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Abstract

We investigate the random loop model on the d-ary tree. For d ≥ 3, we establish a
(locally) sharp phase transition for the existence of infinite loops. Moreover, we derive
rigorous bounds that in principle allow to determine the value of the critical param-
eter with arbitrary precision. Additionally, we prove the existence of an asymptotic
expansion for the critical parameter in terms of d−1. The corresponding coefficients
can be determined in a schematic way and we calculate them up to order 6.
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1 Introduction

Let G = (V,E) be an undirected (simple) graph and let Tβ := R/βZ be the one-
dimensional torus with length β > 0. A link configuration on E × Tβ is a family
X = (Xe,?)e∈E,?∈{\/,||} of measures on Tβ, such that Xe,\/ + Xe,|| is a simple and finite
atomic measure on Tβ for each e, i.e. it is a finite sum of Dirac measures δti with ti 6= tj
when i 6= j. The atoms of Xe,? are called links and each link of X is specified by a triple
(e, t, ?), where ? ∈ {\/, ||} is the type and t the position/time of the link on the edge e.

Each link configuration induces a loop configuration, which is a collection of open
subsets of the set V ×Tβ . The rigorous definition of the map from a link configuration to
a loop configuration, which will be given shortly, is a bit technical; its essence however
can be conveniently grasped from Figure 1: A link of type \/ on an edge connects
those regions on Tβ on the two vertices adjacent to its edge that are on opposing
sides of its position, while a link of type || connects regions on the same side of its
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Figure 1: Example of a small finite graph G and a link configuration X (left) leading to
the two depicted loops (right, red and blue).

position. Regions on the same vertex are always separated by links on adjacent edges.
After extension by transitivity, this yields a partition of V × Tβ into the closed set
{(x, t) : x ∈ V, t ∈ suppXe,? for some e 3 x, ? ∈ {\/, ||}}, and the open sets of mutually
connected points (the loops).

The relevant quantity for loop models is the size of typical loops (in our case measured
in the number of visited vertices, although the arc length is also a conceivable quantity of
interest) when the link configuration is random. More precisely, the question is whether
a given family of loop models has a percolation phase transition in the parameter β, i.e.
whether (for an infinite graph) the probability that a given fixed vertex is contained in an
infinite loop is positive for some β and zero for others. The apparently simplest case is
G = Zd, Xe,|| = 0 for all edges e and the Xe,\/ are iid Poisson point processes of rate 1.
While numerical results [5] strongly suggest the existence of a phase transition, on a
rigorous level the question is completely open in this case.

The main difficulty in the loop model is the lack of monotonicity, i.e. more links do
not necessarily mean longer loops. This can already be seen in Figure 1: removing one
of the links between the two middle vertices merges the red and blue loop into one.
Moreover, local changes of the loop configuration can connect or disconnect intervals
in very different regions of G, so the model is highly non-local in this sense. These
two obstacles have so far prevented the development of efficient tools to investigate
percolation on loop models on most graphs, leading to a relative scarcity of results;
however, a few results exist, and we will review them now.

In the context of probability theory, the loop model goes back to the random stirring
process, introduced by Harris [18]. This process (σt)t∈[0,β] of permutations on V cor-
responds to the random loop model mentioned above, i.e. with Xe,|| = 0 and Xe,\/ iid
Poisson point processes. Namely, given a link configuration X and setting σ0 to be the
identity permutation, we increase time t and if there is a link on an edge {x, y} at the
position t that we currently consider, we compose σt− with the transposition of x and y.
It is easy to see that two vertices x and y are contained within the same cycle of σβ iff
(x, 0) and (y, 0) share a loop.

Note that, on arbitrary connected graphs with bounded degree, the critical parameter
βc is strictly larger than the percolation threshhold for edges carrying at least one link
[22]. For the random stirring model on the (finite) complete graph, the phase transition
occurs at βc = |V |−1 in the limit of |V | → ∞, see e.g. [6, 7]. Moreover, for a time-discrete
model where one link occurs at each step and for time-scales above a critical value
corresponding to βc = |V |−1 in our setting, Schramm showed in [23] that the distribution
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of cycle sizes within the giant component converges (after renormalisation) to a Poisson-
Dirichlet distribution of parameter 1. In [10], this result has been extended to include
links of type ||, too.

Apart from the complete graph and the 2-dimensional Hamming graph [21], another
graph for which progress has been made in the context of the random stirring model
is the d-ary tree. Angel [3] showed the existence of two different phases for d ≥ 4, and
the existence of infinite cycles for β ∈ (d−1 + 13

6 d
−2, ln(3)) in the asymptotic regime

d→∞. Hammond then showed in [15] that (for d ≥ 2) there is a value β0 above which
σβ contains infinite cycles and that for d ≥ 55, one may chose β0 = 101d−1. Furthermore
and for even larger d, strict bounds for this critical parameter have been found in [16]
and it was shown that the transition from finite to infinite cycles is sharp. In the recent
work of Hammond and Hegde [17], these bounds have been proven to hold for d ≥ 56

while even including links of type ||. Moreover, Björnberg and Ueltschi [11] determined
the critical parameter βc of the loop model up to second order in d−1 as d → ∞. The
reader should note that the majority of the above results rely on graph degrees being
comparatively large, or are even just asymptotic in them.

In the present paper we significantly improve the existing results for d-ary trees
and achieve a rather complete picture of the random loop model in these cases. We
focus on the case where the (Xe,?) are iid Poisson point processes, but it should be
clear how our method extends to other families of independent point processes. While
a simple percolation argument shows that almost surely there are no infinite loops
for β ≤ d−1, our methods aim at the critical region d−1 < β ≤ d−1/2. In Theorem 2.1
below, we establish the existence of a sharp phase transition for all d ≥ 3 within this
region, comparable results previously existed only up to d−1 + 2d−2 and for d ≥ 26 [17].
Additionally, in Theorem 2.2, we provide an asymptotic expansion of the critical value in
powers of 1/d, with coefficients depending on the parameter u controlling the relative
intensities of the point processes Xe,\/ and Xe,||.

Our proofs rely on a natural idea: the central object are those edges that carry
precisely one link. It is not difficult to see that at such edges a renewal event occurs:
Removing any edge e splits the tree G into two disconnected subtrees G1 and G2. Thus,
in the case that e only carries a single link, and if the loop through that link is finite on
G1, say, then that loop has to pass through e in both directions. Consequently, in this
case the loop structure on G2 depends only on the link structure of G2 and not on the
link structure on G1. This allows to construct renewal schemes that use single-link edges
as ‘new roots’.

The first such renewal scheme was presented in the work of Angel [3]. The paper
uses a single-link edge e = {x, y} as a renewal edge if the arrival time te of its link is
uncovered, meaning that none of its siblings has a pair of links whose arrival times
separate the time te of the link on e from the first time the loop meets the parent x of e,
in the topolgy of the torus Tβ. This guarantees that any loop arriving at the parent x
of e either is already infinite or will eventually pass through e. The proof then consists
in identifying conditions under which infinitely many renewal edges exist with positive
probability. The main limitation of this scheme is that being uncovered is a rather strong
restriction on a single-link edge, and that an uninterrupted chain of uncovered edges
is needed from the root to infinity with positive probability. Thus the criterion leads to
conditions that are far from optimal. In particular they are only accurate to first order in
1/d for large d, and only work for d ≥ 4.

Our approach is a more systematic one: we consider multilink-clusters, i.e., the finite
subtrees of the infinite tree whose edges all have more than one link, and use as renewal
edges all single-link edges protruding from these subtrees that carry the loop entering
the subtree at its root. In comparison to the method of [3], this allows not only for
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covered single-link edges to be used, but it (in principle) allows us to cross any number
of edges that have multiple links.

One limitation that our method does have is that it relies on a sufficiently high
probability for the multilink-cluster to be finite. This poses no limitation for β ≤ d−1/2

as this is below the percolation threshold for these clusters, but becomes an obstacle
for higher β. Since βc ∼ 1/d for large d, no problem appears in view of the asymptotic
estimates for βc, and in the regime of small d our results are sufficient to identify βc with
high precision. However, for the proof that there is no phase of almost surely finite loops
beyond βc, we need to rely on results obtained by Hammond and Hegde [17]. It is not
inconcievable that this could be improved by suitable lower bounds for the expected
number of renewal edges for an infinite (or very large) multilink-cluster, but such an
investigation is beyond the scope of the current work and left for future investigations.

Apart from random stirring, a strong motivation for studying random loop models
comes from their relation to quantum mechanical models. More precisely, in [2] and
[24] stochastic representations of the spin- 1

2 quantum Heisenberg antiferromagnet and
ferromagnet, respectively, were studied. Recently, Ueltschi [25] introduced the random
loop model as a common generalisation that interpolates between those representations
and also includes a representation of the spin- 1

2 XY model. For these representations,
each link configuration receives a weight proportional to θ#loops, so for θ 6= 1, links on
different edges are no longer independent. Also, the model cannot be directly defined on
an infinite graph. Thus, it has to be constructed via an infinite volume limit. Physcially,
θ = 2 is the most relevant case. The occurrence of infinite loops is then related to
non-decay of correlations for the quantum spin systems. Therefore, in order to see
that these systems undergo a phase transition and to determine the critical inverse
temperature βc at which it occurs, one possibility is to investigate the different phases
of the random loop model.

As it is the case in the random stirring model, the most interesting (but also apparently
the most challenging) graph to study these models on is Zd. Mathematical results exist
for the complete graph [9, 13], the 2-dimensional Hamming graph [1], Galton-Watson
trees [8] and the d-ary tree [12], again in the regime of high degrees. Unfortunately, for
θ 6= 1, the weighted measures involve intricate correlations and the techniques of our
paper do not directly apply.

This paper is organized as follows: In Section 2, we state our precise assumptions
and results. In Section 3, we introduce exploration schemes, a recursive construction
with a renewal structure that constitutes the core of our proof as it gives a Galton-Watson
process whose survival is related to the event that the loop containing the root at time 0

is infinite. This enables us to distinguish the phases by considering the expected value
for the first generation of this process and without much further work, we are then
already able to establish a locally sharp phase transition for all d ≥ 5. Afterwards, within
Section 4, we will turn our attention to the asymptotic expansion and on the way to its
proof, we will discover sufficient (and computable) conditions for the two phases. Finally,
in Section 5, we will then establish the necessary computations that enable us to push
our results to d = 3 and to calculate coefficients within the asymptotic expansion.

2 Main results

We start by giving a proper definition of the map from link configurations to loop
configurations. Suppose that X = (Xe,?)e∈E,?∈{\/,||} is a link configuration. We call X

admissible if Xe,? and Xe′,?′ are mutually singular whenever e 6= e′ but e ∩ e′ 6= ∅, and
also when e = e′ and ? 6= ?′. This guarantees that the construction of loops given below
is well defined. When fixed link configurations are given, we will always assume that
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they are admissible, and that all our link-configuration-valued random variables will
produce admissible link configurations almost surely.

Given an admissible link configuration X, a loop is an equivalence class of elements
of V ×Tβ induced by the following connectedness relation: We equip V with the discrete
and Tβ with the quotient topology and say that two points (x0, t0) and (x1, t1) ∈ V ×Tβ
are connected iff there is no link on an edge incident to xi at position ti, i = 0, 1, and
there is a piecewise continuous path Γ = (Γ1,Γ2) : [0, 1]→ V ×Tβ from (x0, t0) to (x1, t1)

such that

• Γ2 is continuous everywhere and differentiable at every point of continuity of Γ.
Where the derivative Γ′2 exists, its absolute value is a fixed constant.

• If Γ is discontinuous at s ∈ (0, 1), then there is a link on {Γ1(s−),Γ1(s+)} at position
Γ2(s).

• For all links ({x, y}, t, ?) of X such that Γ(s−) = (x, t) (or Γ(s+) = (x, t)) for some
s ∈ (0, 1) we have Γ(s+) = (y, t) (or Γ(s−) = (y, t), respectively) as well as

Γ′2(s+) =

{
+Γ′2(s−) if ? = \/,
−Γ′2(s−) if ? = || .

Note that a loop γ is by definition a subset of V ×Tβ . Nevertheless, in a slight abuse of
notation, we write x ∈ γ iff there is a t ∈ Tβ with (x, t) ∈ γ. Similarly, we set

|γ| := |{x ∈ V : x ∈ γ}|.

Now that we have defined loops, let us fix our assumptions. We write T = (V,E) for the
d-ary tree with root r ∈ V , i.e. the tree where each vertex has d ‘children’ and (except
for r) one ‘parent’. We assume that the link configuration is given by an independent
family (Xe,?)e∈E,?∈{\/,||} of homogeneous Poisson point processes, where for each e ∈ E,
Xe,\/ has rate u ∈ [0, 1] and Xe,|| has rate 1− u. Under these assumptions, we have:

Theorem 2.1 (Existence and local sharpness of the phase transition).
Let γT be the loop on T containing (r, 0). Then for all d ≥ 3 and for all u ∈ [0, 1] there
exist β∗ ≥ d−1/2 and βc ∈ (0, β∗) such that

(i ) |γT | <∞ almost surely for all β ≤ βc,
(ii ) |γT | =∞ with positive probability for all β ∈ (βc, β

∗).

Note that, for d = 1, there is no phase transition since |γT | < ∞ almost surely
(non-zero probability of empty edges). Moreover, the case d = 2 technically is accessible
with our method. However, it would take much more computational effort to prove a
similar statement in this case, see Remark 5.5. Furthermore note that a re-entry into the
phase of finite loops for β > d−1/2 is quite implausible. Nevertheless, we cannot exclude
this behaviour as our method is tailored for β up to d−1/2. Still, in combination with
[17, Proposition 1.2 (2),(4)], Theorem 2.1 suffices to show that there is no re-entry and
that the phase transition is thus globally sharp for all d ≥ 16, therefore improving the
previously known lower bound of d ≥ 56 from [17].

In addition to establishing a phase transition, the tools we develop also yield an
equation in β that is solved by βc, compare Proposition 3.6 and (3.3). We may then
approximate its terms systematically to find sharp bounds on the critical parameter
βc for every d ≥ 3. These estimations rely on solving a certain combinatorial problem
associated to finite edge-weighted trees, giving implicit conditions about the phase
regions. Instead of providing explicit but imprecise bounds for β (which would also
be possible, cf. (2.3)), we rather check whether one of these implicit conditions is
satisfied. Thereby, we obtain a region of parameters (β, d, u) where γT is infinite with
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Figure 2: Regions R±5 of parameters (β, d, u) where we can guarantee that γT is infinite
with positive probability (upper/blue region R+

5 ) and that γT is finite almost surely
(lower/sandybrown region R−5 ), respectively. See (4.2) and (4.3) for a precise definition
of these regions.

positive probability (blue region in Figure 2) and a region where it is finite almost surely
(sandybrown region in Figure 2). The critical parameter βc thus lies within the small
(white) gap between these regions. For more details on these implicit conditions and the
corresponding combinatorial problem, we refer to Lemma 4.1 and Section 5.

A further analysis of the terms within the determining equation for βc yields the
following result.

Theorem 2.2 (Asymptotic expansion of βc). There exist polynomials α0, α1, α2, . . . such
that for any K ∈ N0 the critical parameter is asymptotically given by

βc =

K+1∑
k=1

αk−1(u)

dk
+O(d−(K+2)) (2.1)

as d→∞.

In fact, we know somewhat more than just the existence of the polynomials α0, . . . , αK :
the degree of αk is at most 2k and each αk is explicitly given in terms of α0, . . . , αk−1 as
well as derivatives of a function Fk, see (4.6). However, the evaluation of Fk relies on
solving the aforementioned combinatorial problems associated with fixing the multilink-
cluster and the total number of links on its edges such that the difference between this
number of links and the number of edges is at most k. Thus, it becomes increasingly time-
consuming to determine Fk as k increases and we have implemented this computation
up to K = 5. In particular, we find that α0 and α1 coincide with the result of [11].
Interestingly, the polynomials that we found exhibit an intriguing property: they are
convex functions of u, and writing αk with respect to the basis of Bernstein polynomials
of degree 2k, i.e.

αk(u) =

2k∑
j=0

αk,j

(
2k

j

)
uj(1− u)2k−j , (2.2)

their coefficients satisfy 0 < αk,j ≤ 1 for all j and all k ≤ 5, see Table 1. Note that, for
k = 1, the occurrence of positive coefficients seems reasonable as uj(1 − u)2−j might
account for the contribution of events with j crosses and 2− j bars on the sole edge of
the multilink-cluster. However, for k ≥ 2, the combinatorial problems associated with
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Table 1: Coefficients (αk,j)
2k
j=0 of the polynomial αk with respect to the Bernstein basis

polynomials of degree 2k for k = 0, . . . , 5, compare (2.2).
αk,j k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

j = 0 1 5/6 2/3 1559/2520 7973/12960 375181/604800

j = 1 1/2 47/120 1451/3780 71693/181440 120203/297000

j = 2 1 28/45 6737/12600 621463/1270080 418041641/898128000

j = 3 1/3 353/1260 46727/169344 70171259/239500800

j = 4 11/12 1721/2700 4531/7938 122779529/232848000

j = 5 9/40 210167/1270080 122840869/838252800

j = 6 307/360 226769/317520 238710041/349272000

j = 7 57/320 8806229/399168000

j = 8 939/1120 28680241/35925120

j = 9 4541/28800

j = 10 62417/72576

three or more links on one edge of the multilink-cluster need to be included (compare
with Table 2), but there is no corresponding basis polynomial. Therefore, this cannot
explain this feature and hence, we do not know whether this structure persists for larger
k or, if it persists, what the reason is.

In addition to the given asymptotic expansion, we may evaluate the aforementioned
implicit conditions from Lemma 4.1 with sufficiently high numerical precision at suitable
approximations for βc and, for instance, we find that

0 ≤ βc −
3∑
k=1

αk−1(u)

dk
≤ 2

d4
(2.3)

for all 3 ≤ d ≤ 100 and u ∈ [0, 1].

3 The exploration scheme

The core object we will be working with is an exploration scheme, i.e., a map that
assigns a sequence (Mn)n with Mn ⊆ V to each link configuration X. By construction,
this process follows the propagation of the loop γT through the tree and, in particular,
the survival of (Mn)n is related to the event that |γT | =∞. Moreover, every x ∈Mn will
have an ancestor within Mn−1 which is not necessarily the predecessor of x. Rather,
given its ancestor, x is chosen in a way such that the edge preceding x carries one
link that renews γT in a certain way. From this renewal property and for X given by
Poisson point processes, it follows that (|Mn|)n is a Galton-Watson process and we may
therefore characterise its survival probability by E(|M1|). Fortunately, we can calculate
this expected value quite well, resulting in both theorems from Section 2.

Before we may get into a detailed analysis, let us fix some notation. For x, y ∈ V ,
we write x ∼ y iff {x, y} ∈ E and y ≥ x iff the unique shortest path from y to the
root contains x. A connected subgraph S of T with x ∈ V (S) and y ≥ x for all y ∈ S
is called a subtree of T with root x. Given such a subtree S of T with root x, we
write S+ for the enlargement of S by one layer, i.e., S+ is the subtree with edge set
E(S+) = {e ∈ E : e ∩ V (S) 6= ∅ and e 6= e−x }, and with vertex set V (S+) = {x ∈ V : x ∈
e for some e ∈ E(S+)}. Here, for x 6= r, e−x = {pred(x), x} denotes the edge from x to
its predecessor pred(x). Moreover, for a subgraph S ⊆ T and a link configuration X

on T , we obtain the link configuration XS by retaining only the links on edges of S.
Additionally, if S ⊆ T is a subtree, x ∈ V (S) and t ∈ Tβ, we write γS,x,t for the loop
induced by XS on S that contains (x, t). In particular, if r ∈ V (S), we write γS = γS,r,0
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for brevity. Finally, we write Ne := Xe,\/(Tβ) +Xe,||(Tβ) for the total number of links on
an edge e ∈ E.

The basic observation that our method is based on is the following renewal property.

Lemma 3.1. Let {x, y} ∈ E with N{x,y} = 1, i.e. supp(X{x,y},\/+X{x,y},||) = {t} for some
t ∈ Tβ. Denote by Sx and Sy the distinct subtrees of T such that x ∈ V (Sx), y ∈ V (Sy),
V (Sx) ∪ V (Sy) = V and {x, y} /∈ E(Sx) ∪ E(Sy). Then for any loop γ that crosses {x, y},
i.e. such that γ ∩ {x} × U 6= ∅ for any open neighbourhood U of t, we have

γ ⊆ γSx,x,t ∪ γSy,y,t. (3.1)

Moreover, if |γ| <∞, we even have equality within (3.1) except for the points (x, t) and
(y, t).

Proof. If (x, t−) ∈ γ, then we distinguish between two cases:

(1 ) If (x, t+) ∈ γ, points in V (Sx)×Tβ are connected according to X if and only if they
are connected according to XSx – with the exception of the point (x, t).

(2 ) If (x, t+) /∈ γ, there is no possibility for the connecting path to come back to Sx as
the underlying graph is a tree and the path needs a link to cross from y to x. Thus,
ignoring the link on {x, y} will increase the set of points within V (Sx)×Tβ that are
connected.

The same argument holds if we initially had (x, t+) ∈ γ (with t− and t+ exchanged)
and this shows (3.1). Moreover, if γ is a finite loop, then it is closed, meaning that
two points within γ are connected by two distinct paths. Thus, since the underlying
graph is a tree and in comparison with the link configuration X̃ one obtains from X by
removing the link on {x, y}, the addition of this link affects at most one of these paths.
Therefore, the points (x, t−) and (x, t+) that were connected w.r.t. X̃ remain connected
w.r.t. X, compare with [11, Proposition 2.2]. This means that the case (2 ) cannot occur
for |γ| <∞ and we obtain the asserted equality.

Note that, in general, we do not know whether case (1 ) or (2 ) holds by just considering
XSx . However, splitting a loop γ(X) into γSx,x,t(XSx) and γSy,y,t(XSy ) gives an upper
bound for the propagation of γ that is optimal in the sense that at least for |γ| <∞ we
have equality.

To apply this observation, assume that we are given a link configuration X on T . Now,
we explore the tree starting from the root and consider the multilink-cluster C̄x rooted
in some x ∈ V . That is, C̄x is the maximal subtree with root x such that each of its edges
has at least two links, i.e.

C̄x :=
⋃
{S ⊆ T : S subtree with root x,Ne ≥ 2 for all e ∈ E(S)}.

If this subtree is infinite, we may not be able to apply Lemma 3.1 to divide the propagation
of γT into finite segments, therefore we set

Cx :=

{
C̄x if |C̄x| <∞,
∅ otherwise.

The exploration scheme is then defined recursively by M0 := {r} and

Mn+1 :=
⋃

x∈Mn

Mx
1 , n = 0, 1, 2, . . .
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Figure 3: On the 3-ary tree, the numbers Ne of links on the edges e ∈ E constitute
the multilink-cluster Cr. Whereever the loop γT crosses an edge protruding from Cr, a
vertex of M1 occurs.

with

Mx
1 := {y ∈ V (C+

x ) \ V (Cx) : y ∈ γC+
x ,x,tx

},

where tr = 0 and {tx} = {tx(X)} := suppXe−x for x 6= r. A sketch of these quantities is
given in Figure 3.

Note that, for n ∈ N, there is always exactly one link on the edge e−x preceding any
x ∈ Mn. Therefore, we may indeed apply Lemma 3.1 to these edges and obtain that
– if γT is finite – the trace of γT within C+

x coincides with γC+
x ,x,tx

. Thus, γT reaches
the boundary vertices V (C+

x ) \ V (Cx) of C+
x if and only if the loop γC+

x ,x,tx
does so and

the latter information is encoded within Mx
1 . On the other hand, if γT is infinite, then

γC+
x ,x,tx

is an upper bound for the trace of γT within C+
x . This allows us to relate the

survival/extinction of (Mn)n to the infiniteness/finiteness of γT .

Proposition 3.2. Fix a link configuration X.

(a) If
∣∣⋃

n∈N0
Mn

∣∣ =∞, then |γT | =∞.

(b ) If
∣∣⋃

n∈N0
Mn

∣∣ <∞ and |C̄x| <∞ for all x ∈
⋃
n∈N0

Mn, then |γT | <∞.

Proof. Let us begin with two observations that hold for any x ∈
⋃
nMn. On the one hand,

for y ∈ V (C+
x ) \ V (Cx) with Ne−y = 1, we have y ∈Mx

1 iff (pred(y), ty) ∈ γCx,x,tx . On the
other hand, we may apply Lemma 3.1 to edges {e−x } ∪

(
E(C+

x ) \ E(Cx)
)

to find

γT ∩ V (Cx)×Tβ ⊆ γCx,x,tx . (3.2)

Moreover, for |γT | <∞ we even have equality within (3.2) up to finitely many isolated
points.
Now, to prove (a), suppose that

⋃
n∈N0

Mn is infinite and pick a sequence (xn)n∈N0 with
r = x0 ≤ x1 ≤ . . . as well as xn ∈ Mn for all n. If we further assume that |γT | < ∞, we
may set n0 := max{n : xn ∈ γT }, x := xn0

and y := xn0+1 ∈ Mx
1 . Combining the two
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observations from the beginning of this proof, this gives y ∈ γT – in contradiction to the
maximality of n0.
For (b ), suppose that |γT | = ∞ and choose (xk)k∈N0

⊆ V with r = x0 ≤ x1 ≤ . . .,
x0 ∼ x1 ∼ . . . as well as xk ∈ γT for all k. If, however,

⋃
nMn is finite, then there is

k0 := max{k : xk ∈
⋃
n∈N0

Mn}. Thus, we may set x := xk0
and y := xk1+1, where k1 :=

max{k ≥ k0 : xk ∈ C̄x} is finite by assumption. By the second preliminary observation,
we find (pred(y), ty) ∈ γCx,x,tx and thus y ∈Mx

1 in contradiction to maximality of k0.

Now, let us assume that we are given link configurations at random. As mentioned
before, for each realisation we may trace the (possible) propagation of γT within the
finite segments Cx for some x ∈ Mn, n ∈ N0, by considering the loop γCx,x,tx , and the
random variables Mx

1 keep track where to start with new segments. Since this only
relies on local information about X, it is no surprise that (|Mn|)n forms a Galton-Watson
process under natural conditions on the distribution of X.

Lemma 3.3. Let (Xe,?)e∈E,?∈{\/,||} be a family of admissible point processes on Tβ.
Assume that the family (Xe,\/, Xe,||)e∈E is independent and identically distributed, and
that each Xe,? is invariant under shifts in Tβ. Then

⋃
n∈N0

Mn is infinite with positive
probability if and only if E(|M1|) > 1.

Proof. To begin with, we have

ϕn+1(w) = E
(
w|Mn+1|

)
=
∑
Π

E
(
w|Mn+1|1{Mn=Π}

)
,

for w ∈ [0, 1], where ϕn denotes the probability generating function of |Mn| and where
the sum runs over all subsets Π of the leaves of some finite subtree of T . Now fix Π, let
Sx be the subtree of T with root x ∈ Π and set SΠ := T \

⋃
x∈Π Sx to be tree containing

all remaining edges. Furthermore, for a realisation of X within {Mn = Π} we identify
X with (XSΠ

, (XSx)x∈Π), where XS represents the links on edges e ∈ E(S). Then, by
definition, we have

|Mx
1 (X)| = |M1(Θx,tx(XSΠ

)(XSx))|

for x ∈ Π. Here, Θx,t takes the links of XSx and applies a position shift by t as well as
a spatial shift by some tree-isomorphism from Sx to T to these links. Since the first
of these shifts leaves the distribution of XSx invariant and the second maps it to the
distribution of X, Fubini’s theorem implies

ϕn+1(w) =
∑
Π

E

(∏
x∈Π

w|M
x
1 |1{Mn=Π}

)

=
∑
Π

∫
P(dXSΠ)1{Mn=Π}(XSΠ)

∏
x∈Π

∫
P(dXSx)w

|M1◦Θx,tx(XSΠ
)(XSx )|

=
∑
Π

E
(
E(w|M1|)|Π|1{Mn=Π}

)
= E

(
ϕ1(w)|Mn|

)
= ϕn ◦ ϕ1(w).

Thus, by P(|M1| = 1) < 1 and since |Mn| = 0 implies |Mn+1| = 0, the standard (fixed-
point) argument from the theory of Galton-Watson processes implies the asserted equiva-
lence (compare [4, chapter I.3 and I.5]).
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Note that – with a little bit more effort – we could also show that (|Mn|)n is a
Galton-Watson process. However, the stated characterisation of survival suffices for our
purposes. In particular, by Proposition 3.2 and Lemma 3.3 it is clear that we need to be
interested in E(|M1|). For concreteness and because this is the most important situation,
we only study this quantity in the case of the Poisson point processes described in the
previous section.

For a concise presentation, we set

Sd := {(S, n) : S is a finite subtree of T with root r,

n : E(S)→ N0 with n(e) ≥ 2 for all e ∈ E(S)}.

We also write the shorthand n(S) :=
∑
e∈E(S) n(e), n! :=

∏
e∈E(S) n(e)! and define the

event

AS,n := {Cr = S and Ne = n(e) for all e ∈ E(S)}

for (S, n) ∈ Sd. By convention, we assume that (S0, n0) ∈ Sd, where S0 = ({r}, ∅) is the
trivial tree and where n0 is the empty function with n0(S0) = 0.

Lemma 3.4. Let (Xe,?)e∈E,?∈{||,\/} be independent homogeneous Poisson point processes
on Tβ , with rate u for Xe,\/ and (1−u) for Xe,||. Then there exist nonnegative coefficients
pS,n(d, u) (independent of β and polynomial in u) with

E(|M1|) =
∑

(S,n)∈Sd

(
e−βd(1 + β)d−1

)|V (S)|
βn(S)+1pS,n(d, u). (3.3)

For each (S, n) ∈ Sd, the polynomials pS,n(d, u) can be calculated: Example 3.5 will
deal with the most basic case and within Section 5, we will see how to reduce this
calculation to a combinatorial problem for arbitrary (S, n).

Proof of Lemma 3.4. We decompose

E(|M1|) =
∑

(S,n)∈Sd

P
(
AS,n

)
E
(
|M1|

∣∣AS,n).
By independence, and using also the facts that |E(S+) \ E(S)| = d|V (S)| − |E(S)| and
|E(S)| = |V (S)| − 1, we find

P
(
AS,n

)
=

∏
e∈E(S)

P(Ne = n(e))
∏

e∈E(S+)\E(S)

P(Ne ≤ 1)

=

∏
e∈E(S) β

n(E)∏
e∈E(S) n(e)!

e−β|E(S)|((1 + β)e−β
)d|V (S)|−|E(S)|

=
βn(S)

n!
e−βd|V (S)|(1 + β)(d−1)|V (S)|+1.

On the other hand,

E
(
|M1|

∣∣AS,n) =
∑

y∈V (S+)\V (S)

P
(
y ∈ γS+

∣∣AS,n),
and the term in the sum on the right hand side above can be written as

P
(
y ∈ γS+

∣∣AS,n, Ne−y = 1
)
P
(
Ne−y = 1

∣∣AS,n),
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where we used that y ∈ γS+ implies Ne−y = 1. Now, for all y, the second factor above is
equal to P(Ne−y = 1|Ne−y ≤ 1) = β

1+β by independence. Moreover, the first factor does
not depend on β: By

{y ∈ γ+
S , N

e−y = 1} ∩AS,n = {(pred(y), ty) ∈ γS , Ne−y = 1} ∩AS,n,

we see that the event depends on the link configuration on edges e ∈ E(S)∪{e−y } and for
these edges, the total number Ne of links on each e is fixed. By regarding, for each edge
e, the random variables (Xe,?)?∈{\/,||} as the result of first determining the total number of
links on e by a Poisson random variable with expectation β, then determining their type by
a Bernoulli random variable with success probability u, and then determining the position
of their link(s) by a uniform random variable on {(s1, . . . , sNe) ∈ TN

e

β : s1 ≤ . . . ≤ sNe},
one sees that P((pred(y), ty) ∈ γS |AS,n, Ne−y = 1) is independent of β and polynomial in
u. Therefore, the claim follows when we put

pS,n(d, u) :=
1

n!

∑
y∈V (S+)\V (S)

P
(
(pred(y), ty) ∈ γS

∣∣AS,n, Ne−y = 1
)
. (3.4)

Example 3.5 (Pattern of order 0). The simplest case for (S, n) ∈ Sd is (S0, n0) with
S0 = ({r}, ∅) being the trivial tree. Then we have

pS0,n0
(d, u) =

∑
y∼r

P
(

(r, ty) ∈ γS0

∣∣Cr = S0, N
e−y = 1

)
︸ ︷︷ ︸

=1 since γS0
={r}×Tβ

= d.

Note that this is constant in u due to the fact that we do not place any link onto E(S0)

and therefore we don’t need to distinguish between different types of links.

We shall now restrict our attention even further, namely to the case β ≤ d−1/2. In this
case,

P(Ne ≥ 2) ≤ 1− e−d
−1/2

(1 + d−1/2) < 1/d,

so the cluster of edges that carry two or more links does not percolate on the d-ary tree.
In particular, we almost surely have |C̄x| <∞ for all x ∈

⋃
n∈N0

Mn and by combining the
results of this section, we obtain the following proposition that contains a large portion
of the proof of Theorem 2.1. For clarity, we denote the dependence of quantities on β
explicitly below.

Proposition 3.6. The map β 7→ Eβ(|M1|) is strictly increasing and continuous on
(0, d−1/2]. Moreover, the following statements are equivalent:

(a) There is a unique and sharp phase transition within (0, d−1/2), i.e. there exists a
unique βc ∈ (0, d−1/2) such that Pβ(|γT | < ∞) = 1 for β ∈ (0, d−1/2) if and only if
β ≤ βc.

(b ) Eβ=d−1/2(|M1|) > 1.

If one (then both) of the above statements holds, then βc is the unique solution to the
equation Eβ(|M1|) = 1, β ∈ (0, d−1/2).

Proof. Writing fS,n(β) =
(
e−βd(1 + β)d−1

)|V (S)|
βn(S)+1pS,n(d, u) for the summands with-

in (3.3) and with |V (S)| = |E(S)|+ 1, we compute

∂β ln fS,n(β) =
1

β

(
n(S)− |E(S)|+ |V (S)|1− β

2d

1 + β

)
.
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Since n(S)− |E(S)| ≥ 2|E(S)| − |E(S)| ≥ 0, this implies

∂β ln fS,n(β) ≥ 1

β
|V (S)|1− βd

2

1 + β
> 0

whenever β < d−1/2. By Lemma 3.4, this shows strict monotonicity. A direct consequence
is that for any finite subset Ŝd of Sd we find

sup
β∈(0,d−1/2]

∣∣∣Eβ(|M1|)−
∑

(S,n)∈Ŝd

fS,n(β)
∣∣∣ =

∑
(S,n)/∈Ŝd

fS,n(d−1/2).

Furthermore, for β = d−1/2, the expected size of the percolation cluster C̄r is fi-
nite and thus, Eβ=d−1/2(|M1|) ≤ dEβ=d−1/2(|V (C̄1)|) < ∞. This shows that the series∑

(S,n)∈Sd fS,n(·) of continuous functions converges uniformly on [0, d−1/2], thus its limit
Eβ(|M1|) is continuous.
To show the remaining equivalence, note that limβ↓0Eβ(|M1|) = 0. Thus, by continuity
and monotonicity, there is at most one solution βc of the equation Eβ(|M1|) = 1 in the
interval (0, d−1/2), and a necessary and sufficient condition for the existence of such a
solution is Eβ=d−1/2(|M1|) > 1. Moreover, in this case monotonicity implies Eβ(|M1|) > 1

for all β ∈ (βc, d
−1/2] and Eβ(|M1|) ≤ 1 for β ∈ (0, βc]. Finally, by Lemma 3.3 and

Proposition 3.2, the result follows.

Proof of Theorem 2.1 for d ≥ 5. For the case d ≥ 5, it is sufficient to estimate Eβ(|M1|)
by the term within (3.3) that corresponds the trivial tree (S, n) = (S0, n0), i.e. |V (S0)| = 1

and n0(S0) = 0. Together with Example 3.5, this yields

Eβ=d−1/2(|M1|) ≥ e−d
−1/2d(1 + d−1/2)d−1d−1/2d.

For d ≥ 5, the latter expression is strictly larger than 1. Thus, by Proposition 3.6, this
establishes the existence of a sharp phase transition and the partition into the two phases
up to β∗ = d−1/2.

To establish the existence of a sharp phase transition for d = 3, 4, too, we need to find
sharper estimates on Eβ=d−1/2(|M1|). Thus, we will need to calculate pS,n for more pairs
(S, n) ∈ Sd. We will do this in Section 5 and these considerations will also enable us to
calculate the coefficients αk within the asymptotic expansion of βc.

4 Asymptotic expansion

In this section, we will prove Theorem 2.2. Since βc is the solution ofEβ(|M1|) = 1 (see
Proposition 3.6), we are going to analyse the representation of E(|M1|) from Lemma 3.4.
In particular, we are interested in sufficiently precise estimates of E(|M1|) that will be
given in Lemma 4.1. Apart from providing the tools to establish the asymptotic expansion
of βc, this lemma will additionally allow us to formulate implicit conditions on (β, d, u)

such that γT is finite almost surely and infinite with positive probability, respectively.
To begin with, let us consider the conditional probabilities within the definition (3.4)

of pS,n(d, u) and note that, for y ∈ V (S+) \ V (S) and given AS,n as well as Ne−y = 1,
the position ty of the link on e−y is independent of XS and distributed uniformly on Tβ.
Therefore, the conditional probability for (pred(y), ty) to be contained in γS is given by

E
(
τ

pred(y)
S /β

∣∣AS,n), where τxS denotes the time that γS spends at a vertex x ∈ V (S), i.e.

τxS = vol{t ∈ Tβ : (x, t) ∈ γS}.
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This yields that

pS,n(d, u) =
1

n!

∑
x∈V (S)

(d− dxS) E

(
τxS
β

∣∣∣∣AS,n) ,
with

dxS :=|{y ∈ V (S) : pred(y) = x}|

being the out-degree of x within S. We will make use of this representation of pS,n(d, u)

in Section 5. However, for now we will only rely on two observations: On the one hand,
pS,n(d, u) is a polynomial in d of degree 1. On the other hand, pS,n does not change under
tree-isomorphisms. This motivates to introduce an equivalence relation on

⋃
d∈N Sd by

(S, n) ∼ (S′, n′)

⇔ there is an isomorphism of rooted trees J : S → S′ such that

n′ = n ◦ J−1.

To calculate E(|M1|) it then suffices to sum over S :=
⋃
d∈N Sd

/
∼ instead of Sd if we

account for multiplicities

κS,n(d) := |[(S, n)] ∩ Sd|,

where [(S, n)] denotes the equivalence class of (S, n). Some examples of [(S, n)] and the
corresponding κS,n(d) are given in Table 2. In general, one easily sees that

κS,n(d) = κ
(0)
S,n

∏
x∈V (S):
dxS≥1

d · (d− 1) · . . . · (d− dxS + 1)

with some constant 0 < κ
(0)
S,n ≤ 1 that accounts for (in-)distinguishability. In particular,

κS,n is a polynomial of degree
∑
x∈V d

x
S = |E(S)| and whenever d < max{dxS : x ∈ V (S)},

we have κS,n(d) = 0, consistent with the impossibility of embedding S into the d-ary tree
T . This allows us to write

E(|M1|) =
∑

[(S,n)]∈S

(
e−βd(1 + β)d−1

)|V (S)|
βn(S)+1κS,n(d) pS,n(d, u).

Note that, by introducing S and κS,n(d), the index set of summation S now does not
depend on d anymore. This becomes important once we consider the asymptotic behavior
of this expression as d→∞. Furthermore, it turns out to be convenient to introduce the
variables α := βd and h = d−1, where we may allow arbitrary h ∈ R, too. Now, we define
the polynomials qS,n(h, u) such that

qS,n(d−1, u) = d−|E(S)|−1κS,n(d) pS,n(d, u)

for all d ∈ N. For h = d−1, this immediately gives

Eβ=αh(|M1|) =
∑

[(S,n)]∈S

(
e−α(1 + αh)

1
h−1

)|V (S)|
αn(S)+1hord(S,n)qS,n(h, u), (4.1)

where the order of (S, n) is defined by

ord(S, n) :=n(S)− |E(S)| =
∑

e∈E(S)

(n(e)− 1).
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As it turns out, we will need to consider all those terms of (4.1) with ord(S, n) ≤ K

to determine the coefficients α0, . . . , αK from the asymptotic expansion (2.1) of βc.
Therefore, for K ∈ N0 and u ∈ [0, 1], we define

FK(α, h, u) :=
∑

[(S,n)]∈S:
ord(S,n)≤K

(
e−α(1 + αh)

1
h−1

)|V (S)|

αn(S)+1hord(S,n)qS,n(h, u).

Note that as n(S) ≥ 2|E(S)| and hence ord(S, n) ≥ n(S)
2 ≥ |E(S)|, there are a finite

number of equivalence classes [(S, n)] with fixed order k ∈ N0. Thus, FK(·, ·, u) has an
analytic continuation onto {(α, h) ∈ R2 : |αh| < 1} according to

e−α(1 + αh)( 1
h−1) = exp

(
α

∞∑
k=1

(−1)k

k+1 α
khk − ln(1 + αh)

)
.

This analyticity (in particular for h = 0) will yield the analyticity of the solution α(K,+)(h)

to FK(α, h, u) = 1 within the proof of Theorem 2.2.
Finally, we define q̄S,n and F̄K in the same way as qS,n and FK but with pS,n replaced

by

p̄S,n :=
1

n!

∑
x∈V (S)

(d− dxS)E

(
β − τxS
β

∣∣∣∣AS,n) .
Here, p̄S,n contains the time β − τxS that γS does not spend at a vertex x ∈ V (S) and in
that sense, p̄S,n is the counterpart of pS,n. Furthermore, note that FK and F̄K are explicit

once we know E
(
τxS
β

∣∣AS,n) for all [(S, n)] ∈ S with ord(S, n) ≤ K. Within Section 5, we

will address how to calculate this expected value explicitly. However, we are now able to
state the estimates for E(|M1|).
Lemma 4.1 (Estimates of E[|M1|]). Let K ∈ N0 and u ∈ [0, 1] be arbitrary.

(a) For all d ∈ N and β > 0 we have

E(|M1|) ≥ FK(βd, d−1, u).

(b ) For all d ∈ N and β > 0 with d(1− e−β(1 + β)) < 1 we have

E(|M1|) ≤
βde−β

1− d(1− e−β(1 + β))
− F̄K(βd, d−1, u).

(c) For all α̂ > e−2 and d0 ∈ N with d0 > α̂2e2 there is a constant cK > 0 such that for
all d ≥ d0 and all 0 < α ≤ α̂ we have

Eβ=α/d(|M1|) ≤ FK(α, d−1, u) +
cK
dK+1

.

Moreover, cK ≤ c (α̂2e2)K+1 for some constant c.

Before addressing the proof, let us look at an immediate consequence. If we combine
the estimates of Lemma 4.1(a) and (b ) with Proposition 3.2 and Lemma 3.3, we see that
with positive probability there are infinite loops for all parameters within the region

R+
K := {(β, d, u) ∈ (0,∞)×N× [0, 1] : FK(βd, d−1, u) > 1}, (4.2)
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Figure 4: Regions R±K of parameters (β, d, u) where we can guarantee that γT is infinite
with positive probability (blue regionR+

K) and that γT is finite almost surely (sandybrown
region R−K), respectively. On top, we considered K = 5 while the bottom pictures show
a comparison for K = 0, . . . , 5 with regions of higher K being more lightly coloured.

while γT is finite almost surely for

R−K :=
{

(β, d, u) ∈ (0,∞)×N× [0, 1] : d(1− e−β(1 + β)) < 1

and
βde−β

1− d(1− e−β(1 + β))
− F̄K(βd, d−1, u) ≤ 1

}
.

(4.3)

Various cross sections of R±K are shown in Figure 2 and Figure 4, with the latter
figure also containing a comparison of the precision of R±K for K = 0, . . . , 5.

Proof of Lemma 4.1. The estimate within (a) follows directly from (4.1) and the definition
of FK . Moreover, as

pS,n(d, u) ≤ pS,n(d, u) + p̄S,n(d, u) =
1

n!
(d|V (S)| − |E(S)|) (4.4)

we find

E(|M1|) ≤− F̄K(βd, d−1, u)

+
∑

(S,n)∈Sd

(
e−βd(1 + β)d−1

)|V (S)|
βn(S)+1 d|V (S)| − |E(S)|

n!
,

=− F̄K(βd, d−1, u) +
∑

(S,n)∈Sd

P(AS,n)
∑

y∈V (S+)\V (S)

P
(
Ne−y = 1

∣∣AS,n) ,
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where the last equality follows from the proof of Lemma 3.4. Now, the sum on the right
hand side is easily seen to be the expectation of the random variable |W1| with

W1 := {x ∈ V (C+
r ) \ V (Cr) : Ne−x = 1}.

Fortunately, for d(1− e−β(1 + β)) < 1, this expectation can also be calculated in a more
straightforward way. By applying Wald’s identity multiple times, we find

E(|{y ∈ V (Cr) : |y| = n}|) =
(
d(1− e−β(1 + β))

)n
and thus

E(|W1|) =

∞∑
n=1

E(|{x ∈W1 : |x| = n}|)

=

∞∑
n=1

dβe−βE(|{y ∈ V (Cr) : |y| = n− 1}|)

=
βde−β

1− d(1− e−β(1 + β))
.

For (c), let 0 < α ≤ α̂ and d0 ≤ d ∈ N be given. We now use that

Eβ=α/d(|M1|) =FK(α, d−1, u)

+
∑

(S,n)∈Sd:
ord(S,n)>K

(
e−α

(
1 +

α

d

)d−1
)|V (S)| (α

d

)n(S)+1

pS,d(d, u)

and estimate the sum on the right hand side. By (4.4) and the facts that |E(S)| ≤ ord(S, n)

and |E(S)| ≥ 1 for ord(S, n) ≥ 1, we find

Eβ=α/d(|M1|)− FK(α, d−1, u)

≤
∞∑

k=K+1

k∑
`=1

∑
S⊆T subtree

with root r
and |E(S)|=`

∑
n∈(N≥2)E(S):
n(S)=k+`

(
e−α

(
1 +

α

d

)d−1
)

︸ ︷︷ ︸
≤1

|V (S)|

(α
d

)n(S)+1 d|V (S)| − |E(S)|
n!

.

(4.5)

Note that, within the last expression, we may write n(S), |V (S)| and |E(S)| in terms of
k and ` instead of S. Moreover, by [19, Exercise 2.3.4.4-11 on p.397 and p.589], the
number of subtrees S ⊆ T of the d-ary tree T with r ∈ V (S) and |V (S)| = `+ 1 is given
by the (` + 1)th d-Fuss-Catalan number 1

d(`+1)−`
(
d(`+1)
`+1

)
. Thus, by expanding the last

summation within (4.5) onto all n ∈ (N0)E(S) with n(S) = k + `, using the multinomial
theorem and estimating

(
d(`+1)
`+1

)
due to

(
m
j

)
≤ mj/j!, we obtain

Eβ=α/d(|M1|)− FK(α, d−1, u)

≤
∞∑

k=K+1

k∑
`=1

(`+ 1)`+1

(`+ 1)!

αk+`+1

dk
`k+`

(k + `)!

≤ 1

dK+1
α̂K+3

∞∑
k=0

(
α̂

d0

)k k+K∑
`=0

α̂`
(`+ 2)`+2

(`+ 2)!

(`+ 1)`+1

(`+ 1)!

k+K+1∏
j=1

`+ 1

`+ 1 + j︸ ︷︷ ︸
=:cK

.
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Now, by Stirling’s approximation ``

`! ≤
e`√
2π`
≤ e` we find

cK ≤ α̂K+3
∞∑
k=0

(
α̂

d0

)k k+K∑
`=0

α̂`e2`+3
k+K+1∏
j=1

`+ 1

`+ 1 + j︸ ︷︷ ︸
≤1

≤ α̂K+3e3
∞∑
k=0

(
α̂

d0

)k
(α̂e2)k+K+1 − 1

α̂e2 − 1

≤
(
α̂2e2

)K+1 α̂2e3

α̂e2 − 1

∞∑
k=0

(
α̂2e2

d0

)k
︸ ︷︷ ︸

=:c<∞

since we assumed that α̂e2 > 1 and d0 > α̂2e2.

Remark 4.2. The proof of Lemma 4.1(a) and (b ) shows that the given estimates corre-
spond to estimating E(|M−1 |) ≤ E(|M1|) ≤ E(|M+

1 |), where M±1 are worst-case bounds
on M1 outside of AK :=

⋃
(S,n)∈Sd:ord(S,n)≤K AS,n. More precisely, we may define M±1 to

coincide with M1 on AK (i.e., on the set where we trace the propagation of γT precisely),
while we set M−1 := ∅ and M+

1 := W1 otherwise. This idea of tracing γT whenever
possible/viable and using worst-case estimates otherwise might be a practicable way to
proceed in another context, too, even if there is no “perfect” sequence (Mn)n: If one is
able to construct worst-case bounds (M±n ) for the propagation of γT by a construction
similar to the one for M1, this at least yields the sufficient conditions for both phases
that correspond to the estimates from Lemma 4.1(a) and (b ).

Apart from providing implicit but sharp phase-conditions for the parameters (β, d, u),
the estimates from Lemma 4.1 also allow us to find the asymptotic expansion of βc.

Proof of Theorem 2.2. Fix u ∈ [0, 1]. Since the terms within FK(α, h, u) contain the
factor hord(S,n) and the only pair (S, n) with ord(S, n) = 0 is (S0, n0), with Example 3.5
and κS0,n0

(d) = 1 we find

FK(1, 0, u) = 1

as well as

∂α FK(α, h, u)
∣∣
α=1,h=0

= 1

for all K ∈ N0. Therefore, by the implicit function theorem for analytic functions (see
Proposition A.1) there exist analytic functions α(K,±) on a common neighbourhood of
h = 0 and such that

FK(α(K,+)(h), h, u) = 1

and

FK(α(K,−)(h), h, u) + cKh
K+1 = 1

for sufficiently small |h|, where cK is chosen according to Lemma 4.1(c) and α̂ := 2.
Moreover, by a corollary of the multivariate Faà Di Bruno formula (see Proposition A.1)
the coefficients of α(K,±) can be determined recursively by α0 = 1 and

αk =αk(u)

:= −
∑

j0,...,jk−1∈N0:

1≤
∑k−1
i=0 ji≤k,

j0+
∑k−1
i=1 iji=k

∂j0h ∂
j1+...+jk−1
α Fk(α, h, u)

∣∣
α=1,h=0∏k−1

i=0 ji!

k−1∏
i=1

αjii , (4.6)
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k = 1, . . . ,K. Here, we used that

∂jhFk(α, h, u)
∣∣
h=0

= ∂jh FK(α, h, u)
∣∣
h=0

= ∂jh
(
FK(α, h, u) + cKh

K+1
)
|h=0

for j ≤ k ≤ K since these functions differ by terms containing the factor hj+1. In
particular, for 0 ≤ k ≤ K, the kth coefficients of α(K,+) and α(K,−) coincide with αk and
they do not depend on the choice of K. This yields

α(K,±)(h) =

K∑
k=0

αkh
k +O(hK+1) (4.7)

as h→ 0 with the O-term of course differing for α(K,+) and α(K,−). Furthermore, by an
easy induction argument the recursion (4.6) yields that every αk(u) is a polynomial in u
as Fk is a polynomial in u. Finally, by Lemma 4.1(a), for β+ = d−1 α(K,+)(d−1) we find
that

Eβ+(|M1|) ≥ FK(α(K,+)(d−1), d−1, u) = 1 = Eβc(|M1|)

for all sufficiently large d. Thus, by monotonicity (see Proposition 3.6) we find that

βc ≤ β+ = d−1 α(K,+)(d−1)

for those d. Similarly, from Lemma 4.1(c), we obtain

βc ≥ d−1 α(K,−)(d−1)

for large d. Combined with (4.7), this completes the proof.

5 Reduction to a combinatorial problem

In this section, we are going to present a method to calculate the polynomials pS,n
and p̄S,n, respectively, for every fixed [(S, n)] ∈ S with E(S) 6= ∅. For this purpose, it

suffices to calculate E
(
τxS
β

∣∣AS,n) for all x ∈ V (S) (compare with the discussion in the

beginning of Section 4) and we will determine this quantity by partitioning AS,n into the
events AS,n,ν where the cluster Cr is fixed to coincide with S and the total number Ne of
links on every edge e ∈ E(S) is given by n(e), i.e.,

AS,n,ν :=AS,n ∩ {For all j = 1, . . . , n(S) the jth link on S

is of type ?j and occurs on the edge ej},

where

ν =((e1, ?1), . . . , (en(S), ?n(S))) ∈ VS,n,

VS,n :=
{

((εj , ∗j))n(S)
j=1 : |{j : εj = e}| = n(e) for all e ∈ E(S)

}
.

Moreover, the time-ordering of the edges and types of the links is specified by the
sequence ν. Here, time-ordering is understood via Tβ ' [0, β) and in particular, the
jth link is determined with respect to this order. Given AS,n,ν , determining the loop
configuration is then closely related to the following task.

Combinatorial Problem 5.1. Fix [(S, n)] ∈ S with non-empty set of edges E(S) 6= ∅
as well as ν = ((ej , ?j))

n(S)
j=1 ∈ VS,n. Now, for j = 1, . . . , n(S), place a link of type ?j
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r e1 x1
0

1
3β

2
3β

β

brS1,ν
= 2 bx1

S1,ν
= 1

ν = ((e1, \/), (e1, \/))

Figure 5: Let S1 be the tree containing two vertices and one edge e1 = {r, x1} between
them. Furthermore, let n1(S1) = n1(e1) := 2 be the number of links on this edge and
define their types by ν := ((e1, \/), (e1, \/)). Then the link configuration Xν on E(S) and its
corresponding loop configuration are depicted above. For every vertex x ∈ V (S1), one

can now easily read off the number bxS1,ν
of intervals

(
j

n(S)+1β,
j+1

n(S)+1β
)

that the (blue)

loop γS1
(Xν) stays at this vertex.

onto the edge ej at position j
n(S)+1β, i.e. consider the deterministic link configuration

Xν = (Xe,?
ν )e∈E(S),?∈{\/,||} with

Xe,?
ν =

∑
j=1,...,n(S):
ej=e and ?j=?

δ j
n(S)+1

β . (5.1)

For this configuration, consider the loop γS(Xν) on the tree S that contains (r, 0) and
compute the combinatorial quantities

bxS,ν :=
∣∣∣{j ∈ {0, . . . , n(S)} : {x} ×

(
j

n(S)+1β,
j+1

n(S)+1β
)
⊆ γS(Xν)

}∣∣∣ (5.2)

for all x ∈ V (S).

Remark 5.2. One can solve the task of Combinatorial Problem 5.1 (i.e., determine the
integers bxS,ν for all x ∈ V (S)) with the help of a computer or by drawing a sketch (see
Figure 5 and the description within its caption). Unfortunately, this will take more and
more computational effort as n(S) and |E(S)| increase. However, note that at least the
calculation of bxS,ν does not depend on the choice of the representative for [(S, n)] if ν is
adapted accordingly.

The connection between Combinatorial Problem 5.1 and the calculation of pS,n and
p̄S,n is established by the following lemma.

Lemma 5.3. For all (S, n) ∈ Sd with E(S) 6= ∅ and ν ∈ VS,n we have

E

(
τxS
β

∣∣∣∣AS,n,ν) =
bxS,ν

n(S) + 1
,

with bxS,ν given by (5.2). In particular,

pS,n(d, u) =
1

(n(S) + 1)!

∑
ν∈VS,n

uν
∑

x∈V (S)

(d− dxS)bxS,ν (5.3)
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and

p̄S,n(d, u) =
1

(n(S) + 1)!

∑
ν∈VS,n

uν
∑

x∈V (S)

(d− dxS)b̄xS,ν , (5.4)

where for ν = ((ej , ?j))
n(S)
j=1 we set

uν :=u|{j:?j=\/}|(1− u)|{j:?j=||}|,

b̄xS,ν :=n(S) + 1− bxS,ν .

Proof. To begin with, denote the positions of links on E(S) by t1 < . . . < tn(S) and

set t0 := 0, tn(S)+1 := β. Moreover, fix x ∈ V (S) and let bx,jS,ν ∈ {0, 1}, j = 0, . . . , n(S),
be the indicator of {γS contains {x} × (tj , tj+1)} when given AS,n,ν . Note that each
bx,jS,ν is deterministic for given S, ν, x and j. In particular, a change of (t1, . . . , tn(S)) that

preserves the time-ordering does not change the bx,jS,ν ’s. Therefore, we find bx,jS,ν = bx,jS,ν(Xν)

with Xν as in (5.1). This yields

τxS =

n(S)∑
j=0

bx,jS,ν(Xν)(tj+1 − tj)

on AS,n,ν . Now, with respect to the conditional measure P( ·
∣∣AS,n,ν), the vector (t1, . . . ,

tn(S)) is uniformly distributed on {s ∈ Rn(S) : 0 < s1 < . . . < sn(S) < β} since it is the
vector of arrival times of a merged Poisson process, where the number of jumps and the
assignment of these jumps to the respective subprocesses is fixed by AS,n,ν . Therefore,
we have

E

(
τxS
β

∣∣∣∣AS,n,ν) =

n(S)∑
j=0

bx,jS,ν(Xν)E

(
tj+1 − tj

β

∣∣∣∣AS,n,ν)︸ ︷︷ ︸
= 1
n(S)+1

=
bxS,ν

n(S) + 1
.

Finally, the assertions about pS,n and p̄S,n, respectively, follow if we decompose AS,n =⋃
ν∈VS,n AS,n,ν and use that P(AS,n,ν

∣∣AS,n) = uν n!
n(S)! .

Note that so far we excluded the case [(S, n)] = [(S0, n0)] within the considerations
in this section since the definition of AS,n,ν would need clarification to make sense for
E(S) = ∅. Nevertheless, Example 3.5 shows that (5.3) and (5.4) remain valid if we set
ν = (∅) to be the empty list and VS0,n0

= {ν} as well as brS0,ν
= 1 = uν .

Before we address the proof of Theorem 2.1 for d = 3, 4, let us present computational
results for the integers bxS,ν . For the sake of a concise arrangement, we define

VS,n,j := {((ei, ?i))n(S)
i=1 ∈ VS,n : |{i : ?i = ||}| = j}, j = 0, . . . , n(S)

and set DS,n to be the 2× (n(S) + 1)-matrix for which the kth column is given by

(DS,n)k =
∑

ν∈VS,n,k−1

∑
x∈V (S)

(
bxS,ν
dxS b

x
S,ν

)
, k = 1, . . . , n(S) + 1.

Analogously, we define D̄S,n but with bxS,ν replaced by b̄xS,ν . This yields

pS,n(d, u) =
1

(n(S) + 1)!

〈
DS,nu

(n(S)),

(
d

−1

)〉

EJP 26 (2021), paper 133.
Page 21/26

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP677
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sharp phase transition for random loop models on trees

r e1 x1 r e1 x1 r e1 x1

ν =

bxS2,ν
=

t0 = 0

t1

t2

t3

t4 = β

3 3 2 2 3 3

((e1, \/), (e1, ||), (e1, ||)) ((e1, ||), (e1, \/), (e1, ||)) ((e1, ||), (e1, ||), (e1, \/))

Figure 6: The three sequences ν ∈ VS3,n3,2, see Example 5.4 for a description.

and the analogous equation for p̄S,n, where we set

u(n(S)) :=
(
un(S), un(S)−1(1− u), . . . , (1− u)n(S)

)T
∈ [0, 1]n(S)+1.

Note that the entries of DS,n and D̄S,n are integers and they do not depend on the
specific choice for the representative of [(S, n)], see Remark 5.2. To demonstrate how to
compute their entries, let us look at an example.

Example 5.4. Consider S2 = ({r, x1}, {e1 = {r, x1}}) and n2(S2) = n2(e1) = 3 as well as
link configurations with j = 2 links of type ||. Then the set VS2,n2,2 consists of the three
sequences ν listed on top of Figure 6. Similar to Figure 5, one can read off the numbers
bxS2,ν

with x ∈ V (S2) and ν ∈ VS2,n2,2 by constructing the (blue) loop γS2
(Xν) (see bottom

line of Figure 6). Since drS2
= 1 and dx1

S2
= 0, the third column of DS2,n2

becomes

(DS2,n2
)3 =

(
3 + 3 + 2 + 2 + 3 + 3

3 + 0 + 2 + 0 + 3 + 0

)
=

(
16

8

)
.

All other columns of DS2,n2
are determined analogously.

Similar to Example 5.4, we have determined the matrices DS,n for all [(S, n)] ∈ S
with ord(S, n) ≤ 5 and (for ord(S, n) ≤ 3) they are listed within Table 2. Together with
the corresponding multiplicities κS,n(d) that are also listed in this table, this allows us
to calculate FK(α, h, u) and F̄K(α, h, u) for 0 ≤ K ≤ 5 and all (α, h, u). In particular, we
may now compute the coefficients αk(u) using (4.6) and the results are given in Table 1.
Furthermore, we may now complete the proof of Theorem 2.1.

Proof of Theorem 2.1 for d = 3, 4. By Proposition 3.6, it is sufficient to show that
Eβ=d−1/2(|M1|) > 1. Moreover, by Lemma 4.1(a), a sufficient condition for the latter

statement is F5(d−1/2d, d−1, u) > 1 and one sees that this holds for d = 3, 4 (compare
Figure 7).

Remark 5.5 (Concerning a sharp phase transition for d = 2).
In Theorem 2.1, the case d = 2 of the binary tree is excluded. In this boundary case
we are missing two crucial properties: On the one hand, we need to find a sufficiently
large β∗ > 0 (possibly depending on u) such that we can show Eβ∗(|M1|) > 1 for all
u by an appropriate estimate. On the other hand, β∗ needs to be small enough that
(0, β∗] 3 β 7→ Eβ(|M1|) is strictly increasing.
Note that, for d = 2, we would need to choose β∗ > d−1/2 since a numerical evaluation
of F̄5 yields Eβ=d−1/2(|M1|) ≤ 1 for d = 2 and all u. Unfortunately, this means that our

EJP 26 (2021), paper 133.
Page 22/26

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP677
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sharp phase transition for random loop models on trees

Table 2: The considered prototypes of edge-weighted rooted trees [(S, n)] ∈ S are sorted
by their order ord(S, n) and displayed together with algorithmically computed results
DS,n, D̄S,n. For each pair [(S, n)], the values of n(e) are attached to their corresponding
edge e and the root is always depicted as the bottom vertex.

Sketch of
ord(S, n) n(S) |V (S)| κS,n(d)

computed results
[(S, n)] DS,n D̄S,n

0 0 1 1

(
1

0

) (
0

0

)
2 1 2 2 d

(
3 12 4

2 6 2

) (
3 0 2

1 0 1

)

3 2 3 2 d

(
8 24 16 4

4 12 8 2

) (
0 0 8 4

0 0 4 2

)
2 2 2 4 3

(
d

2

) (
50 260 414 292 60

40 192 288 192 40

) (
40 100 126 68 30

20 48 72 48 20

)

2

2
2 4 3 d2

(
50 250 415 306 65

39 190 287 206 44

) (
40 110 125 54 25

21 50 73 34 16

)

4 3 4 2 d

(
5 40 40 20 4

3 20 20 10 2

) (
5 0 20 20 6

2 0 10 10 3

)
3 2 3 5 3 d(d− 1)

(
102 750 1396 1348 624 104

80 528 960 900 408 68

) (
78 150 404 452 276 76

40 72 240 300 192 52

)

3

2
3 5 3 d2

(
114 774 1418 1382 646 110

92 560 982 932 426 72

) (
66 126 382 418 254 70

28 40 218 268 174 48

)

2

3
3 5 3 d2

(
84 696 1386 1430 710 126

62 482 950 980 490 88

) (
96 204 414 370 190 54

58 118 250 220 110 32

)

2 2

2
3 6 4 d2(d− 1)

(
1162 9268 25614 36910 28483 11254 1539

1127 8186 21292 29264 21899 8534 1182

) (
1358 5852 12186 13490 9317 3866 981

763 3154 7058 8536 6451 2806 708

)

2

2 2
3 6 4 d ·

(
d

2

) (
1232 9996 25748 37964 28888 12320 1652

1090 8388 20918 29840 22046 9228 1258

) (
1288 5124 12052 12436 8912 2800 868

800 2952 7432 7960 6304 2112 632

)

2

2

2

3 6 4 d3

(
1022 8456 24204 36386 28943 11634 1615

923 7238 19986 28854 22248 8876 1245

) (
1498 6664 13596 14014 8857 3486 905

967 4102 8364 8946 6102 2464 645

)

2 2 2 3 6 4

(
d

3

) (
1260 10332 26208 37764 27900 11592 1512

1134 8568 21186 29376 21186 8568 1134

) (
1260 4788 11592 12636 9900 3528 1008

756 2772 7164 8424 7164 2772 756

)

0.2 0.4 0.6 0.8 1.0


0.6

0.8

1.0

1.2

1.4

1.6

F5( 3 , 1/3, )

F5( 4 , 1/4, )

Figure 7: Plot of F5(d1/2, d−1, u) as a function of u for d = 3, 4. In particular, both graphs
are strictly above 1 uniformly in u.
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proof of monotonicity (see Proposition 3.6) fails as fS0,n0
(β) is decreasing for β > d−1/2

and thus, the representation of E(|M1|) given in Lemma 3.4 becomes a sum where some
terms are increasing and some are decreasing.
Nevertheless, up to β∗ = 1 and for all [(S, n)] ∈ S excluding [(S0, n0)], the map β 7→ fS,n(β)

remains strictly increasing and numerical results suggest that Eβ(|M1|) remains increas-
ing up to this value, too. Moreover, for d = 2 and β∗ = 1, we find that F5(β∗ d, d−1, u) > 1

holds for a large range of u including u = 1
2 . For the missing values of u (in particular

for u = 0, 1) an approximation by FK with K = 9 should suffice to show that there also is
a phase of infinite loops.

A Analytic equations and their solutions

Suppose that we are given an equation f(x, y) = 0 and some x0, y0 ∈ R with
f(x0, y0) = 0. Then the classical implicit function theorem gives a sufficient condition
such that one may find a unique solution y = g(x) to this equation in a neighbourhood
of x0. If the function f is in fact analytic, then g can be shown to be analytic, too.
Moreover, there exists an explicit recursion (involving the derivatives of f ) to determine
the coefficients of the series expansion of g around x0.

Proposition A.1.
Let f : U → R be an analytic function in a neighbourhood U ⊆ R2 of (x0, y0) ∈ U . If
f(x0, y0) = 0 and D2f(x0, y0) 6= 0, then there exists a neighbourhood V of x0 and an
analytic function g : V → R, g(x) =

∑∞
i=0 ai(x − x0)i with f(x, g(x)) = 0 for all x ∈ V .

Moreover, a0 = y0 and for k = 1, 2, . . . we have

ak = −
∑ (Dj0

1 D
j1+...+jk−1

2 f)(x0, a0)

(D2f)(x0, a0)
∏k−1
i=0 ji!

k−1∏
i=1

ajii ,

where the sum runs over all j0, . . . , jk−1 ∈ N0 such that

1 ≤
k−1∑
i=0

ji ≤ k and j0 +

k−1∑
i=1

iji = k.

Proof. By the implicit function theorem for analytic functions (see e.g. [20, Theorem
2.3.1]), there exists an analytic function g in some neighbourhood V of x0 with a0 =

g(x0) = y0 and f(x, g(x)) = 0 for all x ∈ V . Thus, on the one hand, we have

1

k!

dk

dxk
f(x, g(x))

∣∣
x=x0

=
1

k!

dk

dxk
0
∣∣
x=x0

= 0 (A.1)

for all k ∈ N. On the other hand, the multivariate version of Faà di Bruno’s formula (see
e.g. [14, Cor 2.11]) yields

1

k!

dk

dxk
f(x, g(x))

∣∣
x=x0

=
∑

λ,µ∈N0:
1≤λ+µ≤k

∑
p(k,λ,µ)

Dλ
1D

µ
2 f(x0, g(x0))

k∏
i=1

(
id(i)(x0)

)`i (
g(i)(x0)

)ji
`i!ji!(i!)`i+ji

,

(A.2)

where

p(k, λ, µ) = {`1, . . . , `k, j1, . . . , jk ≥ 0 :

k∑
i=1

`i = λ,

k∑
i=1

ji = µ,

k∑
i=1

i(`i + ji) = k}.
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Since id(i)(0) = 0 for all i ≥ 2, the summands in (A.2) with `i > 0 for some i ≥ 2

vanish. For all other summands we have `2 = . . . = `k = 0, `1 = λ −
∑k
i=2 `i = λ and

k =
∑k
i=1 i(`i + ji) = λ +

∑k
i=1 iji. We now use that g(x0) = a0 and g(i)(x0) = i! ai to

obtain

1

k!

dk

dxk
f(x, g(x))

∣∣
x=x0

=
∑

λ,µ∈N0:
1≤λ+µ≤k

∑
j1,...,jk≥0:∑k
i=1 ji=µ,

λ+
∑k
i=1 iji=k

Dλ
1D

µ
2 f(x0, a0)

1

λ!

k∏
i=1

ajii
ji!
.

Let us investigate those summands within the right hand side of this equation with jk ≥ 1.
Then k ≥ k − λ =

∑k
i=1 iji ≥ kjk ≥ k. In particular, all these inequalities are equalities,

actually. Therefore, jk ≥ 1 implies

λ = 0 = j1, . . . , jk−1 and µ = jk = 1.

Thus, there is only one summand with jk 6= 0, namely the one with these parameters and
it is given by D2f(x0, a0) ak. For all other summands we have jk = 0 and, in particular,
a
jk
k

jk! = 1. Moreover, these other summands fulfill µ =
∑k−1
i=1 ji. Thus, by writing j0 := λ

we find

1

k!

dk

dxk
f(x, g(x))

∣∣
x=x0

=D2f(x0, a0) ak

+
∑

j0,...,jk−1≥0:

1≤j0+
∑k−1
i=1 ji≤k,

j0+
∑k−1
i=1 iji=k

(Dj0
1 D

j1+...+jk−1

2 f)(x0, a0)∏k−1
i=0 ji!

k−1∏
i=1

ajii .

Together with (A.1), this yields the assertion.
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with reversals on the comlete graph. Electronic Journal of Probability, 24(108):1–43, 2019.
MR4017126

EJP 26 (2021), paper 133.
Page 25/26

https://www.imstat.org/ejp

https://arXiv.org/abs/1808.08902
https://mathscinet.ams.org/mathscinet-getitem?mr=1288152
https://mathscinet.ams.org/mathscinet-getitem?mr=2042369
https://mathscinet.ams.org/mathscinet-getitem?mr=0373040
https://mathscinet.ams.org/mathscinet-getitem?mr=3376038
https://mathscinet.ams.org/mathscinet-getitem?mr=2754801
https://mathscinet.ams.org/mathscinet-getitem?mr=3351179
https://mathscinet.ams.org/mathscinet-getitem?mr=3877248
https://mathscinet.ams.org/mathscinet-getitem?mr=3384113
https://mathscinet.ams.org/mathscinet-getitem?mr=4017126
https://doi.org/10.1214/21-EJP677
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sharp phase transition for random loop models on trees

[11] Jakob Björnberg and Daniel Ueltschi. Critical parameter of random loop model on trees.
Annals of Applied Probability, 28:2063–2082, 2018. MR3843823

[12] Jakob Björnberg and Daniel Ueltschi. Critical Temperature of Heisenberg Models on Regular
Trees, via Random Loops. Journal of Statistical Physics, 173(5):1369–1385, 2018. MR3878347

[13] Jakob E. Björnberg, Jürg Fröhlich, and Daniel Ueltschi. Quantum spins and random loops on
the complete graph. 2018. arXiv:1811.12834. MR4091504

[14] G. M. Constantine and T. H. Savits. A multivariate Faa di Bruno formula with applications.
Transactions of the American Mathematical Society, 348(2):503–520, 1996. MR1325915

[15] Alan Hammond. Infinite cycles in the random stirring model on trees. Bulletin of the Institute
of Mathematics Academia Sinica, 8(4):85–104, 2013. MR3097418

[16] Alan Hammond. Sharp phase transition in the random stirring model on trees. Probability
Theory and Related Fields, 161(3):429–448, 2015. MR3334273

[17] Alan Hammond and Milind Hegde. Critical point for infinite cycles in a random loop model
on trees. The Annals of Applied Probability, 29(4):2067–2088, 2019. MR3983335

[18] T.E. Harris. Nearest-neighbor Markov interaction processes on multidimensional lattices.
Advances in Mathematics, 9(1):66–89, 1972. MR0307392

[19] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental algorithms.
Addison-Wesley, 3rd edition, 1997. MR3077153

[20] Steven G. Krantz and Harold R. Parks. A Primer of Real Analytic Functions. Birkhäuser, 2nd
edition, 2002. MR1916029
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