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Abstract

We prove existence of the large deviation principle, with a proper convex rate function,
for the distribution of the renormalized distance from the origin of a random walk on
a free product of finitely generated groups. As a consequence, we derive the same
principle for nearest-neighbour random walks on regular trees.
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1 Introduction and main result

The study of random walks on algebraic and geometric structures, most notably
graphs and groups, has attracted considerable attention over the last four decades.
Initiated by Polya’s celebrated results on recurrence and transience of symmetric simple
random walks on integer lattices ([29]), the subject rose to prominence in the sixties,
starting with Kesten’s foundational work in the context of groups ([18]). It was later
repopularised, mainly owing to pioneering contributions due to Kaimanovich, R. Lyons,
Varopoulos, Vershik, to name but a few; several directions of investigation gradually
emerged, alongside new connections with various branches of pure and applied math-
ematics. For further details, we refer the reader to Woess’ monograph [36] and the
extensive bibliography therein.

In this article, we confine ourselves to the study of random walks on a class of finitely
generated groups, and specifically to the investigation of the asymptotic properties of
the distribution of the renormalized distance from the origin. Prior to stating our main
result, we provide a brief overview of the context within which it can be inscribed.

Let G be a finitely generated group, endowed with the discrete topology, and µ a
probability measure on G. The measure µ defines a right random walk (Yn)n∈N started
at Y0 = e, the identity element of G, given by Yn = X1 · · ·Xn for every n ≥ 1, where the

*ETH Zürich, Switzerland. E-mail: emilio.corso@math.ethz.ch

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP695
https://ams.org/mathscinet/msc/msc2020.html
mailto:emilio.corso@math.ethz.ch


Large deviations for random walks on free products

Xn’s are independent G-valued random variables identically distributed according to µ
(see Section 2 for precise definitions). Select a subset S ⊂ G generating the group G. It
determines a length function ` on G, measuring the size of its elements with respect to
S; more precisely, for every g ∈ G, `(g) is the minimal number of elements from the set
S ∪ S−1 which are needed to obtain g by multiplying them together. This corresponds
to the path distance from the identity on the Cayley graph of G with respect to the
generating set S. To simplify the discussion, and in accordance with the cases of utmost
interest, we shall always assume that S is finite, though this is not necessary for the
validity of Theorem 1.4, which represents the main contribution of the article.

The following well-known result provides an analogue, in a possibly non-commutative
setting, of the strong law of large numbers for sums of independent real random vari-
ables.

Theorem 1.1. Assume that µ has finite first moment with respect to the length function
`, that is

∫
G
`(g) dµ(g) <∞. Then, there exists a non-negative real number λ such that

lim
n→∞

1

n
`(Yn) = λ P-almost surely.

Theorem 1.1 is a consequence of Kingman’s subadditive ergodic theorem ([19]); for a
proof, we refer to the original article of Guivarc’h [16].

The constant λ appearing in Theorem 1.1 is called the escape rate (or speed ) of the
random walk; it clearly depends on µ and on the length function `.

Once almost-sure convergence of the sequence
(

1
n`(Yn)

)
n≥1

is established, it is
natural to enquire about the asymptotic behaviour of the deviations from the mean
`(Yn)−nλ. In this spirit, a central limit theorem was first established in [31] for the case
of free groups; a second, more geometric proof of the same result was later provided by
Ledrappier in [23]. Subsequently, Bjorklund ([5]) transposed Ledrappier’s argument to
the setting of Gromov-hyperbolic groups (cf. [15, 13]), proving a central limit theorem for
the Green metric on the group G. The rationale behind the introduction of such a metric
is of geometric nature: with respect to the Green metric, the horofunction boundary of G
is G-equivariantly homeomorphic to the Gromov boundary, a technical assumption which
is instrumental in Bjorklund’s approach. Thereafter, Benoist and Quint ([4]) extended the
result to distance functions defined by word lengths, by adapting the method introduced
in [3].

Theorem 1.2 ([4, Thm. 1.1]). Let G be a Gromov-hyperbolic group, and suppose that
µ is a non-elementary and non-arithmetic probability measure on G with finite second
moment, that is

∫
G
`(g)2 dµ(g) <∞. Then the sequence of renormalized random variables

1√
n

(`(Yn)− nλ) , n ≥ 1,

converges in distribution to a non-degenerate Gaussian law.

For an explanation of the assumptions on the measure µ appearing in Theorem 1.2,
we refer the reader to [4]. It is worth noticing that all earlier works on the central limit
theorem in this context rely on the stronger assumption of finiteness of some exponential
moment for µ. A recent paper by Mathieu and Sisto ([26]), in which Theorem 1.2 is
established for the yet broader class of acylindrically hyperbolic groups, also deserves
mention.

In light of Theorem 1.1, it is clear that

P(|`(Yn)− nλ| ≥ δn)
n→∞−→ 0 for any δ > 0. (1.1)

We are interested in the decay rate of the probability of such rare events. Properly
speaking, we ask whether the sequence of random variables

(
1
n`(Yn)

)
n≥1

satisfies the
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Large deviations for random walks on free products

large deviation principle (see Section 3); loosely, it amounts to asking if there is a
well-defined exponential decay rate for the probability of events of the type appearing
in (1.1).

It is natural to expect the large deviation principle to hold for a large class of finitely
generated groups, in particular for Gromov-hyperbolic groups; we expand slightly more
on possible extensions of our approach1 in this direction in Section 6. The applicability
of the same strategy to such extensions, as well as to analogous questions in random
matrix products, is already mentioned in [34].

Our main result establishes the existence of the large deviation principle, with a
proper convex rate function, for the collection of non-trivial free products of finitely
generated groups, under a non-degeneracy assumption on the semigroup Γ generated by
the support of the driving measure µ. Specifically, we require that Γ is pattern-avoiding:
there exists a positive integer D > 0 such that, for any reduced word ω = y1 · · · yD of
type size D in the free product, there is an element g ∈ Γ \ {e} which neither starts
with ω nor ends with ω−1. For a precise definition, we refer to Section 2.2, while the
relevance of this condition to the purposes of the proof is explained in Section 1.1. For
the sake of illustration, we hasten to observe that the pattern-avoidance condition is
fulfilled, for instance, if Γ intersects two distinct factors of the free product non-trivially
(see Example 2.4).

Expanding upon the latter observation, we precede the statement of the main result,
Theorem 1.4, with a simpler and more concise version which already singles out a broad
class of admissible driving measures.

Proposition 1.3. Let r ≥ 2 be an integer, G1, . . . , Gr non-trivial finitely generated
groups, G = G1 ∗· · ·∗Gr their free product, Si a finite generating set of Gi for i = 1, . . . , r,
S =

⋃r
i=1 Si, ` the length function on G determined by S. Let µ be a probability measure

on G, and assume its support generates a semigroup Γ with the property that, for any
i ∈ {1, . . . , r}, there is an element g ∈ Γ which neither starts nor ends in the factor Gi. If
(Yn)n≥0 is a right random walk on G with increments distributed according to µ, then the
sequence of random variables

(
1
n`(Yn)

)
n≥1

satisfies the weak large deviation principle
with a convex rate function.

Observe that any semigroup Γ fulfilling the assumptions of Proposition 1.3 avoids
patterns of type size D = 1 (the converse clearly fails, as shown in Example 2.4). In
order to deal with more general pattern-avoiding semigroups, our method compels us to
impose an additional constraint on the size of the factors G1, . . . , Gr.

The complete formulation of our results reads as follows:

Theorem 1.4. Let r ≥ 2 be an integer, G1, . . . , Gr non-trivial finitely generated groups of
subexponential growth, G = G1 ∗ · · · ∗Gr their free product, Si a finite generating set of
Gi for i = 1, . . . , r, S =

⋃r
i=1 Si, ` the length function on G determined by S. Suppose that

µ is a probability measure on G whose support generates a pattern-avoiding semigroup,
and let (Yn)n≥0 be a right random walk on G with increments distributed according to µ.

1. The sequence of random variables
(

1
n`(Yn)

)
n≥1

satisfies the weak large deviation

principle with a convex rate function I : R≥0 → [0,∞].

2. If µ has a finite exponential moment, then I is a proper function and the sequence(
1
n`(Yn)

)
n≥1

satisfies the full large deviation principle with rate function I.

3. If µ has finite moment-generating function, then I is the Fenchel-Legendre trans-
form of the limiting logarithmic moment generating function of

(
1
n`(Yn)

)
n≥1

.

1After the first version of this paper appeared, Boulanger, Mathieu, Sert and Sisto [6] proved existence of
the large deviation principle for random walks on geodesic hyperbolic spaces, thus encompassing the case
of walks on Gromov-hyperbolic groups. The underpinning strategy does not differ substantially from our
approach, though it relies on deeper geometric considerations.
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A close inspection of the proof of Lemma 4.2 reveals that the whole argument leading
to Theorem 1.4 can be readily adapted to establish Proposition 1.3. In particular, the
last two assertions of Theorem 1.4 remain equally valid in the setting of Proposition 1.3.

For a precise definition of all the terms involved in the statement of Theorem 1.4, we
refer the reader to Sections 2 and 3. Let us just recall here that a probability measure
µ on G is said to have a finite exponential moment if

∫
G

exp (τ`(g)) dµ(g) <∞ for some
τ > 0, and finite moment-generating function if

∫
G

exp (τ`(g)) dµ(g) <∞ for every τ > 0.
By taking Gi = Z for all i = 1, . . . , r, we settle in particular the question of existence

of the large deviation principle for random walks on free groups; in turn, this yields
the result for nearest-neighbour random walks on locally finite regular trees (a straight-
foward adaptation of the proof of Theorem 1.4 allows to deal with regular trees of odd
degree as well). For the sake of simplicity, we state the corollary in the case relevant for
applications to (possibly lazy2) simple random walks on trees.

Corollary 1.5. Let G be a free group on r ≥ 1 generators, and let S be a free set of
generators. Assume µ is a probability measure on G whose support is contained in
S ∪ S−1 ∪ {e}, and let (Yn)n≥0 be a right random walk on G with increments distributed
according to µ. The sequence of random variables

(
1
n`(Yn)

)
n≥1

, where ` is the length
function on G determined by S, satisfies the large deviation principle with a proper,
convex rate function, coinciding with the Fenchel-Legendre transform of the limiting
logarithmic moment generating function of the sequence

(
1
n`(Yn)

)
n≥1

.

Notice that the case r = 1 of Corollary 1.5 is not covered in principle by Theorem 1.4;
on the other hand, this case is a well-known, elementary instance of Cramer’s theorem
(cf. [10, Thm. 2.2.3]) on deviations of the empirical mean of independent, identically
distributed real random variables. Incidentally, our method would be readily applicable
to this case as well, as we point out in section 6, thus yielding an indirect proof of
Cramer’s theorem for simple random walks on Z (and Zd).

Remark 1.6. Several remarks about Theorem 1.4 and Corollary 1.5 are in order.

1. A version of Grushko’s theorem ([24]) asserts that every finitely generated group
can be decomposed in an essentially unique way as a free product of finitely
many groups, which are not further decomposable as non-trivial free products.
Notwithstanding this structural result, the class of examples Theorem 1.4 deals
with is restricted, because of the limitations imposed on the generating set S,
whose peculiar structure is crucial to our approach (cf. Section 1.1 below).

On the other hand, the pattern-avoiding assumption on the semigroup Γ is by no
means necessary for the result to hold; it is only a convenient manner of identifying
a large class of examples to which our method applies3. Therefore, it stands to
reason to expect that a technical refinement of our method would allow to weaken
the assumption on the support of the driving measure, and deal with the case in
which no conjugate of the semigroup Γ lies in a single factor. In this respect, see
the proof of Lemma 4.2. A similar result would yield, notably, that existence of the
LDP for the length function is stable under taking free products.

2. The result in Corollary 1.5 might also be derived, when 2r = p + 1 for a positive
prime p, from the large deviation principle for random walks on linear algebraic
groups4 (see [35, Thm. 3.3]), by choosing an appropriate representation of the free

2A G-random walk (Yn)n is customarily called lazy if µ(e) ≥ 1/2; here, for convenience, we employ the
terminology in order to refer to the more general case µ(e) > 0.

3It becomes clear from the proofs that the very same method takes care, in addition, of some cases such as
suppµ ⊂ {(ab)n : n ∈ Z} in G = 〈a, b〉 a free group on two generators, in which the semigroup generated by
suppµ is not pattern-avoiding. Ruling out such trivial examples, it doesn’t seem unlikely that a failure of the
pattern-avoidance condition actually forces a conjugate of Γ to lie in one of the factors.

4This has been pointed out to the author by C. Sert.
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group in the projective special linear group PSL2(Qp)
5. Our approach is different

in that it resorts to the intrinsic geometric properties of the free group, rather than
appealing to a representation.

3. Sharp large deviations estimates for the word-length functional of finite-range
random walks on free groups are already present in the work of Lalley6 ([21,
Thm. 7.2]). The techniques adopted there differ significantly from ours, hinging
on an extension of the Perron-Frobenius theory of nonnegative matrices to certain
inhomogeneous matrix products; they yield finer information on the rate function,
notably strict convexity, but require the assumption of aperiodicity of the random
walk (cf. [21]), which our method does not necessitate.

Remark 1.7. Our hypothesis on the support of µ is unrelated to the choice of the
generating set S. This makes Theorem 1.4 applicable, for instance, to the following cir-
cumstance, in which the driving measure has apriori no connection with the generating
set. Let G be a finitely generated group, H < G a finite-index subgroup (hence H is
finitely generated by Schreier’s subgroup lemma), S ⊂ H a finite generating set of H,
T ⊂ G a set of representatives of right cosets of H in G, S̃ = {st : s ∈ S, t ∈ T} the corre-
sponding finite generating set of G. Suppose that µ̃ is a probability measure on G whose
support is contained S̃ ∪ S̃−1 ∪ {e}, thus giving rise to a nearest-neighbour random walk
(Yn)n∈N on the Cayley graph Cay(G, S̃) of G with respect to S̃. Let τ1 < τ2 < · · · τn < · · ·
be the strictly increasing sequence of stopping times defined by the successive instants
in which the random walk visits H; they are all finite P-almost surely, since H has finite
index in G. By an iterative application of the strong Markov property ([20, Chap. 17])
to the process (Yn)n∈N, it follows that H-valued process (Yτn)n∈N (where we agree that
Yτ0 = e) is a right random walk on H driven by a measure µ having finite moment-
generating function with respect to the word length determined by S; if H is a non-trivial
free product of finitely generated groups, all conclusions of Theorem 1.4 hold.

An example of interest is the arithmetic group SL2(Z), which contains a multitude of
finite-index free subgroups (cf. [17, Chap. II]).

1.1 Outline of the strategy

To illustrate the overarching strategy of our proof of Theorem 1.4, it is informative
to recall the indirect approach to the proof of Cramer’s theorem for i.i.d. real random
variables, put forward by Lanford ([22]). If (Xn)n≥1 is a sequence of i.i.d. R-valued
random variables and Sn =

∑n
i=1Xi denotes the sequence of partial sums, then, for

every x ∈ R and ε > 0, the limit limn
1
n logP

(
1
nSn ∈ (x− ε, x+ ε)

)
exists in [−∞, 0] by

supermultiplicativity of the sequence P
(

1
nSn ∈ (x− ε, x+ ε)

)
, which in turn is given by

additivity of the the process (Sn)n≥1. The weak LDP now follows from a standard result
in large deviations’ theory (see Proposition 3.4). Similarly, the weak LDP holds for any
additive functional7 `′ of a random walk (Yn)n∈N on a group G.

The major obstacle, when attempting to transport this argument to our context,
lies in the defect of additivity of length functions on discrete groups; subadditivity
only ensures supermultiplicativity of the sequence P( 1

n`(Yn) ∈ I) for intervals of the

5The rank-one algebraic group PSL2(Qp) acts by isometries on its Bruhat-Tits tree T , which is regular of
degree p+ 1 (for the construction, we refer to Serre’s book [32]). Hyperbolic elements of PSL2(Qp) act on T
as hyperbolic elements in the geometric sense (cf. [30, Sec. 6]). Choosing a base vertex o ∈ T , the translation
distance from o corresponds, up to a multiplicative factor, to the operator norm on PSL2(Qp) derived from a
choice of a K-invariant ultrametric norm on the local field Qp, where K < PSL2(Qp) is the compact stabilizer
of o. Selecting hyperbolic elements which generate a Zariski-dense free subgroup of PSL2(Qp) amounts to
definining an isometric embedding of the corresponding free group in PSL2(Qp).

6We thank S. Müller for drawing our attention to this reference.
7This means that `′(Yn+m) = `′(Yn) + `′(Ym) for every n,m ≥ 0.
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form I = (−∞, x). Still, if the random walk can be restricted to subsets in which
the length function is almost additive (cf. Lemma 4.2 and the terminology introduced
thereunder) without sizeable loss in the exponential decay rate of the corresponding
probabilities, then Lanford’s approach carries over almost unaffectedly. Specifically,
the structure of the generating set S, obtained by concatenating generating sets of
the various factors, enables us to quantify neatly the lack of additivity in terms of the
reduced-word expansion of the elements involved; the pattern-avoiding assumption on
the semigroup Γ can then be leveraged to confine the attention to subsets on which
the length function is weakly additive, and which are attained by the random walk with
sufficiently high probability on an exponential scale. This is detailed in Lemma 4.2.
Once a uniform lower bound for the loss of additivity is achieved, it is possible to
deduce that, if γ = lim supn

1
n logP

(
1
n`(Yn) ∈ (x− a, x+ a)

)
for given x, a ∈ R>0, then

P
(

1
nk
`(Ynk

) ∈ (x − a, x + a)
)
≥ enk(γ−η) (η being an arbitrarily small parameter) for a

non-lacunary sequence of integers (nk)k. The arithmetic nature of such a sequence
permits to deduce a lower bound lim infn

1
n logP

(
1
n`(Yn) ∈ (x− b, x+ b)

)
≥ γ − η, at the

minor cost of choosing b strictly larger than a; this is the purpose of Lemma 4.1, which in
a sense plays the role of Fekete’s lemma in Lanford’s original argument. The actual proof
of the weak LDP is then articulated in Proposition 4.3. Convexity of the rate function
follows from entirely analogous arguments, as the proof of Proposition 5.1 highlights.
Finally, the remaining properties of the rate function mentioned in the statement of
Theorem 1.4 are inferred from well-known foundational results in the theory of large
deviations (cf. Proposition 3.3, Theorem 3.5 and Sections 5.1, 5.2).

As a concluding comment, let us point out that the strategy outlined here parallels
arguments employed in [35] to deal with large deviations of the Cartan projection
of random matrix products; in this context, a weak form of additivity for the Cartan
projection is satisfied on (r, ε)-Schottky semigroups, as shown by Benoist ([2]). The
restriction of the random walk to such semigroups is then made possible by a result
of Abels-Margulis-Soifer ([1]), establishing the ubiquity of (r, ε)-proximal elements in
Zariski-dense semigroups.

1.2 Outline of the article

We begin with some preliminaries on random walks on finitely generated groups in
Section 2, which mainly serve the purpose of fixing notation and elucidating the nature
of the pattern-avoiding assumption we impose on the semigroup Γ. In Section 3 we
recall some standard terminology from the theory of large deviations, together with a
few general facts which are employed in the proof of Theorem 1.4. Sections 4 and 5 are
devoted to the proof our main result 1.4; specifically, in Section 4 we establish existence
of the large deviation principle, while in Section 5 we prove convexity of the rate function,
which, together with properness, allows us to identify it as the convex conjugate of a
logarithmic moment generating function. Finally, in Section 6 we assemble ideas on
possible generalizations of Theorem 1.4, list some open questions and formulate related
conjectures.

2 Random walks on groups

2.1 Word length and metric on a finitely generated group

Convenient sources for the material presented hereunder are [17, 25, 36].

Let G be a finitely generated group with identity element e, S ⊂ G a finite generating
set. Let S−1 = {s−1 : s ∈ S} denote the set of inverses of the elements in S, so that

G = {s1 · · · sn : n ≥ 1, si ∈ S ∪ S−1 for all 1 ≤ i ≤ n}.

EJP 26 (2021), paper 134.
Page 6/22

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP695
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations for random walks on free products

We define the word length ` detemined by the generating set S as the function
` : G→ N given by

`(g) = inf{n ∈ N : there exist s1, . . . , sn ∈ S ∪ S−1 such that g = s1 · · · sn}

for every g ∈ G, with the understanding that `(e) = 0. Then ` is a length function,
meaning that it satisfies the following properties:

• `(g) ≥ 0 for all g ∈ G and `(g) = 0 if and only if g = e;

• `(g−1) = `(g) for all g ∈ G;

• `(g1g2) ≤ `(g1) + `(g2) for all g1, g2 ∈ G.

The word length ` determines a distance function d on G, called the word metric
associated to the generating set S, defined by d(g1, g2) = `(g−1

1 g2) for all g1, g2 ∈ G.
The word metric d is invariant for the action of G on itself by left translation, namely
d(gg1, gg2) = d(g1, g2) for all g, g1, g2 ∈ G.

We denote by Cay(G,S) = (V,E) the Cayley graph of G with respect to S; we recall
that this is the simple, undirected graph whose vertex set V is the group G, where two
vertices g1, g2 ∈ V are connected by an edge e = {g1, g2} ∈ E if and only if d(g1, g2) = 1.
In other words, there is an edge connecting g1 to g2 if and only if there is s ∈ S∪S−1 \{e}
such that g2 = g1s. The graph Cay(G,S) is connected, transitive and locally finite of
degree |S ∪ S−1 \ {e}|. The word metric d on G corresponds, via this identification, to
the path distance on the vertex set V (cf. [25, Chap. 3]).

Let BG(T ) = {g ∈ G : `(g) ≤ T} be the closed d-ball of radius T centered at the
identity, for any T ∈ R≥0. As the sequence

(
|BG(n)|

)
n≥1

is submultiplicative, the limit

γS = limn |BG(n)|1/n exists; we say that G has subexponential growth if γS = 1, a
property which is actually independent of the generating set S. Recall that a broad class
of finitely generated groups with subexponential (in fact, polynomial) growth consists of
nilpotent groups ([37]).

If G = G1 ∗ · · · ∗Gr is the free product (cf. [7]) of finitely generated groups G1, . . . , Gr,
we shall always restrict our considerations to the following kind of generating sets (and
corresponding word lengths): we fix generating sets Si ⊂ Gi for each factor Gi of the
free product, and take the union S =

⋃r
i=1 S as generating set for G.

2.2 Free products and pattern-avoiding subsets

Let r ≥ 2 be an integer, G1, . . . , Gr non-trivial finitely generated groups, and let
G = G1 ∗ · · · ∗ Gr be the free product of the Gi’s. We shall identify each Gi, 1 ≤ i ≤ r,
with its isomorphic copy embedded in G.

Lemma 2.1 ([17, Chap. II, Prop. 1]). For any non-trivial element g ∈ G, there exist
uniquely determined non-trivial elements x1 ∈ Gi1 , . . . , xm ∈ Gim , with ij 6= ij+1 for all
1 ≤ j ≤ m− 1, such that g = x1x2 · · ·xm.

Any product x1 · · ·xm as in Lemma 2.1 is referred to as a reduced word of type size m
in the free product; correspondingly, we shall also say that g = x1 · · ·xm is an element of
type size m. For any i ∈ {1, . . . ,m}, we call the element xi the i-th letter of the reduced
word x1 · · ·xm.

Remark 2.2. Suppose that we fix a generating set Si ⊂ Gi for each factor of the free
product, and let `i denote the associated word length on Gi. Then, if ` is the word
length determined by the generating set S =

⋃r
i=1 Si ⊂ G and if g, x1, . . . , xm are as in

Lemma 2.1, it holds `(g) = `(x1) + · · ·+ `(xm). Observe in particular that, while the word
length of an element g ∈ G depends on the choice of the generating sets for the factors,
the type size of g does not.
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Let ω = y1 · · · yd be a reduced word of type size d, g ∈ G an element of type size at
least 2, with reduced-word decomposition g = x1 · · ·xm. We shall say that g

• starts with ω if x1 · · ·xinf{d,bm/2c} = y1 · · · yinf{d,bm/2c}, and

• ends with ω if xm−inf{d,bm/2c}+1 · · ·xm = y1 · · · yinf{d,bm/2c},

where bac indicates the integer part of a real number a. Notice that the definition
is independent of any choice of generating sets for the factors G1, . . . , Gr of the free
product.

Example 2.3. If G = 〈a, b〉 is a free group on two generators a and b, then the element
abab starts with ab and ends with ab, while the element abab−1a−1 starts with ab and ends
with b−1a−1. Also, according to our definition, the latter element starts with any word
abω′ obtained by juxtaposing a reduced word ω′ to ab in such a way that abω′ is again a
reduced word.

A subset T ⊂ G is called pattern-avoiding if there exists a positive integer D > 0

such that, for any reduced word ω = y1 · · · yD of type size D in the free product, there
exists g ∈ T such that g does not start with ω and does not end with ω−1 = y−1

D · · · y
−1
1

(in particular, g has type size at least 2). In case we need to keep track of the integer D,
we shall say that T avoids patterns of type size D. The examples presented below clarify
the notion.

Example 2.4. 1. Let G = 〈a, b, c〉 be a free group on three generators a, b and c. The
sets

T1 = {ab, bc}, T2 = {acb, a3bca−2}, T3 = {aba−1, bab−1}

are pattern-avoiding, while the set

T4 = {ab, ac2, ca−1}

is not pattern-avoiding, as all its elements either start with a or end with a−1.

2. If S ⊂ gGig
−1 for some i ∈ {1, . . . , r} and some g = x1 · · ·xm ∈ G, then the

semigroup Γ generated by S is not pattern-avoiding: all its elements start with
x1 · · ·xm and end with (x1 · · ·xm)−1.

3. Suppose that there are indices i 6= j ∈ {1, . . . , r} such that S ∩ (Gi \ {e}) 6= ∅ and
S ∩ (Gj \ {e}) 6= ∅. Then the semigroup Λ generated by S is pattern-avoiding: if
x ∈ S ∩ (Gi \ {e}) and y ∈ S ∩ (Gj \ {e}), then {xy, yx} is pattern-avoiding and
contained in Λ.

4. The semigroup generated by {aba, a2ba2} in G = 〈a, b〉 avoids patterns of type size
1, but does not satisfy the hypotheses of Proposition 1.3: its elements start and end
in the factor 〈a〉.

Obviously, if T ′ ⊂ T ⊂ G and T ′ is pattern-avoiding, then so is T . Conversely, the
following elementary observation is essential for our line of reasoning in Section 4: if T is
pattern-avoiding, then there exists a finite subset T ′ ⊂ T which is also pattern-avoiding8.

2.3 Random walks on finitely generated groups

Let µ be a probability measure on the group G; equivalently, µ is a function defined
on G taking non-negative real values and satisfying

∑
g∈G µ(g) = 1. Then µ defines a

right random walk on G as follows: let (Xn)n≥1 be a sequence of independent, identically
distributed G-valued random variables with common law µ. Implicitly, we consider them

8A simple enumeration of all possibilities shows that T ′ can be chosen with cardinality at most 3.
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to be defined over a probability space (Ω,F ,P), which will be fixed hereinafter. We define
a G-valued stochastic process (Yn)n∈N by setting Y0 = e, Yn = X1 · · ·Xn for every integer
n ≥ 1. The process (Yn)n∈N is called a right random walk on G, issued from the origin e
with increments distributed according to µ. Equivalently, one may defined the process
(Yn)n∈N as a Markov chain on G issued from e with transition matrix Q = (q(x, y))x,y∈G
given by q(x, y) = µ(x−1y) for all x, y ∈ G (cf. [36, Sec. 1.1]).

Let suppµ = {g ∈ G : µ(g) > 0} be the support of the measure µ. If suppµ ⊂ S ∪ S−1,
then the process (Yn)n∈N can also be interpreted as a nearest-neighbour random walk on
the Cayley graph Cay(G,S), where the walker in position x moves to xs with probability
µ(s), for all s ∈ S ∪ S−1, x ∈ G. Notice that we are not excluding the case µ(e) > 0, so
that the walker may have positive probability of remaining where it is.

We let E[X] denote the expectation of a random variable X : Ω→ R with respect to
the probability measure P. If µ has finite first moment, the sequence of renormalized
averaged lengths

1

n
E[`(Yn)], n ≥ 1,

is a subadditive real sequence, and as such converges to a limit λ ∈ R≥0, called the
escape rate or speed of the random walk (Yn)n∈N. As mentioned in the introduction
(Theorem 1.1), P-almost every trajectory (yn)n≥0 ∈ GN of the random walk actually
satisfies 1

n`(yn)
n→∞−→ λ.

Remark 2.5. 1. We could equally well consider random walks issued at any initial
vertex g0 ∈ G, by defining Y ′0 = g0, Y ′n = g0X1 · · ·Xn for any n ≥ 1. It is then
natural to consider the renormalized distance 1

nd(g0, Y
′
n) which, by invariance of d

under left translations, equals precisely 1
nd(e,X1 · · ·Xn) = 1

n`(Yn). Hence, for the
purpose of our considerations, there is no loss of generality in assuming that the
random walk starts at the origin.

2. Similarly, restricting to right random walks does not result in any loss of generality;
if Y ′n = Xn · · ·X1, n ≥ 1, is a left random walk issued from the origin with driving
measure µ, then (Y −1

n )n∈N is a right random walk with driving measure ι∗µ, given
by ι∗µ(g) = µ(g−1) for every g ∈ G, and `(Y −1

n ) = `(Yn) for every n ∈ N.

3 Large deviation principle

In this section, we briefly review some of the terminology that is usually employed
in the theory of large deviations. For a comprehensive introduction to the subject, the
reader is referred to [10].

Throughout this section, X denotes a Hausdorff regular topological space, endowed
with the Borel σ-algebra B. Let (µn)n≥1 be a sequence of Borel probability measures on
X, I : X → [0,∞] a lower semicontinuous function. The effective domain of I is the set
DI = {x ∈ X : I(x) <∞}.

Definition 3.1. We say that the sequence (µn)n≥1 satisfies the large deviation principle
(or, in abridged form, LDP) with rate function I if, for any Borel measurable set Λ ⊂ X,

− inf
x∈Λ◦

I(x) ≤ lim inf
n→∞

1

n
logµn(Λ) ≤ lim sup

n→∞

1

n
logµn(Λ) ≤ − inf

x∈Λ
I(x) ,

where Λ◦ and Λ denote the interior and the closure of Λ, respectively.

We observe in passing that, for a given sequence (µn)n≥1, there is at most one lower
semicontinuous function I for which the LDP can hold ([10, Lem. 4.1.4]).
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In Definition 3.1, it is obviously equivalent to require that

lim inf
n→∞

1

n
logµn(V ) ≥ − inf

x∈V
I(x) for every open set V ⊂ X (3.1)

and

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
I(x) for every closed set F ⊂ X. (3.2)

If the lower bound (3.1) holds for any open set V ⊂ X, while the upper bound (3.2) holds
just for all compact sets K ⊂ X, then we say that the sequence (µn)n≥1 satisfies the
weak large deviation principle (weak LDP) with rate function I.

If (Zn)n≥1 is a sequence of X-valued random variables, and µn denotes the law of
Zn for every n ≥ 1, we shall say that (Zn)n≥1 satisfies the (weak) LDP if the sequence
(µn)n≥1 satisfies the (weak) LDP.

Under certain conditions, we may retrieve the full LDP from the existence of the weak
LDP. The most common of these conditions involves the notion of exponential tightness.

Definition 3.2. We say that a sequence (µn)n≥1 of Borel probability measures on X is
exponentially tight if, for every α ∈ R≥0, there exists a compact set K ⊂ X such that

lim sup
n→∞

1

n
logµn(X \K) < −α .

In other words, the mass is concentrated on compact sets, on an exponential scale.
It is intuitively clear that exponential tightness enables to pass from a weak form

of the LDP to a strong form, something which we clarify in the following proposition
(cf. [10, Lem. 1.2.18]).

Proposition 3.3. Let (µn)n≥1 be an exponentially tight sequence of Borel probability
measures on X. Assume that (µn)n≥1 satisfies the weak LDP with rate function I. Then:

1. (µn)n≥1 satisfies the LDP with rate function I;

2. I is a proper function.

The following statement establishes a criterion to determine whether the weak LDP
holds, without knowing the rate function in advance. It will be the key tool to prove
existence of the weak LDP in our context.

Proposition 3.4 ([10, Thm. 4.1.11]). Let (µn)n≥1 be a sequence of Borel probability
measures on X. Define the function I : X → [0,∞] by

I(x) = sup
x∈V open

− lim inf
n→∞

1

n
logµn(V ) for all x ∈ X. (3.3)

Then I is lower semicontinuous. Moreover, if

I(x) = sup
x∈V open

− lim sup
n→∞

1

n
logµn(V ) for all x ∈ X, (3.4)

then the sequence (µn)n≥1 satisfies the weak LDP with rate function I.

Let us observe that, both in (3.3) and in (3.4), we may clearly replace the whole
collection of open sets containing the point x ∈ X by any fundamental system of open
neighborhoods of x.

Assume now that X is a locally convex, Hausdorff topological vector space over R,
and let X∗ denote its topological dual. In case the sequence (µn)n≥1 satisfies the LDP on
X with a proper, convex rate function I, it is possible to give an alternative expression
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for the rate function itself, provided that a certain logarithmic moment generating
function exists. More precisely, define the logarithmic moment generating function of
the measure µn, for each integer n ≥ 1, as the function Λn : X∗ → (−∞,∞] given by

Λn(ϕ) = log

∫
X

e〈ϕ,x〉dµn(x) for all ϕ ∈ X∗,

where 〈·, ·〉 denotes the standard dual pairing between X∗ and X. The limiting logarith-
mic moment generating function of the sequence (µn)n≥1 is then defined as

Λ(ϕ) = lim sup
n→∞

1

n
Λn(nϕ) ∈ (−∞,∞] for all ϕ ∈ X∗.

Given a function f : X → (−∞,∞], not identically infinite, we define its Fenchel-
Legendre transform f∗ : X∗ → (−∞,∞] as

f∗(ϕ) = sup
x∈X
{〈ϕ, x〉 − f(x)} for all ϕ ∈ X∗.

If g : X∗ → (−∞,∞] is a function defined on the dual space, we shall view its Fenchel-
Legendre transform g∗ as a function defined just on X, rather than on the entire bidual
space X∗∗.

A remarkable consequence of Varadhan’s integral lemma ([10, Thm. 4.3.1]), in
conjunction with Fenchel-Moreau’s duality theorem ([8, Thm. 1.11]), is the following
characterization of the rate function (cf. [10, Thm. 4.5.10]).

Theorem 3.5. Let (µn)n≥1 be a sequence of Borel probability measures on a locally
convex, Hausdorff topological vector space X. Assume the following:

1. the limiting logarithmic moment generating function Λ: X∗ → (−∞,∞] of the
sequence (µn)n≥1 is finite for every ϕ ∈ X∗;

2. the sequence (µn)n≥1 satisfies the LDP with a proper, convex rate function I.

Then the rate function I is the Fenchel-Legendre transform of Λ, namely

I(x) = sup
ϕ∈X∗

{〈ϕ, x〉 − Λ(ϕ)} for every x ∈ X.

Theorem 3.5 reveals the importance of knowing a priori the existence of the LDP
with a proper, convex rate function.

4 Existence of LDP

We now set out to prove our main Theorem 1.4. Specifically, the objective of the
present section is twofold: in Proposition 4.3, we address existence of the weak LDP,
with a certain rate function, under the pattern-avoiding assumption for the semigroup
generated by the support of the driving measure, while in Proposition 4.4 the result
is upgraded to the full LDP, under the additional requirement of finiteness of some
exponential moment. Convexity of the rate function, and the ensuing identification of it
as a Fenchel-Legendre transform, are dealt with in Section 5.

For a start, we briefly recall the setup. Let G1, . . . , Gr be a finite collection of non-
trivial finitely generated groups of subexponential growth, G = G1 ∗ · · · ∗Gr their free
product. For any i ∈ {1, . . . , r}, Si ⊂ Gi is a finite set of generators of Gi, so that
S =

⋃r
i=1 Si is a finite generating set for G, with associated word length ` : G→ N. Let

µ be a probability measure on G, (Yn)n≥0 a right random walk on G issued from the
identity with steps distributed according to µ. For every integer n ≥ 1, let µn be the law
of the random variable 1

n`(Yn).
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Henceforth, we shall denote by B(y, ε) the open interval (y − ε, y + ε) ⊂ R, for any
y ∈ R and any ε > 0. Furthermore, for any positive integer k, we let

kB(y, ε) = {kz : z ∈ B(y, ε)}.

We precede the statement of Proposition 4.3 by two technical lemmas which, taken
together, essentially allow to reduce the problem of establishing LDP in this context to a
setup akin to the standard case of i.i.d. real random variables, in which (almost-)additivity
of the process can be put to good use.

The first of the two lemmas allows to deduce a lower bound for the asymptotic
exponential decay rate of the probabilities µn(B(x, b)) from a uniform lower bound on a
non-lacunary sequence of times.

Lemma 4.1. Suppose that there exist a > 0, γ ∈ R, a strictly increasing sequence
(nk)k≥1 of positive integers with limk→∞ nk+1/nk = 1, such that

µnk
(B(x, a)) ≥ enkγ for all k ≥ 1. (4.1)

Then, for all b > a,

lim inf
n→∞

1

n
logµn(B(x, b)) ≥ γ .

Proof. Choose a finite set F ⊂ G such that
∑
g∈F µ(g) > 1/2. For any k ≥ 1, set

Mk = sup{`(x1 · · ·xnk+1−nk
) : xi ∈ F ∪ {e} for all 1 ≤ i ≤ nk+1 − nk},

and notice that the upper bound Mk ≤ (nk+1 − nk)M1 holds by subadditivity of `.
Now let N ≥ n1 be arbitrary; there exists a unique integer k = k(N) ≥ 1 such that

nk ≤ N < nk+1. As b − a > 0, the assumption nk+1/nk → 1 implies that there exists
k0 ∈ N such that

{`(Ynk
) ∈ nkB(x, a)} ∩ {Xnk+1 ∈ F , . . . , XN ∈ F} ⊂ {`(YN ) ∈ NB(x, b)} for all k ≥ k0;

this follows from the double inequality |`(g) − `(h)| ≤ `(gh) ≤ `(g) + `(h), holding for
every g, h ∈ G. Now, if k ≥ k0 and N ∈ {nk, . . . , nk+1 − 1}, we may estimate

µN (B(x, b)) = P(`(YN ) ∈ nB(x, b)) ≥ P(`(Ynk
) ∈ nkB(x, a), Xnk+1 ∈ F , . . . , XN ∈ F)

= µnk
(B(x, a))µ(F)N−nk ≥ enkγ2−(nk+1−nk) ,

the last two inequalities being given, respectively, by independence and stationarity of
the process (Xn)n≥1, and by the assumption of the lemma. Taking the logarithm and
dividing by N , we obtain

1

N
logµN (B(x, b)) ≥ nk

N
γ − nk+1 − nk

N
log 2 .

Taking the inferior limit as N →∞ on both sides, and observing that the assumption on
(nk)k implies limN→∞ nk(N)/N = 1, we achieve the proof.

The next lemma expresses the possibility of restricting the random walk to subsets
on which the length function ` is almost additive, without losing consistently on the
exponential decay rate of the probabilities involved.

For every T ∈ R≥0, set θT = sup{|BGi(T )| : i = 1, . . . , r}.
Lemma 4.2. Let ν be a probability measure on G, T ⊂ G a finite subset avoiding
patterns of type size D for a certain integer D > 0. Set L := sup{`(g) : g ∈ T }.
Then, for any T ∈ R≥0 and any set F ⊂ BG(T ) \ {e}, there exist a subset A ⊂ F with
ν(A) ≥ (rθT )−2Dν(F ) and an element g ∈ T such that at least one of the following holds:
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1. for any integer k ≥ 1 and any collection g1, . . . , gk ∈ A

`(g1 · · · gk) ≥ `(g1) + · · ·+ `(gk)− k(2LD) ;

2. for any integer k ≥ 1 and any collection g1g, . . . , gkg ∈ A · g

`(g1g · · · gkg) ≥ `(g1) + · · ·+ `(gk)− k(2LD) .

Observe that T/ log θT
T→∞−→ ∞ due to the subexponential growth of G1, . . . , Gr; as

a consequence, the factor (rθT )−2D, quantifying the maximal loss in probability, is
negligible on an exponential scale (cf. the proof of Proposition 4.3).

Proof. The proof consists of a repeated application of the union bound for the measure ν,
in order to extract various subsets of F with predetermined letters in their reduced-word
expression.

To begin with, there exist (i1, j1) ∈ {1, . . . , r}2 and F1 ⊂ F such that ν(F1) ≥ r−2ν(F )

and, for any g ∈ F1, the first letter of g is in Gi1 and the last one is in Gj1 . If i1 6= j1,
then `(g1 · · · gk) = `(g1) + · · · `(gk) for any g1, . . . , gk ∈ F1, so that A = F1 fulfils the
statement. If i1 = j1, we might choose a subset E1 ⊂ F1 and elements y1, z1 ∈ Gi1 such
that ν(E1) ≥ θ−2

T ν(F1) and, for each g ∈ E1, the first letter of g is y1 and the last one is
z1. We distinguish three cases.

– Suppose `(y1) > L, `(z1) > L; if g is chosen in T \ Gi1 , it is easy to check that
`(g1g · · · gkg) ≥ `(g1) + · · · + `(gk) − k(2L) for any g1g, . . . , gkg ∈ E1 · g, so that we
may set A = E1 and conclude.

– If just one between y1 and z1 has length exceeding L, or alternatively if
`(y1) ≤ L, `(z1) ≤ L and z1 6= y−1

1 , then `(g1 · · · gk) ≥ `(g1) + · · · + `(gk) − k(2L)

for any g1, . . . , gk ∈ E1; again, setting A = E1 allows to conclude.

The only remaining case is `(y1) ≤ L, z1 = y−1
1 . We then carry out the same procedure,

selecting F2 ⊂ E1, (i2, j2) ∈ {1, . . . , r}2, with ν(F2) ≥ r−2µ(E1) and so that, for each
g ∈ F2, the second letter of g is in Gi2 and the second-to-last one is in Gj2 . If i2 6= j2, then
`(g1 · · · gk) ≥ `(g1) + · · · + `(gk) − k(2L) for any g1, . . . , gk ∈ F2. If instead i2 = j2, then
choose E2 ⊂ F2 and elements y2, z2 ∈ Gi2 so that ν(E2) ≥ θ−2

T ν(F2) and, for each g ∈ E2,
the second letter of g is y2 and the second-to-last one is z2. Notice that, by assumption,
T is not contained in any conjugate of any factor Gi by any word ω of type size not
exceeding D. Therefore, unless `(y2) ≤ L and z2 = y−1

2 , we can set A = E2 and conclude
as before.

Proceeding in this way, we select, if needed at each successive step, nested subsets
E2 ⊃ F3 ⊃ E3 ⊃ · · · ⊃ ED. The set ED has the property that ν(ED) ≥ (θT )−2ν(FD) ≥
(rθT )−2Dν(F ); furthermore, there are letters y3, . . . , yD, zD such that, for any g ∈ ED, the
reduced-word expression of g is y1 · · · yD · · · zDy−1

D−1 · · · y
−1
1 . It remains to deal with three

possibilities, as above.

– Suppose `(yD) > L, `(zD) > L, and set ω = y1 · · · yD−1. If g is chosen in T \ωGiDω−1,
where GiD is the factor to which both yD and zD belong9, then `(g1g · · · gkg) ≥
`(g1) + · · ·+ `(gk)−k(2DL) for any g1g, . . . , gkg ∈ ED · g, so that we may set A = ED
and conclude.

– If just one between yD and zD has length exceeding L, or alternatively if
`(yD) ≤ L, `(zD) ≤ L and zD 6= y−1

D , then `(g1 · · · gk) ≥ `(g1) + · · · + `(gk) − k(2DL)

for any g1, . . . , gk ∈ E1; conclude by setting A = E1.

9To select an element g of this sort, concatenate any letter y′D with ω, in such a way that ωy′D is a reduced
word; using that T avoids patterns of type size D, pick g ∈ T not starting with ωy′D nor ending with (ωy′D)−1.

EJP 26 (2021), paper 134.
Page 13/22

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP695
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations for random walks on free products

– Finally, assume `(y1) ≤ L, zD = y−1
D , and choose g ∈ T not starting with y1 · · · yD

nor ending with (y1 · · · yD)−1. Then again `(g1g · · · gkg) ≥ `(g1)+ · · ·+`(gk)−k(2DL)

for any g1g, . . . , gkg ∈ ED · g. The set A = ED satisfies the conclusion.

The argument is finalized.

If a set A (resp. A · g) satisfies the conclusion of Lemma 4.2, then we say that A
(resp. A · g) has the weak length additivity property of order LD.

We are now in a position to prove existence of the weak LDP.

Proposition 4.3. Let G,S, `, µ be as above, (Yn)n≥0 a right random walk on G issued
from the identity with increments distributed according to µ. Suppose that the support of
µ generates a pattern-avoiding semigroup Γ ⊂ G. Then the sequence of R-valued random
variables

(
1
n`(Yn)

)
n≥1

satisfies the weak LDP with a rate function I : R≥0 → [0,∞].

Proof. We rely on the criterion phrased in Proposition 3.4, checking that the condition
expressed therein is satisfied. Arguing by contradiction, suppose that there exists
x ∈ R≥0 such that

I(x) 6= sup
x∈V open

− lim sup
n→∞

1

n
logµn(V ). (4.2)

As the left-hand side of (4.2) always dominates the right-hand side by definition, this
yields

I(x) > sup
x∈V open

− lim sup
n→∞

1

n
logµn(V ). (4.3)

Notice first that, necessarily, x is strictly positive; indeed, for x = 0 the criterion in
Proposition 3.4 is trivially satisfied, as limn

1
n logµn(B(0, ε)) exists in [−∞, 0] for every

ε > 0, by subadditivity of `.
As a consequence of (4.3), there exist δ, η > 0 such that

− lim inf
n→∞

1

n
logµn(B(x, δ)) >

(
sup
ρ>0
− lim sup

n→∞

1

n
logµn(B(x, ρ))

)
+ η . (4.4)

Fix a positive real number ρ such that ρ < inf{x, δ}; then, by (4.4), there are infinitely
many positive integers nj , j ≥ 1, for which

lim inf
n→∞

1

n
logµn(B(x, δ)) <

1

nj
logµnj ((B(x, ρ))) − η . (4.5)

For notational simplicity, denote by

α = lim inf
n→∞

1

n
logµn(B(x, δ)), βj =

1

nj
logµnj ((B(x, ρ))) for every j ≥ 1. (4.6)

We claim that, if j is taken to be sufficiently large, the inequality α ≥ βj − η holds, which
is opposite to what is given by (4.5), giving the desired contradiction.

The hypothesis on the semigroup Γ ensures the existence of a finite subset T ⊂ Γ\{e}
with the following property: there exists an integer D > 0 such that, for any reduced
word ω of type size D in G, we can find g ∈ T not starting in ω and not ending in ω−1

(cf. Section 2.2). For any g ∈ T , choose t(g) ∈ N≥1 and p(g) ∈ R>0 such that the random
walk attains g in t(g) steps with probability p(g), that is P(Yt(g) = g) = p(g). Define
L = sup{`(g) : g ∈ T }, p = inf{p(g) : g ∈ T }, t = sup{t(g) : g ∈ T }. Keeping with our
earlier notation, let

θT = sup{|BGi(T )| : i = 1, . . . , r} for any T ∈ R≥0.
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Now choose an integer j0 ≥ 1 so that

nj0 ≥ sup
{

(2LD + tx)(δ − ρ)−1, η−1
(
2D(log r + log θnj0

(x+ρ))− log p
)}

;

this exists since T/ log θT
T→∞−→ ∞ by the subexponential-growth assumption on the

factors G1, . . . , Gr. Define F = {g ∈ G : `(g) ∈ nj0B(x, ρ)}, so that eβj0
nj0 = P(Ynj0

∈ F )

by (4.6). Notice also that F does not contain the identity as nj0(x − ρ) > 0. Applying
Lemma 4.2, with ν being the law of the random variable Ynj0

, we can manufacture a set
A ⊂ F and an element g ∈ T such that

– P(Ynj0
∈ A) ≥ (rθnj0 (x+ρ))

−2Deβj0nj0 and

– either A or A · g has the weak length additivity property of order LD.

We distinguish two cases.

• First case: A has the weak length additivity property of order LD.

Define the sequence nk = knj0 , k ≥ 1. Since nj0 ≥ 2LD(δ − ρ)−1, there ex-
ists ρ′ < δ such that ρ′ − ρ ≥ 2n−1

j0
LD. For such a choice of ρ′, we have that

`(g1 · · · gk) ∈ nkB(x, ρ′) whenever g1, . . . , gk are chosen from A. Therefore, we may
estimate, for each k ≥ 1,

µnk
(B(x, ρ′))=P(`(Ynk

) ∈ nkB(x, ρ′))≥P(X1 · · ·Xnj0
∈ A, . . . ,Xnk−1+1 · · ·Xnk

∈ A)

≥P(Ynj0
∈ A)k≥

(
(rθnj0 (x+ρ))

−2Deβj0
nj0

)k≥enk(βj0
−η) ,

where the middle inequality is given by independence and stationarity
of the process (Xn)n≥1, while the last one comes from our choice n1 = nj0 ≥
2Dη−1(log r + log θnj0 (x+ρ)). Lemma 4.1 gives

α = lim inf
n→∞

1

n
logµnB(x, δ) ≥ βj0 − η ,

as desired.

• Second case: A · g has the weak length additivity property of order LD.

Define the sequence nk = k(nj0 + t(g)), k ≥ 1. Since nj0 ≥ (δ− ρ)−1(2LD+ tx), it is
possible to select ρ′ < δ so that ρ′−ρ ≥ n−1

j0
(2LD+tx). It is straightforward to verify

that this choice of ρ′ ensures `(g1g · · · gkg) ∈ nkB(x, ρ′) for every g1, . . . , gk ∈ A.

As before, we may thus estimate

µnk
(B(x, ρ′))=P(`(Ynk

) ∈ nkB(x, ρ′))≥P(X1 · · ·Xnj0
∈ A,Xnj0+1 · · ·Xnj0

+t(g) =g)k

≥P(Ynj0
∈ A)kp(g)k≥

(
(rθnj0

(x+ρ))
−2Deβj0nj0

)k
pk≥enk(βj0−η)

for each k ≥ 1. This time, the last inequality stems from our choice nj0 ≥
η−1

(
2D(log r + log θnj0

(x+ρ))− log p
)
. Applying Lemma 4.1 once more, we deduce

again that α ≥ βj0 − η.

The proof is concluded.

Proposition 4.4. In the setting of Proposition 4.3, assume further that µ has a finite
exponential moment. Then the rate function I governing the weak LDP for the sequence(

1
n`(Yn)

)
n≥1

is proper, and the sequence
(

1
n`(Yn)

)
n≥1

satisfies the full LDP with rate
function I.
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Proof. As before, we let µn be the law of the random variable 1
n`(Yn), for every n ≥

1. In light of Proposition 3.3, it suffices to show that the sequence (µn)n≥1 is ex-
ponentially tight. By the assumption, there exists a real number τ > 0 such that
C :=

∫
G

exp (τ`(g))dµ(g) <∞.
Fix M > 0. Then

µn([0,M ]c) = P(`(Yn) > nM) = P(exp τ`(Yn) > exp τnM) ≤ E[exp τ`(Yn)]

exp τnM
,

the last upper bound being given by Markov’s inequality. Subadditivity of the length
function `, together with independence and stationarity of the process (Xn)n≥1, gives

E[exp(τ`(Yn))] ≤ E
[
exp τ

( n∑
i=1

`(Xn)

)]
= E

[ n∏
i=1

exp τ`(Xi)

]
=

n∏
i=1

E[exp τ`(Xi)]

= (E[exp τ`(X1)])n =

(∫
G

eτ`(g)dµ(g)

)n
= Cn for every n ≥ 1.

Combining the previous two estimates, taking the logarithm and dividing by n, we obtain
1
n logµn([0,M ]c) ≤ logC − τM . As a result,

lim sup
n→∞

1

n
logµn([0,M ]c)

M→∞−→ −∞ ,

which establishes exponential tightness of the sequence (µn)n≥1.

5 Convexity of the rate function

The chief aim of this section is the proof of convexity of the rate function associated
to the LDP for the sequence

(
1
n`(Yn)

)
n≥1

. In the last part, we gather some further
properties of the rate function, and deduce its characterization expressed in the last
sentence of Theorem 1.4. As in the foregoing section, we let µn denote the law of the
random variable 1

n`(Yn), for n ≥ 1.
Recall that, if X is a real vector space, a function f : X → (−∞,+∞] is convex if, for

any x1, x2 ∈ X and any λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ; (5.1)

the function f is mid-point convex if the previous inequality holds for λ = 1/2, that is if

f

(
1

2
x1 +

1

2
x2

)
≤ 1

2
f(x1) +

1

2
f(x2)

for all x1, x2 ∈ X.
Suppose now X is a topological (real) vector space. By iteration, a mid-point convex

function f satisfies the inequality (5.1) for any λ ∈ {k/2n : n ∈ N, k ∈ {0, . . . , 2n}}.
The latter set being dense in [0, 1], (5.1) can be extended to all λ ∈ [0, 1] by a standard
approximation argument, provided that we know that f is lower semicontinuous. To wrap
up, a lower semicontinuous, mid-point convex function f : X → (−∞.+∞] is convex.

Proposition 5.1. Let G,S, `, µ, (Yn)n≥0 be as in Proposition 4.3. Then the rate function
I, governing the weak LDP for the sequence of R-valued random variables

(
1
n`(Yn)

)
n≥1

,
is convex.

The proof bears a lot of resemblance with the proof of Proposition 4.3; for the sake of
conciseness, we shall omit the details.
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Proof. As observed in the previous paragraph, it suffices to show that I is mid-point
convex, since we already know I that is lower semicontinuous. Again, we argue by
contradiction: assume there exist x1 < x2 ∈ R such that

I

(
1

2
x1 +

1

2
x2

)
>

1

2
I(x1) +

1

2
I(x2) . (5.2)

Recall that we have

I(x) = sup
x∈V open

− lim inf
n→∞

1

n
logµn(V ) = sup

x∈V open
− lim sup

n→∞

1

n
logµn(V ) for all x ∈ X;

therefore, (5.2) implies that there exist δ, η > 0 such that

lim sup
n→∞

1

n
logµn

(
B

(
1

2
x1 +

1

2
x2, δ

))
<

<
1

2

(
lim inf
n→∞

1

n
logµn(B(x1, ρ1)) + lim inf

n→∞

1

n
logµn(B(x2, ρ2))

)
− η

(5.3)

for any ρ1, ρ2 > 0. Notice that this forces in particular x1, x2 ∈ R≥0. Choose ρ :=

ρ1 = ρ2 < δ. For a sufficiently large n0 and every n ≥ n0, we claim that there exists
φ(n) ∈ {2n, . . . , 2n+ t} such that

1

φ(n)
logµφ(n)

(
B

(
1

2
x1 +

1

2
x2, δ

))
≥ 1

2

(
1

n
logµn(B(x1, ρ)) +

1

n
logµn(B(x2, ρ))

)
− η .

(5.4)
Letting n vary over an arithmetic progression for which the corresponding sequence of
φ(n) is strictly increasing, it is clear that we obtain a contradiction to (5.3).

It remains to prove the claim just stated. Let T ⊂ Γ \ {e} be a finite set avoiding
patterns of type size D, and fix n ≥ n0; let Fi = {g ∈ G : `(g) ∈ nB(xi, ρ)}, i = 1, 2.
Adapting the proof of Lemma 4.2 appropriately10, we deduce that there is an element
g ∈ T and subsets Ai ⊂ Fi such that P(Yn ∈ Ai) ≥ (rθn(x+ρi))

−DP(Yn ∈ Fi) and

– either for any g1 ∈ A1, g2 ∈ A2 it holds `(g1g2) ≥ `(g1) + `(g2)− 2LD,

– or for any g1 ∈ A1, g2 ∈ A2, `(g1gg2) ≥ `(g1) + `(g2)− 2LD.

In the first case, we get the inequality (5.4) for φ(n) = 2n, by observing that g1 ∈ A1,
g2 ∈ A2 imply `(g1g2) ∈ 2nB((x1 + x2)/2, δ); in the second case, we get it for φ(n) =

2n+ t(g). We refer to the proof of Proposition 4.3 for the missing details.

5.1 Further properties of the rate function

We list below some additional properties of the rate function, emphasizing connec-
tions with other relevant quantities associated to the random walk, such as the rate of
escape and the spectral radius.

1. Since 1
n`(Yn) converges to the escape rate λ almost surely, I has a zero at x = λ.

2. Convexity of the rate function I gives, as an immediate corollary, that its effective
domain DI is a convex subset of R≥0, hence a (possibly degenerate11) sub-interval

10There is a minor nuisance here if x1 = 0, as F1 contains the identity; replacing F1 with F1 \ {e} results in
harmless modifications of the probabilities involved.

11In general, the rate function I can be as degenerate as possible: for instance, if G = 〈a, b〉 is a free
group on two generators, and µ(a) = p = 1 − µ(b) for some p ∈ [0, 1], then I(1) = 0 and I(x) = ∞ for any
x ∈ R≥0 \ {1}, as `(Yn) = n P-almost surely for every n.
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of the positive half-line. Standard properties of convex functions defined on sub-
intervals of the real line imply that, on the open interval D◦I , the rate function I is
continuous, admits left and right derivatives at every point, and it is differentiable
outside a countable set of points. In particular, continuity on D◦I gives that

lim
n→∞

1

n
logµn(V ) = − inf

x∈V
I(x) for every open set V ⊂ D◦I ;

in other words, the exponential decay rate of the sequence (µn(V ))n≥1 is well-
defined whenever V is an open subset of D◦I .

3. Define the spectral radius of the random walk as

ρ = lim sup
n→∞

P(Yn = e)
1
n ∈ [0, 1] .

If the measure µ is symmetric, that is µ(g) = µ(g−1) for every g ∈ G, this quantity
coincides with the spectral radius of the Markov operator associated with the
random walk (cf. [25, Chap. 6]). For every δ > 0, we have

µn(B(0, δ)) = µn([0, δ)) ≥ µn(0) = P(`(Yn) = 0) = P(Yn = e),

which implies

lim sup
n→∞

1

n
logµn(B(0, δ)) ≥ lim sup

n→∞

1

n
logP(Yn = e) = log ρ ,

with the understanding that log ρ = −∞ if ρ = 0. The previous inequality holding
for every δ > 0, we infer that

I(0) = sup
δ>0
− lim sup

n→∞

1

n
logµn(B(0, δ)) ≤ − log ρ . (5.5)

As a consequence, we deduce that 0 ∈ DI provided that the spectral radius is
strictly positive. This occurs, for instance, whenever the semigroup Γ generated by
suppµ contains e: if n0 ∈ N is any integer for which P(Yn0

= e) > 0, then

ρ ≥ lim sup
k→∞

P(Ykn0
= e)

1
kn0 ≥ lim sup

k→∞

(
P(Yn0

= e)k
) 1

kn0 > 0.

It is worth mentioning that equality I(0) = − log ρ actually holds12, whenever the
LDP for the word length functional is verified and the measure µ driving the random
walk satisfies inf{µ(g) : g ∈ suppµ} > 0 (see [27, Lem. 2.8]).

4. As far as the least upper bound of DI is concerned, assume that the support of
µ is bounded, and let L = sup{`(g) : g ∈ suppµ} < ∞. Then I ≡ ∞ on the open
half-line (L,∞), as subadditivity of ` implies `(Yn) ≤ nL P-almost surely for any
n ≥ 1. Therefore, in this case, DI is contained in [0, L].

If no restriction is placed on the size of suppµ, then supDI may be infinite13.

12We thank S. Müller for communicating this fact.
13Consider, once again, G = 〈a, b〉 a free group on two generators, and choose a measure µ with suppµ = 〈a〉.

Then P(`(Yn) = nk) ≥ (µ(ak))n for all integers n, k ≥ 1, so that I(k) <∞ for any k ≥ 1. In this example, we
have thus DI = R≥0.
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5.2 The rate function as a Fenchel-Legendre transform

It remains to prove the final statement of Theorem 1.4, under the assumption that µ
has finite moment-generating function. By virtue of Theorem 3.5, it suffices to prove that
the limiting logarithmic moment generating function of the sequence (µn)n≥1, given by

Λ(z) = lim sup
n→∞

1

n
log

∫
R

enz·xdµn(x) = lim sup
n→∞

1

n
logE[ez·`(Yn)] , z ∈ R,

is finite everywhere, where we have canonically identified R with its dual space, and the
dual pairing with the standard product of real numbers.

Fix z ∈ R≥0 ; then E[ez·`(Y1)] =
∫
G

exp (z`(g)) dµ(g) < ∞, since all exponential
moments of µ are finite. Moreover, for any n,m ≥ 1, we have

E[ez·`(Yn+m)] ≤ E[ez·`(X1···Xn)ez·`(Xn+1···Xn+m)] = E[ez·`(Yn)]E[ez·`(Ym)] ;

the first inequality comes from subadditivity of the length function `, whereas the second
follows from independence and stationarity of the process (Xn)n≥1. Therefore, the
sequence

an = logE[ez·`(Yn)] , n ≥ 1, (5.6)

is subadditive, that is an+m ≤ an + am for every n,m ≥ 1; Fekete’s lemma ([25, Ex. 3.9])
gives

Λ(z) = lim
n→∞

1

n
logE[ez·`(Yn)〉] = inf

n≥1

1

n
logE[ez·`(Yn)〉] ≤ E[ez·`(Y1)] <∞ .

If z ∈ R<0 , a similar argument shows that the sequence (5.6) is superadditive, and
Λ(z) <∞ follows all the same.

6 Concluding remarks and open questions

6.1 Groups with strongly connected finite-state automata

We mention another class of examples to which our method would apply: finitely
generated groups whose cone type automaton with respect to a given generating set is
finite and strongly connected.

Let G be a finitely generated group, S a finite set of generators, ` the word length
defined by S on G. For every element g ∈ G, we define the cone type of g as the set

C(g) = {h ∈ G : `(gh) = `(g) + `(h)}.

Notice that the usual definition of cone type which appears in the literature ([9, 12, 28])
involves geodesic words in the alphabet S, rather that actual group elements of G; our
definition is more convenient for the purposes of this discussion.

The cone type of an element selects those geodesic segments that can be attached
(in algebraic terms, multiplied) to it on the right so that the concatenation is again a
geodesic segment. Observe that it is precisely this notion that, implicitly, comes into play
both in the proof of existence of LDP and in the proof of convexity of the rate function.

Cone types offer an algorithmic way to label geodesics in the group G, in other words
to identify those strings (s1, . . . , sn) of letters in the alphabet S such that `(s1 · · · sn) = n.
This is achieved through the construction of a finite state automaton (cf. [12]), called the
cone type automaton of G with respect to the language given by S. Assume there are only
finitely many cone types C0 = C(e), C1, . . . , Cs, which we view as vertices of a directed
graph ∆ whose edges are labelled by elements of S; more precisely, we connect the cone
type C(g) of an element g to the cone type of C(gs), via a directed edge labelled by s ∈ S,
if and only if s ∈ C(g). It is immediate that the definition doesn’t depend on the choice
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of g but only on its cone type. If e /∈ S, there is a one-to-one correspondence between
edge-paths in the directed graph ∆ starting at C0 and finite sequences (s1, . . . , sn) ∈ Sn
such that `(s1 · · · sn) = n, that is geodesic words in the alphabet S.

Now, the conditions we need to impose in order for the arguments of Sections 4 and 5
to carry over unaffectedly are:

1. the finite directed graph ∆ is strongly connected, meaning that there is a directed
path joining any two of its vertices;

2. every element of G belongs to the cone type of some non-trivial element; otherwise
stated, for any geodesic word ω = (s1, . . . , sn) in the alphabet S, there is a cone
type C 6= C0 from which we can follow a directed path in the graph ∆ according to
the labelling given by ω.

Example 6.1 (Simple random walks on integer lattices). Consider G = Zd with its
standard symmetric set of generators S = {±ei : 1 ≤ i ≤ d}. Any probability distribution
µ with suppµ ⊂ S gives rise to a simple random walk (Yn)n∈N on Zd. It is clear
that there are exactly 2d + 2d + 1 different cone types (the 2d quadrants, the 2d half-
spaces delimited by the d coordinate planes, and the whole Zd). It takes a moment
to realize that both conditions stated above are met. We thus recover, by elementary
means, existence of the LDP with convex rate function for the process 1

n ‖Yn‖1 (where
‖(x1, . . . , xd)‖1 = |x1| + · · · |xd| for any (x1, . . . , xd) ∈ Rd), which is usually seen as a
straightforward consequence of Cramer’s theorem for the empirical mean of i.i.d. random
vectors (see [10, Thm. 2.2.30]).

Finiteness of the number of cone types appears to be an intrinsic requirement when
attempting to establish the LDP via the strategy presented here, while the two additional
conditions on the cone type automaton mentioned above can be presumably lifted
through a refinement of the method.

A large class of finitely generated groups having only finitely many cone types, with
respect to any finite generating set, is given by Gromov-hyperbolic groups; indeed, in
such groups the cone type of an element only depends on its k-tail, for a fixed positive
integer k depending only on the group (see [9]). Our considerations thus provide
substance to the claim that Theorem 1.4 holds for any Gromov-hyperbolic group14.

6.2 Some open problems

Computing the exact expression of the rate function, in the cases treated by Theo-
rem 1.4, is mostly out of reach; however, it is worth carrying through the computation in
the easiest case of symmetric simple random walks on free groups, to get a flavour of
what should happen in more general circumstances. This has already been performed
in [33]: let G be a free group on r ≥ 1 generators, S = {a1, . . . , ar} a free generating
set, µ the uniform probability measure on S ∪ S−1, i.e. µ(ai) = µ(a−1

i ) = (2r)−1 for any
i ∈ {1, . . . , r}. The rate function governing the LDP for the sequence

(
1
n`(Yn)

)
n≥1

is
given by the following expression:

I(x) =

{
1+x

2 log (1 + x) + 1−x
2 log (1− x) + log r − 1+x

2 log (2r − 1) if x ∈ [0, 1],

∞ otherwise ,

14(Added in revision) Gouëzel has shown ([14, Lem. 2.4]) that a non-elementary hyperbolic group G equipped
with a word length ` satisfies the following geometric property: there exist constants c, C > 0 such that, for
any x, y ∈ G, there is an element a ∈ G of length at most C such that `(xay) ≥ `(x) + `(y)− c. The result has
been subsequently extended in [11, Lem. 5.3] to relatively hyperbolic groups. It can be used as a replacement
of almost length additivity throughout the proof of Theorem 1.4, thereby proving its validity for irreducible
random walks on any Gromov-hyperbolic group, with respect to any word length. The resulting argument
simplifies the proof of [6, Thm. 1.2], which however addresses more general spaces and walks, and yields a
finer result on the rate function.
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where we agree that 0 log 0 = 0. The function I is analytic in (0, 1) and strictly convex in
its effective domain [0, 1], and hence admits a unique zero at λ = 1− 1/r, corresponding
to the escape rate of the random walk; as a consequence thereof, the probability
P
(
| 1n`(Yn)− λ| ≥ ε

)
that the renormalized length deviates largely from the escape rate

decays exponentially fast with n for any ε > 0. Furthermore, the value of I at 0 is equal
(in absolute value) to the logarithm of the spectral radius, as expected. Lastly, we notice
that the right derivative I ′(0) at 0 is finite, while the left derivative I ′(1) at 1 is infinite.

This motivates the following questions:

1. Is the rate function I in Theorem 1.4 always strictly convex? In particular, does it
always have a unique zero at x = λ?

2. What are the finer regularity properties of the rate function? What is the behaviour
of the (one-sided) derivatives of I at the extreme points of its effective domain?

Assuming the validity of Theorem 1.4 for Gromov-hyperbolic groups, the same ques-
tions can obviously be phrased in this broader context as well.
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