) rx,y = (d− 1)−|x|−1g(|x|) where g(s)→ 0 as s→∞ at most exponen-
tially fast. Assumption (UE) is satisfied with ε = 1 and (ED) is satisfied for κ > 0

and clow > 0 sufficiently small.

(P) (Polynomially decaying rates of power p) rx,y = (|x| + 1)−p where p > 0.
Assumption (UE) is satisfied with ε = 1 and (ED) is satisfied with κ = 1 and
clow = pmax|x|

log(|x|+1)
|x| = p log 2.

Equipped with these two assumptions, we will now introduce some notation to state
our main results. In the following, we let

dmin := min{i : pi > 0} m̃ :=

( ∞∑
k=2

pk

)−1 ∞∑
k=2

kpk (1.8)

be the minimal number of offspring and the mean number of offspring when conditioning
on having at least two offspring, respectively. Let

co :=

{
(5 + log2 m̃)(log(1 + p1)− log(2p1))−1 if dmin = 1 ,

1/ log dmin if dmin > 1 ,
(1.9)
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and define the integer function

Dn := inf
{
m ∈ N : rmax

` ≤ n−(2+clowco) log−3 n for all ` ≥ m
}

(1.10)

for all n ∈ N, where we use the convention inf{∅} = ∞. In words, (Dn)n∈N denotes a
sequence of generations along which all rates decay at least polynomially fast. The order
of the underlying polynomial depends on the structure of the tree. In particular, for
exponentially fast decaying rates, Dn will be of order log n. We are now ready to quantify
the generation where decoupling of the first n particles is guaranteed.

Theorem 1.6 (The disentanglement theorem). Consider the TASEP on a Galton–Watson
tree and assume that the transition rates satisfy assumptions (UE) and (ED). Recall
ε ∈ (0, 1] from (UE). Let δ > 0 be arbitrary, but fixed, and define Mn for all n ∈ N as
follows.

1. When lim sup
n→∞

Dn

log n
<∞ holds, set

Mn :=

(co + 1)Dn + co(2 + δ) log1+ε n, if dmin = 1 ,

dmin

dmin−1Dn + (2 + δ) log1+ε n, if dmin > 1 .
(1.11)

2. When lim inf
n→∞

Dn

log n
= +∞ holds, set

Mn :=

(
co1{dmin=1} +

1

dmin − 1
1{dmin>1} + (1 + δ)

)
min{Dn, n} . (1.12)

Then P-almost surely, the trajectories of the first n particles decouple after generation
Mn for n large enough, i.e. the first n particles visit distinct sites at level Mn.

Remark 1.7. If in Theorem 1.6 neither (1) or (2) is satisfied, one could either pass to
subsequences which satisfy (1) or (2), or instead apply Proposition 2.1 from Section 2
which will give a coarse bound of order n on the generationMn.

Example 1.8 (Disentanglement generations). For the four examples on the d-regular
tree, µ(d− 1) = 1, d ≥ 3 we have dmin = d− 1, co = 1/ log(d− 1) and for δ > 0 arbitrarily
small

(C) (Constant rates) rx,y = 1. Here Dn = +∞ and so by (1.12)

Mn =
( 1

d− 2
+ 1 + δ

)
n .

(E) (Exponentially decaying, homogeneous, rates) Dn is of logarithmic order, so

Mn =

(
3(d− 1)

(d− 2) log(d− 1)
+

2 + δ

log 2

)
log n . (1.13)

(S) (Slow rates) rx,y = (d − 1)−|x|−1g(|x|) where g(s) → 0 as s → ∞ at most expo-
nentially fast. Because of g, we cannot solve for Dn explicitly, but Dn is still of
logarithmic order as above. If for example g(s) = s−p for some p > 0, we may
bound for n large enough

Mn ≤
(

3(d− 1)

(d− 2)(log(d− 1))
+

2 + δ

log 2

)
log n .
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(P) (Polynomially decaying rates of power p) rx,y = (|x|+ 1)−p where p > 0. Dn is
polynomial in order, so for clow > 0 arbitrarily small

Mn =
d− 1 + δ

d− 2
min(

(
n2+coclow log3 n

) 1
p , n) .

Remark 1.9. Using the pigeonhole principle, we see that for GW-almost every tree and
any family of rates, the first generation of decoupling of n particles will be at least
of order log n. When the rates decay exponentially fast, the disentanglement theorem
ensures that order log n generations are sufficient to decouple n particles. In particular,
in this case the bounds in Theorem 1.6 are sharp up to constant factors.

Remark 1.10. A similar result on the disentanglement of the particles holds when we
replace the reservoir by any dynamic that generates almost surely a number of particles
which grows linearly in time. This may for example be a TASEP on a half-line attached to
the root and started from a Bernoulli-ρ-product measure for some ρ ∈ (0, 1).

1.1.3 Currents

Using Theorem 1.6, we now study the current for the TASEP on Galton–Watson trees.
For any pair of sites x, y ∈ V , we say that y is below x (and write x ≤ y) if there exists
a directed path in T connecting x to y. Let the starting configuration η0 be either the
empty configuration — as we will mostly assume in the following — or contain finitely
many particles. Then we define the current (Jx(t))t≥0 across x ∈ V by

Jx(t) :=
∑

y : x≤y

ηt(y)−
∑

y : x≤y

η0(y) =
∑

y : x≤y

(ηt(y)− η0(y)) (1.14)

for all t ≥ 0. Similarly, we define the aggregated current (J`(t))t≥0 at generation ` by

J`(t) :=
∑
x∈Z`

Jx(t) (1.15)

for all ` ∈ N0 and t ≥ 0. The current (aggregated current) denotes the number of
particles that have reached site x (generation `) by time t. Our goal is to prove almost
sure bounds for the aggregated current. This can be achieved in two different ways.
On the one hand, we consider a given generation ` and study the time until n particles
have passed through `. On the other hand, we fix a time horizon T and study how many
particles have passed through a given generation until time T . For x ∈ V , we denote by

rx :=
∑

y : (x,y)∈E

rx,y (1.16)

the sum of outgoing rates at site x. For m ≥ ` ≥ 0, we define

Rmin
`,m :=

m∑
i=`

(
min
x∈Zi

rx
)−1

, Rmax
`,m :=

m∑
i=`

(
max
x∈Zi

rx
)−1

(1.17)

and set Rmin
` := Rmin

`,` as well as Rmax
` := Rmax

`,` . Intuitively, Rmin
`,m and Rmax

`,m are the
expected waiting times to pass from generation ` to m+ 1 when choosing the slowest,
respectively the fastest, rate in every generation. In the following, we state our results
on the current in Theorems 1.11 and 1.14 only for exponentially decaying rates, i.e. if
there exists some cup > 0 such that

Rmax
` ≥ exp(cup`) (1.18)
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holds for all ` ∈ N.
We provide more general statements in Section 4 and 5 from which Theorems 1.11

and 1.14 as well as Examples 1.13 and 1.15 follow. Fix now some integer sequence
(`n)n∈N with `n ≥ Mn for all n ∈ N, where Mn is taken from Theorem 1.6. For every
n ∈ N, we define a time window [tlow, tup] in which we study the current through
the `th

n level of the tree, and where we see a number of particles proportional to n

passing through Z`n .

Theorem 1.11 (Time window for positive current under (1.18)). Suppose that (UE) and
(ED) hold, and that the rates satisfy (1.18). Then for any δ ∈ (0, 1), there exist some c > 0

such that for all choices of tlow = tlow(n) and tup = tup(n) with

tup ≥ c(nRmin
Mn

+Rmin
`n ) , tlow ≤ exp

(1

2
cup`n

)
, (1.19)

for n ∈ N, we see that P-almost surely

lim
n→∞

J`n(tlow) = 0 , lim inf
n→∞

1

n
J`n(tup) ≥ 1− δ . (1.20)

Remark 1.12. Note that under assumption (1.18), we have the bound

c(nRmin
Mn

+Rmin
`n ) ≤ nc̃clow + n exp(clow`n) (1.21)

for some c̃ > 0. This upper bound can be used as a simple potential value for tup in
(1.19).

Example 1.13 (Exponentially decaying, homogeneous rates (E)). On the d-regular tree
for d ≥ 3 with homogeneous rates from (1.6), let `n = Mn = cd log n with Mn from (1.13)
and cd > 0. Then there exists a constant c > 0 such that (1.20) holds when we set

tup =
c

d− 1
nlog(d−1)cd+1 , tlow = n

1
2 log(d−1)cd . (1.22)

Note that the precision of the bounds on the current strongly depend on the transition
rates and the structure of the tree. See Examples 5.2-5.6 for polynomially decaying rates
in Section 5. Theorem 1.11 will be deduced from the more general Theorem 4.1, while
Example 1.13 follows directly from Theorem 1.11 and Example 1.8.

Next, we let t be a fixed time horizon and define an interval [Llow, Lup] of generations.
Recall the generation Mn from Theorem 1.6 for the first n particles and define

nt := sup

{
n ∈ N0 : (n+ Mn)( min

|x|≤Mn

rx)−1 ≤ t
}
. (1.23)

Note that for exponentially decaying rates, the quantity nt will be a polynomial in t. For
large times t, the next theorem gives a window of generations where we expect to see
the first nt particles which entered the tree.

Theorem 1.14 (Generation window for positive current under (1.18)). Suppose that (UE)
and (ED) holds, and the rates satisfy (1.18). Then there exists a constant c > 0 such that
for all Llow = Llow(t) and Lup = Lup(t) with

Llow ≤ c log t , Lup ≥
2

cup
log t , (1.24)

for t ≥ 0, we see that P-almost surely

lim
t→∞

JLup(t) = 0 , lim inf
t→∞

1

nt
JLlow(t) > 0 . (1.25)
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We will obtain Theorem 1.14 as a special case of Theorem 4.3 in Section 4. For the
d-regular tree with homogeneous rates, we have the following current estimate in a
sharp window of generations; see Section 5.2 for the proof.

Example 1.15 (Exponentially decaying, homogeneous rates (E)). On the d-regular tree
for d ≥ 3 with rates from (1.6), we have that P-almost surely, for every α = α(t) going to
0 with t→∞

lim
t→∞

JLup(t) = 0 , lim
t→∞

t−αJLlow(t) =∞ ,

where we can choose Llow and Lup to be of the form

Lup =
1

log(d− 1)
log t+ o(log t) , Llow =

1

log(d− 1)
log t− o(log t) .

1.1.4 Large time behaviour

We study the law of the TASEP on trees for large times. Again, we let the TASEP start
from the all empty initial configuration according to ν0, where for ρ ∈ [0, 1], νρ denotes
the Bernoulli-ρ-product measure on {0, 1}V . In contrast to the previous results, the
geometry of the tree does not play an important role. However, we need assumptions on
the transition rates. We assume that the rates are bounded uniformly from above. For
x ∈ V (T ) recall rx from (1.16). Let the net flow q(x) through x be

q(x) :=

rx − rx̄,x x 6= o

ro x = o ,
(1.26)

where x̄ is the unique parent of x. The rates satisfy a superflow rule if q(x) ≥ 0 holds
for all x ∈ V (T ) \ {o}. In particular, when q(x) = 0 for all x 6= o we say that the rates
satisfy a flow rule with a flow of strength q(o); see Figure 2 for an example of flow with
homogeneous rates on the binary tree. The rates satisfy a subflow rule if

lim
m→∞

∑
x∈Zm

rx = 0 . (1.27)

Example 1.16 (Flow conditions). For the four examples on the d-regular tree, µ(d−1) = 1,
d ≥ 3 we have

(C) (Constant rates) rx,y = 1. This is a superflow rule but not a flow rule.

(E) (Exponentially decaying, homogeneous, rates) rx,y = (d− 1)−|x|−1. The rates
here satisfy a flow rule.

(S) (Slow rates) rx,y = (d− 1)−|x|−1g(|x|) where g(s)→ 0 as s→∞. The condition on
g gives that the rates satisfy a subflow rule.

(P) (Polynomially decaying rates of power p) rx,y = (|x| + 1)−p where p > 0. The
rates satisfy a superflow rule if log 2 ≤ p−1 log(d− 1).

We endow the probability measures on {0, 1}V with the topology of weak convergence.

Theorem 1.17 (Fan and shock behaviour). Let (St)t≥0 be the semi-group of the TASEP
(ηt)t≥0 on a fixed tree T ∈ T , where particles are generated at the root at rate λ > 0.
We assume that T is infinite and without leaves. For all choices of (rx,y), there exists a
stationary measure πλ of (ηt)t≥0 with

lim
t→∞

ν0St = πλ . (1.28)

EJP 26 (2021), paper 159.
Page 9/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP725
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


TASEP on trees

Then under a superflow rule, πλ 6= ν1 and the current (Jo(t))t≥0 through the root is
PT-almost surely linear in t,

lim
t→∞

Jo(t)

t
≥ λπλ(η(o) = 0).

Moreover, if in addition λ < ro as well as

lim
n→∞

|Zn| min
x∈Zn

rx,y =∞ , (1.29)

the system exhibits a fan behaviour, i.e. we have

lim
n→∞

1

|Zn|
∑
x∈Zn

πλ(η(x) = 1) = 0 . (1.30)

Under a subflow rule, the system exhibits a shock behaviour, i.e. πλ = ν1 and

lim
t→∞

Jo(t)

t
= 0 PT − almost surely. (1.31)

We direct the reader to Section 6 for the proof of Theorem 1.17, a more detailed
discussion and further results regarding the TASEP on trees in equilibrium.

1.2 One-dimensional TASEP and parallels with TASEP on trees

A great strength of various particle systems are their explicit hydrodynamic limits,
as macroscopic and microscopic behaviour are connected; see for example [16] for
a beautiful survey on TASEP, and references therein. Hydrodynamic limits for the
homogeneous TASEP, in the sense of a rigorous connection to the Burgers equation, were
originally established by Rost in the rarefaction fan case [34]. This result was extended
in various ways in [36, 37, 38, 39]. The particle density was shown to satisfy a scalar
conservation law with an explicit flux function that turns out to be the convex dual of the
limiting level curve of the last passage limiting shape. The density is the almost sure
derivative of the aggregated current process, which, when appropriately scaled, satisfies
a Hamilton-Jacobi-Bellman equation.

A key endeavour is to understand the equilibrium measures. For the homogeneous
TASEP on Z, the extremal invariant measures are Bernoulli-product measures and Dirac
measures on blocking states; see [6, 23, 25]. In Lemma 6.3 we show for the TASEP on
trees that a flow rule gives the existence of non-trivial invariant product measures.

When the jump rates are deterministic, but not equal, we have a spatially inhomoge-
neous TASEP. In this case, even in dimension one, less is known and usually the results
have some conditions on the rates. For example, consider the one-dimensional particle
system where we alter the rate of the Poisson process of the origin only; any particle
at 0 jumps to site 1 at rate r < 1, while all other jump rates remain 1. The question is
whether this local microscopic change affects the macroscopic current for all values
of r < 1. This is known as the ‘slow bond problem’, introduced in [20, 21] on a finite
segment with open boundaries. On Z, progress was made in [40] where a coupling
with the corner growth model in LPP showed that the current is affected for r less than
∼ 0.425, and a hydrodynamic limit for the particle density was proven. A positive answer
to the question appeared in [4].

When the inhomogeneities are not local but macroscopic, several articles show
hydrodynamic limits for TASEP (or study the equivalent inhomogeneous LPP model)
with increasing degree of complexity for admissible deterministic rates coming from a
macroscopic speed function [8, 10, 19, 33]. The commonality between them is that the
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rates need to behave in a nice way so that the current of TASEP at position bnxc at time
bntc remains linear in n. In this article we use a coupling with the corner growth model
to bound the current; see Section 3.3. We only make the Assumptions (UE) and (ED)
for admissible rates. As such, evidenced by Theorems 4.1 and 4.3, we have different
regimes for the order of current up to a given time, where the current is not necessarily
linear in time. Our results such as the sharp order of magnitude for the time window
assume more on the decay of the jump rates across the tree; see Section 5 for explicit
calculations on the d-regular tree.

Depending on initial particle configurations, the macroscopic evolution of the particle
density in one-dimensional TASEP may exhibit a shock or a rarefaction fan, as one can
see from the limiting partial differential equation. In a simple two-phase example, even
starting from macroscopically constant initial conditions, one can see the simultaneous
development of shocks and fans, depending on the common value of the density [19].
In this article, we can still describe shock or fan behaviour of the limiting particle
distribution; see Theorem 1.17, even without a hydrodynamic limit. In particular, we
show that this behaviour in fact occurs in the limit, starting from the all empty initial
condition. A tool we are using is to approximate the TASEP by a finite system with open
boundaries; see Section 6. Stationary measures for the one-dimensional TASEP with
reservoirs and deaths of particles were studied using elaborated tools like the Matrix
product ansatz; see [5], or combinatorial representations, like staircase tableaux and
Catalan paths [12, 29, 35].

1.3 Outline of the paper

In the remainder of the paper, we give proofs for the results presented in Section
1.1. We start in Section 2 with the proof of the disentanglement theorem. The proof
combines combinatorial arguments, geometric properties of Galton–Watson trees and
large deviation estimates on the particle movements. In Section 3, we introduce three
couplings with respect to the TASEP on trees which will be helpful in the proofs of the
remaining theorems. This includes the canonical coupling for different initial configu-
rations, a coupling to independent random walks and a comparison to a slowed down
TASEP on the tree which can be studied using inhomogeneous last passage percolation.
These tools are then applied in Section 4 to prove Theorems 4.1 and 4.3 on the current,
which in return give Theorems 1.11 and 1.14. We show in Section 5 that the current
bounds can be sharpened for specific rates on the d-regular tree. In Section 6, we turn
our focus to the large time behaviour of the TASEP and prove Theorem 1.17. This uses
ideas from [24] as well as the canonical coupling. We conclude with an outlook on open
problems.

2 The disentanglement theorem

The proof of Theorem 1.6 will be divided into four parts. First, we give an a priori
argument on the level where the particles disentangle, requiring assumption (UE). We
then study geometric properties of Galton–Watson trees. Afterwards, we estimate the
time of n particles to enter the tree. This will require only assumption (ED). In a last
step, the ideas are combined in order to prove Theorem 1.6.

2.1 An a priori bound on the disentanglement

In this section, we give an a priori bound on the disentanglement of the trajectories
within the exclusion process. This bound relies on a purely combinatorial argument,
where we count the number of times a particle performing TASEP has a chance to
disentangle from a particle ahead. Recall that we start from the configuration where all
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sites are empty. For a given infinite, locally finite rooted tree T and x, y ∈ V (T), recall
that we denote by [x, y] the set of vertices in the shortest path in T connecting x and y.
We set

F (o, x) := |{z ∈ [o, x] \ {x} : deg(z) ≥ 3}| (2.1)

to be the number of vertices in [o, x] \ {x} with degree at least 3. For any fixed tree
(T, o) ∈ T , let dT be the smallest possible number of offspring a site can have. Note that
when T is a Galton–Watson tree, dT = dmin holds GW-almost surely for dmin from (1.8).
For all i,m ∈ N, let zmi ∈ Zm denote the unique site at generation m which is visited by
the ith particle which enters the tree.

Proposition 2.1. For (T, o) ∈ T , consider the TASEP on T where n particles are gener-
ated at the root according to an arbitrary rule. Assume that (UE) holds for some ε > 0.
Then

PT
(
zmi 6= zmj for all i, j ∈ {1, . . . , n}, i 6= j

)
≥ 1− n2

(
1

ε+ 1

)Fn(m)

, (2.2)

where for all m,n ∈ N, we set

Fn(m) :=

min {F (o, x) : x ∈ Zm} − n if dT = 1 ,

m−
⌈
n(dT − 1)−1

⌉
if dT ≥ 2 .

(2.3)

We will use Proposition 2.1 to control the probability that two particles have the
same exit point at Zm, in a summable way, provided that Fn(m) ≥ c log(n) for some
c = c(ε) > 0. Note that this bound can in general be quite rough as for example on the
regular tree with rates as in (1.6), we expect n particles to disentangle already after
order log n generations.

Proof of Proposition 2.1. Consider the jth particle for some j ∈ [n] := {1, . . . , n} which
enters the tree. We show that the probability of particle j to exit from x ∈ Zm satisfies

PT
(
zmj = x

)
≤
( 1

1 + ε

)Fn(m)

(2.4)

for all j ∈ [n]. Note that if particle j exits through x, it must follow the unique path [o, x];
see also Figure 3. Our goal is to find a generation m large enough that guarantees that
on any ray the particle will have enough opportunities to escape this ray.

For dT ≥ 3, we argue that any particle will encounter at least Fn(m) many locations
on [o, x] which have at least 2 holes in front when the particle arrives. To see this,
suppose that particle j encounters at least n(dT − 1)−1 generations among the first n
generations with no two empty sites in front of it when arriving at that generation. In
other words, particle j sees at least dT−1 particles directly in front of its current position
when reaching such a generation. Since particle j may follow the trajectory of at most
one of these particles, this implies that particle j encounters at least (dT − 1) · n

dT−1 = n

different particles in total until reaching level n. This is a contradiction as j ≤ n and the
tree was originally empty.

For dT ∈ {1, 2} we apply a similar argument. We need to find m large enough so
that every possible trajectory has minx∈Zm F (o, x) ≥ n locations where, when a particle
arrives there are at least two children, and there is no particle ahead. By definition,
every possible trajectory has at least F (o, x) ≥ Fn(m) + n sites with at least two children.
Observe that in order to follow the trajectory [o, x] for some x ∈ Zm, the first accepted
transition at every stage must be along [o, x]. But there can be at most n sites at which
the first attempt was not to follow [o, x] and this attempt was suppressed. This is because
in order to block an attempt of leaving [o, x], the blocking particle cannot be on [o, x] and
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i

j

Figure 3: Visualization of the key idea for the proof of the a priori bound on the
disentanglement. When (UE) holds, the probability that particle i follows the blue
trajectory of particle j is at most

(
1

1+ε

)2
.

thus block only a single attempt of particle j to jump. Hence, there must be at least
Fn(m) sites of degree at least 3 accepting the first attempted transition.

Now we prove (2.4). Suppose that particle j is at one of the Fn(m) many locations,
say y ∈ Z`, on [o, x] where two different children z1, z2 of y are vacant. At most one of
them belongs to [o, x], say z1. Using (UE), the probability of selecting z1 is bounded from
above by (1 + ε)−1. To stay on [o, x], we must pick the unique site in [o, x] at least Fn(m)

many times, independently of the past trajectory. This shows (2.4). Since particle i is not
influenced by the motion of particle j for all j > i, we conclude

PT
(
∃i, j ∈ [n], i 6= j, : zmi = zmj

)
≤

∑
1≤i<j≤n

PT
(
zmi = zmj

)
≤ n2

( 1

1 + ε

)Fn(m)

,

applying (2.4) for the last inequality.

2.2 Geometric properties of the Galton–Watson tree

Next, we give an estimate on the number F (o, x), defined in (2.1), which will be
essential in the proof of Theorem 1.6 when there is a positive probability to have exactly
one offspring.

We define the core of a Galton–Watson tree to be the Galton–Watson tree, which we
obtain by conditioning in the offspring distribution with respect to (pk)k∈N on producing
at least 2 sites. Intuitively, we obtain the core from a given tree by collapsing all linear
segments to single edges. On the other hand, given a core T̃ according to the conditioned
offspring distribution, we can reobtain a Galton–Watson tree with the original offspring
distribution according to (pk)k∈N, by extending every edge ẽ to a line segment of size Gẽ
where (Gẽ)ẽ∈E(T̃) are i.i.d. Geometric-(1− p1)-distributed random variables supported
on N0. Moreover, we have to attach a line segment [o, õ] of Geometric-(1− p1)-size to the
root õ of T̃ and declare o to be the new root of the tree.

An illustration of this procedure is given in Figure 4. We now give an estimate on
how much the tree is stretched when extending the core with the conditioned offspring
distribution to a Galton–Watson tree with an offspring distribution with respect to
(pk)k∈N.

Lemma 2.2. Let (Hn)n∈N be an increasing sequence that goes to infinity and assume
that p1 ∈ (0, 1). Recall m̃ from (1.8). Set Mn := dαHne for all n ∈ N, where

α :=
5 + log2 m̃

log2(1 + p1)− log2(2p1)
. (2.5)
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õ o

ToT̃õ

Figure 4: A core at the left-hand side and one of its corresponding Galton–Watson trees
on the right-hand side. We obtain the Galton–Watson tree from the core (the core from
the Galton–Watson tree) by adding (removing) the smaller vertices depicted in gray.

Then

GW
(

inf
x∈ZMn

∑
v∈[o,x)

1{deg(v) ≥ 3} ≥ dHne
)
≥ 1− 2−2Hn+1 . (2.6)

Proof. Note that all sites in the core T̃ other than the root have at least degree 3. Hence,
it suffices to bound the probability that all sites at generation Hn of T̃ are mapped to
a generation less or equal than Mn in the corresponding Galton–Watson tree. Using
Markov’s inequality, we see that

GW(|x ∈ V (T̃) : |x| = Hn| ≥ m̃Hn22Hn) ≤ 2−2Hn . (2.7)

Note that each site x at level Hn in T̃ is mapped to a generation given as the sum of
Hn-many independent Geometric-(1− p1)-distributed random variables (Gi)i∈[Hn]. Using
Chebyshev’s inequality, we see that

P
( Hn∑
i=1

Gi ≥Mn

)
≤ e−tMn

(
1− p1

1− p1et

)Hn

=

(
1 + p1

2p1

)−Mn

2Hn (2.8)

when we set t = log(1+p1
2p1

). Fix some site x̃ ∈ ZMn . Now condition on the number of sites

at level Hn in T̃ and apply (2.7) together with a union bound to see that

GW
(
∃x ∈ ZMn :

∑
v∈[o,x)

1{deg(v) ≥ 3} ≤ dHne
)

≤ m̃Hn22HnGW
( ∑
v∈[o,x̃)

1{deg(v) ≥ 3} ≤ dHne
)

+ 2−2Hn

≤ m̃Hn22HnP
( Hn∑
i=1

Gi ≥Mn

)
+ 2−2Hn ≤ 2−2Hn+1

using (2.8) and the definition of Mn for the last two steps.

2.3 Entering times of the particles in the tree

We now define an inverse for the current. For any n ∈ N, m ∈ N0, we set

τnm := inf{t ≥ 0 : Jm(t) ≥ n} . (2.9)
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In words, τnm gives the time that the aggregated current across generation m becomes n,
or equivalently, precisely n particles reached Zm. Hence, the following two events are
equal:

{τnm ≤ t} = {Jm(t) ≥ n} .

The main goal of this section is to give a bound on the first time τn0 at which n particles
have entered the tree. Note that this random time τn0 depends on the underlying tree as
well as on the evolution of the exclusion process.

Proposition 2.3. Fix a number of particles n. Consider a supercritical Galton–Watson
tree without extinction and assume that (ED) holds for some constant clow. Recall co from
(1.9). There exists a constant c > 0 such that

GW

(
PT
(
τn0 < cnclowco+1 log n

)
≥ 1− 2

n2

)
≥ 1− 2

n2
(2.10)

for all n sufficiently large.

In order to show Proposition 2.3, we require a bit of setup. Let Z(x)
m be the mth

generation of the subtree Tx rooted at x. For a tree (T, o) ∈ T and a site x, we say that
the exclusion process on T has depth of traffic Dx(t) ∈ N0 with

Dx(t) = inf{m ≥ 0 : ηt(z) = 0, for some z ∈ Z(x)
m } , (2.11)

at site x at time t. In words, Dx(t) is the distance to the first generation ahead of x which
contains an empty site. Note that for any fixed x, the process (Dx(t))t≥0 is a non-negative
integer process. It takes the value 0 when ηt(x) = 0 and it is positive when ηt(x) = 1.
Note that (Dx(t))t≥0 can go down only in steps of one, unless at 0 where it jumps to some
positive integer. The following lemma gives a bound on the depth of traffic at the root in
Galton–Watson trees.

Lemma 2.4. Let Hn = log2 n and recall Mn and m̃ from Lemma 2.2. Then

GW
(
PT
(
Do(t) ≤Mn + 1 for all t ≤ τn0

)
= 1
)
≥ 1− 2

n2
. (2.12)

In words, this means that with probability at least 1− 2n−2, the depth at the root is
smaller than Mn whenever no more than n particles have entered the tree.

Proof of Lemma 2.4. Observe that the root can only have depth ` when all vertices until
level ` are occupied and that there are at most n particles until time τn0 . Note that
Lemma 2.2 guarantees, with our choice of Hn, that with probability at least 1 − 2n−2,
the tree up to generation Mn contains more than n sites. Hence, there is at least one
empty site until generation Mn by the definition of τn0 .

Next, we give a bound on the renewal times of the process (Do(t))t≥0. For t ≥ 0 and
x ∈ V , we define the first availability time ψx(t) after time t to be

ψx(t) = inf{s > t : Dx(s) = 0} − t ≥ 0 .

This is the time it takes until x is empty, observing the process from time t onward.

Lemma 2.5. Fix a tree (T, o) ∈ T with root o, and assume that (ED) holds for some clow,
κ > 0. Moreover, let t = t(`) ≥ 0 satisfy 0 ≤ Do(t) ≤ `. Then for all c > 0

PT

(
ψo(t) > (1 + c)(`+ 1)κ−1eclow(`+1)

)
≤ exp

(
− (c− log(1 + c))`

)
. (2.13)
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Proof of Lemma 2.5. Since Do(t) ≤ `, there exists a site y with |y| ≤ `+ 1 and ηt(y) = 0,
such that the ray connecting y to x is fully occupied by particles. Thus, ψo(t) is bounded
by the time a hole at level `+ 1 needs to travels to o. By (ED),

ψo(t) ≤ κ−1 exp(clow(`+ 1))

`+1∑
i=1

ωi

holds for independent Exponential-1-distributed random variables (ωi)i∈[l+1]. Now

P

(
`+1∑
i=1

ωi > (1 + c)(`+ 1)

)
≤ exp (−(c− log(1 + c))`)

by using Cramér’s theorem. This yields an upper bound on the left-hand side in (2.13);
see Theorem 2.2.3 [15].

Proof of Proposition 2.3. Recall that a particle can enter the tree if and only if the root
is empty, and that particles are created at the root at rate λ. Thus

τ i0 − τ i−1
0 ≤ ψo(τ i−1

0 ) + λ−1ωi (2.14)

holds for all i ∈ [n] for some sequence (ωi)i∈[n] of i.i.d. Exponential-1-distributed random
variables. Recall (1.9) where for dmin > 1, we take co such that Mn = co log n, and set
co = 1/ log dmin otherwise. Rewriting τn0 as a telescopic sum yields

PT(τn0 > cnclowco+1 log n) ≤ PT(∃i ∈ [n] : τ i0 − τ i−1
0 > cnclowco log n)

≤ nmax
i∈[n]

PT
(
ψo(τ

i−1
0 ) > (c− 3λ−1)nclowco log n

)
+ nPT(ω1 > 3 log n) .

Together with Lemma 2.4 and Lemma 2.5 for ` = co log n, we obtain that

nmax
i∈[n]

PT
(
ψo(τ

i−1
0 ) > (c− 3λ−1)nclowco log n

)
+ nPT(ω1 > 3 log n) ≤ 1

n2
+

1

n2

holds for some c > 0 with GW-probability at least 1− 2n2 for all n sufficiently large.

2.4 Proof of the disentanglement theorem

For the proof of Theorem 1.6 we have the following strategy. We wait until all n
particles have entered the tree. We then consider a level in the tree which was reached
by no particle yet. For every vertex at that level as a starting point, we use the a priori
bound on the disentanglement from Proposition 2.1; see also Figure 5.

Starting from the empty initial configuration, we study the maximal generation which
is reached until time τn0 . The next lemma gives an estimate on the degrees of the vertices
along the possible trajectories of the particles.

Lemma 2.6. Let (Ln)n∈N be an integer sequence such that Ln ≥ c̃ log n holds for some
c̃ > 0 and n ∈ N. Then we can find a sequence (δn)n∈N with δn tending to 0 with n such
that the following statement holds with GW-probability at least 1− n−2 for all n large
enough: for every site x ∈ ZdLn(1+δn)e, there exists a site y ≤ x, i.e. y is on a directed
path from the root to x, with |y| ≥ Ln and deg(y) ≤ log logn.

Proof. It suffices to consider the case where the offspring distribution has infinite
support. Using Markov’s inequality, we see that with GW-probability at least 1− (2n)−2,
the Galton–Watson tree contains at most (2n)2mLn sites at generation Ln. We denote
by (Ti)i∈[|ZLn |] the trees with roots oi attached to these sites. We claim that with GW-
probability at least 1− (2n)−4m−Ln , every ray [oi, x] for x at level dδnLne of Ti contains at
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Dn = 2 31 Mn = 40

o

λ

Figure 5: Visualization of the TASEP on trees and the different generations Dn and Mn

involved in the proof for n = 4. The particles are drawn in red. Note that it depends
on the next successful jump of the particle at generation 3, if the first 4 particles are
disentangled at generation Mn = 4, i.e. they will disentangle if the particle jumps at the
location indicated by the arrow.

least one vertex which has at most log log n neighbors. To see this, we use a comparison
to a different offspring distribution. Recall that the mean of the offspring distribution is
m <∞, and that pi is the probability of having precisely i offspring. We define another
offspring distribution for weights (p̄i)i∈{0,1,... }, where

p̄i :=


pi for i > log logn

1−
blog lognc∑

i=1

pi for i = 0

0, else.

Let m̄n denote the mean of the distribution given by (p̄i)i∈{0,1,... }, and note that m̄n → 0

holds when n→∞. Observe that the probability that all rays up to generation dδnLne
contain at least one vertex of degree at most log log n is equal to the probability that the
tree with offspring distribution drawn according to (p̄i)i∈{0,1,... } dies out until generation
dδnLne. Using a standard estimate for Galton–Watson trees, this probability is at least

1− m̄
dδnLne
n . Set

δn = −2Ln + 4 logm(2n)

Ln logm m̄n
(2.15)

and note that δn → 0 holds when n→∞. From this, and Ln ≥ c̃ log n for some c̃ > 0, for
all n large enough

m̄dδnLne
n ≤ (2n)−4m−Ln

follows. We conclude with a union bound over all trees Ti at level Ln.

Next, for all t ≥ 0, we let S(t) denote the generation

S(t) = max{` ≥ 0 : J`(t) = 1}

when starting from the configuration where all sites are empty.

Lemma 2.7. Recall (Dn) from (1.10) and (δn) from (2.15). Then P-almost surely

S(τn0 ) ≤ (1 + δn)Dn (2.16)

for all n sufficiently large.
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Proof. By Lemma 2.6, with GW-probability at least 1−n−2, there exists some generation
` ≥ Dn such that for every i ∈ [n], the ith particle has at most log log n neighbors. Let
ζi be the holding time at this generation for particle i and note that ζi satisfies the
stochastic domination

ζi � ωi ∼ Exp(rmax
Dn

log log n) .

Set t = cnclowco+1 log n for c > 0 sufficiently large such that for all n large enough

GW
(
PT
(
S(t) ≥ S(τn0

))
≥ 1− 2

n2

)
≥ GW

(
PT
(
τn0 ≤ t

)
≥ 1− 2

n2

)
≥ 1− 2n−2

using that S(·) is monotone increasing for the first inequality, and Proposition 2.3 for the
second step. For the same choice of t and using the definitions of Dn and S(t)

PT(S(t) > Dn(1 + δn)) ≤ PT
(

min
1≤i≤n

ζi < t
)
≤ PT

(
min

1≤i≤n
ωi < t

)
≤ c1 log log n

n log2 n

holds for some constant c1 > 0 and all n sufficiently large, with GW-probability at least
1− n−2. An integral test shows that all error terms in the above estimates are summable
with respect to n, and we obtain (2.16) by the Borel–Cantelli lemma.

Proof of Theorem 1.6. Note that when the event in Lemma 2.7 occurs, P-almost surely
no ray contains more than Dn(1 + δn) particles out of the first n particles for all n suffi-
ciently large. We will use this observation to apply the a priori bound from Proposition
2.1 for all trees (Ti) rooted at generation Dn(1 + δn) which eventually contain at least
one of the first n particles. In the following, we assume that Dn < n. For Dn ≥ n, we
directly apply Proposition 2.1 for the original tree T with n particles.

We start with the case where dmin ≥ 2 holds. Let δ ∈ (0, 1) be fixed and set

M̃n =
1

dmin − 1
(Dn(1 + δn)) + (2 + δ) log1+ε(nDn) . (2.17)

Moreover, we fix a tree Ti rooted at generation Dn(1 + δn) which eventually contains a
particle. We claim that by Proposition 2.1, all of the at most Dn(1 + δn) particles entering
Ti are disentangled after M̃n generations in Ti with PT-probability at least 1− cn−2−δ

for some constant c > 0. To see this, recall (2.3) and observe that

FDn(1+δn)(M̃n) ≤ (2 + δ) log1+ε(nDn) .

We then apply (2.2) to obtain the claim. Note that this holds for GW-almost every tree
(T, o) ∈ T . Moreover, the events that the particles disentangle on the trees (Ti) are
mutually independent, and we conclude using a union bound for the trees (Ti).

Now suppose that dmin = 1 holds. Recall co from (1.9) and that δ ∈ (0, 1) is fixed.
Note that δn ≤ δ holds for all n sufficiently large and set

M̃n = co(Dn(1 + δ)) + (2 + δ)co log1+ε(nDn) . (2.18)

Observe that (2 + δ) log1+ε n ≥ log2 n for all n using the definition of ε in (UE). Let
Hn = Dn(1 + δ) + (2 + δ) log1+ε(nDn). Similar to the case dmin ≥ 2, we now combine
Proposition 2.1 and Lemma 2.2 to see that P-almost surely, all of the at most Dn(1 + δ)

particles entering Ti are disentangled after M̃n generations in Ti for all i ∈ [n] and n

large enough. Compare (2.17) and (2.18) with Mn in (1.11) and (1.12) to conclude.
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3 Couplings

In this section, we discuss three methods of comparing the TASEP on trees to related
processes via couplings. We start with the canonical coupling which allows us to compare
the TASEP on trees for different initial configurations. Next, we introduce a comparison
to independent random walks. This coupling is used to prove a lower bound on the time
window in Theorem 4.1 and an upper bound on the window of generations in Theorem 4.3.
Our third model is a slowed down TASEP which is studied using an inhomogeneous
LPP model. It is used to give an upper bound on the time window in Theorem 4.1 and
a lower bound on the window of generations in Theorem 4.3. In all cases, we fix a
tree T = (V,E, o) ∈ T and a family of rates (rx,y)x,y∈E such that the TASEP is a Feller
process.

3.1 The canonical coupling

Let (η1
t )t≥0 and (η2

t )t≥0 denote two totally asymmetric simple exclusion processes on
T = (V,E) with transition rates (rx,y), where particles are generated at the root at rates
λ1 and λ2, respectively. Assume λ1 ≤ λ2. The canonical coupling is the following joint
evolution (η1

t , η
2
t )t≥0 of the two TASEPs.

For every edge e = (x, y) ∈ E, consider independent rate rx,y Poisson clocks. When-
ever a clock rings at time t for an edge (x, y), we try in both processes to move a particle
from x to y, provided that η1

t (x) = 1− η1
t (y) = 1 or η2

t (x) = 1− η2
t (y) = 1 holds. We place

a rate λ1 Poisson clock at the root. Whenever the clock rings, we try to place a particle at
the root in both processes. Furthermore, if λ1 6= λ2, we place an additional independent
rate (λ2 − λ1) Poisson clock at the root. Whenever this clock rings, we try to place a
particle at the root in (η2

t )t≥0.

Let � denote the component-wise partial order on {0, 1}V and denote by P the law of
the canonical coupling.

Lemma 3.1. Let (η1
t )t≥0 and (η2

t )t≥0 be two TASEPs on trees within the above canonical
coupling. Suppose that λ1 ≤ λ2 holds, then

P
(
η1
t � η2

t for all t ≥ 0 | η1
0 � η2

0

)
= 1. (3.1)

Remark 3.2. Similarly, we can define the canonical coupling for the TASEP on trees
when we allow reservoirs of intensities λv1 and λv2 at all sites v ∈ V , respectively. The
canonical coupling preserves the partial order � provided that λv1 ≤ λv2 holds for all sites
v ∈ V .

3.2 A comparison with independent random walks

We start by comparing the TASEP (ηt)t≥0 on T to independent biased random walks
on T. Assume that the TASEP is started from some state η, which is — in contrast to
our previous assumptions — not necessarily the configuration with only empty sites. We
enumerate the particles according to an arbitrary rule and denote by zit the position of

the ith particle at time t ≥ 0. We define the waiting time σ(i)
` in level ` for all i ∈ Z and

` ∈ N to be the time particle i spends on generation ` once it sees at least one empty site.
Recall Rmax

` from (1.17) and, with a slight abuse of notation, let � denote the stochastic
domination for random variables. Then

σ
(i)
` � R

max
` ω

(i)
` (3.2)

holds for all i ∈ [n] and ` ≥ 0, where ω
(i)
` are independent Exponential-1-distributed

random variables. We now define the independent random walks (η̃t)t≥0 started from η.
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Each particle at level ` waits according to independent rate (Rmax
` )−1 Poisson clocks,

and jumps to a neighbor at generation `+ 1 chosen uniformly at random when the clock
rings. When a particle is created in (ηt)t≥0, create a particle in (η̃t)t≥0 as well.

Note that in these dynamics, a site can be occupied by multiple particles at a time.
Let z̃it denote the position of the ith particle in (η̃t)t≥0 at time t ≥ 0 and denote by
(J̃`(t))t≥0 the aggregated current of (η̃t)t≥0 at generation ` ∈ N0. The following lemma is
immediate from (3.2) and the construction of the random walks (η̃t)t≥0.

Lemma 3.3. There exists a coupling P̃ between the TASEP (ηt)t≥0 on T and the corre-
sponding independent random walks (η̃t)t≥0 such that

P̃
(
|zit| ≤ |z̃it| for all i ∈ N | η̃0 = η0

)
= 1 . (3.3)

In particular, J`(t) ≤ J̃`(t) holds for all ` ∈ N0 and t ≥ 0.

Using the comparison to independent random walks, we can give bounds on the
current using estimates on weighted sums of Exponential random variables. We will
frequently use the following estimates.

Lemma 3.4. For ` ∈ N and c0, c1, c2, . . . , c`, t ≥ 0, set S :=
∑`
i=0 ci

−1 as well as c :=

mini∈{0,1,...,`} ci. Let (ωi)i∈{0,1,...,`} be independent Exponential-1-distributed random
variables. Then for any δ ∈ (0, 1),

1− e−δct

(1− δ)cS
≤ P

(∑̀
i=0

1

ci
ωi ≤ t

)
≤ min

(
eδct

(1 + δ)cS
, e`(1+log t

` )+
∑`

i=0 log ci

)
. (3.4)

Proof. By Chebyshev’s inequality, we see that

P
(∑̀
i=0

1

ci
ωi ≤ t

)
≤ e`

∏̀
i=0

E

[
exp

(
− `

tci
ωi

)]
= e` exp

(
−
∑̀
i=0

log

(
1 +

`

tci

))

holds. Since the logarithm is increasing, we can rearrange the sums to get the second
upper bound. For the first upper bound, again apply Chebyshev’s inequality for

P
(∑̀
i=0

1

ci
ωi ≤ t

)
≤ eδct exp

(
−
∑̀
i=0

log

(
1 +

δc

ci

))
. (3.5)

Using concavity of the logarithm, we obtain for all i ∈ {0, 1, . . . , `} and all x > −1 that

log

(
1 +

xc

ci

)
≥ log (1 + x)

c

ci
. (3.6)

For x = δ in (3.6), together with (3.5), this yields the first upper bound. For the lower
bound, we use again Chebyshev’s inequality and (3.6) with x = −δ to get that

P
(∑̀
i=0

1

ci
ωi ≥ t

)
≤ e−δct exp

(
−
∑̀
i=0

log

(
1− cδ

ci

))
≤ e−δct

(1− δ)cS
.

This finishes the proof of the lemma.

3.3 A comparison with an inhomogeneous LPP model

In this section, we compare the TASEP on T to a slowed down exclusion process,
which we study using last passage percolation (LPP) in an inhomogeneous environment.
To describe this model, we will now give a brief introduction to last passage percolation,
and refer the reader to [41, 43] for a more comprehensive discussion.
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Consider the latticeN×N, and let (ωi,j)i,j∈N be independent Exponential-1-distributed
random variables. Let πm,n be an up-right lattice path from (1, 1) to (m,n), i.e.

πm,n = {u1 = (1, 1), u2, . . . , um+n = (m,n) : ui+1 − ui ∈ {(1, 0), (0, 1)} for all i} .

The set of all up-right lattice paths from (1, 1) to (m,n) is denoted by Πm,n. The last
passage time in an environment ω is defined as

Gωm,n = max
πm,n∈Πm,n

∑
u∈πm,n

ωu , (3.7)

for all m,n ∈ N. Equivalently, the last passage times are defined recursively as

Gωm,n = max{Gωm−1,n, G
ω
m,n−1}+ ωm,n , (3.8)

with boundary conditions for all k, ` ∈ N given by

Gω1,` =
∑̀
j=1

ω1,j , Gωk,1 =

k∑
i=1

ωi,1 . (3.9)

In the following, we will restrict the space of lattice paths, i.e. we consider the set of
paths Am := {u = (u1, u2) : u2 ≥ u1 −m} ∩N×N. For any (i, j) in N×N, we define

Gωi,j(Am) = max
π∈Πi,j(Am)

∑
u∈π

ωu ,

where Πi,j(Am) contains all up-right paths from (1, 1) to (i, j) that do not exit Am, i.e.

Πi,j(Am) =
{
π = {(1, 1) = u1, . . . ui+j = (i, j)} : ui+1 − ui ∈ {(1, 0), (0, 1)}, ui ∈ Am

}
.

Based on the environment ω, we define an environment ω̃ = {ωi,j}i∈N,j∈N by

ω̃i,j :=


1

rmin
i−j−1

ωi,j if j < i ,

λ−1ωi,j if j = i ,

0, else;

(3.10)

see Figure 6 for a visualization. The next lemma shows that the last passage times in ω̃
can be used to study the entering time of the nth particle in the TASEP on trees.

Lemma 3.5. Let m,n ∈ N be such that m ≤Mn holds, where Mn is defined in Theorem
1.6. Then there exists a coupling between Gω̃n,n+m and the time τnm of the TASEP on trees,
defined in (2.9), such that P-almost surely, for all n large enough

Gω̃n+m,n(AMn
) ≥ τnm . (3.11)

In order to show Lemma 3.5, we require a bit of setup. Consider the event

Dn := {the first n particles disentangle by generation Mn} (3.12)

which holds for all n large enough by Theorem 1.6. In particular, note that if Dn holds,
whenever one of the first n particles reaches generation Mn, it no longer blocks any of
the first n particles. Moreover, observe that when it is possible to jump for particle i
from generation `, the time σ(i)

` until this jump is performed is stochastically dominated
by an Exponential-distributed random variable with the smallest possible rate out from
generation `. In other words, the inequality

σ
(i)
` �

1

rmin
`

ω`+i+1,i
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Figure 6: Visualization of the environment which is used to describe the slowed down
TASEP as a last passage percolation model. The numbers in the cells are the parameters
of the respective Exponential-distributed random variables. The square at the bottom
left of the grid corresponds to the cell (1, 1).

holds for all i, ` ∈ N.
We construct now a slowed down TASEP (η̃t)t≥0 where the ith particle waits a time

of (rmin
` )−1ω`+i+1,i to jump from generation ` to ` + 1, but only after particle i − 1 left

generation `+ 1. Moreover, we assume without loss of generality that all particles follow
the trajectories of the original dynamics (ηt)t≥0. As before, let zit and z̃it denote the
position of the ith particle in (ηt)t≥0 and (η̃t)t≥0, respectively. The following lemma is
immediate from the construction of the two processes.

Lemma 3.6. There exists a coupling P̃ between the TASEP (ηt)t≥0 on T and the corre-
sponding slowed down dynamics (η̃t)t≥0 such that for any common initial configuration

P̃
(
|z̃it| ≤ |zit| for all i ∈ [n]

)
= 1 . (3.13)

Proof of Lemma 3.5. It suffices to show that the time in which the nth particle reaches
generation m in the slowed down dynamics has the same law as Gω̃n+m,n(AMn

). Let G̃m,n
be the time the nth particle jumped n−m times in the slowed down process and note
that for all m,n

G̃m,n = max(G̃m−1,n, G̃m,n−1) + ω̃m,n .

Moreover,

G̃0,m =

m∑
`=1

ω̃0,`, G̃`,1 =
∑̀
k=1

ω̃k,1 .

The right-hand side of the last three stochastic equalities are the recursive equations and
initial conditions for the one-dimensional TASEP, in which particle i waits on site ` for
(rmin
` )−1ω`,`+1 amount of time, after `+ 1 becomes vacant. Note that any maximal path

from (0, 1) up to (n, n+ Mn) will never touch the sites for which the environment is 0,
so the passage times in environment (3.8) and (3.9) coincide with those in environment
(3.10), as long as we restrict the set of paths to not cross the line `− i = Mn. For any
time t ≥ 0, on the event Dn, this yields

PT(Jm(t) ≤ n,Dn) ≤ PT(J̃m(t) ≤ n,Dn) ≤ PT(Gω̃n+m,n(AMn
) ≥ t) .

We set t = τnm and conclude as Dn holds P-almost surely for all n large enough.

We use this comparison to an inhomogeneous LPP model to give a rough estimate on
the time τnm for general transition rates. Note that this bound can be refined when we
have more detailed knowledge about the structure of the rates.
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Lemma 3.7. Recall Mn from Theorem 1.6 and fix α > 0. Then

PT

(
Gω̃n+Mn,n(AMn) ≤ 4(1 + α)

min
|x|≤Mn

rx
(n+ Mn)

)
≥ 1− e−cn (3.14)

holds for some constant c = c(α) > 0 with limα→∞ c(α) =∞.

Proof. LetG(1)
m,n be the passage time up to (m,n) in an i.i.d. environment with Exponential-

1-distributed weights. Observe that we have the stochastic domination

Gω̃n+Mn,n(AMn
) � Gω̃n+Mn,n+Mn

(AMn
) �

(
min
|x|≤Mn

rx
)−1

G
(1)
n+Mn,n+Mn

. (3.15)

For all α > 0, we obtain from Theorem 4.1 in [37] that

PT

(
G

(1)
M,M ≤ 4(1 + α)M

)
≥ 1− e−cM (3.16)

holds for some c = c(α) > 0 with limα→∞ c(α) =∞ and all M ∈ N, where the constant
c(α) is an explicitly known rate function. Combine (3.15) and (3.16) to conclude.

4 Proof of the current theorems

We have now all tools to prove Theorem 1.11 and Theorem 1.14. In fact, we will
prove more general theorems which allow for any transition rates (rx,y) satisfying the
assumptions (UE) and (ED). We start with a generalization of Theorem 1.11 on the
current in a time window [tlow, tup]. Recall the notation from Section 1.1. In particular,
recall (1.17), and set

ρ` := min
i≤`

max
x∈Zi

rx . (4.1)

For the lower bound of the time window, we define

tlow := max
(
tlow
1 , tlow

2

)
with

tlow
1 := Rmax

0,`n

(
1− 2

(
Rmax

0,`nρ`n
)− 1

3 logRmax
0,`n

)
(4.2)

tlow
2 :=

`n
2

exp
( 1

`n + 1

`n∑
i=0

logRmax
i

)
. (4.3)

Note that both terms in the maximum can give the main contribution in the definition of
tlow, depending on the rates. For the upper bound, we define

θ := lim inf
n→∞

( min
Mn<|x|≤`n

rx)Rmin
Mn,`n ∈ [0,∞] (4.4)

and fix some δ ∈ (0, 1). We let tup = tup(δ) be

tup :=
5(n+ Mn)

min
|x|≤Mn

rx
+

[
1{θ<∞}

(
1 + δ − 2 log δ

θδ

)
+ 1{θ=∞}(1 + θn)

]
Rmin

Mn,`n (4.5)

with some sequence (θn)n∈N tending to 0 satisfying

lim inf
n→∞

1

θn
( min
Mn<|x|≤`n

rx)Rmin
Mn,`n =∞ (4.6)

when θ = ∞. Consider the first n particles which enter the tree, starting with the
configuration which contains only empty sites. The following theorem states that we see
at least an aggregated current in [tlow, tup] of order n.
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Theorem 4.1. Suppose that (UE) and (ED) hold and let (`n)n∈N be a sequence of
generations with `n ≥ Mn for all n ∈ N. Fix δ ∈ (0, 1) and let tlow and tup = tup(δ) be
given in (4.2), (4.3) and (4.5). Then P-almost surely

lim
n→∞

J`n(tlow) = 0 , lim inf
n→∞

1

n
J`n(tup) ≥ 1− δ . (4.7)

Note that Theorem 4.1 indeed implies Theorem 1.11 for rates which satisfy (1.18).

Proof. We start with the lower bound involving tup. Recall Dn from (3.12) as the event
that the first n particles are disentangled at generation Mn, and τMn

n from (2.9) as the
first time such that the first n particles have reached generation Mn. Set

t1 = 5(n+ Mn)
(

min
|x|≤Mn

rx
)−1

and define t2 := tup − t1. Combining Theorem 1.6, Lemma 3.5 and Lemma 3.7, we see
that

Dn ∩ {τMn
n ≤ t1} (4.8)

holds P-almost surely for all n sufficiently large. In words, this means that all particles
have reached generation Mn by time t1 and perform independent random walks after
level Mn. We claim that it suffices to show that

p := PT

(
`n∑

i=Mn

ωi
rmin
i

> t2

)
< δ (4.9)

holds, where (ωi) are independent Exponential-1-distributed random variables. To see
this, let Bi be the indicator random variable of the event that the ith particle did not reach
level `n by time tup. From (4.9), we obtain that (Bi)i∈[n] are stochastically dominated
by independent Bernoulli-p-random variables when conditioning on the event in (4.8).
Hence, we obtain that

PT

(
J`n(tup) ≥ (1− δ)n

∣∣∣ Dn, τ
Mn
n ≤ t1

)
≤ PT

(
n∑
i=1

Bi ≥ δn
∣∣∣ Dn, τ

Mn
n ≤ t1

)
≤ e−δn(1 + epn)

holds using Chebyshev’s inequality for the second step. Together with a Borel–Cantelli
argument and (4.8), this proves the claim.

In order to verify (4.9), we distinguish two cases depending on the value of θ defined
in (4.4). Suppose that θ <∞ holds. Then by Lemma 3.4 and a calculation, we obtain that

PT

(
`n∑

i=Mn

ωi
rmin
i

> t2

)
< exp

(
( min
Mn<|x|≤`n

rx)Rmin
Mn,`n

(
− δ − δ2 +

2 log δ

θ
− log(1− δ)

))
≤ exp

(
θ
(
− δ
(
1− θ−1 log δ

)
+ δ2

))
≤ δ

holds for all n large enough and δ ∈ (0, 1), using the Taylor expansion of the logarithm
for the second step. Similarly, when θ =∞, we apply Lemma 3.4 to see that

PT

(
`n∑

i=Mn

ωi
rmin
i

> t2

)
≤ exp

(
( min
Mn<|x|≤`n

rx)Rmin
Mn,`n

(
− δ
(
θn log δ

)
+ δ2

))
(4.10)

holds for all n large enough and some sequence (θn)n∈N according to (4.6). In this case,
we obtain that for any fixed δ ∈ (0, 1), the right-hand side in (4.10) converges to 0 when
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n→∞. Thus, we obtain that (4.9) holds for both cases depending on θ, which gives the
lower bound.

Next, for the upper bound, we use a comparison to the independent random walks
(η̃t)t≥0 defined in Section 3.2. By Lemma 3.3,

PT (J`n(tlow) ≤ δ) ≥ PT
(
J̃`n(tlow) ≤ δ

)
holds for all δ > 0, where (J̃t)t≥0 denotes the current with respect to (η̃t)t≥0. Fix some
δ > 0 and let (ωi)i∈N0

be independent Exponential-1-distributed random variables. We
claim that the probability for a particle in (η̃t)t≥0 to reach level `n is bounded from above
by

PT

( `n∑
i=0

ωi
rmax
i

≤ tlow

)
≤ 1

2λtlow
(4.11)

for all n sufficiently large, where we recall that particles enter the tree at rate λ > 0. To
see this, we distinguish two cases. Recall the construction of tlow in (4.2) and (4.3), and
assume that tlow = tlow

1 . By the first upper bound in Lemma 3.4,

tlowPT

( `n∑
i=0

ωi
rmax
i

≤ tlow

)
≤ tlow

1 exp
(
δρ`nt

low
1 − ρ`nRmax

0,`n log(1 + δ)
)

holds for all δ ∈ (0, 1). For δ = (ρ`nR
max
0,`n

)−1/2 and using the Taylor expansion of the
logarithm, we see that the right-hand side in (4.11) converges to 0 when n→∞. Similarly,
for tlow = tlow

2 the second upper bound in Lemma 3.4 yields

tlowPT

( `n∑
i=0

ωi
rmax
i

≤ tlow

)
≤ tlow

2 exp

(
`n(1 + log tlow

2 − log `n)−
`n∑
i=0

logRmax
i

)
,

where the right-hand side converges to 0 for n → ∞ using the definition of tlow
2 and

comparing the leading order terms. Since particles enter in both dynamics at the root at
rate λ, note that for all n large enough, at most 5

4λtlow particles have entered by time tlow.
By Chebyshev’s inequality together with (4.11), P-almost surely no particle has reached
generation `n by time tlow for all n sufficiently large.

Example 4.2 (d-regular tree, Constant rates (C)). Let us choose `n to be `n = 1 + 2Mn

for all n ∈ N, where we recall from Example 1.8 that Mn is of order n for constant rates.
Then

Rmin
Mn,`n =

Mn

d− 1
= Rmax

Mn,`n , ρ`n = d− 1 ,

which give θ =∞. Hence, if we choose θn = 1/ log n, we have

tup =
5(n+ Mn)

d− 1
+
(

1 +
1

log n

) Mn

d− 1
=

1

d− 1
(5n+ 6Mn) + o(n) .

For tlow we have

tlow = max
{2Mn + 1

d− 1
(1− o(1)),

2Mn + 1

2
exp{− log(d− 1)}

}
=

2Mn + 1

d− 1
(1− o(1)) .

For more examples when the rates decay polynomially or exponentially we refer to
Section 5.

Now let t be a fixed time horizon and define an interval [Llow, Lup] of generations.
Recall Mn from Theorem 1.6 and define the generations

Llow := Mnt
and Lup := min(Lup

1 , L
up
2 ) (4.12)
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for nt from (1.23) and, recalling (1.7),

Lup
1 := inf

{
` : log `− 1

`+ 1

∑̀
i=1

log rmax
i ≥ log t+ 2

}
, Lup

2 := inf
{
` : Rmax

0,` ≥ t+ t
2
3

}
.

Since rmax
i is bounded from above uniformly in i, Lup

1 and Lup
2 are both finite.

The following theorem is the dual result of Theorem 4.1. Recall nt from (1.23). We
are interested in a window of generations [Llow, Lup] where we can locate the first nt
particles.

Theorem 4.3. Suppose that (UE) and (ED) hold. Then the aggregated current through
generations Llow and Lup satisfies P-almost surely

lim sup
t→∞

JLup(t) = 0 , lim inf
t→∞

1

nt
JLlow(5t) ≥ 1 . (4.13)

Note that Theorem 4.3 implies Theorem 1.14 for rates which satisfy (1.18), keeping
in mind that in the setup of Theorem 1.14, there exist some c > 0 such that n5t ≤ cnt for
all t ≥ 0.

Proof. Let us start with the bound involving Lup. Let (ωi)i∈N0
be independent Exponential-

1-distributed random variables. Note that P-almost surely, no more than 2λt particles
have entered the tree by time t for all t > 0 large enough. Using a similar argument as
after (4.11) in the proof of Theorem 4.1, it suffices to show that

lim
t→∞

2λtPT

Lup∑
i=0

ωi
rmax
i

≤ t

 = 0 . (4.14)

By Lemma 3.4 and using the definition of Lup
1

tPT

Lup
1∑

i=0

ωi
rmax
i

≤ t

 ≤ exp

Lup
1 (1 + log t− logLup

1 ) + log t+

Lup
1∑

i=0

log rmax
i

 ,

where the right-hand side converges to 0 for t→∞. Moreover, by Lemma 3.4

tPT

Lup
2∑

i=0

ωi
rmax
i

≤ t

 ≤ t exp(δρLup
2
t)

exp
(
ρLup

2
Rmax

0,Lup
2

log(1 + δ)
) (4.15)

holds for any δ ∈ (0, 1) which may also depend on t. Note that sup`∈N ρ` < ∞ holds
by our assumptions that the transition rates are uniformly bounded from above. Set
δ = 2(t2/3ρLup

2
)−1 log t for all t large enough. Using the definition of Lup

2 and the Taylor
expansion of the logarithm, we conclude that the right-hand side in (4.15) converges to
0 for t→∞. Since Lup = min(Lup

1 , L
up
2 ), we obtain (4.14).

For the remaining bound in Theorem 4.3, recall the slowed down exclusion process
from Section 3.3. By Lemma 3.5 and Lemma 3.7, note that for some c > 0

PT(JLlow(5t) < nt) ≤ PT
(
Gω̃nt+Llow,nt

≥ 5t
)
≤ e−cnt (4.16)

holds P-almost surely when t is sufficiently large. Consider a sequence of times (ti)i∈N
such that ti →∞ as i→∞ and

lim
i→∞

JLlow(5ti)(5ti)

nti
= lim inf

t→∞

JLlow(5t)(5t)

nt
(4.17)
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By possibly removing some of the ti’s, we can assume without loss of generality that
nti < nti+1

. This way, nti ≥ i for all i ∈ N. Therefore by (4.16) and the Borel–Cantelli
lemma, we obtain that

JLlow(5ti) ≥ nti

holds almost surely for all i large enough. Theorem 4.3 follows from (4.17).

Remark 4.4. Note that the bound in Theorem 4.3 involving Llow continues to hold when
we replace nt by some n with nt ≥ n > c′ log t.

5 Current theorems for the TASEP on regular trees

In this section, we let the underlying tree be a d-regular tree, i.e. we assume that the
offspring distribution is the Dirac measure on d− 1 for some d ≥ 3. Our goal is to show
how the results of Theorems 4.1 and 4.3 can be refined when knowing the structure of
the tree and the rates. This is illustrated in Section 5.1 for polynomially decaying rates,
and in Section 5.2 for exponentially decaying rates, including the homogeneous rates
from (1.6).

5.1 The regular tree with polynomially decaying rates

Consider the d-regular tree and homogeneous polynomial rates, i.e. we assume that
we can find some p > 0 such that the rates satisfy

1

jp
= rmin

j = rmax
j (5.1)

for all j ∈ N. For this choice of the rates, we want to show how the bounds in Theo-
rem 4.1 on a time window can be improved. In the following, we will write an ∼ bn if
limn→∞ an(bn)−1 = 1. Note that Dn and Mn from (1.10) and (1.12) satisfy

Dn ∼
(
n2+coclow log3 n

) 1
p and Mn ∼

d− 1 + δ

d− 2
min(Dn, n)

for all p > 0 and δ > 0; see Example 1.8. Recall that we are free in the choice of the
sequence of generations (`n)n∈N with `n ≥ Mn for all n ∈ N along which we observe
the current created by the first n particles entering the tree. We assume that (`n)n∈N
satisfies

lim
n→∞

Mn

`pn
= a , lim

n→∞

nM p
n

`p+1
n

= b (5.2)

for some a ∈ [0, 1) and b ∈ [0,∞). We apply now Theorem 4.1 in this setup.

Proposition 5.1. Consider the TASEP on the d-regular tree with polynomial weights
from (5.1) for some p > 0, and a and b as in (5.2) for some sequence of generations
(`n)n∈N. Let tup, tlow be taken from (4.2), (4.3) and (4.5). For a ∈ [0, 1) and b = 0,

lim
n→∞

tup

tlow
= lim
n→∞

tup
(d− 1)(1 + p)

(1− a)`p+1
n

= 1 . (5.3)

For a ∈ [0, 1) and b ∈ (0,∞),

c ≤ lim inf
n→∞

tup

tlow
≤ lim sup

n→∞

tup

tlow
≤ c′ (5.4)

holds for some constants c, c′ > 0.
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Proof. Recall the notation from Section 1.1. For b ∈ (0,∞), we observe that for the above
choice of transitions rates

( min
Mn<|x|≤`n

rx)Rmin
Mn,`n = r`n

`n∑
k=Mn

1

rk
=

1

`pn

`n∑
k=Mn

kp ∼ 1

`pn

∫ `n

Mn

xpdx ∼ 1− a
1 + p

`n

holds, and hence θ =∞ in (4.4). Thus, we see that

tup ∼ 5(n(Mn)p + (Mn)p+1) +
1− a

(d− 1)(1 + p)
`p+1
n . (5.5)

A similar computation for b = 0 shows that tup ∼ (1− a)((d− 1)(1 + p))−1`p+1
n holds. For

the lower bound tlow, we use that tlow ≥ tlow
1 with tlow

1 in (4.2) to see that

tlow ∼ Rmin
0,`n ∼

1− a
(d− 1)(1 + p)

`p+1
n (5.6)

holds. Therefore, combining (5.5) and (5.6), we obtain a sharp time window where we
see a current of order n when b = 0. We obtain the correct leading order for the time
window to observe a current linear in n in the case of 0 < b <∞.

We conclude this section by discussing some examples of the sequence (`n)n∈N for
the d-regular tree with d ≥ 3, and rates which satisfy (5.1), with the tree-TASEP starting
from an all empty initial condition.

In the following examples, we take δ → 0 when estimating Mn in Example 1.8.
Moreover, because the rates decay polynomially, clow can be taken to be arbitrarily close
to 0.

Example 5.2. Fix some c > max(2, 3
1+p ). Then for every δ′ > 0, we have that P-almost

surely

lim
n→∞

Jnc

( 1− δ′

(d− 1)(1 + p)
nc(1+p)

)
= 0 , lim inf

n→∞

1

n
Jnc

( 1 + δ′

(d− 1)(1 + p)
nc(1+p)

)
> 0.

This is because the condition on c guarantees b = 0.

Example 5.3. Let p = 2(2 + coclow), and note that

Dn ∼ n
1
2 log3/p n and Mn ∼

d− 1

d− 2
n

1
2 log3/p n (5.7)

holds. Choosing `n = n(2+p)/(2+2p) log3/(1+p) n for all n ∈ N yields that a = 0 and
b ∈ (0,∞) in (5.2). Hence, we can choose tup and tlow in Proposition 5.1 to be both of
order n1+p/2 log3 n.

Example 5.4. Let p = 1, and note that

Dn ∼ n and Mn ∼
d− 1

d− 2
n (5.8)

holds. Choosing `n = n for all n ∈ N yields that a ∈ (0, 1) and b ∈ (0,∞) in (5.2). Hence,
we can choose tup and tlow in Proposition 5.1 to be both of order n2.

Example 5.5. Let p = 1
2 and d ≥ 4. Then Dn and Mn satisfy (5.8). Choosing `n = n2 for

all n ∈ N yields that a = 1/(d− 2) and b = 0 in (5.2). Hence, we can choose

tup ∼ tlow ∼
2(d− 3)

3(d− 1)(d− 2)
n3/2 (5.9)

in Proposition 5.1.
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Example 5.6. Let p = 3
4 and d ≥ 3. Then Dn and Mn satisfy (5.8). Choosing `n = n2 for

all n ∈ N yields that a = 0 and b = 0 in (5.2). Hence, we can choose

tup ∼ tlow ∼
4

7(d− 1)
n7/2 (5.10)

in Proposition 5.1.

5.2 The regular tree with exponentially decaying rates

We now study the d-regular tree with exponentially decaying rates, i.e. the rates
satisfy

κe−cup` = rmin
` = rmax

`

for all ` ∈ N and some constants κ, cup > 0. In this setup, our goal is to improve the
bounds on the window of generations in Theorem 4.3. Let (Nt)t≥0 be some integer
sequence and assume that

lim
t→∞

logNt
log t

= cexp (5.11)

holds for some cexp ∈ [0, 1).

Proposition 5.7. Consider the TASEP on the d-regular tree with exponentially decaying
rates, and fix some δ ∈ (0, 1). We set

L̃up :=

⌈
1

cup
log t

(
1 + log−

1
3 t
)⌉

and L̃low :=
1− δ
cup

log t . (5.12)

Then there exists some C = C(δ, cup) > 0 such that if cexp ≤ C, then

lim
t→∞

JL̃up
(t) = 0 and lim

t→∞

1

Nt
JL̃low

(t) =∞ . (5.13)

In particular, for cexp = 0, we can choose L̃up and L̃low such that L̃up ∼ L̃low holds.

Proof. We start with the lower bound L̃low. Observe that by Theorem 1.6, there exists
some C = C(δ, cup) ∈ (0, 1) such that the first dtCe particles are P-almost surely disen-
tangled at generation Llow for all t sufficiently large. Since Jm(t) is decreasing in the
generation m, and Mn is increasing in the number of particles n, we apply Theorem 4.3
and Remark 4.4 to conclude the second statement in (5.13).

For the first statement, we follow the proof of Theorem 4.3. It suffices to show that

lim
t→∞

2λtPT

 L̃up∑
i=0

ωi
rmax
i

< t

 = 0 (5.14)

holds, where (ωi) are independent Exponential-1-distributed random variables. Using
Chebyshev’s inequality, we obtain that

PT

 L̃up∑
i=0

ωi
rmax
i

< t

 ≤ exp

L̃up −
L̃up∑
i=0

log
(

1 +
L̃up

t
κ exp(cupi)

) .

Since L̃upt
−1 exp(cupi) ≥ 0 holds for all i ∈ N, we see that

tPT

 L̃up∑
i=0

ωi
rmax
i

< t

 ≤ exp

log t+ L̃up −
L̃up∑

i=bL̃up−
√
L̃upc

(
cupi+ log(κL̃up)− log t

) .

Plugging in the definition of L̃up from (5.12), a computation shows that the right hand
side converges to 0 when t→∞. This yields (5.14).
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We conclude this paragraph by revisiting the d-regular tree with homogeneous rates
from (1.6) in Section 1.1.

Proof of Example 1.15. Note that the first bound involving Lup follows immediately from
Proposition 5.7. For the second bound involving Llow, note that we have cexp = 0 for
Nt = tα to conclude.

6 Invariant distributions and blockage

In this section, our goal is to show Theorem 1.17. The different parts of Theorem 1.17
will be shown in Propositions 6.1, 6.5, 6.7 and 6.9, respectively. Let T = (V,E, o) ∈ T
be a locally finite, rooted tree on which the TASEP is a Feller process with respect to
a given family of rates (rx,y). For a pair of probability measures π, π̃ on {0, 1}V , we say
that π̃ is stochastically dominated by π (and write π̃ � π), if∫

fdπ̃ ≤
∫
fdπ (6.1)

holds for all functions f which are increasing. Moreover, recall that for ρ ∈ [0, 1], νρ is
the Bernoulli-ρ-product measure on {0, 1}V and that we consider the TASEP on T with
initial distribution ν0.

Proposition 6.1. Let (St)t≥0 be the semi-group of the TASEP (ηt)t≥0 where particles
are generated at the root at rate λ for some λ > 0. There exists a probability measure πλ
on {0, 1}V such that

lim
t→∞

ν0St = πλ . (6.2)

In particular, πλ is a stationary measure for (ηt)t≥0.

In order to show Proposition 6.1, we adopt a sequence of results from Liggett [24].
Let Tn denote the tree restricted to level n, where particles exit from the tree at x ∈ Zn
at rate rx. For every n, let πnλ denote the invariant distribution of the dynamics (ηnt )t≥0

on Tn with semi-group (Snt )t≥0. We extend each measure πnλ to a probability measure on
{0, 1}V (T) by taking the Dirac measure on 0 for all sites x ∈ V (T) \ V (Tn).

Lemma 6.2 (c.f. Proposition 3.7 in [24]). For any initial distribution π̃, the laws of the
TASEPs (ηnt )t≥0 and (ηn+1

t )t≥0 on Tn and Tn+1, respectively, satisfy

π̃Snt = P(ηnt ∈ ·) � P(ηn+1
t ∈ ·) = π̃Sn+1

t (6.3)

for all t ≥ 0. In particular, πnλ � π
n+1
λ holds for all n ∈ N.

Proof. We follow the arguments in the proof of Theorem 2.13 in [24]. We note that for
all n ∈ N, the generators Ln and Ln+1 of the TASEPs on Tn and Tn+1 satisfy

Ln+1f(η)− Lnf(η) =
∑

x∈Zn,y∈Zn+1

[f(ηx)− f(η)] rx,y (−η(x)η(y)) ≥ 0

for any increasing function f which does only depend on V (Tn), for all η ∈ {0, 1}V (T).
Using the extension arguments from Theorem 2.3 and Theorem 2.11 in [24], we obtain
that ∫

fd [π̃Snt ] ≤
∫
fd
[
π̃Sn+1

t

]
(6.4)

for any increasing function f which only depends on V (Tn), for all t ≥ 0. It suffices now
to show that (6.4) holds for all increasing functions f which only depend on V (Tn+1).
This follows verbatim the proof of Theorem 2.13 in [24] by decomposing f according to
its values on V (Tn+1) \ V (Tn).
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Lemma 6.2 implies that the probability distribution πλ given by

πλ := lim
n→∞

πnλ (6.5)

exists; see also Theorem 3.10 (a) in [24]. More precisely, Lemma 6.2 guarantees for
every increasing cylinder function f that

lim
n→∞

∫
fdπnλ =

∫
fdπλ .

Since the set of increasing functions is a determining class, (6.5) follows. Furthermore,
since Snt f converges uniformly to Stf for any cylinder function f , πλ is invariant for
(ηt)t≥0; see Proposition 2.2 and Theorem 4.1 in [24]. We now have all tools to show
Proposition 6.1.

Proof of Proposition 6.1. Since we know that πλ is invariant, we apply the canonical
coupling from Lemma 3.1 to see that for all t ≥ 0,

ν0St � πλ .

Moreover, by Lemma 6.2, for all t ≥ 0 and all n ∈ N

ν0S
n
t � ν0St .

To prove Proposition 6.1, it suffices to show that

lim
t→∞

∫
fd [ν0St] =

∫
fdπλ

holds for any increasing cylinder function f . Combining the above observations∫
fdπnλ = lim inf

t→∞

∫
fd [ν0S

n
t ] ≤ lim inf

t→∞

∫
fd [ν0St] ≤ lim sup

t→∞

∫
fd [ν0St] ≤

∫
fdπλ

holds for every n ∈ N and for any increasing cylinder function f . We conclude the proof
recalling (6.5); see also the proof of Lemma 4.3 in [24].

Next, we show that if the rates satisfy a flow rule then there exists an invariant
Bernoulli-ρ-product measure for some ρ ∈ (0, 1) for the TASEP on the tree; see Theorem
2.1 in [27, Chapter VIII].

Lemma 6.3. Let T be a locally finite, rooted tree with rates satisfying a flow rule for
a flow of strength q. Assume that particles are generated at the root at rate λ = ρq for
some ρ ∈ (0, 1). Then νρ is an invariant measure for the TASEP (ηt)t≥0 on T.

Proof. We have to show that for all cylinder functions f ,∫
Lfdνρ = 0 .

Due to the linearity of L, it suffices to consider f of the form

f(η) =
∏
x∈A

η(x) (6.6)

with η ∈ {0, 1}V (T) and A some finite subset of V (T). A calculation shows that if o /∈ A,∫
Lfdνρ = (1− ρ)ρ|A|

∑
x∈A,y/∈A

[ry,x − rx,y] ; (6.7)
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Figure 7: Visualization of the superflow decomposition used in Lemma 6.6. The superflow
given at the left-hand side is decomposed into two flows of strengths 5 and 2, respectively,
shown at the right-hand side.

see also the proof of Theorem 2.1(a) in [27, Chapter VIII]. Since a flow rule holds, the
sum in (6.7) is zero. Similarly, we obtain in the case o ∈ A

∫
Lfdνρ = (1− ρ)ρ|A|

 ∑
x∈A,y/∈A

[ry,x − rx,y] +
λ

ρ

 .

We conclude using the flow rule, noting ro = q = λ
ρ and recalling the definition of ro.

Remark 6.4. Note that the measure ν1 is always invariant for the TASEP on trees.
Theorem 1 of [7] shows that the TASEP on T with a half-line attached to the root, where
all edges point to the root, has an invariant Bernoulli-ρ- product measure with ρ ∈ (0, 1)

if and only if a flow rule holds. If a flow rule holds, a similar argument as Theorem 1.17
in [26, Part III] shows that νρ is extremal invariant for all ρ ∈ [0, 1].

Next, we consider the case where the rates do not necessarily satisfy a flow rule.
In the following, we will without loss of generality assume that λ < q(o) holds. When
λ ≥ q(o), the canonical coupling in Lemma 6.2 yields that the current stochastically
dominates the current of any TASEP with rate λ′ for some λ′ < q(o). We now characterize
the behavior of the TASEP in the superflow case.

Proposition 6.5. Assume that a superflow rule holds. Let (Jo(t))t≥0 be the current at
the root for the TASEP on a tree T with a reservoir of rate λ = ρq(o) at the root for
some ρ ∈ (0, 1), and initial distribution ν0. Then the current (Jo(t))t≥0 through the root
satisfies

lim
t→∞

Jo(t)

t
= λπλ(η(o) = 0) ≥ q(o)ρ(1− ρ) (6.8)

almost surely, where πλ is given by (6.2).

In order to prove Proposition 6.5, we will use the following lemma, which shows
that the law of the TASEP on trees is always dominated by a certain Bernoulli-ρ-product
measure on the tree.

Lemma 6.6. Assume that the rates satisfy a superflow rule and consider the TASEP
(ηt)t≥0 with a reservoir of rate λ = ρq(o) for some ρ ∈ (0, 1). If P(η0 ∈ ·) � νρ holds, then

P(ηt ∈ ·) � νρ (6.9)

for all t ≥ 0. In particular, the measure πλ from (6.2) satisfies πλ � νρ.

Proof. In order to show (6.9), we decompose the rates satisfying a superflow rule into
flows starting at different sites. More precisely, we claim that there exists a family
of transition rates ((rzx,y)(x,y)∈E(T))z∈V (T) with the following two properties. For every

EJP 26 (2021), paper 159.
Page 32/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP725
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


TASEP on trees

i ∈ V (T) fixed, the rates (rzx,y)(x,y)∈E(T) satisfy a flow rule for a flow of strength q(z) for
the tree rooted in z. Moreover, for all (x, y) ∈ E(T),∑

z∈V (T)

rzx,y = rx,y ;

see also Figure 7. We construct such a family of transition rates as follows. We start with
the root o and choose a set of rates (rox,y)(x,y)∈E(T) according to an arbitrary rule such
that the rates satisfy a flow rule for a flow of strength q(o) starting at o, and rox,y ≤ rx,y
for all (x, y) ∈ E(T). Next, we consider the neighbors of o in the tree. For every z ∈ V (T)

with |z| = 1, we choose a set of rates (rzx,y)(x,y)∈E(T) according to an arbitrary rule such
that the rates satisfy a flow rule for a flow of strength q(z) starting at z. Moreover, we
require that

rzx,y ≤ rx,y − rox,y
holds for all (x, y) ∈ E(T). The existence of the flow is guaranteed by the superflow rule.
More precisely, we use the following observation. Whenever the rates satisfy a superflow
rule, we can treat the rates as maximal capacities and find a flow (rox,y) of strength
q(o) which does not exceed these capacities. Note that the reduced rates (rx,y − rox,y)

must again satisfy a superflow rule, but now on the connected components of the graph
with vertex set V (T) \ {o}. This is due to the fact that the net flow vanishes on all sites
V (T) \ {o}. We then iterate this procedure to obtain the claim.

Let (η̃t)t≥0 be the exclusion process with rates (rx,y)(x,y)∈E(T), where in addition, we
create particles at every site x ∈ V (T) at rate q(x)ρ. Due to the above decomposition of
the rates and Lemma 6.3, we claim that the measure νρ is invariant for (η̃t)t≥0. To see
this, we define a family of generators (Lz)z∈V (T) on the state space {0, 1}V (Tz). Here, the
trees Tz are the subtrees of T rooted at z, consisting of all sites which can be reached
from site z using a directed path. For all cylinder functions f , we set

Lzf(η) = ρq(z)(1− η(z))[f(ηz)− f(η)] +
∑

(x,y)∈E(Tz)

rzx,y(1− η(y))η(x)[f(ηx,y)− f(η)]

and thus by Lemma 6.3 ∫
Lzf(η)dνρ = 0 (6.10)

holds. Note that the generator L̃ of the process (η̃t)t≥0 satisfies

L̃f(η) =
∑

z∈V (T)

Lzf(η) (6.11)

for all cylinder functions f on {0, 1}V (T), and that at most finitely many terms in the
sum in (6.11) are non-zero since f is a cylinder function. Hence, we obtain that νρ is an
invariant measure of (η̃t)t≥0 by combining (6.10) and (6.11). Using Remark 3.2, we see
that the canonical coupling P for the TASEP on trees satisfies

P (ηt � η̃t for all t ≥ 0 | η0 � η̃0) = 1 .

Thus, we let (η̃t)t≥0 be started from νρ and conclude using Strassen’s theorem [45].

Proof of Proposition 6.5. Combining Proposition 6.1, Remark 6.4, and Lemma 6.6, we
obtain (6.8) by applying the ergodic theorem for Markov processes.

Proposition 6.7. Consider the TASEP (ηt)t≥0 on the tree T = (V,E) for some λ =

ρq(o) > 0 with ρ ∈ (0, 1). Moreover, assume that a superflow rule holds and that (1.29) is
satisfied. Then the measure πλ from Proposition 6.1 satisfies

lim
n→∞

1

|Zn|
∑
x∈Zn

πλ(η(x) = 1) = 0 . (6.12)
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Proof. Note that (1.29) is equivalent to assuming

lim
n→∞

|Zn| min
(x,y)∈E
|x|∈[n,n+m]

rx,y =∞ . (6.13)

for any m ≥ 0 fixed. Moreover, note that

Jo(t)− Jn(t) ≤
∑
i∈[n]

|Zi| (6.14)

for any n ∈ N and t ≥ 0. Using Proposition 6.1, we see that

λ ≥ lim
t→∞

Jo(t)

t
= lim
t→∞

Jn(t)

t
=

∑
x∈Zn : (x,y)∈E

πλ(η(x) = 1, η(y) = 0)rx,y

holds for all n ∈ N0. In particular, for all n,m ∈ N0∑
|x|∈[n,n+m]

∑
(x,y)∈E

πλ(η(x) = 1, η(y) = 0) ≤ mλ
(

min
(x,y)∈E
|x|∈[n,n+m]

rx,y

)−1

. (6.15)

Let δ > 0 be arbitrary and fix some m ∈ N such that ρm ≤ δ
2 . Moreover, for all x ∈ Zn, fix

a sequence of sites (x = x1, x2, . . . , xm) with (xi, xi+1) ∈ E for all i ∈ [m− 1]. Note that
the sites (xi)i∈[m] are disjoint for different x ∈ Zn and that by Lemma 6.6

πλ(η(xi) = 1 for all i ∈ [m]) ≤ δ/2 (6.16)

for all x ∈ Zn. For x ∈ Zn, we decompose according to the value on (xi)i∈[m] to get∑
x∈Zn

πλ(η(x) = 1) ≤
∑
x∈Zn

πλ(η(xi) = 1 ∀i ∈ [m]) +
∑

(x,y)∈E
|x|∈[n,n+m]

πλ(η(x) = 1, η(y) = 0) .

Hence, combining (6.13), (6.15) and (6.16), we see that for all n sufficiently large,∑
x∈Zn

πλ(η(x) = 1) ≤ δ

2
|Zn|+mλ

(
min

(x,y)∈E
|x|∈[n,n+m]

rx,y

)−1

≤ δ|Zn| .

Since δ > 0 was arbitrary, we conclude.

We use a similar argument to determine when we have a positive averaged density.

Corollary 6.8. Suppose that a superflow rule holds. Consider the TASEP (ηt)t≥0 on the
tree T = (V,E) for some λ = ρq(o) > 0 with ρ ∈ (0, 1). Moreover, assume that T has
maximum degree ∆, and that

lim sup
n→∞

|Zn| min
(x,y)∈E,x∈Zn

rx,y ≤ c (6.17)

holds for some constant c > 0. Then

lim inf
n→∞

1

|Zn|
∑
x∈Zn

πλ(η(x) = 1) > 0 . (6.18)

Proof. Observe that for every x ∈ Zn and n ∈ N, we can choose a neighbor y ∈ Zn+1 of
x such that

1

∆
lim sup
t→∞

Jx(t)

t
≤ lim sup

t→∞

Jy(t)

t
= πλ(η(x) = 1, η(y) = 0)rx,y
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holds. Together with (6.17)∑
x∈Zn

πλ(η(x) = 1) ≥
∑
x∈Zn

1

∆rx,y
lim sup
t→∞

Jx(t)

t
≥ 1

c∆
|Zn| lim sup

t→∞

Jn(t)

t
.

Since the rates satisfy a superflow rule, we conclude by applying Proposition 6.5.

Next, we consider the case where the rates in the tree decay too fast, i.e. when a
subflow rule holds; see (1.27). We show that the current is sublinear.

Proposition 6.9. Suppose that the rates satisfy a subflow rule. Then the current
(Jo(t))t≥0 of the TASEP (ηt)t≥0 on a tree T = (V,E) with a reservoir of rate λ > 0 satisfies

lim
t→∞

Jo(t)

t
= 0 (6.19)

almost surely. Moreover, the limit measure πλ of Lemma 6.1 is the Dirac measure ν1. In
particular, (ηt)t≥0 has a unique invariant measure.

Proof. By (6.14), it suffices for (6.19) to prove that for every ε > 0, there exists some
m = m(ε) such that the aggregated current (Jm(t))t≥0 at generation m satisfies

lim sup
t→∞

Jm(t)

t
≤ ε .

Recall rx from (1.16) for all x ∈ V , and let (Xx
t )t≥0 be a rate rx Poisson clock, indicating

how often the clock of an outgoing edge from x rang until time t. In order to bound
(Jm(t))t≥0, recall that we start with all sites being empty, and observe that the current
can only increase by one if a clock at an edge connecting level m− 1 to level m rings.
Thus, we see that

0 ≤ lim sup
t→∞

Jm(t)

t
≤ lim sup

t→∞

1

t

∑
x∈Zm−1

Xx
t =

∑
x∈Zm−1

rx

holds almost surely. Using the subflow rule, we can choose m = m(ε) sufficiently large
to conclude (6.19). To prove that πλ is the Dirac measure on all sites being occupied, use
Proposition 6.5 to see that (6.19) holds if and only if πλ(η(o) = 1) ∈ {0, 1}. Since the rate
λ at which particles are generated is strictly positive and πλ is an invariant measure, we
conclude that πλ(η(o) = 1) = 1. Using the ergodic theorem, we see that almost surely
for all neighbors z of o,

πλ(η(o) = 1, η(z) = 0)ro,z = lim
t→∞

Jz(t)

t
≤ lim
t→∞

Jo(t)

t
= 0 .

Hence, we obtain that πλ(η(z) = 1) = 1 holds for all z ∈ V with |z| = 1 as well. We iterate
this argument to conclude.

7 Open problems

We saw that under certain assumption on the rates, the first n particles in the TASEP
will eventually disentangle and will continue to move as independent random walks.
Intuitively, one expects for small times that the particles in the exclusion process block
each other. This raises the following question.

Question 7.1. Consider the TASEP (ηt)t≥0 on T started from the all empty configuration.
Let (η̃t)t≥0 be the dynamics on T where we start n independent random walks at the root.
Let pn,` and p̃n,` denote the PT-probability that the first n particles are disentangled at
level ` in (ηt)t≥0 and (η̃t)t≥0, respectively. Does p̃n,` ≤ pn,` hold for all `, n ∈ N?
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It is not hard to see that this is true for n = 2. However, already the case n = 3 is not
clear (at least not to us). The next question is about the behaviour of the current.

Question 7.2. What can we say about the order of the current and its fluctuations in
Theorem 4.1 and Theorem 4.3?

The last open problem concerns the properties of the equilibrium measure πλ from
Theorem 1.17. In Lemma 6.6, we saw that πλ is stochastically dominated by some
Bernoulli product measure. In analogy to the TASEP on the half-line; see Lemma 4.3 in
[24], we expect the following behaviour of πλ.

Conjecture 7.3. Consider TASEP with a reservoir of rate λ = ρq for some ρ ∈ (0,∞)

such that a flow rule holds for some flow of strength q. Recall πλ from (6.2). Then for
ρ ≤ 1

2 , we have that πλ = νρ. For ρ > 1
2 , it holds that

lim
|x|→∞

πλ(η(x) = 1) =
1

2
. (7.1)
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