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Abstract

We study the asymptotic behaviour of additive functionals of random walks in random
scenery. We establish bounds for the moments of the local time of the Kesten and
Spitzer process. These bounds combined with a previous moment convergence result
(and an ergodicity result) imply the convergence in distribution of additive observables
(with a normalization in n

1
4 ). When the sum of the observable is null, the previous limit

vanishes and we prove the convergence in the sense of moments (with a normalization
in n

1
8 ).
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1 Introduction

1.1 Description of the model and of some earlier results

We consider two independent sequences (Xk)k≥1 (the increments of the random walk)
and (ξy)y∈Z (the random scenery) of independent identically distributed Z-valued random
variables. We assume in this paper that X1 is centered and admits finite moments of all
orders, and that its support generates the group Z. We define the random walk (Sn)n≥0

as follows

S0 := 0 and Sn :=

n∑
i=1

Xi for all n ≥ 1 .

We assume that ξ0 is centered, that its support generates the group Z, and that it admits
a finite second moment σ2

ξ := E[ξ2
0 ] > 0. The random walk in random scenery (RWRS) is

the process defined as follows

Zn :=

n−1∑
k=0

ξSk =
∑
y∈Z

ξyNn(y) , (1)
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Limit theorems for additive functionals of random walks in random scenery

where we set Nn(y) = #{k = 0, . . . , n − 1 : Sk = y} for the local time of S at position
y before time n. This process first studied by Borodin [7] and Kesten and Spitzer
[32] describes the evolution of the total amount won until time n by a particle moving
with respect to the random walk S, starting with a null amount at time 0 and winning
the amount ξ` at each time the particle visits the position ` ∈ Z. This process is a
natural example of (strongly) stationary process with long time dependence. Due to the
first works by Borodin [7] and by Kesten and Spitzer [32], we know that (n−

3
4Zbntc)t

converges in distribution, as n goes to infinity, to the so-called Kesten and Spitzer process
(σξ∆t, t ≥ 0), where ∆ is defined by

∆t :=

∫ +∞

−∞
Lt(x) dβx , (2)

with (βx)x∈R a Brownian motion and (Lt(x), t ≥ 0, x ∈ R) a jointly continuous in t

and x version of the local time process of a standard Brownian motion (Bt)t≥0, where

((Bt)t, (βs)s) is the limit in distribution of n−
1
2 ((Sbntc)t, (σ

−1
ξ

∑bnsc
k=1 ξk)s) as n → +∞.

Observe that ∆ is the continuous time analog of the random walk in random scenery.
To be convinced of this fact, one may compare the right hand side of (1) with (2). The
process ∆ is a classical and nice example of a (strongly) stationary process, self-similar
with dependent (strongly) stationary increments and exhibiting long time dependence.

In [7], Borodin established the convergence in distribution of (Zn/n
3
4 )n when X

and ξ have second order moments. Kesten and Spitzer established in [32] a functional
limit theorem when the distributions of X and ξ belong to the domain of attraction of
stable distributions with respective parameters α 6= 1 and β ∈ (0, 2]. Limit theorems
have been extended by Bolthausen [6] (for the case α = β = 2 for random walks of
dimension d = 2), by Deligiannidis and Utev [19] (for the case α = d ∈ {1, 2}, β = 2,
providing some correction to [6]) and by Castell, Guillotin-Plantard and the author [12]
(when α ≤ d and β < 2), completing the picture for the convergence in the sense
of distribution and for the functional limit theorem (except in the case α ≤ 1 and
β = 1 for which the tightness remains an open question). Since the seminal works by
Borodin and by Kesten and Spitzer, random walks in random scenery and the Kesten and
Spitzer process ∆ have been the object of various studies (let us mention for example
[33, 50, 29, 3, 27, 25, 28, 2]).

Random walks in random scenery are related to other models, such as the Matheron
and de Marsily Model [39] of transport in porous media, the transience of which has
been established by Campanino and Petritis [11] and which has many generalizations
(e.g. [26, 20, 23, 10, 9]), and such as the Lorentz-Lévy process (see [40] for a short
presentation of some models linked to random walks in random scenery).

Random walks in random scenery constitute also a model of interest in the context
of dynamical systems. They correspond indeed to Birkhoff sums of a transformation
called the T, T−1 transformation appearing in [49, p. 682, Problem 2] where it was asked
whether this Kolmogorov automorphism is Bernoulli or not. In [30], Kalikow answered
negatively this question by proving that this transformation is not even loosely Bernoulli.

1.2 Main results

Before stating our main results, let us introduce some additional notations. Let d ∈ N
be the greatest common divisor of the set {x ∈ Z, P(ξ0 − ξ1 = x) > 0} and α ∈ Z such
that P(ξ0 = α) > 0. This means that the random variables ξ` take almost surely their
values in α+ dZ and that d is largest positive integer satisfying this property. Since the
support of ξ generates the group Z, necessarily α and d are coprime. Recall that the
quantity d can be also simply characterized using the common characteristic function ϕξ
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Limit theorems for additive functionals of random walks in random scenery

of the ξ`.1

In the present paper we are interested in the asymptotic behaviour of additive
functionals of the RWRS (Zn)n≥1 that is of quantities of the following form:

Zn :=

n∑
k=1

f(Zk)

where f : Z→ R is absolutely summable. This quantity is strongly related to the local
time Nn of the RWRS Z, which is defined by

Nn(a) = #{k = 1, · · · , n : Zk = a} .

Indeed if f = 10, then Zn = Nn(0) and if f = 10 − 11, then Zn = Nn(0)−Nn(1). In the
general case, Zn can be rewritten

Zn :=
∑
a∈Z

f(a)Nn(a) .

The asymptotic behaviour of (Nn(0))n has been studied by Castell, Guillotin-Plantard,
Schapira and the author in [14, Corollary 6], in which it has been proved that the
moments of (n−

1
4Nn(0))n≥1 converge to those of the local time L1(0) at position 0 and

until time 1 of the process ∆. The proof of this result was based on a multitime local
limit theorem [14, Theorem 5] extending a local limit theorem contained in [13] and on
the finiteness of the moments of L1(0) (which was a delicate question). We complete
this previous work by establishing in Section 2 the following bounds for the moments of
L1(0).

Theorem 1 (Bounds for the moments of the local time of the Kesten and Spitzer process).
For any η0 > 0, there exists a > 0 and C > 0 such that

(Cm)
3m
4 ≤ E[(L1(0))m] = O

(
am (m!)

3
2 +η0

Γ(m4 + 1)

)
≤ O

(
mm( 5

4 +2η0)
)
.

Even if it uses some ideas that already existed in [14], the proof of Theorem 1 (given
in Section 2) is different in many aspects. The proof of Theorem 1 relies on several
auxiliary results. We summarize quickly its strategy. We will prove (see (5) coming from
[14] and (6)) that

E[(L1(0))m] =

m!

(2πσ2
ξ )

m
2

∫
0<t1<···<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4E

[
m−1∏
k=0

(
d(L(k+1),Wk)

)−1
]
dt1 · · · dtm ,

where we set Wk := V ect(L(1), · · · , L(k)) and L(k+1) := (Ltk+1
− Ltk)/(tk+1 − tk)

3
4 (nor-

malized so that |L(m)|L2(R) has the same distribution as |L1|L2(R)). We will prove, in
Lemma 7, that

∃c, C > 0, m!

∫
0<t1<···<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4 dt1 · · · dtm ∼ c(Cm)

3m
4 ,

as m→ +∞ and, in Lemma 6, that(
E
[
|L1|−1

L2(R)

])m
≤ E

[
m−1∏
k=0

(
d(L(k+1),Wk)

)−1
]
≤
m−1∏
k=0

(
sup
V ∈Vk

E
[
(d (L1, V ))

−1
])

,

1Indeed d ≥ 1 is such that {u : |ϕξ(u)| = 1} = (2π/d)Z and a.s. e
2iπξ
d = e

2iπα
d which is a primitive d-th

root of the unity.
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where d(·, ·) is the distance associated with the L2-norm on L2(R) and where Vk is the
set of linear subspaces of L2(R) of dimension at most k. Theorem 1 will then follow from
the next self-interesting estimate on the local time L1 of the Brownian motion B up to
time 1.

Theorem 2 (An estimate on the distance between the local time of the Brownian motion
and a linear subspace).

sup
V ∈Vk

E
[
(d (L1, V ))

−1
]

= k
1
2 +o(1) , as k → +∞ .

Now we use the following classical argument for positive random variables. The
upper bound provided by Theorem 1 allows us to prove that Carleman’s criterion is
satisfied for E

√
L1(0) where E is a centered Rademacher distribution independent of

L1(0) and of Z, indeed:∑
m≥1

E[(L1(0))m]−
1

2m ≥ c1
∑
m≥1

m−
5
8−η0 =∞ ,

for every η0 ∈ (0, 3
8 ). This enables us to deduce from [14, Corollary 6] that n−

1
8 E
√
Nn(0)

converges in distribution to E
√
σ−1
ξ L1(0) and so that

n−
1
4Nn(0)

L−→ σ−1
ξ L1(0) , as n→ +∞ , (3)

where
L−→ means convergence in distribution. This convergence in distribution is

extended to more general observables as follows.

Theorem 3 (Limit theorem for additive functionals of the RWRS Z). Let f : Z → R be
such that

∑
a∈Z |f(a)| <∞. Then n−

1
4

∑n−1
k=0 f(Zk) converges in distribution and in the

sense of moments to
(∑

a∈Z f(a)
)
σ−1
ξ L1(0).

The proof of the moments convergence in Theorem 3 is a straigthtforward adaptation
of [14] and is given in Appendix B. Due to Theorem 1 and to the above argument that lead
to (3), the convergence in distribution in Theorem 3 is a consequence of the moments
convergence. Another strategy to prove the convergence in distribution in Theorem 3
consists in seeing this result as a direct consequence of (3) combined with Proposition 14
stating the ergodicity of the dynamical system (Ω̃, T̃ , µ̃) corresponding to

T̃ k((Xm+1)m∈Z, (ξm)m∈Z, Z0) = ((Xk+m+1)m∈Z, (ξm+Sk)m∈Z, Zk) .

This dynamical system preserves the infinite measure µ̃ := P⊗ZX1
⊗P⊗Zξ0 ⊗ λZ, where λZ is

the counting measure on Z. Actually, thanks to (3) and to the recurrence ergodicity of
(Ω̃, T̃ , µ̃), we prove the following stronger version of the convergence in distribution of
Theorem 3.

Theorem 4 (Limit theorem for Birkhoff’s sums of (Ω̃, T̃ , µ̃)). For any µ̃-integrable function
f̃ : Ω̃→ R,

n−
1
4

n−1∑
k=0

f̃ ◦ T̃ k L(µ̃)−→
∫

Ω̃
f̃ dµ̃

σξ
L1(0) , as n→ +∞ ,

where
L(µ̃)−→ means convergence in distribution with respect to any probability measure

absolutely continuous with respect to µ̃.

Theorem 3 can be seen as a weak law of large numbers, with a non constant limit.
When

∑
a∈Z f(a) = 0, the limit given by Theorem 3 vanishes, but then the next result

provides a limit theorem for Zn =
∑n−1
k=0 f(Zk) with another normalization. This second
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result corresponds to a central limit theorem for additive functionals of RWRS. Let us
indicate that, contrarily to the moments convergence in Theorem 3, the next result is
not an easy adaptation of [14], even if its proof (given in Section 4) uses the same initial
idea (computation of moments using the local limit theorem) and, at the beginning, some
estimates established in [13, 14]. Indeed, important technical difficulties arise from the
cancellations coming from the fact that

∑
a∈Z f(a) = 0.

Theorem 5 (Convergence of the moments of “centered” additive functionals of the RWRS
Z). Assume moreover that there exists some κ ∈ (0, 1] such that ξ0 admits a moment of
order 2 + κ. Let f : Z→ R be such that

∑
a∈Z(1 + |a|)|f(a)| <∞ and that

∑
a∈Z f(a) = 0.

Then ∑
`∈Z

∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z2

f(a)f(b)P(Z|`′+d`| = a− b)

∣∣∣∣∣∣ <∞ .

Moreover all the moments of
(
n−

1
8

∑n−1
k=0 f(Zk)

)
n

converge to those of

√
σ2
f

σξ
L1(0)N ,

where N is a standard Gaussian random variable independent of L1(0) and where

σ2
f :=

∑
k∈Z

∑
a,b∈Z2

f(a)f(b)P(Z|k| = a− b) . (4)

In particular, for any a ∈ Z,
(
n−

1
8 (Nn(a)−Nn(0))

)
n

converges in the sense of moments

to

√
σ2

0,a

σξ
L1(0)N , with σ2

0,a :=
∑
k∈Z

[
2P(Z|k| = 0)− P(Z|k| = a)− P(Z|k| = −a)

]
.

Let us point out the similarity between these results and the classical Law of Large
Numbers and Central Limit Theorem for sums of square integrable independent and
identically distributed random variables. Indeed Theorems 3 and 5 establish convergence
results of the respective following forms

1

an

n∑
k=1

Yk → I(Y1)Y and
1
√
an

n∑
k=1

(Yk − I(Y1)Y 0
k )→

√
σ2
Y Y Z

as n→ +∞, with an → +∞, I an integral (with respect to the counting measure on Z)
and Y 0

k a reference random variable with integral 1 (e.g. Y 0
k = 10(Zk), note that we

cannot take Y 0
k = 1 since it is not integrable with respect to the counting measure on Z).

The summation order in the expression (4) of σ2
f is important. Indeed recall that

P(Zk = 0) has order k−
3
4 and so is not summable. The sum

∑
k∈Z appearing in (4) is

a priori non absolutely convergent if d 6= 1. Indeed, considering for example that ξ0 is
a centered Rademacher random variable (i.e. P(ξ0 = 1) = P(ξ0 = −1) = 1

2 ) and that
f = 10 − 11, then, for any k ≥ 0,∑

a,b∈Z2

f(a)f(b)P(Z|2k| = a− b) = P(Z|2k| = 0− 0) + P(Z|2k| = 1− 1) = 2P(Z|2k| = 0)

and∑
a,b∈Z2

f(a)f(b)P(Z|2k+1| = a− b)

= −P(Z|2k+1| = 0− 1)− P(Z|2k+1| = 1− 0) = −P(|Z|2k+1|| = 1) .

But, σ2
f corresponds to the following sum of an absolutely convergent series (in k):

σ2
f =

∑
k∈Z

d−1∑
`′=0

∑
a,b∈Z2

f(a)f(b)P(Z|`′+dk| = a− b)

 .
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Finally, let us point out that σ2
f defined in (4) corresponds to the Green-Kubo formula,

well-known to appear in central limit theorems for probability preserving dynamical
systems (see Remark 15 at the end of Section 3).

Let us indicate that results similar to Theorem 5 exist for one-dimensional random
walks, that is when the RWRS (Zn)n≥1 is replaced by the RW (Sn)n≥1, with other
normalizations and with an exponential random variable instead of L1(0). Such results
have been obtained by Dobrušin [21], Kesten in [31] and by Csáki and Földes in [17, 18].
The idea used therein was to construct a coupling using the fact that the times between
successive return times of (Sn)n≥1 to 0 are i.i.d., as well as the partial sum of the f(Sk)

between these return times to 0 and that these random variables have regularly varying
tail distributions. This idea has been adapted to dynamical contexts by Thomine [47, 48].
Still in dynamical contexts, another approach based on moments has been developed
in [41, 42] in parallel to the coupling method. This second method based on local limit
theorem is well tailored to treat non-markovian situations, such as RWRS. Indeed, recall
that the RWRS (Zn)n≥1 is (strongly) stationary but far to be markovian (for example it
has been proved in [14] that Zn+m − Zn is more likely to be 0 if we know that Zn = 0)
and even more intricate conditionally to the scenery (it has been proved in [25] that
the RWRS does not converge knowing the scenery). Luckily local limit theorem type
estimates enable to prove moments convergence. But unfortunately Theorem 1 is not
enough to conclude the convergence in distribution via Carleman’s criterion.

The paper is organized as follows. In Section 2, we prove Theorem 1 (bounds on
moments of the local time of the Kesten Spitzer process) and Theorem 2 (estimate on
the distance in L2(R) between the local time of a Brownian motion and a k-dimensional
vector space). In Section 3, we establish the recurrence ergodicity of the infinite mea-
sure preserving dynamical system (Ω̃, T̃ , µ̃) and obtain the convergence in distribution
of Theorem 3 (Law of Large Numbers) as a byproduct of this recurrence ergodicity
combined with (3). Section 3 is completed by Appendix B which contains the proof of
the moments convergence of Theorem 3. In Section 4 (completed with Appendix A), we
prove Theorem 5 (Central Limit Theorem).

2 Upper bound for moments: Proof of Theorem 1

This section is devoted to the study of the behaviour of E[(L1(0))m] as m→ +∞. It
has been proved in [14] that these quantities are finite, but the estimate established
therein was not enough to apply the Carleman criterion. The proof of Theorem 1 requires
a much more delicate study, even if it uses some estimates used in [14]. We start by
establishing bounds for E[(L1(0))m].

Lemma 6 (Bounds for the moments of the local time L1 of the RWRS Z in terms of the
local time L1 of the Brownian motion and of an integral).

(
E
[
|L1|−1

L2(R)

])m m!

(2πσ2
ξ )

m
2

∫
0<t1<···<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4 dt1 · · · dtm ≤ E[(L1(0))m]

and

E[(L1(0))m]

≤
m−1∏
j=0

(
sup
V ∈Vk

E
[
(d (L1, V ))

−1
]) m!

(2πσ2
ξ )

m
2

∫
0<t1<···<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4 dt1 · · · dtm ,

where d(f, g) = |f − g|L2(R) and where Vk is the set of linear subspaces of L2(R) of
dimension at most k.
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Proof. Recall that it has been proved in [14, Theorem 3] that

E[(L1(0))m] =
m!

(2πσ2
ξ )

m
2

∫
0<t1<···<tm<1

E[(detDt1,··· ,tm)−
1
2 ] dt1 · · · dtm , (5)

with Dt1,··· ,tm :=
(∫
R
Lti(x)Ltj (x) dx

)
i,j=1,··· ,m where (Lt(x))t≥0,x∈R is the local time of

the Brownian motion B. Since detDt1,··· ,tm is a Gram determinant, we have the iterative
relation

detD
1
2
t1,··· ,tm+1

= detD
1
2
t1,··· ,tmd(Ltm+1

, V ect(Lt1 , · · · , Ltm)) ,

where d(f, g) = ‖f−g‖L2(R) and where V ect(Lt1 , · · · , Ltm) is the sublinear space of L2(R)

generated by Lt1 , · · · , Ltm . It follows that

detD−
1
2

t1,··· ,tm =

m−1∏
k=0

(
d(Ltk+1

, V ect(Lt1 , · · · , Ltk))
)−1

. (6)

But, for any m ≥ 1 and any 0 < t1 < · · · < tm+1 < 1 and any k = 0, · · · ,m− 1,

E
[
d
(
Ltk+1

, V ect(Lt1 , · · · , Ltk)
)−1
∣∣∣ (Bs)s≤tk]

= E
[
d
(
Ltk+1

− Ltk , V ect(Lt1 , · · · , Ltk)
)−1
∣∣∣ (Bs)s≤tk]

= E
[
d
(
(Ltk+1

− Ltk)(Btk + ·), V ect(Lt1(Btk + ·), · · · , Ltk(Btk + ·))
)−1
∣∣∣ (Bs)s≤tk] .

Therefore

E
[∣∣Ltk+1

− Ltk
∣∣−1

L2(R)

]
≤ E

[
d
(
Ltk+1

, V ect(Lt1 , · · · , Ltk)
)−1
∣∣∣ (Bs)s≤tk]

and

E
[
d
(
Ltk+1

, V ect(Lt1 , · · · , Ltk)
)−1
∣∣∣ (Bs)s≤tk] ≤ sup

V ∈Vk
E
[
d
(
(Ltk+1

− Ltk)(Btk + ·), V
)−1
]
,

(7)
where Vk is the set of linear subspaces of dimension at most k of L2(R) and where we
used the independence of (Ltk+1

−Ltk)(Btk + ·) with respect to (Bs)s≤tk and the fact that
(Lt1(Btk + ·), · · · , Ltk(Btk + ·)) is measurable with respect to (Bs)s≤tk . Thus, by induction
and using the fact that the increments of B are (strongly) stationary, it follows from (6)
and (7) that

m−1∏
k=0

E
[∣∣Ltk+1

− Ltk
∣∣−1

L2(R)

]
≤ E

[
detD−

1
2

t1,··· ,tm

]
≤
m−1∏
k=0

sup
V ∈Vk

E
[(
d
(
(Ltk+1

− Ltk)(Btk + ·), V
))−1

]
=

m−1∏
k=0

sup
V ∈Vk

E
[(
d
(
Ltk+1−tk , V

))−1
]
, (8)

with the convention t0 = 0. Recall that (Lu(x))x∈R has the same distribution as
(
√
uL1(x/

√
u))x∈R and so (d(Lu, V ect(g1, · · · , gk)))

2 has the same distribution as

min
a1,··· ,ak

∫
R

(
√
uL1

(
x√
u

)
−

k∑
i=1

aigi(x)

)2

dx=u min
a′1,··· ,a′k

∫
R

(
L1

(
x√
u

)
−

k∑
i=1

a′igi(x)

)2

dx

=u
3
2 min
a′1,··· ,a′k

∫
R

(
L1 (y)−

k∑
i=1

a′igi(
√
uy)

)2

dy

=u
3
2 (d(L1, V ect(h1, · · · , hk)))

2
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setting a′i := ai/
√
u, and making the change of variable y = x/

√
u, with hi(x) = gi(

√
ux)

and so (8) becomes

m−1∏
k=0

(
(tk+1 − tk)−

3
4E
[
|L1|−1

L2(R)

])
≤ E

[
detD−

1
2

t1,··· ,tm

]
≤
m−1∏
k=0

(tk+1 − tk)−
3
4 sup
V ∈Vk

E
[
(d (L1, V ))

−1
]
,

which ends the proof of the lemma.

We first study the behaviour, as m→ +∞, of the integral appearing in Lemma 6.

Lemma 7 (Asymptotic estimate of the integral).

m!

∫
0<t1<···<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4 dt1 · · · dtm =

m! Γ( 1
4 )m

Γ(m4 + 1)
∼ c(Cm)

3m
4 ,

as m→ +∞.

Proof.

am+1 :=

∫
0<t1<···<tm+1<1

m∏
k=0

(tk+1 − tk)−
3
4 dt1 · · · dtm+1

=

∫
xi>0 : x1+···+xm+1<1

m+1∏
k=1

x
− 3

4

k dx1 · · · dxm+1

=

∫ 1

0

x
− 3

4
m+1(1− xm+1)−

3m
4

×

(∫
xi>0 : x1+···+xm<1−xm+1

m∏
k=1

(xk/(1− xm+1))−
3
4 dx1 · · · dxm

)
dxm+1

=

∫ 1

0

x
− 3

4
m+1(1− xm+1)

m
4

(∫
ui>0 :u1+···+um<1

m∏
k=1

u
− 3

4

k du1 · · · dum

)
dxm+1

= am

∫ 1

0

x
− 3

4
m+1(1− xm+1)

m
4 dxm+1 = amB

(
1

4
,
m

4
+ 1

)
= am

Γ( 1
4 )Γ(m4 + 1)

Γ(m+1
4 + 1)

,

where B(·, ·) and Γ stand respectively for Euler’s Beta and Gamma functions, and so, by
induction, am = Γ(1/4)m

Γ(m4 +1) proving the first point of the lemma. Moreover

m!am ∼ (Γ(1/4))
m
mm+ 1

2 (m+ 4)−
m
4 −

1
2 4

m
4 + 1

2 e−
3m
4 +1 ,

where we used the Stirling formulas m! = Γ(m+ 1) and Γ(z) ∼
√

2πzz−
1
2 e−z. This ends

the proof of the lemma.

Observe that E
[
|L1|−1

L2(R)

]
> 0. Thus, the proof of Theorem 1 will be deduced from

the two previous lemmas combined with Theorem 2, which can be rewritten as follows

∀η0 > 0, ∃C > 1, ∀k ∈ N∗, C−1k
1
2−η0 ≤ sup

V ∈Vk
E
[
(d (L1, V )))

−1
]
≤ Ck 1

2 +η0 . (9)

Due to [44, Cor. (1.8) of Chap. VI, Theorem (2.1) of Chap. I], L1 is almost surely Hölder
continuous of order 1

2 − η0 and its Hölder constant admits moments of any order. The
lower bound of theorem 2 follows directly from this fact.
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Proof of the lower bound of Theorem 2. We prove the lower bound of (9). Let η0 ∈ (0, 1
2 ).

Let C1 be the Hölder constant of order 1
2 − η0 of L1. Let Vk be the linear subspace of

L2(R) generated by the set{
1[m/k,(m+1)/k], m = −

⌊
k

2

⌋
, · · · ,

⌈
k

2

⌉
− 1

}
,

and consider L̃k ∈ Vk given by

L̃k :=

d k2 e−1∑
m=−b k2 c

L1

(m
k

)
1[mk ,

m+1
k ) .

Let K0 > 0. We will use the fact that

E
[
(d (L1, Vk))

−1
]
≥ E

[
(d (L1, Vk))

−1
1{C1≤K0, sup[0,1] |B|≤

k−1
2k }

]
.

Observe that, if sup[0,1] |B| ≤ k−1
2k and C1 ≤ K0, then

d (L1, Vk)
2 ≤ d(L1, L̃k)2 =

d k2 e−1∑
m=b k2 c

∫ m+1
k

m
k

(L1(u)− L1(m/k))2 du

≤
d k2 e−1∑
m=b k2 c

k−1
(
K0k

− 1
2 +η0

)2

≤
(
K0k

− 1
2 +η0

)2

.

Thus

E
[
(d (L1, Vk))

−1
]
≥ E

[
(d (L1, Vk))

−1
1{C1≤K0, sup[0,1] |B|≤

k−1
2k }

]
≥ E

[(
K0k

− 1
2 +η0

)−1

1{C1≤K0, sup[0,1] |B|≤
k−1
2k }

]
≥ K−1

0 k
1
2−η0 P

(
C1 ≤ K0, sup

[0,1]

|B| ≤ 1

3

)
.

The rest of this section is devoted to the proof of the upper bound of Theorem 2 (i.e.
the upper bound of (9)), which is much more delicate to establish. To this end, we will
prove a sequence of estimates. We have chosen to start by listing the different quantities
used in this proof, and the relations between them, for two reasons. First, it makes more
evident the compatibility between our different conditions. Second, for practical use for
the reader who can come back to this page if he or she forget at some point one of these
different conditions or relations. We fix η0 > 0 and d′ = 1

2 + η0 > 1/2. Choose ε0 ∈ (0, 1
10 )

such that

d′ >
1 + ε0

2(1− ε0)
. (10)

Fix a, b, η, γ ∈ (0, 1
10 ) such that 0 < b

8 <
a
2 and small enough so that

(1 + γ)(1 + ε0)

2
+
a

2
+
b

8
< 1 (11)

and
(2d′(1− ε0)− 1− ε0)(1− 2η)− 8η > 0 . (12)

Let θ > 0 such that (1− 2η)θ > 1 and

1− b

4
− (1 + γ)(1 + ε0)

2
< θ(1− 2η)

(
1− (1 + γ)(1 + ε0)

2
− a

2
− b

8

)
(13)
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and
(1− ε0)(1 + 2d′) < θ [(2d′ (1− ε0)− 1− ε0)(1− 2η)− 8η] . (14)

The existence of such a θ is ensured by (11) and (12). Fix then K such that 1
4a−b < K,

v0 = d16/be and ζ > 0 such that 4a − (1 + 4ζ)b > 0 and K > (4a − (1 + 2ζ)b)−1. We will
also consider the following quantities which will depend on k ≥ 1. We set M := dθke and
M ′ := Md′ . For x > M ′, we also set:

r0 := (x/M ′)−(1+γ)(1+ε0)M−
1+ε0

2 M ′
−1−ε0 , x0 = (x/M ′)aM, x1 = (x/M ′)b . (15)

Let V be a linear space generated by g1, · · · , gk ∈ L2(R). Observe that

E
[
(d (L1, V ))

−1
]

=

∫ ∞
0

P
(

(d (L1, V ))
−1

> x
)
dx

= O(M ′) +

∫ ∞
M ′
P
(
d (L1, V ) < x−1

)
dx . (16)

Lemma 8 (An upper bound using a spatial discretization). Uniformly on x > M ′:

P
(
d (L1, V ) < x−1

)
≤ O

(
(x/M ′)−2

)
+ P

(
∀` = −v0, · · · , v0, D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n=1,··· ,M

,W
(`x
− 1

8
1 )

V

)
< 2x−1r

− 1
2

0

)
,

where W (y0)
V := Span

((∫ y0+(n+1)/x0

y0+n/x0
gj(y

′) dy′
)
n=1,··· ,M

, j = 1, · · · , k
)
⊂ RM and where

D is the usual euclidean metric in RM .

Proof. We set

C1 := sup
y,z∈R : y 6=z

|L1(y)− L1(z)|
|y − z|u

, with u :=
1

1 + ε0
− 1

2
.

Since C1 admits moments of every order, it follows that

P (d (L1, V ) < 1/x) ≤ P (d (L1, V )) < 1/x, C1 ≤ (x/M ′)γ +O((x/M ′)−2) .

Note that, if x > M ′, then

r0x0 = (x/M ′)a−(1+γ)(1+ε0)M
1−ε0

2 M ′
−1−ε0 ≤ 1 ,

since a < 1 < (1 + γ)(1 + ε0) and since M ′ = Md′ with 1
2 ≤ d

′, and so r0 ≤ x−1
0 . Assume

moreover that d(L1, V ) < 1/x and C1 ≤ (x/M ′)γ . Let aj be such that d
(
L1,
∑k
j=1 ajgj

)
<

x−1. Then, for every ` ∈ Z, the following estimate holds true

x−1>

 M∑
n=1

∫ `x
− 1

8
1 + n

x0
+r0

`x
− 1

8
1 + n

x0

L1(y)−
k∑
j=1

ajgj(y)

2

dy


1
2

≥

 M∑
n=1

∫ `x
− 1

8
1 + n

x0
+r0

`x
− 1

8
1 + n

x0

L1

(
`x
− 1

8
1 +

n

x0

)
−

k∑
j=1

ajgj(y)

2

dy


1
2

−
(
Mr0(x/M ′)2γr2u

0

) 1
2

≥
√
r0D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n=1,··· ,M

,W
(`x
− 1

8
1 )

V

)
−
√
M(x/M ′)γr

1
2 +u
0 .
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Since 1
2 + u = 1

1+ε0
and r0 = (x/M ′)−(1+γ)(1+ε0)M−

1+ε0
2 M ′

−1−ε0 , we conclude that
√
M(x/M ′)γr

1
2 +u
0 = x−1 and so

P (d (L1, V ) < 1/x, C1 ≤ (x/M ′)γ)

≤ P

(
∀` = −v0, · · · , v0, D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n=1,··· ,M

,W
(`x
− 1

8
1 )

V

)
< 2x−1r

− 1
2

0

)
.

Recall that v0 = d16/be. For every ` = −v0, · · · , v0, we set t`(x1) := inf
{
s > 0 :

Ls(`x
− 1

8
1 ) > x

− 1
4

1

}
and Y ′` (y) = Lt`(x1)(`x

− 1
8

1 + y). Due to the second Ray-Knight theorem

(see [44, Theorem 2.3, page 456]), (Y ′` (y))y≥0 has the same distribution as a squared

Bessel process Y ′ of dimension 0 starting from x
− 1

4
1 and we set

E0,W,`,A :=

{
D

((
Y ′`

(
n

x0

))
n=1,··· ,M

,W +A

)
< 2x−1r

− 1
2

0

}

and

E0,W :=

{
D

((
Y ′
(
n

x0

))
n=1,··· ,M

,W

)
< 2x−1r

− 1
2

0

}
.

Let τ ′ :=
∫∞

0
Y ′(y) dy.

Lemma 9 (An upper bound involving the square Bessel process Y ′ conditionally with
respect to τ ′). The following estimate holds true uniformly on x > M ′:

P
(
d (L1, V ) < x−1

)
≤ O

(
(x/M ′)−2

)
+ (2v0 + 1)E

[
sup
W
P (E0,W |τ ′)

]
, (17)

where supW means the supremum over the set of affine subspaces W of RM of dimension
at most k.

Proof. We adapt the proof of [14, Lemma 9]. Setting ε′ := x
− 1

8
1 and Tu := min{s > 0 :

|Bs| = u} for the first hitting time of {±u} by the Brownian motion B, we observe that
there exists c0 > 0 such that

P(Tv0ε′ > 1) = P

(
sup
s∈[0,1]

|Bs| ≤ v0ε
′

)
= O(e−c0(v0ε

′)−2

)

= O
(

(x/M ′)−bv0/8
)

= O
(
(x/M ′)−2

)
. (18)

(using e.g. [43, Proposition 8.4, page 52]). Moreover, due to [44, Exercise 4.12, Chapter
VI, p 265], for every n = 0, · · · , v0 − 1,

P
(
LT(n+1)ε′ (BTnε′ )− LTnε′ (BTnε′ ) ≤ (ε′)2|(Bu)u≤Tnε′

)
≤ P(LTε′ (0) ≤ (ε′)2) ≤ ε′

and so, due to the strong Markov property,

P
(
∀n = 0, · · · , v0 − 1, LT(n+1)ε′ (BTnε′ )− LTnε′ (BTnε′ ) ≤ (ε′)2

)
≤ (ε′)v0 ,

and this, combined with (18), ensures that there exists C0 > 0 such that P(∀` =

−v0, · · · , v0, L1(`ε′) ≤ (ε′)2) ≤ C0(ε′)v0 and so

P (∀` = −v0, · · · , v0, t`(x1) > 1) ≤ C0(x/M ′)−bv0/8 ≤ C0(x/M ′)−2 , (19)
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recalling that t`(x1) := inf{s > 0 : Ls(`x
− 1

8
1 ) > x

− 1
4

1 }. As in [14, p. 2430], we write

τ ′` =
∫∞

0
Y ′` (y) dy for the time spent by the brownian motion B above `x

− 1
8

1 before time
t`(x1). For any ` = 1, · · · , v0, we have

sup
V
P

(
t`(x1) < 1, D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n=1,··· ,M

,W
(`x
− 1

8
1 )

V

)
< 2x−1r

− 1
2

0

)
≤ sup

W
P
(
{t`(x1) < 1} ∩ E0,W,`,A(`)

)
, (20)

with A(`) :=
(

(Lt`(x1) − L1)
(
`x
− 1

8
1 + n

x0

))
n=1,··· ,M

. To end the proof, we proceed as in

[14, p. 2431] and notice that

P
(
{t`(x1) < 1} ∩ E0,W,`,A(`)

)
≤ E

[
1{t`(x1)<1} sup

A∈RM
P (E0,W,`,A| t`(x1), τ ′`)

]
, (21)

since A(`) is independent of Y ′` conditionnally to (t`(x1), τ ′`). Moreover Y ′` and t`(x1) are
independent conditionally to τ ′`. It follows that

sup
A∈RM

P (E0,W,`,A| t`(x1), τ ′`) ≤ sup
A∈RM

P (E0,W,`,A| τ ′`) = sup
A∈RM

P (E0,W+A|τ ′) .

The lemma follows from this last identity combined with (19), (20) and (21).

Recall that 4a− (1 + 4ζ)b > 0 and that K > (4a− (1 + 2ζ)b)−1. Set

E1 :=

{
sup

s≤M/x0

∣∣∣Y ′(s)− x−1/4
1

∣∣∣ < x
−(1+ζ)/4
1

2

}
and E′1 := E1 ∩

{
τ ′ ≥ 2x

− 2+ζ
4

1 ,

}
.

Lemma 10 (Removal of high values of τ ′). The following estimate holds true uniformly
on x > M ′:

P (E′1) = 1−O
(

(x/M ′)−K(4a−(1+2ζ)b)
)
.

Proof. As recalled in [14, before (17)], τ ′ has the same distribution as the first hitting

time of
x
− 1

4
1

2 by a Brownian motion. Thus there exist two positive real numbers c1 and c2
such that:

P

(
τ ′ < 2x

− 2+ζ
4

1

)
≤ P

 sup

s∈[0,2x
− 2+ζ

4
1 ]

Bs >
x
− 1

4
1

2


≤ P

(
√

2x
− 2+ζ

8
1 sup

s∈[0,1]

Bs >
x
− 1

4
1

2

)
≤ c1e−c2x

ζ
4
1 .

Using the Burkholder-Davis-Gundy inequality, combined with the fact that Y ′ is domi-

nated by the square of a Brownian motion starting from x
− 1

8
1 , we observe that

px = P

(
sup

s≤10M/x0

|Y ′(s)− x−1/4
1 | ≥ x

−(1+ζ)/4
1

2

)

≤ CK x2(1+ζ)K
1 28K E

(∫ 10M/x0

0

Y ′(u) du

)4K


≤ C ′K x
2(1+ζ)K
1 (10M/x0)4K−1

∫ 10M/x0

0

E
[
Y ′(u)4K

]
du
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with C ′K = 28KCK , and so

px ≤ C ′K x
2(1+ζ)K
1 (M/x0)4K−1

∫ 10M/x0

0

E
[
(x
−1/8
1 +Bu)8K

]
du

≤ C ′K x
2(1+ζ)K
1 (M/x0)4K28K

(
x−K1 + (M/x0)4K

)
≤ C ′′Kx

2ζK
1

(
xK1 (M/x0)4K + x2K

1 (M/x0)8K
)

with C ′′K = 28KC ′K and

xK1 (M/x0)4K = (x/M ′)−K(4a−b) ,

since x0 = (x/M ′)aM and x1 = (x/M ′)b.

Lemma 11 (Removal of the conditioning). There exists K > 0 such that

sup
W
P (E0,W ∩ E′1|τ ′) ≤ K sup

W
P (E1 ∩ E0,W ) ,

where supW means the supremum over the set of affine subspaces W of RM of dimension
at most k.

Proof. We adapt the proof of [14, Lemma 12]. Let W be an affine subset of RM of
dimension at most k. We decompose τ ′ in τ ′ = τ + τ ′′ with

τ :=

∫ M
x0

0

Y ′(s) ds and τ ′′ :=

∫ ∞
M
x0

Y ′(s) ds .

Then, for any bounded measurable function φ : [0,+∞)→ [0,+∞), the following relations
hold true

E [φ(τ ′)P (E0,W ∩ E′1|τ ′)] = E
[
φ(τ + τ ′′)1E0,W∩E′1

]
≤ E

[
E
[
1I1(τ + τ ′′)φ(τ + τ ′′)|(Ys)s≤M/x0

]
1E0,W∩E1

]
, (22)

with I1 =

[
2x
− 2+ζ

4
1 ,+∞

)
. As in the proof of [14, Lemma 12], we use the fact that the

probability density functions of τ ′ is f
x
−1/4
1

with

fy(t) :=
ye−

y2

8t

√
π(2t)

3
2

and that the probability density functions of τ ′′ conditionnally to (Y ′(s))s≤M/x0
is

fY ′(M/x0) (due to the strong Markov property). Thus

E
[
1I1−τ (τ ′′)φ(τ + τ ′′)|(Ys)s≤M/x0

]
=

∫
I1−τ

φ(τ + z)fY ′(M/x0)(z) dz . (23)

To conclude, we will prove that
fY ′(M/x0)(z)

f
x
− 1

4
1

(τ+z) is uniformly bounded on E1 and in z ∈ I1 − τ .

We observe that, on E1, sups∈[0,M/x0]

∣∣∣Y ′(s)− x− 1
4

1

∣∣∣ < x
− 1+ζ

4
1

2 and so M
x0

x
− 1

4
1

2 ≤ τ ≤ 3M
x0

x
− 1

4
1

2 .

Moreover
M

x0
x
− 1

4
1 = (x/M ′)−a−

b
4 ≤ (x/M ′)−

(1+2ζ)b
2 = x

− 1+2ζ
2

1 ≤ x−
2+ζ

4
1 ,
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since 4a− (1 + 4ζ)b > 0. Thus, on E1, for any z ∈ I1 − τ , we have

fY ′(M/x0)(z)

f
x
− 1

4
1

(τ + z)
=
Y ′(M/x0)

x
− 1

4
1

(
τ + z

z

) 3
2

e
x
− 1

2
1

8(τ+z)
− (Y ′(M/x0))2

8z

≤ 3

2
4

3
2 e

3x
− 1

4
1 |x

− 1
4

1 −Y ′(M/x0)|
8(τ+z) =

3

2
4

3
2 e

3x
− 2+ζ

4
1

8(τ+z) ≤ 3

2
4

3
2 e

3
8 ,

where we used the fact that, since z ∈ I1 − τ , τ + z ≥ 2x
− 2+ζ

4
1 and so z ≥ (τ + z)− τ ≥

(τ + z)− 3
2x
− 2+ζ

4
1 ≥

(
1− 3

2
1
2

)
(τ + z). This ensures the existence of a constant K > 0 such

that, on E1 and for all z ∈ I1,
fY ′(M/x0)(z)

f
x
− 1

4
1

(τ+z) ≤ K. This combined with (22) and (23) implies

that

E [φ(τ ′)P (E0,W ∩ E′1|τ ′)] ≤ KE
[
1E0,W∩E1

∫
I1

φ(y)f
x
−1/4
1

(y) dz

]
≤ KE

[
1E0,W∩E1

E[φ(τ ′)]
]

= KP (E0,W ∩ E1)E[φ(τ ′)] .

Lemma 12 (An estimate on the distance between the discretization of the square Bessel
process Y ′ and an affine space). Uniformly on x > M ′,

sup
W
P (E0,W ∩ E1) ≤C ′′k(x/M ′)

[
1− b4−

(1+γ)(1+ε0)
2

]
k−M(1−2η)

[
1− (1+γ)(1+ε0)

2 − a2−
b
8

]

×M
(1−ε0)k

4 +
(1+ε0)(1−2η)M

4 +2ηMM ′(
1−ε0

2 )(k−(1−2η)M)
.

Proof of Lemma 12. Let W be an affine subset of RM of dimension at most k. Observe
that

E0,W ∩ E1 ⊂

{
(Y ′(n/x0))n=1,··· ,M ∈ B∞

(
x
−1/4
1 ,

x
−1/4
1

2

)
∩Wx

}
, (24)

where B∞
(
x
−1/4
1 ,

x
−1/4
1

2

)
is the ball (for the supremum norm) of radius

x
−1/4
1

2 and cen-

tered on (x
−1/4
1 , · · · , x−1/4

1 ), and where Wx is the ε = 2x−1r
− 1

2
0 -neighbourhood of W for

the metric D. Note that

ε = 2(x/M ′)
(1+γ)(1+ε0)

2 −1M
1+ε0

4 M ′
1+ε0

2 −1
(25)

and

Rx :=

√
M x

−1/4
1

ε
=

1

2
(x/M ′)1− b4−

(1+γ)(1+ε0)
2 M

1−ε0
4 M ′

1− 1+ε0
2 � 1 , (26)

uniformly in x > M ′, since b
4 + (1+γ)(1+ε0)

2 < 1. Observe that B∞
(
x
−1/4
1 ,

x
−1/4
1

2

)
∩Wx

is contained in B2

(
x
−1/4
1 ,

√
Mx

−1/4
1

)
∩Wx where B2

(
x
−1/4
1 ,

√
Mx

−1/4
1

)
is the euclidean

ball centered on (x
−1/4
1 , · · · , x−1/4

1 ) with radius
√
Mx

−1/4
1 .

Let z0, z
′
0 ∈ B2

(
x
−1/4
1 ,

√
Mx

−1/4
1

)
∩Wx and z1 ∈ W ∩ B2(z0, ε), z′1 ∈ W ∩ B2(z′0, ε). Then

z′1 ∈ B2

(
z1, 3
√
Mx

−1/4
1

)
. Due to [45, Theorem 3, pages 157], there exists c > 0 such that

W ∩ B2

(
z1, 3
√
Mx

−1/4
1

)
is contained in the union of at most (cRx)k euclidean balls of

radius ε in W . Thus Wx∩B2

(
x
− 1

4
1 ,
√
Mx

−1/4
1

)
is contained in the union of at most (cRx)k

euclidean balls of radius 2ε. We conclude that B∞
(
x
−1/4
1 ,

x
−1/4
1

2

)
∩Wx is contained in
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the union of at most (cRx)k euclidean balls of radius 4ε centered at a point contained in

B∞
(
x
−1/4
1 ,

x
−1/4
1

2

)
∩Wx. It follows from this combined with (24) that

P (E0,W ∩ E1) ≤ (cRx)k sup

z∈B∞

(
x
−1/4
1 ,

x
−1/4
1

2

)P ((Y ′(n/x0))n=1,··· ,M ∈ B2(z, 4ε)) . (27)

Note that if z = (zn)n=1,··· ,M ∈ B∞
(
x
−1/4
1 ,

x
−1/4
1

2

)
and (Y ′(n/x0))n=1,··· ,M ∈ B2(z, 4ε),

then maxn=0,··· ,M−1 |zn+1 − x
− 1

4
1 | <

x
− 1

4
1

2 and there exist at most ηM indices n′ that
|Y ′(n′/x0)− zn′ | ≥ 4ε/

√
ηM , and so at least (1− 2η)M indices n = {0, · · · ,M − 1} such

that (∣∣∣∣Y ′( n

x0

)
− zn

∣∣∣∣ , ∣∣∣∣Y ′(n+ 1

x0

)
− zn+1

∣∣∣∣) < 4ε/
√
ηM ,

with z0 = x
− 1

4
1 . Due to [44, after Corollary 1.4, page 441], the distribution of Y ′((n+1)/x0)

knowing Y ′(n/x0) = y is the sum of a Dirac mass at 0 and of a measure with density

z 7→ qx0(y, z) :=
x0

2

√
y

z
exp

(
−x0(y + z)

2

)
I1 (x0

√
yz) ,

where I1 is the modified Bessel function of index 1 which satisfies I1(z) = O(ez/
√
z), as

z →∞, (see [35, (5.10.22) or (5.11.10)]). So

qx0
(y, z) = O

(
x

1
2
0 x

1
8
1 exp

(
−
x0(
√
y −
√
z)2

2

))
= O

(
x

1
2
0 x

1
8
1

)

uniformly on y, z ∈
[
x
− 1

4
1

4 , 2x
− 1

4
1

]
. We will use the expression x0, x1 and ε given in (15)

and (25). Thus by using the Markov property (and M !
(M(1−2η))!(2ηM)! ≤M

2ηM ), we get by

induction, that, when x > M ′,

sup

z∈B∞

(
x
−1/4
1 ,

x
−1/4
1

2

)P ((Y ′(n/x0))n=1,··· ,M ∈ B2(z, 4ε))

≤M2ηM

(
C ′(x/M ′)

−
(

1− (1+γ)(1+ε0)
2 − a2−

b
8

)
M

1+ε0
4 M ′

−1+
1+ε0

2

)(1−2η)M

.

Recalling that M = O(k), the previous estimate combined with (27) and (26) ensures
that

sup
W
P (E0,W ∩ E1) ≤C ′′k(x/M ′)

[
1− b4−

(1+γ)(1+ε0)
2

]
k−M(1−2η)

[
1− (1+γ)(1+ε0)

2 − a2−
b
8

]

M
(1−ε0)k

4 +
(1+ε0)(1−2η)M

4 +2ηMM ′(
1− 1+ε0

2 )(k−(1−2η)M)
, (28)

which ends the proof of the lemma.

Proof of the upper bound of Theorem 2. Formula (9) follows from (16) and Lemmas 9,
10, 11 and 12. We will use the fact that

∀Q > 1,

∫ ∞
M ′

(x/M ′)−Q dx = O(M ′) . (29)
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Thanks to this, the error terms in Lemmas 9 and 10 gives directly a term in O(M ′) =

O(kd
′
). Let us detail the term coming from Lemma 12. We first observe that the exponent

of (x/M ′) is strictly smaller than −1 for k large enough. Indeed this exponent is[
1− b

4
− (1 + γ)(1 + ε0)

2

]
k −M(1− 2η)

[
1− (1 + γ)(1 + ε0)

2
− a

2
− b

8

]
which is smaller than

k

[
1− b

4
− (1 + γ)(1 + ε0)

2
− θ(1− 2η)

(
1− (1 + γ)(1 + ε0)

2
− a

2
− b

8

)]
where we used the fact that M = dθke ≥ θk. The fact that this quantity is strictly smaller
than −1 for any k large enough comes from our conditions (11) and (13). It follows from
this combined with (29) and Lemma 12 that∫ +∞

M ′
sup
W
P (E0,W ∩ E1) dx

≤ C ′′kM
(1−ε0)k

4 +
(1+ε0)(1−2η)M

4 +2ηMM ′
1+( 1−ε0

2 )(k−(1−2η)M)

≤ C ′′kMd′+
(1−ε0)(1+2d′)M

4θ +
(1+ε0−2d′(1−ε0))(1−2η)M

4 +2ηM ,

where we used the fact that M ′ = Md′ and that k ≤ dθke/θ = M/θ. Finally, we notice
that 1 + ε0 − 2d′(1− ε0) < 0 (due to (10)) and that (14) ensures that

(1− ε0)(1 + 2d′)

4θ
+

(1 + ε0 − 2d′(1− ε0))(1− 2η)

4
+ 2η < 0

and conclude that ∫ +∞

M ′
sup
W
P (E0,W ∩ E1) dx = O(1) .

Hence we have proved that

sup
V ∈Vk

E
[
(d (L1, V )))

−1
]

= O(M ′) .

3 Law of large numbers: Proof of Theorem 3

We complete the sequence (Xn)n≥1 into a bi-infinite sequence (Xn)n∈Z of i.i.d. ran-
dom variables. Theorem 3 could be proved by an adaptation of the proof of [14, Corollary
6] (combined with Theorem 1, see Appendix B). We use here another approach enabling
the study of more general additive functionals. Recall that (ξm+Sk)m∈Z is the scenery
seen from the particle at time k.

Proposition 13 (Limit theorem for Birkhoff’s ratios). Let f̃ : ZZ × ZZ × Z → R be a
measurable function such that∑

`∈Z

|E[f̃((Xn+1)n∈Z, (ξn)n∈Z, `)]| <∞ .

Then (∑n−1
k=0 f̃((Xm+k+1)m∈Z, (ξm+Sk)m∈Z, Zk+m)

Nn(0)

)
n≥0

converges almost surely to I(f̃) :=
∑
`∈ZE[f̃((Xn)n∈Z, (ξn)n∈Z, `)].

In particular, this combined with (3) ensures that
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(
n−

1
4

n−1∑
k=0

f̃((Xm+k+1)m∈Z, (ξm+Sk)m∈Z, Zk)

)
n≥0

converges in distribution to I(f̃)σ−1
ξ L1(0).

Our approach to prove Proposition 13 uses an ergodic point of view. Let us consider
the probability preserving dynamical system (Ω, T, µ) given by

Ω = ZZ ×ZZ, T ((xk)k∈Z, (yk)k∈Z) = ((xk+1)k∈Z, (yk+x0
)k∈Z), µ = P⊗ZX1

⊗ P⊗Zξ0 ,

i.e. T (x,y) = (σx, σx0y), where we write σ : ZZ → ZZ for the usual shift transformation
given by σ ((zk)k∈Z) = (zk+1)k∈Z.

This system (Ω, T, µ) is known to be ergodic (see [49, 30]). We set Φ(x, y) := y0.
With these notations, Zk corresponds to the Birkhoff sum

∑n−1
k=0 Φ ◦ T k. Consider the

Z-extension (Ω̃, T̃ , µ̃) over (Ω, T, µ) with step function Φ. This system is given by

Ω̃ := Ω×Z, µ̃ = µ⊗ λZ ,

where λZ =
∑
`∈Z δ` is the counting measure on Z and with

T̃ (x, y, `) = (T (x, y), `+ y0) .

In particular

T̃ k ((xm+1)m∈Z, (ym)m∈Z, `) =

(xm+k+1)m∈Z, (ym+x0+···+xk−1
)m∈Z, `+

k−1∑
j=0

yx0+···+xj

 .

Observe that Nn(0) corresponds to the Birkhoff sum
∑n−1
k=0 h0 ◦ T̃ k(x,y, 0) with h0(x,y, `)

= 10(`), and the sum studied in Proposition 13 corresponds to
∑n−1
k=0 f̃ ◦ T̃ k(x,y, 0), while

I(f̃) =
∫

Ω̃
f̃ dµ̃.

Proposition 14. The system (Ω̃, T̃ , µ̃) is recurrent ergodic.

Proof. Since (Ω, T, µ) is ergodic and since Φ is integrable and µ-centered, we know (by
[46, Corollary 3.9] combined with the Birkhoff ergodic theorem) that P(Zn = 0 i.o.) = 1,
thus that (Ω̃, T̃ , µ̃) is recurrent (i.e. conservative). Now let us prove that this system
is also ergodic. Let g : Ω̃ → (0,+∞) be a positive µ̃-integrable function such that
g(x,y, `) = g0(`) does not depend on (x,y) ∈ Ω and with unit integral (g is a probability
density function with respect to µ̃). By recurrence of (Ω̃, T̃ , µ̃), we know that∑

k≥1

g ◦ T̃ k =∞ (30)

µ̃-almost everywhere. Let K ∈ N. Consider f : Ω̃→ R a µ̃-integrable function constant
on the K-cylinders of the first coordinate, i.e. such that f(x,y, `) = f0((xm)|m|≤K ,y, `)

does not depend on (xk)|k|>K .

Since (Ω̃, T̃ , µ̃) is recurrent, the Hopf-Hurewicz’s theorem (see e.g. [1, p. 56]) ensures
that

lim
|n|→+∞

∑n
k=1 f ◦ T̃ k∑n
k=1 g ◦ T̃ k

= H(f,g) := Egµ̃

[
f

g

∣∣∣∣ Ĩ] (31)
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µ̃-almost everywhere, where Ĩ is the σ-algebra of T̃ -invariant events. Thus, by L1(µ̃)-
density, the ergodicity of (Ω̃, T̃ , µ̃) will follow from the fact that H(f,g) is µ̃-almost every-
where constant for every f as above (g can be fixed). Observe that, for k > K,

f ◦ T̃ k(x,y, `) = f

(
σkx, σx0+···+xk−1y, `+

k−1∑
m=0

yx0+···+xm

)

= f0

(
xk−K , · · · , xK+k, σ

x0+···+xk−1y, `+

k−1∑
m=0

yx0+···+xm

)

does not depend on (xk)k≤−1. Analogously, for k > K,

f ◦ T̃−k(x,y, `) = f

(
σ−kx, σ−x−1−···−x−ky, `−

k∑
m=1

y−x−1−···−x−m

)

= f0

(
x−K−k, · · · , x−(k−K), σ

−x−1−···−x−ky, `−
k∑

m=1

y−x−1−···−x−m

)

does not depend on (xk)k≥0. Of course g◦T̃ k satisfies the same property. Thus, due to (30)
and (31), it follows that H(f, g)(x,y, `) does not depend on x. Thus, H(f,g)(x,y, `) =

H
(0)
(f,g)(y, `) for µ̃-almost every (x,y, `) ∈ Ω̃.

By T̃ -invariance of H(f,g), given two distinct points x0, x
′
0 ∈ Z such that P(X1 =

x0)P(X1 = x′0) > 0, the following equality holds true almost everywhere

H
(0)
(f,g)(y, `) = H

(0)
(f,g)(σ

x0y, `+ y0) = H
(0)
(f,g)(σ

x′0y, `+ y0) ,

where we write σ for the usual shift on ZZ given by σ((yk)k∈Z) = (yk+1)k∈Z. It follows

that, for every ` ∈ Z, H(0)
(f,g)(·, `) is σx0−x′0 -invariant almost everywhere. By ergodicity of

σx0−x′0 , we conclude that H(f,g)(x,y, `) = H
(1)
f,g(`) depends only on ` almost everywhere.

Since it is T̃ -invariant, for every y0 ∈ Z such that P(ξ0 = y0) > 0, H(1)
f,g(`) = H

(1)
f,g(`+ y0).

Since the support of y0 generates the group Z, we conclude that H(f,g) is µ̃-almost
everywhere equal to a constant.

Note that the system in infinite measure (Ω̃, T̃ , µ̃) describes the evolution in time m of
((Xm+k+1)k∈Z, (ξSm+k)k, Zm). In comparison, the system corresponding to ((Xm+k+1)k,

Sm) is also recurrent ergodic, but the analogous system corresponding to ((Xm+k+1)k,

(ξSm+k)k, Sm) is recurrent (since P(Sn = 0 i.o.) = 1) not ergodic (since the sets of the
form {(x, y, `) : (yn−`)n ∈ A0} are invariant).

Proof of Proposition 13. Since (Ω̃, T̃ , µ̃) is recurrent ergodic, the Hopf ergodic theorem

ensures that, for any f̃ ∈ L1(µ̃), the sequence
( ∑n−1

k=0 f̃◦T̃
k∑n−1

k=0 h̃0◦T̃k

)
n≥0

converges µ̃-almost

everywhere to
∫
Ω̃
f̃ dµ̃∫

Ω̃
h̃0 dµ̃

= I(f̃). Thus

(∑n−1
k=0 f̃((Xm+k+1)m∈Z, (ξm+Sk)m∈Z, Zk+m)

Nn(0)
=

∑n−1
k=0 f̃ ◦ T̃ k∑n−1
k=0 h̃0 ◦ T̃ k

((Xm)m∈Z, (ξm)m∈Z, 0)

)
n≥0

converges almost surely to I(f̃), and we have proved the first part of the proposition. The
second part comes from the first part combined with (3) and the Slustky theorem.
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Proof of Theorem 4. Proposition 13 states that
(
n−

1
4

∑n−1
k=0 f̃ ◦ T̃ k

)
n

converges in distri-

bution, with respect to µ ⊗ δ0 � µ̃, to
∫

Ω̃
f̃ dµ̃ σ−1

ξ L1(0). Thus, Theorem 4 follows from
Proposition 13 combined with [51, Theorem 1].

We end this section with an interpretation of σ2
f in terms of the famous Green-Kubo

formula.

Remark 15. Assume the assumptions of Theorem 5. Consider the function f̃ : Ω̃ → Z

given by f̃(x,y, `) := f(`). Then σ2
f can be rewritten

σ2
f =

∑
k∈Z

∫
Ω̃

f̃ .f̃ ◦ T̃ |k| dµ̃ .

4 Proof of the central limit theorem: proof of Theorem 5

We start by presenting the strategy of the proof of Theorem 5. We will write the
moment of order M of Zn =

∑n
k=1 f(Zk) as follows

E

( n∑
k=1

f(Zk)

)M =
∑

1≤m1≤···≤mM≤n

cmE

 M∏
j=1

f(Zmj )

 , (32)

where, for m = (m1, · · · ,mM ), cm is the number of (r1, · · · , rM ) ∈ {1, · · · , n}M such that
r1, · · · , rM and m1, · · · ,mM contain the same values with same multiplicities.
We will then decompose in blocks the product

∏M
j=1 f(Zmj ) appearing in the right hand

side of (32) by gathering the Zmj ’s that are close one to the others. We will then write

E

 M∏
j=1

f(Zmj )

 = E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) (33)

with the indexes are chosen so the Zkj are far away one from the others and such
that the Zkj+`j,1 , · · · , Zkj+`j,sj are close to Zkj (i.e. the `j,s are small). Recalling that∑
a∈Z f(a) = 0, a more convenient form for this expression is the following one:

E

 M∏
j=1

f(Zmj )

 =
∑

aj ,bj,s∈Z

 m∏
j=1

(
f(aj)

sj∏
s=1

f(bj,s)

)P (∀j, s, Zkj = aj , Zkj+`j,s = bj,s
)
.

These quantities will be studied in Proposition 16 below. It will be proved therein that
the dominating terms (33) of (32) are the terms made of pairs, that is corresponding to
the case m = M/2 and s1 = · · · = sm = 1 and that these terms behave as follows

E

 m∏
j=1

(
f(Zkj )f(Zkj+`j )

)
=

∑
a1,··· ,am,b1,··· ,bm∈Z

 m∏
j=1

(f(aj)f(bj))P
(
∀j, Zkj = aj , Zkj+`j − Zkj = bj − aj

)
∼ P (Zk1

= · · · = Zkm = 0)
∑

aj ,bj∈Z

f(aj)f(bj)P(Z`j = bj − aj) .

In this formula, two different behaviours occur depending on the scale: at large scale
there is a strong dependence between the Zkj , but, at small scale, the random variable
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Zkj+`j depends strongly on the closest Zkj , but (asymptotically) not on the other Zki ’s
(that are far away). In other words, asymptotically, the long-time dependence is fully
supported by the Zkj . Let us now state the key intermediate results. We recall that d
and α have been introduced in the beginning of Section 1.2.

Proposition 16 (Asymptotic behaviour of expectations appearing in the computation of
the moments of additive functional of RWRS). Assume the assumptions of Theorem 5. Let
M,m ∈ N∗ and m non negative integers s1, · · · , sm ≥ 0 be such that M =

∑m
j=1(sj + 1).

We set J := {j = 1, · · · ,m : sj = 0} and k′j = 0 if j 6∈ J . Let η > 0. There exists L ∈ (0, 1)

such that for every θ ∈ (0, 1) the following holds true, as n varies, with the notations
nj := kj − kj−1, with the convention k0 = 0.

First,

∑
k′j=0,··· ,d−1, ∀j∈J

E

 m∏
j=1

(
f(Zkj+k′j )

sj∏
s=1

f(Zkj+`j,s)

) = O

((
m∏
i=1

n
− 3

4
i

)
Ek

)
, (34)

uniformly over the k = (k1, · · · , km) and ` = (`j,s)j=1,··· ,m;s=1,··· ,sj such that n > kj >

kj−1 + nθ (with convention k0 := 0) and `j,s ∈ {0, · · · , bnLθc} with

Ek = O

 ∑
J ′⊂{1,··· ,m} : #J ′≥#J /2

∏
j∈J ′

n
− 1

2 +η
j

 .

Second, if sj = 1 for all j, then

E

 m∏
j=1

(
f(Zkj )f(Zkj+`j )

) =
dmEk

(2πσ2
ξ )

m
2

m∏
j=1

Akj ,`j +O

n−L(M+1)θ
m∏
j=1

n
− 3

4
j

 ,

uniformly on k, ` as above, with Ek depending on k but not on ` and such that Ek =

O
(∏m

j=1 n
− 3

4
j

)
uniformly on k as above, and Ek ∼ n−

3m
4 E

[
detD−

1
2

t1,··· ,tm

]
(with t1 < · · · <

tm) as kj/n→ tj and n→ +∞, with Dt1,··· ,tm = (
∫
R
Lti(x)Ltj (x) dx)i,j=1,··· ,m where L is

the local time of the brownian motion B, limit of (Sbntc/
√
n)t as n goes to infinity, and

where

Ak,` :=
∑

a∈kα+dZ, b∈Z

(
f(a)

m∏
s=1

f(b)

)
P(Z` = b− a) .

Third, also with sj = 1 for all j,

d−1∑
k′1,··· ,k′m=0

nκθη/(10M)∑
`1,··· ,`m=0

2#{j:`j>0}
m∏
j=1

Akj+k′j ,`j = σ2m
f + o(1) ,

as (k1/n, · · · , km/n)→ (t1, · · · , tm) and n→ +∞.

Proof. The proof of Proposition 16 is based on several technical lemmas. For reader’s
convenience, the most technical points are proved in Appendix A. Let M ≥ 1, θ ∈ (0, 1)

and η ∈
(
0, 1

100

)
. Choose L = κη

10M . Assume nθ < nj < n and let `j,1, · · · , `j,sj =

0, · · · , bnLθc with
∑m
j=1(1 + sj) = M . We set N ′j(y) := #{s = 0, · · · , nj − 1 : Skj−1+s = y},

N∗j := supy N
′
j and R′j := #{y ∈ Z : N ′j(y) > 0}. Analogously, we set N ′j,s(y) = #{m =

0, · · · , `j,s − 1 : Skj+m = y}. The terms appearing in left hand side of (34) can be
expressed thanks to the following quantity

Bk,` := E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) =
∑
a,b

 m∏
j=1

(
f(aj)

sj∏
s=1

f(bj,s)

) pk,`(a, b) ,

(35)
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where
∑
a,b means the sum over (a, b) ∈ ZM with a = (a1, · · · , am) and b =

(bj,s)j=1,··· ,m;s=1,··· ,sj , with the convention a0 = 0 and

pk,`(a, b) = P(∀j = 1, · · · ,m, Zkj = aj , ∀s = 1, · · · , sj , Zkj+`j,s = bj,s) .

Recall that Zn =
∑
y∈Z ξyNn(y), with (ξy)y∈Z a sequence of independent identically

distributed random variables, with common characteristic function ϕξ, and that the se-
quence (ξy)y∈Z is independent of the random walk (Sn)n≥0 and thus of (N ′j(y),

N ′j,s(y))j,s,y. A classical computation (detailed in Appendix A) ensures the following.

Lemma 17 (Finite dimensional distributions of the RWRS Z expressed in terms of integrals
of characteristic functions).

pk,`(a, b) = 1{∀i, ai∈kiα+dZ}
dm

(2π)M

×
∫

[−πd ,
π
d ]m×[−π,π]M−m

e−i
∑m
j=1[(aj−aj−1)θj+

∑sj
s=1(bj,s−aj)θ′j,s]ϕk,`(θ,θ

′) d(θ,θ′) ,

with θ = (θj)j=1,··· ,m and θ′ = (θ′j,s)j=1,··· ,m;s=1,··· ,sj and

ϕk,`(θ,θ
′) = E

∏
y∈Z

ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y))

) .
For any event E and any I ⊂ [−πd ,

π
d ]m × [−π, π]M−m, we also set

ϕk,`(θ,θ
′, E) = E

1E ∏
y∈Z

ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y))

) ,

pk,`(a, b, I, E) = 1{∀i, ai∈kiα+dZ}
dm

(2π)M

×
∫
I

e−i
∑m
j=1[(aj−aj−1)θj+

∑sj
s=1(bj,s−aj)θ′j,s]ϕk,`(θ,θ

′, E) d(θ,θ′) ,

and

Bk,`,I,E =
∑
a,b

 m∏
j=1

(
f(aj)

sj∏
s=1

f(bj,s)

) pk,`(a, b, I, E) .

Let γ < min(Lθ, ηθ2M ). Let θ′ ∈ (0, θη2 ) such that θ′ ≤ θ
2 − 2MLθ. We consider the set

Ωk :=

{
detDk ≥ n−θ

′
m∏
i=1

n
3
2
i

}
∩

m⋂
j=1

Ω
(j)
k ,

with

Ω
(j)
k :=

 sup
r=0,··· ,nj

|Sr+kj−1
− Skj−1

| ≤
n

1
2 +γ
j

3
, sup

y 6=z

|N ′j(y)−N ′j(z)|
|y − z| 12

≤ n
1
4 + γ

2
j

 ,

and with Dk =
(∑

y∈ZN
′
i(y)N ′j(y)

)
i,j

. The following lemma follows from [14] (see

appendix A for details).2

2The set Ω
(j)
k in [14, Lemma 16] coming from [13, Lemma 6] is expressed in terms of the range but is

controlled with the infinite norm since the Xj ’s admit moment of any order.
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Lemma 18 (Reduction to a nice event). For any p > 1, P(Ωk) = 1 − o(n−p), and so
B

k,`,[−πd ,
π
d ]
M
,Ωck

= o(n−p).

Note that, on Ωk,

R′j ≤ n
1
2 +γ
j , (36)

N∗j := sup
y∈Z

N ′j(y) ≤ n
1
4 + γ

2
j ((nj)

1
2 +γ)

1
2 � n

1
2 + η

2
j , (37)

Vj :=
∑
z∈Z

(N ′j(z))
2 ≥

(∑
z∈ZN

′
j(z)

)2
R′j

≥
n2
j

n
1
2 +γ
j

≥ n
3
2−

η
2

j , (38)

Vj ≤ R′j(N∗j )2 ≤ n
3(1+η)

2
j . (39)

It will be useful to notice that

∣∣ϕk,`(θ,θ′, E)
∣∣ ≤ E

1E ∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣
 (40)

with
F :=

{
y ∈ Z : ∀(j, s), N ′j,s(y) = 0

}
,

and that

#(Z \ F) ≤
m∑
j=1

sj∑
s=1

`j,s ≤MnLθ = o(n
1
4 ) . (41)

Using a straightforward adaptation of the proof of [13, Proposition 10], we prove (see
Appendix A) that

Lemma 19 (Reduction to a smaller domain of integration).

B
k,`,I

(1)
k ,Ωk

= o
(
e−n

c
)
,

uniformly on k, ` as in Proposition 16, where I
(1)
k is the set of (θ,θ′) ∈

[
−πd ,

π
d

]m ×
[−π, π]M−m such that there exists j = 1, · · · ,m so that n

− 1
2 +η

j < |θj |.
Lemma 20 (Reduction to an even smaller domain of integration).

B
k,`,I

(2)
k ,Ωk

= O

 m∏
j=1

n
− 5

4 +η
j

 ,

uniformly on k, ` as in Proposition 16, where I
(2)
k is the set of (θ,θ′) ∈

[
−πd ,

π
d

]m ×
[−π, π]M−m such that for all j = 1, · · · ,m, |θj | < n

− 1
2 +η

j and there exists j′ = 1, · · · ,M
such that n

− 1
2−η

j′ < |θj′ |.

It remains to estimate the integral over I(3)
k , the set of (θ,θ′) ∈

[
−πd ,

π
d

]m×[−π, π]M−m

such that for all j = 1, · · · ,m, |θj | < n
− 1

2−η
j .

We set J := {j = 1, · · · ,m : sj = 0} = {j(1), · · · , j(J)}.
Lemma 21 (Study of the integral with the above restrictions). Assume the assumptions
of Theorem 5. Let J ′ ⊂ J , then∑

k′j=0,··· ,d−1, ∀j∈J ′
B
k+k′,`,I

(3)
k ,Ωk

= O

 m∏
j=1

n
− 3

4
j

 ∑
J ′′⊂J ′∪(J ′+1) : #J ′′≥#J /2

 ∏
j∈J ′′

n
− 1

2 +η
j

 ,
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uniformly on k, ` as in Proposition 16, and where we set k′ = (k′1, · · · , k′m) with k′j = 0 if
j 6∈ J ′.

Moreover, if sj = 1 for all j (and J ′ = ∅), then,

B
k,`,I

(3)
k ,Ωk

=

(
d√

2πσξ

)m ∑
a1,··· ,am∈Z

1{∀i, ai∈kiα+dZ}E
[
(detDk)−

1
21Ωk

]
m∏
j=1

f(aj)E
[
f
(
aj + Z`j

)]
+O

n−(M+1)Lθ
m∏
j=1

n
− 3

4
j

 ,

uniformly on k, ` as above, with

E
[
(detDk)−

1
21Ωk

]
= O

 m∏
j=1

n
− 3

4
j

 ,

uniformly on k as above, and

E
[
(detDk)−

1
21Ωk

]
∼ n− 3m

4 E
[
detD−

1
2

t1,··· ,tm

]
.

as kj/n→ tj and n→ +∞.

We can now complete the proof of Proposition 16. The two first points of Proposi-
tion 16 come from the upper bounds provided by Lemmas 17, 18, 19, 20 and 21, with

Ek := E
[
(detDk)−

1
21Ωk

]
. It remains to prove the last point of Proposition 16. We

assume that sj = 1 for all j and that kj/n → tj and n → +∞. Observe that, since d

and α are coprime, for every aj ∈ Z there is a unique k′j ∈ {0, · · · , d − 1} such that
aj ∈ (kj + k′j)α+ dZ. Thus

d−1∑
k′1,··· ,k′m=0

n
κθη
10M∑

`1,··· ,`m=0

2#{j:`j>0}
m∏
j=1

Akj+k′j ,`j

=

n
κθη
10M∑

`1,··· ,`m=0

2#{j:`j>0}
∑

aj , bj∈Z

m∏
j=1

f(aj)f(bj)P
(
Z`j = bj − aj

)
.

Finally, due to the last point of Lemma 21 and to the next lemma, this quantity converges
to ∑

`1,··· ,`m≥0

2#{j:`j>0}
∑

aj , bj∈Z

m∏
j=1

f(aj)f(bj)P
(
Z`j = bj − aj

)
,

as kj/n → tj and n → +∞ and the last point of Lemma 21 ensures that Ek ∼
n−

3m
4 E

[
detD−

1
2

t1,··· ,tm

]
(with t1 < · · · < tm) as kj/n→ tj and n→ +∞.

Lemma 22 (Summability). Under the assumptions3 of Theorem 5,

∑
`≥1

∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z

f(a)f(b)P(Z`′+`d = b− a)

∣∣∣∣∣∣ <∞ .

3Our proof is valid in a more general context. The assumptions on f and S can be relaxed in
∑
a∈Z |af(a)| <

∞,
∑
a∈Z f(a) = 0, and ‖Sn‖

L
8
3

= O(
√
n).
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Proof. The proof of this lemma only uses estimates established in [13]. Since∑
a,b |f(a)f(b)| <∞ and using Lemma 17, we observe that∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z

f(a)f(b)P(Z`′+`d = b− a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d−1∑
`′=0

∑
a∈Z

∑
b∈a+(`d+`′)α+dZ

f(a)f(b)
d

2π

∫
[−πd ,

π
d ]

e−it(b−a)E

∏
y∈Z

ϕξ (tN`d+`′(y))

 dt
∣∣∣∣∣∣ , (42)

with (Nn(y))n,y the local time of (Sn)n and using the fact that the random variables ξk’s
take their values in α+dZ. Moreover, due to [13, Propositions 8,9,10], with the notations
therein, there exists an event Ωk (depending on k) such that P(Ωk) = 1− o(k−1−η0) ([14,

Lemma 16]) and such that |ϕξ(tNk(y))| ≤ e−
σ2
ξ(tNk(y))2

4 on Ωk when |t| ≤ k− 3
4 +η. It comes

that

∫
[−πd ,

π
d ]

e−it(b−a)E

∏
y∈Z

ϕξ (tN`d+`′(y))


=

∫
|t|≤`−

3
4

+η
e−it(b−a)E

∏
y∈Z

ϕξ (tN`d+`′(y))1Ω`d+`′

 dt+ o(`−1−η0)

=

∫
|t|≤`−

3
4

+η
e−it(b−a)E

∏
y∈Z

ϕξ (tN`d(y))1Ω`d

 dt+ o(`−1−η0) , (43)

using also the fact that #{y ∈ Z : N`d(y) 6= N`d+`′(y)} ≤ d. Since α and d are coprime,
`′ + dZ 7→ `′α+ dZ defines a bijection on Z/dZ. Thus, it follows from (42) and from (43)
that∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z

f(a)f(b)P(Z`′+`d = b− a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ d2π
∫
|t|≤`−

3
4

+η

∑
a,b∈Z

f(a)f(b)
(
e−it(b−a) − 1

)
E

∏
y∈Z

ϕξ (tN`d(y))1Ω`d

 dt
∣∣∣∣∣∣+ o(`−1−η0)

≤ d

2π

∫
|t|≤`−

3
4

+η

∑
a,b

|f(a)f(b)t(b− a)| E
[
e−

σ2
ξt

2V`d

4 1Ω`d

]
dt+ o(`−1−η0)

≤ CE
[
V −1
`d 1Ω`d

]
+ o(`−1−η0) ,

with V`d :=
∑
y∈Z(N`d(y))2,4 since

∑
a,b∈Z f(a)f(b) = 0,

∑
a∈Z |af(a)| <∞ and using the

change of variable v = tV
1
2

`d . Now, due to (38), V −1
`d 1Ω`d ≤ `−

3
2−2γ = O(`−1−η0) up to take

η0 small enough, which ends the proof of the lemma.

Theorem 5 follows directly from the following corollary of Proposition 16 and

Lemma 22, since E[N 2N ] = (2N)!
N !2N

and E[(L1(0))N ] =
∫

[0,1]N

E

[
detD

− 1
2

t1,··· ,tN

]
(2π)

N
2

dt1 · · · dtN
(due to [14]).

4One may observe that V`d corresponds to the unique entry of the matrix D(`d) with the notation Dk
introduced before Lemma 18.

EJP 26 (2021), paper 128.
Page 24/46

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP696
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for additive functionals of random walks in random scenery

Corollary 23 (A rewritting of Theorem 5). Under the assumptions of Theorem 5,

E

( n∑
k=1

f(Zk)

)2N+1
 = o

(
n

2N+1
8

)
,

and

E

( n∑
k=1

f(Zk)

)2N
 =

(2N)!

N !2N
n

2N
8

σ2N
f

(2πσ2
ξ )

N
2

∫
[0,1]N

E
[
detD−

1
2

t1,··· ,tN

]
dt1 · · · dtN + o(n

2N
8 ) .

Proof. Since f is bounded, it is enough to prove the result for n = n′d. We start by
writing

E

( n∑
k=1

f(Zk)

)M =
∑

1≤m1≤···≤mM≤n

cmE

 M∏
j=1

f(Zmj )

 ,
where cm is the number of (r1, · · · , rM ) ∈ {1, · · · , n}M such that r1, · · · , rM and m1, · · · ,
mM contain the same values with the same multiplicities.

Let θ0 ∈
(

0, 1
M+1

)
. Given a sequence 1 ≤ m1 ≤ · · · ≤ mM ≤ n with convention m0 = 0,

we consider p ∈ {0, · · · ,M} such that nomj−mj−1 (for j = 1, · · · ,M ) is in (nL
p+1θ0 , nL

pθ0 ].
Set θ = Lpθ0. We write k1 = m1 and, inductively, if kj = mu(j), we set kj+1 = mu(j+1)

for the smallest integer mr such that mr > kj + nθ, sj = u(j + 1) − u(j) − 1 and then
`j,s = mu(j)+s −mu(j).
Thus each m = (m1, · · · ,mM ) with 1 ≤ m1 ≤ · · · ≤ mM ≤ n can be represented by at
least one

(k, `) ∈
M⋃
p=0

M⋃
m=1

⋃
sj≥0 :M=

∑m
j=1(1+sj)

Fn,Lpθ0,m,s1,··· ,sm , (44)

with Fn,θ,m,s1,··· ,sm the set of M -uple (k, `) of nonnegative integers with k = (kj)j=1,··· ,m,
` = (`j,s)j=1,··· ,m;s=1,··· ,sj such that, for all j = 1, · · · ,m, kj ≥ kj−1 + nθ (with convention
k0 = 0) and, for all j = 1, · · · ,m and all s = 1, · · · , sj , 0 ≤ `j,s ≤ nLθ and, with this
representation,

E

 M∏
j=1

f(Zmj )

 = E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) . (45)

We first study separately the following sums

∑
(m,s)∈GM

∑
(k,`)∈Fn,θ,m,s1,··· ,sm

c(k,`)E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) ,
with GM the set of (m, s) with m ∈ {1, · · · ,M} and s = (s1, · · · , sm) with sj ≥ 0 for all
j = 1, · · · ,m and such that M =

∑m
j=1(sj + 1), and with c(k,`) = c(k1,··· ,km,(kj+`j,s)j,s).

Let us fix for the moment (m, s) ∈ GM . With the notation (35), we wish to study

∑
(k,`)∈Fn,θ,m,s1,··· ,sm

E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) =
∑

(k,`)∈Fn,θ,m,s1,··· ,sm

Bk,` . (46)

Recall J := {j = 1, · · · ,m : sj = 0}. We say that (k, `) and (k′, `′) belong to the same
block if

∀r 6∈ J , kr = k′r, ∀j ∈ J , bkj/dc = bk′j/dc, ` = `′ .
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A block is an equivalence class for this equivalence relation. We write F ′n,θ,m,s1,··· ,sm for
the set of (k, `) such that their block is contained in Fn,θ,m,s1,··· ,sm . We will see that the
contribution of the sum over Fn,θ,m,s1,··· ,sm \ F ′n,θ,m,s1,··· ,sm is negligeable in (46). Indeed,
observe that if (k, `) ∈ Fn,θ,m,s1,··· ,sm \ F ′n,θ,m,s1,··· ,sm , then at least one of the following
conditions holds true

(a) bkj/dcd− kj−1 < nθ ≤ (bkj/dc+ 1)d− 1− kj−1 if j− 1 6∈ J (or bkj/dcd− (bkj−1/dc+

1)d− d < nθ ≤ (bkj/dc+ 1)d− 1− bkj−1/dcd if j − 1 ∈ J )

(b) m ∈ J and dbkm/dc+ maxs `m,s < n ≤ d(bkj/dc+ 1) + maxs `m,s

Let us fix J ′′ ⊂ J . Due to the first point of Lemma 21, the contribution to (46) of blocks
having a type (a) or (b) problem at indices J ′′ is in

∑
(kj)j 6∈J ′′ ,`

O

 m∏
j=1

n
− 3

4
j

 ∑
J ′⊂{1,··· ,m} : #J ′≥#(J\J ′′)/2

∏
j∈J ′

n
− 1

2 +η
j


= O

nLMθ
n∑

(nj)j 6∈J ′′=n
θ

 m∏
j=1

n
− 3

4
j

 ∑
J ′⊂{1,··· ,m} : #J ′≥#(J\J ′′)/2

∏
j∈J ′

n
− 1

2 +η
j

 .

Analogously (up to taking J ′′ = ∅), it follows from (34) that∑
(k,`)∈F ′n,θ,m,s1,··· ,sm

B(k,`)

= O

nLMθ
n∑

n1,··· ,nm=nθ

(
m∏
i=1

n
− 3

4
i

) ∑
J ′⊂{1,··· ,m} : #J ′≥(#J )/2

∏
j∈J ′

n
− 1

2 +η
j

 .

The above quantity is in

O

nLMθ
∑

J ′ : #J ′≥#(J )/2

n∑
n1,··· ,nm=nθ

(
m∏
i=1

n
− 3

4
i

) ∏
r∈J ′

n
− 1

2−η
r


= O

 ∑
J ′ : #J ′≥#(J )/2

nLMθ+ 1
4 (m−d#(J )/2e)−( 1

4−η)θd#(J )/2e


= O

(
nLMθ+ 1

4 (m−d#J /2e)− θ4 d#J /2e+θJγ
)
,

where we used the fact that
∑n
r=1 r

− 3
4 = O

(
n

1
4

)
and that

∑
r≥nθ r

− 5
4 = O

(
n−

θ
4

)
.

Observe moreover that M =
∑m
j=1(sj + 1) ≥ 2(m−#J ) + #J = 2m−#J , with equality

if and only if sj ∈ {0, 1} for all j = 1, · · · ,m. It follows that

∑
(k,`)∈Fn,θ,m,s1,··· ,sm

∣∣∣∣∣∣E
 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

)∣∣∣∣∣∣
= O

(
nLMθ+M

8 −[M−(2m−#J )
8 +θ( d#J/2e

4 −#J η)]
)
.

In particular this is in o(n
M
8 ) as soon as M > 2m−#J or J 6= ∅.

This ends the proof of the first point of Corollary 23 (since, when M is odd, we cannot

EJP 26 (2021), paper 128.
Page 26/46

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP696
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for additive functionals of random walks in random scenery

have M = 2m−#J and J = ∅) and ensures that, for M even,

n−
M
8 E

( n∑
k=1

f(Zk)

)M
= n−

M
8

∑
(k,`)∈

⋃M
p=0 Fn,Lpθ0,M/2,1,··· ,1

c(k,`)E

 m∏
j=1

(
f(Zkj )f(Zkj+`j,1)

) .
Assume from now on that θ = θ0 and that M is even, J = ∅ and M = 2m, which means
that sj = 1 for every j = 1, · · · ,m and let us estimate the following quantity

En,M,θ =
∑

(k,`)∈Fn,θ,M/2,1,··· ,1

c(k,`)E

 m∏
j=1

(
f(Zkj )f(Zkj+`j,1)

) .
Note that, when (k, `) ∈ Fn,θ,M/2,1,··· ,1, then c(k,`) = (2m)!

2#{j:`j=0} . Using this and applying
Proposition 16 combined with the dominated convergence theorem, we obtain that

n−
m
4 En,M,θ

=
(2m)!

2m
n−

m
4

∑
0≤k1<···<km≤n:ki+1−ki>nθ

nLθ∑
`1,··· ,`m=0

2#{j:`j>0}E

 m∏
j=1

f(Zkj )f(Zkj+`j )


=

(2m)!

2m
n−m

∑
0≤k1<···<km≤n/d:ki+1−ki>nθ

n
3m
4

×
d−1∑

k′1,··· ,k′m=0

nLθ∑
`1,··· ,`m=0

2#{j:`j>0}E

 m∏
j=1

f(Zdkj+k′j )f(Zdkj+k′j+`j )

+ o(1)

=
(2m)!

2m

∫
0≤t1<···<tm≤1/d

dmσ2m
f E

[
detD−

1
2

dt1,··· ,dtm

]
(2πσ2

ξ )
m
2

dt1 · · · dtm + o(1) .

Indeed, we transform the first sum in an integral by making the change of variable
kj = dntje and, for the domination, it follows from the second point of Proposition 16

that there exists C̃ such that, for every 0 = t0 ≤ t1 < · · · < tm ≤ 1/d and every positive
integer n such that

1{∀j=1,··· ,m, dntj+1e−dntje>nθ}E

 m∏
j=1

f(Zddntje+k′j )f(Zddntje+k′j+`j )

 ≤ C̃ m∏
i=1

(tj+1 − tj)−
3
4 .

Therefore we have proved that

lim
n→+∞

n−
m
4 En,M,θ =

(2m)!

2m

∫
0≤s1<···<sm≤1

σ2m
f E

[
detD−

1
2

s1,··· ,sm

]
(2πσ2

ξ )
m
2

ds1 · · · dsm

=
(2m)!σ2m

f

m!2m(2πσ2
ξ )

m
2

∫
[0,1]m

E
[
detD−

1
2

s1,··· ,sm

]
ds1 · · · dsm .

It remains now to prove that we can neglect the contribution of the (k, `) ∈⋃M
p=1 Fn,Lpθ0,M/2,1,··· ,1 \ Fn,θ0,M/2,1,··· ,1. Fix some p = 1, · · · ,M . It follows from (34)
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that

n−
m
4

∑
(k,`)∈Fn,Lpθ0,M/2,1,··· ,1\Fn,θ0,M/2,1,··· ,1

c(k,`)E

 m∏
j=1

(
f(Zkj )f(Zkj+`j,1)

)
= O

n−m4 n∑
n1,··· ,nm−1=nL

pθ0

(
m−1∏
i=1

n
− 3

4
i

)
nθ0∑
nm=1

n
− 3

4
m nmL

p+1θ0


= O

(
n−

1
4 +

θ0
4 +mLp+1θ0

)
= o(1) .

The last part of Theorem 5 corresponds to the particular case f = δ0− δa. In this case

σ2
f = σ2

0,a =
∑
k∈Z

[
2P(Z|k| = 0)− P(Z|k| = a)− P(Z|k| = −a)

]
.

A Proofs of technical lemmas for Theorem 5

Recall the context. Let M ≥ 1, θ ∈ (0, 1), η ∈
(
0, 1

100

)
, L = κη

10M . Recall that
nj = kj − kj−1 (with convention k0 = 0). Assume nθ < nj < n and let `j,1, · · · , `j,sj =

0, · · · , bnLθc with
∑m
j=1(1 + sj) = M .

Proof of Lemma 17. We start by writing

pk,`(a, b) =
1

(2π)M

∫
[−π,π]M

e−i
∑m
j=1[(aj−aj−1)θj+

∑sj
s=1(bj,s−aj)θ′j,s]ϕk,`(θ,θ

′) d(θ,θ′) .

But, due to the definition of d, for any u, v ∈ Z, ϕξ(u+ 2πv
d ) = (ϕξ(

2π
d ))vϕξ(u) and so, for

any u ∈ RM and v ∈ ZM ,

ϕk,`(u+
2π

d
v) = E

∏
y∈Z

ϕξ

 m∑
j=1

[(
uj +

2πvj
d

)
N ′j(y) +

sj∑
s=1

(
uj,s +

2πvj,s
d

)
N ′j,s(y)

]
= E

∏
y∈Z

(
ϕξ

(
2π

d

))∑m
j=1[vjN

′
j(y)+

∑sj
s=1 vj,sN

′
j,s(y)]

ϕξ

 m∑
j=1

[
ujN

′
j(y) +

sj∑
s=1

uj,sN
′
j,s(y)

]
=

(
ϕξ

(
2π

d

))∑m
j=1[vjnj+

∑sj
s=1 `j,svj,s]

ϕk,`(u) .

and so

pk,`(a, b) =
1

(2π)M

∫
[−πd ,

π
d ]m×[−π,π]M−m

d−1∑
rj=0

e−i
∑m
j=1[(aj−aj−1)(θj+

2πrj
d )+

∑sj
s=1(bj,s−aj)θ′j,s

(
ϕξ

(
2π

d

))∑m
j=1 rjnj

ϕk,`(θ,θ
′) d(θ,θ′) .

Moreover, for any a ∈ Z, then
∑d−1
r=0 e

− 2iaπr
d

(
ϕξ
(

2π
d

))vr
= 0 except if e−

2iaπ
d

(
ϕξ
(

2π
d

))v
=

1 (i.e. if vα−a ∈ dZ) and then this sum is equal to d. This ends the proof of Lemma 17.

Proof of Lemma 18. Due to [14, Lemma 16], P(Ω
(j)
k ) = 1 − o(n−pj ) for any p > 1 and

so, since nj > nθ, it follows that for all p > 1, P(Ω
(j)
k ) = 1 − o(n−p). Moreover, since

θ′ ∈ (0, θ4 ), due to [14, Lemma 21],

∀p > 1, P

(
detDk < n−θ

′
m∏
i=1

n
3
2
i

)
= o(n−p) ,

uniformly on k as above.
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Proof of Lemma 19. Recall that F =
{
y ∈ Z : ∀(j, s), N ′j,s(y) = 0

}
. Due to (40), Lemma

19 follows from the following estimate

∃c > 0,

∫
{∃j,n

− 1
2

+η

j <|θj |}
E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk

 dθ = o
(
e−n

c
)
, (47)

uniformly on k, ` as in Proposition 16. To this end, we follow and slightly adapt the proof
of [13, Proposition 10] as explained below. Observe that, up to conditioning with respect
to (Sk+1 − Sk)k 6∈{kj−1,··· ,kj−1}, this will be a consequence of

∀j = 1, · · · ,m, ∀u ∈ R,
∫
n
− 1

2
+η

j <|θ|<π
d

E

∏
y∈F

∣∣ϕξ (u+ θN ′j(y)
)∣∣1Ωk

 dθ = o
(
e−n

c
)
,

(48)
uniformly on kj , `j,s as above. Recall that #(Z \ F) ≤

∑m
j=1

∑sj
s=1 `j,s ≤MnLθ. As in [13,

after Lemma 16], we observe that, for n large enough,

∏
y∈F

∣∣ϕξ(u+ θN ′j(y))
∣∣ ≤ exp

(
−
σ2
ξ

4
n−

1
2 +4γ#

{
y : d

(
u+ θN ′j(y),

2π

d
Z

)
≥ n− 1

4 +2γ

})
,

(49)
and that

d

(
u+ θN ′j(y),

2πZ

d

)
≥ n− 1

4 +2γ ⇐⇒ u

θ
+N ′j(y) ∈ I :=

⋃
k∈Z

Ik , (50)

where, for all k ∈ Z,

Ik :=

[
2kπ

dθ
+
n−

1
4 +2γ

θ
,

2(k + 1)π

dθ
− n−

1
4 +2γ

θ

]
.

In particular R \ I =
⋃
k∈Z Jk, where for all k ∈ Z,

Jk :=

(
2kπ

dθ
− n−

1
4 +2γ

θ
,

2kπ

dθ
+
n−

1
4 +2γ

θ

)
.

Let N± be two positive integers such that P(X1 = N+)P(X1 = −N−) > 0. Let C± =

(C±k )k=1,··· ,T ∈ ZT with T = N+ +N− and C+
k = N+ for k ≤ N− and C+

k = −N− otherwise,
and symetrically and C−k = −N− for k ≤ N+ and C−k = N+ otherwise. It has been proved
in [13] (see Lemma 15 therein combined with the estimate P(Dn) = 1−o(e−cn) in Section
2.8 therein) that, for n large enough,

P(Ωk \ Ej) = o(e−cnj ) , (51)

with
Ej =

{
#{y ∈ Z : Cj(y) ≥ n

1
2−2γ
j } ≥ 3N+N−n

1
2−2γ
j

}
,

and where, for any y ∈ Z,

Cj(y) := #
{
k = 0, . . . ,

⌊nj
T

⌋
− 1 : Skj−1+kT − Skj−1

= y and

(Xkj−1+kT , . . . , Xkj−1+(k+1)T−1) = C±
}
.

Now, on Ej , we define Yi for i = 1, . . . ,
⌊
n

1
2−2γ
j

⌋
, by

Y1 := min
{
y ∈ Z : Cj(y) ≥ n

1
2−2γ
j

}
,
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and
Yi+1 := min

{
y ≥ Yi + 3N−N+ : Cj(y) ≥ n

1
2−2γ
j

}
for i ≥ 1 .

For every i, j = 1, . . . ,
⌊
n

1
2−2γ
j

⌋
, let tji = m

(j)
i T be the j-th time of the form mT when a

peak of the form C± is based on the site Yi. We also define N0
j (Yi+N+N−) as the number

of visits of (Skj−1+k − Skj−1
)k≥0 before time nj to Yi +N+N−, which do not occur during

the time intervals [tui , t
u
i + T ], for u ≤

⌊
n

1
2−2γ
j

⌋
. We proved in [13, Lemma 16] that, for

any H ≥ 0,

P
(u
θ

+N ′j(Yi +N+N−) ∈ I
∣∣En, N0

j (Yi +N+N−) = H
)

= P
(
H +

u

θ
+ bj ∈ I

)
,

where bj is a random variable with binomial distribution B
(⌊
n

1
2−2γ
j

⌋
; 1

2

)
and finally we

proved in [13, Lemmas 17 and 18] (see in particular the last formula in the proof of
Lemma 17) that

∀H ′ ∈ R, P (H ′ + bn ∈ I) ≥ 1

3
.

Thus, conditionally to (Sk+1 − Sk)k 6∈{kj−1,··· ,kj−1}, Ej and ((N0
j (Yi + N+N−), i ≥ 1), the

events {uθ +Nj(Yi +N+N−) ∈ I}, i ≥ 1, are independent of each other, and all happen
with probability at least 1/3. We conclude that

P

Ej ∩
 #

{
i :

u

θ
+N ′j(Yi +N+N−) ∈ I

}
≤
n

1
2−2γ
j

4


 ≤ P

Bj ≤ n
1
2−2γ
j

4


= o(e−c

′nj ) , (52)

where Bj has binomial distribution B
(⌊
n

1
2−2γ
j

⌋
; 1

3

)
.

But if #{y ∈ Z : N ′j(y) ∈ I} ≥ n
1
2−2γ
j /4, then, by (49) and (50) there exists a constant

c′′ > 0, such that, for any n large enough,∏
y∈F
|ϕξ(u+ θN ′j(y))| ≤ exp

(
−c′′n

1
2−2γ
j n

− 1
2 +4γ

j

)
,

since #(Z \F)� n
1
2−2γ
j /4. This, combined with (51) and (52), ends the proof of (48) and

so of Lemma 19.

Proof of Lemma 20. We have to estimate B
k,`,I

(2)
k ,Ωk

uniformly on k, ` as in Proposi-

tion 16, where I(2)
k = Vk × [−π, π]M−m and where Vk is the set of θ ∈ Rm such that for

all j = 1, · · · ,m, |θj | < n
− 1

2 +η
j and such that there exists some j0 = 1, · · · ,m satisfying

n
− 1

2−η
j0

< |θj0 |. Let ε0 > 0 be such that

∀u ∈ [−ε0, ε0], |ϕξ(u)| ≤ e−
σ2
ξu

2

4 . (53)

We define the events Hk = Ωk ∩ {∀y ∈ Z, |
∑m
j=1 θjN

′
j(y)| ≤ ε0/2} and

H ′k :=

#

y ∈ Z :

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣ ∈
[ε0

4
,
ε0

2

] > n
1
4

 .

Due to [14, Lemma 21 and last formula of p. 2446],

∃c′ > 0, P (Ωk \ (Hk ∪H ′k)) = O

 m∏
j=1

n
− 3

4
j

 ,
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uniformly on k as above and uniformly on θ ∈ Vk. Thus,

B
k,`,I

(2)
k ,Ωk\(Hk∪H′k)

= O

 m∏
j=1

n
− 5

4 +η
j

 , (54)

where we used the fact that
∫
Vk

dθ ≤
∏m
j=1 n

− 1
2 +η

j . Moreover, for n large enough, it
follows from the definition of H ′k, from (41) and (53) that

B
k,`,I

(2)
k ,Ωk∩H′k

= O

∫
Vk

E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk∩H′k

 dθ
 ≤ e−σ2

ξε
2
0n

1
4

64 . (55)

Finally, it remains to estimate B
k,`,I

(2)
k ,Ωk∩Hk

. To this end we write

∫
Vk

E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk∩Hk

 dθ
≤
∫
Vk

E

[
e−

σ2
ξ
4

∑
y∈F(

∑m
j=1 θjN

′
j(y))

2

1Ωk

]
dθ

≤
∫
V ′′k

 m∏
j=1

n
− 3

4
j

E[e−σ2
ξ
4

∑
y∈F

(∑m
j=1 θ

′′
j n
− 3

4
j N ′j(y)

)2

1Ωk

]
dθ′′

≤

 m∏
j=1

n
− 3

4
j

E[∫
(D̃′k)

1
2 V ′′k

(det D̃′k)−
1
2 e−

σ2
ξ |v|

2

4 1Ωk
dv

]
, (56)

with the successive changes of variable θ′′j = n
3
4
j θj and v = (D̃′k)

1
2 θ′′, with

D̃′k =

(ninj)
− 3

4

∑
y∈F

N ′i(y)N ′j(y)


i,j

and V ′′k = Diag(n
3
4
i )Vk .

Note that V ′′k is the set of (θ′′1 , · · · , θ′′m) such that |θ′′j | ≤ n
1
4 +η
j and such that there exists

j0 = 1, · · · ,m such that |θ′′j0 | ≥ n
1
4−η
j0

.

Let us prove that, in the above formula, we can approximate the determinant of D̃′k
by the one of D̃k :=

(
(ninj)

− 3
4

∑
y∈ZN

′
i(y)N ′j(y)

)
i,j

. To this end, writing Σm for the set

of permutations of the set {1, · · · ,m} and κ(σ) for the signature of σ ∈ Σm, we observe
that, on Ωk,∣∣∣det D̃′k − det D̃k

∣∣∣
=

 m∏
j=1

n
− 3

2
j

∣∣∣∣∣∣
∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈F

N ′j(y)N ′σ(j)(y)


−
∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈Z

N ′j(y)N ′σ(j)(y)

∣∣∣∣∣∣
≤

 m∏
j=1

n
− 3

2
j

 ∑
σ∈Σm

m∑
j=1

∑
z∈Z\F

N ′j(z)N
′
σ(j)(z)

∏
j′ 6=j

∑
y∈Z

N ′j′(y)N ′σ(j′)(y)


≤

 m∏
j=1

n
− 3

2
j

 ∑
σ∈Σm

m∑
j=1

#(Z \ F)n
1+2γ

2
j n

1+2γ
2

σ(j)

∏
j′ 6=j

√
Vj′Vσ(j′) ,
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where we used the Cauchy-Schwarz inequality together with the notations and estimates
given after Lemma 18. Using (39) and (41), it follows that, on Ωk,

∣∣∣det D̃′k − det D̃k

∣∣∣�
 m∏
j=1

n
− 3

2
j

nLθ
m∑
j=1

n
1+2γ

2
j n

1+2γ
2

σ(j)

∏
j′ 6=j

n
3(1+2γ)

4

j′ n
3(1+2γ)

4

σ(j′)

� 1

2
nmγ−

θ
2 +Lθ � n−θ

′−(M−1)Lθ ≤ n−(M−1)Lθ

2
det D̃k ,

since θ′ ≤ θ
2 − 2MLθ < θ

2 − mγ − MLθ and where we used the fact that det D̃k =

detDk
∏m
j=1 n

− 3
2

j together with the definition of Ωk. Therefore, on Ωk, det D̃′k ≥ 1
2 det D̃k.

Thus, due to (56),∫
Vk

E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk∩Hk

 dθ
≤ O

 m∏
j=1

n
− 3

4
j

E[∫
(D̃′k)

1
2 V ′′k

(det D̃′k)−
1
21Ωk

e−
σ2
ξ |v|

2

4 dv

]
= O

 m∏
j=1

n
− 3

4
j

E[(det D̃k)−
1
21Ωk

∫
(D̃′k)

1
2 V ′′k

e−
σ2
ξ |v|

2

4 dv

] . (57)

By definition of V ′′k , for any v ∈ (D̃′k)
1
2V ′′k , |v|2 ≥ (λ̃′k)

1
2n( 1

4−η)θ, where λ̃′k is the smallest
eigenvalue of D̃′k. Since all the eigenvalues of D̃′k are nonnegative (D̃′k being symmetric
and nonnegative), it follows that all the eigenvalues of D̃′k are smaller than trace(D̃′k) ≤∑m
j=1

Vj

n
3
2
j

≤ mn3γ (on Ωk). Thus, on Ωk,

(λ̃′k)
1
2n( 1

4−η)θ ≥ det(D̃′k)
1
2

(m
1
2n

3γ
2 )m−1

n( 1
4−η)θ ≥ n( 1

4−η)θ− θ′2 −
3γ(m−1)

2

2m
m−1

2

� n
θ
16 , (58)

since ηθ, θ
′

2 , and 3γ(m−1)
2 are all strictly smaller θ

16 . Hence

E

[
(det D̃k)−

1
21Ωk

∫
(D̃′k)

1
2 V ′′k

e−
σ2
ξ |v|

2

4 dv

]

≤ E
[
(det D̃k)−

1
21Ωk

] ∫
|v|2>n

θ
16

e−
σ2
ξ |v|

2

4 dv = O
(
n−p

)
,

for any p > 0. This combined with (54), (55) and (57) ends the proof of the lemma. It will
be worthwhile to note that the previous estimate also holds true when λ̃′k is replaced by

the smallest eigenvalue λ̃k of D̃k.

Before proving Lemma 21, we state a useful coupling lemma allowing us to replace
detDk by a copy independent of (N ′j,s)j,s.
Up to enlarging the probability space if necessary, we consider X ′ = (X ′k)k≥1 an inde-
pendent copy of the increments X = (Xk)k≥0 of the random walk S. We then define the
random walk S′′ as follows: S′′m =

∑m
k=1X

′′
k with X ′′k = Xk if kj−1 + `j−1 ≤ k < kj and

X ′′k = X ′k if kj ≤ k < kj + `j , with `j := maxs=1,··· ,sj `j,s. We define Ω′′k, N ′′j and D′′k for the
space as we have defined Ωk, N ′j , Dk (up to replacing S by S′′).

Lemma 24 (Replacing a part of the RW by an independent copy). There exists Ω′k ⊂
Ωk ∩ Ω′′k such that

∀p > 0, P ((Ωk ∩ Ω′′k) \ Ω′k) = O(n−p) (59)
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and such that, on Ω′k,∣∣∣(detDk)−
1
2 − (detD′′k)−

1
2

∣∣∣ ≤ n− θ8−Lθ(detD
− 3

2

k + (detD′′k)−
3
2 ) .

Moreover

E
[∣∣∣(detDk)−

1
2 − (detD′′k)−

1
2

∣∣∣1Ω′k

]
≤ n− θ8−Lθ

m∏
j=1

n
− 9

4
j . (60)

Proof of Lemma 24. Observe that

hj := S′′kj − Skj =
∑
j′<j

(
S′kj′+`j′ − S

′
kj′
− (Skj′+`j′ − Skj′ )

)
and, on Ωk ∩ Ω′′k,

|N ′j(z)−N ′′j (z)| = |N ′j(z)−N ′j(z + hj)| ≤ n
1
4 + γ

2
j |hj |

1
2 ,

for all z ∈ Z \
⋃kj−1+`j
m=kj−1

{Sm, S′′m}.

We will prove that detDk is close enough to detD′′k = det

((∑
y∈ZN

′′
i (y)N ′′j (y)

)
i,j

)
. Due

to the Markov inequality,

∀p > 0, P
(
|S`j | > h

)
≤ O

` p2j
hp

 = O
(
n−γ

′p
)
,

where we set h = nγ
′+ κθη

20M ≥ nγ′`
1
2
j . Thus we set

Ω′k := Ωk ∩ Ω′′k ∩ {∀j = 1, · · · ,m, |hj | ≤ h}

and we observe that P ((Ωk ∩ Ω′′k) \ Ω′k) = O(n−p) for all p > 0. Moreover, on Ω′k,

|N ′j(z)−N ′′j (z)| ≤ 2`j + n
1
4 + γ

2
j h

1
2 ≤ 3n

1
4 + γ

2
j n

γ′
2 + κθη

40M .

Moreover
V ′′j :=

∑
y∈Z

(N ′′j (y))2 ≤
∑
y∈Z

(N ′j(y))2 + 2`3j ≤ n
3
2 +3γ
j .

This allows us to observe that, on Ω′k,

|detDk − detD′′k|

=

∣∣∣∣∣∣
∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈Z

N ′j(y)(N ′σ(j)(y)

− ∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈Z

N ′′j (y)N ′′σ(j)(y)

∣∣∣∣∣∣
≤
∑
σ∈Σm

m∑
j=1

∑
z∈Z

∣∣∣N ′j(z)N ′σ(j)(z)−N
′′
j (z)N ′′σ(j)(z)

∣∣∣
×
∏
j′ 6=j

max

∑
y∈Z

N ′j′(y)N ′σ(j′)(y),
∑
y∈Z

N ′′j′(y)N ′′σ(j′)(y)


≤ 3n

γ′
2 + κθη

40M

∑
σ∈Σm

m∑
j=1

[
V

1
2
j n

1
2 +γ

σ(j) + (V ′′σ(j))
1
2n

1
2 +γ
j

] ∏
j′ 6=j

max
(
Vj′Vσ(j′), V

′′
j′V
′′
σ(j′)

) 1
2

≤ 3n
γ′
2 + κθη

40Mm!

m∏
j′=1

n
3
2 +3γ

j′

m∑
j=1

n
− 1

4−
γ
2

j �
m∏
j′=1

n
3
2

j′

m∑
j=1

n
− 1

8
j n−Lθ ,
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since Lθ + 3mγ − θ
4 + γ′

2 < − θ8 − Lθ, and so, on Ω′k,∣∣∣(detDk)−
1
2 − (detD′′k)−

1
2

∣∣∣ ≤ n− θ8−Lθ(detD
− 3

2

k + (detD′′k)−
3
2 ) .

We conclude thanks to [14, Lemma 21] which ensures that E
[
(detDk)−

3
21Ωk

]
=

O
(∏m

j=1 n
− 9

4
j

)
.

The proof of Lemma 21 will also use the following result. Recall that we set J = {j =

1, · · · ,m : sj = 0} and that J ′ is a subset contained in J .

Lemma 25 (An estimate using the “centering” assumption). Under the assumptions of
Lemma 21, ∑

k′j=0,··· ,d−1, ∀j∈J ′
B
k+k′,`,I

(3)
k ,Ωk

=
dm

(2π)M

∫
I

(3)
k

E
[
1Ωk

F (θ,θ′)G(θ,θ′)
]
d(θ,θ′) ,

with k′ ∈ Zm such that k′j = 0 for all j 6∈ J ′, with

G(θ,θ′) :=
∏
j 6∈J ′

 ∑
aj∈αkj+dZ

∑
bj,s,··· ,bj,sj∈Z

f(aj)

(
sj∏
v=1

f(bj,v)

)
eiaj(θj+1−θj)−i

∑sj
s=1(bj,s−aj)θ′j,s


×

∏
y∈Z\S′

ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y))

) ,

with S ′ =
⋃
j∈J ′ S ′j , S ′j := {Skj , · · · , Skj+d−1}, so that {Skj , · · · , Skj+d−1} and with F

satisfying

F (θ,θ′) = O

 ∑
J ′′⊂J ′

∏
j∈J ′\J ′′

(|θj |+ |θj+1|)1⋂
j∈J′′ Bj )

 ,

uniformly on k, ` and on Ωk, with Bj = {S ′j ∩
⋃
j′∈J ′′\{j} S ′j′ 6= ∅}.

If
∑
a∈Z f(b+ad) = 0 for all b ∈ Z (true if d = 1), then F (θ,θ′) = O

(∏
j∈J ′(|θj |+ |θj+1|)

)
(with convention θm+1 = 0).

Proof. We start by writing∑
k′j=0,··· ,d−1, ∀j∈J ′

B
k+k′,`,I

(3)
k ,Ωk

=
dm

(2π)M

∫
I

(3)
k

E
[
1Ωk

F (θ,θ′)G(θ,θ′)
]
d(θ,θ′) ,

where we set

F (θ,θ′) :=
∑

k′j=0,··· ,d−1, ∀j∈J ′

∏
j∈J ′

 ∑
aj∈(kj+k′j)α+dZ

(
f(aj)e

−iaj(θj−θj+1)
)

×
∏
y∈S′

ϕξ

(
m∑
r=1

(
θrÑ

′
r,k′(y) +

sr∑
s=1

θ′r,sÑ
′
r,s(y))

))
,

with
Ñ ′r,k′(y) = #{u = kr−1 + k′r−1, · · · , kr + k′r − 1 : Su = y} .

If
∑
a∈u+dZ f(a) = 0 for all u ∈ Z, the proof of Lemma 25 ends by noticing that∑
aj∈(kj+k′j)α+dZ

(
f(aj)e

−iaj(θj−θj+1)
)

=
∑

aj∈(kj+k′j)α+dZ

(
f(aj)

(
e−iaj(θj−θj+1) − 1

))
,
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which is in O (|θj |+ |θj+1|) since
∑
a∈Z |af(a)| < ∞. Since we just assume here that∑

a∈Z f(a) = 0, we need a more delicate approach. We rewrite F as follows

F (θ,θ′) :=
∑

k′j=0,··· ,d−1, ∀j∈J ′

∏
j∈J ′

Hj,k′j
(θj − θj+1)

Ψ(k′)

with

Hj,k′j
(θ) :=

∑
aj∈(kj+k′j)α+dZ

(
f(aj)e

−iajθ
)
,

Ψ(k′) =
∏
y∈S′

ϕξ

(
m∑
r=1

(
θrÑ

′
r,k′(y) +

sr∑
s=1

θ′r,sÑ
′
r,s(y))

))
,

recalling that Ñ ′r,k′(y) = #{u = kr−1 + k′r−1, · · · , kr + k′r − 1 : Su = y}. Note that

Ñ ′r,k′(y) = N ′r(y) except maybe if r ∈ J ′ and y ∈ S ′r or if r − 1 ∈ J ′ and y ∈ S ′r−1. We
order the elements of J ′ as follows: j′1 < · · · < j′J′ and write

F (θ,θ′) = F0(θ,θ′) + F1(θ,θ′)

with

F1(θ,θ′) =

d−1∑
kj′1

=0

Hj′1,k
′
j′1

(0)

d−1∑
kj′2

,··· ,kj′
J′

=0

 ∏
j∈J ′\{j′1}

Hj,k′j
(θj − θj+1)

Ψ(k′)

and

F0(θ,θ′)

=

d−1∑
kj′1

=0

(
Hj′1,k

′
j′1

(θj′1 − θj′1+1)−Hj′1,k
′
j′1

(0)

) d−1∑
kj′2

,··· ,kj′
J′

=0

 ∏
j∈J ′\{j′1}

Hj,k′j
(θj − θj+1)

Ψ(k′) .

Note that Hj′1,k
′
j′1

(θj′1 − θj′1+1)−Hj′1,k
′
j′1

(0) is in O(|θj′1 |+ |θj′1+1|). Since
∑
a∈Z f(a) = 0, F1

satisfies

F1(θ,θ′) =

d−1∑
kj′1

=0

Hj′1,k
′
j′1

(0)

d−1∑
kj′2

,··· ,kj′
J′

=0

 ∏
j∈J ′\{j′1}

Hj,k′j
(θj − θj+1)

∆j′1
Ψ(k′)

with ∆jφ(k′) = φ(k′) − φ(k′j), where k′j ∈ Nm is such that (k′j)i = k′i for i 6= j, and
(k′j)j = 0. Indeed

d−1∑
kj′1

=0

(
Ψ(k′)−∆j′1

Ψ(k′)
)
Hj′1,k

′
j′1

(0) = Ψ(k′j1)

d−1∑
kj′1

=0

Hj′1,k
′
j′1

(0)

= Ψ(k′j1)

d−1∑
kj′1

=0

∑
aj′1
∈(kj′1

+k′
j′1

)α+dZ

f(aj′1) = 0 .

Proceding iteratively on J ′, we obtain

F (θ,θ′) =
∑

ε1,··· ,εJ′∈{0,1}

Fε1,··· ,εJ′ (θ,θ
′) , (61)
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with

Fε1,··· ,εJ′ (θ,θ
′)

=

 ∏
j′:εj′=0

(
Hj′1,k

′
j′1

(θj′1 − θj′1+1)−Hj′1,k
′
j′1

(0)

) ∏
j:εj=1

Hj,k′j
(0)

∆
εJ′
j′
J′
· · ·∆ε1

j′1
Ψ(k′) ,

with convention ∆0
j′ = Id. The first part will be easily dominated by O

(∏
j′:εj′=0(|θj′ |+

|θj′+1|)
)

. Let us study the second part of the formula exploiting the fact that
∑
a∈Z f(a) =

0. The difficulty here is that k′ appears both in
(∏

j:εj=1Hj,k′j
(0)
)

and in ∆···Ψ(k′). The

value of (ε1, · · · , εJ′) being fixed, we consider the set J ′′ of the j′ ∈ J ′ such that εj′ = 1.
Observe that, if S ′j′ ∩ S ′j = ∅, then

∆j′∆jΨ(k′) =
(

∆j′ΨS′\S′j (k
′
j)
)(

∆jΨS′j (k̂
′
j)
)

with

ΨS0(k′) =
∏
y∈S0

ϕξ

(
m∑
r=1

(
θrÑ

′
r,k′(y) +

sr∑
s=1

θ′r,sÑ
′
r,s(y))

))
,

and where we set k̂
′
j for the vector of Zm with j-th coordinate equal to k′j , all the other

coordinates being null. Let J ′′0 be the set of j ∈ J ′′ such that S ′j ∩
⋃
j′′∈J ′′\{j} S ′j′′ = ∅.

Then

∑
kj=0,··· ,d−1, ∀j∈J ′′0

 ∏
j∈J ′′0

Hj,k′j
(0)

∆
εJ′
j′
J′
· · ·∆ε1

j′1
Ψ(k′)

=
∏
j∈J ′′0

 d−1∑
k′j=0

Hj,k′j
(0)∆jΨS′j

(
k̂
′
j

)∆J ′′\J ′′0 Ψ(k′J ′′0 )

with k′J ′′0 ∈ N
m such that (k′j)i = k′i for i 6∈ J ′′0 , the other coordinates being null, the

notation ∆J ′′\J ′′0 standing for the composition of all the operators ∆j for j ∈ J ′′ \ J ′′0 .
We conclude by using (61) and by noticing that ∏

j′∈J ′\J ′′

(
Hj′,k′

j′
(θj′ − θj′+1)−Hj′,k′

j′
(0)
) = O

 ∏
j′∈J ′\J ′′

(|θj′ |+ |θj′+1|)

 ,

∏
j∈J ′′0

 d−1∑
k′j=0

Hj,k′j
(0)∆jΨS′j

(
k̂
′
j

) = O

 ∏
j′∈J ′′0

(|θj′ |+ |θj′+1|)


and that

j ∈ J ′′ \ J ′′0 =⇒ S ′j ∩
⋃

j′∈J ′′\{j}

S ′j′ 6= ∅ .

The following lemma will be useful to estimate the term F appearing in Lemma 25. It
is not needed when

∑
a∈Z f(b+ ad) = 0 for all b ∈ Z.

Lemma 26. For any J ′ ⊂ J ,

P

Ωk ∩
⋂
j∈J ′

Bj

 = O

 ∑
J ′′⊂J ′\{minJ ′}, #J ′′≥#J ′/2

nJγ
∏
j∈J ′′

(kj − k−j )−
1
2

 ,

where k−j = max{ks ≤ kj , s ∈ J ′} and with the notation Bj introduced in Lemma 25.
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Proof. It is enough to study

P

Ωk ∩
⋂
j∈J ′

{
Skj+rj = Skm(j)+sj

}
for any m(j) ∈ J ′ \ {j}, rj , sj ∈ {0, · · · , d− 1}. This probability is dominated by

P
(
Ωk ∩

{
∀j ∈ J ′, |Skj − Skm(j)

| ≤ nv
})

+ o(n−p) ,

for all p, v > 0. We partition the set J ′ by the equivalence relation generated by the
relation j ∼ m(j). We write R(j) for the class of j and R for the set of these equivalence
classes. Observe that the number of equivalent classes is at most b#J ′/2c. We order the
set J ′ in j′1 < · · · < j′J′ . We wish to estimate∑

Ar, r∈R
P
(

Ωk, ∀i = 1, · · · , J ′ − 1, Skj′
i+1
−kj′

i
= AR(j′i+1) −AR(j′′i ) +O(nv)

)
,

where the sum is over (Ar)r∈R ∈ ZR such that AR(1) = 0, AR(j′i+1) −AR(j′i)
= O((kj′i+1

−
kj′i)

1
2 + γ

2 ). Due to the local limit theorem and the independence of the increments of S,
the above probability is in

∑
Ar, r∈R

J′−1∏
i=1

nv
(
O
(

(kj′i+1
− kj′i)

− 1
2

))
.

Now let us control the cardinal of the admissible (Ar, r ∈ R). To this end, consider the
set J ′ of the smallest representants of R. Then the above quantity is smaller than

nJ
′(v+ γ

2 )
∏

j∈J ′\J ′
(kj − k−j )−

1
2 .

Proof of Lemma 21. All the estimates below are uniformly in k. For the first estimate,
we have to estimate the following integral

∫
∀j,|θj |<n

− 1
2
−η

j

∏
j 6∈J ′

 ∑
aj∈αkj+dZ

f(aj)e
iaj(θj+1−θj)

sj∏
s=1

∑
bj,s∈Z

(
f(bj,s)e

−i(bj,s−aj)θ′j,s
)

× E

1Ωk
F (θ,θ′)

∏
y∈Z\S′

Ay

 dθ , (62)

where we set

Ay := ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y)

) .

Let us study

Ek,`(θ,θ
′) :=

∏
y∈Z\S′

Ay −
∏

y∈Z\S′
By ,

with

By := exp

−σ2
ξ

2

 m∑
j=1

θjN
′
j(y)

2
ϕξ

 m∑
j=1

sj∑
s=1

θ′j,sN
′
j,s(y)

 .
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But, on Ωk, we have |θj | ≤ n
− 1

2−η
j for all j = 1, · · · ,m, and so

∀y ∈ Z,

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣ ≤
m∑
j=1

|θj |N∗j ≤
m∑
j=1

n
− η2
j ≤ mn−

θη
2 < ε0 ,

as soon as n is large enough (uniformly on nj ∈ [nθ, n]). Thus |Ek,`(θ,θ′)| is dominated
by

∑
y∈Z
|Ay −By| e−

σ2
ξ
4

∑
z∈F\(S′∪{y})(

∑m
j=1 θjN

′
j(z))

2

for n large enough. Now, on Ωk, according to (41),

∀y ∈ Z,
∑

z∈F\(S′∪{y})

 m∑
j=1

θjN
′
j(z)

2

≥
∑
z′∈Z

 m∑
j=1

θjN
′
j(z
′)

2

−M(d+ n
ηθ

10M )n−θη .

It follows that

|Ek,`(θ,θ′)| ≤ (A+B) exp

−σ2
ξ

4

∑
z′∈Z

 m∑
j=1

θjN
′
j(z
′)

2

−O
(
n−

9θ
10η

) , (63)

with

A :=
∑

y∈F\S′

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

− e−σ2
ξ
2 (
∑m
j=1 θjN

′
j(y))

2

∣∣∣∣∣∣ ≤
∑
y∈Z

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣
2

C ′n−
κθη

2 (64)

where we used the fact that∣∣∣∣∣ϕξ(u)− exp

(
−
σ2
ξ |u|2

2

)∣∣∣∣∣ ≤ |u|2+κ for all u ∈ R ,

since ξ admits a moment of order 2 + κ and there exists C0 > 0 such that

B :=
∑

y∈Z\F

∣∣∣∣∣∣ϕξ
 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y)

)
−e−

σ2
ξ
2 (
∑m
j=1 θjN

′
j(y))

2

ϕξ

 m∑
j=1

sj∑
s=1

θ′j,sN
′
j,s(y)

∣∣∣∣∣∣
≤ C0

∑
y∈Z\F

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣ ≤ C0

m∑
j=1

sj∑
s=1

`j,sn
− θη2 = O

(
n

θη
10M−

θη
2

)
= O

(
n−

θη
4

)
, (65)

since ϕξ and u 7→ e−
u2

2 are Lipschitz continuous. Recall that it has been proved in [14,
Lemma 21] that

E
[
|detDk|−

1
21Ωk

]
= O

 m∏
j=1

n
− 3

4
j

 , (66)

uniformly on k.
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Combining Lemmas 25 and 26 with (63), (64), (65), (66) and using the change of

variable v = (Dk)
1
2 θ with Dk =

(∑
y∈ZN

′
i(y)N ′j(y)

)
i,j

, it follows that there exists C1 > 0

such that ∫
∀j,|θj |≤n

− 1
2
−η

j

E
[∣∣F (θ,θ′)Ek,`(θ,θ

′)
∣∣1Ωk

]
d(θ,θ′)

≤ C1

∫
Rm

(
n−

κθη
2 |v|22 +O(n−

θη
4 )
)
e−

σ2
ξ |v|

2

4 dv∑
J0⊂J ′

∏
j∈J ′\J0

(
n
− 1

2−η
j + n

− 1
2−η

j+1

)
E
[
|detDk|−

1
21Ωk∩

⋂
j∈J0

Bj

]

= O

n−κθη4
 m∏
j=1

n
− 3

4
j

Ek(J ′)

 ,

with

Ek(J ′)

=
∑
J ′′⊂J ′

∏
j∈J ′\J ′′

(
n
− 1

2−η
j + n

− 1
2−η

j+1

) ∑
J0⊂J ′′\{minJ ′′}, #J0≥#J ′′/2

nJγ+ θ′
2

∏
j∈J0

(kj − k−j )−
1
2


=O

 ∑
J ′′⊂J ′∪(J ′+1) : #J ′′≥#J ′/2

 ∏
j∈J ′′

n
− 1

2 +η
j

 .

where k−j = max{ks ≤ kj , s ∈ J ′′}. Combining this last estimate with (62) and Lem-
mas 25 and 26,∑

k′j=0,··· ,d−1, ∀j∈J ′
B
k+k′,`,I

(3)
k ,Ωk

=
dm

(2π)M

∑
(aj)j 6∈J ′ ,(bj,s)j,s

1{∀i6∈J ′, ai∈kiα+dZ}

∫
[−π,π]M−m

E [I1(a) I2(a, b)1Ωk
] dθ′

+O

n−κθη4 m∏
j=1

n
− 3

4
j Ek(J ′)

 , (67)

with

I1(a) :=

∫
∀j, |θj |≤n

− 1
2
−η

j

∏
j 6∈J ′

e−i
∑m
j=(aj−aj−1)θj

F (θ,θ′)e−
σ2
ξ
2

∑
y∈Z\S′ (

∑m
j=1 θjN

′
j(y))2

dθ

= O

(∫
∀j, |θj |≤n

− 1
2
−η

j

F (θ,θ′)e−
σ2
ξ
2 (
∑
y∈Z(

∑m
j=1 θjN

′
j(y))2−Mdn−ηj ) dθ

)

= O
(

detD
− 1

2

k sup
θ∈Vk

F (θ,θ′)

∫
Rm

e−
σ2
ξ |v|

2
2

2 dv

)
, (68)

with the change of variable v = D
1
2

k θ and

I2(a, b) :=

∏
j 6∈J ′

(
f(aj)

sj∏
s=1

f(bj,s)e
−i
∑
j,s(bj,s−aj)θ

′
j,s

) ∏
y∈Z\S′

ϕξ

∑
j,s

(θ′j,sN
′
j,s(y))


= O

∏
j 6∈J ′

(
f(aj)

sj∏
s=1

f(bj,s)

) . (69)
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Since
∑
a∈Z |f(a)| <∞, it follows from (66), (67), (68) and (69) that

∑
k′j=0,··· ,d−1, ∀j∈J ′

B
k+k′,`,I

(3)
k ,Ωk

= O

Ek(J ′)

 m∏
j=1

n
− 3

4
j

 .

This ends the proof of the first point of Lemma 21.
Assume now that sj = 1 for all j = 1, · · · ,m (in particular J = ∅). Then

I1(a) =

∫
∀j, |θj |≤n

− 1
2
−η

j

e−i
∑m
j=1(aj−aj−1)θje−

σ2
ξ
2

∑
y∈Z\S′ (

∑m
j=1 θjN

′
j(y))2

dθ

=

 m∏
j=1

n
− 3

4
j

∫
∀j,|θ′′j |≤n

1
4
−η

j

e−i
∑m
j=1 n

− 3
4

j (aj−aj−1)θ′′j e−
σ2
ξ
2

∑
y∈Z(

∑m
j=1 θ

′′
j n
− 3

4
j N ′j(y))2

dθ′′

=

 m∏
j=1

n
− 3

4
j

∫
D̃

1
2
k Uk

(det D̃k)−
1
2 e−i〈D̃

− 1
2

k (n
− 3

4
j (aj−aj−1))j ,v〉e−

σ2
ξ |v|

2
2

2 dv ,

where Uk is the set of θ′′ = (θ′′1 , · · · , θ′′m) such that |θ′′j | ≤ n
1
4−η
j for all j = 1, · · · ,m and

with D̃k =
(

(ninj)
− 3

4

∑
y∈ZN

′
i(y)N ′j(y)

)
i,j

. Moreover

I2(a, b)

= (2π)
∑m
j=1 sj

 m∏
j=1

(f(aj)f(bj,1))

P
∀j, ∑

y∈Z\S′
N ′j,1(y)ξy = bj,1 − aj

∣∣∣∣∣∣ (N ′j,1)j


= (2π)M−m

 m∏
j=1

f(aj)

E
f
aj +

∑
y∈Z

N ′j,1(y)ξy

1{aj+∑y∈ZN
′
j,1(y)ξy=bj,1}

∣∣∣∣∣∣ (N ′j,1)j

 .
Thus, it follows that, uniformly in k and on Ωk,

dm

(2π)M

∑
b1,1,··· ,bm,1∈Z

I1(a) I2(a, b) =

(
d

2π

)m m∏
j=1

f(aj)


(detDk)−

1
2

(∫
Rm

e−i〈D̃
− 1

2
k (n

− 3
4

j (aj−aj−1))j ,v〉e−
σ2
ξ |v|

2
2

2 dv +O(n−p)

)

E

f
aj +

∑
y∈Z

N ′j,1(y)ξy

∣∣∣∣∣∣ (N ′j,1)j


for all p > 0, as seen at the end of the proof of Lemma 20 (applied with D̃k) and so

dm

(2π)M

∑
b1,1,··· ,bm,1∈Z

I1(a) I2(a, b) =

(
d

2π

)m m∏
j=1

f(aj)

 (detDk)−
1
2

×
(∫

Rm

(
1 +O

((
〈D̃−

1
2

k (n
− 3

4
j (aj − aj−1))j ,v〉

)2
))

e−
σ2
ξ |v|

2
2

2 dv +O(n−p)

)

× E

f
aj +

∑
y∈Z

N ′j,s(y)ξy

∣∣∣∣∣∣ (N ′j,1)

 ,
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for all p. Due to (67), we obtain that

B
k,`,I

(3)
k ,Ωk

=

(
d

2π

)m ∑
a1,··· ,am∈Z

1{∀i, ai=kiα+dZ} (70)

× E

(detDk)−
1
21Ωk

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

(√2π

σξ

)m
(71)

+O

 m∏
j=1

n
− 3

4
j

n−
κθη

4 + E

[
(detDk)−

1
2 (min

j
nj)
− 3

2 λ̃−1
k 1Ωk

]
, (72)

where λ̃k is the smallest eigenvalue of D̃k. For the last term, we use (58) (applied for
D̃k), which ensures that on Ωk,

λ̃k ≥
det D̃k

(mn3γ)m−1

and so

(min
j
nj)
− 3

2E
[
(detDk)−

1
2λ−1
k 1Ωk

]
≤ (mn3γ)m−1(min

j
nj)
− 3

2

 m∏
j=1

n
− 3

4
j

E [(det D̃k)−
3
21Ωk

]

= O

 m∏
j=1

n
− 3

4
j

n−
3θ
2 +3(m−1)γ

 , (73)

where we used [14, Lemma 21] which ensures that E
[
(det D̃k)−

3
21Ωk

]
= O (1) uniformly

in k. This combined with (72) implies that

B
k,`,I

(3)
k ,Ωk

= O

 m∏
j=1

n
− 3

4
j

n−(M+1)Lθ


+

(
d√

2πσξn
3
4

)m ∑
a1,··· ,am∈Z

1{∀i, ai=kiα+dZ}

× E

(detDk)−
1
21Ωk

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

 , (74)

since L < min
(

3m
4M , κη4

)
and since L(M + 1)θ < 3θ

2 − 3(m− 1)γ.
The last step of the proof of the lemma consists in studying the following quantity

Gk := E

(detDk)−
1
21Ωk

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

 .
Due to Lemma 24,

Gk = E

(detD′′k)−
1
21Ω′k

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

+O

n− θ8−Lθ m∏
j=1

n
− 3

4
j


= E

[
(detDk)−

1
21Ωk

] m∏
j=1

f(aj)E

f
aj +

∑
y∈Z

N ′j,s(y)ξy

+O

n− θ8−Lθ m∏
j=1

n
− 3

4
j

 ,
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where we used the fact that D′′k has the same distribution as Dk and is independent of
N ′j,s. This combined with (74), (73), (59) and (60) ensures that

B
k,`,I

(3)
k ,Ωk

=

(
d√

2πσξ

)m ∑
a1,··· ,am∈Z

1{∀i, ai=kiα+dZ}E
[
(detDk)−

1
21Ωk

]
m∏
j=1

f(aj)E
[
f
(
aj + Z`j

)]
+O

n−L(M+1)θ
m∏
j=1

n
− 3

4
j

 .

Moreover [14, Lemmas 21 and 23] ensure that

E
[
(detDk)−

1
21Ωk

]
= O

 m∏
j=1

n
− 3

4
j

 ,

and that
E
[
(detDk)−

1
21Ωk

]
∼ n− 3m

4 E
[
detD−

1
2

t1,··· ,tm

]
as kj/n→ tj and n→ +∞. This ends the proof of the lemma.

B Moment convergence in Theorem 3

Let f : Z→ R be such that
∑
a∈Z |f(a)| <∞. In this appendix we prove that all the

moments of n−
1
4

∑n−1
k=0 f(Zk) converge to those of

∑
a∈Z f(a)σ−1

ξ L1(0), as n→ +∞.
Due to Theorem 1, it is enough to prove the convergence of every moment. The key

result is the following proposition.

Proposition 27 (Multi-time local limit theorem for the RWRS Z). For all a1, · · · , ak ∈ Z,

P (Zn1
= a1, . . . , Znk = ak) ∼ 1{∀i, ai∈niα+dZ}

(
d√

2πσξ

)k
E[detD−

1
2

T1,··· ,Tk ] n−3k/4 ,

as n→ +∞ and ni/n→ Ti, where Dt1,··· ,tk = (
∫
R
Lti(x)Ltj (x) dx)i,j=1,··· ,k where L is the

local time of the brownian motion B, limit of (Sbntc/
√
n)t as n goes to infinity.

Moreover, for every k ≥ 1 and every ϑ ∈ (0, 1), there exists C = C(k, θ) > 0, such that

P [Zn1
= a1, . . . , Zn1+···+nk = ak] ≤ C

k∏
j=1

n
−3/4
j ,

for all n ≥ 1, all a1, · · · , ak ∈ Z and all n1, . . . , nk ∈ [nϑ, n].

Proof. The lemma has been proved for ai ≡ 0 in [14, Theorem 5]. The proof in the
general case is the straighforward adaptation of [14, Section 5]. For completeness, we
explain the required adaptations. The proof of the present result follows line by line

the same proof with the adjonction of a term e−i
∑k
j=1(aj−aj−1)θj (with convention a0 = 0)

in the integrals appearing in [14, Lemma 15] (see Lemma 17 with M = m = k and
sj ≡ 0). Lemma 16 (definition of the good set) and Propositions 18 and 19 (estimates
of the integral of the absolute values) of [14] are unchanged. The only difference
in the proof concerns [14, Proposition 17] and more specifically [14, Lemma 23] for

which there is a multiplication by e−i
∑k
j=1(aj−aj−1)θj in the integral. The only difference

in the proof of [14, Lemma 23] is that the quantity In1,··· ,nk considered therein (ni
corresponding to bnTic − bnTi−1c) is slightly modified with the multiplication in the
integral by a quantity converging in probability to 1 (with the notations of the proof
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of [14, Lemma 23]. Indeed, considering the real part of the integral, this quantity is

cos(
∑k
j=0(aj − aj−1)(A

− 1
2

n1,··· ,nkr)j) (with the notations of [14, Lemma 23]) which is equal

to 1 up to an error in O
(
min

(
1, µ−1

n1,··· ,nk |r|
2
))

where µn1,··· ,nk is the smallest eigenvalue
of An1,··· ,nk , which is proved to converges to 0 in [14, Lemma 23], and so the asymptotic
behaviour of In1,··· ,nk is the same as when aj ≡ 0.

Proof of the convergence of moments in Theorem 3. Take ϑ < 1
4 . Note that the last

point of the lemma ensures that

P [Zn1
= a1, . . . , Zn1+···+nk = ak] ≤ C

 ∏
i:ni>nϑ

ni

−3/4

.

Let α0 be such that αα0 ∈ 1 + dZ. Then ai = qiα + dZ is equivalent to qi ∈ aiα0 + dZ.
Thus

E

(n−1∑
q=0

f(Zq)

)k
=

n−1∑
q1,··· ,qk=0

E [f(Zq1) · · · f(Zqk)]

=
∑

a1,··· ,ak∈Z
f(a1) · · · f(ak)

n−1∑
q1,··· ,qk=0

P(Zq1 = a1, · · · , Zqk = ak)

= O(n
k−1

4 ) +

d−1∑
r1,··· ,rk=0

∑
a1,···ak∈Z

f(a1) · · · f(ak)

bnd c−1∑
q1,··· ,qk=0

P(Zr1+q1d = a1, · · · , Zrk+qkd = ak)

= O(n
k−1

4 ) +
∑

a1,··· ,ak∈Z
f(a1) · · · f(ak)

bnd c−1∑
q1,··· ,qk=0

P(Za1α0+q1d = a1, · · · , Zakα0+qkd = ak) ,

with x the representant of x+ dZ belonging to {0, · · · , d− 1}. It follows that

E

(n−1∑
q=0

f(Zq)

)k = o(n
k
4 ) +

∑
a1,··· ,ak∈Z

f(a1) · · · f(ak)nkHk

= o(n
k
4 ) +

∑
a1,··· ,ak∈Z

f(a1) · · · f(ak)nkH ′k ,

with

Hk :=

∫
[0,1/d]k

P
(
Za1α0+bt1ncd = a1, · · · , Zakα0+btkncd = ak

)
dt1 · · · dtk

H ′k =

∫
[0,1/d]k

n
3k
4 P

(
Za1α0+bt1ncd = a1, · · · , Zakα0+btkncd = ak

)
× 1mini,j |btinc−btjnc|>2nϑ dt1 · · · dtk .
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Due to the dominated convergence theorem, we conclude that

E

(n−1∑
q=0

f(Zq)

)k
= o(n

k
4 ) + n

k
4

∑
a1,··· ,ak∈Z

f(a1) · · · f(ak)

∫
[0,1/d]k

(
d√

2πσξ

)k
E[detD−

1
2

t1d,··· ,tkd]dt1 · · · dtk

= o(n
k
4 ) + n

k
4

(∑
a∈Z

f(a)

)k ∫
[0,1]k

(√
2πσξ

)−k
E[detD−

1
2

t1d,··· ,tkd]dt1 · · · dtk

= o(n
k
4 ) + n

k
4

(∑
a∈Z

f(a)σ−1
ξ

)k
E[(L1(0))k] ,

due to [14, Theorem 3].
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