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Abstract

This article compares the distributions of integer-valued random variables and Poisson
random variables. It considers the total variation and the Wasserstein distance
and provides, in particular, explicit bounds on the pointwise difference between the
cumulative distribution functions. Special attention is dedicated to estimating the
difference when the cumulative distribution functions are evaluated at 0. This permits
to approximate the minimum (or maximum) of a collection of random variables by a
suitable random variable in the Kolmogorov distance. The main theoretical results
are obtained by combining the Chen-Stein method with size-bias coupling and a
generalization of size-bias coupling for integer-valued random variables developed
herein. A wide variety of applications are then discussed with a focus on stochastic
geometry. In particular, transforms of the minimal circumscribed radius and the
maximal inradius of Poisson-Voronoi tessellations as well as the minimal inter-point
distance of the points of a Poisson process are considered and bounds for their
Kolmogorov distances to extreme value distributions are derived.
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1 Introduction and main results

Let X be a random variable taking values in N0 = N ∪ {0} and let Pλ be a Poisson
random variable with mean λ > 0. In this article we employ Stein’s method, size-bias
coupling and a generalization of size-bias coupling for integer-valued random variables
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Poisson approximation with applications to stochastic geometry

developed herein to compare the distributions of X and Pλ. We derive upper bounds on
the total variation distance

dTV (X,Pλ) = sup
A⊂N0

|P(X ∈ A)− P(Pλ ∈ A)|

and the Wasserstein distance

dW (X,Pλ) = sup
g∈Lip(1)

|E[g(X)]− E[g(Pλ)]|

between X and Pλ, where Lip(1) denotes the set of all Lipschitz functions g : N0 → R

with Lipschitz constant bounded by 1. In addition, we establish bounds on the pointwise
differences ∣∣P(X ≤ v)− P(Pλ ≤ v)

∣∣, v ∈ N0,

between the cumulative distribution functions of X and Pλ, which are smaller than those
for the total variation distance. Particular attention is paid to the case v = 0. This
permits to approximate the minimum (or maximum) of a collection of random variables
by a suitable random variable in the Kolmogorov distance. For example, let λd denote
the Lebesgue measure on Rd, let kd stand for the volume of the d-dimensional unit
ball, and let ηt be a Poisson process on Rd with intensity measure tλd, t > 0. From the
aforementioned bounds for v = 0 we deduce that the random variable Yt given by

Yt = min
(x,y)∈η2t, 6= : x+y2 ∈[0,1]d

2−1t2kd‖x− y‖d,

which is the rescaled minimum (Euclidean) distance between pairs of points of ηt with
midpoint in [0, 1]d, satisfies

0 ≤ P(Yt > u)− P(E1 > u) ≤ 80

t
(1.1)

for u ≥ 0 (see Theorem 3.9), where E1 denotes an exponentially distributed random
variable with mean 1. This is possible because P(Yt > u) can be written as P(Xu = 0)

with

Xu =
1

2

∑
(x,y)∈η2t, 6=

1
{x+ y

2
∈ [0, 1]d, 2−1t2kd‖x− y‖d ∈ [0, u]

}
and P(E1 > u) = P(Pu = 0). By estimating |P(Xu = 0) − P(Pu = 0)| uniformly for all
u ≥ 0, one obtains (1.1), which provides a bound on the Kolmogorov distance

dK(Yt, E1) = sup
u∈R
|P(Yt > u)− P(E1 > u)|

between Yt and E1.
Let us now give precise formulations of our main results. We use the shorthand

notation a ∧ b = min{a, b} for a, b ∈ R, and we indicate by W+ and W− the positive and
negative part of a random variable W , respectively. Whenever we write α > 0, it is
understood that α ∈ (0,∞).

Theorem 1.1. Let X be a random variable taking values in N0 and let Pλ be a Poisson
random variable with mean λ = E[X] > 0. Assume there exists a random variable Z
defined on the same probability space as X with values in Z such that

iP(X = i) = λP(X + Z = i− 1), i ∈ N, (1.2)
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is satisfied. Then,

dTV (X,Pλ) ≤ (1 ∧ λ)E[|Z|] and dW (X,Pλ) ≤ (1.1437
√
λ ∧ λ)E[|Z|]. (1.3)

Furthermore for all m ∈ N0,

|P(X = 0)− P(Pλ = 0)| ≤ m!

λm
E[|Z|] +

m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E
[
|Z|1{X − Z− = k}

]
(1.4)

and for all v ∈ N,

|P(X ≤ v)− P(Pλ ≤ v)| ≤ (v + 1)2

λ
E[|Z|] + E

[
|Z|1{X − Z− ≤ v}

]
. (1.5)

Recall that for a random variable Y ≥ 0 with µ = E[Y ] > 0, a random variable Y s on
the same probability space as Y is a size-bias coupling of Y if it satisfies

E[Y f(Y )] = µE[f(Y s)] (1.6)

for all measurable f such that E[|Y f(Y )|] <∞. Thus, (1.2) implies that X + Z + 1 is a
size-bias coupling of X so that we can replace Z by Xs −X − 1 with a size-bias coupling
Xs of X in Theorem 1.1. In this form the bound for the total variation distance in (1.3) is
a classical result (see [36, Theorem 4.13] and the discussion at the beginning of Section
5 in [3] for further references), whose proof is based on the Chen-Stein method and
size-bias coupling. For the Chen-Stein method for Poisson approximation we refer the
reader to e.g. [7, 12, 36], while [3] is a survey on size bias. Note that the bound on the
Wasserstein distance in (1.3) can be derived by combining the proof of [36, Theorem
4.13] with [8, Theorem 1.1].

Remark 1.2. Let X be as in Theorem 1.1 and assume that (1.2) is satisfied.

(i) The last expressions on the right-hand sides of (1.4) and (1.5) can be further
bounded using the inequalities

E[|Z|1{X − Z− = k}] ≤ E[Z−] + E[Z+1{X = k}], k ∈ N0,

E
[
|Z|1{X − Z− ≤ v}

]
≤ E[Z−] + E[Z+1{X ≤ v}], v ∈ N.

(ii) From (1.6) with f(x) = x we obtain λE[Xs] = E[X2] so that Z = Xs −X − 1 yields

E[Z] =
1

λ

{
Var(X)− λ

}
. (1.7)

(iii) In this work, the random variable X is always assumed to be a sum of a possibly
random number of indicator random variables. For sums of a fixed number of
indicator random variables there is a standard approach to construct a size-bias
coupling (see e.g. [36, Corollary 3.24]), which goes as follows: Assume that X is a
sum of the form X =

∑n
j=1Xj with indicator random variables X1, . . . , Xn. For i ∈

{1, . . . , n} let (X
(i)
j )j∈{1,...,n}\{i} be random variables on the same probability space

with the same distribution as (Xj)j∈{1,...,n}\{i} conditioned on Xi = 1. Moreover, let
I be an independent random variable with P(I = i) = P(Xi = 1)/

∑n
j=1P(Xj = 1)

for i ∈ {1, . . . , n}. Then, Xs = 1 +
∑
j∈{1,...,n}\{I}X

(I)
j is a size-bias coupling of X.

The next result constitutes our main achievement and generalizes Theorem 1.1.
Instead of assuming that Z satisfies (1.2) exactly, we allow error terms on the right-hand
side of (1.2).
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Theorem 1.3. Let X be an integrable random variable with values in N0 and let Pλ be
a Poisson random variable with mean λ > 0. Let Z be a random variable defined on the
same probability space as X with values in Z, and let qi, i ∈ N0, be the sequence given
by

qi−1 = iP(X = i)− λP(X + Z = i− 1), i ∈ N. (1.8)

Then,

dTV (X,Pλ) ≤ (1 ∧ λ)E[|Z|] +

(
1 ∧ 1√

λ

) ∞∑
i=0

|qi| (1.9)

and

dW (X,Pλ) ≤ λE[|Z|] +

∞∑
i=0

|qi|. (1.10)

Moreover, if P(X + Z ≥ 0) = 1, then

dW (X,Pλ) ≤ (1.1437
√
λ ∧ λ)E[|Z|] +

∞∑
i=0

|qi|, (1.11)

for all m ∈ N0,

|P(X = 0)− P(Pλ = 0)| ≤ m!

λm
E
[
|Z|
]

+

m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E
[
|Z|1{X − Z− = k}

]
+

(
1 ∧ 1

λ

)
|q0|+

(
1 ∧ 1

λ2

) ∞∑
i=1

|qi|
(1.12)

and for all v ∈ N,

|P(X ≤ v)− P(Pλ ≤ v)| ≤ (v + 1)2

λ
E[|Z|] + E

[
|Z|1{X − Z− ≤ v}

]
+

(
1 ∧ 1√

λ

) ∞∑
i=0

|qi|.
(1.13)

Note that Theorem 1.1 is a special case of Theorem 1.3. Indeed, if qi = 0 for all i ∈ N0,
(1.8) becomes (1.2) and the bounds in Theorem 1.3 simplify to those in Theorem 1.1. In
this situation X + Z + 1 is a size-bias coupling of X. Thus, we can think of X + Z + 1

with Z satisfying (1.8) as a generalization of size-bias coupling. In order to have good
bounds in Theorem 1.3, the error terms qi, i ∈ N0, should be small. The important
advantage of Theorem 1.3 compared to Theorem 1.1 is that one only needs to construct
an approximate size-bias coupling instead of an exact size-bias coupling.

For our paper the so-called magic factors or Stein factors play a crucial role. These
are bounds on the solutions of the Stein equation, which lead to the factors involving
λ in our results. Since different classes of test functions have different magic factors,
the upper bounds for the differences between P(X ≤ v) and P(Pλ ≤ v) for v ∈ N0 in
Theorems 1.1 and 1.3 are of a better order in λ than those for the total variation distance
or the Wasserstein distance. This observation is essential for obtaining approximation
results in the Kolmogorov distance as (1.1) since it allows to bound the right-hand sides
of (1.4), (1.5), (1.12) and (1.13) uniformly in λ. For a different Poisson approximation
result where one has a better order in λ for the difference of the probabilities at zero
than for the total variation distance we refer the reader to [1, Theorem 1].
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To demonstrate the versatility of our general main results we apply them to several
examples. In particular, we deduce bounds as (1.1), where we compare minima or
maxima of collections of dependent random variables with random variables having an
exponential, Weibull or Gumbel distribution.

As a first classical example, we use the standard size-bias coupling from Remark
1.2 (iii) and our general result, Theorem 1.1, to study the Poisson approximation of the
number of non-overlapping k-runs in a sequence of n i.i.d. Bernoulli random variables
(see Subsection 3.1). By a k-run one means at least k successes in a row. Here, we use
Theorem 1.1 to bound the difference between the probability that among n trials there
are no more than v non-overlapping k-runs and P(Pα ≤ v) for a certain Poisson random
variable Pα; this bound is remarkable because it does not depend on k, i.e., the number
of required successes in a row.

For Voronoi tessellations generated by a stationary Poisson process ηt on Rd of
intensity t > 0, we consider statistics related to circumscribed radii and inradii (see
Subsection 3.2 and 3.3). The circumscribed radius of a Voronoi cell with nucleus x ∈ ηt is
the radius of the smallest closed ball centered in x that contains the cell and is denoted by
C(x, ηt). The inradius of the cell corresponds to half of the Euclidean distance between
x and its nearest neighbor in ηt. As a second example, we consider the transform

Tt = min
x∈ηt∩W

α2kdt
(d+2)/(d+1)C(x, ηt)

d

of the minimal circumscribed radius for some observation window W ⊂ Rd with vol-
ume one, where kd is the volume of the d-dimensional unit ball and α2 is a dimension
dependent constant (see (3.7)). Then, by the inequality (1.12) in Theorem 1.3, we show
that

dK(Tt, Y ) ≤ CK
t1/(d+1)

for t ≥ 1, where Y denotes a Weibull random variable and CK is some constant. For this
example we use the full generality of Theorem 1.3 since we construct a coupling that
satisfies (1.8), but which is not a size-bias coupling. As a third example, by applying the
inequality (1.4) in Theorem 1.1 we approximate the transform

Rt = max
x∈ηt∩W

min
y∈ηt\{x}

tkd‖x− y‖d − log(t)

of the maximal inradius over of the cells with nucleus in the observation window W ⊂ Rd
by a Gumbel random variable G. We show that

dK(Rt, G) ≤ C log(t)√
t

for t ≥ e2, where C is some dimension dependent constant.
Finally, we study the Poisson approximation of U -statistics constructed from an

underlying Poisson or binomial point process (see Subsections 3.4 and 3.5). By applying
Theorem 1.1, we obtain bounds which basically depend on integrals involving the
kernel of the U -statistic. As application of our main finding on U -statistics with Poisson
input, Theorem 3.8, we consider the minimum inter-point distance problem discussed
at the beginning of the introduction and establish the bound (1.1) for the exponential
approximation in Kolmogorov distance (see Subsection 3.6).

A crucial contribution of this paper to stochastic geometry is that we provide bounds
with respect to the Kolmogorov distance for the distributional approximation of some
minima and maxima. The limiting distributions of the minimal distance between the
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points of a Poisson process and of large inradii and small circumscribed radii of Poisson-
Voronoi tessellations have been studied before in e.g. [11, 13, 38, 39]. Some of these
works provide quantitative bounds for the difference of the distribution functions at a
fixed u ∈ R, which depend on u. Thanks to our general Poisson approximation results
Theorem 1.1 and Theorem 1.3, we are able to derive uniform bounds for all u ∈ R. An
alternative approach to deducing such results via Poisson approximation could be to
apply directly Stein’s method for the exponential, Weibull or Gumbel distribution; see
e.g. [36] for more details on Stein’s method for exponential approximation.

In our paper, an important and challenging part for the proofs of the applications
is to construct the size-bias coupling or its approximate version defined by (1.8). As
discussed in Remark 1.2 (iii), for the sum of a fixed number of indicator random variables
this can be done by applying a standard technique. However, we mainly focus on sums
over the points of Poisson processes, whence we have a random number of indicator
random variables. In order to deal with this situation, we use the Mecke formula to
obtain size-bias couplings similar to the classical construction.

In [31], a general result for the Poisson approximation of statistics of Poisson pro-
cesses is derived by combining the Chen-Stein method and a kind of size-bias coupling
and applied to study some statistics of inhomogeneous random graphs such as isolated
vertices. Requiring some (stochastic) ordering assumptions between a random variable
and its size-bias coupling leads to Poisson approximation results. In a similar spirit to our
work, these ordering conditions were relaxed in [14]. For some recent Poisson process
convergence results related to stochastic geometry we refer the reader to [28, 32].

Other noteworthy general results derived in this paper are lower and upper bounds
on the probability that X equals 0, which are given in Proposition 2.6 and Corollary 2.7.
Informally, they say that P(X = 0) can be bounded from above or below by e−λ for some
λ > 0 if the random variable Z and the sequence qi, i ∈ N0, in Theorem 1.1 and Theorem
1.3 satisfy certain conditions on their signs; for Z as in Theorem 1.1, it is understood
that qi = 0 for all i ∈ N0. These results sometimes allow us to remove the absolute values
from the left-hand sides of (1.4) and (1.12).

The proof of Theorem 1.3 is based on the Chen-Stein method and the coupling in
(1.8). Using the solution of the Stein equation for the Poisson distribution, we derive in
Proposition 2.5 a new expression for the difference |E[g(Pλ)]−E[g(X)]| for any g ∈ Lip(1).
Taking in Proposition 2.5, the supremum over all functions in Lip(1) (or all indicator
functions) establishes a different way to represent the Wasserstein distance (or the total
variation distance). Moreover, choosing g = 1{· ≤ v} with v ∈ N gives a new expression
for |P(X ≤ v)− P(Pλ ≤ v)|. These identities are then manipulated and combined with
the magic factors and the coupling in (1.8) to prove Theorem 1.3.

Before we present our applications in Section 3, we prove our main results in the
next section. Since the proofs for the applications to Poisson-Voronoi tessellations are
rather long and technical, we postponed them to Section 4.

2 Proof of the main results

This section provides the proofs of Theorem 1.1 and Theorem 1.3. To this end, we
first study the Stein equation for Poisson random variables. For any fixed g ∈ Lip(1), the
solution of the Stein equation is a function fg : N0 → R with fg(0) = 0 that satisfies

λfg(i+ 1)− ifg(i) = g(i)− E[g(Pλ)], i ∈ N0. (2.1)

The function fg can be obtained by solving (2.1) recursively for i = 0, 1, . . . . An explicit
expression for this solution is given in [5, Lemma 1]. In particular, for g = 1A with
A ⊂ N0, one has the following representation for fg (see e.g. [36, Lemma 4.2]).
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Lemma 2.1. For any λ > 0 and A ⊂ N0 the unique solution fA of

λfA(i+ 1)− ifA(i) = 1{i ∈ A} − P(Pλ ∈ A), i ∈ N0, (2.2)

with fA(0) = 0 is given by

fA(i) =
eλ(i− 1)!

λi
[
P(Pλ ∈ A ∩ {0, 1, . . . , i− 1})− P(Pλ ∈ A)P(Pλ ≤ i− 1)

]
, i ∈ N.

From now on, we denote by fA the solution of the Stein equation (2.1) for g = 1A
with A ⊂ N0. Let X be a random variable with values in N0. The idea of the Chen-
Stein method for the Poisson approximation of X is to plug X in (2.1) and to take the
expectation, which yields

E[λfg(X + 1)−Xfg(X)] = E[g(X)]− E[g(Pλ)].

So we can control the difference between the expectations of g(X) and g(Pλ) on the
right-hand side by estimating the term on the left-hand side. This requires some bounds
on the solution of (2.1), which we give in the sequel. For a function h : N0 → R we define
∆h : N0 → R by ∆h(i) = h(i+ 1)− h(i). The solution of the Stein equation (2.1) and its
differences can be bounded by the following terms, which are called magic factors or
Stein factors (see [8, Theorem 1.1]).

Lemma 2.2. Let fg be the solution of (2.1). Then,

max
i∈N0

|fg(i)| ≤ 1 and max
i∈N
|∆fg(i)| ≤ 1 ∧ 8

3
√

2eλ
≤ 1 ∧ 1.1437√

λ
.

Since fg(0) = 0, Lemma 2.2 implies that

max
i∈N0

|fg(i)| ≤ 1 and max
i∈N0

|∆fg(i)| ≤ 1. (2.3)

Moreover, the solution of (2.2) for A ⊂ N0 has the following magic factors (see e.g. [36,
Lemma 4.4]).

Lemma 2.3. For fA as in Lemma 2.1,

max
i∈N0

|fA(i)| ≤ 1 ∧ 1√
λ

and max
i∈N0

|∆fA(i)| ≤ 1 ∧ 1

λ
.

We now derive similar - potentially sharper - magic factors for the special cases
A = {0, . . . , v}, v ∈ N0. Similar bounds for sets A that are singletons were deduced for
the translated Poisson approximation in [35, Lemma 3.7].

Lemma 2.4. Let f{0} be the unique solution of (2.2) for A = {0}. Then,

|f{0}(i)| ≤

{
1 ∧ 1

λ , if i = 1,

1 ∧ 1
λ2 , if i ≥ 2,

(2.4)

and for all i ∈ N,

∆f{0}(i) ≤ 0. (2.5)

Furthermore for all i, n ∈ N with i ≥ n,

|∆f{0}(i)| ≤
1

n
∧ (n− 1)!

λn
. (2.6)

Let f{0,...,v} be the unique solution of (2.2) for A = {0, . . . , v} with v ∈ N and v ≤ λ. Then
for all i ≥ v + 2,

∆f{0,...,v}(i) ≤ 1 ∧ (v + 1)2

λ2
. (2.7)
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Proof. Obviously, the upper bound 1 in (2.4) follows from Lemma 2.3. Lemma 2.1 yields
for i ∈ N that

f{0}(i) =
(i− 1)!

λi
(1−P(Pλ ≤ i−1)) =

(i− 1)!

λi

∞∑
m=i

λm

m!
e−λ =

∞∑
`=0

λ`

(i+ `)!
(i−1)!e−λ. (2.8)

This implies (2.4) for i = 1, 2, and yields for i ≥ 3 that

f{0}(i) =

∞∑
`=0

λ`

(i+ `)!
(i− 1)!e−λ =

1

λ2

∞∑
`=0

λ`+2

(`+ 2)!

(i− 1)!(`+ 2)!

(i+ `)!
e−λ.

Thus, the elementary inequalities

(i− 1)!(`+ 2)!

(i+ `)!
=

(i− 1)!

(`+ 3) · . . . · (`+ i)
≤ 2(i− 1)!

i!
≤ 1

establish (2.4) for i ≥ 3. From (2.8) we also obtain for n ∈ N,

∆f{0}(i) =

∞∑
`=0

(
λ`

(i+ 1 + `)!
i!− λ`

(i+ `)!
(i− 1)!

)
e−λ

=

∞∑
`=0

λ`

(i+ 1 + `)!

(
i!− (i+ 1 + `)(i− 1)!

)
e−λ

= −
∞∑
`=0

λ`

(i+ 1 + `)!
(`+ 1)(i− 1)!e−λ

= −
∞∑
`=0

λ`

(n+ `)!

(`+ 1)(n+ `)!(i− 1)!

(i+ 1 + `)!
e−λ,

which proves (2.5). For i, n ∈ N with i ≥ n the elementary inequalities

(`+ 1)(n+ `)!(i− 1)!

(i+ 1 + `)!
≤ (n+ `)!(i− 1)!

(i+ `)!
≤ (n− 1)!

lead to ∣∣∆f{0}(i)∣∣ ≤ (n− 1)!e−λ
∞∑
`=0

λ`

(n+ `)!
.

Now the observations that

∞∑
`=0

λ`

(n+ `)!
≤ eλ

λn
and

∞∑
`=0

λ`

(n+ `)!
≤ 1

n!

∞∑
`=0

λ`

`!

`!n!

(n+ `)!
≤ 1

n!

∞∑
`=0

λ`

`!
≤ eλ

n!

show (2.6). Finally assume λ ≥ v. By Lemma 2.1, we obtain for i ≥ v + 2,

∆f{0,...,v}(i) = eλP(Pλ ∈ {0, . . . , v})∆f{0}(i).

Then (2.6) with n = v + 2 implies that

|∆f{0,...,v}(i)| ≤
(v + 1)!

λv+2

v∑
`=0

λ`

`!
=

(v + 1)!

λ2

v∑
`=0

λ`−v

`!
≤ (v + 1)2

λ2
,

where we used the inequality λ`−v/`! ≤ 1/v! for ` = 0, . . . , v and λ ≥ v in the last step.
This and Lemma 2.3 establish (2.7).

The next proposition compares the distributions of an integer-valued random variable
and a Poisson distributed random variable.
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Proposition 2.5. Let X be an integrable random variable taking values in N0, let
λ ∈ (0,∞), and define

D(i) = iP(X = i)− λP(X = i− 1), i ∈ N.

Then, for all g ∈ Lip(1),

E[g(Pλ)]− E[g(X)] =

∞∑
i=1

fg(i)D(i),

where fg is the solution of (2.1).

Proof. It follows from (2.1) and the definition of D(i), i ∈ N, that

E[g(Pλ)]− E[g(X)] = E[Xfg(X)− λfg(X + 1)] =

∞∑
i=0

P(X = i)(ifg(i)− λfg(i+ 1))

=

∞∑
i=1

P(X = i)ifg(i)−
∞∑
i=1

P(X = i− 1)λfg(i) =

∞∑
i=1

fg(i)D(i),

which gives the desired result.

We are now in position to show Theorem 1.3.

Proof of Theorem 1.3. It follows from (1.8) that

D(i) = iP(X = i)− λP(X = i− 1) = λP(X + Z = i− 1)− λP(X = i− 1) + qi−1, i ∈ N.

Thus, Proposition 2.5 yields for g ∈ Lip(1) that

E[g(Pλ)]− E[g(X)]

= λ

∞∑
i=1

fg(i)
(
P(X + Z = i− 1)− P(X = i− 1)

)
+

∞∑
i=1

fg(i)qi−1 =: Hg +Qg.
(2.9)

With fg(0) = 0 and the convention fg(i) = 0 for i < 0, we obtain

Hg = λE[fg(X + Z + 1)− fg(X + 1)]. (2.10)

Therefore the triangle inequality implies that

|Hg| ≤ λmax
i∈N0

|∆fg(i)|E[|Z|].

Furthermore, we have

|Qg| ≤ max
i∈N
|fg(i)|

∞∑
i=0

|qi|. (2.11)

Then combining (2.3) and the bounds on |Hg| and |Qg| establishes (1.10). Moreover, from
Lemma 2.3 and the bounds on |Hg| and |Qg| with g = 1A for A ⊂ N0, we obtain (1.9).

Under the assumption P(X + Z ≥ 0) = 1, X + Z + 1 and X + 1 take only values in N,
whence we have even

|Hg| ≤ λmax
i∈N
|∆fg(i)|E[|Z|].

Together with (2.11) and Lemma 2.2 this yields (1.11).
For A ⊂ N0 we obtain from (2.9) with g = 1A,

P(Pλ ∈ A)− P(X ∈ A) = HA +QA, (2.12)
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where HA = Hg and QA = Qg with g = 1A. It follows from (2.10) and the fact that X
takes only values in N0 that

HA = λ
∑

j∈Z\{0}

∞∑
i=1

(
fA(i+ j)− fA(i)

)
P(X = i− 1, Z = j). (2.13)

The assumption P(X + Z ≥ 0) = 1 implies that P(X = i− 1, Z = −j) = 0 for all i, j ∈ N
with i ≤ j. Hence, we obtain

λ

∞∑
j=1

∞∑
i=1

(
fA(i− j)− fA(i)

)
P(X = i− 1, Z = −j)

= λ

∞∑
j=1

∞∑
i=j+1

(
fA(i− j)− fA(i)

)
P(X = i− 1, Z = −j)

= λ

∞∑
j=1

∞∑
i=1

(
fA(i)− fA(i+ j)

)
P(X = i+ j − 1, Z = −j).

(2.14)

Combining (2.13) and (2.14) leads to

|HA| ≤ λ
∞∑
j=1

∞∑
i=1

|fA(i+ j)− fA(i)|P(X = i− 1, Z = j)

+ λ

∞∑
j=1

∞∑
i=1

|fA(i)− fA(i+ j)|P(X = i+ j − 1, Z = −j) =: H
(1)
A +H

(2)
A .

For A = {0}, by (2.6) in Lemma 2.4 with n = i for i ≤ m and n = m+ 1 for i ≥ m+ 1, we
have

H
(1)
{0} ≤

∞∑
j=1

m∑
i=1

(
λ

i
∧ (i− 1)!

λi−1

)
jP(X = i− 1, Z = j) +

∞∑
j=1

∞∑
i=m+1

m!

λm
jP(X = i− 1, Z = j)

=

m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E[Z+1{X = k}] +

m!

λm
E[Z+1{X ≥ m}].

Again (2.6) in Lemma 2.4 with n = i for i ≤ m and n = m+ 1 for i ≥ m+ 1 leads to

H
(2)
{0} ≤

∞∑
j=1

m∑
i=1

(
λ

i
∧ (i− 1)!

λi−1

)
jP(X = i+ j − 1, Z = −j)

+

∞∑
j=1

∞∑
i=m+1

m!

λm
jP(X = i+ j − 1, Z = −j)

=

m∑
i=1

(
λ

i
∧ (i− 1)!

λi−1

)
E[Z−1{X + Z = i− 1}] +

m!

λm
E[Z−1{X + Z ≥ m}]

=

m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
E[Z−1{X + Z = k}] +

m!

λm
E[Z−1{X + Z ≥ m}].

From (2.4) in Lemma 2.4 it follows that

|Q{0}| ≤
(

1 ∧ 1

λ

)
|q0|+

(
1 ∧ 1

λ2

) ∞∑
i=1

|qi|.

Combining (2.12) and the bounds on |Q{0}|, H
(1)
{0} and H(2)

{0} completes the proof of (1.12).
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For λ < v, (1.13) follows directly from (1.9). By Lemma 2.3 for i ≤ v + 1 and (2.7) in
Lemma 2.4 for i ≥ v + 2, we obtain

H
(1)
{0,...,v} ≤ (1 ∧ λ)

∞∑
j=1

v+1∑
i=1

jP(X = i− 1, Z = j) +

∞∑
j=1

∞∑
i=v+2

(v + 1)2

λ
jP(X = i− 1, Z = j)

= (1 ∧ λ)E[Z+1{X ≤ v}] +
(v + 1)2

λ
E[Z+1{X ≥ v + 1}]

and

H
(2)
{0,...,v} ≤ (1 ∧ λ)

∞∑
j=1

v+1∑
i=1

jP(X = i+ j − 1, Z = −j)

+

∞∑
j=1

∞∑
i=v+2

(v + 1)2

λ
jP(X = i+ j − 1, Z = −j)

= (1 ∧ λ)E[Z−1{X + Z ≤ v}] +
(v + 1)2

λ
E[Z−1{X + Z ≥ v + 1}].

Moreover, Lemma 2.3 yields

|Q{0,...,v}| ≤ max
i∈N0

|f{0,...,v}(i)|
∞∑
i=0

|qi| ≤
(

1 ∧ 1√
λ

) ∞∑
i=0

|qi|.

Combining (2.12) with A = {0, . . . , v} and the bounds on |Q{0,...,v}|, H
(1)
{0,...,v} and H(2)

{0,...,v}
establishes (1.13).

Next we derive Theorem 1.1 from Theorem 1.3.

Proof of Theorem 1.1. It follows from (1.2) that X and Z satisfy (1.8) with λ = E[X] and
qi = 0 for i ∈ N0 and that

λ = E[X] =

∞∑
k=1

kP(X = k) =

∞∑
k=1

λP(X + Z = k − 1) = λP(X + Z ≥ 0),

whence P(X + Z ≥ 0) = 1. This allows us to apply Theorem 1.3 which proves (1.3), (1.4)
and (1.5).

The next result provides some inequalities for the probability that a non-negative
integer-valued random variable equals zero.

Proposition 2.6. Let X be an integrable random variable with values in N0 and λ > 0.
Consider a random variable Z defined on the same probability space as X with values in
Z, and let (qi)i∈N0

be the sequence given by

qi−1 = iP(X = i)− λP(X + Z = i− 1), i ∈ N.

a) If Z is non-negative and qi ≤ 0 for i ∈ N0,

P(X = 0) ≥ e−λ.

b) If Z is non-positive, P(X + Z ≥ 0) = 1 and qi ≥ 0 for i ∈ N0,

P(X = 0) ≤ e−λ.
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Proof. It follows from (2.12) and (2.13) for A = {0} as well as P(Pλ = 0) = e−λ that

e−λ − P(X = 0)

= λ
∑

j∈Z\{0}

∞∑
i=1

(
f{0}(i+ j)− f{0}(i)

)
P(X = i− 1, Z = j) +

∞∑
i=1

f{0}(i)qi−1.

By the assumption that Z ≥ 0 (resp. Z ≤ 0 and P(X + Z ≥ 0) = 1) the first sum on the
right-hand side runs only over j ≥ 1 (resp. j ≤ −1 and the inner sum runs over all i ∈ N
with i+ j ≥ 1). Together with

f{0}(i+ j)− f{0}(i) ≤ 0 for i, j ≥ 1 and f{0}(i+ j)− f{0}(i) ≥ 0 for j ≤ −1, i+ j ≥ 1,

which follows from (2.5) in Lemma 2.4, f{0}(i) ≥ 0 for all i ∈ N and the assumptions on
(qi)i∈N0

, this leads to the desired results.

Since (1.2) is a special case of (1.8) with P(X +Z ≥ 0) = 1 (see the proof of Theorem
1.1), the following corollary is a direct consequence of Proposition 2.6.

Corollary 2.7. Let X be a random variable taking values in N0 and let λ = E[X] > 0.
Assume there exists a random variable Z such that (1.2) is satisfied.

a) If Z is non-negative,

P(X = 0) ≥ e−λ.

b) If Z is non-positive,

P(X = 0) ≤ e−λ.

3 Applications

3.1 Long head runs

Consider n independent and identically distributed Bernoulli random variables. A
k-head run is defined as an uninterrupted sequence of k successes, where k is a positive
integer. For example, for k = 1, one simply studies the successes, while for k = 2, one
considers the occurrence of two consecutive successes in a row. Several authors have
investigated the number of k-head runs in a sequence of Bernoulli random variables;
see e.g. the book [4]. In this subsection, we discuss the Poisson approximation of the
number of non-overlapping k-runs among n i.i.d. Bernoulli random variables, denoted
by Sn,k. In particular, we obtain an explicit bound on the pointwise difference between
the cumulative distribution functions of Sn,k and PE[Sn,k] that is independent from the
number k of required successes in a row.

Let k ∈ N and Xj , j ∈ N0, be a sequence of independent and Bernoulli distributed
random variables with parameter 0 < p ≤ 1/2. We denote by I(i) with i ∈ N0 the random
variable

I(i) = 1{Xi−1 = 0, Xi = 1, . . . , Xi+k−1 = 1},

where X−1 = 0. For k ≤ n the number Sn,k of non-overlapping k-runs in X0, . . . , Xn−1 is
given by

Sn,k =

n−k∑
i=0

I(i). (3.1)
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Theorem 3.1. Let Sn,k be the random variable given by (3.1) with k, n ∈ N, k ≤ n. Then,

dTV
(
Sn,k, PE[Sn,k]

)
≤ (2k + 1)

(
1 ∧ E[Sn,k]

)
pk. (3.2)

Moreover, for v ∈ N0 and n ≥ 2,

max
1≤k≤n

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ 40(v + 2)2
log n

n
. (3.3)

The bound (3.2) was shown in [27, Corollary 15] as a consequence of [1, Theorem
1]. The Poisson approximation for Sn,k is also investigated in e.g. [2, 7, 16, 20]. The
explicit bound in (3.3) on the pointwise difference between the cumulative distribution
functions of Sn,k and PE[Sn,k] does not depend on the number k of required successes
in a row. Hence, (3.3) improves [26, Corollary 3.23] and [27, Corollary 16] because we
found an explicit bound. Since the proof of Theorem 3.1 is based on Theorem 1.1, by
applying the second inequality of (1.3) in Theorem 1.1, it is possible to attain a bound on
the Wasserstein distance between Sn,k and PE[Sn,k].

We believe that the inequalities in Theorem 3.1 can be extended in two directions.
Firstly, by applying the full generality of our main result, Theorem 1.3, it might be possi-
ble to derive similar inequalities also for non-independent Bernoulli random variables
if they satisfy some mixing and local conditions as in [32, Theorem 3.1]. Secondly, we
may also establish a higher dimensional version of Theorem 3.1. Indeed, if we define
a connected component in Zd for d ∈ N, as a family of points A ⊂ Zd such that for any
x ∈ A the minimum Euclidean distance between x and A \ {x} is 1, then Sn,k counts the
number of connected components of the set {j ∈ {0, 1, . . . , n − k} : Xj = 1} in Z with
size at least k. Then, by taking a family of i.i.d. Bernoulli random variables Xj , j ∈ Zd,
we may also also derive a Poisson approximation result for the number of connected
components of the set of points {j ∈ [−n, n]d ∩Zd : Xj = 1} in Zd of cardinality at least
k.

For the proof of Theorem 3.1 we define

U` =

(n−k)∧(`+k)∑
i=0∨(`−k)

I(i), ` = 0, . . . , n− k,

where a ∨ b = max{a, b} for any a, b ∈ R, and let Y be a random variable independent
from Xj , j ∈ N0, and with distribution given by

P(Y = `) =
E[I(`)]

E[Sn,k]
, ` = 0, . . . , n− k.

The next proposition follows directly from the construction of a size-bias coupling given in
Remark 1.2 (iii). Nevertheless, we provide a complete proof, which is rather instructive.

Proposition 3.2. Let k, n ∈ N with k ≤ n. For any m ∈ N,

mP(Sn,k = m) = E[Sn,k]P(Sn,k − UY = m− 1).

Proof. Let ` ∈ {0, . . . , n− k} and m ∈ N be fixed. Then, we have

E[I(`)1{Sn,k − I(`) = m− 1}] = E[I(`)1{Sn,k − U` = m− 1}],

where we used that I(`) = 1 implies U` = 1 because we consider non-overlapping k-runs.
Since I(`) and Sn,k − U` are independent, it follows that

mP(Sn,k = m) =

n−k∑
`=0

E[I(`)1{Sn,k = m}] =

n−k∑
`=0

E[I(`)1{Sn,k − I(`) = m− 1}]

=

n−k∑
`=0

E[I(`)]P(Sn,k − U` = m− 1) = E[Sn,k]P(Sn,k − UY = m− 1),
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which concludes the proof.

Remark 3.3. Since UY ≥ 0, from Corollary 2.7 b) it follows that P(Sn,k = 0) ≤ e−E[Sn,k].
Thus, straightforward calculations imply that

P(Sn,k = 0) ≤ exp
(
− (n− k + 1)pk(1− p)

)
.

Proof of Theorem 3.1. From (1.3) in Theorem 1.1 and Proposition 3.2, it follows that

dTV (Sn,k, PE[Sn,k]) ≤ (1 ∧ E[Sn,k])E[UY ] ≤ (2k + 1)(1 ∧ E[Sn,k])pk,

where we used E[U`] ≤ (2k + 1)pk for ` = 0, . . . , n− k in the last step. This proves (3.2).
Let n ≥ 2 be fixed. Since (2k + 1)pk, k ≥ 1, is decreasing in k for any p ≤ 1/2, by (3.2)

we deduce for k ≥ 2 log n that

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ (2k + 1)pk ≤ (4 log n+ 1)2−2 logn ≤ 4 log n+ 1

n
. (3.4)

Let k < 2 log n. From (1.4) in Theorem 1.1 with m = 1 for v = 0 and (1.5) in Theorem 1.1
for v ∈ N, it follows that

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ (v + 1)2E[UY ]

E[Sn,k]
+ E[UY 1{Sn,k − UY ≤ v}]. (3.5)

From 0 ≤ U` ≤ 2 for ` ∈ {0, . . . , n− k} and the definition of Y it follows that

E[UY 1{Sn,k − UY ≤ v}] ≤ E[UY 1{Sn,k ≤ v + 2}] =

n−k∑
`=0

E[I(`)]

E[Sn,k]
E[U`1{Sn,k ≤ v + 2}]

≤ pk

E[Sn,k]
E

n−k∑
`=0

(n−k)∧(`+k)∑
i=0∨(`−k)

I(i)1{Sn,k ≤ v + 2}.

Thus, by the inequality

n−k∑
`=0

(n−k)∧(`+k)∑
i=0∨(`−k)

ai ≤ (2k + 1)

n−k∑
m=0

am, a0, . . . , an−k ≥ 0,

we obtain

E[UY 1{Sn,k − UY ≤ v}] ≤
(2k + 1)pk

E[Sn,k]
E[Sn,k1{Sn,k ≤ v + 2}] ≤ (2k + 1)pk(v + 2)

E[Sn,k]
.

Together with (3.5) and the inequalities

E[Sn,k] ≥ (n− k + 1)pk/2 and E
[
UY
]
≤ (2k + 1)pk,

this shows for k < 2 log n and n > 4 log n that

|P(Sn,k ≤ v)− P(PE[Sn,k] ≤ v)| ≤ 2(v + 1)2(2k + 1)

n− k + 1
+

2(v + 2)(2k + 1)

n− k + 1

≤ 4(v + 2)2(4 log n+ 1)

n− 2 log n
≤ 40(v + 2)2 log n

n
,

where we used the inequalities 4 log n+ 1 ≤ 5 log n and n− 2 log n ≥ n/2 for n > 4 log n in
the last step. Combining this and (3.4) establishes (3.3) for n > 4 log n. In conclusion,
note that n > 4 log n for n > 10, and for 2 ≤ n ≤ 10, the right-hand side of (3.3) is greater
than 1. Thus, (3.3) holds for all n ≥ 2.
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3.2 Minimal circumscribed radii of Poisson-Voronoi tessellations

In this subsection, we consider circumscribed radii of stationary Poisson-Voronoi
tessellations. The aim is to continue the work started in [11] by proving that the
Kolmogorov distance between a transform of the minimal circumscribed radius and a
Weibull random variable converges to 0 at a rate of 1/t1/(d+1) when the intensity t of the
underlying Poisson process goes to infinity.

For any locally finite counting measure ν on Rd, we denote by N(x, ν) the Voronoi
cell with nucleus x ∈ Rd generated by ν + δx, that is

N(x, ν) =
{
y ∈ Rd : ‖y − x‖ ≤ ‖y − x′‖, x 6= x′ ∈ ν

}
.

Voronoi tessellations, i.e., tessellations consisting of Voronoi cells N(x, ν), x ∈ ν, arise in
different fields such as biology [33], astrophysics [34] and communication networks [9].
For more details on Poisson-Voronoi tessellations, i.e., Voronoi tessellations generated by
an underlying Poisson process, we refer the reader to e.g. [10, 25, 37]. We denote by
B(x, r) the open ball centered at x ∈ Rd with radius r > 0. The circumscribed radius of
the Voronoi cell N(x, ν) is defined as

C(x, ν) = inf {R ≥ 0 : B(x,R) ⊃ N(x, ν)} ,

i.e., the circumscribed radius is the smallest radius for which the closed ball centered at
the nucleus contains the cell.

Throughout this subsection we consider the stationary Poisson-Voronoi tessellation
generated by a Poisson process ηt on Rd with intensity measure tλd, t > 0, where λd is
the d-dimensional Lebesgue measure. Let W ⊂ Rd be a measurable set with λd(W ) = 1.
For any Voronoi cell N(x, ηt) with x ∈ ηt ∩W , we take the circumscribed radius of the
cell, and we define the point process ξt on the positive half line as

ξt =
∑

x∈ηt∩W
δα2kdt(d+2)/(d+1)C(x,ηt)d . (3.6)

Here δz is the Dirac measure at z ∈ R, kd denotes the volume of the d-dimensional unit
ball, and the constant α2 > 0 is given by

α2 =

(
2d(d+1)

(d+ 1)!
pd+1

)1/(d+1)

(3.7)

with

pd+1 := P
(
N
(

0,

d+1∑
j=1

δYj

)
⊆ B(0, 1)

)
, (3.8)

where Y1, . . . , Yd+1 are independent and uniformly distributed random points in B(0, 2).
We denote by Tt the first arrival time of ξt, i.e.,

Tt = min
x∈ηt∩W

α2kdt
(d+2)/(d+1)C(x, ηt)

d, (3.9)

which is - up to a rescaling - the d-th power of the minimal circumscribed radius of the
cells with nucleus in W . Recall that a random variable Y has a Weibull distribution if
its cumulative distribution function is given by P(Y ≤ u) = 1− e−(u/s)k for u ≥ 0, and 0

otherwise; k > 0 is the shape parameter and s > 0 is the scale parameter.

Theorem 3.4. Suppose t ≥ 1. Let ξt and Tt be the point process and the random
variable given by (3.6) and (3.9), respectively. Let Y be a Weibull distributed random
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variable with shape parameter d+ 1 and scale parameter 1. Then, there exist constants
CTV, CK > 0 only depending on d such that

dTV
(
ξt([0, u]), Pud+1

)
≤ CTV

ud+2

t1/(d+1)
(3.10)

for u > 0, and

dK(Tt, Y ) ≤ CK
t1/(d+1)

. (3.11)

Note that explicit formulas for the constants CTV and CK are given in the proof of
Theorem 3.4, which can be found in Section 4.1. In [11, Theorem 1, Equation (2d)], the
weak convergence of Tt to Y as t → ∞ is shown. For an underlying inhomogeneous
Poisson process, the weak convergence of ξt to a Poisson process and the weak conver-
gence of Tt to Y are proven in [32, Section 3.3]. Although we only consider stationary
Poisson processes, we believe that the arguments employed in this subsection may also
establish similar results on the minimal circumscribed radius for more general Poisson
processes with a different rate of convergence in t under some constraints on the density
(e.g. Hölder continuity). To the best of our knowledge, the present paper is the first
time the rates of convergence for the Poisson approximation of ξt([0, u]) and the Weibull
approximation of Tt have been addressed. Since the proof of Theorem 3.4 is based on
Theorem 1.3, together with (1.11) in Theorem 1.3, the same arguments used to show
(3.10) may also lead to a bound on the Wasserstein distance between ξt([0, u]) and Pud+1 .

3.3 Maximal inradii of Poisson-Voronoi tessellations

In this subsection, we consider the inradii of stationary Poisson-Voronoi tessellations.
Recall that the inradius of a cell is the largest radius for which the ball centered at
the nucleus is contained in the cell. The aim is to continue the work started in [11] by
proving that the Kolmogorov distance between a transform of the largest inradius and a
Gumbel random variable converges to 0 at a rate of log(t)/

√
t as the intensity t of the

underlying Poisson process goes to infinity. More details on Poisson-Voronoi tessellations
are given in Subsection 3.2.

Let W ⊂ Rd be a measurable set with Lebesgue measure λd(W ) = 1. Let ηt be a
Poisson process on Rd with intensity measure tλd, t > 0. For x ∈ Rd and a locally finite
counting measure µ on Rd define

ht(x, µ) = min
y∈µ\{x}

tkd‖x− y‖d − log(t),

where kd is the volume of the d-dimensional unit ball. Note that for any x ∈ ηt, min{‖x−
y‖ : y ∈ ηt \ {x}} is twice the inradius of the Voronoi cell with nucleus x generated by ηt.
Then, the random variable

Rt = max
x∈ηt∩W

ht(x, ηt) (3.12)

is a transform of the maximal inradius over the cells with nucleus in W . We define the
point process ξt as

ξt = ξt(ηt) =
∑

x∈ηt∩W
δht(x,ηt). (3.13)

Recall that a random variable G has a standard Gumbel distribution if its cumulative
distribution function is given by P(G ≤ u) = e−e

−u
for u ∈ R.
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Theorem 3.5. Suppose t > e2. Let Rt and ξt be the random variable and the point
process given by (3.12) and (3.13), respectively. Let G be a random variable with a
standard Gumbel distribution. Then,

dTV
(
ξt((u,∞)), Pe−u

)
≤ 2d

u+ log(t)

eu/2
√
t

+
u+ log(t)

eut
(3.14)

for u > − log(t), and

dK(Rt, G) ≤ [2d+2(4d + 2d + 2) + 1]
log(t)√

t
. (3.15)

The main achievement of Theorem 3.5 is the rate of convergence for the Kolmogorov
distance in (3.15). In [11, Theorem 1, Equation (2a)], the weak convergence of Rt to
a Gumbel random variable is proven. For d = 2 one obtains from the proof of [13,
Proposition 8] that for any fixed u ∈ R the difference between P(Rt ≤ u) and P(G ≤ u)

behaves like O(log(t)/
√
t), where the constant hidden in the big-O-notation depends on

u. However this result does not permit to bound the difference between P(Rt ≤ u) and
P(G ≤ u) uniformly in u ∈ R, whence it does not lead to a bound for the Kolmogorov
distance. Note that [13, Proposition 8] concerns the maximal inradii of planar Gauss-
Voronoi tessellations, which are generated by a Poisson cluster process and include
planar Poisson-Voronoi tessellations as a special case. For this model it is shown that for
any fixed u ∈ R, |P(Rt ≤ u)−P(G ≤ u)| behaves like O(log(t)−1/2), where the big-O-term
depends on u.

For an underlying inhomogeneous Poisson process, the weak convergence of ξt to a
Poisson process and the weak convergence of Rt to G are established in [32, Section 3.2],
and for an underlying inhomogeneous binomial point process, the weak convergence
of Rt to G is studied in [17, Theorem 1]. As for the results stated in Subsection 3.2
about the minimal circumscribed radius, we believe that similar arguments as in this
subsection could lead to comparable results with a different rate of convergence in t for
the maximal inradius of a Voronoi tessellation generated by an inhomogeneous Poisson
processes under some constraints on the density.

Counting cells whose inradius is larger than a given value is equivalent to counting
isolated vertices in random geometric graphs. The related problem of finding the longest
edge of a k-nearest neighbor graph or a minimal spanning tree is studied, for example,
in [30] or [29, Chapter 8] for underlying finite Poisson processes or binomial point
processes, where one needs to take care of boundary effects.

The proof of Theorem 3.5 is given in Section 4.2. Since it is based on Theorem 1.1,
together with the second inequality of (1.3) in Theorem 1.1, the same arguments used
to show (3.14) may also lead to a bound on the Wasserstein distance between ξt((u,∞))

and Pe−u .

3.4 U-statistics of binomial point processes

Let (X,X ) be a measurable space. A point process on X is a random element in the
set of all σ-finite counting measures on X, denoted by NX, which is measurable with
respect to the σ-field generated by the sets of the form

{µ ∈ NX : µ(B) = k}, k ∈ N0, B ∈ X .

We consider a binomial point process βn on X of n ∈ N independent points in X that are
distributed according to a probability measure K. Let ` ∈ N and let h : X` → {0, 1} be a
measurable symmetric function. In the following we study the U -statistic

S =
1

`!

∑
(x1,...,x`)∈β`n,6=

h(x1, ..., x`),
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where β`n,6= denotes the set of all `-tuples of distinct points of βn. We refer to the
monographs [19, 23] for more details on U -statistics and their applications in statistics.
A straightforward computation shows that

λ := E[S] =
(n)`
`!

∫
X`
h(x1, . . . , x`)dK

`(x1, . . . , x`),

where (n)` stands for the `-th descending factorial.
In this subsection, we establish bounds on the Poisson approximation of S in the total

variation and Wasserstein distances. We also provide bounds on the pointwise difference
between the cumulative distribution functions of S and Pλ. To this end, we define

r = max
1≤i≤`−1

(n)2`−i

∫
Xi

(∫
X`−i

h(x1, . . . , x`)dK
`−i(xi+1, . . . , x`)

)2

dKi(x1, . . . , xi)

for ` ≥ 2, and put r = 0 for ` = 1. Moreover for n ≥ 2`, we define

S̃ =
1

`!

∑
(x1,...,x`)∈β`n−2`, 6=

h(x1, ..., x`).

Theorem 3.6. Let n ≥ 2` and let S, λ > 0, r and S̃ be as above. Then,

dTV (S, Pλ) ≤ (1 ∧ λ)

(
2`r

`!λ
+

2`2λ

n

)
and dW (S, Pλ) ≤ (1.1437

√
λ ∧ λ)

(
2`r

`!λ
+

2`2λ

n

)
.

(3.16)
Moreover, for all m ∈ N,∣∣∣P(S = 0)− e−λ

∣∣∣ ≤ [m−1∑
k=0

(
λ

k + 1
∧ k!

λk

)
P
(
S̃ ≤ k

)
+
m!

λm

](
2`r

`!λ
+

2`2λ

n

)
(3.17)

and for all v ∈ N,

|P(S ≤ v)− P(Pλ ≤ v)| ≤
[

(v + 1)2

λ
+ P(S̃ ≤ v)

](
2`r

`!λ
+

2`2λ

n

)
. (3.18)

For fixed ` and λ the right-hand sides in Theorem 3.6 converge to zero as n → ∞
if and only if r → 0 as n → ∞. The term in the definition of r for i ∈ {1, . . . , ` − 1}
is the expected number of combinations of distinct points x1, . . . , xi, y1, . . . , y`−i and
y′1, . . . , y

′
`−i of βn such that h(x1, . . . , xi, y1, . . . , y`−i) = 1 and h(x1, . . . , xi, y

′
1, . . . , y

′
`−i) = 1,

i.e., x1, . . . , xi contribute to more than one non-zero summand in S. Thus, r → 0 as
n→∞ implies that the probability that there is a point of βn that belongs to more than
one k-tuple (up to permutations) with non-zero h goes to zero.

The bound on the Wasserstein distance in (3.16) slightly improves that in [15, Theo-
rem 7.1] since it has a better order in λ. The bound for the total variation distance was
also derived in [39, Proposition 2] by rewriting [6, Theorem 2]. By means of (3.17), one
can study for some measurable symmetric function g : X` → R the maximum (minimum)
of g(p) over all p ∈ β`n,6=, which is called U -max-statistic (U -min-statistic). This is possible
because for any u ∈ R, the probability that maxp∈β`n, 6= g(p) is less than u can be written

as the probability that
∑
p∈β`n,6=

1{g(p) ≥ u} equals 0. Limit theorems for U -max-statistics

were considered in [21], yet without providing approximation results with respect to any
distance; see also [24]. In contrast to these works, (3.17) may lead to approximation
results in the Kolmogorov distance; see Theorem 3.9 in Subsection 3.6 and the discussion
below it. To the best of our knowledge, the last two inequalities presented in Theorem
3.6 have no analogues in the literature.
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From now on assume that n ≥ `. Let χ be a point process of ` random points
X ′1, . . . , X

′
` in X that are independent of βn and distributed such that

P((X ′1, . . . , X
′
`) ∈ A) =

(n)`
`!λ

∫
X`

1{(x1, . . . , x`) ∈ A}h(x1, . . . , x`)dK
`(x1, . . . , x`)

for all A from the product σ-field X `. Now we define

S′ = −h(X ′1, . . . , X
′
`) +

1

`!

∑
(x1,...,x`)∈(βn−`∪χ)`6=

h(x1, ..., x`).

Although the next proposition can be derived by the construction of a size-bias cou-
pling described in Remark 1.2 (iii), we provide a complete proof that relies on similar
arguments as the proof for U -statistics of Poisson processes in the next subsection.

Proposition 3.7. For all n ≥ ` and k ∈ N,

kP(S = k) = λP(S′ = k − 1).

Proof. We have that

kP(S = k) = E[k1{S = k}] =
1

`!
E

∑
(x1,...,x`)∈β`n, 6=

h(x1, . . . , x`)1{S = k}.

Using the fact that for any measurable map g : Xu ×NX → [0,∞) with u ∈ N,

E
∑

(x1,...,xu)∈βun, 6=

g(x1, . . . , xu, βn)=(n)u

∫
Xu
E[g(x1, . . . , xu, βn−u+

u∑
i=1

δxi)]dK
u(x1, . . . , xu),

we obtain

kP(S = k) =
(n)`
`!

∫
X`
h(x1, . . . , x`)P

(
1

`!

∑
(y1,...,y`)∈(βn−`∪{x1,...,x`})`6=

h(y1, . . . , y`) = k

)
× dK`(x1, . . . , x`)

= λP(S′ + h(X ′1, . . . , X
′
`) = k) = λP(S′ = k − 1),

where we used h(X ′1, . . . , X
′
`) = 1 a.s. in the last step. This concludes the proof.

Proof of Theorem 3.6. Suppose n ≥ 2`. Our goal is to apply Theorem 1.1 with Z = S′−S,
which satisfies the assumption (1.2) by Proposition 3.7. We define s : NX → R by

s(ν) =
1

`!

∑
(x1,...,x`)∈ν`6=

h(x1, . . . , x`)

so that S = s(βn) and S′ = s(βn−`+χ)−h(X ′1, . . . , X
′
`). By the monotonicity of s, we have

|Z| = |S′ − S| = |s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`)− (s(βn)− s(βn−`))|

≤ (s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`)) + s(βn)− s(βn−`).

(3.19)

Together with

s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`) + s(βn)− s(βn−`)

= s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn) + 2(s(βn)− s(βn−`)) = Z + 2(s(βn)− s(βn−`))

(3.20)
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this implies

E[|Z|] ≤ E[Z] + 2E[s(βn)− s(βn−`)].

From (1.7) in Remark 1.2 we know that

E[Z] =
1

λ
(Var(S)− λ) =

1

λ
(E[S2]− λ2 − λ).

Thus, it follows from [15, Lemma 6.1] and the definition of r that

E[Z] ≤ 2`r

`!λ
.

A straightforward computation shows that

E[s(βn)− s(βn−`)] =

(
1− (n− `)`

(n)`

)
λ =

(n)` − (n− `)`
(n)`

λ ≤ `2(n− 1)`−1
(n)`

λ =
`2λ

n
.

Combining the previous estimates yields

E[|Z|] ≤ 2`r

`!λ
+

2`2λ

n

so that (3.16) follows from (1.3).
Let k ∈ N be fixed. Note that S ≥ s(βn−`) and S′ ≥ s(βn−`). If Z ≥ 0, this implies

1{S − Z− ≤ k} = 1{S ≤ k} ≤ 1{s(βn−`) ≤ k}.

For Z ≤ 0 we obtain

1{S − Z− ≤ k} = 1{S + Z ≤ k} = 1{S′ ≤ k} ≤ 1{s(βn−`) ≤ k}.

Combing the two cases leads to

1{S − Z− = k} ≤ 1{S − Z− ≤ k} ≤ 1{s(βn−`) ≤ k}.

Together with (3.19) we obtain

E[|Z|1{S − Z− = k}]
≤ E[1{s(βn−`) ≤ k}(s(βn−` + χ)− h(X ′1, . . . , X

′
`)− s(βn−`) + s(βn)− s(βn−`))].

(3.21)

For u ∈ {1, . . . , `− 1} and g : Xu → [0,∞), we have

E[1{s(βn−`) ≤ k}
∑

(x1,...,xu)∈βun−`, 6=

g(x1, . . . , xu)]

= (n− `)u
∫
Xu
P(s(βn−`−u +

u∑
i=1

δxi) ≤ k)g(x1, . . . , xu)dKu(x1, . . . , xu)

≤ P(s(βn−2`) ≤ k)(n− `)u
∫
Xu

g(x1, . . . , xu)dKu(x1, . . . , xu)

= P(s(βn−2`) ≤ k)E
∑

(x1,...,xu)∈βun−`, 6=

g(x1, . . . , xu),

(3.22)

where the inequality follows from the monotonicity of s. Because of

s(βn−` + χ)− h(X ′1, . . . , X
′
`)− s(βn−`) =

`−1∑
u=1

∑
(x1,...,xu)∈βun−`, 6=

h̃u(x1, . . . , xu;χ)
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and

s(βn)− s(βn−`) =

`−1∑
u=1

∑
(x1,...,xu)∈βun−`, 6=

hu(x1, . . . , xu;βn \ βn−`)

with suitable functions h̃u and hu, u ∈ {1, . . . , ` − 1}, we can rewrite the second factor
on the right-hand side of (3.21) as sum of U -statistics with respect to βn−`. Now an
application of (3.22) and (3.20) yield

E[|Z|1{S − Z− = k}]
≤ P(s(βn−2`) ≤ k)E[s(βn−` + χ)− h(X ′1, . . . , X

′
`)− s(βn−`) + s(βn)− s(βn−`)]

= P(s(βn−2`) ≤ k)
(
E[Z] + 2E[s(βn)− s(βn−`)]

)
.

Bounding the second factor on the right-hand side as above leads to

E[|Z|1{S − Z− = k}] ≤ P(s(βn−2`) ≤ k)

(
2`r

`!λ
+

2`2λ

n

)
.

Thus, (3.17) and (3.18) are immediate consequences of (1.4) and (1.5).

3.5 U-statistics of Poisson processes

In this subsection, we study the Poisson approximation of U -statistics, where one
sums over all `-tuples of distinct points of a Poisson process instead of those of a binomial
point process as in the previous subsection. In this case, the summation can run over
infinitely many `-tuples. As the results for U -statistics with binomial input in Subsection
3.4, the theory developed herein permits to study extreme value problems arising in
stochastic geometry. For example, in the next subsection, we employ our main result
for U -statistics with Poisson input to investigate the limiting behavior of the minimum
inter-point distance between the points of a Poisson process in Rd.

Let (X,X ) be a measurable space and let η be a Poisson process with a σ-finite
intensity measure L on X. For a fixed ` ∈ N and a symmetric measurable function
h : X` → {0, 1} that is integrable with respect to L` we consider the U -statistic

S =
1

`!

∑
(x1,...,x`)∈η`6=

h(x1, . . . , x`),

where η`6= denotes the set of all `-tuples of distinct points of η. It follows from the
multivariate Mecke formula that

λ := E[S] =
1

`!

∫
X`
h(x1, . . . , x`)dL

`(x1, . . . , x`).

We define

r = max
1≤i≤`−1

∫
Xi

(∫
X`−i

h(x1, . . . , x`)dL
`−i(xi+1, . . . , x`)

)2

dLi(x1, . . . , xi)

for ` ≥ 2, and put r = 0 for ` = 1. The expression r is used to quantify the accuracy of
the Poisson approximation for S and it is the analogue of r given in Subsection 3.4 for
binomial U -statistics.

Theorem 3.8. Let S, λ > 0 and r be as above. Then,

dTV (S, Pλ) ≤
(

1 ∧ 1

λ

)
2`r

`!
and dW (S, Pλ) ≤

(
1 ∧ 1.1437√

λ

)
2`r

`!
. (3.23)
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Moreover, for all m ∈ N,

0 ≤ P(S = 0)− e−λ ≤

[
m−1∑
k=0

(
1

k + 1
∧ k!

λk+1

)
P
(
S ≤ k

)
+

m!

λm+1

]
2`r

`!
(3.24)

and for all v ∈ N,

|P(S ≤ v)− P(Pλ ≤ v)| ≤

[
(v + 1)2

λ
+ P(S ≤ v)

]
2`r

`!λ
. (3.25)

Similarly as discussed next to Theorem 3.6, the right-hand sides in Theorem 3.8
become small for fixed ` and λ if r is small, which implies that the probability that there
exists a point of η that belongs to more than one k-tuple (up to permutations) with
non-zero h is small.

The result for the total variation distance in (3.23) was shown in [39, Proposition
1], which improved [38, Proposition 4.1], and in [31, Section 8]. The bound for the
Wasserstein distance in (3.23) was also derived in [31, Section 8] and has a slightly
better order in λ than that in [15, Theorem 7.1]. To the best of our knowledge, the other
inequalities presented in Theorem 3.8 have no analogues in the literature.

Proof of Theorem 3.8. We follow a similar approach as in the proof of Theorem 3.6. For
` = 1, Theorem 3.8 is a direct consequence of [22, Theorem 5.1], whence we assume
` ≥ 2 from now on.

Let χ be a point process of ` random points X ′1, . . . , X
′
` that are independent of η and

distributed according to

P((X ′1, . . . , X
′
`) ∈ A) =

1

`!λ

∫
X`

1{(x1, . . . , x`) ∈ A}h(x1, . . . , x`)dL
`(x1, . . . , x`)

for A ∈ X `. We define

S′ = −h(X ′1, . . . , X
′
`) +

1

`!

∑
(x1,...,x`)∈(η∪χ)k6=

h(x1, . . . , x`).

For k ∈ N the multivariate Mecke formula implies that

kP(S = k) = E[S1{S = k}]

=
1

`!
E

∑
(x1,...,x`)∈η`6=

h(x1, . . . , x`)1

{
1

`!

∑
(y1,...,y`)∈η`6=

h(y1, . . . , y`) = k

}

=
1

`!

∫
X`
h(x1, . . . , x`)P

(
1

`!

∑
(y1,...,y`)∈(η∪{x1,...,x`})`6=

h(y1, . . . , y`) = k

)
dL`(x1, . . . , x`)

= λP(S′ + h(X ′1, . . . , X
′
`) = k) = λP(S′ = k − 1),

where we used h(X ′1, . . . , X
′
`) = 1 a.s. in the last step. Thus, we see that S satisfies the

hypothesis of Theorem 1.1 with Z = S′ − S ≥ 0.
Next we compute the expressions on the right-hand sides of the bounds in Theorem

1.1. Let k ∈ N be fixed. Define s(ν) = 1
`!

∑
(x1,...,x`)∈ν`6=

h(x1, . . . , x`) for ν ∈ NX and note

that S = s(η). Since

s(ν + χ+ δx)− s(ν + δx) ≥ s(ν + χ)− s(ν) and 1{s(ν + δx) ≤ k} ≤ 1{s(ν) ≤ k}

for all ν ∈ NX and x ∈ X, by [22, Theorem 20.4] we obtain

E
[
Z1{S ≤ k}

]
≤ E[Z]P(S ≤ k).
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Together with Z ≥ 0, we have

E[|Z|1{S − Z− = k}] = E[Z1{S = k}] ≤ E[Z1{S ≤ k}] ≤ E[Z]P(S ≤ k). (3.26)

Furthermore, from Remark 1.2 (ii) it follows that

E[Z] =
1

λ

{
Var(S)− λ

}
=

1

λ

{
E[S2]− λ2 − λ

}
. (3.27)

Then, from Z ≥ 0 and [15, Lemma 6.1] we deduce

E[|Z|] = E[Z] ≤
`−1∑
i=1

1

`!λ

(
`

i

)
r ≤ 2`

`!λ
r. (3.28)

Finally, combining this bound with (1.3) shows (3.23), while (1.4) and (1.5) together with
(3.26) and (3.28) lead to (3.24), where the first inequality is a consequence of Corollary
2.7 a), and (3.25).

3.6 The distances between the points of a Poisson process

We consider random points in Rd distributed according to a Poisson process. For
any pair of these points with the midpoint in a bounded measurable set W ⊂ Rd, we
take a transform of the Euclidean distance, and we study the Poisson approximation for
the number of times that these quantities belong to a certain range of values. More
importantly, we consider the exponential approximation for a transform of the minimal
distance between pairs of points with midpoint in W .

Let ηt be a Poisson process on Rd with intensity measure tλd, t > 0, where we denote
by λd the d-dimensional Lebesgue measure. For convenience, we assume λd(W ) = 1;
nonetheless, the following arguments are valid for every W with a positive and finite
volume. Define

ξt =
1

2

∑
(x,y)∈η2t, 6=

1
{x+ y

2
∈W

}
δ2−1t2kd‖x−y‖d , t > 0,

Yt = min
(x,y)∈η2t, 6=: x+y2 ∈W

2−1t2kd‖x− y‖d, t > 0,

where δz stands for the Dirac measure at z ∈ R, ‖ · ‖ is the Euclidean norm and kd
denotes the volume of the d-dimensional unit ball.

Theorem 3.9. Let ξt and Yt be as above for t > 0. Let γ be a Poisson process on [0,∞)

with the restriction of the Lebesgue measure to [0,∞) as intensity measure. Then for all
u ≥ 0 and all measurable B ⊂ [0, u],

dTV (ξt(B), γ(B)) ≤ (1 ∧ u)
8u

t
(3.29)

and

0 ≤ P(Yt > u)− e−u ≤ 80

t
. (3.30)

The minimal distance between the points of a Poisson process was also considered
in [11, 15, 38, 39], sometimes formulated as minimal edge length of the random geo-
metric graph or the minimal inradius of a Poisson-Voronoi tessellation. The important
achievement of Theorem 3.9 is that a rate of convergence for the Kolmogorov distance is
provided in (3.30). So far it was only possible to prove bounds on the difference between
P(Yt > u) and e−u that depend on u > 0 (see e.g. [38, Theorem 2.4] or [39, Corollary 3]).
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In the works mentioned above all pairs of points are considered such that one or both
points belong to W . Our approach, where we only require that the midpoint of the points
is in W , can be extended to this different way of counting, but one might get additional
terms in the bounds since E[ξt([0, u])] is not necessarily u due to boundary effects.

In [38, 39], beside Poisson approximation results for the number of inter-point
distances below a given threshold it was shown that the point process of rescaled inter-
point distances converges weakly to a Poisson process. By (3.29) and [18, Theorem
16.16], we can also deduce that ξt converges weakly to γ as t→∞.

The related problem of small distances between the points of a binomial point process
was first studied in [40]. Because of the similarity to Theorem 3.8, we believe that
by applying Theorem 3.6 it is possible to prove a similar result to Theorem 3.9 for an
underlying binomial point process.

By using in the proof of Theorem 3.9 the corresponding bound of Theorem 3.8 for
the Wasserstein distance, one can obtain the counterpart of (3.29) for the Wasserstein
distance with a different power in u and the same rate of convergence in t.

Proof of Theorem 3.9. First, we show that the intensity measure of the point process ξt
is the restriction of the Lebesgue measure to [0,∞). Let vt =

(
2u
kdt2

)1/d
. The change of

variable z = x+y
2 yields

E[ξt([0, u])] =
t2

2

∫
Rd

∫
Rd

1
{x+ y

2
∈W

}
1{‖x− y‖ ≤ vt} dydx

= 2d−1t2
∫
Rd

∫
Rd

1
{
z ∈W

}
1{2‖x− z‖ ≤ vt} dzdx

= 2d−1t2
∫
W

∫
Rd

1{2‖x− z‖ ≤ vt} dxdz = u.

For measurable B ⊂ [0, u] with u > 0 define

rt(B) = t

∫
Rd

(
t

∫
Rd

1
{x+ y

2
∈W

}
1{2−1t2kd‖x− y‖d ∈ B} dy

)2

dx.

Again from the change of variable z = x+y
2 , it follows that

rt(B) ≤ rt([0, u]) = 22dt3
∫
Rd

(∫
W

1{2‖x− z‖ ≤ vt} dz
)2

dx

≤ 22dt3
∫
Rd

(∫
Rd

1{2‖x− z‖ ≤ vt} dz
∫
W

1{2‖x− z̃‖ ≤ vt} dz̃
)
dx

= 2d+1ut

∫
Rd

∫
W

1{2‖x− z̃‖ ≤ vt} dz̃dx

= 2d+1ut

∫
W

∫
Rd

1{2‖x− z̃‖ ≤ vt} dxdz̃ =
4u2

t
.

Therefore (3.23) in Theorem 3.8 with h(x, y) = 1
{
x+y
2 ∈ W

}
1{2−1t2kd‖x − y‖d ∈ B}

yields for measurable B ⊂ [0, u] that

dTV (ξt(B), γ(B)) ≤
(

1 ∧ 1

u

)
2rt(B) ≤ (1 ∧ u)

8u

t
.

From (3.27) and (3.28) in the proof of Theorem 3.8 with S = ξt([0, u]), r = rt([0, u])

and h as above, we know that

Var(ξt([0, u])) ≤ E[ξt([0, u])] + 2rt([0, u]) = u+
8u2

t
.
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Thus it follows from the Chebyshev inequality that

P(ξt([0, u]) = 0) ≤ P(|ξt([0, u])− u| ≥ u) ≤ Var(ξt([0, u]))

u2
=

1

u
+

8

t
. (3.31)

Together with (3.24) in Theorem 3.8 with m = 1 and straightforward arguments, this
leads to

0 ≤ P(ξt([0, u]) = 0)− e−u = P(Yt > u)− e−u ≤
[

1

u
P(ξt([0, u]) = 0) +

1

u2

]
8u2

t
(3.32)

≤
(

1

u2
+

8

ut
+

1

u2

)
8u2

t
=

16

t
+

64u

t2

so that

sup
u∈[0,t]

|P(Yt > u)− e−u| ≤ 80

t
.

Moreover, from (3.31) we obtain

P(Yt > t) = P(ξt([0, t]) = 0) ≤ 9

t
.

Therefore we have

sup
u∈[0,∞)

|P(Yt > u)− e−u| ≤ max
{

sup
u∈[0,t]

|P(Yt > u)− e−u|,P(Yt > t), e−t
}
≤ 80

t
,

which combined with the left-hand side of (3.32) completes the proof.

4 Proofs for Poisson-Voronoi tessellations

4.1 Proof of Theorem 3.4

The proof of Theorem 3.4 requires several preparations. We set

st = α2kdt
(d+2)/(d+1).

Let Mt denote the intensity measure of ξt, and define

M̂t([0, u]) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))

= d+ 1
}]
dx,

θt([0, u]) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}]
dx

for u ≥ 0. For x ∈W and u ≥ 0 we have

ηt(B(x, 2(u/st)
1/d)) ≥ d+ 1 whenever stC(x, ηt + δx)d ≤ u. (4.1)

This is the case since stC(x, ηt + δx)d ≤ u implies that the nuclei of the neighboring cells
of x are in B(x, 2(u/st)

1/d) and each Voronoi cell has at least d + 1 neighboring cells.
From the Mecke formula and (4.1) it follows that

Mt([0, u]) = M̂t([0, u]) + θt([0, u]), u ≥ 0.

Lemma 4.1. For all u > 0 and t > 0,

M̂t([0, u]) = ud+1 exp
(
− 4du

α2t1/(d+1)

)
, θt([0, u]) ≤ 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
and Mt([0, u]) ≤ ud+1

pd+1
.
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Proof. First we compute M̂t([0, u]). From (4.1) and the definition of pd+1 in (3.8) we
derive

M̂t([0, u]) = t

∫
W

e−2
dkdtu/st

(
2dkdtu/st

)d+1

(d+ 1)!
pd+1

× P
(
ηt
(
B
(
x, 4(u/st)

1/d
)
\B
(
x, 2(u/st)

1/d
))

= 0
)
dx.

Substituting st = α2kdt
(d+2)/(d+1) and α2 =

(
2d(d+1)

(d+1)! pd+1

)1/(d+1)
into the previous equa-

tion implies that the right-hand side equals

ud+1

∫
W

exp

(
− 2du

α2t1/(d+1)
− tλd

(
B
(
x, 4(u/st)

1/d
)
\B
(
x, 2(u/st)

1/d
)))

dx

= ud+1 exp

(
− 2du

α2t1/(d+1)
− 2du

α2t1/(d+1)
(2d − 1)

)
= ud+1 exp

(
− 4du

α2t1/(d+1)

)
,

which completes the first part of the proof.
For u > 0, we have

θt([0, u]) ≤ t
∫
W

E
[
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}]
dx = t

∞∑
k=d+2

e−βt
βkt
k!

with βt = 4dkdtu/st. Elementary calculations imply that

t

∞∑
k=d+2

e−βt
βkt
k!

= tβd+2
t

∞∑
k=d+2

e−βt
βk−d−2t

k!
= tβd+2

t

∞∑
`=0

e−βt
β`t

(`+ d+ 2)!

≤ tβd+2
t

(d+ 2)!
=
t
(
4dkdtu/st

)d+2

(d+ 2)!
.

Substituting st = α2kdt
(d+2)/(d+1) and α2 =

(
2d(d+1)

(d+1)! pd+1

)1/(d+1)
into the latter term yields

θt([0, u]) ≤ 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
,

which is the desired result.
From the Mecke formula, (4.1) and the same arguments as above, we obtain

Mt([0, u]) ≤ t
∫
W

P(ηt(B(x, 2(u/st)
1/d)) ≥ d+ 1)dx = t

∞∑
k=d+1

(2dkdtu/st)
k

k!
e−2

dkdtu/st

≤ t(2dkdtu/st)
d+1

(d+ 1)!
=

2d(d+1)kd+1
d td+2ud+1

kd+1
d

2d(d+1)pd+1

(d+1)! (d+ 1)!td+2
=
ud+1

pd+1
,

which concludes the proof.

We now provide a statement from [32, Lemma 3.14], which will be employed in the
proof of the subsequent proposition.

Lemma 4.2. Let x0, . . . , xd+1 ∈ Rd be in general position (i.e., no k-dimensional affine
subspace of Rd with k ∈ {0, . . . , d − 1} contains more than k + 1 of the points) and
assume that N(x0,

∑d+1
j=0 δxi) is bounded. Then N(xi,

∑d+1
j=0 δxi) is unbounded for any

i ∈ {1, . . . , d+ 1}.
Next we construct a random variable that satisfies (1.8) for ξt([0, u]) with remainder

terms qi, i ∈ N0, which vanish as t → ∞. By Bc we denote the complement of B ⊂ Rd
and by ηt|B the restriction of ηt to B.
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Proposition 4.3. Let X be uniformly distributed in W and independent of ηt. Then for
u > 0,

kP(ξt([0, u]) = k) = M̂t([0, u])P(ξt([0, u]) + Zt,u = k − 1) + qk−1(t, u), k ∈ N,

with
Zt,u = ξt

(
ηt|B(X,4(u/st)1/d)c

)
([0, u])− ξt([0, u])

and

qi(t, u) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}
× 1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= i
}]
dx

for i ∈ N0.

Proof. The Mecke equation implies for k ∈ N that

kP(ξt([0, u]) = k) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ξt(ηt + δx)([0, u]) = k

}]
dx

= t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx.

Now we divide the integral in

Ak + qk−1(t, u) := t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))

= d+ 1
}

× 1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx

+ t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}
× 1
{ ∑
y∈ηt∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx.

Then, it is enough to show that Ak = M̂t([0, u])P(ξt([0, u]) + Zt,u = k − 1). In order to
simplify the notation throughout this proof, we write

B2(x) := B
(
x, 2(u/st)

1/d
)

and B4(x) := B
(
x, 4(u/st)

1/d
)
, x ∈ Rd.

In case there are only d+1 points of ηt in B4(x), we have by (4.1) that stC(x, ηt+δx)d ≤ u
only if the d+ 1 elements of ηt belong to B2(x). Therefore we obtain

Ak = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt(B4(x) \B2(x)) = 0, ηt(B2(x)) = d+ 1

}
× 1
{ ∑
y∈ηt∩W

1{stC(y, ηt + δx)d ≤ u
}

= k − 1
}]
dx.

(4.2)

The observation that

stC(y, ηt + δx)d ≤ u if and only if stC
(
y, (ηt + δx)|B2(y)

)d ≤ u (4.3)

for y ∈ ηt establishes that

Ak = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt(B4(x) \B2(x)) = 0, ηt(B2(x)) = d+ 1

}
× 1
{
ξt(ηt|B4(x)c)([0, u]) +

∑
y∈ηt∩B2(x)∩W

1
{
stC(y, ηt + δx)d ≤ u

}
= k − 1

}]
dx.
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Suppose that stC(x, ηt + δx)d ≤ u and that there are exactly d+ 1 points y1, . . . , yd+1 of ηt
in B2(x) and ηt ∩B4(x) ∩B2(x)c = ∅. From Lemma 4.2 it follows that the Voronoi cells
N(yi, ηt|B4(x) + δx), i = 1, . . . , d+ 1, are unbounded. In particular, we have

C(yi, ηt + δx) > (u/st)
1/d, i = 1, . . . , d+ 1.

Together with the same arguments used to show (4.2) and independence, this implies
that

Ak = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1{ηt(B4(x) \B2(x)) = 0, ηt(B2(x)) = d+ 1}

× 1{ξt(ηt|B4(x)c)([0, u]) = k − 1}
]
dx

= t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1{ηt(B4(x)) = d+ 1}

]
× P

(
ξt(ηt|B4(x)c

)
([0, u]) = k − 1

)
dx.

Then, because the expectation in the latter equation does not depend on the choice of
x ∈W , we have that

Ak = M̂t([0, u])

∫
W

P
(
ξt
(
ηt|B4(x)c

)
([0, u]) = k − 1

)
dx

= M̂t([0, u])P(ξt([0, u]) + Zt,u = k − 1)

with

Zt,u = ξt
(
ηt|B4(X)c

)
([0, u])− ξt([0, u]).

This and B4(X) = B
(
X, 4(u/st)

1/d
)

give the desired conclusion.

Lemma 4.4. For u > 0, t > 0 and Zt,u as in Proposition 4.3,

E[|Zt,u|] ≤
6d

α2pd+1

ud+2

t(d+2)/(d+1)
.

Proof. For x ∈W it follows from the observation in (4.3) that

0 ≤ ξt([0, u])− ξt
(
ηt|B(x,4(u/st)1/d)c

)
([0, u]) ≤

∑
y∈ηt∩W∩B(x,6(u/st)1/d)

1{stC(y, ηt)
d ≤ u}.

By the Mecke formula and the stationarity of ηt, we obtain

E
∑

y∈ηt∩W∩B(x,6(u/st)1/d)

1{stC(y, ηt)
d ≤ u}≤ tλd(W ∩B(x, 6(u/st)

1/d))P(stC(0, ηt + δ0)d≤u)

≤ 6du

α2t(d+2)/(d+1)
tP(stC(0, ηt + δ0)d ≤ u).

From Lemma 4.1 we deduce

tP(stC(0, ηt + δ0)d ≤ u) = Mt([0, u]) ≤ ud+1

pd+1
,

which proves the assertion.

Lemma 4.5. For u > 0 and t > 0,

P(Tt > u) = P(ξt([0, u]) = 0) ≤ e−M̂t([0,u]).
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Proof. The first identity is obvious. Let Zt,u be the random variable defined in Proposition
4.3. Since Zt,u ≤ 0, P(ξt([0, u])+Zt,u ≥ 0) = 1 and qi(t, u) ≥ 0 for all i ∈ N0, the inequality
follows from Proposition 2.6 b).

In the next lemma, we combine the results obtained above and Theorem 1.3 to derive
intermediate bounds on the quantities considered in Theorem 3.4.

Lemma 4.6. For u > 0 and t > 0,

dTV
(
ξt([0, u]), P

M̂t([0,u])

)
≤ 6d

α2pd+1

ud+2

t(d+2)/(d+1)
+ θt([0, u]) (4.4)

and

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤
(

1 +
1

M̂t([0, u])

)
6d

α2pd+1

ud+2

t(d+2)/(d+1)
+

2θt([0, u])

M̂t([0, u])2
. (4.5)

Proof. From Proposition 4.3 it follows that the assumptions of Theorem 1.3 are satisfied.
Then, (1.9) in Theorem 1.3 and

∑∞
i=0 |qi(t, u)| = θt([0, u]) yield

dTV (ξt([0, u]), P
M̂t([0,u])

) ≤ (1 ∧ M̂t([0, u]))E[|Zt,u|] +
(
1 ∧ M̂t([0, u])−1/2

)
θt([0, u])

so that (4.4) follows from Lemma 4.4.
Let us now prove (4.5). From Lemma 4.5, (1.12) in Theorem 1.3 with m = 1 and∑∞
i=1 qi(t, u) ≤ θt([0, u]) we obtain

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤
E
[
|Zt,u|

]
M̂t([0, u])

+ E
[
|Zt,u|

]
+

q0(t, u)

M̂t([0, u])
+

θt([0, u])

M̂t([0, u])2
.

The first two terms on the right-hand side can be bounded by Lemma 4.4. Recall that

q0(t, u) = t

∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}
× 1
{ ∑
y∈ηt∩W

1{stC(y, ηt + δx)d ≤ u} = 0
}]
dx.

Since the product of the first two indicator functions is increasing with respect to
additional points, while the third indicator function is decreasing, it follows from [22,
Theorem 20.4] that

q0(t, u) ≤ t
∫
W

E
[
1
{
stC(x, ηt + δx)d ≤ u

}
1
{
ηt
(
B
(
x, 4(u/st)

1/d
))
> d+ 1

}]
× P

( ∑
y∈ηt∩W

1{stC(y, ηt + δx)d ≤ u} = 0
)
dx.

Now Lemma 4.5 and the elementary inequality ve−v ≤ 1 for v ≥ 0 lead to

q0(t, u) ≤ θt([0, u])P(ξt([0, u]) = 0) ≤ θt([0, u])e−M̂t([0,u]) ≤ θt([0, u])

M̂t([0, u])
,

which concludes the proof.

Proof of Theorem 3.4. Let u > 0 be fixed. From (4.4) in Lemma 4.6, Lemma 4.1 and
t ≥ 1 it follows that

dTV
(
ξt([0, u]), P

M̂t([0,u])

)
≤ 6d

α2pd+1

ud+2

t(d+2)/(d+1)
+ θt([0, u]) ≤ 6d + 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
. (4.6)
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Using a well-known bound for the total variation distance between two Poisson dis-
tributed random variables, Lemma 4.1 and the inequality 1 − e−v ≤ v for v ≥ 0, we
obtain

dTV
(
Pud+1 , P

M̂t([0,u])

)
≤ ud+1 − M̂t([0, u]) = ud+1

(
1− exp

(
− 4du

α2t1/(d+1)

))
≤ 4dud+2

α2t1/(d+1)
.

Now the triangle inequality yields

dTV
(
ξt([0, u]), Pud+1

)
≤ 3 · 2d(d+3)

α2pd+1

ud+2

t1/(d+1)
,

which proves (3.10).
Let us now show (3.11). From (4.6) and Lemma 4.5 we have that, for u ∈ [0, 1],

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤ 2d(d+3)+1

α2pd+1

1

t1/(d+1)
.

In the following we consider the case 1 ≤ u ≤ t1/(2d+2)τ with τ = α2/4
d. From Lemma

4.1 and t ≥ 1 we obtain

ud+1 ≥ M̂t([0, u]) ≥ ud+1

e
. (4.7)

Together with Lemma 4.5, (4.5) in Lemma 4.6, Lemma 4.1 and u ≥ 1 we obtain

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤
(

1 +
1

M̂t([0, u])

)
6d

α2pd+1

ud+2

t(d+2)/(d+1)
+

2θt([0, u])

M̂t([0, u])2

≤ (1 + e)
6d

α2pd+1

ud+2

t(d+2)/(d+1)
+ 2e2

1

u2d+2

2d(d+3)

α2pd+1

ud+2

t1/(d+1)
.

Using 1 ≤ ud+2 ≤ t(d+2)/(2d+2)αd+2
2 /4d(d+2), t ≥ 1 and the definition of α2 in (3.7), we

deduce

0 ≤ e−M̂t([0,u]) − P(Tt > u) ≤ (1 + e)6d

4d(d+2)

αd+1
2

pd+1

1

t1/(d+1)
+ 2e2

1

u2d+2

2d(d+3)

α2pd+1

ud+2

t1/(d+1)

≤ 1

t1/(d+1)
+

2d(d+3)+4

α2pd+1

1

t1/(d+1)

so that

sup
u∈[0,t1/(2d+2)τ ]

|e−M̂t([0,u]) − P(Tt > u)| ≤
[
1 +

2d(d+3)+4

α2pd+1

]
1

t1/(d+1)
.

Moreover, by Lemma 4.1, (4.7) and elementary arguments we obtain for 0 ≤ u ≤
t1/(2d+2)τ that

0 ≤ e−M̂t([0,u]) − e−u
d+1

≤
[
ud+1 − M̂t([0, u])

]
e−M̂t([0,u])

≤ 4dud+2

α2t1/(d+1)
e−u

d+1e−1

≤ 4de
d+2
d+1

α2t1/(d+1)
≤ 22d+3

α2t1/(d+1)
,

where we used the inequalities 1− e−x ≤ x and e−x
d+1

xd+2 ≤ 1 for x ≥ 0. This implies
that

sup
u∈[0,t1/(2d+2)τ ]

|e−u
d+1

− P(Tt > u)| ≤
[
1 +

2d(d+3)+4

α2pd+1
+

22d+3

α2

]
1

t1/(d+1)
.

On the other hand, x2e−x
d+1 ≤ 1 for x ≥ 0 leads to

exp
(
−(t1/(2d+2)τ)d+1

)
≤ 1

(t1/(2d+2)τ)2
≤ 16d

α2
2

1

t1/(d+1)
.
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Combining the two previous inequalities gives a bound for P
(
Tt > t1/(2d+2)τ

)
and it

implies

sup
u∈[0,∞)

|e−u
d+1

− P(Tt > u)|

≤ max
{

sup
u∈[0,t1/(2d+2)τ ]

|e−u
d+1

− P(Tt > u)|,P
(
Tt > t1/(2d+2)τ

)
, exp

(
−(t1/(2d+2)τ)d+1

)}
≤
[
1 +

2d(d+3)+4

α2pd+1
+

22d+3

α2
+

16d

α2
2

]
1

t1/(d+1)
.

Now the identity P(Tt > 0) = 1 concludes the proof.

4.2 Proof of Theorem 3.5

For the proof of Theorem 3.5 we introduce some notation. By Mt we denote the
intensity measure of ξt. For u > − log(t), set

vt = vt(u) =

(
u+ log(t)

tkd

)1/d

. (4.8)

Then, for u > − log(t) we have

Mt((u,∞)) = t

∫
W

E
[
1{ht(x, ηt + δx) > u}

]
dx = t

∫
W

P
(
ηt(B(x, vt)) = 0

)
dx

= t

∫
W

e−tv
d
t kddx = te−u−log(t) = e−u.

Let X be a uniformly distributed random vector in W independent of ηt. In the next
proposition we show that for each u > − log(t), and for an opportune choice of a random
ball B centered at X, the random variable ξt(ηt|Bc)((u,∞))− ξt((u,∞)) satisfies (1.2) for
ξt((u,∞)).

Proposition 4.7. For any t > e and u > − log(t),

kP(ξt((u,∞)) = k) = Mt((u,∞))P(ξt((u,∞)) + Zt(u) = k − 1), k ∈ N,

where the random variable Zt(u) is defined as

Zt(u) = ξt(ηt|B(X,vt)c)((u,∞))− ξt((u,∞))

with vt = vt(u) given by (4.8).

Proof. Let B = (u,∞) with u > − log(t). The Mecke equation yields for k ∈ N that

kP(ξt(B) = k) = t

∫
W

E
[
1{ht(x, ηt + δx) > u}1{ξt(ηt + δx)(B) = k}

]
dx.

Since ht(x, ηt + δx) > u if and only if ηt(B(x, vt)) = 0, the right-hand side equals

t

∫
W

E
[
1{ηt(B(x, vt)) = 0}1{ξt(ηt|B(x,vt)c)(B) = k − 1}

]
dx

= t

∫
W

P
(
ηt(B(x, vt)) = 0

)
E
[
1{ξt(ηt|B(x,vt)c)(B) = k − 1}

]
dx

= e−u
∫
W

P
(
ξt(ηt|B(x,vt)c)(B) = k − 1

)
dx.
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Hence, elementary arguments lead to

kP(ξt(B) = k) = Mt(B)P
(
ξt(ηt|B(X,vt)c)(B) = k − 1

)
= Mt(B)P

(
ξt(B) + Zt(u) = k − 1

)
,

which is the desired conclusion.

Proof of Theorem 3.5. Suppose u > − log(t) and let Zt(u) be as in Proposition 4.7. We
can rewrite Zt(u) as

Zt(u) = ξt(ηt|B(X,vt)c)((u,∞))− ξt((u,∞))

=
∑

z∈ηt∩W∩B(X,2vt)∩B(X,vt)c

1{ht(z, ηt|B(X,vt)c) > u} − 1{ht(z, ηt) > u}

−
∑

z∈ηt∩B(X,vt)∩W

1{ht(z, ηt) > u}

=: Z ′t,X(u)− Z ′′t,X(u),

where Z ′t,X(u) and Z ′′t,X(u) are non-negative. For a fixed x ∈W , the Mecke formula and
short computations yield

E[Z ′t,X(u)] ≤ E
[ ∑
z∈ηt∩B(x,2vt)∩B(x,vt)c

1
{
ht(z, ηt|B(x,vt)c) > u

}]
= t

∫
B(x,2vt)∩B(x,vt)c

P
(
ηt(B(z, vt) ∩B(x, vt)

c) = 0
)
dz

≤ t
∫

B(x,2vt)∩B(x,vt)c
e−tv

d
t kd/2dz ≤ 2d(u+ log(t))e−(u+log(t))/2 = 2d

u+ log(t)

eu/2
√
t

(4.9)

and, similarly,

E[Z ′′t,X(u)] ≤ E
[ ∑
z∈ηt∩B(x,vt)

1
{
ht(z, ηt) > u

}]
= t

∫
B(x,vt)

P
(
ηt(B(z, vt)) = 0

)
dz

≤ t
∫

B(x,vt)

e−tv
d
t kddz ≤ (u+ log(t))e−u−log(t) =

u+ log(t)

eut
.

(4.10)

It follows from the triangle inequality that

E[|Zt(u)|] ≤ 2d
u+ log(t)

eu/2
√
t

+
u+ log(t)

eut
.

Then, by the first inequality of (1.3) in Theorem 1.1, we obtain (3.14).
Let us now show (3.15). We consider the cases u ≥ 0, u ∈ [− log(log(t)), 0) and

u < − log(log(t)) separately. Because of ue−u ≤ 1 and ue−u/2 ≤ 1 for u ≥ 0 and log(t) ≥ 1,
by (3.14) we have

dTV
(
ξt((u,∞)), Pe−u

)
≤ (2d+1 + 2)

log(t)√
t

for u ≥ 0, which proves (3.15) for u ≥ 0.
In the following let u ∈ [− log(log(t)), 0) be fixed. Since Zt(u) = Z ′t,X(u)− Z ′′t,X(u) and

the terms on the right-hand side are both non-negative, we obtain that

Zt(u)+ ≤ Z ′t,X(u) and Zt(u)− ≤ Z ′′t,X(u).
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Combining these inequalities and (1.4) in Theorem 1.1 with m = 1 establishes

|P(Rt ≤ u)− P(Pe−u = 0)| = |P(ξt((u,∞)) = 0)− P(Pe−u = 0)|
≤ euE[|Zt(u)|] + E[|Zt(u)|1{ξt((u,∞))− Zt(u)− = 0}]
≤ euE[|Zt(u)|] + E[Z ′t,X(u)1{ξt((u,∞)) = 0}] + E[Z ′′t,X(u)].

Moreover, by (4.9) and (4.10) we have

E[Z ′t,X(u)] ≤ 2d
u+ log(t)

eu/2
√
t
≤ 2d

log(t)

eu/2
√
t

and E[Z ′′t,X(u)] ≤ u+ log(t)

eut
≤ (log(t))2

t
≤ log(t)√

t
.

Thus the identity Zt(u) = Z ′t,X(u)− Z ′′t,X(u) with Z ′t,X(u), Z ′′t,X(u) ≥ 0 implies that

|P(Rt ≤ u)− P(Pe−u = 0)| ≤ (2d + 2)
log(t)√

t
+ E[Z ′t,X(u)1{ξt((u,∞)) = 0}]. (4.11)

For x ∈W we define

ξt,x((u,∞)) =
∑

z∈ηt∩W∩B(x,4vt)c

1{ht(z, ηt) > u}.

Since, for x ∈ W , 1{ξt((u,∞)) = 0} ≤ 1{ξt,x((u,∞)) = 0} and Z ′t,x(u) and 1{ξt,x((u,∞))

= 0} are independent, we have

E[Z ′t,X(u)1{ξt((u,∞)) = 0}] ≤
∫
W

E[Z ′t,x(u)1{ξt,x((u,∞)) = 0}]dx

=

∫
W

E[Z ′t,x(u)]P(ξt,x((u,∞)) = 0)dx.

(4.12)

For x ∈W , the Markov and the triangle inequalities, (3.14) and eu/2
√
t ≥ 1 imply that

P(ξt,x((u,∞)) = 0) ≤ P(ξt((u,∞)) = 0) + P
( ∑
z∈ηt∩B(x,4vt)

1{ht(z, ηt) > u} > 0
)

≤ 2d
log(t)

eu/2
√
t

+
log(t)

eut
+ e−e

−u
+ E

[ ∑
z∈ηt∩B(x,4vt)

1
{
ht(z, ηt) > u

}]
≤ (2d + 1)

log(t)

eu/2
√
t

+ e−e
−u

+ E
[ ∑
z∈ηt∩B(x,4vt)

1
{
ht(z, ηt) > u

}]
.

Similar arguments as used in (4.10) and eu/2
√
t ≥ 1 lead to

E
[ ∑
z∈ηt∩B(x,4vt)

1
{
ht(z, ηt) > u

}]
≤ 4d(u+ log(t))

eut
≤ 4d log(t)

eu/2
√
t
.

Since log(t)eu ≥ 1 and log(t)2√
t
≤ 4 for t > e2, we obtain

log(t)

eu/2
√
t
≤ log(t)2eu

eu/2
√
t
≤ log(t)2√

t
eu/2 ≤ 4eu/2.

Together with exp(−e−u − u/2) ≤ 1, which follows from u < 0, we have shown

P(ξt,x((u,∞)) = 0) ≤ 4(4d + 2d + 1)eu/2 + eu/2 ≤ (4(4d + 2d + 1) + 1)eu/2
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so that, by (4.9) and (4.12),

E[Z ′t,X(u)1{ξt((u,∞)) = 0}] ≤ (4(4d + 2d + 1) + 1)eu/2
2d log(t)

eu/2
√
t

= (2d+2(4d + 2d + 1) + 2d)
log(t)√

t
.

Combining this with (4.11) leads to∣∣∣P(Rt ≤ u)− e−e
−u
∣∣∣ ≤ (2d+2(4d + 2d + 1) + 2d + 2d + 2)

log(t)√
t

≤ 2d+2(4d + 2d + 2)
log(t)√

t
,

(4.13)

which establishes (3.15) for u ∈ [− log(log(t)), 0).
Finally for u < − log(log(t)) we have

P(Rt ≤ u) ≤ P(Rt ≤ − log(log(t))),

which by (4.13) and the triangle inequality is bounded by

2d+2(4d + 2d + 2)
log(t)√

t
+

1

t
.

Therefore elementary arguments lead to

sup
u<− log(log(t))

∣∣P(Rt ≤ u)− e−e
−u ∣∣ ≤ [2d+2(4d + 2d + 2) + 1]

log(t)√
t
,

which concludes the proof of (3.15).

Remark 4.8. Note that the integral in the middle of (4.9) cannot be bounded with a
better exponent for t. Indeed, using substitution, we can rewrite the integral as

u+ log(t)

kd

∫
B(0,2)∩B(0,1)c

e
−(u+log(t))

λd(B(y,1)∩B(0,1)c)

kd dy.

For any sufficiently small ε > 0 there exists a set A ⊂ B(0, 2) ∩ B(0, 1)c with λd(A) > 0

such that the ratio in the exponent is at least (1 + ε)/2 for all y ∈ A. This provides a
lower bound of the order log(t)t−(1+ε)/2.
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