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Abstract

We consider the initial and progressive enlargements of a Brownian filtration with
a random time, that is, a strictly positive random variable. We assume Jacod’s
equivalence hypothesis, that is, the existence of a strictly positive conditional density
for the random time with respect to the Brownian filtration. Then, starting with the
predictable integral representation of a martingale in the initially enlarged Brownian
filtration, we derive explicit expressions for the components which appear in the
predictable integral representations for the optional projections of the martingale on
the progressively enlarged filtration and on the Brownian filtration. We also provide
similar results for the optional projection of a martingale in the progressively enlarged
filtration on the Brownian filtration.
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1 Introduction

In this paper, we consider the initial (resp. progressive) enlargement of a Brownian
filtration F (called hereafter the reference filtration) with a strictly positive absolutely
continuous random variable τ (called hereafter a random time), denoted by F(τ) (resp.
G). We assume Jacod’s equivalence hypothesis introduced in [2] and [13] (see Section 3
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Projections of martingales in enlargements of Brownian filtrations

below for details), which implies that there exists an F(τ)-martingale enjoying the pre-
dictable representation property with respect to F(τ) (see Theorem 4.6 in [3]) and a
pair of G-martingales enjoying the predictable representation property with respect
to G (see Theorem 6.4 in [18]). We study the relationship between the representation
of martingales in the initially (resp. progressively) enlarged filtration and the various
optional projections. We refer the reader to the monograph [1] for results on enlarge-
ments of filtrations. An application of our results is presented in [4] for the study of
the characteristics of semimartingales and their optional projections. Our results will
be useful to compare the optimal strategies of investors having different information
flows, and to investigate optimal stopping problems in different filtrations. Note that
the arguments developed in the paper can be extended to the case of models driven by
marked point processes that we study in [12].

The paper is organised as follows. In Section 2, we recall standard definitions of
projections and dual projections as well as other results on stochastic analysis that we
use in the paper. In Section 3, we give some basic definitions and results related to the
initial and progressive enlargements of a Brownian filtration under Jacod’s equivalence
hypothesis. In Section 4, we recall that the predictable representation property holds
with respect to explicit martingales in the filtrations involved, and prove that any F(τ)-
martingale is continuous. We determine the multiplicity (or spanning number) of these
filtrations (see [7] and [9] for the description of this concept). In Section 5, we consider
the optional projections of an F(τ)-martingale on the filtrations G and F. In particular,
we derive explicit expressions for the components in the integral representations of
these optional projections in terms of the original F(τ)-martingale and the components
in its representation as a stochastic integral and give analogous results in the case
of the F-optional projection of a G-martingale. In Section 6, we consider the optional
projections of a positive F(τ)-martingale on G and F and the F-optional projection of a
positive G-martingale. We describe the set of equivalent martingale measures in the
associated extension of the Black-Merton-Scholes model enhanced with the random time
τ . In particular, we show that the set of equivalent martingale measures in the model
with the progressively enlarged filtration G is essentially larger than the one obtained
by means of the optional projections on G of the Radon-Nikodym densities in the model
with the initially enlarged filtration F(τ).

2 Preliminary definitions and results

For the ease of the reader, we recall some basic definitions and notation on stochastic
analysis. We assume that (Ω,G,P) is a probability space endowed with a filtration H
satisfying the usual hypotheses of completeness and right continuity. For any pair X,
Y of H-semimartingales, we denote by 〈X,Y 〉H the associated predictable quadratic
covariation, when it exists (see page 210, line 6 in [14]), and, for simplicity, 〈X,X〉H is
denoted by 〈X〉H.

We start with the definitions of predictable and optional projections as well as dual
predictable and optional projections (see Chapter V, Theorem 5.1 and 5.2, pages 135-136
in [14] for the definition and Sections 1-2 in the same chapter for more information).

Definition 2.1. Let X = (Xt)t≥0 be a measurable process such that, for any H-stopping
time ϑ, the random variable Xϑ11{ϑ<∞} is σ-integrable with respect to Hϑ. Then there
exists a unique H-optional process oXH = (oXH

t )t≥0 satisfying, for any H-stopping time ϑ,

E[Xϑ11{ϑ<∞} |Hϑ] = oXH
ϑ 11{ϑ<∞} .

The process oXH is called the H-optional projection of X.
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Projections of martingales in enlargements of Brownian filtrations

Remark 2.2. Note that, if X is a càdlàg process, then so is the process oXH (cf. Theo-
rem VI-47 in [8]). Moreover, ifX is a càdlàg process andH satisfies usual conditions, then
the process (E[Xt |Ht])t≥0 is a càdlàg process too. Finally, since oXH is a modification of
(E[Xt |Ht])t≥0 and these processes are both càdlàg, then they are indistinguishable (cf.
Chapter II, Definition 2.45, pages 55-56 in [14]). In particular, if X is a K-martingale
and H ⊂ K, then the optional projection oXH is an H-martingale.

Definition 2.3. Let X = (Xt)t≥0 be a measurable process such that, for any predictable
H-stopping time ϑ, the random variable Xϑ11{ϑ<∞} is σ-integrable with respect to Hϑ−.
Then there exists a unique H-predictable process pXH = (pXH

t )t≥0 satisfying, for any
H-predictable stopping time ϑ,

E[Xϑ11{ϑ<∞} |Hϑ−] = pXH
ϑ 11{ϑ<∞} .

The process pXH is called the H-predictable projection of X.

Let V = (Vt)t≥0 be a process of locally integrable variation. Then, there exists a
unique H-optional process of locally integrable variation V o,H, called the H-dual optional
projection of V , such that

E

[ ∫
[0,∞)

Us dVs

]
= E

[ ∫
[0,∞)

Us dV
o,H
s

]
for any H-optional process U = (Ut)t≥0 satisfying

E

[ ∫
[0,∞)

|Us| d|Vs|
]
<∞ . (2.1)

Similarly, there exists a unique H-predictable process V p,H of locally integrable variation,
called the H-dual predictable projection of V , such that

E

[ ∫
[0,∞)

Us dVs

]
= E

[ ∫
[0,∞)

Us dV
p,H
s

]
for any H-predictable process U = (Ut)t≥0 satisfying (2.1).

Note that, if H is a continuous filtration1, then H-dual optional and H-dual pre-
dictable projections are equal. Indeed, the optional process V o,H is predictable (see,
e.g., Chapter IV, Corollary 5.7, page 173 in [24]) and, since (V o,H)p,H = V p,H, the result
follows.

For two processes X = (Xt)t≥0 and Y = (Yt)t≥0, we write X = Y , when they are
indistinguishable.

The notation θ •X is used for the stochastic integral with respect to a semimartingale
X, that is, we set

(θ •X)t =

∫ t

0

θs dXs, ∀t ≥ 0 ,

when it exists.
We shall make use of the multiplicative decomposition of càdlàg H-supermartingales

(see Chapter II, Theorem 8.21, page 138 in [16] for the multiplicative decomposition of
strictly positive special semimartingales or Proposition 1.32, page 15 in [1] for strictly
positive supermartingales), which states that a strictly positive càdlàg H-semimartingale
Y = (Yt)t≥0 admits a unique decomposition as

Yt = NtDt, ∀t ≥ 0 , (2.2)

1A continuous filtration is a filtration H such that any H-martingale is continuous. The basic example is the
Brownian filtration.
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where N = (Nt)t≥0 is an H-local martingale, with N0 = 1 and D = (Dt)t≥0 an H-
predictable process with locally finite variation. In Chapter II of [16], explicit expressions
for N and D can be found in the case of semimartingales, and it is easy to check with
these formulae that the process D is decreasing when Y is a supermartingale. In our
setting, we shall present in (4.20) and (4.21) an explicit computation.

We introduce the stochastic exponential of a càdlàg H-local martingale X which is
the H-local martingale E(X) = (E(X)t)t≥0 defined by

E(X)t = eXt−X0− 1
2 〈X

c,Xc〉t
∏

0<s≤t

(1 + ∆Xs) e
−∆Xs , ∀t ≥ 0, (2.3)

where Xc is the continuous H-martingale part of X, and ∆Xt = Xt − Xt− (see, e.g.,
Chapter IX, Theorem 9.39, page 248 in [14] or Chapter I, Formula 4.64, page 59 in [16]).
The process E(X), called the Doléans-Dade exponential of X, is the unique solution of
the stochastic differential equation (see Chapter I, Formula 4.59, page 59 in [16] or
Chapter IX, Theorem 9.39, page 248 in [14])

dZt = Zt− dXt, Z0 = 1 .

For instance, in a Brownian filtration F, for an F-optional process θ = (θt)t≥0 satisfying∫ t
0
θ2
sds < ∞ (P-a.s.), for all t ≥ 0, the process Z = E(θ •W ) is the F-local martingale

solution of the equation
dZt = Zt θt dWt, Z0 = 1 .

The following proposition is a particular case of the result of Chapter II, Theorem 8.21,
page 138 in [16], suitable for our purposes.

Proposition 2.4. Let M = (Mt)t≥0 be an H-martingale and X = 1 + (θ •M), where
θ = (θt)t≥0 is an H-predictable and locally bounded process. We assume that X and X−
take their values in (0,∞). Then, the process X is a stochastic exponential martingale,
that is, there exists an H-predictable locally bounded process ψ such that equality
X = E(ψ •M) holds.

A probability measure Q is said to be locally equivalent to P on the filtration H if
there exists a strictly positive H-martingale L = (Lt)t≥0 such that

dQ

dP

∣∣∣∣
Ht

= Lt, ∀t ≥ 0 .

The martingale L is called the Radon-Nikodym density of Q with respect to P. The
“locally” terminology is needed, since, in Section 6 of our paper, as in [3], we cannot
define the new probability measure Q on H∞.

As usual, B(R+) is the Borel σ-algebra on R+, and P(H) (resp. O(H)) denotes the
predictable (resp. optional) σ-algebra associated with H.

3 Jacod’s equivalence hypothesis

In the whole paper, we work on a probability space (Ω,G,P) which supports a
standard Brownian motion W = (Wt)t≥0 with a continuous and completed natural
filtration F = (Ft)t≥0 and a strictly positive random variable τ . We assume that the law
of τ has the support R+ and admits a density g with respect to Lebesgue’s measure.
Note that the inclusion F∞ ⊂ G holds and, in general, this inclusion is strict. We recall
that any F-martingale is continuous.

We assume, as in [3] and [13], that Jacod’s equivalence hypothesis holds, that is, for
each t ≥ 0, the regular conditional distribution of τ given Ft is equivalent to the law of τ :

P(τ ∈ · | Ft) ∼ P(τ ∈ ·),∀t ≥ 0 (P-a.s.) .
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In our model, due to the existence of a density for τ , and the fact that F is a continuous
filtration, this assumption implies (see Lemma 2.2 in [3]) that there exists a family of
strictly positive processes p(u) = (pt(u))t≥0 such that the function (ω, t, u) 7→ pt(u;ω) is
O(F)⊗ B(R+)-measurable, and that, for each u ≥ 0, the process p(u) is an F-martingale.
Furthermore, for any bounded Borel function f , the following equality holds

E
[
f(τ)

∣∣Ft] =

∫ ∞
0

f(u) pt(u) g(u) du, ∀t ≥ 0 (P-a.s.) . (3.1)

The expression in (3.1) implies that the following equality holds

P(τ > s | Ft) =

∫ ∞
s

pt(u) g(u) du, ∀t, s ≥ 0 (P-a.s.) ,

so that, from the strict positivity of τ , the equality∫ ∞
0

pt(u) g(u) du = 1, ∀t ≥ 0 (P-a.s.) ,

is satisfied, and p0(u) = 1, for each u ≥ 0.

Proposition 3.1. For each u ≥ 0, there exists an F-predictable process ϕ(u) = (ϕt(u))t≥0

such that the strictly positive F-martingale p(u) admits the representation in the form of
the Doléans-Dade stochastic exponential

pt(u) = E
(
ϕ(u) •W

)
t

= exp

(∫ t

0

ϕs(u) dWs −
1

2

∫ t

0

ϕ2
s(u) ds

)
, ∀t ≥ 0 , (3.2)

or, equivalently, p(u) satisfies the stochastic differential equation

dpt(u) = pt(u)ϕt(u) dWt, p0(u) = 1 . (3.3)

Proof. This result is an immediate application of the predictable representation theorem
in a Brownian filtration (see, e.g., Chapter V, Theorem 3.5, page 201 in [24]) which
states that, for each u ≥ 0, there exists an F-predictable and locally bounded process
θ(u) = (θt(u))t≥0 such that p(u) = 1+(θ(u)•W ) holds. Then, it follows from Proposition 2.4
that the representations in (3.2) and (3.3) hold with ϕ(u) = θ(u)/p(u), for each u ≥ 0 (see
also Chapter 5, Theorem 5.9, page 181 in [22]). It is shown in [26] that u 7→ ϕt(u) is a
Borel function on [0,∞), for all t ≥ 0 (P-a.s.).

Let HG = (HG
t )t≥0 be the indicator default process defined by HG

t := 11{τ≤t}, for
each t ≥ 0. In the credit risk theory, τ usually denotes the time when a default occurs.
Moreover, since HG is a càdlàg process, we can introduce the F-supermartingale G =

(Gt)t≥0 defined by G = o,F(1−HG), that is, the F-optional projection of 1−HG satisfying
the property

Gt = P(τ > t | Ft), ∀t ≥ 0 (P-a.s.) , (3.4)

which, according to the equality (3.1), can also be written as

Gt =

∫ ∞
t

pt(u) g(u) du, ∀t ≥ 0 (P-a.s.) . (3.5)

Note that G is strictly positive and continuous and that, from the strict positivity of τ ,
one has G0 = 1. The F-supermartingale G is called the conditional survival process or
the Azéma supermartingale of the random time τ .
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4 Enlargement of filtrations and martingales

The aim of the paper is to explicitly compute the components in the integral repre-
sentations of the optional projections of the F(τ)-martingales and of the G-martingales.
In this section, we recall some well known results. We give the form of the F(τ)-
semimartingale decomposition and G-semimartingale decomposition of W as well as the
G-semimartingale decomposition of HG. We underline that the martingale part W (τ) of
the F(τ)-semimartingale decomposition of W enjoys the F(τ)-predictable representation
property, while the pair (WG,MG) of the martingale parts of the G-semimartingale
decompositions of W and HG enjoys the G-predictable representation property (see
below in (4.8) and (4.12) the explicit form of this pair).

4.1 The initially enlarged filtration

As in the introduction, let us denote by F(τ) = (F (τ)
t )t≥0 = (Ft ∨ σ(τ))t≥0 the initial

enlargement of the filtration F with the random time τ . We recall that, under Jacod’s
equivalence hypothesis, any F-local martingale is an F(τ)-special semimartingale (see,
e.g., Theorem 2.1 in [15] or Proposition 5.30, page 116 in [1]). Note that, according to
Proposition 3.3 in [3], the filtration F(τ) is right-continuous. We also recall the following
important result (see, e.g., Proposition 4.22, page 86 in [1] or Proposition 2.7, part (i) in
[6]).

Lemma 4.1. For any t ≥ 0 fixed, any F (τ)
t -measurable random variable is of the form

Yt(ω, τ(ω)), for some Ft ⊗ B(R+)-measurable function (ω, u) 7→ Yt(ω, u). In particular,

any F (τ)
0 -measurable random variable is a Borel function of τ .

In the light of the previous lemma, we denote by Y (τ) = (Yt(τ))t≥0 the processes
adapted with respect to the filtration F(τ). Recall that any F(τ)-predictable process
can be represented in the form (Yt(ω, τ(ω)), t ≥ 0), where the mapping (ω, t, u) 7→
Yt(ω, u) defined on Ω×R+ ×R+ and valued in R, is P(F)⊗B(R+)-measurable (see, e.g.,
Proposition 4.22, page 86 in [1]). As an immediate consequence of Jacod’s equivalence
hypothesis, we observe that, for each t ≥ 0, if the F (τ)

t -measurable random variable Yt(τ)

is integrable, then the following representation holds

E
[
Yt(τ)

∣∣Ft] =

∫ ∞
0

Yt(u) pt(u) g(u)du, ∀t ≥ 0 , (4.1)

(see, e.g., Proposition 4.18 (b), page 85 in [1]). Theorem 2.1 in [15] applies to prove that
the process W (τ) = (Wt(τ))t≥0 defined by

Wt(τ) = Wt −
∫ t

0

d〈W,p(u)〉Fs
ps(u)

∣∣∣∣
u=τ

= Wt −
∫ t

0

ϕs(τ) ds, ∀t ≥ 0 , (4.2)

is an F(τ)-standard Brownian motion, where the second equality follows from (3.3).

Remark 4.2. Note that, because of integrability reasons, the fact that W is an F(τ)-
semimartingale does not imply that any F-martingale is an F(τ)-semimartingale2. How-
ever, under Jacod’s equivalence hypothesis, for any F-martingale X, the process X(τ)

2Indeed, if X is any F-martingale, it admits the representation in the form

Xt = X0 +

∫ t

0
θs dWs, ∀t ≥ 0 ,

for some suitable process θ = (θt)t≥0. One can think that X is an F(τ)-semimartingale is an immediate
consequence of the equality (4.2) writing

Xt = X0 +

∫ t

0
θs dWs(τ) +

∫ t

0
ϕs(τ) θs ds, ∀t ≥ 0 .
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given by

Xt(τ) = Xt −
∫ t

0

d〈X, p(u)〉Fs
ps(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 ,

is an F(τ)-martingale (see, e.g., Theorem 2.1 in [15] or Proposition 4.25, page 88 in [1]).

We recall that the F(τ)-standard Brownian motion W (τ) enjoys the F(τ)-predictable
representation property (see, e.g., [3]). Therefore, any F(τ)-martingale Y (τ) is continu-
ous and admits the representation

Yt(τ) = Y0(τ) +

∫ t

0

ys(τ) dWs(τ), ∀t ≥ 0 , (4.3)

where u 7→ Y0(u) is B(R+)-measurable and the map (ω, t, u) 7→ yt(ω, u) is P(F)⊗ B(R+)-
measurable.

4.2 The progressively enlarged filtration

We denote by G = (Gt)t≥0 the progressive enlargement of F with τ , that is,

Gt = ∩s>tFs ∨ σ(τ ∧ s), ∀t ≥ 0 . (4.4)

Note that τ is a G-stopping time and that, according to the hypothesis that the positive
random variable τ has a positive density with support R+, the σ-algebra G0 is trivial,
so that the initial value of a G-adapted process is a deterministic one. Observe that,
under Jacod’s equivalence hypothesis, any F-martingale is a G-semimartingale (see,
e.g., Proposition 5.30, page 116 in [1] or Theorem 3.1 in [19]), and thus, a special
semimartingale (see, e.g., Chapter VI, Theorem 4, page 367 in [23]). We also recall
for the ease of the reader a result which follows from Lemma 3.1 in [11] (see also
Lemma 7.4.1.1 in [17]). Lemma 3.1 in [11] follows by the fact that, for all t ≥ 0, any
Gt-measurable random variable is equal to an Ft-measurable random variable on the set
{t < τ}.
Lemma 4.3. For any integrable random variable Z ∈ FT , the following equality holds

E
[
Z11{T<τ}

∣∣Gt] = 11{t<τ}
E[ZGT | Ft]

Gt
, ∀t ≥ 0 ,

where G is the Azéma supermartingale defined by the expression in (3.4).

We further indicate with the superscript G the processes which are G-adapted, as
Y G, while we do not use the superscript F to denote the processes which are F-adapted,
as Y , Y 0, or y(u).

Since G coincides with F on {t < τ} and with F(τ) on {τ ≤ t}, for each t ≥ 0, one has
the following lemma (see Proposition 2.8 (i) in [6]):

Lemma 4.4. For any fixed t ≥ 0, the random variable Y Gt is Gt-measurable if and only if
it is of the form

Y Gt (ω) = yt(ω) 11{t<τ(ω)} + y1
t (ω, τ(ω)) 11{τ(ω)≤t} ,

for some Ft-measurable random variable yt and some Ft ⊗ B(R+)-measurable function
(ω, u) 7→ y1

t (ω, u).

However, it may happen that θ is such that the process∫ t

0
ϕs(τ) θs ds , ∀t ≥ 0 ,

is not defined (see Theorem 3 and the example given in Corollaire 3.1 in [21]), and X is not an F(τ)-
semimartingale.
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This simple property can be extended (with care) to the case of processes as follows.
Namely, under Jacod’s equivalence hypothesis, if the process Y G is G-optional, then,
according to Theorem 6.9 in [25], it can be represented as

Y Gt = 11{τ>t} Y
0
t + 11{τ≤t} Y

1
t (τ), ∀t ≥ 0 , (4.5)

where the process Y 0 is F-optional and the map (ω, t, u) 7→ Y 1
t (ω, u) is O(F) ⊗ B(R+)-

measurable (we shall say that Y 1 is an O(F)⊗ B(R+)-measurable process). We further
call Y 0 the F-optional reduction of Y G, which is uniquely defined in our setting due to
the strict positivity of G (see the arguments below). The uniqueness of the second part
Yt(u) is valid only for t ≥ u. This issue does not matter, since these processes appear
only in the part in which the uniqueness holds.

For the ease of the reader, we recall the proof of this as it is done in Proposition 5.25
(b), page 113 in [1]. From (4.5), one has Y Gt 11{t<τ} = Y 0

t 11{t<τ}, for each t ≥ 0, therefore,
taking conditional expectation of both sides with respect to Ft, and using the fact that G
is strictly positive

Y 0
t =

1

Gt
E
[
Y Gt 11{t<τ}

∣∣Ft], ∀t ≥ 0 .

Since Y Gt is defined as the optional projection (see Remark 2.2) of Yt(τ),

E
[
Y Gt 11{t<τ}

∣∣Ft] TP
= E

[
Yt(τ) 11{t<τ}

∣∣Ft], ∀t ≥ 0 ,

where the notation
TP
= means that the equality follows by the tower property of conditional

expectations. From (4.1), we obtain

Y 0
t =

1

Gt

∫ ∞
t

Yt(u) pt(u) g(u) du, ∀t ≥ 0 .

A particular case occurs when Y G is the optional projection of a process Y (τ). In that
case, for each u ≥ 0, one has

Y 0
t =

1

Gt

∫ ∞
t

Yt(u) pt(u) g(u) du, ∀t ≥ 0 , and Y 1
t (u) = Yt(u), ∀t ≥ u , (4.6)

where the process G is defined in (3.4).
Furthermore, if the process Y G is G-predictable3, Lemma 4.4 in [20] or Proposi-

tion 2.8, part (ii) in [6] yield the representation

Y Gt = 11{τ≥t} Y
0
t + 11{τ<t} Y

1
t (τ), ∀t ≥ 0 , (4.7)

where the process Y 0 is F-predictable and (ω, t, u) 7→ Y 1
t (ω, u) is P(F)⊗ B(R+)-measur-

able (we shall say that Y 1 is a P(F)⊗ B(R+)-measurable process), and Y 0 is called the
F-predictable reduction of Y G. Note that the process (11{τ<t})t≥0 is predictable.

Remark 4.5. In our setting, F being a Brownian filtration, the F-predictable reduction
of Y G and the F-optional reduction are equal. Note that, in particular, the process Y 0

given by (4.6) is continuous. Obviously, for each u ≥ 0, Y 1
t (u) = Yt(u), for all t ≥ u. The

main difference between (4.5) and (4.7) is the use of the sets {τ ≤ t} instead of {τ < t},
for all t ≥ 0.

3In the literature, the result for predictable processes is known from the seminal work of Jeulin, in a general
setting of progressive enlargement by a random time. The result for optional processes is recent, and valid
under restrictive conditions such as Jacod’s equivalence hypothesis. In our paper, we do need the optional
version, because the G-martingales are not all predictable.
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Under Jacod’s equivalence hypothesis, the process MG = (MG
t )t≥0 defined by

MG
t = 11{τ≤t} −

∫ t

0

11{τ≥s}
ps(s)g(s)

Gs
ds, ∀t ≥ 0 , (4.8)

is a G-martingale (see Theorem 2.1 in [15] or Proposition 4.4 in [10]). We denote by
λ = (λt)t≥0 the process

λt =
pt(t)g(t)

Gt
, ∀t ≥ 0 . (4.9)

Then, equation (4.8) can be rewritten as

MG
t = HG

t −
∫ t

0

(1−HG
s )λs ds = HG

t −
∫ t∧τ

0

λs ds, ∀t ≥ 0 ,

so that λ is the intensity rate of τ . Note that we can apply the result of Chapter II,
Theorem 13, page 31 in [5] to prove that it is possible to choose an F-predictable version
of the intensity rate and, since the function g is deterministic and G is a continuous
F-supermartingale, it is possible to consider in place of (pt(t))t≥0 its F-predictable
projection.

Proposition 4.1 in [10] states that

Gt = 1 +Mt −
∫ t

0

ps(s) g(s) ds, ∀t ≥ 0 ,

where the process M = (Mt)t≥0 is an F-martingale given by

Mt = −
∫ t

0

(
pt(s)− ps(s)

)
g(s) ds, ∀t ≥ 0 ,

and then

Gt +

∫ t

0

ps(s) g(s) ds = 1−
∫ t

0

(
pt(s)− ps(s)

)
g(s) ds, ∀t ≥ 0 .

Moreover, we have

pt(s)− ps(s) =

∫ t

s

dpu(s) =

∫ t

s

pu(s)ϕu(s) dWu, ∀t ≥ s ≥ 0 ,

where the last equality follows by equation (3.3). Replacing the latter equality in the
previous one, we get

Gt +

∫ t

0

ps(s) g(s) ds = 1−
∫ t

0

(∫ t

s

pu(s)ϕu(s) dWu

)
g(s) ds

= 1−
∫ t

0

(∫ u

0

pu(s)ϕu(s) g(s) ds

)
dWu, ∀t ≥ 0 ,

so that

dGt + pt(t) g(t) dt = −
(∫ t

0

pt(s)ϕt(s) g(s) ds

)
dWt, G0 = 1 . (4.10)

Moreover, Proposition 4.7 and Remark 4.8 in [10] state that∫ ∞
0

pt(s)ϕt(s) g(s) ds = 0, ∀t ≥ 0 ,

and therefore, we have∫ t

0

pt(s)ϕt(s) g(s) ds = −
∫ ∞
t

pt(s)ϕt(s) g(s) ds, ∀t ≥ 0 .
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Finally, the previous equality and equation (4.9) imply that the process G admits the
representation

dGt = −Gt λt dt+

(∫ ∞
t

pt(s)ϕt(s) g(s) ds

)
dWt, G0 = 1 . (4.11)

The decomposition of the G-special semimartingale W follows from Proposition 4.3
in [6]

Wt = WG
t +

∫ t∧τ

0

d〈W,G〉Fs
Gs

+

∫ t

t∧τ

d〈W,p(u)〉Fs
ps(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 , (4.12)

where the bracket of the two continuous semimartingales W and G is equal (see Chap-
ter IV, page 128, Definition 1.20 in [24]) to the predictable bracket of W and Gc, the
continuous F-martingale part of G. By equation (4.11), we get

Gct =

∫ t

0

(∫ ∞
u=s

ps(u)ϕs(u) g(u) du

)
dWs ,∀t ≥ 0 . (4.13)

Then, it follows from P. Lévy characterisation theorem (see, e.g., Chapter IV, Theorem 3.6,
page 150 in [24]) that the process WG = (WG

t )t≥0 defined in (4.12) by

WG
t = Wt −

∫ t

0

αGs ds, ∀t ≥ 0 , (4.14)

where αG is the G-predictable process defined by

αGt = 11{τ≥t}
1

Gt

d〈W,Gc〉Ft
dt

+ 11{τ<t}
1

pt(τ)

d〈W,p(u)〉Ft |u=τ

dt
, ∀t ≥ 0 , (4.15)

is a G-standard Brownian motion. Note that the G-predictable process αG admits the
decomposition (4.7), that is,

αGt = 11{τ≥t} α
0
t + 11{τ<t} α

1
t (τ), ∀t ≥ 0 , (4.16)

where, by virtue of the expression in (4.15) and equality (4.13), the F-predictable
processes α0 and α1(u), for each u ≥ 0, are given by

α0
t =

1

Gt

∫ ∞
t

ϕt(u) pt(u) g(u) du, ∀t ≥ 0 , and α1
t (u) = ϕt(u), ∀t ≥ u . (4.17)

Note that, by virtue of equalities (4.2), (4.14) and (4.17), it follows that the F(τ)-
semimartingale representation of the G-martingale WG turns out to be

WG
t = Wt(τ)−

∫ t∧τ

0

(
α0
s − ϕs(τ)

)
ds, ∀t ≥ 0 , (4.18)

where W (τ) is given by equation (4.2).
From the definition of α0 in (4.17) and equality (4.11), we obtain

Gt = 1−
∫ t

0

Gs λs ds+

∫ t

0

Gs α
0
s dWs, ∀t ≥ 0. (4.19)

The multiplicative decomposition of the F-supermartingale being G = ND, where N
is a local martingale and D a decreasing predictable process (see (2.2)), integration by
parts leads to

dGt = Dt dNt +Nt dDt, G0 = 1 .
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Due to the uniqueness of the Doob-Meyer decomposition obtained in (4.19), one has

Dt dNt = Gt α
0
t dWt and Nt dDt = −Gt λt dt ,

which is equivalent to

dDt = −Dt λt dt and dNt = Nt α
0
t dWt .

Solving the latter stochastic differential equations and applying the initial conditions
G0 = 1 and N0 = 1, it follows that G = ND with

Dt = exp

(
−
∫ t

0

λs ds

)
, ∀t ≥ 0 , (4.20)

Nt = exp

(∫ t

0

α0
s dWs −

1

2

∫ t

0

(
α0
s

)2
ds

)
, ∀t ≥ 0 . (4.21)

Finally, we recall that the pair (WG,MG) enjoys the G-predictable representation
property, that is, any G-martingale Y G admits the integral representation

Y Gt = Y G0 +

∫ t

0

βGs dW
G
s +

∫ t

0

γGs dM
G
s , ∀t ≥ 0 , (4.22)

with some G-predictable processes βG and γG (see Proposition 5.5 (ii) in [6] or Theo-
rem 6.4 in [18]).

Remark 4.6. Note that, letting

γGt = 11{τ≥t} γ
0
t + 11{τ<t} γ

1
t (τ), ∀t ≥ 0 ,

instead, the equality ∫ t

0

γGs dM
G
s =

∫ t

0

γ0
s dM

G
s , ∀t ≥ 0 , (4.23)

holds for any choice of the P(F)⊗B(R+)-measurable process γ1, since MG is flat after τ
(i.e., MG

t = MG
t∧τ , for all t ≥ 0) and equality (4.22) can be simplified to

Y Gt = Y G0 +

∫ t

0

βGs dW
G
s +

∫ t

0

γ0
s dM

G
s , ∀t ≥ 0 . (4.24)

5 Optional projections of martingales

Let Y (τ) be an F(τ)-martingale. Then, due to the F(τ)-predictable representation
property for W (τ), the martingale Y (τ) admits the integral representation given by (4.3).
We study the G-optional projection Y G of the process Y (τ). By Remark 2.2, it follows
that Y G is a G-martingale. Any G-martingale Y G admits the integral representation
given by (4.22), with some G-predictable processes βG and γG that can be represented
as

βGt = 11{τ≥t} β
0
t + 11{τ<t} β

1
t (τ), ∀t ≥ 0 , (5.1)

γGt = 11{τ≥t} γ
0
t , ∀t ≥ 0 , (5.2)

where, as in (4.7), β0, γ0 are F-predictable processes and β1 is a P(F) ⊗ B(R+)-
measurable process. We also consider Y , the F-optional projection of a G-martingale
Y G. By Remark 2.2, Y is an F-martingale.
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Furthermore, due to the F-predictable representation property of W , any F-martin-
gale (in particular the F-optional projection of Y (τ) and the F-optional projection of Y G)
admits the integral representation

Yt = Y0 +

∫ t

0

σs dWs, ∀t ≥ 0 , (5.3)

where σ is a suitable F-predictable process. In the next subsections, we will show how
to compute the processes βG, γ0 in terms of the processes Y (τ) and y(τ) and give the
expression of σ in terms of Y G and βG.

5.1 The projections of F(τ)-martingales on G

Proposition 5.1. Let the process Y (τ) be an F(τ)-martingale with the representa-
tion (4.3). Then, its G-optional projection Y G = (Y Gt )t≥0 enjoys representation (4.24)
with Y G0 = E[Y0(τ)] and βG as in (5.1), where processes β0, β1(u), u ≥ 0, and γ0 from
(5.1) and (5.2), respectively, are given by

β0
t =

1

Gt

∫ ∞
t

(
yt(u) +

(
ϕt(u)− α0

t

)
Yt(u)

)
pt(u) g(u) du, ∀t ≥ 0 , (5.4)

β1
t (u) = yt(u), ∀t ≥ 0 , (5.5)

γ0
t = pYt(t)− Y 0

t , ∀t ≥ 0 , (5.6)

where α0 is given by (4.17), Y 0 is the F-predictable reduction of Y G given by (4.6), and
(pYt(t))t≥0 is the F-predictable projection of (Yt(t))t≥0.

Proof. In the first part of the proof (the first and the second step), we assume that the
martingale Y (τ) is square integrable4, so that the martingale Y G is square integrable
too, hence

E

[ ∫ ∞
0

((
βGs
)2

+
(
γ0
s

)2 (
1−HG

s

)
λs

)
ds

]
<∞ .

In the first step, we determine βG and, in the second step, we determine γ0. We
generalize the result to any F(τ)-martingale by localisation in the second part of the
proof (third step).

First step: Let us determine the process βG which, due to the square integrability
condition on Y (τ), satisfies

E

[ ∫ ∞
0

(
βGs
)2
ds

]
<∞ .

For this purpose, we consider a bounded G-predictable process nG and define V G =

(V Gt )t≥0 by

V Gt =

∫ t

0

nGs dW
G
s , ∀t ≥ 0 .

Since WG is a G-standard Brownian motion and the process nG is bounded, the continu-
ous process V G is a G-martingale. On the one hand, the G-standard Brownian motion
WG is orthogonal to the pure-jump G-martingale MG, leading to the fact that

E
[
Yt(τ)V Gt

] TP
= E

[
Y Gt V Gt

]
= E

[
V Gt

∫ t

0

βGs dW
G
s

]
= E

[ ∫ t

0

βGs n
G
s ds

]
, ∀t ≥ 0 . (5.7)

4A martingale X is square integrable when the condition supt≥0 E[X2
t ] <∞ holds (see Chapter I, Defini-

tion 1.41, page 10 in [16]).
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On the other hand, by means of integration by parts for semimartingales, we get

Yt(τ)V Gt =

∫ t

0

Ys(τ) dV Gs +

∫ t

0

V Gs dYs(τ) +
[
Y (τ), V G

]
t
, ∀t ≥ 0 , (5.8)

where the first integral on the right-hand side of equation (5.8) is understood as the
integral of the F(τ)-predictable process Y (τ) with respect to the process V G, considered
as an F(τ)-semimartingale (see (5.10) below), and [Y (τ), V G] is the covariation process
of the F(τ)-semimartingales Y (τ) and V G, and hence,

E
[
Yt(τ)V Gt

]
= E

[ ∫ t

0

Ys(τ) dV Gs

]
+ E

[ ∫ t

0

V Gs dYs(τ)

]
+ E

[[
Y (τ), V G

]
t

]
, ∀t ≥ 0 . (5.9)

Now, we develop the expressions in the right-hand side of equality (5.9), which consists
of three terms.
• As far as the first term is concerned, we note that, by virtue of equality (4.18), the
F(τ)-semimartingale decomposition of the G-martingale V G is

V Gt =

∫ t

0

nGs dWs(τ) +

∫ t

0

11{τ≥s}
(
ϕs(τ)− α0

s

)
nGs ds, ∀t ≥ 0 . (5.10)

The process Y (τ) = (Y t(τ))t≥0 defined by

Y t(τ) =

∫ t

0

Ys(τ)nGs dWs(τ), ∀t ≥ 0 ,

is an F(τ)-martingale, due to the fact that nG is bounded and that, Y (τ) being square
integrable, we have

E

[ ∫ t

0

Y 2
s (τ) ds

]
≤ t sup

0≤s≤t
E
[
Y 2
s (τ)

]
<∞, ∀t ≥ 0 .

Then, from (5.10), we have

E

[ ∫ t

0

Ys(τ) dV Gs

]
= E

[ ∫ t

0

11{τ≥s}Ys(τ)
(
ϕs(τ)− α0

s

)
nGs ds

]
, ∀t ≥ 0 .

• In order to handle the second term it is enough to prove that the F(τ)-local martingale
M(τ) = (Mt(τ))t≥0 defined by

Mt(τ) =

∫ t

0

V Gs dYs(τ), ∀t ≥ 0 ,

is a true martingale. This will be the case when, for any T > 0 fixed, the property

E
[

sup
0≤t≤T

∣∣Mt(τ)
∣∣] <∞

holds (see Chapter I, Theorem 51, page 38 in [23]). By Burkholder-Davis-Gundy’s
inequality5, this condition is satisfied if

E
[(
〈M(τ)〉F

(τ)

T

)1/2]
<∞ .

5Burkholder-Davis-Gundy’s inequality states that, if M is a local martingale, for any p ≥ 1, then the
expression

E
[

sup
0≤t≤T

∣∣Mt

∣∣p] ≤ Cp E[〈MT 〉p/2
]

holds, for some Cp > 0 depending on p only (see, e.g., Chapter IV, Section 4, Theorem 48, page 195 in [23]).
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Note that we have

E
[(
〈M(τ)〉F

(τ)

T

)1/2]
= E

[(∫ T

0

(
V Gs
)2
y2
s(τ) ds

)1/2]
≤ E

[
sup

0≤s≤T

∣∣V Gs ∣∣ ( ∫ T

0

y2
s(τ) ds

)1/2]
≤ E

[
sup

0≤s≤T

∣∣V Gs ∣∣2]+ E

[ ∫ T

0

y2
s(τ) ds

]
,

where we have used the fact that |ab| ≤ (a2 + b2), for any a, b ∈ R. It follows, using again
Burkholder-Davis-Gundy’s inequality, that

E
[

sup
0≤s≤T

∣∣V Gs ∣∣2] ≤ C2E

[ ∫ T

0

(nGs )2 ds

]
<∞ ,

for some constant C2 > 0. Moreover, by the assumption of square integrability of the
F(τ)-martingale Y (τ), we have

E

[ ∫ T

0

y2
s(τ) ds

]
<∞ .

Hence, the second integral on the right-hand side of equation (5.8) is a centered F(τ)-
martingale, so that the second term at the right-hand side of equality (5.9) is identically
zero.
• Finally, as far as the third term is concerned, due to the continuity of the process
Y (τ), and, since the continuous F(τ)-martingale part of the F(τ)-semimartingale V G is

V
G

= (V
G

t )t≥0 defined by

V
G

t =

∫ t

0

nGs dWs(τ), ∀t ≥ 0 ,

we obtain6 [
Y (τ), V G

]
t

=
〈
Y (τ), V

G〉F(τ)

t
=

∫ t

0

ys(τ)nGs ds, ∀t ≥ 0 .

Summarising, we get

E
[
Yt(τ)V Gt

]
= E

[ ∫ t

0

(
ys(τ) + 11{τ≥s}

(
ϕs(τ)− α0

s

)
Ys(τ)

)
nGs ds

]
, ∀t ≥ 0 . (5.11)

By applying Fubini’s theorem twice to interchange the order of expectation and integra-
tion, we obtain, from equalities (5.7) and (5.11), the equality

E

[ ∫ t

0

βGs n
G
s ds

]
= E

[
Yt(τ)V Gt

]
TP
= E

[ ∫ t

0

E
[
ys(τ) + 11{τ≥s}

(
ϕs(τ)− α0

s

)
Ys(τ)

∣∣Gs]nGs ds], ∀t ≥ 0 ,

for any G-predictable bounded process nG, and, since τ is a G-stopping time, we have

βGt = E
[
yt(τ) + 11{τ≥t}

(
ϕt(τ)− α0

t

)
Yt(τ)

∣∣Gt]
= 11{τ≥t}E

[
yt(τ) +

(
ϕt(τ)− α0

t

)
Yt(τ)

∣∣Gt]+ 11{t>τ} yt(τ), ∀t ≥ 0 . (5.12)

6For any two semimartingales X = (Xt)t≥0 and Y = (Yt)t≥0, one has

[X,Y ]t = 〈Xc, Y c〉t +
∑

0≤s≤t
∆Xs ∆Ys, ∀t ≥ 0 ,

where ∆Xt = Xt −Xt− and ∆Yt = Yt − Yt− (see Chapter VIII, Definition 8.2, page 209 in [14]).
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Then, by equality (4.1), applied to

E
[
yt(τ) +

(
ϕt(τ)− α0

t

)
Yt(τ)

∣∣Gt], ∀t ≥ 0 ,

the F-predictable reduction of βG is given by

β0
t =

1

Gt

∫ ∞
t

(
yt(u) +

(
ϕt(u)− α0

t

)
Yt(u)

)
pt(u) g(u) du, ∀t ≥ 0 ,

and (5.12) leads to β1
t (u) = yt(u), for all t ≥ u and each u ≥ 0.

Second step: We now determine the process γ0. On the one hand, for any bounded
G-predictable process nG, using the facts that MG is a G-martingale strongly orthogonal
to WG such that the equality

〈MG〉Gt =

∫ t

0

11{τ>s} λs ds

holds, and that MG is flat after τ , we have

E

[
Yt(τ)

∫ t

0

nGs dM
G
s

]
= E

[
Yt(τ)

∫ t

0

n0
s dM

G
s

]
TP
= E

[
Y Gt

∫ t

0

n0
s dM

G
s

]
= E

[ ∫ t

0

γ0
s dM

G
s

∫ t

0

n0
s dM

G
s

]
= E

[ ∫ t

0

11{τ>s} γ
0
s λs n

0
s ds

]
TP
= E

[ ∫ t

0

γ0
s λsGs n

0
s ds

]
, ∀t ≥ 0 ,

where λ is, by abuse of notation, the F-predictable version of the process defined in (4.9),
and n0 is the F-predictable reduction of nG. We also note that MG is an F(τ)-predictable
bounded variation process. Applying the integration by parts formula and using the
fact that the covariation process of the F(τ)-martingale Y (τ) and the F(τ)-predictable
bounded variation semimartingale UG = (UGt )t≥0 defined by

UGt =

∫ t

0

n0
s dM

G
s , ∀t ≥ 0 ,

is null, we obtain

E
[
Yt(τ)UGt

]
= E

[ ∫ t

0

Ys(τ)n0
s dM

G
s +

∫ t

0

UGs dYs(τ)

]
, ∀t ≥ 0 .

Applying arguments similar to the ones used in the first part of the proof, we obtain that

the F(τ)-local martingale U
G

= (U
G

t )t≥0 given by

U
G

t =

∫ t

0

UGs dYs(τ), ∀t ≥ 0 ,

is an F(τ)-martingale.
Moreover, we have

E

[ ∫ t

0

Ys(τ)n0
s dM

G
s

]
= E

[ ∫ t

0

Ys(τ)n0
s dH

G
s −

∫ t

0

11{τ>s} λs Ys(τ)n0
s ds

]
TP
= E

[
11{τ≤t} Yτ (τ)n0

τ −
∫ t

0

E
[
Ys(τ)

∣∣Gs]n0
s λs 11{τ>s} ds

]
TP
= E

[
11{τ≤t} Yτ (τ)n0

τ −
∫ t

0

Y 0
s n

0
s λsGs ds

]
, ∀t ≥ 0 ,
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where Y 0 is the F-predictable reduction of Y G. Applying equality (4.1) and recalling
that, for each u ≥ 0, the process Y (u)p(u) is an F-martingale (see Proposition 3.1 in [6]),
we get

E
[
Yt(τ)n0

τ 11{τ≤t}
]

= E

[ ∫ t

0

Yt(u) pt(u)n0
u g(u) du

]
TP
= E

[ ∫ t

0

Yu(u) pu(u)n0
u g(u) du

]
, ∀t ≥ 0 .

We may therefore conclude that, for all t ≥ 0, for any F-predictable bounded process n0,
we have

E

[ ∫ t

0

γ0
s λsGs n

0
s ds

]
= E

[ ∫ t

0

(
Ys(s) ps(s) g(s)− λsGs Y 0

s

)
n0
s ds

]
, ∀t ≥ 0 ,

and, using the fact that λtGt = pt(t)g(t), for all t ≥ 0, we get that, for any F-predictable
bounded process n0,

E

[ ∫ t

0

(
γ0
s − Ys(s) + Y 0

s

)
λsGs n

0
s ds

]
= 0, ∀t ≥ 0 ,

that is, equality (5.6) holds7, using tower property, the fact that G is predictable and that
one can choose a predictable version of λ.

Third step: The result obtained for square integrable martingales Y (τ) can be
extended by means of localization to the case of martingales using standard methods.
More precisely, if Y (τ) is an F(τ)-martingale, one can introduce a localizing sequence
(Tk)k≥1 of F(τ)-stopping times so that the stopped processes Y Tk(τ) = (Yt∧Tk(τ))t≥0,
k ≥ 1, are square integrable martingales. Then, the arguments of the first and the
second step of the proof lead to

E

[ ∫ Tk

0

βGs n
G
s ds

]
= E

[ ∫ ∞
0

E
[
11{s≤Tk}

(
ys(τ) + 11{τ≥s}

(
ϕs(τ)− α0

s

)
Ys(τ)

) ∣∣Gs]nGs ds], ∀t ≥ 0 .

Hence, taking into account the fact that Tk may fail to be a G-stopping time, we obtain

βGt P(t ≤ Tk | Gt) = E
[
11{t≤Tk}

(
yt(τ) + 11{τ≥t}

(
ϕt(τ)− α0

t

)
Yt(τ)

) ∣∣Gt], ∀t ≥ 0 ,

and, letting k going to infinity, since 11{t≤Tk} increases to one, for each t ≥ 0, we get the
result. Similar arguments are applied to obtain γ0.

Remark 5.2. One cannot extend the result for F(τ)-local martingales, since if Y (τ) is an
F(τ)-local martingale, its G-optional projection may fail to be a G-local martingale.

5.2 The projections of F(τ)-martingales on F

Proposition 5.3. Let Y (τ) be an F(τ)-martingale with the representation given by
equality (4.3). Then, its F-optional projection Y admits the representation (5.3) with the
F-predictable process σ given by

σt =

∫ ∞
0

(
yt(u) + ϕt(u)Yt(u)

)
pt(u) g(u) du, ∀t ≥ 0 . (5.13)

7We are not able to give conditions such that (Yt(t), t ≥ 0) is predictable.
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Proof. It follows from the predictable representation property in the filtration F that
there exists an F-predictable process σ such that equality (5.3) holds, for all t ≥ 0. We
assume that Y (τ) is a square integrable martingale. On the one hand, for any bounded
F-predictable process n = (nt)t≥0, we have

E

[
Yt(τ)

∫ t

0

ns dWs

]
TP
= E

[
Yt

∫ t

0

ns dWs

]
= E

[ ∫ t

0

σs ns ds

]
, ∀t ≥ 0 . (5.14)

On the other hand, using the representation in (4.2) and applying the integration by
parts formula to the left-hand side of (5.14), we get

E

[
Yt(τ)

∫ t

0

ns dWs

]
= E

[
Yt(τ)

(∫ t

0

ns dWs(τ) +

∫ t

0

ϕs(τ)ns ds

)]
= E

[ ∫ t

0

(
ys(τ) + ϕs(τ)Ys(τ)

)
ns ds

]
TP
= E

[ ∫ t

0

E
[
ys(τ) + ϕs(τ)Ys(τ)

∣∣Fs]ns ds], ∀t ≥ 0 .

Hence, by equation (4.1), we have

σt = E
[
yt(τ) + ϕt(τ)Yt(τ)

∣∣Ft] =

∫ ∞
0

(
yt(u) + ϕt(u)Yt(u)

)
pt(u) g(u) du, ∀t ≥ 0 ,

that completes the proof in the case of square integrable F(τ)-martingales. For each
u ≥ 0, the processes y(u) and ϕ(u) being F-predictable, and Y (u), p(u) being F-adapted
and continuous, the process σ is F-predictable.

The extension of this result to any F(τ)-martingale is done as in Proposition 5.1.

5.3 The projections of G-martingales on F

Proposition 5.4. Let Y G = (Y Gt )t≥0 be a G-martingale with the representation given by
equality (4.22). Then, its F-optional projection Y admits the representation

Yt = Y0 +

∫ t

0

ηs dWs, ∀t ≥ 0 ,

where the F-predictable process η is given by

ηt = E
[
βGt + αGt Y

G
t

∣∣Ft], ∀t ≥ 0 . (5.15)

In the particular case, where Y G is the G-optional projection of an F(τ)-martingale Y (τ)

with the representation (4.3), one has

ηt =
(
β0
t + α0

t Y
0
t

)
Gt +

∫ t

0

(
β1
t (u) + α1

t (u)Y 1
t (u)

)
pt(u) g(u) du, ∀t ≥ 0 , (5.16)

with the supermartingale G given by equality (3.4), the processes α0, α1(u), u ≥ 0, given
by (4.17), the processes β0, β1(u), u ≥ 0, given by equality (5.1), and the processes Y 0,
Y 1(u), u ≥ 0, defined by equality (4.6).

Proof. Let Y G be a G-square integrable martingale, and n be a bounded F-predictable
process. On the one hand, we get

E

[
Y Gt

∫ t

0

ns dWs

]
TP
= E

[
Yt

∫ t

0

ns dWs

]
= E

[ ∫ t

0

ηs ns ds

]
, ∀t ≥ 0 .

On the other hand, by applying the integration by parts formula, we obtain

E

[
Y Gt

∫ t

0

ns dWs

]
= E

[ ∫ t

0

(∫ s

0

nu dWu

)
dY Gs +

∫ t

0

Y Gs ns dWs +

∫ t

0

βGs ns ds

]
= E

[ ∫ t

0

(
βGs + αGs Y

G
s

)
ns ds

]
TP
= E

[ ∫ t

0

E
[
βGs + αGs Y

G
s

∣∣Fs]ns ds], ∀t ≥ 0 ,
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where, in order to handle the stochastic integral with respect to W , we use its G-
semimartingale decomposition given by equality (4.14). We do stress that the true
martingale property of the local martingale terms is proved by using similar arguments
as in the proof of Proposition 3.2. Hence, we deduce that, for any bounded F-predictable
process n, we have

E

[ ∫ t

0

ηs ns ds

]
= E

[ ∫ t

0

E
[
βGs + αGs Y

G
s

∣∣Fs]ns ds] ,∀t ≥ 0 ,

and thus,

ηt = E
[
βGt + αGt Y

G
t

∣∣Ft] ,∀t ≥ 0 .

The predictability of η is due to the fact that η is F-optional, hence F-predictable. In the
particular case where Y G is the G-optional projection of an F(τ)-martingale Y (τ) of the
form (4.3),

ηt =
(
β0
t + α0

t Y
0
t

)
E
[
11{t<τ}

∣∣Ft]+ E
[
11{τ≤t}

(
β1
t (τ) + α1

t (τ)
)
Y 1
t (τ)

∣∣Ft] ,∀t ≥ 0 ,

that completes the proof. Note that, recalling equality (4.1), in order to deal correctly
with the sets {τ < t} and {τ ≤ t}, for each t ≥ 0, we have used Remark 4.5.

The extension of this result to any G-martingale is done as in Proposition 5.1.

Remark 5.5. Let Y (τ) be an F(τ)-martingale. Note that, since the following equality
holds

E
[
Yt(τ)

∣∣Ft] TP
= E

[
E[Yt(τ)

∣∣Gt] ∣∣Ft], ∀t ≥ 0 ,

holds, we have σ = η. This is not straightforward to conclude that this equality holds
true from the explicit forms given in (5.13) and (5.16). As a check, from (5.12) and the
fact that (4.17) shows that α1(u) = ϕ(u), for each u ≥ 0, we see that

ηt = E
[
βGt + αGt Y

G
t

∣∣Ft]
= E

[
yt(τ) + 11{τ≥t}

(
ϕt(τ)− α0

t

)
Yt(τ) + 11{τ≥t} α

0
t Y

0
t + 11{τ<t} α

1
t (τ)Y 1

t (τ)
∣∣Ft]

= E
[
yt(τ) + ϕt(τ)Yt(τ)

∣∣Ft] = σt ,∀t ≥ 0 ,

where the last equality comes from the fact that 11{τ<t}Y
1
t (τ) = 11{τ<t}Yt(τ), for each

t ≥ 0 (see equality (4.6)).

6 Changes of probability measures and applications

In this section, as an example of application of the results from the previous sec-
tion, we consider the relationships between strictly positive F(τ)-martingales (or G-
martingales) and their optional projections. Note that, for strictly positive martingales, a
direct proof of Proposition 6.1 (based on equivalent changes of probability measures)
was given in [27]. We apply the results in a financial market framework to study the set
of equivalent martingale measures in different filtrations.

6.1 Exponential martingales and their projections

6.1.1 The projections of strictly positive F(τ)-martingales on G

Let L(τ) be a strictly positive F(τ)-martingale. Then, in particular, we have L0(τ) > 0

(P-a.s.), so that we can write Lt(τ) = L0(τ)Xt(τ), where X(τ) is a strictly positive F(τ)-
martingale, satisfying the hypotheses of Proposition 2.4 with M = W (τ). Hence, there
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exists an F(τ)-predictable process ζ(τ) such that X(τ) = E(ζ(τ) •W (τ)) and the following
representation holds

Lt(τ) = L0(τ) E
(
ζ(τ) •W (τ)

)
t

= L0(τ) exp

(∫ t

0

ζs(τ) dWs(τ)− 1

2

∫ t

0

ζ2
s (τ) ds

)
,∀t ≥ 0 . (6.1)

Note that, if E[L0(τ)] = 1, then we can associate to the strictly positive F(τ)-martingale
L(τ) the probability measure P̃ locally equivalent to P on the filtration F(τ) defined by

dP̃

dP

∣∣∣∣
F(τ)
t

= Lt(τ), ∀t ≥ 0 . (6.2)

Remark 6.1. The particular choice of L0(τ) = 1 (P-a.s.) is equivalent to the property

P̃(τ > u) = P(τ > u), for each u ≥ 0. Indeed, since τ is F (τ)
0 -measurable, we have

P̃(τ > u) = E[L0(τ)11{τ>u}], for each u ≥ 0. Hence, if L0(τ) = 1 (P-a.s.) holds, then we

have P̃(τ > u) = P(τ > u), for each u ≥ 0. Conversely, the equality P̃(τ > u) = P(τ > u),
for each u ≥ 0, implies that E[L0(τ)11{τ>u}] = E[11{τ>u}], for all u ≥ 0. Thus, using the

fact that the events {τ > u}, u ≥ 0, generate F (τ)
0 , we conclude that L0(τ) = 1 (P-a.s.).

We now consider the G-optional projection LG = (LGt )t≥0 of the strictly positive
martingale L(τ). The same arguments which were used to get equation (6.1) are applied
here to prove that LG = E[L0(τ)]E(θG •XG), where, by the G-predictable representation
property of the pair (WG,MG), the G-martingale θG ·XG can be represented as

(
θG •XG

)
t

=

∫ t

0

µGs dW
G
s +

∫ t

0

ψ0
s dM

G
s , ∀t ≥ 0 ,

with a G-predictable process µG and an F-predictable process ψ0 to be determined (this
will be done explicitly in Proposition 6.2). Since WG and MG are strongly orthogonal
G-martingales, Theorem 38, page 86 in [23] is applied to get

LGt = E
[
L0(τ)

]
E
(
µG •WG

)
t
E
(
ψ0 •MG

)
t
, ∀t ≥ 0 . (6.3)

Moreover, from the definition of the stochastic exponential in (2.3), and the fact that the
continuous martingale part of MG is null, we have

E
(
ψ0 •MG

)
t

=
(
1 + ψ0

τ

)HG
t exp

(
−
∫ t∧τ

0

ψ0
s λs ds

)
, ∀t ≥ 0 ,

where we recall that HG
t = 11{τ≤t}, for all t ≥ 0. The strict positivity of the processes

LG and E(µG •WG) implies the strict positivity of the process E(ψ0 •MG), and thus, the
property ψ0

τ > −1.

Proposition 6.2. Let L(τ) = (Lt(τ))t≥0 be a strictly positive martingale of the form (6.1).
Then, its G-optional projection LG satisfies (6.3) with the G-predictable processes µG

and the F-predictable process ψ0 given by

µGt = 11{τ≥t}
1

L0
tGt

∫ ∞
t

Lt(u)
(
ζt(u) + ϕt(u)− α0

t

)
pt(u) g(u) du

+ 11{τ<t} ζt(τ), ∀t ≥ 0 , (6.4)

ψ0
t =

p(Lt(t))

L0
t

− 1, ∀t ≥ 0 , (6.5)

where L0 = (L0
t )t≥0 is the F-predictable reduction of LG defined in (4.6).
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Proof. Consider the F(τ)-martingale L(τ) given by equality (6.1). Then it is the unique
solution of the stochastic differential equation

dLt(τ) = Lt(τ) ζt(τ) dWt(τ), L0(τ) = `(τ) ,

where ` is a given strictly positive Borel function. Moreover, the G-optional projection
LG of L(τ) satisfies the stochastic differential equation

dLGt = LGt−
(
µGt dW

G
t + ψ0

t dM
G
t

)
, LG0 = E[L0(τ)] .

Then, Proposition 5.1 applies with Y (τ) = L(τ) and y(u) = L(u)ζ(u), for all u ≥ 0, and
therefore, equalities µGt L

G
t = βGt and ψ0

tL
0
t− = γ0

t hold, for all t ≥ 0.

Example 6.3. Assume that the F(τ)-martingale L(τ) is given by

Lt(τ) = `(τ) E
(
− ϕ(τ) •W (τ)

)
t

=
1

pt(τ)
, ∀t ≥ 0

where ` is a given strictly positive Borel function and the process p(u) is given by (3.2),
for each u ≥ 0. Note that the second equality is an easy consequence of (3.3). Indeed,
Itô’s formula and equation (4.2) lead to

d

(
1

pt(τ)

)
=

1

pt(τ)

(
ϕt(τ) dt+ dWt

)
=

1

pt(τ)
dWt(τ),

1

p0(τ)
= `(τ) .

In this case, its G-optional projection LG = (LGt )t≥0 is given by

LGt = E
(
µG •WG

)
t
E
(
ψ0 •MG

)
t
, ∀t ≥ 0 ,

with

µGt = −11{τ≥t} α
0
t − 11{τ<t} ϕt(τ) and ψ0

t =
Gt

pt(t)(1− F (t))
− 1, ∀t ≥ 0 ,

where we set F (t) = P(τ ≤ t), for all t ≥ 0. Observe that the probability measure
defined through (6.2) with this choice of L(τ) (which is a strictly positive martingale with
expectation being equal to one) is a preserving and decoupling measure (see [2] and
[13] for a discussion of an important role of this strictly positive F(τ)-martingale L(τ)).

6.1.2 The projections of strictly positive F(τ)-martingales on F

Let L(τ) be a strictly positive F(τ)-martingale of the form (6.1). Then, its F-optional
projection admits the integral representation

Lt = E
[
L0(τ)

]
+

∫ t

0

Ls ξs dWs, ∀t ≥ 0 ,

where the F-predictable process ξ = (ξt)t≥0 can be derived by applying Proposition 5.3
with Y (τ) = L(τ) (so that Y = L and Lξ = σ),

ξt =
1

Lt

∫ ∞
0

Lt(u)
(
ζt(u) + ϕt(u)

)
pt(u) g(u) du, ∀t ≥ 0 .

6.1.3 The projections of strictly positive G-martingales on F

From (6.3), any strictly positive G-martingale LG = (LGt )t≥0 admits the equivalent
representation

LGt = LG0 +

∫ t

0

LGs µ
G
s dW

G
s +

∫ t

0

LGs− ψ
0
s dM

G
s , ∀t ≥ 0 ,
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and, being a G-optional process, it admits the decomposition

LGt = 11{τ>t} L
0
t + 11{τ≤t} L

1
t (τ), ∀t ≥ 0 ,

where the process L0 is F-optional and the process L1 is O(F) ⊗ B(R+)-measurable.
By similar arguments, it follows that its F-optional projection L = (Lt)t≥0 admits the
integral representation

Lt = LG0 +

∫ t

0

Ls κs dWs, ∀t ≥ 0 ,

where κ = (κt)t≥0 is an F-predictable process. In order to derive κ, it suffices to apply
Proposition 5.4 with Y G = LG, β0 = (Lµ)0, β1 = L1µ1 and η = Lκ, so that Y 0 = L0 and
Y = L. The equality (Lµ)0 = L0µ0 follows from the definition of predictable reduction.
Therefore, we conclude that

κt =
1

Lt

(
L0
t

(
µ0
t + α0

t

)
Gt +

∫ t

0

L1
t (u)

(
µ1
t (u) + α1

t (u)
)
pt(u) g(u) du

)
, ∀t ≥ 0 . (6.6)

6.2 The equivalent martingale measures

Let us now consider a model of a financial market in which the risky asset price
process S = (St)t≥0 follows the stochastic differential equations

dSt = St
(
ν dt+ ρ dWt

)
= St

((
ν + ρϕt(τ)

)
dt+ ρ dWt(τ)

)
= St

(
(ν + ραGt ) dt+ ρ dWG

t

)
, S0 = 1 ,

according to the filtrations F, F(τ), and G, respectively, where ν and ρ > 0 are some
constants. We assume that the riskless asset has a zero interest rate.

It is straightforward to show that, for any strictly positive B(R+)-measurable function
u 7→ L0(u) satisfying E[L0(τ)] = 1, the positive F(τ)-martingale defined in (6.1) provides
the Radon-Nikodym density of an equivalent martingale measure on F(τ) for S if and
only if

ζt(τ) = −
(
ϕt(τ) +

ν

ρ

)
, ∀t ≥ 0 .

In other terms, the set of F(τ)-equivalent martingale measures for S is the set of proba-
bility measures P∗ which are locally equivalent to P on F(τ) with the Radon-Nikodym
densities

dP∗

dP

∣∣∣∣
F(τ)
t

= L∗t (τ), ∀t ≥ 0 ,

where L∗(τ) = (L∗t (τ))t≥0 is defined by

L∗t (τ) = L∗0(τ) E
(
−
(
ϕ(τ) +

ν

ρ

)
•W (τ)

)
t

, ∀t ≥ 0 ,

and u 7→ L∗0(u) is a strictly positive measurable function satisfying E[L∗0(τ)] = 1. In this
model, there exists infinitely many such probability measures, which differ from each
other by the choice of the initial value L∗0(τ), that is, by the choice of the law of τ (under
P∗), namely,

P∗(τ > u) = E
[
L∗0(τ) 11{τ>u}

]
=

∫ ∞
u

L∗0(v) g(v) dv, ∀u ≥ 0 .

Note that, by virtue of Girsanov’s theorem, the process Ŵ (τ) = (Ŵt(τ))t≥0 defined as

Ŵt(τ) = Wt(τ) +

∫ t

0

(
ϕs(τ) +

ν

ρ

)
ds, ∀t ≥ 0 ,
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is a (P∗,F(τ))-standard Brownian motion.

Let P∗ be the set of G-optional projections L∗,G of L∗(τ), which satisfies (6.3), where
the processes µG and ψ0 are given by equalities (6.4) and (6.5). More precisely, one has

µGt = −11{t≤τ}
1

L∗,0t Gt

∫ t

0

L∗t (u)
(ν
ρ

+ α0
t

)
pt(u) g(u) du− 11{τ<t}

(
ϕt(τ) +

ν

ρ

)
= −11{τ≥t}

(ν
ρ

+ α0
t

)
− 11{τ<t}

(
ϕt(τ) +

ν

ρ

)
, ∀t ≥ 0 , (6.7)

ψ0
t =

L∗t (t)

L∗,0t
− 1, ∀t ≥ 0 , (6.8)

where L∗,0 is the F-predictable reduction of L∗,G. Here, each element of P∗ is a (locally)
equivalent martingale measure on G. Note that µG does not depend on the choice of L∗0
(see (6.7)), whereas ψ0 depends on it.

The set P(G) of (locally) equivalent martingale measures on G corresponds to the set
of Radon-Nikodym density processes of the form E(µG •WG)E(γ0 •MG), where µG is given
by equality (6.7), for any F-predictable process γ0 = (γ0

t )t≥0 such that γ0
t > −1 holds, for

all t ≥ 0. For Q ∈ P(G), by virtue of Girsanov’s theorem, the process WG,Q = (WG,Q
t )t≥0

defined by

WG,Q
t = WG

t −
∫ t

0

µGs ds, ∀t ≥ 0 ,

is a (Q,G)-standard Brownian motion and the process MG,Q = (MG,Q
t )t≥0 defined by

MG,Q
t = MG

t −
∫ t∧τ

0

γ0
s λs ds = HG

t −
∫ t∧τ

0

(1 + γ0
s )λs ds, ∀t ≥ 0 ,

is a (uniformly integrable) (Q,G)-martingale, where the process λ is given by (4.9) above.
The change of probability measure defined above changes the driving Brownian motion
and the intensity rate of the random time τ . The specific choice of γ0 = 0 leads to a
change of probability measure which does not affect the form of the intensity.

Remark 6.4. The set P(G) of equivalent martingale measures on G is strictly larger8

than P∗, the set of G-optional projections L∗,G of L∗(τ). In order to show this matter, we
first note that any process L∗(τ) which is a Radon-Nikodym density of a measure P∗ in
P∗ is given by L∗(τ) = L∗0(τ)K(τ) with L∗0 being a deterministic function and

Kt(τ) = exp

(∫ t

0

ζs(τ) dWs(τ)− 1

2

∫ t

0

ζ2
s (τ) ds

)
, ∀t ≥ 0 ,

where K(τ) is the same for all choices of L∗(τ). Therefore, the equality of P(G) and P∗
would imply that any process of the form E(µG •WG)E(γ0 •MG) can be written in the
form E(µG •WG)E(ψ0 •MG) with ψ0 defined in (6.8). In other terms, for any F-predictable
process γ0 = (γ0

t )t≥0 such that γ0
t > −1, for all t ≥ 0, we are looking for a function L∗0

such that

γ0
t =

L∗0(t)Kt(t)

L∗,0t
− 1, ∀t ≥ 0 . (6.9)

We will prove that the existence of such a function L∗0 is not possible for some specific
choices of γ0. The quantity L∗,0t being computed in (4.6), the equation (6.9) is equivalent

8This can be explained by the fact that the multiplicity of the filtrations F(τ) and F is one, while the
multiplicity of G is two (see [7] for the notion of multiplicity).
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to

Gt L
∗
0(t)Kt(t) = (1 + γ0

t )

∫ ∞
t

L∗t (u) pt(u) g(u) du

= (1 + γ0
t )

∫ ∞
t

L∗0(u)Kt(u) pt(u) g(u) du, ∀t ≥ 0 . (6.10)

Using the definition of K(τ) above, equality (4.2) and the form of p(u) given in (3.2), one
obtains

Kt(u) pt(u) = exp

(
− ν

ρ
Wt −

1

2

(ν
ρ

)2

t

)
, ∀t ≥ 0 ,

so that this product does not depend on u ≥ 0 and equality (6.10) can be rewritten as

Gt L
∗
0(t)Kt(t) = (1 + γ0

t ) exp

(
− ν

ρ
Wt −

1

2

(ν
ρ

)2

t

) ∫ ∞
t

L∗0(u) g(u) du, ∀t ≥ 0 .

The choice of γ0
t = GtKt(t)χt− 1, for all t ≥ 0, for any strictly positive F-adapted process

χ = (χt)t≥0 leads to the equality

L∗0(t)

(∫ ∞
t

L∗0(u) g(u) du

)−1

= χt exp

(
− ν

ρ
Wt −

1

2

(ν
ρ

)2

t

)
, ∀t ≥ 0 ,

which provides a contradiction to our assumptions above, since the left-hand side is
deterministic, while the right-hand side is not, for ν 6= 0. Note that, if ν = 0, then the
stochastic exponential on the right-hand side above is equal to one. Hence, due to the
continuity of the processes, we have K(τ) = 1/p(τ), that corresponds to the choice of
the decoupling measure from [2].

Remark 6.5. Note that one can assume from the beginning, without subsequent compli-
cations, that the process S solves the stochastic differential equation

dSt = St
(
νt dt+ ρt dWt

)
, S0 = 1 ,

where ν = (νt)t≥0 and ρ = (ρt)t≥0 as well as the interest rate are some appropriate
F-adapted process, as soon as the appropriate model of financial markets is complete
and arbitrage free. We can also extend the study above to the case where the interest
rate is G-adapted with rt(τ) = 11{τ>t}r

0
t + 11{τ≤t}r

1
t (τ), for all t ≥ 0, where the processes

r0 = (r0
t )t≥0 and r1(u) = (r1

t (u))t≥0, u ≥ 0, are F-adapted.
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