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Variations on Salem–Zygmund results
for random trigonometric polynomials:

application to almost sure nodal asymptotics*

Jürgen Angst† Guillaume Poly‡

Abstract

On some probability space (Ω,F ,P), we consider two independent sequences (ak)k≥1

and (bk)k≥1 of i.i.d. random variables that are centered with unit variance and which
admit a moment strictly higher than two. We then consider the associated random
trigonometric polynomial fn(t) := 1√

n

∑n
k=1 ak cos(kt) + bk sin(kt), t ∈ R. In their

seminal work, for Rademacher coefficients, Salem and Zygmund showed that P
almost surely:

∀t ∈ R, 1

2π

∫ 2π

0

exp (itfn(x)) dx −−−−→
n→∞

e−
t2

2 .

In other words, if X denotes an independent random variable uniformly distributed
over [0, 2π], P almost surely, under the law of X, fn(X) converges in distribution to a
standard Gaussian variable. In this paper, we revisit the above Salem–Zygmund result
from different perspectives. Namely,

i) we establish a convergence rate for some adequate metric via the Stein’s method,
ii) we prove a functional counterpart of Salem–Zygmund CLT,

iii) we extend it to more general distributions for X,
iv) we also prove that the convergence actually holds in total variation.

As an application, in the case where the random coefficients have a symmetric distri-
bution and admit a moment of order 4, we show that, P almost surely, for any interval
[a, b] ⊂ [0, 2π], the number of real zeros N (fn, [a, b]) of fn in the interval [a, b] satisfies
the universal asymptotics

N (fn, [a, b])

n
−−−−−→
n→+∞

(b− a)

π
√

3
.
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Variations on Salem–Zygmund results for trigonometric polynomials

1 Introduction and statement of the results

1.1 Introduction

Let us start by describing the framework of our study and fix the notations. We
consider a probability space (Ω,F ,P) which carries two independent sequences (ak)k≥1

and (bk)k≥1 of independent and identically distributed random variables. A generic
element in Ω will be denoted by ω ∈ Ω. We then consider an independent random
variable X with distribution PX in [0, 2π]. This can be achieved by considering the
product space

(Ω× [0, 2π],F × B([0, 2π]),P⊗ PX),

with X seen as the identity map from ([0, 2π],B([0, 2π]) to itself. The expectation with
respect to P and PX will be denoted by E and EX respectively. If Y is an independent
copy of X, which is also independent of the whole sequence (ak, bk)k≥1, we will denote
by EX,Y the expectation under PX ⊗ PY . To the sequence (ak, bk)k≥1, one can naturally
associate a sequence of random trigonometric polynomials setting for all n ≥ 1

fn(t) :=
1√
n

n∑
k=1

ak cos(kt) + bk sin(kt), t ∈ R.

The starting point of the article is the following celebrated result of Salem and Zygmund
in [27], which, slightly adapted to our context, reads as follows.

Theorem 1 (Theorem 3.1.1 of [27]). Suppose that (ak, bk)k≥1 is a sequence of indepen-
dent and identically distributed random variables that are centered with unit variance
and admit a third moment. Let X be an independent random variable that is uni-
formly distributed over [0, 2π]. Then, P almost surely, under PX we have the following
convergence in distribution

fn(X)
law underPX−−−−−−−−→

n→∞
N (0, 1), (1.1)

in the sense that P almost surely

∀t ∈ R, EX
[
eitfn(X)

]
=

1

2π

∫ 2π

0

eitfn(x)dx −−−−−→
n→+∞

e−t
2/2. (1.2)

This result has a long heritage, in particular there is a tremendous literature on
its extension to lacunary trigonometric polynomials, with large or bounded gaps, i.e.
polynomials of the form

1√
n

n∑
k=1

ak cos(nkt) + bk sin(nkt)

with nk+1/nk ≥ q > 1 or 1 < nk+1−nk = O(1), see e.g. [16, 9, 10, 19] and the references
therein. We rather focus here on the standard case where nk = k, and let us emphasize
that the two problems, non-lacunar or lacunar, are of very different nature. Indeed,
provided that the subsequence (nk)k≥1 has a sufficient growth rate, one has

1√
n

n∑
k=1

cos(nkX)
law under PX−−−−−−−−→

n→∞
N
(

0,
1

2

)
.

In particular, there is no need to add random weights in front of the cosine in order to
catch a Gaussian behavior with respect to PX . Roughly speaking, this is due to the fine
arithmetic properties on the subsequence (nk)k≥1 that are guaranteed by the lacunarity.
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Variations on Salem–Zygmund results for trigonometric polynomials

Nevertheless, if no lacunarity is imposed, there is no Gaussian limit behavior in general,
as illustrated by the simple counterexample

1√
n

n∑
k=1

cos(kX) =
1√
n

cos
(

(n+1)X
2

)
sin
(
nX
2

)
sin
(
X
2

) PX almost surely−−−−−−−−−−→
n→∞

0.

Let us also emphasize that Theorem 1 or its lacunar analogues are somewhat reminiscent
to a derandomization phenomenon, since the result holds almost surely in the coefficients
(ak, bk)k≥1, and the homogenization follows from the single randomness of the uniform
variable X. Such phenomena are at the heart of the method developed in [11, 12] to get
estimates for nodal observables associated to deterministic eigenfunctions on the torus,
starting from the ones associated to random Gaussian eigenfunctions.

As stated in the abstract, our main goal in this article is first, to extend the above
Salem–Zygmund Theorem 1 in different directions. These generalizations are described
informally just below and in more details in the next Section 1.2. Secondly, we show that
these variations on Salem–Zygmund results allow to deduce almost sure asymptotics
for the empirical measure associated with the real roots of the random trigonometric
polynomial fn. In particular, in Theorem 6 which is formally stated in Section 1.3 below,
we prove under mild conditions on the distribution of (ak, bk)k≥1, that P almost surely,
and for any interval [a, b] ⊂ [0, 2π]

N (fn, [a, b])

n
−−−−−→
n→+∞

b− a
π
√

3
, (1.3)

where N (fn, [a, b]) denotes the number of real zeros of fn in the interval [a, b].

Note that soon after the release of this article on arXiv, Nguyen and Zeitouni es-
tablished in [25] the exponential concentration of the number of real roots, which by
standard Borel–Cantelli argument also implies the almost sure asymptotics (1.3). We
stress that their method requires exponential moments for the random coefficients
whereas ours is valid under a fourth moment hypothesis. Besides, the techniques devel-
opped here can also be implemented for the study of the nodal volume of Riemannian
random waves on general Riemannian manifolds, see [20], for which no concentration
result is known.

In the case where the random coefficients (ak, bk)k≥1 are not Gaussian, an important
additional step in the proof of (1.3) consists in proving some log integrability of fn. To
do so, we rely on the nice recent results of [23]. Note that in the case of Gaussian
coefficients, this delicate step can be bypassed by elementary means. Let us also
highlight that, since the limit does not depend on the particular distribution of the
random coefficients (ak, bk)k≥1, the above almost sure convergence can be seen as a
universality phenomenon. In particular, under an extra moment assumption on the
coefficients (ak, bk), one immediately recovers the main result of [18], since taking the
expectation in (1.3), and using dominated convergence, we get indeed that

E [N (fn, [a, b])]

n
−−−−−→
n→+∞

b− a
π
√

3
. (1.4)

Before doing it more formally in the next section, let us now say a few words on the kind
of extensions of Salem–Zygmund result that are needed to establish the aforementioned
almost sure asymptotics. As a first ingredient, we obtain a quantitative version of
Theorem 1, i.e. an explicit rate of convergence, by using the so-called Stein’s method.
The latter is indeed a powerful and versatile method enabling to establish quantitative
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Variations on Salem–Zygmund results for trigonometric polynomials

limit theorems for a great variety of target distributions, see [13] for a nice introduction
to the subject. We moreover prove a functional version of Salem–Zygmund result,
showing that, P almost surely, under PX , the sequence of processes

(gn(t))t∈[0,2π] :=

(
fn

(
X +

t

n

))
t∈[0,2π]

converges in distribution in the C1 topology to a stationary limit Gaussian process with
sinc covariance function. These two first results are key steps in our proof of the almost
sure convergence (1.3).

We also obtain more general conditions on X so that (1.1) holds, and we prove that
the convergence holds not only in distribution but also in total variation. Concretely, we
prove that P almost surely, fn(X) has a density under PX and the latter converges in L1

to the standard Gaussian density. Although there are not used in the almost sure nodal
asymptotics, these two results are of independent interest.

As said above, our initial motivation to establish these variations on Salem–Zygmund
convergence (1.1) is the study of the nodal set associated to the random trigonometric
polynomial fn. The number of real zeros of fn is the object of a vast literature. For
example, in the case of Gaussian coefficients, the expected number of real zeros in a
given interval has been investigated in [15, 28, 17], whereas the variance of this number
of zeros was first described in [21] and then revisited and generalized in [6, 5]. For more
general coefficients, some universality results at local and global scales were obtained in
a series of recent papers, see for instance [4, 18, 22, 3, 14, 8] and the references therein.
Quite surprisingly, in the case of real roots of random trigonometric polynomials, the
question of the almost sure asymptotics (1.3) has not been tackled until now. To establish
such an almost sure result, a classical and natural strategy would be to get some good
estimates on the variance or some higher moment, i.e. for some p large enough, to show
that ∑

n≥1

E

[∣∣∣∣N (fn, [a, b])

n
− b− a
π
√

3

∣∣∣∣p] < +∞. (1.5)

This is precisely the approach used by Ancona and Letendre in their recent paper [2]
on the almost sure asymptotics of the real roots of Kostlan algebraic polynomials. It
has also been used for instance in [24] in the case of nodal set of random spherical
harmonics. We refer to Theorem 1 in [29] for related discussions. Unfortunately, in the
case of random trigonometric polynomials, only the variance, thus the case p = 2, has
been investigated in [21], where the authors showed that the summands in (1.5) are
exactly of the order 1/n, which is naturally not sufficient to conclude to the convergence
of the above serie. Such a strategy would thus require at least to handle the case p ≥ 4,
which if doable, would imply quite involved computations.

The method we employ here is radically different since we work with the sole
randomness induced by the variable X, hence in essence, our approach provides almost
sure results with respect to the probability P associated with the random coefficients.
In particular, we do not require any estimate on the variance of the number of zeros. A
careful examination of the proof indeed reveals that its main ingredients are on the one
hand, the orthogonality of trigonometric functions, and on the other hand, the existence
of a microscopic scaling limit in the model. Our approach could thus be applied more
general frameworks, in particular in the Riemannian random waves model [29], which
will be the object of a forthcoming paper by the authors.
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1.2 Variations on Salem–Zygmund Theorem

Let us now describe more formally and in more details our main results in relation
with Salem–Zygmund Theorem 1. The proofs of Theorems 2, 3, 4, and 5 stated below are
the object of the whole Section 2 of the article. In order to avoid some repetitions in the
statements and to clarify the different conditions we are working with, let us introduce
formally the following hypotheses on the random coefficients (ak, bk)k≥1.

(H2) The random variables (ak) and (bk)k≥1 are all independent and identically dis-
tributed, centered with unit variance.

And more generally for β ≥ 3

(Hβ) The random variables (ak) and (bk)k≥1 are all independent and identically dis-
tributed, centered with unit variance, and they admit a moment of order β, i.e.
E[|a1|β ] < +∞.

1.2.1 A quantitative version of Salem–Zygmund Theorem

A first direction in which Theorem 1 can be extended is a quantification of the conver-
gence in distribution for an appropriate choice of metric. Concretely, let us introduce
the C3 distance with respect to X, that is defined by

dXC3 (U, V ) := sup
‖φ(k)‖∞≤1

0≤k≤3

EX [φ (U)− φ (V )] ,

whenever U and V are measurable with respect to F ⊗ B([0, 2π]). Then, using the
separability of the space of C3 functions with bounded derivatives, the above distance
dXC3 (U, V ) is a F -measurable random variable. It actually quantifies the distance between
the laws of U and V , under PX , conditionally on F . Therefore, it is a convenient tool to
measure the rate of convergence in Theorem 1. The choice of this particular C3-distance
is guided by our proof, which is based on Stein’s method. Via Stein’s equation, the space
of bounded C3 functions is natural in this context, see e.g. Theorem 7 below.

Theorem 2. Suppose that (ak, bk)k≥1 satisfies condition (H4) and that the independent
random variable X is uniformly distributed in [0, 2π]. Then, if we set

C(a1) := 81
√

13 + |E[a3
1]|+ 8

√
E [a4

1] +
√

2 + 8E
[
|a1|3

]
+ 24E [|a1|] ,

and if G is σ(X)-measurable and if G ∼ N (0, 1) under PX , one has

E
[
dXC3 (fn(X), G)

]
≤ C(a1)√

n
. (1.6)

The last estimate (1.6) gives an upper bound for the expected rate of convergence in
Theorem 1. Using some standard Borel–Cantelli arguments, it is then possible to extract
a rate of convergence in the almost sure sense.

Corollary 1. Suppose that (ak, bk)k≥1 satisfies condition (H4) and that the independent
random variable X is uniformly distributed in [0, 2π]. Then, for every β < 1

6 , P almost
surely, there exists a constant C(ω) > 0 such that for all n ≥ 1

dXC3 (fn(X), G) ≤ C

nβ
. (1.7)

Remark 1. Let us emphasize here that the content of Corollary 1 is not expected to be
sharp, as Theorem 2 indicates that the correct order of convergence is of magnitude
1/
√
n, as in the classical Berry–Esseen inequality. However, the estimate (1.7) is sufficient

to carry out our proof of the almost sure convergence of empirical measure of roots
associated with random trigonometric polynomials.
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The proofs of Theorem 2 and of its Corollary 1 are the object of Section 2.1 below.

1.2.2 A functional version of Salem–Zygmund Theorem

Let us recall the definition of the stochastic process (gn(t))t∈[0,2π] := (fn (X + t/n)t∈[0,2π].
The convergence (1.1) is naturally equivalent to the fact that P almost surely, under PX ,
the sequence gn(0) converges in distribution to a Gaussian variable. Our next result show
that, in fact, the whole process (gn(t))t∈[0,2π] actually converges to an explicit stationary
Gaussian process.

Theorem 3. Suppose that (ak, bk)k≥1 satisfies condition (H3) and that the independent
random variable X is uniformly distributed in [0, 2π]. Then P almost surely, as n goes
to infinity, the process (gn(t))t∈[0,2π] converges in distribution in the C1 topology, to a
stationary Gaussian process (g∞(t))t∈[0,2π] with sinc covariance function, i.e.

EX [g∞(t)g∞(s)] =
sin(t− s)
t− s

.

Associated with the continuous mapping Theorem and the continuity of the number
of zeros with respect to the C1 topology at non-degenerate points, the last Theorem 3
ensures that P almost surely, the number of roots of gn in a compact set, converges in
distribution under PX , towards its analogue for g∞, see Section 3.2 below.

The proof of Theorem 3 is the object of Section 2.2 below.

1.2.3 Salem–Zygmund Theorem for a non-uniform distribution

In the next Section 2.3 below, we give an alternative proof of Theorem 1 which noticeably
differs from the original one. Our strategy mainly exploits the fact that, for all ξ ∈ R

E

[∣∣∣∣EX [eiξfn(X) − e−
ξ2

2

]∣∣∣∣2
]
→ 0 (1.8)

sufficiently fast in order to use some Borel–Cantelli argument. In order to do so, if Y de-
notes an independent copy of X, one must show that εn(X,Y ) := 1

n

∑n
k=1 cos (k(X − Y ))

tends to zero in L2 at some adequate speed. In the original case treated by Salem
and Zygmund where X and Y are independent uniform variables, we have the exact
computation EX,Y [εn(X,Y )2] = 1/2n which is sufficient to conclude. But this averaging
strategy applies to more general frameworks. Indeed, the use of Fubini inversion of
sums in (1.8) reveals that a quantified bivariate central convergence of (fn(X), fn(Y )) as
n→∞ is enough to carry out this strategy. Following the latter method, one can indeed
extend Theorem 1 to more general distributions PX over [0, 2π].

Theorem 4. Suppose that there exists β ≥ 3 such that (ak, bk)k≥1 satisfies condition
(Hβ) and let X be an independent variable on [0, 2π] whose Fourier coefficients satisfy

∃α > 0, ∀k ∈ Z/{0},
∣∣∣P̂X(k)

∣∣∣ ≤ C

|k|α
.

Then, provided that β > 2

min(α, 12 )
, P almost surely, under PX , one has

fn(X)
law under PX−−−−−−−−→

n→∞
N (0, 1).

Remark 2. The condition imposed on X in the previous Theorem 4 is satisfied whenever
X admits a density which is Hölder regular. It can also be satisfied for non absolutely
continuous distributions like for instance uniform distributions on Cantor sets.

The proof of Theorem 4 is the object of Section 2.3 below.
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Variations on Salem–Zygmund results for trigonometric polynomials

1.2.4 Salem–Zygmund Theorem in total variation

Our last extension of the original Salem–Zygmund Theorem is a total variation version
of the convergence in distribution (1.1). As before, for U and V two random variables
that are measurable with respect to F ⊗ B([0, 2π]), let us introduce the total variation
distance with respect to PX

dXTV (U, V ) := sup
||φ||∞≤1

EX [φ (U)− φ (V )] .

As for the C3 distance, the above quantity represents the conditional total variation
distance with respect to X, conditionally on F .

Theorem 5. Suppose that (ak, bk)k≥1 satisfies condition (H3) and that the independent
random variable X is uniformly distributed in [0, 2π]. Almost surely with respect to the
probability P, if G is σ(X)-measurable and if G ∼ N (0, 1) under PX , then as n goes to
infinity, we have limn→+∞ dXTV (fn(X), G) = 0.

The proof of Theorem 5 is the object of Section 2.4 below.

1.3 Application to almost sure nodal asymptotics

Let us now describe how the extensions of Salem–Zygmund result stated above can
be used to obtain almost sure results for the number of zeros of random trigonometric
polynomials.

Theorem 6. Suppose that (ak, bk)k≥1 are symmetric random variables satisfying condi-
tion (H4). Then, P almost surely, we have as n goes to infinity

lim
n→+∞

N (fn, [0, 2π])

n
=

2√
3
.

and more generally for any interval [a, b] ⊂ [0, 2π]

lim
n→+∞

N (fn, [a, b])

n
=
b− a
π
√

3
.

The proof of Theorem 6 is the object of the whole Section 3. The starting point of the
proof is a simple representation of the number of zeros N (fn, [0, 2π]) as an expectation
under EX , where X is an independent uniform variable, see Section 3.1. Then, the two
main ingredients of the proof are Theorem 2 and Theorem 3 stated above. Associated
with some logarithmic integrability estimates, see Section 3.3, they allow us to deduce
some moment estimates in Section 3.4, and to conclude in Section 3.5. The next synthetic
scheme gives the architecture of the proof.

2 Proofs of the variations on Salem–Zygmund Theorem

In this section, we give the proofs of the variations on Salem–Zygmund Theorem,
namely our main Theorems 2 to 5 stated in Section 1.2 above.

2.1 A quantitative Salem–Zygmund Theorem via Stein’s method

We use the powerful method of Stein to provide a proof of Theorem 2, i.e. to quantify
the rate of convergence for some appropriate metric in the Salem–Zygmund central limit
Theorem. This quantitative bound will play a central role in the proof of the almost sure
asymptotics of the number of real zeros of random trigonometric polynomials.

Proof of Theorem 2. The proof will be divided into several steps, directly inspired from
the celebrate proof of the Central Limit Theorem which is due to Charles Stein.
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(gn(t))t∈[0,2π]
law, under PX−−−−−−−−−−→
C1 topo., P a.s.

(g∞(t))t∈[0,2π]

E [EX [|log(|fn(X)||p]] <∞

EX [|log(|fn(X)||p] = O
(
nθ
)

Logarithmic integrability, Section 3.3

Functional CLT, Theorem 3 and Section 3.2 Quant. estimates., Corollary 1

Probabilistic representation, Section 3.1

Moment estimates, Section 3.4

Conclusion, Section 3.5

supn≥1EX [N (gn, [0, 2π])p] <∞
∀p ≥ 1, P a.s.

∀p > 1

∀p ≥ 1, ∀θ > 0, P a.s.

∀p ≥ 1, P a.s.

EX [N (gn, [0, 2π])p]→ EX [N (g∞, [0, 2π])p]
N (fn,[0,2π])

n = EX [N (gn, [0, 2π])]

N (fn,[0,2π])
n −−−−→

P a.s.
EX [N (g∞, [0, 2π])] = 2√

3

N (gn, [0, 2π])
law, under PX−−−−−−−−−→

P a.s.
N (g∞, [0, 2π])

dXC3(fn(X), G)
P a.s.

= O(n−α)

Figure 1: Synthetic plan of the proof of Theorem 6.

Step 1: using the Stein equation

Let h ∈ C3
b (R) which is centered with respect to the Gaussian distribution and which

satisfies max (‖h‖∞, ‖h′‖∞, ‖h′′‖∞, ‖h′′′‖∞) ≤ 1. The Stein equation is

∀x ∈ R, φ′(x)− xφ(x) = h(x). (2.1)

The following Theorem is at the heart of the Stein methodology for Gaussian approxi-
mation, see Chapter 2.2 of [13].

Theorem 7. Let h ∈ C1
b (R) such that max (‖h‖∞, ‖h′‖∞) ≤ 1, then there exists a unique

solution to (2.1) which satisfies:

‖φh‖∞ ≤ 2, ‖φ′h‖∞ ≤ 4, ‖φ′′h‖∞ ≤ 2. (2.2)

At the end of the proof, we shall need the following technical corollary which proceeds
directly from Theorem 7.

Corollary 2. Under the stronger assumption max (‖h‖∞, ‖h′‖∞, ‖h′′‖∞, ‖h′′′‖∞) ≤ 1 one
gets

‖xφh‖∞ ≤ 5 & ‖φ(3)‖∞ ≤ 18 & ‖xφ(3)
h ‖∞ ≤ 43. (2.3)

Proof of the Corollary 2. Taking two derivatives of the equation (2.1) gives the equation
φ

(3)
h −xφ′′h = h′′+2φ′h which is another Stein equation with left hand side h′′+2φ′h. Relying

on (2.2) and the assumptions on h we claim that max(‖h′′ + 2φ′h‖∞, ‖h′′ + 2φ′′h‖∞) ≤ 9.

This ensures, again by Theorem 7, that ‖φ(3)
h ‖∞ ≤ 18 and ‖φ(4)

h ‖∞ ≤ 36. Finally, taking

again a derivative of the Stein equation leads to φ(4)
h −xφ

(3)
h = h′′′+3φ(2) and the previous

bounds guarantee that ‖xφ(3)
h ‖∞ ≤ 43.

We shall denote by E the set of functions which satisfy the conditions (2.2) and (2.3).
Based on the combination of (2.1), (2.2) and (2.3), any function h that is centered for the
standard Gaussian distribution and whose three first derivatives are bounded by one can
be written φ′h − xφh for some φ ∈ E . We have thus
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dXC3

(
Sn(X)√

n
,G

)
≤ sup
φ∈E

∣∣∣∣EX [φ′(Sn(X)√
n

)
− Sn(X)√

n
φ

(
Sn(X)√

n

)]∣∣∣∣. (2.4)

We fix in the forthcoming estimates some function φ which obeys to the bounds given
in Equation (2.2). For convenience, we also set Rk(X) := ak cos(kX) + bk sin(kX) and
Skn(X) := Sn(X)−Rk(X). Using Taylor expansions and denoting by U an independent
random variable uniformly distributed over [0, 1], we may write

EX

[
Sn(X)√

n
φ

(
Sn(X)√

n

)]
=

1√
n

n∑
k=1

EX

[
Rk(X) φ

(
Sn(X)√

n

)]

=
1√
n

n∑
k=1

EX

[
Rk(X) φ

(
Skn(X)√

n

)]
︸ ︷︷ ︸

:=An

+
1

n

n∑
k=1

EX

[
Rk(X)2 φ′

(
Skn(X)√

n

)]
︸ ︷︷ ︸

:=Bn

+
1

n
√
n

n∑
k=1

EX

[
Rk(X)3 EU

[
φ′′
(
U
Skn(X)√

n
+ (1− U)

Sn(X)√
n

)]]
︸ ︷︷ ︸

:=Cn

.

We shall now estimate each of the terms An, Bn and Cn separately. First, the term Cn
can be bounded in the following way

|Cn| =

∣∣∣∣∣ 1

n
√
n

n∑
k=1

EX

[
Rk(X)3 EU

[
φ′′
(
U
Skn(X)√

n
+ (1− U)

Sn(X)√
n

)]]∣∣∣∣∣
≤ ‖φ′′‖∞√

n

1

n

n∑
k=1

(|ak|+ |bk|)3

≤ 2

n
√
n

n∑
k=1

(|ak|+ |bk|)3
.

Step 2: bounding the term Bn

We can write the following decomposition:

Bn =
1

n

n∑
k=1

EX

[
Rk(X)2 φ′

(
Skn(X)√

n

)]
= EX

[
1

n

n∑
k=1

Rk(X)2 φ′
(
Sn(X)√

n

)]

−EX

[
1

n
√
n

n∑
k=1

Rk(X)3 EU

[
φ′′
(
U
Sn(X)√

n
+ (1− U)

Skn(X)√
n

)]]

so that

Bn − EX
[
φ′
(
Sn(X)√

n

)]
= EX

[(
1

n

n∑
k=1

Rk(X)2 − 1

)
φ′
(
Sn(X)√

n

)]
︸ ︷︷ ︸

:=Bn,1

−EX

[
1

n
√
n

n∑
k=1

Rk(X)3 EU

[
φ′′
(
U
Sn(X)√

n
+ (1− U)

Skn(X)√
n

)]]
︸ ︷︷ ︸

:=Bn,2

.
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Using Stein’s bounds given in (2.2) we then get

|Bn,2| ≤
2

n
√
n

n∑
k=1

(|ak|+ |bk|)3
,

|Bn,1| ≤ 4 EX

[∣∣∣∣∣ 1n
n∑
k=1

Rk(X)2 − 1

∣∣∣∣∣
]
≤ 4EX

[∣∣∣∣∣ 1n
n∑
k=1

a2
k cos2(kX)− 1

2

∣∣∣∣∣
]

+ 4EX

[∣∣∣∣∣ 1n
n∑
k=1

b2k sin2(kX)− 1

2

∣∣∣∣∣
]

+ 4EX

[∣∣∣∣∣ 1n
n∑
k=1

akbk cos(kX) sin(kX)

∣∣∣∣∣
]
.

Then, using in the one hand the formula cos(2x) = 2 cos2(x) − 1 and Cauchy–Schwarz
inequality on the other hand, we may infer

EX

[∣∣∣∣∣ 1n
n∑
k=1

a2
k cos2(kX)− 1

2

∣∣∣∣∣
]
≤ 1

2
EX

[∣∣∣∣∣ 1n
n∑
k=1

a2
k cos(2kX)

∣∣∣∣∣
]

+
1

2

∣∣∣∣∣ 1n
n∑
k=1

(
a2
k − 1

)∣∣∣∣∣
≤ 1

2

√√√√ 1

2n2

n∑
k=1

a4
k +

1

2

∣∣∣∣∣ 1n
n∑
k=1

(
a2
k − 1

)∣∣∣∣∣ .
Exactly in the same way, we obtain

EX

[∣∣∣∣∣ 1n
n∑
k=1

b2k sin2(kX)− 1

2

∣∣∣∣∣
]
≤ 1

2

√√√√ 1

2n2

n∑
k=1

b4k +
1

2

∣∣∣∣∣ 1n
n∑
k=1

(
b2k − 1

)∣∣∣∣∣ ,
as well as

EX

[∣∣∣∣∣ 1n
n∑
k=1

akbk cos(kX) sin(kX)

∣∣∣∣∣
]
≤ 1

2
EX

[∣∣∣∣∣ 1n
n∑
k=1

akbk sin(2kX)

∣∣∣∣∣
]

≤ 1

2

√√√√ 1

2n2

n∑
k=1

a2
kb

2
k.

Gathering all these bounds, we finally obtain∣∣∣∣Bn − EX [φ′(Sn(X)√
n

)]∣∣∣∣ ≤ λn√
n

(2.5)

with

λn :=
2

n

n∑
k=1

(|ak|+ |bk|)3
+ 2

√√√√ 1

2n

n∑
k=1

a4
k + 2

∣∣∣∣∣ 1√
n

n∑
k=1

(
a2
k − 1

)∣∣∣∣∣
+2

√√√√ 1

2n

n∑
k=1

b4k + 2

∣∣∣∣∣ 1√
n

n∑
k=1

(
b2k − 1

)∣∣∣∣∣+ 2

√√√√ 1

2n

n∑
k=1

a2
kb

2
k.

(2.6)

Step 3: bounding the term An in the particular case φ(·) = exp (iξ·)

Bounding the term An term is arguably the most difficult part of the proof. Note that
for the moment, the estimates obtained for Bn and Cn are almost sure with respect to
P. We were not able to give such an almost sure estimate for An, but it is possible to
estimate its expectation under P. In order to capture the correct order of convergence,
we will first handle the case φ(·) = exp (iξ·) with ξ ∈ R. To this end, let us define

Ãn(ξ) := E

∣∣∣∣∣ 1√
n

n∑
k=1

EX
[
Rk(X) exp

(
iξSkn(X)

)]∣∣∣∣∣
2
 .
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The next Lemma shows that Ãn(ξ) is of the order 1/n.

Lemma 1. For all ξ ∈ R, we have

Ãn(ξ) ≤
(
13 + |E[a3

1]|
) |ξ|4 + |ξ|3 + |ξ|2 + 1

n
. (2.7)

The proof of Lemma 1 is quite technical, in order to facilitate the global reading of
the paper, it is postponed in Section A.1 of the appendix.

Step 4: bounding the term An

Let φ the unique solution of the Stein equation φ′h − xφh = h where it is assumed
that max (‖h′‖∞, ‖h′′‖∞, ‖h′′′‖∞) ≤ 1. By the Step 1 of the proof we know that φ ∈ E
which means that estimates (2.2) and (2.3) are fulfilled. In particular, using Plancherel
Theorem we have∫

R

∣∣∣φ̂(ξ)
∣∣∣2 (1 + |ξ|3)2dξ ≤ 2

∫
R

∣∣∣φ̂(ξ)
∣∣∣2 (1 + |ξ|6)dξ

= 4π

∫
R

(
|φ(x)|2 + |φ(3)(x)|2

)
dx

≤ 4π
(
‖φ‖∞ + ‖φ(3)‖2∞

)
+ 4π

∫
|x|>1

(
|φ(x)|2 + |φ(3)(x)|2

)
dx

(2.3)
≤ 4π(4 + 324) + 8π

∫ ∞
1

(
432 + 52

x2

)
dx

= 4π(4 + 324 + 2× 432 + 2× 52) = 16304π.

Using Fourier inversion Theorem, we then get

|An| =

∣∣∣∣∣ 1√
n

n∑
k=1

EX

[
Rk(X) φ

(
Skn(X)√

n

)]∣∣∣∣∣
≤ 1

2π

∫
R

|φ̂(ξ)|

∣∣∣∣∣ 1√
n

n∑
k=1

EX

[
Rk(X) exp

(
iξ
Skn(X)√

n

)]∣∣∣∣∣ dξ
≤ 1

2π

∫
R

|φ̂(ξ)|(1 + |ξ|3)
1

1 + |ξ|3

∣∣∣∣∣ 1√
n

n∑
k=1

EX

[
Rk(X) exp

(
iξ
Skn(X)√

n

)]∣∣∣∣∣ dξ.
Taking the expectation with respect to P, Cauchy–Schwarz inequality associated with
the above Lemma 1 gives us

E
[
|An|2

]
≤ 1

4π2

∫
R

|φ̂(ξ)|2(1 + |ξ|3)2dξ

∫
R

Ãn(ξ)

(1 + |ξ|3)2
dξ

≤ 4076

π

∫
R

1

(1 + |ξ|3)2

(
13 + |E[a3

1]|
) |ξ|4 + |ξ|3 + |ξ|2 + 1

n
dξ

≤ (13 + |E[a3
1]|) 20380

nπ ,

where we have used in the last estimate that∫
R

|ξ|4 + |ξ|3 + |ξ|2 + 1

(1 + |ξ|3)2
dξ =

2

27

(
9 + 10

√
3π
)
≈ 4.7 ≤ 5.

Step 5: synthesis
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The compilation of Step 1 and Step 2, give the following upper bound

dXC3

(
Sn(X)√

n
,G

)
≤ |An|+ |Cn|+

λn√
n
. (2.8)

Taking the expectation with respect to P leads to

E

[
dXC3

(
Sn(X)√

n
,G

)]
≤ E [|An|] + E [|Cn|] +

E [λn]√
n

≤
√

(13 + |E[a3
1]|)20380

nπ︸ ︷︷ ︸
Cauchy–Schwarz+end of Step 4

+
2√
n
E
[(
|a1|+ |b1|3

)]
︸ ︷︷ ︸

End of Step 1

+

(
8
√
E[a4

1] +
√

2 + 2E
[
(|a1|+ |b1|)3

]) 1√
n︸ ︷︷ ︸

Taking expectation in (2.6)

.

As
√

20380
π ≈ 80.54 one can simplify a bit and get

E

[
dXC3

(
Sn(X)√

n
,G

)]
≤ C(a1)

1√
n
, (2.9)

with

C(a1) := 81
√

13 + |E[a3
1]|+ 8

√
E[a4

1] +
√

2 + 8E
[
|a1|3

]
+ 24E [|a1|] .

Let us now detail how Corollary 1 can be deduced from Theorem 2.

Proof of Corollary 1. Let β < 1
6 . Based on the inequality (1.6), we obtain that

∞∑
n=1

n3βE
[
dXC3 (fn3(X), G)

]
≤
∑
n≥1

C(a1)

n
3
2−3β

<∞, since
3

2
− 3β > 1.

Using Borel–Cantelli Lemma, P almost surely, there exists a constant C(ω) > 0, which
may change from line to line, such that

dXC3 (fn3(X), G) ≤ C

n3β
.

On the other hand, for any integer m ≥ 1 one may find n ≥ 1 such that n3 ≤ m ≤ (n+ 1)3.

Setting ∆m,n3 := EX

[
|fm(X)− fn3(X)|2

]
, one then deduces that

∆m,n3 ≤ 2

(√
n3

m
− 1

)2

EX
[
fn3(X)2

]︸ ︷︷ ︸
=1

+
2

n3
EX


∣∣∣∣∣∣

m∑
k=n3+1

ak cos(kX) + bk sin(kX)

∣∣∣∣∣∣
2


≤ 2

(√
n3

(n+ 1)3
− 1

)2

+ 2
(n+ 1)3 − n3

n3︸ ︷︷ ︸
=O( 1

n )

= O

(
1

m
1
3

)
.
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Gathering the previous estimates provides the desired conclusion since

dXC3 (fm(X), G) ≤ dXC3 (fn3(X), G) + dXC3 (fm(X), fn3)

≤ C

n3β
+

√
EX

[
|fm(X)− fn3(X)|2

]

≤ C

mβ
+O

(
1

m
1
6

)
= O

(
1

mβ

)
.

2.2 Functional Central Limit Theorem

In this section, we give the proof of Theorem 3. The convergence in law of the
sequence of processes (gn(t))t∈[0,2π] classically splits into two parts: on the one hand the
convergence of finite dimensional marginals, and on the other hand a suitable tightness
argument associated with the C1 topology. Let us first establish the convergence of the
finite marginals of the process (gn(t))t∈[0,2π].

Proposition 1. Under the hypotheses of Theorem 3, almost surely with respect to the
probability P, as n goes to infinity, the finite marginals of the process (gn(t))t∈[0,2π]

converge to the ones of a Gaussian process (g∞(t)t∈[0,2π] with sinc covariance function,
i.e.

EX [g∞(t)g∞(s)] =
sin(t− s)
t− s

.

Proof. Let us fix an integer p ≥ 1, t = (t1, . . . , tp) ∈ [0, 2π]p with tj 6= tj for i 6= j and
λ = (λ1, . . . , λp) ∈ Rp. We set ||λ||1 :=

∑p
j=1 |λj |. We then define

Q(t, λ) :=
∑
i,j

λiλj
sin(ti − tj)
ti − tj

,

and for n ≥ 1, the associated Riemann sum

Qn(t, λ) :=

p∑
i,j=1

λiλj
1

n

n∑
k=1

cos

(
k(ti − tj)

n

)
.

Naturally, since the cosine function has a bounded derivative, using standard comparison
results between Riemann sums and their limits, we have

|Q(t, λ)−Qn(t, λ)| = O(1/n).

Therefore, if we want to establish that, P almost surely, as n goes to infinity

Ψn(t, λ) := EX

[
ei

∑p
j=1 λjgn(tj)

]
−→ e−Q(t,λ)/2,

it is sufficient to show that P almost surely

lim
n→∞

∣∣∣Ψn(t, λ)− e−Qn(t,λ)/2
∣∣∣ = 0.

We have
p∑
j=1

λjgn(tj) =
1√
n

n∑
k=1

akαk,n(X) + bkβk,n(X),

where

αk,n(X) :=

p∑
j=1

λj cos

(
kX +

ktj
n

)
, βk,n(X) :=

p∑
j=1

λj sin

(
kX +

ktj
n

)
.
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A straightforward computation then yields the following “orthogonality” relations, for all
1 ≤ k ≤ n and 1 ≤ ` ≤ m

EX [αk,n(X)α`,m(X)] = EX [βk,n(X)β`,m(X)] = δk` ×
1

2

p∑
i,j=1

λiλj cos

(
kti
n
− ktj

m

)
,

(2.10)
and

EX [αk,n(X)β`,m(X)] = δk` ×
1

2

p∑
i,j=1

λiλj sin

(
kti
n
− ktj

m

)
, (2.11)

so that by symmetry

EX [αk,n(X)β`,n(X)] = 0. (2.12)

In particular, we have

EX
[
αk,n(X)2

]
= EX

[
βk,n(X)2

]
≤ 1

2
× ||λ||21. (2.13)

Set

∆n := E

[∣∣∣Ψn(t, λ)− e−Qn(t,λ)/2
∣∣∣2] .

By the Fubini inversion theorem, we have then for Y an independent copy of X

∆n = EX,Y [An]− e−Qn(t,λ)/2 × EX
[
Bn +Bn

]
+ e−Qn(t,λ),

where we have set

An := E
[
e
i 1√

n

∑n
k=1 ak(αk,n(X)−αk,n(Y ))+bk(βk,n(X)−βk,n(Y ))

]
,

Bn := E
[
e
i 1√

n

∑n
k=1 akαk,n(X)+bkβk,n(X)

]
.

Since we have assumed condition (H3), Taylor–Lagrange inequality and the fact that the
random variables are centered with variance one implies that for some absolute constant
C > 0 which may change from line to line and for every t small enough∣∣∣∣log (φ(t)) +

t2

2

∣∣∣∣ < C|t|3.

Thus, if (ck)k≥1 is any uniformly bounded deterministic sequence we have

E
[
e
i 1√

n

∑n
k=1 ckak

]
= exp

(
n∑
k=1

log

(
φ

(
ck√
n

)))

= exp

(
−

n∑
k=1

c2k
2n

+ O

(
1

n
√
n

n∑
k=1

|ck|3
))

= exp

(
−

n∑
k=1

c2k
2n

+ O

(
1√
n

))
.

As a result, using that exp is Lipschitz on compact sets we also have∣∣∣∣∣exp

(
−

n∑
k=1

c2k
2n

+ O

(
1√
n

))
− exp

(
−

n∑
k=1

c2k
2n

)∣∣∣∣∣ ≤ C√
n
,

where C only depends on the supremum of the deterministic sequence (ck)k≥1. Moreover,
the sequences (αk,n)k≤n and (βk,n)k≤n are uniformly bounded in X, Y , n. Hence, we can
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infer that if (ãk)k≥1 and (̃bk)k≥1 are independent sequences of i.i.d. standard Gaussian
variables, then uniformly in X,Y∣∣∣An − Ãn∣∣∣ ≤ C√

n
,
∣∣∣Bn − B̃n∣∣∣ ≤ C√

n
,

where

Ãn := E
[
e
i 1√

n

∑n
k=1 ãk(αk,n(X)−αk,n(Y ))+b̃k(βk,n(X)−βk,n(Y ))

]
,

B̃n := E
[
e
i 1√

n

∑n
k=1 ãk(αk,n(X)+b̃k(βk,n(X)

]
.

But since the variables are now independent and Gaussian, the above expectations are
explicit. Namely, if we set

En(t, λ) :=
∑
i,j

λiλj

(
1

n

n∑
k=1

cos

(
k(X − Y ) +

k(ti − tj)
n

))
,

after simplification we have simply

Ãn = exp (−Qn(t, λ) + En(t, λ)), B̃n = exp

(
−1

2
Qn(t, λ)

)
.

As a consequence, we have

∆n = EX,Y

[
Ãn

]
− 2e−Qn(t,λ)/2 × EX

[
B̃n

]
+ e−Qn(t,λ) +O

(
1√
n

)
,

= e−Qn(t,λ)EX,Y
[
eEn(t,λ) − 1

]
+O

(
1√
n

)
.

Since uniformly in X,Y we have |En(t, λ)| ≤ ||λ||21, using the fact that there exists a
constant Cλ such that |ex − 1| ≤ Cλ|x| for |x| ≤ ||λ||21, we have∣∣EX,Y [eEn(t,λ) − 1

]∣∣ ≤ EX,Y [∣∣eEn(t,λ) − 1
∣∣] ≤ CλE[|En(t, λ)|]

≤ Cλ
∑
i,j

|λiλj | × EX,Y

[∣∣∣∣∣ 1n
n∑
k=1

cos

(
k(X − Y ) +

k(ti − tj)
n

)∣∣∣∣∣
]
.

An immediate application of Cauchy–Schwarz inequality then yields

EX,Y

[∣∣∣∣∣ 1n
n∑
k=1

cos

(
k(X − Y ) +

k(ti − tj)
n

)∣∣∣∣∣
]
≤
√

1

2n
.

As a conclusion, we get that

∆n = O

(
1√
n

)
.

Therefore, choosing a subsequence of the form nγ with γ > 2, by Borel–Cantelli Lemma,
we obtain that P almost surely, we have

lim
n→+∞

Ψnγ (t, λ) = e−Q(t,λ)/2.

Now for a generic integer m ≥ 1, we can choose n such that nγ < m ≤ (n+ 1)γ and then

|Ψnγ (t, λ)−Ψm(t, λ)| ≤ EX [|U |+ |V |+ |W |] ,
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where

U :=

(
1√
nγ
− 1√

m

)( nγ∑
k=1

akαk,nγ (X) + bkβk,nγ (X)

)
,

V :=
1√
m

(
m∑

k=1+nγ

akαk,m(X) + bkβk,m(X)

)
,

W :=
1√
m

(
nγ∑
k=1

ak (αk,nγ (X)− αk,m(X)) + bk (βk,nγ (X)− βk,m(X))

)
.

Applying Cauchy–Schwarz inequality, using the orthogonality relations (2.10) and (2.12)
and the uniform upper bound (2.13), we get

EX [|U |] ≤ ||λ||1

(
1−

√
nγ

m

)√√√√ 1

nγ

nγ∑
k=1

a2
k + b2k

2
.

By the strong law of large number, the above square root is P almost surely bounded,
hence we have P almost surely

EX [|U |] ≤ O

(
1−

√
nγ

m

)
= O

(
1

n

)
= O

(
1

m1/γ

)
.

In the same manner, we have

EX [|V |] ≤ ||λ||1 ×

√√√√ 1

m

m∑
k=1+nγ

a2
k + b2k

2
= O

(
1√
n

)
= O

(
1

m1/2γ

)
.

Finally, using once again Cauchy–Schwarz inequality and the orthogonality relations
(2.10) and (2.11), since max1≤i≤p |ti| ≤ 2π, we have P almost surely

EX [|W |] ≤ ||λ||1 ×
√

2π ×
√

1− nγ

m
×

√√√√ 1

m

nγ∑
k=1

(a2
k + b2k) = O

(
1

n

)
= O

(
1

m1/γ

)
.

As a conclusion, we get that P almost surely

lim
m→+∞

|Ψnγ (t, λ)−Ψm(t, λ)| = 0.

Let us now establish the tightness of the family of distributions of (gn(t))t∈[0,2π] under
PX , for the C1 topology.

Proposition 2. Almost surely with respect to the probabilityP, the family of distributions
under PX of (gn(t))t∈[0,2π] for n ≥ 1 is tight with respect to the C1 topology on C1([0, 2π]).

Proof. By Theorem 1 and Remark 1 of [26], in order to establish the tightness in the
C1 topology of the family (gn(t))t∈[0,2π], it is sufficient to establish some Lamperti-type
criteria for both EX

[
|gn(t)− gn(s)|2

]
and EX

[
|g′n(t)− g′n(s)|2

]
. Using the trigonometric

identities

cos
(
kX + kt

n

)
− cos

(
kX + ks

n

)
= −2 sin

(
kX + k(t+s)

2n

)
sin
(
k(t−s)

2n

)
,

sin
(
kX + kt

n

)
− sin

(
kX + ks

n

)
= 2 cos

(
kX + k(t+s)

2n

)
sin
(
k(t−s)

2n

)
,
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we have first, for all 1 ≤ k ≤ n

EX

[(
cos

(
kX +

kt

n

)
− cos

(
kX +

ks

n

))2
]

= 2 sin

(
k(t− s)

2n

)2

,

and

EX

[(
sin

(
kX +

kt

n

)
− sin

(
kX +

ks

n

))2
]

= 2 sin

(
k(t− s)

2n

)2

.

By the strong law of large numbers, C := supn≥1
1

2n

∑n
k=1(a2

k + b2k) is P almost surely
bounded. Therefore, using the fact that vect(cos(kx), sin(kx)) and vect(cos(`x), sin(`x))

are orthogonal in L2([0, 2π]) for 1 ≤ k, ` ≤ n with k 6= `, and that cos(kx) ⊥ sin(kx), we
have thus P almost surely, for all s, t ∈ [0, 2π]

EX
[
|gn(t)− gn(s)|2

]
=

2

n

n∑
k=1

(
a2
k + b2k

)
sin2

(
k(t− s)

2n

)
≤ C|t− s|2.

In the same manner, we get for all s, t ∈ [0, 2π]

EX
[
|g′n(t)− g′n(s)|2

]
=

n∑
k=1

2k2

n3

(
a2
k + b2k

)
sin2

(
k(t− s)

2n

)
≤ C|t− s|2.

hence the result.

Remark 3. Note that the limit process (g∞(t))t∈[0,2π] is non degenerate in the sense that,
P⊗ PX almost surely, we have

(g∞(t) = 0) =⇒ (g′∞(t) 6= 0).

Indeed, by stationarity we have E[g∞(t)2] = 1, hence the classical Bulinskaya Lemma
applies, see e.g. Proposition 6.11 of [7].

2.3 Salem–Zygmund Theorem for a non-uniform distribution

Before giving the proof of Theorem 4, which generalizes Theorem 1 to a large class
of distributions PX , let us first give an alternative proof of Theorem 1.

Alternative proof of Theorem 1. The proof below is based on the averaging procedure
raised in Section 1.2.3. Namely we show that the L2(P) distance between the charac-
teristic function of fn(X) under PX and its limit goes sufficiently fast to zero in order
to apply a Borel–Cantelli argument and conclude that the convergence is in fact almost
sure under P. To do so, let us set, for ξ ∈ R

∆n(ξ) := E

[∣∣∣∣EX [eiξfn(X) − e−
ξ2

2

]∣∣∣∣2
]
.

If Y is an independent copy of X, by Fubini Theorem, one first write

∆n(ξ) = E
[
EX

[
eiξfn(X) − e−

ξ2

2

]
EY

[
e−iξfn(Y ) − e−

ξ2

2

]]
= EX,Y

[
E
[
eiξ(fn(X)−fn(Y )) + e−ξ

2 − e−
ξ2

2 EX,Y
[
eiξfn(X) + e−iξfn(Y )

]]]
.

Hence, we have ∆n(ξ) = EX,Y [∆n,1(ξ)]− e−
ξ2

2 EX,Y [∆n,2(ξ)] with

∆n,1(ξ) := E
[
eiξ(fn(X)−fn(Y )) − e−ξ2

]
,

∆n,2(ξ) := E
[
eiξfn(X) − e−

ξ2

2

]
+ E

[
e−iξfn(Y ) − e−

ξ2

2

]
.
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The convergence to zero of ∆n,1(ξ), resp. ∆n,2(ξ), is then a simple application of the
standard bivariate, resp. univariate, Central Limit Theorem under P. Namely,

E
[
eiξ(fn(X)−fn(Y ))

]
=

n∏
k=1

φ

(
ξ

cos(kX)− cos(kY )√
n

)
φ

(
ξ

sin(kX)− sin(kY )√
n

)
,

where φ denotes the characteristic function of a1. Since a1 ∈ L3 (P), the function log(φ)

is three times differentiable at the neighborhood of 0. As the proof of Proposition 1,
using Taylor–Lagrange inequality and the fact that the random variables are centered
with variance one, for some absolute constant C > 0 which may change from line to line
and for every |t| < 1

2 ∣∣∣∣log (φ(t)) +
t2

2

∣∣∣∣ < C|t|3. (2.14)

Let ξ be fixed in the sequel, then for n large enough we have

∀k ∈ {1, · · · , n},
∣∣∣∣ξ cos(kX)− cos(kY )√

n

∣∣∣∣ < 1

2
.

In the forthcoming computations, n is assumed to be large enough so that the aforemen-
tioned estimate holds. Since (2.14) applies, we obtain∣∣∣∣∣

n∑
k=1

log

(
φ

(
ξ

cos(kX)− cos(kY )√
n

))
+

1

2

n∑
k=1

(
ξ

cos(kX)− cos(kY )√
n

)2
∣∣∣∣∣

< C
|ξ3|
n
√
n

n∑
k=1

|cos(kX)− cos(kY )|3 < C
|ξ|3√
n
.

In the same way, we have∣∣∣∣∣
n∑
k=1

log

(
φ

(
ξ

sin(kX)− sin(kY )√
n

))
+

1

2

n∑
k=1

(
ξ

sin(kX)− sin(kY )√
n

)2
∣∣∣∣∣

< C
|ξ3|
n
√
n

n∑
k=1

|sin(kX)− sin(kY )|3 < C
|ξ|3√
n
.

Note that (cos(kX)− cos(kY ))
2

+ (sin(kX)− sin(kY ))
2

= 2 + 2 cos (k(X − Y )) and set

εn = εn(X,Y ) :=
1

n

n∑
k=1

cos(k(X − Y )). (2.15)

Combining the two last estimates yields∣∣∣∣∣
n∑
k=1

log

(
φ

(
ξ

cos(kX)− cos(kY )√
n

)
φ

(
ξ

sin(kX)− sin(kY )√
n

))
+ ξ2(1 + εn)

∣∣∣∣∣ ≤ C |ξ|3√n .
The exponential function being Lipschitz on compact sets, one thus obtains for some
constant C(ξ), which changes from line to line and which only depends on ξ∣∣∣∣∣

n∏
k=1

φ

(
ξ

cos(kX)− cos(kY )√
n

)
φ

(
ξ

sin(kX)− sin(kY )√
n

)
− e−ξ

2(1+εn)

∣∣∣∣∣ ≤ C(ξ)√
n
.

Hence, we have

|∆n,1(ξ)| ≤ C(ξ)√
n

+
∣∣∣e−ξ2(1+εn) − e−ξ

2
∣∣∣ ≤ C(ξ)√

n
+ ξ2εn
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and taking the expectation under PX ⊗ PY , by Cauchy–Schwarz inequality, we get

|EX,Y [∆n,1(ξ)]| ≤ C(ξ)√
n

+ ξ2
√
EX,Y [εn(X,Y )2]︸ ︷︷ ︸

=
√

1
2n by ortho. of cosines

=
C(ξ)√
n
.

Following the exact same strategy, we have in the same manner

|EX,Y [∆n,2(ξ)]| ≤ C(ξ)√
n
.

Gathering these facts provide the estimate ∆n(ξ) ≤ C(ξ)√
n

. Using Borel–Cantelli Lemma,
one thus gets that P almost surely

EX

[
eiξfn3 (X) − e−

ξ2

2

]
−−−−−→
n→+∞

0.

Applying the latter for each ξ ∈ Q, and then ξ ∈ R by continuity, we have P almost surely,
the central convergence of fn3(X) under PX . On the other hand, for every positive
integers m,n such that n3 ≤ m < (n+ 1)3, we also have∣∣EX [eiξfn3 (X)

]
− EX

[
eiξfm(X)

]∣∣ ≤ ξ × EX [|fn3(X)− fm(X)|]

≤ ξ
√
EX

[
(fn3(X)− fm(X))

2
]
,

and as in the end of the proof of Theorem 2, we have

EX

[
(fn3(X)− fm(X))

2
]

≤ 2

(√
n3

m
− 1

)2

EX
[
f2
n3(X)

]︸ ︷︷ ︸
=1

+
2

n3
EX


 m∑
k=n3+1

ak cos(kX) + bk sin(kX)

2


≤ 2

(√
n3

(n+ 1)3
− 1

)2

+ 2
(n+ 1)3 − n3

n3
= O

(
1

n

)
= O

(
1

m1/3

)
.

As announced, P almost surely, fn(X) indeed converges in distribution to standard
Gaussian variable under PX .

Let us now give the proof of Theorem 4, which roughly follows the same lines
as the alternative proof of Theorem 1 given above, except that we shall skip some
explicit computations using characteristic functions and replace them by the standard
quantitative Berry–Esseen estimates in the Central Limit Theorem. For the sake of
concision, we only focus on the main steps of the proof.

Proof of Theorem 4. Let X and Y be independent, identically distributed random vari-
ables, fulfilling the assumptions of the statement. By the multivariate central limit
Theorem, conditionally on (X,Y ), the couple (fn(X), fn(Y )) converges in distribution,
under P, towards a centered Gaussian vector (GX , GY ) such that EX [G2

X ] = EX [G2
Y ] = 1

and EX [GXGY ] = εn(X,Y ) given by (2.15). Then, the standard Berry–Esseen inequality
implies that the speed of the aforementioned convergence is of order 1√

n
. Otherwise, a

simple computation gives the formula

cos(k(x− y)) cos(l(x− y)) =
1

2
(cos((k + l)(x− y)) + cos((k − l)(x− y))) .
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Noticing that EX,Y
[
eik(X−Y )

]
=
∣∣∣P̂(k)

∣∣∣2, one thus gets

EX,Y
[
ε2
n(X,Y )

]
=

1

2n2

n∑
k,l=1

(∣∣∣P̂X(k + l)
∣∣∣2 +

∣∣∣P̂X(k − l)
∣∣∣2) = O

(
1

n2α

)
.

Therefore, under P, (fn(X), fn(Y )) converges in distribution to a standard bivariate
Gaussian vector at a polynomial speed 1

nc with c = min
(
α, 1

2

)
. Using again Borel–Cantelli

Lemma, one deduces the central convergence under PX for the subsequence bnac with
a > 1

c . Finally, for na < m < (n+ 1)a one has

E
[
EX

[(
fm(X)− fbnac(X)

)2]]
= EX

[
E
[(
fm(X)− fbnac(X)

)2]]
= O

(√ (n+ 1)a

na
− 1

)2

+
(n+ 1)a − na

na

 = O

(
1

n

)
= O

(
1

m
1
a

)
.

Using hypercontractivity estimates for Lp norms of multi-linear polynomials, for p > a,
one then deduces that

E
[
EX

[(
fm(X)− fbnac(X)

)2p]]
= O

(
1

m
p
a

)
.

Hence, Borel–Cantelli Lemma again ensures that EX
[(
fm(X)− fbnac(X)

)2]
goes to 0 as

n goes to infinity, P almost surely. This concludes the proof, since under our assumptions,
β is large enough to find such an exponent p.

2.4 Convergence in total variation

We give here the proof of Theorem 5 stated in Section 1.2.4, dealing with the total
variation version of Theorem 1. The proof is based on a variational calculus which is
associated with a so-called Wright–Fisher differential operator.

Proof of Theorem 5. Let us consider a random variable I which is uniformly distributed
over {0, 1, · · · , n− 1} and which is independent of X. We denote by EI,X the expectation
with respect to the product lax PI ⊗ PX . We start the proof by noticing that

Xn :=
2π

n
I +

X

n

law
= X. (2.16)

Indeed, for every suitable function φ one may write

EI,X

[
φ

(
2π

n
I +

X

n

)]
=

1

n

n−1∑
k=0

1

2π

∫ 2π

0

φ

(
2πk

n
+
t

n

)
dt

=

n−1∑
k=0

∫ 2π k+1
n

2πk
n

φ(u)du =
1

2π

∫ 2π

0

φ(u)du = EX [φ(X)],

where we have made the change of variables u = 2πk
n + t

n . Let us now, introduce the
following operators

∀(φ, ψ) ∈ C1([0, 2π],R), Γ[φ, ψ] := φ′(x)ψ′(x)x (2π − x) ,

∀ψ ∈ C2([0, 2π],R), L [ψ] := ψ′′(x)(2π − x)x+ ψ′(x)(2π − 2x).
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Then, one has the following integration by parts formula, which is the cornerstone of the
proof, ∀φ ∈ C1([0, 2π]), ∀ψ ∈ C2([0, 2π]),∀θ ∈ C1([0, 2π])∫ 2π

0

Γ[φ, ψ]θ(x)dx = −
∫ 2π

0

φ(x)θ(x)L [ψ] (x)dx−
∫ 2π

0

φ(x)Γ [θ(x), ψ(x)] dx. (2.17)

Let us now fix some continuous function φ which we assume to be compactly supported
and bounded by one. Let us also introduce its anti-derivative Φ(x) =

∫ x
0
φ(t)dt. One first

write

EX [φ (fn(X))] = EI,X

[
φ

(
fn

(
2π

n
I +

X

n

))]
= EI,X [φ (gn,I(X))]

with gn,I(x) = fn
(

2π
n I + x

n

)
. We then write, for α > 0

EI,X [φ (gn,I(X))] = EI,X

[
φ (gn,I(X))

Γ[gn,I(X), gn,I(X)] + α

Γ[gn,I(X), gn,I(X)] + α

]

≤ EI,X
[
φ (gn,I(X))

Γ[gn,I(X), gn,I(X)]

Γ[gn,I(X), gn,I(X)] + α

]
︸ ︷︷ ︸

:=An(φ)

+EI,X

[
α

Γ[gn,I(X), gn,I(X)] + α

]
︸ ︷︷ ︸

:=Bn(α)

with Γ[gn,I(X), gn,I(X)] = g′n,I(X)2 (2π −X)X. Otherwise, using the chain rule associ-
ated with Γ, we have φ (gn,I(X)) Γ[gn,I(X), gn,I(X)] = Γ [Φ (gn,I(X)) , gn,I(X)], and the
integration by parts formula (2.17) leads to

An(φ) = −EI,X
[
Φ (gn,I(X))

L [gn,I(X)]

Γ[gn,I(X), gn,I(X)] + α

]

−EI,X
[
Φ (gn,I(X)) Γ

[
gn,I(X),

1

Γ[gn,I(X), gn,I(X)] + α

]]
.

We then notice that∣∣∣∣EI,X [Φ (gn,I(X))× L [gn,I(X)]

Γ[gn,I(X), gn,I(X)] + α

]∣∣∣∣ ≤ ‖Φ‖∞α EI,X [|L [gn,I(X)]|] ≤ C ‖Φ‖∞
α

,

with C = 4π supn

√
1
n

∑n
k=1(a2

k + b2k)
a.s.
< ∞. Indeed, relying on the Cauchy–Schwarz

inequality and the orthogonality of the family (cos(kX), sin(kX))k≥1 we have

EI,X
[
|2π −X|

∣∣g′′n,I(X)
∣∣] ≤ 2πEI,X

[∣∣g′′n,I(X)
∣∣] ≤ 2π

√
1
n

∑n
k=1 (a2

k + b2k),

EI,X
[
|2π − 2X|

∣∣g′n,I(X)
∣∣] ≤ 2π

√
1
n

∑n
k=1 (a2

k + b2k).

Using the chain-rule property and the definition of the operator Γ, we first write∣∣∣∣Γ [[gn,I(X),
1

Γ[gn,I(X), gn,I(X)] + α

]∣∣∣∣ =

∣∣∣∣∣Γ[gn,I(X),Γ[gn,I(X), gn,I(X)]]

(Γ[gn,I(X), gn,I(X)] + α)
2

∣∣∣∣∣
with

Γ[gn,I(X),Γ[gn,I(X), gn,I(X)]] = 2g′n,I(X)2g′′n,I(X)(2π −X)X

+g′n,I(X)3(2π −X)X(2π − 2X).
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Since |g′n,I(X)2(2π −X)X| = Γ[gn,I(X), gn,I(X)] ≤ Γ[gn,I(X), gn,I(X)] + α, we get∣∣∣∣Γ [[gn,I(X),
1

Γ[gn,I(X), gn,I(X)] + α

]∣∣∣∣ ≤
∣∣g′′n,I(X)

∣∣+ 2π|g′n,I(X)|
α

.

We then deduce, following the same previous reasoning that∣∣∣∣EI,X [Φ (gn,I(X)) Γ

[
gn,I(X),

1

Γ[gn,I(X), gn,I(X)] + α

]]∣∣∣∣ ≤ C ‖Φ‖∞α .

In conclusion we have proved that P almost surely, there is a constant C > 0 such that,
for every integer n ≥ 1, |An(φ)| ≤ C ‖Φ‖∞α . One also have, for all λ > 0

|Bn(α)| = EX

[
α

α+ |g′n,I(X)|2(2π −X)X

]

≤ EX

[
α

α+ |g′n,I(X)|2λ

]
+ PX (X(2π −X) < λ).

Using Salem–Zygmund CLT, we know that

g′n,I(X)
law
=

under PX

1√
n

n∑
k=1

k

n
(−ak sin (X) + bk cos (X))

converges in distribution towards a non-degenerate Gaussian distribution G. This
ensures us that

lim sup
n→∞

|Bn(α)| ≤ PX ((2π −X)X ≤ λ) + EX

[
α

α+G2λ

]
.

Letting α→ 0 and then λ→ 0 one obtains that

lim
α→0

lim sup
n→∞

|Bn(α)| = 0. (2.18)

If µn is the law of gn,I(X) under PI ⊗ PX , which naturally coincides with the law of
fn(X) under PX , and if µ∞ is the law of the standard Gaussian, the desired conclusion
proceeds from the following lemma, whose proof is given in Section A.2 of the Appendix.

Lemma 2. Let µn a sequence of probability distributions which converges in law towards
µ∞. Assume further that for any continuous function bounded by one and compactly
supported φ we have∣∣∣∣∫

R

φ(x)dµn(x)

∣∣∣∣ ≤ supx
∣∣∫ x

0
φ(t)dt

∣∣
α

+ |Bn(α)| & lim
α→0

lim sup
n
|Bn(α)| = 0.

Then µn converges towards µ∞ in total variation.

3 Almost sure asymptotics for the number of real zeros

This whole section is devoted to the proof of Theorem 6 stated in Section 1.3. Let us
recall that the object of interest is the random trigonometric polynomial

fn(t) :=
1√
n

n∑
k=1

ak cos(kt) + bk sin(kt), t ∈ R,

and that the number of real zeros of fn in a given interval [a, b] is denoted by

N (fn, [a, b]) := #{t ∈ [a, b], fn(t) = 0}.
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3.1 A probabilistic representation of the number of zeros

Let us start with the very simple following result.

Lemma 3. If f is a 2π-periodic function with a finite number of zeros, then for any
0 < h < 2π, we have

h

2π
×N (f, [0, 2π]) = EX [N (f, [X,X + h])] ,

where X is a random variable, with uniform distribution in [0, 2π].

Proof. Set N = N (f, [0, 2π]) which is finite by hypothesis, and denote by x1, . . . , xN the
zeros of f in [0, 2π] and µf the associated empirical measure

µf :=
1

N

N∑
k=1

δxk .

Naturally, we have for all a < b such that b− a ≤ 2π

N (f, [a, b]) = N ×
∫ 2π

0

1[a,b] mod 2π(t)µf (dt).

If X is uniform in [0, 2π], we have then applying Fubini inversion of sums

EX [N (f, [X,X + h])] =
1

2π

∫ 2π

0

N (f, [x, x+ h]) dx

=
N

2π

∫ 2π

0

(∫ 2π

0

1[x,x+h] mod 2π(t)dx

)
µf (dt)

=
N

2π

∫ 2π

0

(∫ 2π

0

1[t−h,t] mod 2π(x)dx

)
µf (dt)

=
N

2π
× h×

∫ 2π

0

µf (dt) =
N

2π
× h.

Applying Lemma 3 with fn and h = 2π/n, we thus get if X is a random variable with
uniform distribution on [0, 2π], independent of the sequences (ak)k≥1 and (bk)k≥1, then

N (fn, [0, 2π])

n
= EX

[
N
(
fn,

[
X,X +

2π

n

])]
. (3.1)

3.2 Functional convergence in distribution

The last Equation (3.1) naturally invites to consider the process (gn(t))t∈[0,2π] defined
by

gn(t) := fn

(
X +

t

n

)
, t ∈ [0, 2π],

so that
N (fn, [0, 2π])

n
= EX [N (gn, [0, 2π])] . (3.2)

By Theorem 3, we know that (gn(t))t∈[0,2π] converges in distribution in the C1 topology
to a limit Gaussian process (g∞(t))t∈[0,2π] with sinc covariance function, which is almost
surely non-degenerate by Remark 3. Furthermore, it is well known that the number
of zeros of a smooth function in a given interval is a continuous functional for the C1

topology, in the neighborhood of any non-degenerate function, see [26, 3]. Therefore, by
the continuous mapping Theorem, we get the following asymptotics.
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Proposition 3. Almost surely with respect to P, as n goes to infinity

N
(
fn,

[
X,X +

2π

n

])
= N (gn, [0, 2π])

converges in distribution under PX to N (g∞, [0, 2π]).

3.3 Logarithmic integrability

Having the above Proposition 3 in mind, the proof of Theorem 6 would be complete if
we had some moment control on the number of zeros of gn in the interval [0, 2π]. As a
first step towards this goal, let us first establish some logarithmic moment estimates for
fn(X) = gn(0).

Lemma 4. Suppose that the random variables (ak, bk)k≥1 are independent standard
Gaussian variables or more generally are that they are independent and identically
distributed with a symmetric distribution with bounded variance. Then P almost surely,
for all p > 1 and for all 0 < θ < 1, there exists a constant Cp,θ = Cp,θ(ω) such that

EX [|log(|fn(X)|)|p] ≤ Cp,θ × nθ. (3.3)

Proof. We first give the proof in the Gaussian framework, in which case it is elementary.
Indeed, if (ak, bk)k≥1 are independent standard normal variables, then under P, the
variable fn(X) is then also a standard Gaussian variable so that for all p > 1

E [EX [|log(|fn(X)|)|p]] =

∫
R

|log(|x|)|p e
− x22
√

2π
dx =: κ(p) < +∞.

Using Markov and Jensen inequalities, we have thus

P
(
EX [|log(|fn(X)|)|p] > nθ

)
= P

(
EX [|log(|fn(X)|)|p]

2
θ > n2

)
≤ 1

n2
E
[
EX [|log(|fn(X)|)|p]

2
θ

]

≤ 1

n2
E
[
EX

[
|log(|fn(X)|)|

2p
θ

]]
≤
κ( 2p

θ )

n2
.

Therefore, by Borel–Cantelli Lemma, we deduce that P almost surely, for n sufficiently
large, we have EX [|log(|fn(X)|)|p] ≤ nθ, hence the result. Let us now turn to the more
general case of symmetric random variables. The proof then follows the same lines as in
the Gaussian case but the starting point, i.e. the finiteness of the moments under P⊗PX
is here ensured by the powerful results of [23] for Rademacher Fourier series. Indeed,
let us introduce another probability space (Ωε,η,Fε,η,Pε,η) which carries a sequence
(εk, ηk)k≥1 of independent symmetric Rademacher variables. Then, under P, the whole
sequence (ak, bk)k≥1 has the same law as the sequence (εk|ak|, ηk|bk|)k≥1 under P⊗ Pε,η.
Following Corollary 1.2 of [23], for any p > 1, there exists a deterministic constant Kp

such that

Eε,η

EX
∣∣∣∣∣∣log

 |∑n
k=1 εk|ak| cos(kX) + ηk|bk| sin(kX)|√∑n

k=1
a2k+b2k

2

∣∣∣∣∣∣
p ≤ Kp.

In particular, we get

Eε,η

[
EX

[∣∣∣∣∣log

(∣∣∣∣∣ 1√
n

n∑
k=1

εk|ak| cos(kX) + ηk|bk| sin(kX)

∣∣∣∣∣
)∣∣∣∣∣

p]]
≤ Kp,n,
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where we have set

Kp,n = Kp,n(ω) := 2pKp +

∣∣∣∣∣log

(
1

n

n∑
k=1

a2
k + b2k

2

)∣∣∣∣∣
p

.

By Markov inequality with respect to Pε,η, as in the proof of Lemma 4, we have then for
all θ > 0

Pε,η

(
EX

[∣∣∣∣∣log

(∣∣∣∣∣ 1√
n

n∑
k=1

εk|ak| cos(kX) + ηk|bk| sin(kX)

∣∣∣∣∣
)∣∣∣∣∣

p]
> nθ

)
≤
K 2p

θ ,n

n2
.

Now, by the law of large numbers, P almost surely, for n ≥ n0 = n0(ω) sufficiently large,
we have Kp,n ≤ 2pKp + 1 so that applying Borel–Cantelli Lemma with respect to Pε,η, we
thus get that P⊗ Pε,η almost surely, for n sufficiently large

EX

[∣∣∣∣∣log

(∣∣∣∣∣ 1√
n

n∑
k=1

εk|ak| cos(kX) + ηk|bk| sin(kX)

∣∣∣∣∣
)∣∣∣∣∣

p]
≤ nθ.

But since the law of (εk|ak|, ηk|bk|)k≥1 under P⊗Pε,η coincides with the one of (ak, bk)k≥1

under P, we can thus conclude that P almost surely, for n sufficiently large

EX

[∣∣∣∣∣log

(∣∣∣∣∣ 1√
n

n∑
k=1

ak cos(kX) + bk sin(kX)

∣∣∣∣∣
)∣∣∣∣∣

p]
≤ nθ,

hence the result.

Thanks to the explicit rate of convergence in Salem–Zygmund estimates established
in Theorem 2 and more precisely in Corollary 1 above, the last result can actually be
reinforced to show that the logarithmic moments are in fact P almost surely bounded.

Lemma 5. Suppose that the random variables (ak, bk)k≥1 are independent standard
Gaussian variables or more generally are that they are independent and identically
distributed with a symmetric distribution with bounded variance. Then P almost surely,
for all p > 1, there exists a constant Cp = Cp(ω) such that uniformly in n ≥ 1

EX [|log(|fn(X)|)|p] ≤ Cp.

Proof. Let a > 0, then for x small enough, we have

| log(a+ x)| =


| log(a)| − Pa(x) + o(x3), if 0 < a < 1,

| log(a)|+ Pa(x) + o(x3), if a > 1,

where Pa(x) := x
a −

x2

2a2 + x3

3a3 . Fix M > e so that log(M) > 1 and let us introduce the
following smooth truncation of the logarithm function, defined for all x ≥ 0 by

logM (x) :=



log(M)− (Mx)4 × P 1
M

(
x− 1

M

)
, if x ≤ 1

M ,

| log(x)| if 1
M < x < M,

log(M) + (1− (x−M))4 × PM (x−M), if M ≤ x ≤M + 1,

log(M), if x ≥M + 1.

and illustrated below
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1
M 1 M M + 1

log(M)

| log(x)|

logM (x)

Figure 2: Graph of the truncation of logarithm function logM .

The function x 7→ logM (x) is then non-negative and bounded by log(M) + 2 on
R+ and it satisfies logM (x) ≤ | log(x)|. It coincides with x 7→ | log(x)| on the interval
[1/M,M ], with matching derivatives up to order three at x = 1/M and x = M , and
vanishing derivatives up to order three at x = 0 and x = M + 1. In particular, it is C3 on
each of the intervals [0, 1) and (1,+∞). Moreover, in the neighborhood of 1, we have
logM (1 +x) = | log(1 +x)| ≈ |x|. As a result, for all p > 3, the function x ∈ R 7→ logM (|x|)p
is C3 on R, and we have

max
(
|| logpM ||∞, ||logpM

′||∞, ||logpM
′′||∞, ||logpM

(3)||∞
)
≤ p3M3 log(M)p−1.

By the triangle inequality, if G ∼ N (0, 1) under PX , we can now write

EX [|log(|fn(X)|)|p] ≤ |EX [|log(|fn(X)|)|p]− EX [|logM (|fn(X)|)|p]|︸ ︷︷ ︸
An

+ |EX [|logM (|fn(X)|)|p]− EX [|logM (|G|)|p]|︸ ︷︷ ︸
Bn

+EX [|logM (|G|)|p] .

Since logM (|x|) ≤ | log(|x|)| on R, we have EX [|logM (|G|)|p] ≤ EX [|log(|G|)|p] ≤ κp.
Moreover, thanks to Theorem 2 and Corollary 1, since the function logpM is of class C3

with bounded derivatives, for some β < 1/6, we have P almost surely for n large enough

Bn ≤ p3M3 log(M)p−1 × dXC3(fn(X), G) ≤ C p3M3 log(M)p−1

nβ
.

Finally, we can upper bound An in the following way

An ≤ An,1 +An,2 +An,3 +An,4,
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where
An,1 = EX

[
|log(|fn(X)|)|p 1|fn(X)|<1/M

]
An,2 := EX

[
|logM (|fn(X)|)|p 1|fn(X)|<1/M

]
An,3 = EX

[
|log(|fn(X)|)|p 1|fn(X)|>M

]
An,4 := EX

[
|logM (|fn(X)|)|p 1|fn(X)|>M

]
.

Next, since || logM ||∞ ≤ log(M) + 2, we have

An,2 ≤ (log(M) + 2)p × PX (|fn(X)| < 1/M) ,

An,4 ≤ (log(M) + 2)p × PX (|fn(X)| > M) .

By Markov inequality, we deduce that

An,4 ≤ (log(M) + 2)p ×
EX

[
|fn(X)|2

]
M2

=
(log(M) + 2)p

M2
× 1

n

n∑
k=1

a2
k + b2k

2
.

Let us now make use of the following general lemma which allow to compare the C3

distance used in Theorem 2 and Corollary 1 to the more classical Kolmogorov distance.
Its proof is given in Section A.3 of the appendix.

Lemma 6. Let (Yn) a sequence of random variables which converges in distribution
towards a standard Gaussian variable G under PX , then we have

sup
x∈R
|PX(G ≤ x)− PX(Yn ≤ x)| = O

(
dXC3(Yn, G)

1
4

)
.

Applying Lemma 6 with Yn = fn(X), in conjunction with Corollary 1, we have∣∣∣∣PX (|fn(X)| < 1

M

)
− PX

(
|G| < 1

M

)∣∣∣∣ = O
(
dXC3 (fn(X), G)

1
4

)
= O

(
1

n
β
4

)
.

As a result, we get

An,2 ≤ (log(M) + 2)p ×
∣∣∣∣PX (|G| < 1

M

)
+O

(
1

n
β
4

)]

≤ (log(M) + 2)p ×
[
O
(

1
M

)
+O

(
1

n
β
4

)]
.

Otherwise, using Cauchy–Schwarz inequality, we have

|An,1|2 ≤ EX
[
|log(|fn(X)|)|2p

]
PX (|fn(X)| < 1/M) ,

|An,3|2 ≤ EX
[
|log(|fn(X)|)|2p

]
PX (|fn(X)| > M) .

By Lemma 4, we then get that P almost surely, for all θ > 0

|An,3|2 ≤ EX
[
|log(|fn(X)|)|2p

] EX [|fn(X)|2
]

M2
≤ C2p,θ × nθ ×

1

M2
× 1

n

n∑
k=1

a2
k + b2k

2
,

and as above

|An,1|2 ≤ C2p,θ × nθ ×
[
O

(
1

M

)
+O

(
1

n
β
4

)]
.
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As a conclusion, choosing M = M(n) of the form nγ with 0 < γ < β/4, and θ < γ, we
obtain that P almost surely, as n goes to infinity

EX [|log(|fn(X)|)|p] ≤ κp + o(1),

hence the result.

3.4 Moment estimates

Let us now describe how the above estimates of Section 3.3 on the logarithmic
moments of |fn(X)| = |gn(0)| actually allow to obtain some moment estimates for the
number of zeros N (gn, [0, 2π]) of gn in [0, 2π]. Precisely, the goal of this section is to prove
the following result.

Proposition 4. Under the assumptions of Lemma 5, for all p ≥ 1, P almost surely we
have

sup
n≥1

EX [|N (gn, [0, 2π])|p] < +∞.

Proof. Let us fix p ≥ 1. We first write

EX [|N (gn, [0, 2π])|p] = p

∫ +∞

0

sp−1PX (N (gn, [0, 2π]) > s) ds.

By iterating Rolle Lemma bsc times, see for example p.19 of [3], the last probability can
then be upper bounded as follows

PX (N (gn, [0, 2π]) > s) ≤ PX
(
|gn(0)| ≤ (2π)bsc

bsc!
||g(bsc)
n ||∞

)
,

so that for any R > 0

PX (N (gn, [0, 2π]) > s) ≤ PX
(
|gn(0)| ≤ (2π)bscR

bsc!

)
+ PX

(
||g(bsc)
n ||∞ > R

)
. (3.4)

Applying Markov inequality, we get

PX

(
||g(bsc)
n ||∞ > R

)
≤ 1

R2
× EX

[
||g(bsc)
n ||2∞

]
.

Now, comparing the uniform norm with Sobolev norms, see Lemma 5.15 p.107 of [1], if
|| · ||2 denotes the standard L2 norm in L2([0, 2π]), there exists a universal constant C > 0

such that
EX

[
||g(bsc)
n ||2∞

]
≤ C

(
EX

[
||g(bsc)
n ||22

]
+ EX

[
||g(bsc+1)
n ||22

])
.

But for any integer `, we have

EX

[
||g(`)
n ||22

]
=

1

2n

n∑
k=1

(
k

n

)2` (
a2
k + b2k

)
≤ 1

2n

n∑
k=1

(
a2
k + b2k

)
,

hence

PX

(
||g(bsc)
n ||∞ > R

)
≤ 2C

R2
× 1

2n

n∑
k=1

(
a2
k + b2k

)
.

Let us now choose R = R(s) of the form R(s) := (1 + |s|)p to get that

sup
n≥1

PX

(
||g(bsc)
n ||∞ > (1 + |s|)p

)
≤ 2C

(1 + |s|)2p
× sup
n≥1

1

2n

n∑
k=1

(
a2
k + b2k

)
. (3.5)
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Now, for s large enough we have then (2π)bscR(s)
bsc! < 1, and by Lemma 5, uniformly in n

and for all q ≥ 1, we have P almost surely

PX

(
|gn(0)| ≤ (2π)bscR(s)

bsc!

)
= PX

(
|fn(X)| ≤ (2π)bscR(s)

bsc!

)
= PX

(
|log (|fn(X)|)| ≥

∣∣∣log
(

(2π)bscR(s)
bsc!

)∣∣∣)
≤ EX [|log (|fn(X)|)|q]∣∣∣log

(
(2π)bscR(s)
bsc!

)∣∣∣q ≤ Cq∣∣∣log
(

(2π)bscR(s)
bsc!

)∣∣∣q ,
that is, for all q ≥ 1, P almost surely, for s large enough

sup
n≥1

PX

(
|gn(0)| ≤ (2π)bscR(s)

bsc!

)
= O

(∣∣∣∣ 1

bsc log bsc)

∣∣∣∣q) . (3.6)

Choosing q > p and combining Equations (3.4), (3.5) and (3.6), we thus get that P almost
surely

sup
n≥1

∫ +∞

0

sp−1PX (N (gn, [0, 2π]) > s) ds < +∞,

hence the result.

Combining the last Proposition 4 with the convergence in distribution established in
Proposition 3, we obtain the convergence of all the moments.

Corollary 3. For all p ≥ 1, we have P almost surely

lim
n→+∞

EX [N (gn, [0, 2π])p] = EX [N (g∞, [0, 2π])p] .

3.5 Conclusion

Following Lemma 3 and Equations (3.1) and (3.2), we have

N (fn, [0, 2π])

n
= EX [N (gn, [0, 2π])] .

Applying the above Corollary 3, with p = 1, we thus get that P almost surely

lim
n→+∞

N (fn, [0, 2π])

n
= EX [N (g∞, [0, 2π])] .

By Theorem 3, under PX , the limit process (g∞(t))t∈[0,2π] is a Gaussian process with sinc
covariance so that, as it is well known

EX [N (g∞, [0, 2π])] =
2√
3
.

More generally, a similar proof would yield that P almost surely, for any [a, b] ⊂ [0, 2π],

lim
n→+∞

N (fn, [a, b])

n
=

(b− a)

π
√

3
.

The above almost sure convergence can be rephrased as follows in terms of the
empirical measure associated with the real zeros of fn.

Corollary 4. Let us denote by νn the empirical measure associated with the real roots
of the random trigonometric polynomial fn, namely

νn :=
1

N (fn, [0, 2π])

∑
x∈[0,2π[
fn(x)=0

δx.

Then, P almost surely, as n goes to infinity, νn converge in distribution to the normalized
Lebesgue measure on [0, 2π].

EJP 26 (2021), paper 156.
Page 29/36

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP716
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variations on Salem–Zygmund results for trigonometric polynomials

A Appendix

A.1 Proof of Lemma 1

We give here the proof of Lemma 1, which is the key step in the proof of Theorem 2,
i.e. the quantified version of Salem–Zygmund convergence.

Proof of Lemma 1. We have the following decomposition

Ãn(ξ) := E

∣∣∣∣∣ 1√
n

n∑
k=1

EX
[
Rk(X) exp

(
iξSkn(X)

)]∣∣∣∣∣
2


= EXEY

E
 1

n

n∑
k,l=1

Rk(X)Rl(Y ) exp
(
iξ
(
Skn(X)− Sln(Y )

))
= EXEY

[
E

[
1

n

n∑
k=1

Rk(X)Rk(Y ) exp
(
iξ
(
Skn(X)− Skn(Y )

))]]
︸ ︷︷ ︸

diagonal term:=Diag

+ EXEY

E
 1

n

∑
k 6=l

Rk(X)Rl(Y ) exp
(
iξ
(
Skn(X)− Sln(Y )

))
︸ ︷︷ ︸

off diagonal term:=Off-Diag

.

The diagonal term:

We start by handling the diagonal term. We have

Diag = EXEY

[
1

n

n∑
k=1

E [Rk(X)Rk(Y )]E
[
exp

(
iξ
(
Skn(X)− Skn(Y )

))]]

= EXEY

[
E

[
1

n

n∑
k=1

cos(k(X − Y )) exp
(
iξ
(
Skn(X)− Skn(Y )

))]]

= EXEY

[
E

[
1

n

n∑
k=1

cos(k(X − Y )) exp (iξ (Sn(X)− Sn(Y )))

]]
︸ ︷︷ ︸

:=Diag1

+EXEY

[
1

n

n∑
k=1

cos(k(X − Y ))E
[
eiξ(S

k
n(X)−Skn(Y ))

]
E [1−Ψk,k,X,Y (ξ)]

]
︸ ︷︷ ︸

:=Diag2

,

where we have set, for 1 ≤ k, l ≤ n

Ψk,l,X,Y (ξ) := exp

(
i
ξ√
n

(Rk(X)−Rl(Y ))

)
.

A Taylor expansion at the order 2 gives the following uniform bound:∣∣∣∣Ψk,k,X,Y (ξ)− 1− i ξ√
n

(Rk(X)−Rk(Y ))

∣∣∣∣ ≤ |ξ|22n
.

Since Rk(X)−Rk(Y ) is centered with respect to P, we have

|E [1−Ψk,k,X,Y (ξ)]| ≤ |ξ|
2

2n
,
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so that Diag2 ≤
ξ2

2n . Moreover, using Fubini inversion, we have Diag1 = E
[
D̃iag1

]
where

D̃iag1 := EXEY

[
1

n

n∑
k=1

cos(k(X − Y )) exp (iξ (Sn(X)− Sn(Y )))

]

= EX,Y

[
1

2n

n∑
k=1

exp (ik(X − Y )) exp (iξ (Sn(X)− Sn(Y )))

]

+ EX,Y

[
1

2n

n∑
k=1

exp (−ik(X − Y )) exp (iξ (Sn(X)− Sn(Y )))

]

=
1

2n

n∑
k=1

∣∣∣∣ 1

2π

∫ 2π

0

eikxeiξSn(x)dx

∣∣∣∣2+
1

2n

n∑
k=1

∣∣∣∣ 1

2π

∫ 2π

0

e−ikxeiξSn(x)dx

∣∣∣∣2
Bessel
≤

inequality

1

2n

(
1

2π

∫ 2π

0

|exp (iξSn(x))|2 dx
)

=
1

2n
.

Gathering the above estimates, one thus gets

|Diag| ≤ |ξ|
2 + 1

n
. (A.1)

The off-diagonal term:

Let us define Sk,ln (X) := Sn(X)− Rk(X)√
n
− Rl(X)√

n
, so that

Off-Diag = EX,Y

 1

n

∑
k 6=l

E
[
eiξ(S

k,l
n (X)−Sk,ln (Y ))

]
E [Rk(X)Rl(Y )Ψk,l,X,Y (ξ)]

 . (A.2)

Performing this time a Taylor expansion at the order 3 we get:

Ψk,l,X,Y (ξ) = 1 + iξ
Rl(X)−Rk(Y )√

n
− ξ2

2n
(Rl(X)−Rk(Y ))

2

− iξ3

n
√
n

(Rl(X)−Rk(Y ))
3

+Rn,k,l,ξ, with |Rn,k,l,ξ| ≤
|ξ|4

24n2
.

Now, since k 6= l, we have E [Rk(X)Rl(Y )] = 0 and in we introduce the following notation
to lighten the expressions ∆p

k,l = ∆p
k,l(X,Y ) := E [Rk(X)Rl(Y )(Rl(X)−Rk(Y ))p] for

p = 1, 2, 3, we have then ∆1
k,l = 0 and

∆2
k,l = −2E [Rk(X)Rk(Y )]E [Rl(X)Rl(Y )] = −2 cos(k(X − Y )) cos(l(X − Y )),

∆3
k,l = E

[
Rk(X)Rl(Y )R3

l (X)
]︸ ︷︷ ︸

=0

−E
[
Rk(X)R3

k(Y )Rl(Y )
]︸ ︷︷ ︸

=0

−3E
[
Rk(X)Rk(Y )R2

l (X)Rl(Y )
]

+ 3E
[
Rk(X)R2

k(Y )Rl(Y )Rl(X)
]

= −3E[a3
1] cos(k(X − Y ))

(
cos2(lX) cos(lY ) + sin2(lX) sin(lY )

)
+3E[a3

1] cos(l(X − Y ))
(
cos2(kY ) cos(kX) + sin2(kY ) sin(kX)

)
.
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Hence, replacing Ψk,l,X,Y (ξ) by its Taylor expansion in (A.2), we get

Off-Diag = − ξ2

n2
EX,Y

∑
k 6=l

E
[
eiξ(S

k,l
n (X)−Sk,ln (Y ))

]
cos(k(X − Y )) cos(l(X − Y ))


︸ ︷︷ ︸

Off-diag1

− iξ3

n2
√
n
EX,Y

∑
k 6=l

E
[
eiξ(S

k,l
n (X)−Sk,ln (Y ))

]
∆3
k,l(X,Y )


︸ ︷︷ ︸

Off-diag2

+Rk,l,X,Y,ξ,

where |Rk,l,X,Y,ξ| ≤ ξ4

24n . Using a Taylor expansion at the order 1 gives∣∣∣E [eiξ(Sk,ln (X)−Sk,ln (Y ))
]
− E

[
eiξ(Sn(X)−Sn(Y ))

]∣∣∣
≤
∣∣∣1− E [ei ξ√

n
(Rk(X)+Rl(X)−Rk(Y )−Rl(Y ))

]∣∣∣ ≤ ξ2

2n

Plugging this in the first off-diagonal term leads to∣∣∣∣Off-diag1− ξ2

n2
˜Off-diag1

∣∣∣∣ ≤ ξ4

2n
,

where

˜Off-diag1 := EX,Y

E [eiξ(Sn(X)−Sn(Y ))
]∑
k 6=l

cos(k(X − Y )) cos(l(X − Y ))


satisfies ∣∣∣ ˜Off-diag1

∣∣∣ ≤ EX,Y
∣∣∣∣∣∣
∑
k 6=l

cos(k(X − Y )) cos(l(X − Y ))

∣∣∣∣∣∣


≤ EX,Y

[∣∣∣∣∣
n∑
k=1

n∑
l=1

cos(k(X − Y )) cos(l(X − Y ))

∣∣∣∣∣
]

+ n

= EX,Y

( n∑
k=1

cos(k(X − Y ))

)2
+ n =

3

2
n.

Finally, gathering all these facts leads to

|Off-diag1| ≤ 3ξ2

2n
+
ξ4

2n
. (A.3)

Next, by the same strategy since∣∣∣E [eiξ(Sk,ln (X)−Sk,ln (Y ))
]
− E

[
eiξ(Sn(X)−Sn(Y ))

]∣∣∣ ≤ 4
|ξ|√
n
,

one gets

|Off-diag2| ≤ 12
∣∣E[a3

1]
∣∣ ξ4

n
+
|ξ|3

n2
√
n
EX,Y

∣∣∣∣∣∣
∑
k 6=l

∆3
k,l(X,Y )

∣∣∣∣∣∣
 .

Let us simply notice that∣∣∣∣∣∣
∑
k 6=l

∆3
k,l(X,Y )−

n∑
k=1

n∑
l=1

∆3
k,l(X,Y )

∣∣∣∣∣∣ ≤ 6|E[a3
1]|n

∣∣∣∣∣
n∑
k=1

n∑
l=1

∆3
k,l(X,Y )

∣∣∣∣∣ ≤ 6|E[a3
1]|

∣∣∣∣∣
n∑
k=1

cos(k(X − Y ))

∣∣∣∣∣ .
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The latter ensures that

EX,Y

∣∣∣∣∣∣
∑
k 6=l

∆3
k,l(X,Y )

∣∣∣∣∣∣
 ≤ EX,Y

[∣∣∣∣∣
n∑
k=1

n∑
l=1

∆3
k,l(X,Y )

∣∣∣∣∣
]

+ 6|E[a3
1]|n

≤ 6n|E[a3
1]| × EX,Y

[∣∣∣∣∣
n∑
k=1

cos(k(X − Y ))

∣∣∣∣∣
]

+ 6|E[a3
1]|n

≤ 12|E[a3
1]|n
√
n,

where the Cauchy–Schwarz inequality as well as the orthogonality of the random vari-
ables (cos(k(X − Y )))k≥1 have been used in the last inequality. As a matter of fact, one
deduces that

|Off-diag2| ≤ 12|E[a3
1]|

n

(
|ξ|4 + |ξ|3

)
. (A.4)

Finally, gathering the estimates (A.3) and (A.4) gives the following bound for the total
off-diagonal term:

|Off-diag| ≤ |ξ4|
24n

+
3ξ2

2n
+
ξ4

2n
+

12|E[a3
1]|

n

(
|ξ|4 + |ξ|3

)
≤

(
12 + |E[a3

1]|
) |ξ|4 + |ξ|3 + |ξ|2

n
. (A.5)

Finally using both (A.1) and (A.5), one indeed obtains the desired bound (2.7), namely

∀ξ ∈ R,
∣∣∣Ãn(ξ)

∣∣∣ ≤ |Diag|+ |Off-diag| ≤
(
13 + |E[a3

1]|
) |ξ|4 + |ξ|3 + |ξ|2 + 1

n
.

A.2 Proof of Lemma 2

Let us now give the proof of Lemma 2 used in the proof of the total variation version
of Salem–Zygmund convergence.

Proof of Lemma 2. Let 1
ερ
( ·
ε

)
be a regularization kernel, which we may assume com-

pactly supported. Let φ be any compactly supported, continuous and bounded by 1. We
start by writing that∣∣∣∣∫

R

φ(x)dµn −
∫
R

φ(x)dµ∞

∣∣∣∣ ≤ ∣∣∣∣∫
R

(φ(x)− φ ∗ ρε(x)) dµn

∣∣∣∣
+

∣∣∣∣∫
R

(φ(x)− φ ∗ ρε(x)) dµ∞

∣∣∣∣+

∣∣∣∣∫
R

φ ∗ ρε(x)dµn −
∫
R

φ ∗ ρε(x)dµ∞

∣∣∣∣ .
By the assumptions on the sequence of probability measures (µn)n≥1, we may infer that,
for any α > 0,∣∣∣∣∫

R

(φ(x)− φ ∗ ρε(x)) dµn

∣∣∣∣ ≤ supx∈R
∣∣∫ x

0
(φ(x)− φ ∗ ρε(x)) dµn

∣∣
α

+Bn(α).

Using Fubini inversion of sums one may write∫
R

(φ(x)− φ ∗ ρε(x)) dµn =

∫ x

0

φ(t)

∫
R

(ρε(y)− φ(t− y)ρε(y)) dydx

=

∫
R

ρε(y)

(∫ x

0

(φ(t)− φ(t− y)) dt

)
dy

=

∫
R

ρ(y)

(∫ x

0

(φ(t)− φ(t− εy)) dt

)
dy.
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Since ‖φ‖∞ ≤ 1, one gets∣∣∣∣∫
R

(φ(x)− φ ∗ ρε(x)) dµn

∣∣∣∣ ≤ ∫
R

ρ(y)

(∫ 0

−εy
|φ(t)|dt+

∫ x

x−εy
|φ(t)|dt

)
+ |Bn(α)|

≤ ε
∫
R

|y|ρ(y)dy + |Bn(α)|.

Letting n→∞ in the previous inequality, using that µn converges in distribution towards
µ∞ and the assumptions on Bn(α), it also holds that∫

R

φ(x)dµn(x) ≤
ε
∫
R
|y|ρ(y)dy

α
.

Let us recall that the convergence in distribution is a topology which can be associated
with the so-called Fortet-Mourier metric. This metric is defined as follows:

dFM (µ, ν) = sup
‖φ‖∞≤1
‖φ′‖∞≤1

∣∣∣∣∫
R

φ(x)dµ(x)−
∫
R

ψ(x)dν(x)

∣∣∣∣ .
Besides, if ‖φ‖∞ ≤ 1 one deduces that ‖φ∗ρε‖∞ ≤ 1 and ‖φ∗ρ′ε‖∞ ≤

∫
R
|ρ′(t)|dt
ε . Gathering

all these facts leads to∣∣∣∣∫
R

φ(x)(dµn(x)− dµ∞(x))

∣∣∣∣ ≤ 2
ε

α

∫
R

|y|ρ(y)dy + |Bn(α)|

+

(
1 +

∫
R
|ρ′(t)|dt
ε

)
dFM (µn, µ∞) .

Since by assumption µn tends to µ∞ in distribution and since dFM is a metric for this
convergence, dFM (µn, µ∞) goes to zero as n goes to infinity. Taking the lim sup for n
going to infinity in the previous inequality gives

lim sup
n→+∞

dTV (µn, µ∞) ≤ lim sup
n
|Bn(α)|+ 2

ε

α

∫
R

|y|ρ(y)dy

Then letting ε go to zero and next α go to zero, we get the desired conclusion.

A.3 Proof of Lemma 6

Finally, let us give the proof of Lemma 6 allowing to compare the Kolomogorov and C3

distances, which was used in the proof of Lemma 5 on the finiteness of the logarithmic
moments of fn(X).

Proof of Lemma 6. Let us fix some small h > 0 and introduce the smooth approximations
of 1·≤x

ρh−x (y) :=


1 if y ≤ x− h, 0 if y ≥ x

1− 1

1+e
− h

(y−x)(y−x+h)
if x− h ≤ y ≤ x,

and

ρh+
x (y) :=


1 if y ≤ x, 0 if y ≥ x+ h

1− 1

1+e
h

(y−x)(y−x−h)
if x ≤ y ≤ x+ h.
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We have then ρh−x (y) ≤ 1y≤x ≤ ρh+
x (y) for all y ∈ R, and there exists a constant C such

that

max(||ρh±x ||∞, ||ρh±x
′||∞, ||ρh±x

′′||∞, ||ρh±x
′′′||∞) ≤ C

h3
.

We can then write

PX(G ≤ x)− PX(Xn ≤ x) = EX
[
1G≤x − ρh−x (G)

]
+ EX

[
ρh−x (G)− ρh−x (Yn)

]
+EX

[
ρh−x (Yn)]− 1Yn≤x

]︸ ︷︷ ︸
·≤0

≤ PX(G ∈ [x− h, x]) + C
h3 × dXC3(Yn, G).

Hence, since the Gaussian density is uniformly bounded by 1/
√

2π ≤ 1, uniformly in x,
we get

PX(G ≤ x)− PX(Xn ≤ x) ≤ h+
C

h3
× dXC3(Yn, G).

In the same manner, we have

PX(Xn ≤ x)− PX(G ≤ x) = EX
[
1Xn≤x − ρh+

x (Xn)
]︸ ︷︷ ︸

·≤0

+EX
[
ρh+
x (Xn)− ρh+

x (G)
]

+EX
[
ρh+
x (G)]− 1G≤x

]
≤ P(G ∈ [x, x+ h]) + C

h3 × dXC3(Yn, G).

Therefore, we have

sup
x∈R
|PX(G ≤ x)− PX(Yn ≤ x)| ≤ h+

C

h3
× dXC3(Yn, G),

which yields the desired result after optimizing in h.
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