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Abstract

The Horton–Strahler number of a tree is a measure of its branching complexity. It is
also known in the literature as the register function. We show that for critical Galton–
Watson trees with finite variance, conditioned to be of size n, the Horton–Strahler
number grows as 1

2
log2 n in probability. We further define some generalizations of this

number. Among these are the rigid Horton–Strahler number and the k-ary register
function, for which we prove asymptotic results analogous to the standard case.
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1 Introduction

Rooted trees, i.e., connected acyclic graphs with one node distinguished as the root,
are one of the most important structures in graph theory and computer science. Many
possible functions can be defined on them, one of which is the Horton–Strahler number.
It was originally conceived by geologists to classify real-world river networks and has
since then been applied in multiple fields; for instance, it is known as the register
function in computer science. The study of its asymptotics for various families of trees
has seen considerable attention.

The Horton–Strahler number. For rooted tree T , let |T | denote the size of the tree
and T [u] denote the subtree of T rooted at a node u. We recursively define the Horton–
Strahler number H(T ) of T as follows:
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The Horton–Strahler number of conditioned GW trees

1. if the root has no children, then H(T ) = 0,

2. otherwise, letting S be the set of children of the root, the Horton–Strahler number
of the tree takes on the maximum of the Horton–Strahler numbers of the subtrees
rooted at children of the root, plus one if two or more children attain the same
maximal Horton–Strahler number:

H(T ) = max{H(T [u]) : u ∈ S}+ 1[| arg maxu∈S H(T [u])|>1]. (1.1)

Background. The Horton–Strahler number was introduced in 1845 by Robert E. Hor-
ton [16] and redefined by Arthur N. Strahler [33] in the context of hydrogeomorphology.
This field represents a river network as a tree with a planar embedding, where the
point furthest downstream corresponds to the root and junctions between two streams
correspond to nodes in the tree. In his original work [16], Horton described a geometric
decay of the number of branches of increasing Horton–Strahler order in a large river
basin. Empirical findings from classical geological studies showed that in fact, many
other key physical characteristics of river networks (e.g., basin area, stream width and
length, flow velocity) can be modelled using the Horton–Strahler number [30, 31].

Figure 1. A visualization of a tree with
Horton–Strahler number 4, where all
nodes in the tree are collapsed into
edges, other than the root and nodes
forming an embedded complete binary
tree. In fact, the Horton–Strahler num-
ber of a tree is equal to the height of
the largest embedded complete binary
tree.

In computer science, the Horton–Strahler number is known as the register function
or register number [11], modulo the value at the leaf. It is equal to H(T ) + 1 and
corresponds to the minimum number of cpu registers needed to evaluate an expression
tree. The probability and theoretical computer science communities have mostly devoted
their attention to the register function of random equiprobable binary trees — Catalan
trees. Already in 1966, Shreve [32] made some conjectures about its value based on
simulations in a random topology model equivalent to a uniform distribution on planar
binary trees. Flajolet et. al. [14], Kemp [18] and Meir et. al. [27] independently found the
register function of a Catalan tree with n leaves to be log4 n+O(1). Later, Devroye and
Kruszewski [8] offered a simple probabilistic proof of this result. As for other families of
trees, Flajolet and Prodinger showed similar asymptotics for Motzkin trees [13].

Many quantities related to the Horton–Strahler number have been studied, mostly in
the Catalan tree setting. Moon and others investigated the behaviour of the bifurcation
ratio, i.e., ratio of number of branches with successive Horton–Strahler numbers [28,
36, 37]. The Horton–Strahler numbers have also been related to the self-similar (fractal)
structure of trees. They are connected to the Horton pruning operation, which iteratively
erases a tree; Burd et. al. [5] studied this pruning operation for critical binary Galton–
Watson trees. Other references on this topic can be found in the review by Kovchegov
and Zaliapin [24].

In our work, we consider a generalization of the Horton–Strahler number to general
rooted trees. Another such definition for trees with any number of children was given by
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Auber et. al. [2]. Drmota and Prodinger [9] showed that the distribution of this number
for a uniformly chosen t-ary tree is also highly concentrated around log4 n.

Galton–Watson processes. These processes were first studied in the context of disap-
pearance of family names in 1845 by Bienaymé [3] and in 1874 by Galton and Watson [15].
A Galton–Watson tree [1] with offspring distribution ξ is a rooted ordered tree in which
each node reproduces according to ξ, i.e., has i children with probability pi = P{ξ = i}.
Excluding the distribution where p1 ≡ 1, it is well known that these trees are finite
with probability one if and only if E{ξ} ≤ 1. Simultaneously, the first moment of the
size of trees with E{ξ} = 1 is infinite. We will consider these critical trees with mean
µ := E{ξ} = 1 and variance σ2 := V{ξ} ∈ (0,∞).

Let T denote a ξ-Galton–Watson tree, which from now on we will call unconditional
Galton–Watson tree. We distinguish this type of tree from from the trees we study in this
paper, that are conditioned to have size |T | = n. We will denote such a conditional tree
as Tn. Conditional Galton–Watson trees [19] are an especially interesting structure to
study, as certain offspring distributions have been shown to correspond to families of
“simply-generated trees” [26], such as k-ary trees, Motzkin trees and planted plane trees.
Picking a tree uniformly at random from such a family is thus equivalent to generating a
corresponding conditional Galton–Watson tree.

Theorem 1.1. Given a critical conditional Galton–Watson tree with offspring distribution
having variance 0 < σ2 <∞, the Horton–Strahler number of its root satisfies

H(Tn)

log2 n
→ 1

2

in probability as n→∞.

This expression synthesizes all previously known first order results; however, higher
order concentration information is not presented here. A major portion of this paper
consists in proving this theorem. Section 2 begins with results regarding the uncondi-
tional Galton–Watson tree, then the lower and upper bounds are respectively shown in
sections 3 and 4.

Furthermore, we present other definitions of possible Horton–Strahler numbers (see
section 5), and offer partial or full results about these numbers. For instance, included
in these definitions is a k-ary register function of a tree for k ≥ 2, which corresponds to
a computational model in which each register in a computer takes k inputs to produce
an output in one step. Specifically, we define it to be equal to the height of the largest
embedded complete k-ary tree. For k ≥ 3, we show that the k-ary register function
of a critical conditional Galton–Watson tree with offspring distribution satisfying some
conditions on its higher moments grows as

log2 log2 n

log2 k/2

in probability as n→∞.

2 Unconditional Galton–Watson trees

We begin by determining the distribution of the Horton–Strahler number of a Galton–
Watson tree with no size conditioning. These results, particularly Lemma 2.2, will be
crucial to later proofs of the upper and lower bounds in Sections 3 and 4. Indeed,
unconditional Galton–Watson trees are a part of the construction of Kesten’s limit
tree [21], which we will introduce and heavily use in the next section.
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Our first lemma formalizes the intuition that nodes with one child are irrelevant to
the Horton–Strahler number, as these nodes simply pass on the number of their only
child. We will show that, in fact, altering the offspring distribution by removing the
probability of having one child still preserves the original Horton–Strahler number.

Lemma 2.1. Let ξ be an offspring distribution with mean µ = 1 and variance 0 < σ2 <∞.
Let ζ be an altered distribution defined by P{ζ = 1} = 0 and P{ζ = i} = pi/(1 − p1)

for i 6= 1. Notice we still have Eζ = 1 and 0 < Vζ < ∞. Then, letting T and T ′ be
unconditional Galton–Watson trees with respective offspring distributions ξ and ζ, we
have

H(T ′)
L
= H(T ), (2.1)

where
L
= denotes equality in distribution.

Proof. Let t be a discrete rooted tree and t′ be the corresponding tree where the vertices
with outdegree 1 are forgotten. We denote by S(t′) the set of discrete rooted trees that
become t′ under this procedure. Notice that

P{T = t} = p
|{u∈t: d(u)=1}|
1 (1− p1)|t

′|P{T ′ = t′},

where d(u) denotes the outdegree of u. By the definition of H, we have H(t) = H(t′).
Then, letting N0 denote the non-negative integers, for any x ∈ N0,

P{H(T ) = x} =
∑

t:H(t)=x

P{T = t}

=
∑

t′:H(t′)=x

∑
t∈S(t′)

P{T = t}

=
∑

t′:H(t′)=x

∑
nv∈N0:v∈t′

( ∏
v∈t′

pnv
1

)
(1− p1)|t

′|P{T ′ = t′}

=
∑

t′:H(t′)=x

P{T ′ = t′}
∏
v∈t′

(
(1− p1)

∑
nv∈N0

pnv
1

)
= P{H(T ′) = x}.

Armed with this lemma, we will be able to simplify proofs by trivially removing
single-child nodes from any offspring distribution we are given without changing the
distribution of the Horton–Strahler number.

We now come to the main theorem regarding the Horton–Strahler number of uncondi-
tional Galton–Watson trees: this number has an exponentially decreasing probability. This
has already been shown for Catalan trees; for instance, see Devroye and Kruszewski [8].
We note that a random Catalan tree can be generated as a Galton–Watson tree with
offspring distribution p0 = 1/4, p1 = 1/2, p2 = 1/4.

A Simple Proof for Catalan Trees. We can prove by induction that for a Catalan tree
T , for x ∈ N0,

P{H(T ) = x} = 2−(x+1).

Proof. First, we have from Lemma 2.1 that the Horton–Strahler number of a Catalan
tree is distributed identically to that of a full binary tree generated via the distribution
p0 = 1/2, p1 = 0, p2 = 1/2. The base case is trivial:

P{H(T ) = 0} = p0 = 1/2.
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Then, supposing that P{H(T ) = x− 1} = 2−x, we have

p := P{H(T ) = x} = p2

(
(2−x)2 + 2p

x−1∑
i=0

2−(i+1)
)

=
1

2

(
(2−x)2 + 2p(1− 2−x)

)
,

which can be simplified to p = 1
2 (2−x), completing the proof.

Curiously, trees generated from all other critical offspring distributions give rise to
very similar formulas for their Horton–Strahler numbers.

Lemma 2.2. Let T be an unconditional Galton–Watson tree with offspring distribution ξ
with µ = 1 and 0 < σ2 <∞. Then, with x ∈ N,

P{H(T ) = x} = Θ(2−x+o(x)) (2.2)

as x→∞.

The proof of this lemma relies on a recursive formula for P{H(T ) = x} and some
technical details. Since they provide little intuition, we relegate it to Appendix A.

We can also show that the Horton–Strahler number of any critical unconditional
Galton–Watson tree (including those with infinite variance) has an exponentially decreas-
ing upper bound.

Lemma 2.3. For all critical unconditional Galton–Watson trees with any σ2 ∈ (0,∞], we
have that qi is monotonically decreasing as i→∞. Also, for i ≥ 2,

qi ≤
p0

(1− p1)2i/2
.

Proof. Passing from ξ to ζ as in Lemma 2.1, we have from (A.3) that qi ≤ q2i−1/2q
+
i , and

so
q2i ≤ qiq+i ≤ q

2
i−1/2.

Thus, qi is monotone and qi ≤ q0/2i/2 = p0/2
i/2.

3 Lower bound via Kesten’s limit tree

In order to prove the lower bound, we will be using the notion of Kesten’s limit
tree [21]. This limit tree T∞ is an infinite tree consisting of a central spine and uncon-
ditional trees hanging off the spine. To define how this tree and its spine is generated,
we define a new size-biased random variable ζ as P{ζ = i} = ipi, where pi correspond
to our original offspring distribution ξ. This is a valid probability distribution since we
are considering distributions ξ with mean E{ξ} =

∑∞
i=1 ipi = 1. The spine of Kesten’s

tree thus consists of one node on each level that reproduces according to ζ; note that
ζ ≥ 1, making this tree infinite. One of the children of each spine node, picked uniformly
at random, is assigned to be the spine node of the next level, and all others are roots
of an unconditional Galton–Watson tree with offspring distribution ξ. There is a local
convergence of conditional Galton–Watson trees to this infinite tree. Denote for any tree
T the finite tree τ(T, h), which is T cut off after level h. We have that for all fixed heights
h > 0 and all trees t,

lim
n→∞

P{τ(Tn, h) = τ(t, h)} = P{τ(T∞, h) = τ(t, h)}. (3.1)

In the case where the variance of ξ is finite, this convergence does not in fact require
the truncation height h to be a constant — it can also depend on the size n of the tree. It
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has been shown by Kersting [20, Thereom 5] (see also Stufler [34, Theorem 5.2] for a
related result) that this holds for sequences of heights hn satisfying

hn = o(
√
n).

Intuitive “proof”. The view of the conditional Galton–Watson tree converging to a
Kesten tree gives us the intuition for the Horton–Strahler number of the root being
1
2 log2 n. It is well known [12] that conditional Galton–Watson trees have expected height
O(
√
n). Then, for approximation, consider a Kesten tree with its spine cut off at height√

n/σ, denoted T∞√
n/σ

. This tree has a spine of length
√
n/σ and each spine node indexed

i = 1, . . . ,
√
n/σ has ζi − 1 independent unconditional Galton–Watson trees hanging from

it. We let the j-th unconditional tree hanging from spine node i be Tij , j = 1, . . . , ζi − 1.
The Horton–Strahler number of the root then satisfies

max
ij

H(Tij) ≤ H
(
T∞√n/σ

)
≤ max

ij
H(Tij) + 1.

We therefore have

P
{
H
(
T∞√n/σ

)
≥ x

}
≤ P

{
max
ij

H(Tij) + 1 ≥ x
}

≤ E
{√n/σ∑

i=1

ζi−1∑
j=1

1[H(Tij)≥x−1]

}
.

Using Wald’s inequality [35] with E{ζi} = σ2 + 1, and noting that Tij are all i.i.d. and
distributed as T ,

P
{
H
(
T∞√n/σ

)
≥ x

}
≤
√
n

σ
σ2P{H(T ) ≥ x− 1}

= σ
√
n · 2−x+2+o(x), (3.2)

which tends to zero if x = (1/2 + ε) log2 n for some ε > 0.
For the lower bound, the following is slightly incorrect, as it assumes that each spine

node has at least one hanging tree. We present it here to illustrate the main idea; see
the proof of Theorem 1.1 for the rigorous statement.

P
{
H
(
T∞√n/σ

)
≤ x

}
≤ P

{
max
ij

H(Tij) ≤ x
}

≤ P
{√n/σ⋂

i=0

[H(Ti1 ≤ x]
}

≤ (1−P{H(T ) > x})
√
n/σ

since the unconditional trees Tij are i.i.d. distributed as T . Then, applying Lemma 2.2
yields

P
{
H
(
T∞√n/σ

)
≤ x

}
≤ (1− 2−x+o(x))

√
n/σ

≤ exp(−
√
n/σ2−x+o(x)), (3.3)

which tends to zero if x = (1/2− ε) log2 n for ε > 0.
We thus have that the Horton–Strahler number of Kesten’s limit tree truncated at

level
√
n/σ tends to 1

2 log2 n. Intuitively, since conditional Galton–Watson trees converge
to this limit tree as n → ∞, in the sense of (3.1), the Horton–Strahler number of our
conditional trees should be the same as n→∞. Indeed, the lower bound for conditional
Galton–Watson trees can be proven using the same method as what we have just used in
this intuitive proof.
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Proof of the lower bound in Theorem 1.1. We seek to prove that

P{H(T ) ≤ x | |T | = n} → 0 (3.4)

if x = (1/2− ε) log2 n for any ε > 0.
Recall some notation: T denotes an unconditional Galton–Watson tree, and T∞

denotes Kesten’s limit tree. For some integer `, we can cut off T∞ by taking all the nodes
on the spine including the node at distance ` from the root, but no further. To this, we
can add all unconditional trees hanging from these `+ 1 spine nodes. This forms a finite
tree that we denote T∞` ; a diagram is shown in Figure 2.

ρ

` Figure 2. A visualization of T∞` :
Kesten’s limit tree T∞ rooted
at a node ρ, with its spine trun-
cated after the spine node on
level `. Each triangle represents
a hanging unconditional Galton–
Watson tree.

Let h(T ) denote the height of a tree T , and let Tn denote the tree T conditioned to
have size |T | = n. For some x ≥ 1, define the three probabilities

I := P

{
h
(
T∞√n/ logn

)
>

√
n

log n

}
,

II := P

{
τ

(
Tn,

√
n

log n

)
6= τ

(
T∞,

√
n

log n

)}
, (3.5)

III := P

{
h
(
T∞√n/ logn

)
≤
√

n

log n
, τ

(
Tn,

√
n

log n

)
= τ

(
T∞,

√
n

log n

)
, H(Tn) ≤ x

}
.

We have

P{H(Tn) ≤ x} ≤ I + II + III. (3.6)

Let’s start with the two terms that do not depend on x. As discussed earlier in this
section, Kersting [20] showed that P{τ(Tn, hn) 6= τ(T∞, hn)} = o(1) if hn = o(

√
n). Thus,

since
√
n/ log n = o(

√
n), we have

II = o(1). (3.7)

Now for the first term, let ` =
√
n/ log n. We recall our notation of ζi as the number

of children of the i-th node on the spine, and further define Tij to be the j-th Galton–
Watson tree hanging from this i-th spine node. These unconditional trees are i.i.d. and
distributed as T . We thus have

I ≤ E

{∑̀
i=0

ζi−1∑
j=1

1[
h(Tij)≥

√
n/ logn−`

]},
and by Wald’s identity [35], as E{ζ} = σ2 + 1,

I ≤
( √

n

log n
+ 1

)
σ2P

{
h(T ) ≥

√
n

log n
−
√
n

log n

}
.
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Finally, using Kolmogorov’s estimate (see [22] or [25, Theorem 12.7]), this grows as

I = O

( √
n

log n
σ2 2

σ2
√
n/ log n

)
= O

(
2√

log n

)
, (3.8)

which approaches zero as n→∞.
For the third term, note that the first and second events included in the probability

imply that the truncated Kesten limit tree T∞` at ` =
√
n/ log n is completely included

in our conditional Galton–Watson tree Tn. This inclusion implies that H(T∞` ) ≤ H(Tn),
which yields

III ≤ P {H(T∞` ) ≤ x} .
Note that now this is exactly the form of what we had in the intuitive proof! We can thus
follow exactly in the steps outlined in the derivation of (3.3). Let Tij again denote the j-th

unconditional Galton–Watson tree hanging from the i-th spine node. Let N =
∑`
i=0(ζi−1)

be the number of hanging trees, which has mean E{N} = (`+1)σ2. Note that the hanging
trees are i.i.d. distributed as T , the number N is a sum of `+ 1 i.i.d. random variables.
Therefore, using the law of large numbers, we can bound

P

{
N < (`+ 1)

σ2

2

}
≤ P

{∣∣N − (`+ 1)σ2
∣∣ > (`+ 1)

σ2

2

}
= o(1). (3.9)

We then have

III ≤ P
{

max
ij

H(Tij) ≤ x,N ≥ (`+ 1)
σ2

2

}
+ P

{
max
ij

H(Tij) ≤ x,N < (`+ 1)
σ2

2

}
≤ (1−P{H(T ) > x})`σ

2/2 + o(1)

≤ exp

(
−σ

2

2

√
n

log n
2−x+o(x)

)
+ o(1), (3.10)

which tends to zero as n→∞ for x = (1/2− ε) log2 n; ε ∈ (0, 1/2).

Thus, modulo some details regarding the convergence of the conditional Galton–
Watson tree to Kesten’s limit tree, the intuitive proof idea miraculously works to show
the lower bound of our result. However, the upper bound cannot be shown following this
proof sketch; the contributions of terms underneath any given cutoff cannot be ignored.
We will instead offer a proof based on the construction of rotationally invariant events.

4 Upper bound via a rotationally invariant event

For the upper bound, we note that in order for a tree to have a Horton–Strahler
number equal to k, we must be able to embed a complete binary tree of height k in the
original tree (see Figure 1). We therefore immediately have a deterministic upper bound
of

Hn ≤ log2

(n+ 1

2

)
for any tree of size n. We seek to do better than this.

Random walk view of a Galton–Watson tree. Numbering the nodes in a Galton–
Watson tree T in preorder traversal, each node has a tree degree ξi independently
distributed as ξ. This sequence of random variables defines a tree of size

|T | = min{t > 0 : 1 + (ξ1 − 1) + · · ·+ (ξt − 1) = 0}

= min
{
t > 0 :

t∑
i=1

ξi = t− 1
}
.

(4.1)
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Thus, for a tree of size |T | = n, the event

A =
{ n∑
i=1

ξi = n− 1
}

(4.2)

must be true, and furthermore, the random walk must stay positive until the last time
step where it reaches −1, i.e., for all t < n,

∑t
i=1(ξi − 1) ≥ 0.

Rotationally invariant events. Any event B on a tree T of size |T | = n is determined
by the degree sequence ξ1, . . . , ξn of the tree. We say that a general event B on ran-
dom variables ξ1, . . . , ξn satisfies rotation invariance if it remains true when applied to
ξi, . . . , ξn, ξ1, . . . , ξi−1 for any rotation i ∈ {1, . . . , n}. We have a powerful tool to deal with
such events on a conditional Galton–Watson tree T . Letting A be the event defined in
(4.2) and using Dwass’ cycle lemma [10], it can easily be shown (e.g. in [4]) that

P{B | |T | = n} = P{B | A}. (4.3)

We have an exact asymptotic limit for P{A} due to Kolchin [23]. For ξ1, . . . , ξn distributed
i.i.d. as ξ, letting the period of ξ1 be

h = gcd{i ≥ 1 : pi > 0},

we have

P{A} ∼ h

σ
√

2πn
. (4.4)

Now, note that any sequence of random variables ξ1, . . . , ξn on N0 defines a forest in
which the last tree is possibly unfinished. The construction is obtained as follows: at
index k (and initializing with k = 1), we pick the first index ` ∈ {k, . . . , n} for which the
degree sequence ξk, . . . , ξ` defines a tree, i.e., satisfies (4.1) for an appropriate tree size.
If there is no such index `, then the tree starting at k is unfinished. Otherwise, the same
procedure is repeated to determine the next tree with k ← `+ 1, until ` = n.

Given a forest F , we let T [F ] denote the first finished tree in F . If the first tree is
unfinished, let T [F ] be the empty set.

3, 0, 2, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 3, 0, 2, 0, 0, 2, 0, 0

0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 3, 0, 2, 0, 0, 2, 0, 0, 3, 0, 2

Figure 3. Example of the forest corresponding to a sequence (ξ1, . . . , ξ27), as well
as the forest F4 corresponding to the sequence rotated to begin at the i = 4th entry.
Remark how in both cases, the last tree is unfinished.

In order to make use of (4.3) and (4.4) in our current setting, we must define a
rotationally invariant event that is related to the Horton–Strahler number. Given a
sequence of ξ1, . . . , ξn each i.i.d. distributed as ξ, for each i ∈ {1, . . . , n}, we let Fi
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be the forest defined by the rotated sequence ξi, . . . , ξn, ξ1, . . . , ξi−1 and let ηi be the
Horton–Strahler number of its first tree T [Fi], where ηi = 0 if T [Fi] = ∅, and otherwise

ηi = H(T [Fi]).

Then, we define
H∗n = max

1≤i≤n
ηi,

a rotationally invariant quantity. On the event that the random variables ξ1, . . . , ξn
correspond to a tree Tn of size n, we have H(Tn) = η1 and thus

H(Tn) ≤ H∗n. (4.5)

The upper bound we seek to show will follow from the following theorem linking the
Horton–Strahler number of a conditional Galton–Watson tree to the η1 we just defined.

Lemma 4.1. Given a critical conditional Galton–Watson tree with offspring distribution
ξ and 0 < σ2 <∞, for some constant c,

P{H(T ) ≥ x | |T | = n} ≤ c
√
nP{η1 ≥ x− 2} (4.6)

for any integer x ≥ 3 where, as previously defined, η1 is the Horton–Strahler number of
the first tree in a sequence of n random variables i.i.d. distributed as ξ.

Proof. Let ξ1, . . . , ξn be i.i.d. distributed as ξ. Then, recalling (4.5) and using (4.3) since
H∗n is a rotationally invariant event, we have

P{H(T ) ≥ x | |T | = n} ≤ P{H∗n ≥ x | A}

=
P{H∗n ≥ x,A}

P{A}
.

(4.7)

If ηi ≥ x, then there must exist some j with ηj ≥ x − 2 such that the size of the
corresponding tree T [Fj ] is at most n/4. This is since there must be at least four disjoint
subtrees with Horton–Strahler number greater or equal to x − 2, and the smallest of
these subtrees must have size |T [Fj ]| ≤ n/4. We thus define

η
(n/4)
i =

{
ηi if |T [Fi]| ≤ n/4,
0 otherwise

. (4.8)

for all i ∈ {1, . . . , n}. Thus, the numerator of (4.7) satisfies

P{H∗n ≥ x,A} ≤ P
{

max
i
η
(n/4)
i ≥ x− 2, A

}
≤ 4P

{
max

1≤i≤n/4
η
(n/4)
i ≥ x− 2, A

}
. (4.9)

Next, we define the cumulative sums Sk for k ∈ {0, . . . , n} as S0 = 0, and for k ≥ 1,

Sk = ξ1 + · · ·+ ξk. (4.10)

For 1 ≤ k < ` ≤ n, we also let F [k, `] correspond to the forest defined by ξk, . . . , ξ` which
has a possibly unfinished last tree. Then, for any i ∈ {1, . . . , n/4}, we define η∗i as follows:

1. if the first tree in F [i, n/2− 1] is finished, let η∗i = ηi;

2. otherwise, if the first tree in F [i, n/2 − 1] is unfinished, let η∗i be the maximal
Horton–Strahler number for any subtree occurring in the forest F [i, n/2− 1], and
let η∗i = 0 if there are no finished subtrees.
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Note that we again consider the Horton–Strahler number of any unfinished tree in this
forest to be zero. As such, the subtree for which the maximum in (ii) occurs has size less
than n/2, and so for all 1 ≤ i ≤ n/4,

η
(n/4)
i ≤ η∗i ≤ ηi.

Then, defining the events

Ai =

{
max
1≤j<i

η∗j < x− 2, η∗i ≥ x− 2

}
and

Di =

{
max
1≤j<i

η∗j < x− 2, η∗i ≥ x− 2, A

}
= Ai ∩A,

and applying the union bound, the inequality (4.9) becomes

P{H∗n ≥ x,A} ≤ 4P

{
max

1≤i≤n/4
η∗i ≥ x− 2, A

}
≤ 4

n/4∑
i=1

P {Di} .

We must now analyze the event Di:

P{Di} = P
{
Ai,

n∑
j=1

ξj = n− 1
}

=

∞∑
k=−∞

P
{
Ai, Sn/2−1 = k,

n∑
j=n/2

ξj = n− k − 1
}

=

∞∑
k=−∞

P
{
Ai, Sn/2−1 = k

}
·P
{ n∑
j=n/2

ξj = n− k − 1
}

≤
∞∑

k=−∞

P
{
Ai, Sn/2−1 = k

}
· sup
k

P
{ n∑
j=n/2

ξj = k
}
,

where the third equality holds by independence of the ξi’s. In order to bound this, we
make use of Rogozin’s inequality (see [29, Page 56] or [7, Theorem 2]), which we recall
states that if X1, . . . , Xn are i.i.d. random variables and

p = sup
x

P{Xi = x},

then
sup
x

P{X1 + · · ·+Xn = x} ≤ α√
n(1− p)

(4.11)

for some universal constant α. In our case, we consider offspring distributions ξ satisfying
0 < σ2 <∞, which guarantees p0 > 0. We therefore have p < 1, and arrive at

P{Di} ≤
c′√
n
P{Ai} (4.12)

for some constant c′. Further defining the event

Bi =

{
max
1≤j<i

η∗j < x− 2

}
,

we can write the event Ai as Ai = Bi∩{η∗i ≥ x−2}. For this event Ai to occur, if i > 1, we
must have Si−1 − (i− 1) < min0≤`<i−1(S` − `). Indeed, for x ≥ 3 and a fixed 1 < i ≤ n/4,
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to have η∗i ≥ x− 2 ≥ 1, the forest F [i, n/2− 1] must contain a finished subtree t. Then,
suppose for contradiction that there exists an unfinished tree in ξ1, . . . , ξi−1 starting at
index j ∈ {1, . . . , i − 1}. Expanding to consider ξ1, . . . , ξn/2−1, the finished t that must
exist will also be a subtree of this unfinished tree, causing us to have η∗j ≥ η∗i . Therefore
for the event Ai to occur, every subtree in F [1, i − 1] must be finished, leading to our
condition. The situation will look as illustrated in Figure 4.

i− 1

S′j

j

· · ·

bn/2c − 1

k

Figure 4. Illustration of the random walk S′j := Sj − j on a possible occurrence of
the event Ai. The blue part represents the finished subtree that must exist if η∗i ≥ 1.
Observe that all the subtrees corresponding to ηj for j ≤ i− 1 are finished before i.

For i = 1, we directly have

P{A1} ≤ P{η1 ≥ x− 2}.

For i > 1, letting S′j = Sj − j for any j ∈ N0,

P{Ai} =

∞∑
k=−∞

P
{
Bi, S

′
i−1 = k < min

1≤`<i−1
S′`, η

∗
i ≥ x− 2

}
=

∞∑
k=−∞

P
{
Bi, S

′
i−1 = k < min

1≤`<i−1
S′`

}
·P {η∗i ≥ x− 2}

≤
−1∑

k=−∞

P{S′i−1 = k < min
1≤`<i−1

S′`} ·P {ηi ≥ x− 2}

=

−1∑
k=−∞

|k|
i− 1

P{S′i−1 = k} ·P {η1 ≥ x− 2}

=
E
{
|S′i−1|1[S′i−1≤−1]

}
i− 1

P {η1 ≥ x− 2} ,

where the last line follows from Dwass’ formula[10]. Then, by Cauchy-Schwartz,

P{Ai} ≤ E

{ |S′i−1|
i− 1

}
P {η1 ≥ x− 2}

≤

√
E{(S′i−1)2}

i− 1
P {η1 ≥ x− 2}

=
σ√
i− 1

P {η1 ≥ x− 2} .
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Thus, considering the two cases i = 1 and i > 1,

Di ≤

{
c′√
n
P {η1 ≥ x− 2} i = 1,

c′√
n

σ√
i−1P {η1 ≥ x− 2} i > 1.

(4.13)

Therefore, returning to the numerator of (4.7), we have

P{max
i
ηi ≥ x,A} ≤ 4P{η1 ≥ x− 2} · c

′
√
n

(
1 +

n/4∑
i=2

σ√
i− 1

)
≤ c′′P{η1 ≥ x− 2}

for some constant c′′. Finally, we have from (4.4) that there exists another constant c
such that

P{H(T ) ≥ x | |T | = n} ≤ c′′P{η1 ≥ x− 2}
P{A}

≤ c
√
nP{η1 ≥ x− 2},

completing the proof.

Everything we require to complete the proof of Theorem 1.1 follows from this lemma.

Proof of the upper bound in Theorem 1.1. Recall that we would like to show that for a
critical Galton–Watson tree T with 0 < σ2 < ∞ conditioned to have size |T | = n, as
n→∞,

P{H(T ) ≥ x | |T | = n} → 0 (4.14)

if x = (1/2 + ε) log2 n for any ε > 0.
We have that

P{η1 ≥ x− 2} ≤ P{H(T (ξ1, ξ2, · · · )) ≥ x− 2},

where H(T (ξ1, ξ2, · · · )) is the Horton–Strahler number of the first tree in the infinite
sequence ξ1, ξ2, . . . , i.e., the Horton–Strahler number of an unconditional Galton–Watson
tree.

Recall that we had from Lemma 2.2 that

P{H(T ) ≥ x− 2} ≤ 2−x+o(x)

as x→∞ for an unconditional Galton–Watson tree T . Thus, by Lemma 4.1, there exists
a constant c such that

P{H(T ) ≥ x | |T | = n} ≤ c
√
n2−x+o(x),

which tends to zero if x = (1/2 + ε) log2 n, for any ε > 0.

5 Generalizations of the Horton–Strahler number

Our definition (1.1) is not the only possible one. In this definition, the number
increases at each river branching where two rivers attain the same maximal flow. We
can define various generalizations of this number for non-binary trees, ranging from less
to more strict. We will discuss three additional natural definitions. All of them will be
recursively defined from the values of all subtrees, and leaf nodes u with subtree size
|T [u]| = 1 will always have the value 0.
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1. The French Horton–Strahler number, where French refers to its source, Auber
et. al. [2]. If the root of the tree T has k children with subtrees taking values
F1 ≥ F2 ≥ · · · ≥ Fk ≥ 0 (sorted in decreasing order), then the tree has French
Horton–Strahler number

F (T ) := max
1≤i≤k

(Fi + (i− 1)). (5.1)

2. The Canadian Horton–Strahler number. If the root of the tree T has k children
with subtrees taking values C1 ≥ C2 ≥ · · · ≥ Ck ≥ 0 (sorted in decreasing order),
and we have r children with the maximal value C1 = · · · = Cr > Cr+1 ≥ · · · , then
the root has Canadian Horton–Strahler number

C(T ) := C1 + (r − 1) = max
1≤i≤k

Ci + (r − 1). (5.2)

3. The (standard) Horton–Strahler number studied earlier in this paper was given in
(1.1). Following similar notation as given in this list, for k children with subtrees
taking values H1 ≥ H2 ≥ · · · ≥ Hk ≥ 0, then the Horton–Strahler number of the
root is

H(T ) :=

{
H1 = max1≤i≤kHi if k = 1,

H1 + 1[H1=H2] if k > 1.

4. The rigid Horton–Strahler number. Again, with the same notation of k children
with subtrees taking values R1 ≥ R2 ≥ · · · ≥ Rk ≥ 0, we have

R(T ) :=

{
R1 = max1≤i≤k Ri if k = 1,

R1 + 1[R1=···=Rk] if k > 1.
(5.3)

Note that all these definitions coincide for binary trees.

4

3

22 221

1 2 2

22

(i) French Horton–Strahler number

3

3

22 221

1 2 2

22

(ii) Canadian Horton–Strahler number

3

2

11 111

1 1 1

12

(iii) standard Horton–Strahler number

2

2

11 111

1 1 1

12

(iv) rigid Horton–Strahler number

Figure 5. An illustration of the different Horton–Strahler numbers (i)–(iv) for a
given tree. In all cases, the leaves have value 0.

We also have the following ordering:
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Lemma 5.1. For any tree T , the different Horton–Strahler numbers are ordered accord-
ing to

F (T ) ≥ C(T ) ≥ H(T ) ≥ R(T ). (5.4)

The proof proceeds by induction on the height of the tree, and is given in Appendix B.

From this lemma, we immediately get that (1/2) log2 n is a universal lower bound
for both the French and the Canadian Horton–Strahler numbers F (Tn) and C(Tn) of
any critical conditional Galton–Watson tree Tn with 0 < σ2 < ∞. Indeed, the French
Horton–Strahler number F (Tn) for a uniformly random k-ary tree Tn of size n was shown
to satisfy

F (Tn) ∼ 1

2
log2 n (5.5)

in probability by Drmota and Prodinger [9]. They in fact show that F (Tn) is quite
concentrated about (1/2) log2 n, regardless of the value of k ≥ 2. We recall that a
uniformly random k-ary tree of size n is a conditional Galton–Watson tree with offspring
ξ ∼ Binomial(k, 1/k). Therefore, from what we have shown in this paper, its (standard)
Horton–Strahler number also scales as (1/2) log2 n. One may then be tempted to believe
that (5.5) holds for the French Horton–Strahler number of conditional Galton–Watson
trees Tn generated from any offspring distribution ξ with finite variance σ2, but that is
false. The definition of F (Tn) is quite sensitive to the degree distribution: it is easy to
see that if Mn is the maximal degree of any node in Tn, then

F (Tn) ≥Mn − 1.

Maximal degrees of conditional Galton–Watson trees are well understood; see for
example Janson’s complete treatment [17]. If ξ has a polynomial tail, then the maximal de-
greeMn grows at a polynomial rate as well. For exponential tails, Mn grows as a constant
multiple of log n. Thus, for general critical offspring distributions, a (1/2) log2 n upper
bound for the French Horton–Strahler number does not hold. However, it seems plausi-
ble that for distributions with bounded degree or exhibiting a faster-than-exponential
decrease in the tail, (5.5) would remain true.

The Canadian Horton–Strahler number C(Tn) is much less sensitive than F (Tn). Just
like the French number, it satisfies the lower bound

P{C(Tn) ≤ (1/2− ε) log2 n} = o(1)

for all ε > 0; but C(Tn) can still be much larger than (1/2) log2 n.

Finally, from Lemma 5.1, the rigid Horton–Strahler number has (1/2) log2 n+ o(1) as
a strict upper bound. We can further study it using the tools developed in this paper.
We will find that it tends as either log2 log2 n or log2 n, modulo constant multiplicative
factors. Our results are presented in section 6.

Another possible generalization of the Horton–Strahler can be given from the struc-
tural view of the number. We will recall the structural definition of the standard Horton–
Strahler number (i.e., the register function) and define the k-ary register function for
any tree T .

1. The register function (i.e., the standard Horton–Strahler number) H(T ) is the
height of the largest complete binary tree that can be embedded in T .

2. Similarly, we define the k-ary register function K(T ) for any given k ≥ 2 to be
the height of the largest complete k-ary tree that can be embedded in T . The
definition can also be written recursively. First, set the value of a leaf node u with
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|T [u]| = 1 to be 0. Then, if the root of the tree T has ` ≥ k children with values
K1 ≥ K2 ≥ . . .K` (sorted in decreasing order), the tree has k-ary register function

K(T ) := K1 + 1[K1=···Kk]

= max{K1,Kk + 1}.
(5.6)

If the tree has ` < k children, then K(T ) = K1.

Note that as stated in the introduction, the register function corresponds to H(T ) + 1 in
the literature (which amounts to letting the leaves have value 1). We omit this difference
in our discussion for clarity of notation.

The definitions of the regular register function and the k-ary register function coincide
for k = 2. We also have that K(T ) ≤ H(T ) for any k. However, K(T ) does not fit cleanly
into the chain of inequalities in Lemma 5.1; its relationship to the rigid Horton–Strahler
number depends on the specific offspring distribution.

The asymptotic behaviour of the k-ary register function for a conditional Galton–
Watson tree can be determined quite simply using the tools developed in this paper. The
result will be presented in section 7. We prove a lemma regarding the unconditional tree,
and then the theorem follows by the same proof as for the rigid Horton–Strahler number.

6 The rigid Horton–Strahler number

We begin with analogs of Lemma 2.1 and Lemma 2.2 regarding unconditional Galton–
Watson trees for the rigid Horton–Strahler number. Note that we only need to deal with
trees satisfying P{ξ > 2} > 0, since all the definitions of the Horton–Strahler number
coincide for binary trees.

Lemma 6.1. Let ξ be an offspring distribution with µ = 1 and 0 < σ2 <∞. Consider the
altered distribution ζ defined in Lemma 2.1 with the probability of one child set to zero.
Then, letting T and T ′ be unconditional Galton–Watson trees with respective offspring
distributions ξ and ζ, we have

R(T ′)
L
= R(T ). (6.1)

This lemma can be proved in exactly the same way as Lemma 2.1 with a replacement
of H() by R(). It is used to show the following analog of Lemma 2.2 for the rigid
Horton–Strahler number.

Lemma 6.2. Consider an unconditional critical Galton–Watson tree T with 0 < σ2 <∞.
Define a parameter

d := min{i > 1 : pi > 0}. (6.2)

If d = 2, then

P{R(T ) = x} =

(
1 +

√
σ2

2p2

)−x+o(x)
. (6.3)

Otherwise, if d > 2, then there exist constants αi > 0 such that

(1 + α3)−α4(d/2)
x

≤ P{R(T ) = x} ≤ (1 + α1)−α2(d/2)
x

(6.4)

for x ≥ α5.

The proof of this theorem proceeds similarly to that of Lemma 2.2, and is included in
Appendix C. Note that for binary critical trees T , we have p0 = p2, implying p1 = 1− 2p2,
and σ2 = p1 + 4p2 − 1 = 2p2. Therefore,

√
σ2/2p2 = 1 and, as expected, the rigid

Horton–Strahler number is equal to the regular Horton–Strahler number:

P{R(T ) = x} = 2−x+o(x).
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We can now derive asymptotics for the rigid Horton–Strahler number just as we did
in sections 3 and 4. As shown in the preceding theorem, the parameter d matters a lot,
determining whether the growth scales as log2 n or log2 log2 n. The results are formalized
below.

Theorem 6.3. Consider a critical Galton–Watson tree T conditioned to be of size |T | = n,
and define d as in the previous theorem. If d > 2, we have

R(Tn)

log2 log2 n
→ 1

log2 d/2
(6.5)

in probability as n→∞. On the other hand, if d = 2, letting γ = 1 +
√
σ2/2p2,

R(Tn)

log2 n
→ 1

2 log2 γ
(6.6)

in probability as n→∞.

Proof. Let us begin with the d > 2 case. The upper bound can be proven very simply. We
have

P{R(T ) ≥ x | |T | = n} =
P{R(T ) ≥ x, |T | = n}

P{|T | = n}

≤ P{R(T ) ≥ x}
P{|T | = n}

= Θ(n3/2)P{R(T ) ≥ x},

where we have P{|T | = n} ∼ n−3/2 from Dwass’ formula and (4.4), along the subse-
quence of n for which this probability is positive. As T is an unconditional Galton–Watson
tree, we can then bound the right hand side using Lemma 6.2: there exist constants
αi > 0 such that

P{R(T ) ≥ x | |T | = n} ≤ Θ(n3/2)α3(1 + α1)−α2(d/2)
x

.

This tends to zero for x = (1 + ε) log2 log2 n
log2 d/2

.
The lower bound can be proven following the outline of the “intuitive proof” from

section 3, using the same method as the one used to prove the lower bound (3.4) of
Theorem 1.1. We have the same decomposition as in (3.6):

P{R(T ) ≤ x | |T | = n} = I + II + III, (6.7)

where I, II and III are exactly as defined in (3.5), except with H’s switched for R’s in
the definition of the third term. We showed in (3.8) and (3.7) that both I and II are o(1).
To upper bound III, we can once again consider the truncated Kesten limit tree T∞` at
` =
√
n/ log n depicted in Figure 2, with unconditional hanging trees Tij i.i.d. distributed

as T . Recall from (3.9) that the number of hanging trees N satisfies

P

{
N < (`+ 1)

σ2

2

}
= o(1).

We can thus bound

III ≤ P{R(T∞` ) ≤ x}

≤ P
{

max
ij

R(Tij) ≤ x,N ≥ (`+ 1)
σ2

2

}
+ P

{
max
ij

R(Tij) ≤ x,N < (`+ 1)
σ2

2

}
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≤ (1−P{R(T ) > x})(`+1)σ2/2 + o(1)

≤ exp

(
−σ

2

2

√
n

log n
P{R(T ) = x}

)
+ o(1)

≤ exp

(
−σ

2

2

√
n

log n

(
1

1 + α

)β(d/2)x)
+ o(1)

for some α, β > 0. As we wished to show, this tends to zero for x = (1− ε) log2 log2 n
log2 d/2

for
any ε > 0.

For the d = 2 case, we note that the form of P{R(T ) = x} in (6.3) is identical to that
of P{H(T ) = x}, where the base of the exponent changes from 2 to γ. The proofs of the
upper and lower bound for the regular Horton–Strahler number thus translate to this
case exactly. We have

P{R(T ) ≤ x | |T | = n} ≤ exp

(
−
√
n

log n
γ−x+o(x)

)
,

which tends to zero for x =
(

1
2 log γ − ε

)
log2 n for any ε > 0, completing the lower bound.

For the upper bound, there exists c such that

P{R(T ) ≥ x | |T | = n} ≤ c
√
nγ−x+o(x),

which tends to zero for x =
(

1
2 log γ + ε

)
log2 n for any ε > 0.

7 The k-ary register function

The k-ary register function K(T ) was defined in (5.6) as the height of the largest com-
plete k-ary tree that can be embedded in T . We can show that the k-ary register function
of a critical Galton–Watson tree converges to (log2 k/2)−1 log2 log2 n in probability. Recall
that the asymptotic behaviour of the rigid Horton–Strahler for the unconditional tree—
Lemma 6.2—was quite tedious to prove. In contrast, we present a relatively simple proof
of the analogous result for the k-ary register function, albeit with an extra restriction on
the moments of the offspring distribution.

Lemma 7.1. Suppose k ≥ 3. Let ξ be such that E{ξ} = 1, V{ξ} > 0, E{ξk+1} <∞ and
P{ξ ≥ k} > 0. Let T be an unconditional Galton–Watson tree. Then there exists an
x∗ ∈ N, α, α′ > 0 and β, β′ ∈ (0, 1) such that

α′ · β′(k/2)
x

≤ P{K(T ) = x} ≤ α · β(k/2)x (7.1)

for all integer x ≥ x∗.
Before proving this theorem, note that this is exactly the same as the tail bounds of

the rigid Horton–Strahler number when d > 2; see Lemma 6.2, with k taking the place of
d. Therefore, with minor modifications, Theorem 6.3 gives us the asymptotic behaviour
of K(T ) for a conditional Galton–Watson tree:

Theorem 7.2. Let k ≥ 3 and let ξ be as specified in the previous lemma. Then, letting
Tn denote a conditional Galton–Watson tree of size n,

K(Tn)

log2 log2 n
→ 1

log2 k/2
(7.2)

in probability.

We now proceed to the proof of the result about unconditional conditional Galton–
Watson trees.
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Proof of Lemma 7.1. Let us begin by defining qx = P{K(T ) = x}, as well as {pi}, q+x and
q−x analogously to how they were defined in previous sections. We can first solve

q0 = p0 + p1q0 + p2q
2
0 + · · · pk−1qk−10

for a finite value of q0.
Then, for x > 0, by multiple uses of the inclusion-exclusion formula, considering an

upper bound on the probability of having at least one child of value x, a lower bound on
the probability of having k children of value x or more and an upper bound on having at
least k children of value x− 1 (and swapping upper and lower for the second bound), we
have

qx ≤ E

{(
ξ

1

)
qx −

(
ξ

2

)
q2x +

(
ξ

3

)
q3x

}
−
(
E

{(
ξ

k

)
(q+x )k − (k + 1)

(
ξ

k + 1

)
(q+x )k+1

})
+ E

{(
ξ

k

)
qkx−1

}
and

qx ≥ E

{(
ξ

1

)
qx −

(
ξ

2

)
q2x

}
−E

{(
ξ

k

)
(q+x )k

}
+

(
E

{(
ξ

k

)
qkx−1

}
−E

{
(k + 1)

(
ξ

k + 1

)
qk+1
x−1

})
.

Noting that E
{(
ξ
1

)}
= 1, E

{(
ξ
2

)}
= σ2/2 and for any ` ≤ k, E

{(
ξ
`

)}
:= µ` < ∞, we have

for k ≥ 3,
σ2

2
q2x − µ3q

3
x + µk(q+x )k − µk+1(k + 1)(q+x )k+1 ≤ µkqkx−1.

It is easy to see that q+x → 0 as x→∞. Therefore, for any ε > 0, we can find x∗ such that
for all x ≥ x∗, qx ≤ ε and q+x ≤ ε We then have(

σ2

2
− µ3ε

)
q2x + (µk − µk+1(k + 1)ε) (q+x )k+1 ≤ µkqkx−1

for x ≥ x∗. Picking an ε > 0 and corresponding x∗ such that µk+1(k + 1)ε ≤ µk and
µ3ε ≤ σ2/6, then for every x ≥ x∗,

q2x ≤
3µk
σ2

qkx−1,

i.e.,

qx ≤
√

3µk
σ2

q
k/2
x−1. (7.3)

Similarly, we have for the lower bound

σ2

2
q2x ≥ −µk(q+x )k + µkq

k
x−1 − (k + 1)µk+1q

k+1
x−1.

From the upper bound (7.3), we have that for any ε > 0, it is possible to find x∗∗ such that
for all x ≥ x∗∗, qx ≤ ε and q+x ≤ (1 + ε)qx. Choosing ε > 0 such that µk(1 + ε)kεk−2 ≤ σ2/2

and (k + 1)µk+1ε ≤ µk

2 , we have

σ2q2x ≥
σ2

2
q2x + µk(1 + ε)kεk−2q2x

≥ σ2

2
q2x + µk(1 + ε)kqkx

≥ σ2

2
q2x + µk(q+x )k

≥ µk
2
qkx−1.
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Therefore

qx ≥
√

µk
2σ2

q
k/2
x−1 (7.4)

for all x ≥ x∗∗. The theorem statement is obtained by taking x ≥ max{x∗, x∗∗} and
combining the two estimates (7.3) and (7.4).

A related result. Cai and Devroye showed that the height Hn of the maximal complete
k-ary tree occurring as a terminal element in a critical Galton–Watson tree Tn satisfies

Hn

log2 log2 n
→ 1

log2 k

in probability (see Lemma 4.2, [6]). These elements are called fringe subtrees. They also
showed the same behaviour for the height H ′n of the maximal complete k-ary non-fringe
tree which is allowed to occur as a non-terminal element in Tn (see Lemma 5.7, [6]).

In this paper, we allow the complete k-ary tree to be embedded in Tn rather than an
element of it. We show that asymptotically, the height of the root is still a constant factor
of log2 log2 n. The constant is now larger than in the case analyzed by Cai and Devroye:
(log2 k/2)−1 rather than (log2 k)−1.

Conclusion and future work

In this work, we considered the setting of critical conditional Galton–Watson trees.
We showed that their Horton–Strahler number scales as Θ(log2 n) in probability. This
result was proven using the convergence of a conditional Galton–Watson tree to Kesten’s
limit tree, as well as the construction of a rotationally invariant event using the random
walk view of a tree.

We then defined several other generalizations of the Horton–Strahler number to
non-binary trees, including the rigid Horton–Strahler number and the k-ary register
function. For the rigid Horton–Strahler case, we identify a key parameter d denoting
the first integer i ≥ 2 for which the offspring distribution has nonzero probability of
having i children. We then used the same methods introduced earlier in the paper to
prove that the k-ary register function and the rigid Horton–Strahler number both scale
as Θ(log2 log2 n), respectively when k ≥ 3 and d ≥ 3.

Our main result from sections 3 and 4 generalizes all previously known first order
results for the regular Horton–Strahler number. However, higher order concentration
information is not presented here. It seems plausible that the variance of H(Tn) is O(1);
such a result would be very desirable.

On advice of one of the referees, we are offering the following question: could
these results and methods be used to prove a limit for the Horton–Strahler number of a
subcritical conditional Galton–Watson tree?

A Proofs for unconditional Galton–Watson trees

Proof of Lemma 2.2. For i ∈ N0, we define the probability that the Horton–Strahler
number of the root is i to be qi := P{H(T ) = i}, as well as the partial sums

q+i =

∞∑
k=i

qk and q−i =

i∑
k=0

qk.

We also define the generating function of the offspring distribution ξ to be f(s) =∑∞
i=0 pis

i on 0 ≤ s ≤ 1, where we recall that pi = P{ξ = i}.
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By Theorem 2.1, we can without loss of generality assume that p1 = 0. We begin by
finding a recursion for qi in terms of the previously defined partial sums. First, for i = 0,
since p1 = 0, we have q0 = p0 since any non-zero number of children will yield a Horton–
Strahler number greater or equal to one. Then, for the root to have Horton–Strahler
number i > 0, it must have ` ≥ 2 children. Then, either the Horton–Strahler number
does not change from the maximal number of the root’s children, or it increases by one,
with r ≥ 2 children having Horton–Strahler number i− 1. We can therefore write

qi =

∞∑
`=2

p`

(
`qi(q

−
i−1)`−1 +

∑̀
r=2

(
`

r

)
qri−1(q−i−2)`−r

)
. (A.1)

Rearranging gives us

qi

(
1−

∞∑
`=2

p``(q
−
i−1)`−1

)
=

∞∑
`=2

p`

(∑̀
r=0

(
`

r

)
qri−1(q−i−2)`−r − `q1i−1(q−i−2)`−1 − (q−i−2)`

)
and we can use the binomial theorem and the definition of the generating function f(s)

of ξ to obtain

qi(1− f ′(q−i−1)) =

∞∑
`=2

p`
(
(qi−1 + q−i−2)` − `qi−1(q−i−2)`−1 − (q−i−2)`

)
=

∞∑
`=2

p`(q
−
i−1)` − qi−1

∞∑
`=2

`p`(q
−
i−2)`−1 −

∞∑
`=2

p`(q
−
i−2)`

=
(
f(q−i−1)− p0

)
− qi−1f ′(q−i−2)−

(
f(q−i−2)− p0

)
=
(
f(q−i−1)− f(q−i−2)

)
− qi−1f ′(q−i−2).

We thus have

qi =
f(q−i−1)− f(q−i−2)− qi−1f ′(q−i−2)

1− f ′(q−i−1)
. (A.2)

Now, consider the Taylor expansion of f(s) near s = 1. Then,

f(s) = 1 + α1(s− 1) + α2
(s− 1)2

2!
+ · · · ,

where αi is the i-th descending moment of ξ

αi = E{ξ(ξ − 1) · · · (ξ − i+ 1)}.

In particular, we have α1 = 1 and α2 = σ2.
Also, by Taylor’s series with remainder, for some ε ∈ [0, 1],

f(q−i−1) = f(q−i−2) + qi−1f
′(q−i−2) +

q2i−1
2
f ′′(q−i−2 + εqi−1),

and (A.2) becomes

qi =
(q2i−1/2)f ′′(q−i−2 + εqi−1)

1− f ′(qi−1)
.

We further have, for some ε′ ∈ [0, 1],

f ′(q−i−1) = f ′(1) + (q−i−1 − 1)f ′′(q−i−1 + ε′q+i )

= 1 + (q−i−1 − 1)f ′′(q−i−1 + ε′q+i ).
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Thus,

qi =
q2i−1

2(1− q−i−1)
·
f ′′(q−i−2 + εqi−1)

f ′′(q−i−1 + ε′q+i )
.

Since f ′′(s) is an increasing function, we have the inequalities

q2i−1
2q+i

·
f ′′(q−i−2)

f ′′(1)
≤ qi ≤

q2i−1
2q+i

·
f ′′(q−i−1)

f ′′(q−i−1)
=
q2i−1
2q+i

, (A.3)

where the ratio f ′′(q−i−2)/f ′′(1) is near 1 since f ′′(1) = σ2 ∈ (0,∞) and q−i−2 → 1 as i→∞.
Thus, for every ε > 0, there is some n0(ε), such that for all i ≥ n0(ε),

(1− ε)
q2i−1
2q+i

≤ qi.

We thus have for all i ≥ n0(ε),

(1− ε)
q2i−1
2q+i

≤ qi ≤
q2i−1
2q+i

. (A.4)

In the following, we will set ε > 0 and consider i ≥ n0(ε). First, note that from (A.4),
q2i ≤ qiq

+
i ≤ q2i−1/2, so

qi ≤ qi−1/
√

2.

Our result will follow from the fact that if we have qi ≤ qi−1 · γ for some γ < 1, then

1

2
− h(ε) ≤ qi

qi−1
≤ 1

2
+ g(ε) (A.5)

for positive functions h and g with limε→0 h(ε) = limε→0 g(ε) = 0. This will give us that,
for i ≥ n0(ε),

qn0(ε)

(
1

2
− h(ε)

)i−n0(ε)

≤ qi ≤ qn0(ε)

(
1

2
+ g(ε)

)i−n0(ε)

,

which completes the proof, as ε > 0 was chosen arbitrarily.
Let’s now show (A.5). From qi ≤ qi−1γ, we have that

q+i ≤ qi(1 + γ + γ2 + · · · ) =
qi

1− γ
.

Then, we have

qi ≥ (1− ε)
q2i−1
2q+i

≥ (1− ε)(1− γ)
q2i−1
2qi

,

giving us

qi ≥ qi−1

√
(1− ε)(1− γ)

2
. (A.6)

For the upper bound, we have that

q+i ≥ qi

(
1 +

√
(1− ε)(1− γ)

2
+ · · ·

)
=

qi

1−
√

(1−ε)(1−γ)
2

,

and thus

qi ≤
q2i−1
2q+i

≤
q2i−1
2qi

(
1−

√
(1− ε)(1− γ)

2

)
.
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Figure 6. Plot of

γ 7→
√

1−
√

(1−γ)/2
2

(in blue), along with
the iterative con-
traction starting at
γ = 1/

√
2.

Similarly to the lower bound, this gives us

qi ≤ qi−1

√
1−

√
(1− ε)(1− γ)/2

2
.

Now consider the map γ 7→
√

1−
√

(1−γ)/2
2 . Note that it maps [0, 1] to the subinterval

[
√

2−
√

2/2, 1/
√

2] on which the maximum of the first derivative is smaller than 1, so
applying Banach’s fixed point theorem yields a fixed point at γ = 1/2, as shown in
Figure 6. More precisely, let γ be the solution of

γ =

√
1−

√
(1− ε)(1− γ)/2

2
.

Then γ = 1/2 + g(ε) for some g(ε) > 0, g(ε)→ 0 as ε→ 0. Therefore, recalling the lower
bound (A.6), we have for all i ≥ n0(ε),√

(1− ε)(1− γ)

2
=

1

2

√
(1− ε)(1− 2g(ε)) ≤ qi

qi−1
≤ 1

2
+ g(ε),

and we have shown (A.5).

B Proofs for alternate Horton–Strahler numbers

Proof of Lemma 5.1. We proceed by induction on the height of the tree to show (5.4).
Consider a tree T with k children, and consider all the required orderings of the French,
Canadian, standard and rigid Horton–Strahler numbers (Fi, Ci, Hi andRi for i = 1, . . . , k)
of these children. Note that for a leaf node with subtree size |T | = 1, the base case holds:
F (T ) = C(T ) = H(T ) = R(T ) = 0.

1. To show F (T ) ≥ C(T ), suppose that for each 1 ≤ i ≤ k children, Ci ≤ Fi. Suppose
C1 = · · · = Cr for some r ∈ {1, . . . , k}. Then, C = Cr + (r − 1) ≤ Fr + (r − 1) ≤ F ,
and we are done.

2. To show C(T ) ≥ H(T ), suppose that for each 1 ≤ i ≤ k children, Hi ≤ Ci. Then,
in the case where C(T ) > C1, we are done, as H(T ) ≤ H1 + 1 ≤ C1 + 1 ≤ C(T ).
Otherwise, C(T ) = C1 and r = 1, so we have the strict ordering C1 > C2 ≥ · · · .
This leads to the two cases:

• if H1 < C1, then we are again done since H(T ) ≤ H1 + 1.
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• otherwise, H1 = C1 > C2 ≥ H2, so H(T ) = H1 ≤ C1 = C(T ), as required.

3. To show H(T ) ≥ R(T ), suppose that for each 1 ≤ i ≤ k children, Ri ≤ Hi.
We can proceed the same way as in (ii). If H(T ) > H1, then we are done, as
R(T ) ≤ R1+1 ≤ H1+1 = H(T ). Otherwise, H(T ) = H1 and we haveH1 > H2 ≥ · · · ;
there are two cases:

(a) if R1 < H1, then we are done, as R(T ) ≤ R1 + 1.

(b) otherwise, R1 = H1 > H2 ≥ R2, and thus R(T ) = R1 = H1 = H(T ).

All of these were shown at the root. Thus, the inequality holds by induction.

C Proofs for the rigid Horton–Strahler number

Proof of Lemma 6.2. Let qk = P{R(T ) = k}. We once again assume by Lemma 6.1 that
p1 = 0. Note that σ2 will be involved in the proof and the results, and when the offspring
distribution is changed from ξ to ζ as in Lemma 6.1, the standard deviation changes by a
factor of (1− p1)−1. However, we will find that the final form of the result is such that
this change in distribution does not matter.

Using the same notation as in the proof of Lemma 2.2 for q+k , q−k and f(qk), we can
write a similar induction:

q0 = P{R(T ) = 0} = p0

and

qk =

∞∑
`=d

p`

(
q`k−1 +

`−1∑
r=1

(
`

r

)
qrk(q−k−1)`−r

)
= (f(qk−1)− p0) +

∞∑
`=d

p`
(
(qk + q−k−1)` − q`k − (q−k−1)`

)
= f(qk−1)− f(qk) + f(q−k )− f(q−k−1). (C.1)

By the Taylor series with remainder, for some θ, θ′, θ′′ ∈ [0, 1], we have approximations of
the terms in (C.1):

f(qk) = p0 +
1

d!
qdkf

(d)(θ′qk),

f(qk−1) = p0 +
1

d!
qdk−1f

(d)(θ′′qk−1)

f(q−k )− f(q−k−1) = qkf
′(q−k−1) +

q2k
2!
f ′′(q−k−1 + θqk).

(C.2)

Recall that qk → 0 as k → ∞ and f (i)(0) = i!pi for all i ≥ 0. Then, since f and all its
derivatives are continuous, increasing and convex on [0, 1], for any ε > 0, there is some
n0(ε) such that for all k ≥ n0(ε), for all r ≥ 1 such that pr > 0,

pr ≤
1

r!
f (r)(qk) ≤ pr(1 + ε).

Furthermore, since f ′(1) = 1 and f ′′(1) = σ2, we also have

1− ε ≤ f ′(qk−1) ≤ 1

σ2(1− ε) ≤ f ′′(q−k ) ≤ σ2.
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These two facts can be used to simplify respectively the first two and the third equations
in (C.2). Then, plugging the terms back into our original form (C.1) gives an upper bound
for all k ≥ n0(ε) of

qk ≤
(qdk−1 − qdk)pd + εqdk−1pd + q2kσ

2/2

1− f ′(q−k−1)
. (C.3)

Furthermore,
f ′(q−k−1) = f ′(1)− (1− q−k−1)f ′′(1− δq+k )

for some δ ∈ [0, 1], yielding

1− q+k σ
2 ≤ f ′(q−k−1) ≤ 1− q+k σ

2(1− ε).

We thus have

qk ≤
(qdk−1 − qdk)pd

q+k σ
2(1− ε)

+
εqdk−1pd

q+k σ
2(1− ε)

+
q2k

2q+k (1− ε)

≤
(qdk−1 − qdk)pd

qkσ2(1− ε)
+

εqdk−1pd

qkσ2(1− ε)
+

qk
2(1− ε)

,

(C.4)

which yields
q2kσ

2

2
≤ qdk−1pd

1 + ε

1− 2ε

and

qk ≤

√
2pd
σ2

(
1 + ε

1− 2ε

)
q
d/2
k−1. (C.5)

We must now distinguish between the two cases d = 2 and d ≥ 3 as stated in the
theorem. We begin with the case d ≥ 3. In this case since

∑
i ipi = 1, pd ≤ 1/d and

σ2 ≥ 1, thus,
2pd
σ2
≤ 2

d
.

Nothing that ε was arbitrary, we can pick ε ≤ 2/25 such that for all d ≥ 3, k ≥ n0(2/25),

qk ≤
√

6

7
q
d/2
k−1, (C.6)

and thus the upper bound follows for d ≥ 3.
For the lower bound in the d ≥ 3 case, we can obtain from (C.1) similarly to the upper

bound case that

qk ≥
(qdk−1 − qdk)pd − εqdk−1pd + q2kσ

2(1− ε)/2
1− f ′(q−k−1)

≥
(1− ε)qdk−1pd − qdk−1pd + q2kσ

2(1− ε)/2
q+k σ

2
.

(C.7)

Using (C.6), we can bound qdkpd by

qdkpd ≤
(

6

7

)3/2

qdk−1pd

and q+k by

q+k ≤ qk
( ∞∑
n=0

√
6/7

n
)

=
1

1−
√

6/7
qk < 14qk.

These bounds give

qk ≥
(
1− ε− (6/7)3/2

)
qdk−1pd + q2kσ

2(1− ε)/2
14σ2qk
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i.e.,

q2k

(
14− 1− ε

2

)
σ2 ≥ qdk−1pd

(
1− ε− (6/7)3/2

)
and

q2k ≥
(

2pd
σ2

1− ε− (6/7)3/2

27 + ε

)
qdk−1.

We can then choose ε > 0 such that

q2k ≥
2pd
σ2

1

162
qdk−1,

and thus, for all k ≥ n0(ε),

qk ≥
1

9

√
pd
σ2
q
d/2
k−1. (C.8)

The lower bound follows from this.
Finally, consider the case d = 2. From (C.4), setting α = 2p2/σ

2,

qk ≤
(q2k−1 − q2k)α

2q+k (1− ε)
+

εq2k−1α

2q+k (1− ε)
+

q2k
2q+k (1− ε)

,

and thus
2qkq

+
k (1− ε) ≤ q2k(1− α) + q2k−1α(1 + ε). (C.9)

Similarly, for the lower bound, we have from (C.7) that

qk ≥
(q2k−1 − q2k)p2 − εq2k−1p2 + q2kσ

2(1− ε)/2
q+k σ

2

and thus
2qkq

+
k ≥ q

2
k(1− α− ε) + q2k−1α(1− ε). (C.10)

We will establish bounds β0 = 0 ≤ β2 ≤ β4 ≤ · · · ≤ γ ≤ · · · ≤ β5 ≤ β3 ≤ β1 where
γ =

√
α

1+
√
α

is the unique solution in [0, 1] of β = f(β), where

f(β) :=

√
α(1− β)

1− αβ + α+ β
. (C.11)

Furthermore, for all j ≥ 0,
βj+1 = f(βj),

and βj → γ as j → ∞. See Figure 7 for a plot of the map f(β). The proof consists of

Figure 7. Plot of
β 7→ f(β) (in blue),
along with the iter-
ative contraction
starting at β1 =√
α/(1 + α).

0 1
0

1

γ =
√
α/(1 +

√
α)

β1 =
√
α/(1 + α)

β2

β3
β4
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showing iteratively that

lim sup
k→∞

qk+1

qk
≤ βj for all odd j,

and
lim inf
k→∞

qk+1

qk
≥ βj for all even j.

Observe that if lim supk→∞ qk+1/qk ≤ βj , then

2qkq
+
k ≤ 2q2k

1 + o(1)

1− βj

and by (C.10),

q2k

(
2 + o(1)

1− βj
− (1− α− ε)

)
≥ q2k−1α(1− ε).

Thus,
q2k
q2k−1

≥ α(1− ε)
2+o(1)
1−βj

− (1− α− ε)
.

Taking lim inf on both sides and letting ε→ 0, we observe that

lim inf
k→∞

(
qk
qk−1

)2

≥ α
2

1−βj
− (1− α)

= f2(βj).

Similarly, if lim infk→∞ qk+1/qk ≥ βj , then using (C.9) yields lim supk→∞ qk+1/qk ≤ f(βj).
Therefore, limk→∞ qk+1/qk → γ = 1

1+1/
√
α

.
Thus, similarly to (A.5) in the proof of Lemma 2.2, we have that

1

1 +
√
σ2/2p2

− h(ε) ≤ qk
qk−1

≤ 1

1 +
√
σ2/2p2

+ g(ε) (C.12)

for positive functions h and g with limε→0 h(ε) = limε→0 g(ε) = 0. This proves the
statement.

Note that it was safe to assume that p1 = 0: when changing the distribution from ξ to
ζ, both σ2 and p2 pick up a factor of (1−p1)−1, resulting in no net change in the ratio.
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