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Abstract

We consider large random planar maps and study the first-passage percolation dis-
tance obtained by assigning independent identically distributed lengths to the edges.
We consider the cases of quadrangulations and of general planar maps. In both cases,
the first-passage percolation distance is shown to behave in large scales like a constant
times the usual graph distance. We apply our method to the metric properties of the
classical Tutte bijection between quadrangulations with n faces and general planar
maps with n edges. We prove that the respective graph distances on the quadrangula-
tion and on the associated general planar map are in large scales equivalent when
n → ∞.
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1 Introduction

A planar map is a finite planar graph embedded in the sphere and considered up to
orientation-preserving homeomorphisms. In this work, we only consider rooted planar
maps, meaning that we distinguish an oriented edge called the root edge, whose origin
is the root vertex. There exist many different models of random maps depending on the
conditions one imposes on the degrees of faces, the existence or non-existence of multiple
edges and loops, etc. In the following, we always allow loops and multiple edges. A
particular case that will play a central role in this article is the case of quadrangulations,
where all faces have degree 4. For any map M , we denote its vertex set by V (M) and
the graph distance on the map M by dMgr . The root vertex is usually denoted by ρ.

Several recent developments (see in particular [1, 2, 3, 12, 18]) have established that,
for a wide range of models of random maps, the vertex set viewed as a metric space
for the (suitably rescaled) graph distance, converges in distribution when the size of
the map tends to infinity towards a random compact metric space called the Brownian
map. This convergence holds in the sense of the Gromov-Hausdorff convergence for
compact metric spaces. The convergence to the Brownian map gives a unified approach
to asymptotic properties of different models of random planar maps.

A natural question is to ask what can be said when the graph distance is replaced
by other choices of distances on the vertex set V (M). A simple way to get other
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FPP in random maps

distances is to assign positive weights (or lengths) to the edges: The distance between
two vertices will then be the minimal total weight of a path connecting these two
vertices. When the weights of the different edges are chosen to be independent and
identically distributed given the planar map M in consideration, this leads to the so-
called first-passage percolation distance, which we denote here by dMfpp. Of course, when
weights are all equal to 1 we recover the graph distance. The recent paper [7] has
investigated the asymptotic properties of the first-passage percolation distance in large
triangulations. Roughly speaking, the main results of [7] show that, in large scales,
the first-passage percolation distance behaves like a constant times the graph distance.
The relevant constant is found via a subadditivity argument and cannot be computed in
general. Interestingly, this behavior for random planar maps is quite different from the
one observed in deterministic lattices such as Zd, where the first-passage percolation
distance is not believed to be asymptotically proportional to the graph distance (nor to
the Euclidean distance).

One of the main goals of the present work is to show that results similar to those of
[7] hold both for quadrangulations and for general planar maps. Recall that the diameter
of a typical quadrangulation with n faces, or of a typical planar map with n edges is
known to be of order n1/4.

Theorem 1.1. For every integer n ≥ 1, let Qn be uniformly distributed over the set of
all rooted quadrangulations with n faces, and let Mn be uniformly distributed over the
set of all rooted planar maps with n edges. Define the first-passage percolation distances
dQnfpp and dMn

fpp by assigning independent and identically distributed weights to the edges
of Qn and Mn. Assume that the common distribution of the weights is supported on a
compact subset of (0,∞). Then there exist two positive constants c and c′ such that

n−1/4 sup
x,y∈V (Qn)

∣∣∣dQnfpp(x, y)− cdQngr (x, y)
∣∣∣ −→
n→∞

0

and
n−1/4 sup

x,y∈V (Mn)

∣∣∣dMn

fpp (x, y)− c′dMn
gr (x, y)

∣∣∣ −→
n→∞

0

where both convergences hold in probability.

As an immediate consequence of the theorem, we get that the convergence to
the Brownian map still holds for both models in consideration if the graph distance is
replaced by the first-passage percolation distance. More precisely, under the assumptions
of Theorem 1.1 and with the same constants c and c′, we have(

V (Qn),

(
9

8n

)1/4

dQnfpp

)
(d)−→

n→∞
(m∞, cD

∗), (1.1)

and (
V (Mn),

(
9

8n

)1/4

dMn

fpp

)
(d)−→

n→∞
(m∞, c

′D∗), (1.2)

where (m∞, D∗) is the Brownian map, and both convergences hold in distribution in
the Gromov-Hausdorff space. Indeed, this follows from Theorem 1.1 and the known
convergences for the graph distance which have been established in [12, 18] for Qn and
in [3] for Mn. It is remarkable that the same constant (9/8)1/4 appears in both (1.1) and
(1.2). This will be better understood in the next theorem.

Another major goal of the present article is to have a better understanding of the
metric properties of Tutte’s bijection. Recall that Tutte’s bijection, also called the trivial
bijection, gives for every n ≥ 1 a one-to-one correspondence between the set of all
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(d)(c)(b)(a)

Figure 1: Illustration of Tutte’s bijection. (a) On the left, a quadrangulation with 7 faces.
Color the tail of its root vertex in white, and every other vertex in black and white so
that adjacent vertices have a different color. (b) In every face of the quadrangulation,
add a diagonal between its white corners. (c) Erase the edges of the quadrangulation.
(d) The black vertices now have degree zero and are also erased. We obtain a map with
7 edges, which is rooted at the edge corresponding to the diagonal drawn in the face
to the right of the root edge of the quadrangulation, oriented so that the root vertex
remains the same.

rooted quadrangulations with n faces and the set of all rooted planar maps with n edges.
The definition of this correspondence should be clear from Figure 1. The following
theorem can be interpreted by saying that Tutte’s transformation acting on a large
quadrangulation is nearly isometric with respect to the graph distances.

Theorem 1.2. Let Qn be uniformly distributed over the set of all rooted quadrangula-
tions with n faces and let Mn be the image of Qn under Tutte’s bijection, so that Mn is
uniformly distributed over the set of all rooted planar maps with n edges and V (Mn) is
identified to a subset of V (Qn). Then,

n−1/4 sup
x,y∈V (Mn)

∣∣dQngr (x, y)− dMn
gr (x, y)

∣∣ −→
n→∞

0

where the convergence holds in probability.

We can combine Theorems 1.1 and 1.2 to get that, if Qn and Mn are linked by Tutte’s
bijection, the convergences in distribution (1.1) and (1.2) hold jointly, with the same
space (m∞, D∗) in the limit. This is reminiscent of Theorem 1.1 in [3], which gives a
similar joint convergence, but in the case where Qn and Mn are linked by a different
bijection (the Ambjørn-Budd bijection) which is more faithful to graph distances. Let us
note that Theorem 1.2 cannot be used to derive the convergence of rooted planar maps
towards the Brownian map, as we use this convergence (established in [3]) in the proof
of Theorem 1.2.

We can also give versions of the preceding results for the infinite random lattices
that arise as local limits (in the Benjamini-Schramm sense) of large quadrangulations or
general planar maps. We write Q∞ for the UIPQ or uniform infinite planar quadrangula-
tion, and M∞ for the UIPM or uniform infinite planar map. As was observed by Ménard
and Nolin [17], the UIPM can be obtained by applying (a generalized version of) Tutte’s
correspondence to the UIPQ.

Theorem 1.3. Let dQ∞fpp and dM∞fpp be the first-passage percolation distances defined on
the vertex sets V (Q∞) and V (M∞), respectively, by assigning edge weights satisfying
the same assumptions as in Theorem 1.1. Write ρQ∞ and ρM∞ for the respective root
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vertices of Q∞ and M∞. Then, for every ε > 0,

lim
r→∞

P

(
sup

x,y∈V (Q∞), dQ∞gr (ρQ∞ ,x)∨dQ∞gr (ρQ∞ ,y)≤r
|dQ∞fpp (x, y)− cdQ∞gr (x, y)| > εr

)
= 0,

and similarly,

lim
r→∞

P

(
sup

x,y∈V (M∞), dM∞gr (ρM∞ ,x)∨dM∞gr (ρM∞ ,y)≤r
|dM∞fpp (x, y)− c′dM∞gr (x, y)| > εr

)
= 0,

with the same constants c and c′ as in Theorem 1.1. Moreover, if the UIPQ Q∞ and the
UIPM M∞ are linked by Tutte’s correspondence, we have also

lim
r→∞

P

(
sup

x,y∈V (M∞), dM∞gr (ρM∞ ,x)∨dM∞gr (ρM∞ ,y)≤r
|dM∞gr (x, y)− dQ∞gr (x, y)| > εr

)
= 0.

A consequence of the first assertions of the theorem is the fact that balls (centered at
the root vertex) for the first-passage percolation distance are asymptotically the same as
for the graph distance, both in Q∞ and in M∞. More precisely, in Q∞ for definiteness,
the (metric) ball of radius r for the first-passage percolation distance will be contained
in the graph distance ball of radius (1 + ε)r/c and will contain the graph distance ball of
radius (1− ε)r/c, with high probability when r is large. This is in sharp contrast with
the behavior expected for deterministic lattices.

In the same way as in [7], our proofs rely on a “skeleton decomposition” which in
the case of quadrangulations appeared first in the work of Krikun [10], and has been
used extensively in [14]. Recall that, in the UIPQ Q∞, the hull of radius r is defined as
the complement of the infinite connected component of the complement of the ball of
radius r centered at the root vertex (informally, the hull is obtained by filling in the finite
holes in the ball of radius r, see Section 2 for a more precise definition). The skeleton
decomposition provides a detailed description of the joint distribution of layers of the
UIPQ, where, roughly speaking, a layer corresponds to the part of the map between
the boundary of the hull of radius r and the boundary of the hull of radius r + 1. This
description allows us to compare the UIPQ near the boundary of a hull with another
infinite model which we call the LHPQ for lower half-plane quadrangulation (Section
3). The point is then that a subadditive ergodic theorem can be applied to evaluate
first-passage percolation distances in the LHPQ. Quite remarkably, this method carries
over to the study of the first-passage percolation distance in the general planar maps
that are obtained from quadrangulations by Tutte’s corrrespondence, with the minor
difference that we must restrict to hulls of even radius in the quadrangulation.

Even though the idea of using the skeleton decomposition already appeared in [7]
in the setting of triangulations, there are important differences between the present
work and [7], and our proofs are by no means straightforward extensions of those of
[7]. In particular, a very important ingredient of our method involves bounds on graph
distances along the boundary in the LHPQ. To derive these bounds we use a completely
different approach from that developed in [7] for the model called the lower half-plane
triangulation. Our approach, which relies on certain ideas of [5], is simpler and avoids
the heavy combinatorial analysis of [7]. Similarly, the application of the subadditive
ergodic theorem gives information about the first-passage percolation distance between
points of the boundary of a hull of the UIPQ and the root vertex (Proposition 5.2 below)
but a key step is then to derive information about the distance between a typical point
and the root vertex in the finite quadrangulation Qn (Proposition 5.3): For this purpose,
the lack of certain explicit combinatorial expressions did not allow us to use the same
approach as in [7], and we had to develop a different method based on a coupling
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between Qn and the UIPQ. Finally, the treatment of a general planar map Mn given as
the image of the quadrangulation Qn under Tutte’s bijection also required a number of
new tools, in particular because the graph distance on Mn is not easily controlled in
terms of the graph distance on Qn.

The paper is organized as follows. Section 2 gives a number of preliminaries about
planar maps and the skeleton decomposition. We introduce the notion of a quadrangu-
lation of the cylinder, which already played an important role in [14], and we define the
so-called truncated hulls, which are variants of the (standard) hulls considered in earlier
work. Section 3 discusses the lower half-plane quadrangulation. In particular, we derive
the important bounds controlling distances along the boundary (Proposition 3.2). Section
4 gives two technical propositions. The first one (Proposition 4.1) provides bounds for
the distribution of the skeleton of a (truncated) hull of the UIPQ in terms of the skeleton
associated with the LHPQ. This is the key to transfer results obtained in the LHPQ
(by subadditive arguments) to the UIPQ. Section 5 derives our main results about first-
passage percolation distances in quadrangulations. We start by proving Proposition 5.1,
which estimates the dQ∞fpp -distance between a vertex of the boundary of the (truncated)
hull of radius r and the boundary of the hull of radius r − bηrc, for η > 0 small. This key
proposition is then used to get Proposition 5.2 concerning the distance between a point
of the boundary of a hull and the root vertex. Then the hard work is to prove Proposition
5.3 controlling the distance between a uniformly distributed vertex of Qn and the root
vertex. From this proposition, it is not too hard to derive Theorem 5.7, which gives the
part of Theorem 1.1 dealing with quadrangulations. Section 6 contains certain technical
results concerning graph distances in the general maps associated with quadrangula-
tions via Tutte’s correspondence. We introduce the so-called downward paths, which are
closely related to the skeleton decomposition of the associated quadrangulation, and we
derive important bounds on the length of these paths (Lemma 6.2). Finally, Section 7 is
devoted to the proof of the results concerning general maps. In particular, Theorem 7.5
shows that, if Mn and Qn are linked by Tutte’s bijection, the first-passage percolation
distance in Mn is asymptotically proportional to the graph distance in Qn. In the case
where weights are equal to 1, the proportionality constant has to be equal to 1 (because
of the known results about scaling limits of Qn and Mn), which gives Theorem 1.2 and
then the part of Theorem 1.1 concerning general maps. Several proofs in this section are
very similar to the proofs of Section 5. For this reason, we have only sketched certain
arguments, but we emphasize the places where new ingredients are required.

2 Preliminaries

A (finite) planar map is a planar graph embedded in the sphere and seen up to
orientation-preserving homeomorphisms. We allow multiple edges and loops. Since we
consider only planar maps we often say map instead of planar map. If M is a map, we
denote the set of vertices, edges, and faces of M by V (M), E(M), F (M) respectively.
We write dMgr for the graph distance on V (M). Given i.i.d. random weights (ωe)e∈E(M)

assigned to the edges of M , we also define the associated first-passage percolation
distance dMfpp as follows. We define the weight of a path γ as the sum of the weights of

its edges, and the first-passage percolation distance dMfpp(x, y) between two vertices x
and y of M is the infimum of the weights of paths starting at x and ending at y. Note
that, if ωe = 1 for every edge e, we recover the graph distance on V (M).

A rooted map is a map with a distinguished oriented edge called the root edge. The
tail of the root edge is called the root vertex and is usually denoted by ρ. The face lying
to the right of the root edge is called the root face. We say that a rooted map is pointed
if in addition it has a distinguished vertex ∂.
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Models of quadrangulations. A quadrangulation is a rooted map whose faces all
have degree 4. Quadrangulations are bipartite maps, so we may and will color the
vertices of a quadrangulation in black and white so that two adjacent vertices have
different colors and the root vertex is white.

A truncated quadrangulation is a rooted map such that

• the root face has a simple boundary and an arbitrary degree,

• every edge incident to the root face is also incident to another face which has
degree 3, and these triangular faces are distinct,

• all the other faces have degree 4.

The root face is also called the external face, and faces other than the external face are
called inner faces. The length of the external boundary (the boundary of the external
face) is called the perimeter of the truncated quadrangulation.

We will also consider infinite (rooted but not pointed) quadrangulations for which
we assume — except in the case of the LHPQ discussed in Section 3 — that they
are embedded in the plane in such a way that all faces are bounded subsets of the
plane, and furthermore every compact subset of the plane intersects only finitely many
faces (and again infinite quadrangulations are viewed up to orientation preserving
homeomorphisms). These properties hold a.s. for the UIPQ.

Hulls and truncated hulls. Let Q be a (finite or infinite) quadrangulation with root
vertex ρ. For every integer r ≥ 1, we denote the ball of radius r in Q by BQ(r). This ball
is the map obtained by taking the union of all faces that are incident to a vertex at graph
distance at most r − 1 from ρ. Suppose in addition that Q is finite and pointed, and let
R = dQgr(ρ, ∂) be the graph distance between the root vertex and the distinguished vertex.
Then for every integer 1 ≤ r ≤ R − 2, the standard hull of radius r of Q, denoted by
B•Q(r), is the union of BQ(r) and of the connected components of its complement that do
not contain ∂. If Q is an infinite quadrangulation, then, for every r ≥ 1, the standard hull
of radius r of Q is defined as the union of BQ(r) and the finite connected components of
its complement, and is also denoted by B•Q(r). In both the finite and the infinite case,
the standard hull B•Q(r) is a quadrangulation with a simple boundary (meaning that all
faces are quadrangles, except for one distinguished face, which has a simple boundary).
If r > 1 is not an integer, we will agree that BQ(r) = BQ(brc) and B•Q(r) = B•Q(brc).

We also need to define truncated hulls. To this end, consider first the case where Q
is finite and pointed. We label the vertices of Q with their graph distance to ρ, and we
consider an integer r such that 0 < r < dQgr(ρ, ∂). Inside every face such that the labels
of its incident corners are r, r − 1, r, r + 1, we draw a “diagonal” between the corners of
label r. The added edges form a collection of cycles, from which we extract a “maximal”
simple cycle ∂rQ. This cycle is maximal in the sense that the connected component of
the complement of ∂rQ that contains the distinguished vertex contains no vertex with
label less than or equal to r. See [14, Section 2.2] for more details. The exterior of ∂rQ
is the connected component of the complement of ∂rQ that contains the marked vertex
of Q. If Q is an infinite quadrangulation, the cycles ∂rQ can be defined in exactly the
same way, now for every integer r > 0 (the exterior of ∂rQ is now the the unbounded
connected component of the complement of ∂rQ).

In both the finite and the infinite case, the truncated hull of radius r of Q is the map
Htr
Q(r) made of ∂rQ and of the edges of Q inside ∂rQ, and is rooted at the “same” edge as

Q. Then we may view Htr
Q(r) as a truncated quadrangulation (for which the external face

corresponds to the exterior of ∂rQ) provided we re-root Htr
Q(r) at an edge of its external

boundary.
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Figure 2: We can split the root edge of a truncated hull, add a loop inside the newly
created face, and see the map as a quadrangulation of the cylinder of bottom cycle the
added loop.

Quadrangulations of the cylinder. A quadrangulation of the cylinder of height R > 0

is a rooted map Q with two distinguished faces, called the top and bottom faces (the
other faces are called inner faces), such that

(i) the boundary of the top (resp. bottom) face, called the top boundary (resp. the
bottom boundary) is a simple cycle,

(ii) Q is rooted at an oriented edge of its bottom boundary so that the bottom face lies
on the right of the root edge (so the bottom face is the root face),

(iii) every edge of the top (resp. bottom) boundary is incident both to the top (resp.
bottom) face and to a triangular face, these triangular faces are distinct, and all
other inner faces have degree 4,

(iv) any vertex of the top boundary is at graph distance R from the bottom boundary,
and the inner triangular face incident to any edge of the top boundary is also
incident to a vertex at graph distance R− 1 from the bottom boundary.

Let Q be a quadrangulation of the cylinder of height R. Label every vertex of Q by its
distance from the bottom boundary. For 0 < r < R we can define ∂rQ and the truncated
hull of radius r in a way very similar to what we did for pointed quadrangulations (∂rQ
is the “maximal” cycle made of diagonals between corners labeled r in faces whose
corners are labeled r − 1, r, r + 1, r, and the exterior of ∂rQ now contains the top cycle).
See [14, Section 2.3] for details. Note that the truncated hull of radius r of Q is itself a
quadrangulation of the cylinder of height r. By convention, we agree that ∂0Q denotes
the bottom boundary, and ∂RQ stands for the top boundary of Q. We will assume that
quadrangulations of the cylinder are drawn in the plane in such a way that the top face
is the unbounded face (see Figure 3). Then we will orient the cycles ∂rQ clockwise by
convention.

We may view the truncated hull of radius r of a pointed quadrangulation Q as a
quadrangulation of the cylinder of height r, by splitting the root edge of Q into a double
edge and adding a loop inside the newly created face as in Figure 2. In this way, we get
a quadrangulation of the cylinder of height r whose bottom cycle is a loop.

Left-most geodesics. Let Q be a quadrangulation of the cylinder of height R and let
0 < r ≤ R. We now explain a “canonical” choice of a geodesic between a vertex of ∂rQ
and the bottom cycle ∂0Q. So let v be a vertex on ∂rQ, and let e be the edge of ∂rQ with
tail v (recall our convention for the orientation of ∂rQ). Then list all edges incident to
v in clockwise order around v, starting from e. The first step of the left-most geodesic
from v to ∂0Q is the last edge in this enumeration that connects v to ∂r−1Q (Property
(iv) above ensures that there is at least one such edge). We define the next steps of the
geodesic by the obvious induction.
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∂1Q

∂2Q∂3Q

∂1q

∂2q

∂0q

∂1q

∂2Q

∂1Q

∂0q∂0q∂0q∂0Q

∂3Q

∂0q∂0q∂0q∂0q∂0Q

∂2Q ∂1Q

Figure 3: Left, a quadrangulation of the cylinder of height 3, with its cycles ∂1Q, ∂2Q in
dashed lines. We always draw the top face as the infinite face. Downward triangles are
in white and the slots in grey. Right, we erased the content of the slots; in green, the
genealogical relation on edges of ∂rQ for 0 ≤ r ≤ 3, in red, the left-most geodesics to the
bottom cycle follow the “right” side of downward triangles (assuming their top edge is
“up”), or equivalently the “left” side of slots.

Skeleton decomposition. Let Q be a quadrangulation of the cylinder of height R.
Following ideas in [10], the article [14] gives a representation of Q by a forest of planar
trees of height at most R (where the height of a vertex in a tree is its distance to the
root vertex of said tree, and the height of a tree is the maximum height of its vertices)
and a collection of truncated quadrangulations indexed by the vertices of this forest. We
refer to [14] for more details, and give a brief presentation.

We first add the edges of ∂rQ to Q for every 0 < r ≤ R and recall that these edges
are oriented clockwise in each cycle ∂rQ. Let 0 < r ≤ R, and let e be an edge of ∂rQ.
Then e is incident to exactly one triangular face in Q whose third vertex is at distance
r − 1 from the bottom boundary. We call this face the downward triangle with top edge e.
Furthermore, if v is the aim of e, the downward triangle with top edge e is also incident
to the first edge of the left-most geodesic from v to the bottom boundary.

The downward triangles disconnect Q into a collection of slots, which are filled in by
finite maps with a simple boundary. See Figure 3. Any slot is contained in the region
between ∂rQ and ∂r−1Q for some 1 ≤ r ≤ R, and there is a unique vertex v of ∂rQ that
is incident to the slot. We then say that the slot is associated with the edge of ∂rQ whose
tail is v. We equip the set of edges of ∪Rr=0∂rQ with the following genealogical relation:
for every 0 < r ≤ R, an edge e ∈ ∂rQ is the parent of all the edges of ∂r−1Q that are
incident to the slot associated with e, provided that this slot exists. See the right side of
Figure 3.

We now explain how we can define the truncated quadrangulation associated with
a slot, or rather with an edge e ∈ ∂rQ, 1 ≤ r ≤ R. Suppose first that there is a slot
associated with e. The part of Q inside this slot, including its boundary, defines a planar
map with a simple boundary and a distinguished vertex on this boundary. Adding one
edge in the way explained in Figure 4 turns this map into a truncated quadrangulation
M , which is rooted at the added edge as shown on Figure 4. If there is no slot associated
with e we let M be the unique truncated quadrangulation with perimeter one and one
inner face (rooted at its boundary edge so that the external face lies on the right of the
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root edge).

∂rq

∂r−1q

e

Figure 4: Left (in grey and thick black lines), the map with simple boundary filling the
slot of an edge e (in blue) of ∂rQ with 3 offspring. Right, the truncated quadrangulation
we obtain by adding a root edge “over the top vertex of the slot”.

Recalling the definition in [14], we say that a forest F with one marked vertex is
(R, p, q)-admissible if

(i) the forest consists of an ordered sequence of q rooted plane trees,

(ii) these trees have height at most R,

(iii) exactly p vertices of the forest are at height R,

(iv) the marked vertex is at height R and belongs to the first tree.

Write F0
R,p,q for the set of all (R, p, q)-admissible forests. We will also need the set of all

forests with no marked vertex that satisfy properties (i) to (iii) above, and we denote this
set by FR,p,q.

For F ∈ F0
R,p,q or F ∈ FR,p,q we let F∗ denote the set of all vertices of F at height at

most R− 1. For every e ∈ F∗, ce is the offspring number of e in F .
The construction described above and illustrated in Figure 3 provides a bijection

that, with every quadrangulation Q of the cylinder of height R, with top perimeter q and
bottom perimeter p, associates an (R, p, q)-admissible forest F and a collection (Se)e∈F∗

of truncated quadrangulations, such that Se has perimeter ce + 1 for every e ∈ F∗. The
forest encodes the genealogical relation of edges of ∪Rr=0∂rQ: each tree in F corresponds
to the descendants of an edge of the top boundary, the first tree is the one that contains
the root edge, and the other trees are then listed by following the clockwise order on the
top boundary. We call the forest F the skeleton of Q.

On the other hand, the union of all left-most geodesics forms a forest of trees made
of edges of Q. This forest can be viewed as dual to the skeleton of Q, and the two forests
do not cross, as suggested in Figure 3. This has the following important consequence.
Let v, w be two distinct vertices of the top boundary of Q, let F ′ be the forest consisting
of the trees of the skeleton that are rooted on the part of the top boundary between v
and w (in clockwise order), and let F ′′ consist of the other trees in the skeleton. Then
for every 0 ≤ r < R, the left-most geodesics from v and w coalesce before reaching ∂rQ
or when hitting ∂rQ iff either F ′ or F ′′ has height strictly smaller than R− r.

Law of the skeleton decomposition of the UIPQ. The following formulas are de-
rived by singularity analysis from the generating series of truncated quadrangulations,
computed in [10]. See [14, Section 2.5].

For every 1 ≤ p ≤ n, let Qtr
n,p be the set of all truncated quadrangulations with a

boundary of length p and n inner faces. There exists a sequence (κp)p≥1 of positive reals
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such that for every p ≥ 1,
#Qtr

n,p ∼
n→∞

κpn
−5/212n.

Furthermore,

κp ∼
p→∞

64
√

3

π
√

2

√
p2−p. (2.1)

For every p ≥ 1, we define

h(p)
def
=

1

p
2pκp,

Z(p)
def
=

∞∑
n=p

#Qtr
n,p12−n,

and we define the Boltzmann probability measure Γp on ∪∞n=pQ
tr
n,p by setting

Γp(Q)
def
=

12−n

Z(p)
.

for every Q ∈ Qtr
n,p, n ≥ p. We also set, for every p ≥ 0,

θ(p)
def
= 6 · 2pZ(p+ 1).

Then [14, Lemma 6], (θ(p))p≥0 is a critical offspring distribution with generating function

gθ(y) = 1− 8(√
9−y
1−y + 2

)2

− 1

.

Let g(k)
θ = gθ ◦· · ·◦gθ denote the k-th iterate of gθ. If (Yk)k≥0 is a Bienaymé-Galton-Watson

process with offspring distribution θ started at Y0 = 1, then for every k ≥ 0,

E
[
yYk
]

= g
(k)
θ (y) = 1− 8(√

9−y
1−y + 2k

)2

− 1

, 0 ≤ y < 1.

We now consider the uniform infinite planar quadrangulation Q∞ to which we apply
the preceding definition to get the cycles ∂rQ∞ for every r ≥ 0 (when r = 0 we split
the root edge as explained in Figure 2). For r ≥ 1, we distinguish the edge of ∂rQ∞
that is the root of the tree of the skeleton of Htr

Q∞
(r), viewed as a quadrangulation of

the cylinder of height r, that contains the only edge of ∂0Q∞. Then, for every 0 ≤ r < s

we define the annulus C(r, s) as the quadrangulation of the cylinder of height s− r that
corresponds to the part of Q∞ between ∂rQ∞ and ∂sQ∞, rooted at the distinguished
edge of ∂rQ∞.

Let (F0
r,s, (Se)e∈F0∗

r,s
) be the skeleton decomposition of C(r, s). Conditionally on the

skeleton F0
r,s, the truncated quadrangulations Se, e ∈ F0,∗

r,s , are independent and the
conditional distribution of Se is Γce+1, where we recall that ce is the number of offspring
of e in F0

r,s. See [14, Corollary 8].
Let Hr be the length of ∂rQ∞.

Proposition 2.1 ([14], Proposition 11). For every r ≥ 1 and p ≥ 1,

P(Hr = p) = Krκp(2πr)
p, (2.2)

where

πr = g
(r)
θ (0) = 1− 8

(3 + 2r)2 − 1
(2.3)
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is the probability that a Bienaymé-Galton-Watson process of offspring distribution θ

started at 1 becomes extinct before generation r, and

Kr =
32

3κ1

3 + 2r

((3 + 2r)2 − 1)2
.

Consequently, we can find positive constants M1,M2 and ρ such that for every a > 0 and
r ≥ 1,

P(Hr ≥ ar2) ≤M1e
−ρa,

P(Hr ≤ ar2) ≤M2a
3/2.

From the skeleton F0
r,s, we define a new forest Fr,s by “forgetting” the marked vertex

and applying a uniform random circular permutation to the trees of F0
r,s. Then Fr,s is a

random element of ∪p≥1,q≥1Fs−r,p,q.

Proposition 2.2 ([14], Corollary 10). Let p ≥ 1. The conditional distribution of Fr,s
knowing that Hr = p is as follows: for every q > 0, for every F ∈ Fs−r,p,q,

P (Fr,s = F | Hr = p) =
h(q)

h(p)

∏
e∈F∗

θ(ce). (2.4)

Proposition 2.3. Let q ≥ 1. The conditional distribution of Fr,s knowing that Hs = q is
as follows: for every p > 0, for every F ∈ Fs−r,p,q,

P (Fr,s = F | Hs = q) =
ϕr(p)

ϕs(q)

∏
e∈F∗

θ(ce), (2.5)

where

ϕr(p) =
64

3
p

3 + 2r

((3 + 2r)2 − 1)2
πp−1
r . (2.6)

We refer to formulas (18) and (19) in [14] for the last proposition.

3 The lower half-plane quadrangulation

3.1 Definition of the model

We construct an infinite quadrangulation with an infinite truncated boundary, which
will be denoted by L and called the lower half plane quadrangulation or LHPQ. Roughly
speaking, L is what we see near a uniformly chosen random edge of the boundary of a
very large truncated hull of Q∞ (see Proposition 3.1 below for a more precise statement).
Our construction relies on the skeleton decomposition.

It will be convenient to use a particular embedding of L in the plane (see Figure 5).
In the rest of this paper, we denote the set of non-negative integers by N, and the set of
non-positive integers by −N = {0,−1,−2, ...}. Every point of Z×−N will be a vertex of
L; the edges of the form ((i, 0), (i+ 1, 0)) for i ∈ Z will be the edges of the boundary of L;
and the upper half-plane will correspond to an “external face” of L. Furthermore, L will
be rooted at the edge ((0, 0), (1, 0)).

In order to construct L, we start from a forest (τi)i∈Z of i.i.d. Bienaymé-Galton-Watson
trees with offspring distribution θ (as usual these trees are random plane trees). This
forest will be the skeleton of the LHPQ. A.s. each generation has an infinite number of
individuals: we can thus embed vertices of the skeleton at generation r ≥ 0 bijectively on
{(j + 1

2 ,−r), j ∈ Z}, in a way that is consistent with the order on vertices at generation r
of the forest, so that vertices in trees with non-negative indices (τi)i≥0 fill the lower right
quadrant (1/2, 0) + (N×−N), and vertices in trees with negative indices (τi)i<0 fill the
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τ2τ1τ0τ−1τ−2τ−3τ−4τ−5τ−6 τ3 τ4 τ5
(0, 0)

∂−4L

∂−3L

∂−2L

∂−1L

∂0L

Figure 5: Embedding of the LHPQ and its skeleton. The vertices of the lattice Z×−N
are the red dots, the vertices of the forest are the green dots, the trees are drawn in
green. We drew the downward triangles in cyan, and the slots in grey. Notice that the
slot associated with an edge having no offspring may be empty though it is represented
here as the “inside” of a double edge (this simply means that this double edge may be
glued to form a single edge). In red, left-most geodesics in the LHPQ, named so because
they follow the left-most edge going downward. They follow the left side of slots, or
the right side of downward triangles. The left-most geodesics form the dual tree of the
skeleton.

lower left quadrant (−1/2, 0) + (−N×−N). In particular the root of τi will be (i+ 1/2, 0).
See the green trees on Figure 5. In what follows, we identify vertices of the skeleton
and the points where they are embedded.

We denote by ∂−rL the infinite line Z× {−r} viewed as a linear graph. The skeleton
of L induces a genealogical relation on the edges of ∪r≥0∂−rL, if we identify each edge
with its middle point.

To each edge e of ∂−rL, we associate a downward triangle with “top boundary” e and
“bottom vertex” the vertex v of ∂−r−1L, chosen as follows. If e has at least one offspring,
then v is the right-most vertex of the edge which is the right-most offspring of e. If not,
let e′ be the first edge of ∂rL on the left of e having at least one offspring. Then the
downward triangles of e and e′ have the same bottom vertex.

Downward triangles delimit a collection of slots (see Figure 5), and each slot is
associated with an edge of ∪r≥0∂−rL as in the UIPQ. By construction, the edges of the
lower boundary of a slot are exactly the offspring of the associated edge. The last step
to get the LHPQ is to fill in the slots, and we do so exactly as in the UIPQ, see Figure 6.
We note that, for r > 0, edges of ∂−rL do not belong to L: these edges are removed in
order to get quadrangles by the gluing of two triangles.

Left-most geodesics in L are defined as in the case of quadrangulations of the cylinder,
but are now infinite paths on L that start at a vertex of ∂−rL and then visit each line
∂−r′L, r′ ≥ r, exactly once. Left-most geodesics form a forest whose vertex set is the
lattice Z×−N. This forest and the skeleton never intersect and can be seen as “dual”
to each other. Furthermore, the two left-most geodesics started at (i, 0) and (i′, 0) with
i < i′ coalesce before height j < 0 or exactly at height j if and only if every τk with
i < k + 1

2 < i′ becomes extinct before generation −j. See Figure 5 for an illustration.

Note that the left-most geodesic started from any point (i, 0) of the top boundary
breaks the LHPQ into two halves. Any path whose endpoints are on different sides of this
geodesic must cross it through one of its vertices. Note finally that left-most geodesics
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Figure 6: Constructing a part of the LHPQ from truncated quadrangulations. In the
lower part, the dotted lines are trees of the skeleton and the dashed lines are ∂−r−1L and
∂−rL for some r ≥ 0. The upper part of the figure shows 5 truncated quadrangulations
that fill in successive slots as shown in the lower part. Note that any edge of a truncated
quadrangulation that is glued to some edge of ∂−rL is removed in the LHPQ.

never cross any tree of the skeleton. As an example, the left-most geodesic started from
(0, 0) is the vertical line ((0,−n))n≥0.

As another useful observation, we note that the graph distance between any point of
∂rL and ∂r′L (with r′ < r) is exactly r − r′.

3.2 The lower-half plane quadrangulation is the local limit of large hulls

The following proposition explains why we consider the model of the LHPQ.

Proposition 3.1. For every r > 0, let Hr be the truncated hull of radius r of the UIPQ,
re-rooted at a uniformly chosen edge of its boundary. Then

Hr
(d)−→

r→∞
L

for the local topology on rooted planar maps.

We omit the proof as we will not need this result in the remaining part of the paper.
See Proposition 7 in [7] for the analogous statement in the case of triangulations.

3.3 Control of distances along the boundary

3.3.1 The main estimate

The following proposition shows that dLgr((0, 0), (j, 0)) grows at least like
√
j.

Proposition 3.2. For every ε > 0, there exists an integer K ≥ 1 such that for every
r ≥ 1, for every integer A > 0,

P

(
min

|i|≥A+Kr2
min

−A≤i′≤A
dLgr((i

′, 0), (i, 0)) ≥ r
)
≥ 1− ε.

In order to prove this proposition, we adapt the proof of [5, Theorem 5]. This result
does not apply directly to our settings, but to another model also constructed from a
Bienaymé Galton-Watson forest.

Let us first define slices, half-slices, and blocks of the LHPQ.
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Slice. Let −∞ < j′ < j ≤ 0. Consider all vertices and edges of L contained in R× [j′, j]

and add all edges of the form ((i, j), (i+1, j)) and ((i, j′), (i+1, j′)) for i ∈ Z. The resulting
map is called the slice Ljj′ . By convention it is rooted at ((0, j), (1, j)). The skeleton of Ljj′
is the planar forest (τ

(j,j′)
n )n∈Z corresponding to the part of the skeleton of L between

generation −j and −j′ (these trees are numbered as previously, so that τ (j,j′)
n is rooted

at the vertex (n+ 1
2 , j)).

Half-slice. The half-slice HLjj′ is the part of the slice Ljj′ that is contained in R+× [j′, j].

Its skeleton consists of the trees of the skeleton of Ljj′ with nonnegative indices.

Blocks. Cut the half-slice HLjj′ along the left-most geodesics that follow the right
boundary of trees of maximal height in its skeleton. We obtain a sequence of finite maps,
which we will call blocks as in [5].

Let us give a precise definition of these blocks (see also Figure 7). Let (ξn)n>0 be
the sequence of all indices (in increasing order) of trees that reach height j − j′ in the
skeleton of HLjj′ , and add the convention that ξ0 = −1. Let n > 0 be an integer. The n-th

block HLjj′(n) is the part of HLjj′ contained between the left-most geodesics started at
(ξn−1 + 1, j) and at (ξn + 1, j) respectively. The left boundary of a block is the left-most
geodesic on its left, its right boundary is the left-most geodesic on its right.

ξ1 = 1

τ0 τ1 τ2 τ3 τ4 τ8

ξ2 = 4 ξ3 = 8

Figure 7: Block decomposition of the half-slice HL0
−3. The first block is pictured in

green, the second one in red, the third one in blue. In the upper figure, we represented
the skeleton in brown (with trees of height 3 in thick lines), slots in dark gray, and the
left-most geodesics following the right boundary of trees of height 3 in green. In this
example, ξ1 = 1, ξ2 = 4, ξ3 = 8.

The skeleton of L is made of i.i.d. trees, thus all the blocks HLjj′(n), viewed as planar

EJP 27 (2022), paper 30.
Page 15/50

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP662
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPP in random maps

maps with a boundary, are independent and share the same law, which only depends on
j − j′.

The thickness of the n-th block Thickness(HLjj′(n)) (called diameter in [5]) is the
minimal graph distance in this block between a point of its left boundary and a point of
its right boundary. Note that the thickness of a block cannot be 0, since the presence of
a tree of maximal height implies that the left-most geodesics corresponding to the left
and right boundary of the block do not coalesce (by a previous remark).

Furthermore, the thickness of HLjj′(n) is always smaller than j − j′ + 1. Indeed,
the left-most geodesic started at (ξn−1 + 1, j) (i.e. the left boundary) and the left-most
geodesic started at (ξn, j) coalesce before height j′ (i.e. after at most j − j′ steps), since
no tree rooted between ξn−1 + 1 and ξn reaches height j − j′. In this way, we get a path
of length at most j − j′ that connects the left boundary of the block to the vertex (ξn, j),
and we just have to add the edge ((ξn, j), (ξn + 1, j)) to get the desired bound.

It will be useful to note the following simple fact: any path that stays in the half-slice
HLjj′ with one endpoint on the left side of the left boundary of some HLjj′(n), and its
other endpoint on the right side of its right boundary, has a length which is at least the
thickness of the block.

Let us outline the key idea of the proof of Proposition 3.2. A path of length r between
two vertices of the boundary of L cannot exit the slice L0

−h for any h ≥ r. We apply this
observation with h = dCre with some constant C ≥ 1. If we fix K > 0 large enough,
then with high probability we will find a block of L0

−h with top boundary included in
[A,A+Kr2]× {0}, and any path in L0

−h that goes from the left side to the right side of
[A,A+Kr2]× {0} must cross this block. All we need to conclude is the fact that we can
choose h such this block has thickness at least r with high probability.

The latter fact is derived from the following result, which is adapted from [5, Theorem
5]. For every integer h > 0, let G(h) be a random variable with the law of a block of
height h. Fix ε ∈ (0, 1). The ε-quantile fε(h) of the thickness of G(h) is the largest integer
n such that

P(Thickness(G(h)) ≥ n) ≥ 1− ε. (3.1)

Note that 1 ≤ fε(h) ≤ h+ 1 by previous observations.

Proposition 3.3. For every ε ∈ (0, 1), there exists Cε ∈ (0, 1) such that for every h ≥ 1,
fε(h) ≥ Cεh.

We postpone the proof of Proposition 3.3 to the next section and complete the proof
of Proposition 3.2.

Proof of Proposition 3.2. Let r ≥ 1, and set h =
⌈
r/Cε/4

⌉
, where Cε/4 is given by Propo-

sition 3.3, and consider the first block of the half-slice L0
−h, that is, HL0

−h(1) with the
previous notation. By Proposition 3.3, we have

P(Thickness(HL0
−h(1)) ≥ r) ≥ P(Thickness(HL0

−h(1)) ≥ Cε/4h)

≥ P(Thickness(HL0
−h(1)) ≥ fε/4(h))

≥ 1− ε/4.

Let E1 denote the event {Thickness(HL0
−h(1)) ≥ r}.

The right-most point of the top boundary of HL0
−h(1) is (ξ1 + 1, 0), where ξ1 is the

index of the first tree with height h in the skeleton of the half-slice HL0
−h. Since all

trees are i.i.d., and have probability 1 − πh to have height h (by definition of πh, see
Proposition 2.1), it follows that ξ1 follows a geometric law with parameter 1− πh. We
note by the expression of πh in Proposition 2.1 that 1− πh ≥ c/r2 for some constant c > 0

independent of r. We can thus take K > 0 large enough so that ξ1 + 1 ≤ Kr2 holds with
probability larger than 1− ε/4. Let us call E2 the event where ξ1 + 1 ≤ Kr2.
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On the event E1 ∩ E2 of probability at least 1− ε/2 the block HL0
−h(1) has thickness

at least r and its top boundary is contained in [0,Kr2]× {0}. Then any two points (i, 0)

and (i′, 0) with i ≤ 0 and i′ ≥ Kr2 are at dLgr-distance at least r, since any path of length
smaller than r linking them necessarily crosses the block HL0

−h(1).
From an obvious argument of translation invariance, we obtain that for any integer

A > 0, with probability larger than 1 − ε/2, any point in (∞, A] × {0} and any point in
[A+Kr2,+∞)× {0} are at dLgr-distance at least r. Similarly, with probability larger than
1−ε/2 the two half-lines (∞,−A−Kr2]×{0} and [−A,+∞)×{0} are also at dLgr-distance
larger than r. The statement of the proposition follows.

3.3.2 Proof of Proposition 3.3

For h ≥ 6 and m ∈ {1, 2, . . . ,
⌊
h
6

⌋
}, we set

Jm =

{
−km, 0 ≤ k ≤

⌊
h

m

⌋
− 3

}
∪ {−h+ 3m}.

We write G(h) for a block of height h, and Gjj′(h) for the slice of G(h) contained between
heights j′ and j, for −h ≤ j′ < j ≤ 0. We recall that ε ∈ (0, 1) is fixed.

Lemma 3.4. There exists C ∈ (0, 1/6) such that for all h large enough and 0 < m ≤ Ch,
the following property holds with probability at least 1− ε: for every j ∈ Jm, the length
of any path connecting the left boundary of G(h) to its right boundary and staying in

Gjj−3m(h) is at least C
(
h
m

)2
fε(m).

As a technical ingredient of the proof of Lemma 3.4, we need a uniform lower bound
on the size of the block at every generation. For 0 ≤ k ≤ h, let Xk(h) denote the number
of vertices of the skeleton of G(h) at generation k.

Lemma 3.5. There exists a constant C1 > 0 which does not depend of h, such that

P

(
inf

0≤k≤h
Xk(h) > C1h

2

)
≥ 1− ε/2. (3.2)

See [5, Lemma 2] for a proof of Lemma 3.5.

Proof of Lemma 3.4. The idea is to choose C ′ small enough so that with high probability,
one can find at least C ′(h/m)2 blocks of thickness at least fε(m) inside the slice Gjj−3m(h),
for every j ∈ Jm. Any path connecting the left and right boundaries of this slice will then
have length at least C ′(h/m)2fε(m).

We argue in the half-slice HL0
−h. Note that the first block of this half-slice has the

same law as G(h).
Let C1 be chosen as in Lemma 3.5 so that (3.2) holds. Consider the half-slice HLjj−3m

for j ∈ Jm, and let k be a positive integer. The number of blocks of this slice whose top
boundary lies in [0,

⌈
C1h

2
⌉
] × {j} is distributed as the number of trees with height at

least 3m in a forest of
⌈
C1h

2
⌉

independent Bienaymé-Galton-Watson trees with offspring
distribution θ. Each block has a probability greater than 1 − ε of having thickness at
least fε(3m). The number Nj of blocks with thickness at least fε(3m) and top boundary
in [0,

⌈
C1h

2
⌉
] × {j} is then bounded below in distribution by a binomial variable with

parameters (
⌈
C1h

2
⌉
, (1−ε)(1−π3m)), where πs is defined in Proposition 2.1. By standard

large deviation estimates for the binomial distribution and the bound 1− πs ≥ c/s2, we
can find C,C ′, C ′′ > 0 such that for all large enough h, for every m ≤ Ch, for every
j ∈ Jm

P

(
Nj < C ′

(
h

m

)2
)
< exp

(
−C ′′

(
h

m

)2
)
.
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Summing over j ∈ Jm and taking C even smaller if necessary, we get

P

(
∀j ∈ Jm : Nj ≥ C

(
h

m

)2
)
≥ 1− ε/2. (3.3)

On the event of probability at least 1− ε/2 considered in Lemma 3.5, the first
⌈
C1r

2
⌉

vertices of the skeleton of HL0
−r at generation j (i.e. the first

⌈
C1r

2
⌉

vertices of the

skeleton of HLjj−3m) belong to the first block HL0
−r(1), thus the Nj blocks of thickness

at least fε(3m) considered above are contained in HL0
−r(1). The property of Lemma 3.4

then holds on the intersection of the event in Lemma 3.5 with the event in (3.3).

Proposition 3.3 will be proved via the following functional inequality on fε:

Proposition 3.6. Let C ∈ (0, 1/6) be as in Lemma 3.4. Then for all h large enough,

fε(h) ≥ C max
1≤m≤Ch

min

(
m,

(
h

m

)2

fε(3m)

)
. (3.4)

Proof. The idea is to cut the block into slices of height 3m, and to consider separately
the cases where the shortest path crossing the block from left to right stays inside such
a slice or not. See Figure 8 for an illustration.

−mk

−m(k + 1)

−m(k + 2)

−m(k + 3)

x

γ2

γ1

G

G−mk
−m(k+3)

first block second block third block

Figure 8: Paths started from a point x on the left boundary can either stay in a slice

of height 3m around x (and have length at least C
(
h
m

)2
fε(m) by Lemma 3.4 w.h.p.), or

leave it and have length at least m a.s..

Let m be an integer with 1 ≤ m ≤ Ch. Consider a path γ in G(h) that achieves the
thickness of this block, and let x be its starting point on the left boundary. We assume
for simplicity that x is at distance at least m from the top and bottom boundaries (the
case where x is at distance smaller than m from the top or bottom boundaries is treated
similarly). By our choice of Jm, there is always an index j ∈ Jm such that x is in the
slice Gj−mj−2m(h). Then either γ leaves the slice Gjj−3m(h), which takes at least m steps;

or γ stays in Gjj−3m(h), but then by Lemma 3.4 its length is at least C
(
h
m

)2
fε(m) with

probability at least 1− ε.
We conclude that the thickness of G(h) is at least C min

(
m,
(
h
m

)2
fε(m)

)
with proba-

bility at least 1− ε. Hence fε(h) ≥ C min
(
m,
(
h
m

)2
fε(m)

)
. Since this holds for all m with

1 ≤ m ≤ Ch, this gives the result of Proposition 3.6.
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Proof of Proposition 3.3. First note that by taking C smaller if necessary we may assume
that the bound of Proposition 3.6 holds for every h ≥

⌊
6/C2

⌋
. We then prove by induction

that fε(h) ≥ C2

6 h for every h ≥ 1. If h ≤
⌊
6/C2

⌋
this bound is trivial. So let h0 ≥

⌊
6/C2

⌋
and assume that fε(h) ≥ C2

6 h for every 1 ≤ h ≤ h0. Take h = h0 + 1 and m = bCh/3c.
One verifies that 3m ≤ Ch < h, hence 3m ≤ h0, so by our assumption fε(3m) ≥ C2m/2.

We note as well that Ch
3 > C

3
6
C2 = 2

C > 12, so that
⌊
Ch
3

⌋
≥ Ch

6 , hence m ≥ Ch/6.
By Proposition 3.6,

fε(h) ≥ C min

(
m,

(
h

m

)2

fε(3m)

)
≥ C min

(
Ch

6
,

(
3

C

)2
C2

2

Ch

6

)

This completes the proof.

3.4 Subadditivity

It will be convenient to consider the map L̃ which is derived from the LHPQ L be
removing all “horizontal edges” ((j, 0), (j + 1, 0)) for j ∈ Z. For every integer j < 0, we
also denote by L̃j−∞ the submap of L̃ (or of L) contained in the half-plane below ordinate

j. If −∞ < j < j′ ≤ 0, L̃j
′

j is the submap of L̃ contained in R× [j, j′]. We equip the vertex
sets of these graphs with the first-passage percolation distance induced by i.i.d. weights
to the edges (the common distribution of these weights is supported on [1, κ]). Recall
our notation ρ = (0, 0) for the root vertex of L (or of L̃), and ∂jL for the line at vertical
coordinate j ≤ 0 (viewed here as a collection of vertices).

Proposition 3.7. There exists a constant c ∈ [1, κ] such that

r−1dL̃fpp(ρ, ∂−rL)
a.s.−→
r→∞

c.

This constant c is precisely the one that appears in Theorem 1.1, as we will see later.

Proof. We derive this proposition from the subadditive ergodic theorem. Let −∞ < j′ <

j < 0, and let xj be the left-most vertex of ∂jL such that dL̃fpp(ρ, ∂jL) = dL̃fpp(ρ, xj). Then,

d
L̃0
j′

fpp (ρ, ∂j′L) ≤ d
L̃0
j

fpp(ρ, ∂jL) + d
L̃j
j′

fpp (xj , ∂j′L).

Note that xj is a function of L̃0
j and of the weights on edges of L̃0

j . Thanks to the

independence of layers of the map, d
L̃j
j′

fpp (xj , ∂j′L) is independent of d
L̃0
j

fpp(ρ, ∂jL) and has

the same distribution as d
L̃0
j′−j

fpp (ρ, ∂j′−jL). We then apply Liggett’s version of Kingman’s
subadditive ergodic theorem [16, Theorem 1.10] to conclude that

r−1d
L̃0
−r

fpp (ρ, ∂−rL)
a.s.−→
r→∞

c

for some constant c. The fact that c ∈ [1, κ] is immediate since weights belong to [1, κ]

and the graph distance from ρ to ∂−rL (in L̃0
−r) is equal to r. The lemma follows by

noting that dL̃fpp(ρ, ∂jL) = d
L̃0
j

fpp(ρ, ∂jL).

4 Technical tools

4.1 Density between the LHPQ and truncated hulls of the UIPQ

Proposition 3.1 suggests that the neighborhood of a vertex chosen uniformly on the
boundary of a large hull in the UIPQ looks like the LHPQ. We will need a quantitative
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version of this property; this is provided by Proposition 4.1, whose proof does not depend
on Proposition 3.1.

Let a ∈ (0, 1), let (τi)i∈Z be an i.i.d. Bienaymé-Galton-Watson forest with offspring

distribution θ, and for every integer r ≥ 1, let N (a)
r be a random variable distributed

uniformly over {
⌊
ar2
⌋

+ 1, ...,
⌊
r2/a

⌋
}, and independent of (τi)i∈Z. We denote the tree τi

truncated at height r by [τi]r (we only keep vertices at generation at most r). For every
0 ≤ r < s, let Fr,s be the forest defined from the skeleton of the annulus C(r, s) in the
UIPQ as explained at the end of Section 2.

Proposition 4.1. For every a ∈ (0, 1), we can find Ca > 0 such that for every large
enough integer r, for every choice of the integers s > r and

⌊
ar2
⌋

+ 1 ≤ p, q ≤
⌊
r2/a

⌋
, for

every forest F ∈ Fs−r,p,q,

P (Fr,s = F) ≤ CaP
(

([τ1]s−r, ..., [τN(a)
r

]s−r) = F
)
. (4.1)

Proof. By Proposition 2.2, for F ∈ Fs−r,p,q,

P(Fs,r = F | Hr = p) =
p

q

2qκq
2pκp

∏
v∈F∗

θ(cv). (4.2)

where we recall that F∗ is the set of vertices at generation at most s− r− 1 in the forest
F .

Let us consider the right-hand side of (4.1). Using the asymptotics (2.1), we find C > 0

that only depends on a such that for every large enough r, for every
⌊
ar2
⌋
< p, q <

⌊
r2/a

⌋
,

we have p
q

2qκq
2pκp

≤ C. On the other hand, Proposition 2.1 and (2.1) allow us to find C ′ > 0

such that P(Hr = p) ≤ C ′/r2 for every r ≥ 1 and p ≥ 1. From (4.2), we now get

P (Fr,s = F) ≤ CC ′

r2

∏
v∈F∗

θ(cv). (4.3)

On the other hand,

P
(

([τ1]s−r, ..., [τN(a)
r

]s−r) = F
)

= P(N (a)
r = q)P(([τ1]s−r, ..., [τq]s−r) = F)

=
1

br2/ac − bar2c
∏
v∈F∗

θ(cv). (4.4)

The desired result follows by comparing (4.3) and (4.4).

4.2 Coalescence of left-most geodesics in the UIPQ

Left-most geodesics in the UIPQ coalesce quickly, in the following sense. Consider
the set of all left-most geodesics started from the boundary of the hull of radius r ≥ 1,
and let γ ∈ (0, 1). Then the number of vertices at distance bγrc from the root that belong
to one of these geodesics is bounded in distribution when r is large. The next proposition
(which is inspired from [7, Proposition 17]) gives a precise version of this property, which
will be particularly useful in the proof of Proposition 5.1 below.

Recall that Htr
Q∞

(r) is the truncated hull of radius r of the UIPQ Q∞ and that ∂rQ∞

is the external boundary of this hull, which has length Hr. Pick a vertex u(r)
0 on ∂rQ∞

uniformly at random, and write u(r)
0 , u

(r)
1 , ...u

(r)
Hr−1 for all vertices of the boundary listed

in clockwise order starting from u
(r)
0 . We extend the definition of u(r)

j to all j ∈ Z by

periodicity, so that u(r)
j = u

(r)
j+Hr

for every j.
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Proposition 4.2. Let γ ∈ (0, 1/2) and δ > 0. For every integer A > 0, let Xr,A be the
event where any left-most geodesic to the root starting from a vertex of ∂rQ∞ coalesces
before time bγrc with one of the left-most geodesics started from u

(r)
bkr2/Ac, 0 ≤ k ≤

⌊
AHr
r2

⌋
.

Then we can choose A large enough such that, for every sufficiently large r,

P(Xr,A) ≥ 1− δ.

Proof. The vertices u(r)
bkr2/Ac, 0 ≤ k ≤

⌊
AHr
r2

⌋
divide ∂rQ∞ into a collection of “intervals”

made of consecutive edges of the boundary. We call an interval bad if at least two trees
of the skeleton of Htr

Q∞
(r) rooted in this interval have height at least bγrc and good

otherwise.
Now recall the observations made in Section 2 before discussing the law of the

skeleton of the UIPQ. It follows that, if an interval S is good, then the left-most geodesic
started from any vertex of S coalesces with one of the two left-most geodesics started
from the endpoints of S. The proposition then reduces to proving that we can choose
A > 0 such that, for all r large enough, the probability of having no bad interval is
greater than 1− δ.

r2/A

Hr/a

bγrc

u0 ubr2/Ac ub2r2/Ac

Figure 9: As soon as there are no bad intervals, every left-most geodesic started at a
vertex v of the top boundary coalesces before time γr with the left-most geodesic started
at one of the endpoints of the interval that contains v. By choosing A large enough, we
ensure that with high probability there is no bad interval.

From the explicit law of the perimeter of truncated hulls in Proposition 2.1, we get
that there exists a ∈ (0, 1) such that for all large enough r,

P
(
Hr /∈

[⌊
ar2
⌋

+ 1,
⌊
r2/a

⌋]
or Hbγrc /∈

[⌊
ar2
⌋

+ 1,
⌊
r2/a

⌋])
< δ/2. (4.5)

Consider first a forest made of
⌊
r2/A

⌋
+ 1 independent Bienaymé-Galton-Watson trees

with offspring distribution θ. Simple estimates show that the probability that at least
two trees of the forest have height greater than or equal to bγrc is bounded by C(Aγ)−2

(use Proposition 2.1) independently of r. If we now consider bA/ac+ 1 independent such
forests, the probability that at least one of these forests satisfies the preceding property
is bounded above by C (bA/ac+ 1) (Aγ)−2, with a constant C that does not depend on r
nor on A. By choosing A large, the latter quantity can be made smaller than δ/(2Ca),
where Ca is the constant in Proposition 4.1. The proof is completed by using Proposition
4.1 and (4.5).

5 Main results for the first-passage percolation distance on quad-
rangulations

5.1 Distance through a thin annulus

Recall the constant c introduced in Proposition 3.7.
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Proposition 5.1. Let ε ∈ (0, 1) and δ > 0. For every η > 0 small enough, for all
sufficiently large n, the property

(1− ε)cηn ≤ dQ∞fpp (v, ∂n−bηncQ∞) ≤ (1 + ε)cηn (5.1)

holds for every v ∈ ∂nQ∞, with probability at least 1− δ.
The proof of this result is technical but very similar to the proof of [7, Proposition

19], to which we refer for additional details. Let us start by an outline of the main ideas
of the proof. Recalling the absolute continuity relations stated in Proposition 4.1, we
observe that a sufficiently thin slice of the UIPQ (of the form C(n− bηnc, n)), seen from a
uniformly chosen vertex of its outer boundary, looks like a slice of the LHPQ. This in turn
allows us to use Proposition 3.7.

In order to implement the latter observation, we need to make sure that with high
probability, distances from a point v of the top boundary of the annulus C(n − bηnc, n)

to the bottom boundary are determined by a “small” neighborhood of v in the annulus.
This essentially follows from the control of distances along the boundary discussed in
Section 3.3.

Finally, we need (5.1) to hold simultaneously for all v on the top boundary. Proposition
4.2 ensures that with high probability, the left-most geodesic started at a vertex v of
the top boundary coalesces quickly with one of the left-most geodesics started from a
bounded number of points on the top boundary. Thanks to this observation, it is enough
to verify that (5.1) holds for a bounded number of vertices v ∈ ∂nQ∞.

Proof of Proposition 5.1. In a way similar to Section 3.4, we let H̃Q∞(n) denote the
map obtained from Htr

Q∞
(n) by removing the edges of the external boundary. It is then

convenient to write d
(n)
gr for the graph distance on H̃Q∞(n), and similarly d

(n)
fpp for the

first-passage percolation distance on H̃Q∞(n) (in both cases we allow only paths made

of edges of H̃Q∞(n)). Similarly as in the proof of Proposition 4.2, we pick a vertex

u
(n)
0 uniformly at random on ∂nQ∞, and denote the vertices of ∂nQ∞ in clockwise order

starting from u
(n)
0 by (u

(n)
j )0≤j<Hn . We extend the definition of u(n)

j to j ∈ Z by periodicity.
Let δ ∈ (0, 1).

First, we use Proposition 2.1 to fix a ∈ (0, 1) small enough such that, for every
η ∈ (0, 1/2), the top and bottom perimeters of the annulus C(n− bηnc, n) are both within
the range [an2, a−1n2] with probability at least 1 − δ/4. In the remaining part of the

proof, we implicitly argue on the event E(n)
η where the latter properties hold. We also set

N = d9a−2e.
Proposition 4.1 allows us to bound the probability of any event concerning the

forest encoding the skeleton of C(n− bηnc, n) by a constant times the probability of the
same event concerning an i.i.d. forest of Bienaymé-Galton-Watson trees with offspring
distribution θ. As noted in Section 2, if the left-most geodesics started at u(n)

−ban2/4c and

u
(n)
ban2/4c coalesce before reaching ∂n−bηncQ∞, then either all the trees of the skeleton

of C(n− bηnc, n) that are rooted on the part of ∂nQ∞ between u(n)
−ban2/4c and u(n)

ban2/4c (in

clockwise order) have height strictly smaller than bηnc, or all the trees rooted on the
rest of ∂nQ∞ have height strictly smaller than bηnc. Note that both halves of ∂nQ∞
that are delimited by u(n)

−ban2/4c and u
(n)
ban2/4c have length at least 2

⌊
an2/4

⌋
. Using this

remark together with Proposition 4.1, by taking η small enough, one can ensure that
the left-most geodesics started at u(n)

−ban2/4c and u(n)
ban2/4c do not coalesce before reaching

∂n−bηncQ∞ except on a set of probability at most δ/(8N). On this event, the complement

in the annulus C(n− bηnc, n) of the union of the left-most geodesics started at u(n)
−ban2/4c

and at u(n)
ban2/4c has two components, and we call G(n)

0 the one containing the part of
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∂nQ∞ between u
(n)
−ban2/4c and u

(n)
ban2/4c in clockwise order. The lateral boundary ∂lG(n)

0

consists of the two left-most geodesics bounding G(n)
0 , and the bottom boundary ∂bG(n)

0 is
defined in an obvious way.

Let us argue on the event where G(n)
0 is well-defined. Using Proposition 3.2 and

Proposition 4.1, and taking η even smaller if necessary, we can ensure that the following
holds except on a set of probability at most δ/(8N): any point u(n)

k with |k| ≤ an2/16 is at

d
(n)
gr -distance at least (4κ+1)ηn from u

(n)
−ban2/4c and u(n)

ban2/4c. By the triangle inequality, we

thus obtain that on this event, the d
(n)
gr -distance between any point u(n)

k with |k| ≤ an2/16

and ∂lG(n)
0 is at least 4κηn. Any path in the annulus C(n− bηnc, n) with one endpoint in

{u(n)
k , |k| ≤ an2/16} and the other one in ∂n−bηncQ∞ that crosses ∂lG(n)

0 will have length
at least 4ηκn, and thus first-passage percolation weight at least 4ηκn. On the other hand,
the left-most geodesic started at any u(n)

k , |k| ≤ an2/16, gives a path of length at most

ηn between u(n)
k and ∂n−bηncQ∞, that is thus of first-passage-percolation weight at most

κηn. It follows that no d
(n)
fpp-shortest path between a vertex of the form u

(n)
k , |k| ≤ an2/16,

and ∂n−bηncQ∞ reaches ∂lG(n)
0 , except on an event of probability at most δ/(8N).

The previous considerations apply as well if we replace u(n)
0 by u(n)

j for any j (possibly

depending on n). Let G(n)
j stand for the analog of G(n)

0 when u
(n)
0 is replaced by u(n)

j .
We obtain that, except possibly on an event of probability at most δ/4, for every j

of the form j = i
⌊
an2/8

⌋
, 0 ≤ i ≤ N − 1, the set G(n)

j is well-defined and for every

integer k with j −
⌊
an2/16

⌋
≤ k ≤ j +

⌊
an2/16

⌋
, any d

(n)
fpp-shortest path from u

(n)
k to

∂n−bηncQ∞ reaches the bottom boundary of G(n)
j before its lateral boundary. We write

D(n)
η for the event of probability at least 1 − δ/4 where the preceding properties hold.

On the intersection E(n)
η ∩ D(n)

η , for any choice of j and k as previously, the d
(n)
fpp-distance

from u
(n)
k to ∂n−bηncQ∞ can be computed from the information given by G(n)

j and the

weights on edges of G(n)
j . From our choice of N , we also see that the vertices u(n)

k with

j −
⌊
an2/16

⌋
≤ k ≤ j +

⌊
an2/16

⌋
and j of the form j = i

⌊
an2/8

⌋
, 0 ≤ i ≤ N − 1, cover the

whole boundary ∂nQ∞ (provided E(n)
η holds).

At this stage, we use the absolute continuity relations in Proposition 4.1 in connection
with Proposition 3.7. Let j and k be as previously (possibly depending on n). On the
event E(n)

η ∩ D(n)
η , the d

(n)
fpp-distance from u

(n)
k to ∂n−bηncQ∞ is determined as a function

of the skeleton of G(n)
j (meaning the forest consisting of the trees of the skeleton of

C(n − bηnc, n) rooted at edges between u
(n)
j−ban2/4c and u

(n)
j+ban2/4c in clockwise order)

and the quadrangulations that fill in the slots — and of course of the weights on edges.
But the same function determines the first passage percolation distance in the LHPQ
(which is estimated by Proposition 3.7) and one just has to compare the distributions of
skeletons, for which one may use Proposition 4.1. It follows that, on the event E(n)

η ∩D(n)
η ,

we have

d
(n)
fpp(u

(n)
k , ∂n−bηncQ∞) ∈ [(1− ε/2)cηn, (1 + ε/2)cηn]. (5.2)

except possibly on an event of probability tending to 0 as n→∞.

We now want to argue that (5.2) holds simultaneously for all k outside a set of
small probability. To this end, we rely on the coalescence of geodesics (Proposition
4.2). Let A be chosen as in Proposition 4.2, replacing γ by cηε/(4κ) and δ by δ/4.
As in Proposition 4.2, consider indices k of the form

⌊
in2/A

⌋
, 0 ≤ i ≤ bA/ac. Then,

for n large enough, (5.2) holds simultaneously for all these values of k, on the event
E(n)
η ∩D(n)

η , except possibly on event of probability less than δ/4. Furthermore, thanks to

Proposition 4.2, we know on the event E(n)
η ∩ D(n)

η that, outside an event of probability
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at most δ/4, every vertex v ∈ ∂nQ∞ is at d
(n)
gr -distance at most εcηn/(2κ) (thus at d

(n)
fpp-

distance at most εcηn/2) from one of these vertices u(n)
k . We conclude that we have

d
(n)
fpp(v, ∂n−bηncQ∞) ∈ [(1− ε)cηn, (1 + ε)cηn] for every vertex v of ∂nQ∞, outside an event

of probability at most δ. This is the desired result, except that we need to replace d
(n)
fpp

by dQ∞fpp . This is however easy since on one hand dQ∞fpp ≤ d
(n)
fpp and on the other hand

the minimal values of d
(n)
fpp(v, ∂n−bηncQ∞) and dQ∞fpp (v, ∂n−bηncQ∞) on ∂nQ∞ are the same.

This completes the proof.

5.2 Distance from the boundary of a hull to its center

The next step is to show that the distance from the root vertex of the UIPQ Q∞ to an
arbitrary vertex of the boundary of a hull is close to a constant times the radius. Recall
that ρ is the root vertex of Q∞.

Proposition 5.2. For every ε ∈ (0, 1),

P
(

(c− ε)n ≤ dQ∞fpp (ρ, v) ≤ (c + ε)n, for every v in ∂nQ∞
)
−→
n→∞

1.

Proof. Fix ε ∈ (0, 1), and take δ = ε2/(5κ| ln(ε/(5κ))|). For every 0 < m < n, we say that
the annulus C(m,n) is good if, for every v ∈ ∂nQ∞,

(1− ε/2)cηn ≤ dQ∞fpp (v, ∂mQ∞) ≤ (1 + ε/2)cηn, (5.3)

and it is bad otherwise. Proposition 5.1 ensures that we can fix η ∈ (0, 1) small enough
such that for all n large enough, the annulus C(n− bηnc, n) is good with probability at
least 1− δ.

Let n0 = n, and define by induction nk+1 = nk − bηnkc for every k ≥ 0. Let q =⌊
ln(ε/(5κ))
ln(1−η)

⌋
. Note that nq ≥ ε

5κn and nq ≤ ε
4κn for n large. Using Markov’s inequality we

get that for n large enough,

P

(
#{k ∈ {0, 1, . . . , q − 1} : C(nk+1, nk) is bad} > ε

5κ| ln(1− η)|

)
≤ 5κ| ln(1− η)|

ε
qδ ≤ ε

by our choice of δ and q. Let Dεn denote the event whose probability appears in the
previous display. We will show that the property (c − ε)n ≤ dQ∞fpp (ρ, v) ≤ (c + ε)n for
every v ∈ ∂nQ∞ holds on the complement of Dεn. Since P(Dεn) ≤ ε for n large, this will
complete the proof.

Suppose that Dεn does not hold. Then the fpp-distance between any vertex v ∈ ∂nQ∞
and ρ is larger than the cost one must pay to cross the good annuli, that is

dQ∞fpp (v, ρ) ≥
q−1∑
k=0

(1− ε/2)c(nk − nk+1)−
∑

k : C(nk+1,nk) bad

(1− ε/2)c(nk − nk+1)

≥ (1− ε/2)c(n0 − nq)−
ε

5κ| ln(1− η)|
c max

0≤k<q
(nk − nk+1)

≥ cn

[
1− ε

2
− ε

4
− ε

4| ln(1− η)|
η

]
≥ cn (1− ε) ,

using the properties κ ≥ 1 and η/| ln(1− η)| < 1 for η ∈ (0, 1). Conversely, we can build a
path from v to ρ that crosses the good annuli in the dfpp-shortest way, and the bad annuli
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or the hull Htr
Q∞

(nq) along left-most geodesics. Using the properties dgr ≤ dfpp ≤ κdgr

and 1 ≤ c ≤ κ, we can bound its fpp-weight by

q−1∑
k=0

(1 + ε/2)c(nk − nk+1) + κnq +
∑

k : C(nk+1,nk) bad

κ(nk − nk+1)

≤ (1 + ε/2)c(n0 − nq) + κ
ε

4κ
n+

ε

5κ| ln(1− η)|
κ max

0≤k<q
(nk − nk+1)

≤ cn

[
1 +

ε

2
+
ε

4
+

ε

4| ln(1− η)|
η

]
≤ cn (1 + ε) ,

giving dQ∞fpp (v, ρ) ≤ cn (1 + ε). This completes the proof.

5.3 Distance between two uniform points in finite quadrangulations

In this section, we consider a uniformly distributed rooted and pointed quadran-
gulation with n faces, which we denote by Q•n. The associated (unpointed) rooted
quadrangulation is simply denoted by Qn. We will write ρn for the root vertex of Qn (or of
Q•n) and ∂n for the distinguished vertex of Q•n. This notation will be in force throughout
the remaining part of this work. We note that, conditionally on the unpointed map Qn,
∂n is uniformly distributed over V (Qn).

Our next goal is to control the fpp-distance between ρn and ∂n.

Proposition 5.3. For every ε ∈ (0, 1),

P
(
|dQnfpp(ρn, ∂n)− cdQngr (ρn, ∂n)| > εn1/4

)
−→
n→∞

0.

We postpone the proof of this result to Section 5.4, and first give some technical tools
that are needed in this proof.

The idea is to transfer the results that we established in the UIPQ to the setting of
finite quadrangulations. The core tool that we establish in this section compares the
law of a neighborhood of the root in the UIPQ and in a finite quadrangulation. In this
direction, Proposition 5.5 gives a result valid for neighborhoods of diameter smaller than
a constant times the typical diameter of the quadrangulation. This is closely related to
[6, Lemma 8 and Proposition 9], but we need sharper results.

Let us briefly introduce the objects we need. Our proofs in this section and the next
one make use of the (now classical) Cori-Vauquelin-Schaeffer bijection [15, Section 5.4]
between rooted and pointed quadrangulations with n faces, and labeled rooted plane
trees with n edges. For more details, we refer to [6, Section 4].

The Cori-Vauquelin-Schaeffer correspondence. Consider a rooted plane tree τ ,
with root vertex σ, together with a labeling Z = (Zx)x∈V (τ) of its vertices by integers
such that Zσ = 0, and |Zx − Zy| ≤ 1 if x and y are adjacent. We fix ε ∈ {0, 1} and
explain how to get a pointed and rooted quadrangulation Q from (τ, Z, ε). To this end,
we suppose that τ is embedded in the plane as shown on Figure 10. Then, firstly, we
add a vertex ∂, and extend the labeling to ∂ so that Z∂ = −1 + minx∈V (τ) Zx. The vertex
set of the quadrangulation Q is V (τ) ∪ {∂}, and ∂ is its distinguished vertex. We also
extend the labeling to corners of τ , by declaring that the label of a corner is the label of
the incident vertex of τ . Secondly, we order the corners of τ in clockwise order around
τ , starting from the bottom corner of σ. For every n > Z∂ + 1, we draw an edge of Q
from each corner labeled n to the first next corner labeled n− 1; and for each corner of
index Z∂ + 1, we draw an edge from this corner to ∂. This defines the edges of Q. Finally,
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we root Q at the edge drawn from the bottom corner of σ and use ε to determine its
orientation: the root vertex is σ iff ε = 1. The construction should be clear from Figure
10. We mention the following important property relating labels on τ to distances from ∂

in Q: For every vertex v ∈ V (Q), dQgr(∂, v) = Zv − Z∂ .

0

0

1 -1

0 -1

-2

-1

-3

σ

∂

Figure 10: The CVS correspondence applied to a finite labeled tree (in black). The thick
red edge is the root edge of the quadrangulation, and its orientation is determined by ε
(here ε = 1).

The CVS correspondence allows us to code uniform rooted and pointed quadrangula-
tions by uniform rooted labeled plane trees. More precisely, let Tn be a uniform rooted
plane tree with n edges. Given Tn, assign i.i.d. weights on its edges, with uniform law
over {−1, 0,+1}. For every x ∈ V (Tn), define the label Znx as the sum of the weights of
edges along the geodesic from the root to x in Tn. Pick ε ∈ {0, 1} uniformly at random.
The CVS correspondence applied to (Tn, Z

n, ε) then gives a uniform rooted and pointed
quadrangulation with n faces.

Pruned trees. Let τ be a (finite) rooted plane tree. For every vertex v of τ and for
every h > 0 such that dτgr(σ, v) ≥ bhc, we denote the ancestor of v at height bhc in τ by
[v]h. We construct the pruned tree P((τ, v), h) by removing all strict descendants of [v]h
in τ (see [6, Fig. 5]) and we see P((τ, v), h) as a rooted plane tree pointed at [v]h.

Note that the vertex set of P((τ, v), h) is a subset of all vertices of τ . It follows
that, if τ is labeled by Z, we can construct a labeling of P((τ, v), h) by restricting Z to
V (P((τ, v), h)). We will do so implicitely, keeping the same notation for the labeling on τ
and on the pruned tree.

The case where τ is infinite is similar. In that case, we always assume that the tree
has one end: there is only one infinite injective path started at its root, called the spine.
We use the notation [∞]h for the unique vertex of the spine at distance h from the root,
and remove its strict descendants in τ to get the pruned tree P(τ, h). Informally,∞ plays
the role of the distinguished vertex.

We now state the first result of this section. Let (τ, Z) be a finite rooted labeled
plane tree with root vertex σ. Let ε ∈ {0, 1}, and let Q be the rooted and pointed
quadrangulation constructed from (τ, Z, ε) via the CVS correspondence (we denote the
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root vertex of Q by ρ). Let ξ ∈ V (τ), and let h be an integer such that 0 < h < dτgr(σ, ξ).
Set

r = − min
0≤i≤h

Z[ξ]i ≥ 0.

Proposition 5.4. Assume that r ≥ 4. Then B•Q(r − 3) is a function of the pruned tree
P((τ, ξ), h), its labeling, and ε.

Proof. The idea is to prove that, if Q′ is the quadrangulation obtained by applying the
CVS correspondence to the pruned tree, then B•Q(r − 3) = B•Q′(r − 3) (considered as an
equality between rooted quadrangulations with a boundary).

Let us state some useful observations. Without loss of generality, by taking h smaller
we can assume that Z[ξ]h = min0≤i≤h Z[ξ]i = −r. We note that dQgr(σ, ρ) = 0 or 1 depending
on ε. If v ∈ V (τ),

dQgr(σ, v) ≥ |Zσ − Zv| = |Zv|,

and by the triangle inequality dQgr(ρ, v) ≥ |Zv| − 1.

Our first step is to prove that vertices of B•Q(r − 3) “belong” to the pruned tree, and
that their labels are at least −r + 1.

Let v be a vertex of τ such that Zv ≤ −r. Starting from any corner of v, the
construction of edges in the CVS correspondence yields a path starting from v that visits
vertices with strictly decreasing labels. This path ultimately connects v to ∂ by visiting
only vertices with labels less than −r, thus at distance at least r − 1 from ρ in Q. By
construction, any vertex of B•Q(r − 3) is such that any path from this vertex to ∂ visits a
vertex w with dQgr(ρ, w) ≤ r − 2. It follows that v does not belong to B•Q(r − 3).

Let us now check that vertices in V (τ) \ V (P((τ, ξ), h)) do not belong to B•Q(r − 3)

either. Let v be such a vertex with Zv > −r (the case Zv ≤ −r was already considered
above). Then [ξ]h is an ancestor of v, and the cactus bound [15, Proposition 5.9 (ii)]
shows that

dQgr(σ, v) ≥ Zσ − Z[ξ]h = r,

and thus dQgr(ρ, v) ≥ r − 1.

Let c be any corner of v. Order the corners of τ in clockwise order starting at c, and
let c′′ be the first corner of [ξ]h that appears in this enumeration: every corner between
c and c′′ is incident to a vertex of V (τ) \ V (P((τ, ξ), h)). Since labels change by at most 1

in this enumeration, there will be a corner c′ with label Zv − 1 between c and c′′ (possibly
c′ = c′′). This ensures that the edge drawn from c in the CVS correspondence ends at a
vertex in V (τ) \ V (P((τ, ξ), h)) with label Zv − 1, or possibly at [ξ]h. Therefore, we can
inductively construct a path from v that stays in V (τ) \ V (P((τ, ξ), h)) until it reaches a
vertex w of label −r, and we extend this path to a path from v to ∂ as we did previously.
Every vertex of this path is at distance at least r − 1 from ρ, so it follows again that v
does not belong to B•Q(r − 3).

Note that by the same reasoning, if c is a corner of label at least −r + 1 that belongs
to the pruned tree, then the edge drawn from c will reach a vertex of the pruned tree
(possibly [ξ]h), and thus will be present in Q′ as well as in Q.

As our second and last step, we now verify that B•Q(r − 3) = B•Q′(r − 3). By the first
step, any edge belonging to B•Q(r − 3) is drawn from a corner c of τ (not incident to [ξ]h)
with label at least −r + 1 that “belongs” to the pruned tree, so it appears both in Q and
Q′. It follows that we have both

dQ
′

gr (ρ, v) ≤ dQgr(ρ, v) if v ∈ B•Q(r − 3),

dQgr(ρ, v) ≤ dQ
′

gr (ρ, v) if v ∈ B•Q′(r − 3).
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Next, any edge of the boundary of B•Q(r− 3) is incident to a face of Q containing a vertex

at dQgr-distance (hence dQ
′

gr -distance) less than or equal to r − 4 from ρ. This face must
then also be contained in B•Q′(r − 3). It easily follows that B•Q(r − 3) ⊂ B•Q′(r − 3), and
the converse is also true by a symmetric argument.

The CVS correspondence can be extended to infinite labeled trees. Precisely, we
consider the set S of all infinite rooted labeled trees with one end, such that the infimum
of the labels on the spine is −∞. With every (τ, Z) ∈ S and ε ∈ {0, 1}, one can associate
an infinite planar quadrangulation Q, which is defined via a direct extension of the
rules of the CVS correspondence (see [4, Proposition 2.5]). Furthermore, the preceding
proposition is immediately extended to that case, with the same proof: for every integer
h > 0, if r := −min{Z[∞]j : 0 ≤ j ≤ h} ≥ 4, the hull B•Q(r−3) only depends on the pruned
tree P(τ, h), its labeling, and ε.

The following proposition is closely related to [6, Proposition 9], but deals with hulls
instead of balls. Recall that Q•n is uniformly distributed over the set of rooted and pointed
quadrangulations with n faces.

Proposition 5.5. For every ε > 0, there exists χ > 0 such that for every sufficiently
large n, we can construct Q•n and Q∞ on the same probability space in such a way that
the equality

B•Q•n(χn1/4) = B•Q∞(χn1/4)

holds with probability at least 1− ε.

Proof. The proof is is very similar to that of [6, Proposition 9], using our Proposition 5.4
instead of [6, Proposition 8]. Let us only outline the argument. We may assume that
Q•n is obtained via the CVS correspondence from a uniform labeled tree with n edges
(Tn, Z

n), and we consider a uniformly distributed vertex ξn of Tn. From [4, Theorem
2.8], we also get that Q∞ can be constructed as the image under the extended CVS
correspondence of the so-called uniform infinite labeled tree (T∞, Z

∞) (see [4, Definition
2.6] for the definition of the latter object). Using Proposition 5.4 (and its analog in the
infinite case), the desired result follows once we know that we can couple the labeled
trees (Tn, Z

n) and (T∞, Z
∞) so that the (labeled) pruned trees P((Tn, ξn), χn1/4 + 3) and

P(T∞, χn
1/4 + 3) are equal with probability at least 1 − ε. We refer to the proof of [6,

Proposition 9] for additional details.

5.4 Proof of Proposition 5.3

Recall the notation of Section 5.3. In particular, Q•n is a uniformly distributed rooted
and pointed quadrangulation with n faces. We denote its root vertex by ρn, and its
distinguished vertex by ∂n. The triplet associated with Q•n via the CVS correspondence
is denoted by (Tn, Z

n, εn). We will also use the uniform infinite labeled tree (T∞, Z
∞)

(cf. [4, Definition 2.6]) from which one constructs the UIPQ Q∞ via the extended CVS
correspondence.

5.4.1 First step: Pruning finite trees and infinite trees

For any rooted plane tree τ , any vertex v ∈ V (τ), and h ≤ dτgr(σ, v), we set

Θ(τ, v, h) = #V (τ)−#V (P((τ, v), h)),

which is the number of vertices that are removed from the tree when pruning it. Denote
the first (in lexicographical order) vertex with minimal label in Tn by ηn, and consider
the pointed tree (Tn, ηn). Let β > 0 and b ∈ (0, 1). We claim that we can find a constant C
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that depends only on b such that, for all large enough n, for every nonnegative function
F on the space of all rooted and pointed labeled plane trees,

E
[
F
(
P((Tn, ηn),

⌊
β
√
n
⌋
)
)
1{dTngr (ρn,ηn)>β

√
n, Θ(Tn,ηn,bβ√nc)≥b(n+1)}

]
≤ C E

[
F
(
P(T∞,

⌊
β
√
n
⌋
)
)]
.

In the previous display, we slightly abuse notation by viewing both P((Tn, ηn), bβ
√
nc)

and P(T∞, bβ
√
nc) as labeled trees — we obviously keep the labels of the original trees.

Proof of the claim. To simplify notation, we write An for the event

An :=
{

dTngr (ρn, ηn) > β
√
n , Θ(Tn, ηn,

⌊
β
√
n
⌋
) ≥ b(n+ 1)

}
.

Let ξn be uniformly distributed over V (Tn). We note that on the event An, the conditional
probability that ξn is not in V (P((Tn, ηn), bβ

√
nc)) knowing Tn is at least b, because on

An,

#V (Tn)−#V (P((Tn, ηn),
⌊
β
√
n
⌋
)) ≥ b(n+ 1).

It follows that

E
[
F
(
P((Tn, ηn),

⌊
β
√
n
⌋
)
)
1An

]
≤ 1

b
E
[
F
(
P((Tn, ηn),

⌊
β
√
n
⌋
)
)
1An1{ξn /∈V (P((Tn,ηn),bβ√nc))}

]
(5.4)

If ξn /∈ V (P((Tn, ηn), bβ
√
nc)), we have [ξn]β

√
n = [ηn]β

√
n and

P
(
(Tn, ξn),

⌊
β
√
n
⌋)

= P
(
(Tn, ηn),

⌊
β
√
n
⌋)
.

It follows that the expectation in the right-hand side of (5.4) is bounded above by

E
[
F
(
P((Tn, ξn),

⌊
β
√
n
⌋
)
)
1A′n

]
(5.5)

where A′n := {dTngr (ρn, ξn) > β
√
n, Θ(Tn, ξn, bβ

√
nc) ≥ b(n+ 1)}.

Next let τ be a rooted and pointed labeled plane tree such that |τ | < n (here |τ |
denotes the number of edges of τ ) and the distinguished vertex is at generation bβ

√
nc

and has no strict descendants. Formulas (19) and (21) in [6] show that, for n large
enough (independently of the choice of τ ),

P(P((Tn, ξn), bβ
√
nc) = τ)

P(P(T∞, bβ
√
nc) = τ)

≤ 2

(
1− |τ |

n

)−1/2

.

For n large enough, the condition Θ(Tn, ξn, bβ
√
nc) ≥ b(n+ 1) ensures that

P((Tn, ξn), bβ
√
nc) has less than (1 − b

2 )n edges. It follows that the quantity in (5.5) is
bounded above by

2

(
b

2

)−1/2

E
[
F
(
P(T∞,

⌊
β
√
n
⌋
)
)]
.

This completes the proof of the claim.

5.4.2 Second step: Hulls in finite quadrangulations and in the UIPQ

Recall that, for every integer r ≥ 1, the hull B•Q•n(r) is well defined under the condition

d
Q•n
gr (ρn, ∂n) > r + 1.
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Let α > 0, and set α(n) =
⌊
α n1/4

⌋
− 1 to simplify notation. Recall the notation An

introduced in the first step above, and set

En = An ∩ {Zn[ηn]β
√
n
< −α n1/4},

We note that (onAn) the condition Zn[ηn]β
√
n
< −

⌊
α n1/4

⌋
implies a fortiori Znηn ≤ Z

n
[ηn]β

√
n
−

1 ≤ −α(n) − 3 and dQngr (ρn, ηn) ≥ α(n) + 2 so that dQngr (ρn, ∂n) ≥ α(n) + 3. in particular, the
hull B•Q•n(α(n)) is well defined on the event En.

By Proposition 5.4, on the event En, the hull B•Q•n(α(n)) is equal to a deterministic func-

tion of the pruned tree P((Tn, ηn), bβ
√
nc) (and labels of this tree and εn). Furthermore

on the event {Z∞[∞]β
√
n
< −α(n)}, the hull B•Q∞(α(n)) is equal to the same deterministic

function of P(T∞, bβ
√
nc) (and its labels and ε∞). As a consequence of this fact and the

first step, we have also, for every nonnegative function G on the space of rooted planar
maps,

E
[
G(B•Q•n(α(n))) 1En

]
≤ C E

[
G(B•Q∞(α(n))) 1{Z∞

[∞]β
√
n
<−αn1/4}

]
. (5.6)

5.4.3 Final step

Let δ > 0 to be fixed later, and for every integers j, l ≥ 1 set

αj = jδ2, α′j = (j + 1)δ2, α′′j = (j + 2)δ2,

βl = lδ5, β′l = (l + 1)δ5, β′′l = (l + 2)δ5.

Lemma 5.6. For every integers j, l ≥ 1, set

Hj,l
n,δ = {Znηn ∈ [−α′′j n1/4,−α′jn1/4), Zn[ηn]βl

√
n
< −αj n1/4}

∩ {β′l
√
n ≤ dTngr (ρn, ηn) ≤ β′′l

√
n} ∩ {Θ(Tn, ηn,

⌊
βl
√
n
⌋
) > δ11n}.

Let ε > 0. For all δ ∈ (0, 1) small enough, for all large enough n, the event

Hn,δ :=

bδ−3c⋃
j=bδ−1c

bδ−6c⋃
l=bδ−4c

Hj,l
n,δ

has probability at least 1− ε.
Three properties are verified on the event Hj,l

n,δ: firstly, the distance in Tn between ηn
and ρn is of order lδ5

√
n, and the label of ηn is of order −jδ2n1/4. This is in fact rather

typical (it happens with probability bounded away from 0 as n→∞), and we choose the
ranges of l and j to cover the most likely cases. Secondly, pruning Tn a close distance (of
order δ

√
n) below ηn removes at least a small, but macroscopic number of vertices of Tn

— this is so that we can apply (5.6). Finally, when truncating Tn in this manner, the label
of the cut point is δ2n1/4-close from that of ηn: this is so that the marked point of Q•n is
close to the metric hull B•Q•n(

⌊
jδ2n1/4

⌋
). The latter two conditions are consequences of

regularity properties of the contour and label functions of Tn.
Let us postpone the proof of this lemma and complete that of Proposition 5.3.
Each set Hj,l

n,δ is contained in a set of the type En (with α = αj , β = βl and b = δ11).

Using (5.6) and Proposition 5.2, we get that, on the event Hj,l
n,δ, except on a set of

probability tending to 0 as n→∞, the fpp-distance between any point of the boundary of
B•Q•n(

⌊
αjn

1/4
⌋
− 1) and the root vertex ρn is close to cαjn1/4, up to an error bounded by

εn1/4. Note that Proposition 5.2 considers vertices of the boundary of the truncated hull,
whereas here we want to deal with the boundary of the standard hull of the same radius:

EJP 27 (2022), paper 30.
Page 30/50

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP662
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPP in random maps

This makes no difference since it is easily checked that any vertex of the boundary of
the standard hull either belongs to the boundary of the truncated hull or is adjacent
to a vertex of the latter boundary. Moreover, when applying (5.6), we should consider
the “intrinsic fpp-distance” on B•Q•n(

⌊
αjn

1/4
⌋
− 1) in order to compare it with the similar

intrinsic distance on the corresponding hull of Q∞. However, similarly as in the proof
of Proposition 5.1, we can use the fact that the fpp-distance is bounded above by the
intrinsic fpp-distance, and the minimal fpp-distance from a point of the hull boundary is
equal to the minimal intrinsic fpp-distance.

We also know that, still on the event Hj,l
n,δ, the graph distance (in Q•n) between ∂n and

the boundary of the hull B•Q•n(
⌊
αjn

1/4
⌋
) is bounded above by 2δ2n1/4 (to see this, recall

that labels Zna correspond to distances from ∂n, up to a shift by −Znηn + 1, and consider a
geodesic from ρn to ∂n).

Recalling that the fpp-weights are bounded above by κ, we then obtain, on the event
Hj,l
n,δ except on a set of probability tending to 0 as n→∞, that the fpp-distance (in Qn)

between ∂n and ρn is close to c dQngr (ρn, ∂n), up to an error bounded by (2δ2 + ε)κn1/4.

We can apply the previous property to each set Hj,l
n,δ, and we obtain that on the event

Hn,δ, except on a set of probability tending to 0 when n→∞, we have

|dQnfpp(ρn, ∂n)− c dQngr (ρn, ∂n)| ≤ (2δ2 + ε)κn1/4.

This completes the proof of Proposition 5.3.

Proof of Lemma 5.6. We need to introduce some notation. We write un0 , u
n
1 , . . . , u

n
2n for

the contour sequence of Tn: un0 is the root of Tn and, for 1 ≤ j ≤ 2n, unj is either the
first child of unj−1 that does not appear in un0 , ...u

n
j−1, or the parent of unj−1 if there is

no such child. We write (Cnk )0≤k≤2n for the contour function (so that Cnk = |unk |). The
discrete snake associated with Tn is denoted by (Wn

k )0≤k≤2n: Wn
k = (Wn

k (j))0≤j≤Cnk ,
where Wn

k (j) is the label of the ancestor of unk at generation j. For simplicity, we write
Y nk = Wn

k (Cnk ) = Znunk . By the results of Janson and Marckert [9], we have(
1√
2n

Cnb2ntc,

(
9

8

)1/4

n−1/4Wn
b2ntc

(⌊√
2n ·

⌋))
0≤t≤1

(d)−→
n→∞

(et,Wt)0≤t≤1, (5.7)

where e is a normalized Brownian excursion, and W is the Brownian snake driven by
e. The convergence in (5.7) holds in the topology of uniform convergence. By the
Skorokhod representation theorem, we may and will assume that the latter convergence
holds a.s. We write (Te, de) for the tree coded by e and we also set Yt = Ŵt. The process
Y (or W ) can be viewed as indexed by Te. Fix α ∈ (0, 1/100). We observe that

sup
a,b∈Te,a 6=b

|Ya − Yb|
de(a, b)

1
2−α

=: Cω <∞, a.s.

Since conditionally given e, Y can be interpreted as Brownian motion indexed by Te, this
follows from standard chaining arguments (using metric entropy bounds) and we omit
the details.

It follows that

sup
0≤s≤1

sup
0≤r≤δ5∧es

|Ŵs −Ws(es − r)| ≤ Cω(δ5)
1
2−α

and the right-hand side is smaller than δ2/10 except on a set of small probability when δ
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is small. On the other hand, it follows from the (a.s.) convergence (5.7) that

sup
0≤k≤2n

sup
0≤j≤2δ5

√
n∧Cnk

(
9

8

)1/4

n−1/4|Wn
k (Cnk )−Wn

k (Cnk − j)|

a.s.−→
n→∞

sup
0≤s≤1

sup
0≤r≤

√
2δ5∧es

|Ŵs −Ws(es − r)|.

Hence, by the preceding observations, we can find δ0 > 0 such that, for every δ ∈ (0, δ0],
for all n large enough,

sup
0≤k≤2n

sup
0≤j≤2δ5

√
n∧Cnk

(
9

8

)1/4

n−1/4|Wn
k (Cnk )−Wn

k (Cnk − j)| <
δ2

10
(5.8)

except possibly on a set of probability bounded above by ε/4.
Write kn for the first index such that unkn = ηn (so with our notation Y nkn = Znηn). We

note that, by (5.7), we have kn/
√

2n −→ t∗ as n→∞, a.s., where t∗ is the unique value
such that Yt∗ = min{Yt : 0 ≤ t ≤ 1}.

Outside a set of small probability when δ is small (uniformly in n) we can find
j ∈ {

⌊
δ−1
⌋
, . . . ,

⌊
δ−3
⌋
} and l ∈ {

⌊
δ−4
⌋
, . . . ,

⌊
δ−6
⌋
} such that

−α′′j n1/4 ≤ Znηn < −α
′
jn

1/4 , β′l
√
n ≤ Cnkn = dTngr (ρn, ηn) < β′′l

√
n.

We must now justify the fact that we have also

Zn[ηn]βl
√
n
< −αj n1/4 and Θ(Tn, ηn,

⌊
βl
√
n
⌋
) > δ11n.

The first property follows from (5.8) since

|Znηn − Z
n
[ηn]βl

√
n
| = |Wn

kn(Cnkn)−Wn
kn(
⌊
βl
√
n
⌋
)|,

and Cnkn − bβl
√
nc ≤ 2δ5

√
n. For the second property, we note that Θ(Tn, ηn, bβl

√
nc) ≥

1
2 (k′n − kn) where k′n

def
= min{j ≥ kn : Cnj ≤ βl

√
n}, and using (5.7), we have

lim inf
n→∞

(2n)−1(k′n − kn) ≥ inf{s > t∗ : es = (et∗ − δ5/
√

2)+} − t∗.

For δ > 0 small enough, for n large, the Hölder continuity properties of the Brownian
excursion show that the right-hand side of the last display is greater than δ11 except on
a set of probability bounded above by ε/4. This completes the proof.

5.5 Distances between two arbitrary points in a finite quadrangulation

The next statement gives the part of Theorem 1.1 concerning quadrangulations.

Theorem 5.7. For every ε > 0, we have

P

(
sup

x,y∈V (Qn)

∣∣∣dQnfpp(x, y)− cdQngr (x, y)
∣∣∣ > εn1/4

)
−→
n→∞

0 .

Proof. The proof follows the same pattern as that of [7, Theorem 1], and we refer to [7]
for more details. We first claim that Proposition 5.3 remains valid if ρn is replaced by
a uniformly distributed vertex of Qn. In other words, if ∂′n is uniformly distributed on
V (Qn) conditionally on Q•n,

P
(
|dQnfpp(∂n, ∂

′
n)− cdQngr (∂n, ∂

′
n)| > εn1/4

)
−→
n→∞

0.
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Let us explain this. The law of Qn is invariant under uniform re-rooting, so that
the statement of Proposition 5.3 still holds if we replace ρn by the tail of an oriented
edge chosen uniformly on Qn. Let

−→
E (Qn) be the set of all oriented edges of Qn (with

cardinality 4n), and, for every e ∈
−→
E (Qn), write t(e) for the tail of e. Then Proposition

5.3 and the invariance under uniform re-rooting give

1

4n
E

 ∑
e∈
−→
E (Qn)

1{|dQnfpp (∂n,t(e))−cdQngr (∂n,t(e))|>εn1/4}

 −→
n→∞

0.

Every vertex of Qn appears at least once as the tail t(e) of an oriented edge e, and thus
it also follows that

E

 1

n+ 2

∑
v∈V (Qn)

1{|dQnfpp (∂n,v)−cdQngr (∂n,v)|>εn1/4}

 −→
n→∞

0.

This proves our claim.

Let α > 0. We know that V (Qn) equipped with the graph distance rescaled by
(

9
8n

)1/4
and with the uniform probability measure converges in distribution in the Gromov-
Hausdorff-Prokhorov topology towards the Brownian map equipped with its volume
measure (see [13, Theorem 7]). Since the Brownian map is a compact metric space, it
follows that for every ε > 0, we can fix N large enough (not depending on n) such that, if
(∂in)1≤i≤N are i.i.d. uniformly distributed random vertices of Qn, then the dQngr -balls of

radius εn1/4 centered at the vertices ∂in, 1 ≤ i ≤ N , cover Qn with probability at least
1− α (see the end of Appendix A1 in [13] for a detailed justification).

The preceding assertion ensures that, on an event of probability at least 1 − α,
the dQngr -distance (respectively the dQnfpp-distance) between any pair of points is well

approximated by the distance between a certain pair of vertices in (∂in)1≤i≤N , up to a
difference bounded by 2εn1/4 (resp. by 2κεn1/4). On the other hand, the first part of
the proof shows that, for n large enough, we have |dQnfpp(∂in, ∂

j
n)− cdQngr (∂in, ∂

j
n)| ≤ εn1/4

for all 1 ≤ i, j ≤ N with probability at least 1− α. We conclude that, except on a set of
probability at most 2α, cdQngr and dQnfpp differ by at most (1 + 4κ)εn1/4. This completes the
proof.

The next result is very similar to [7, Theorem 2]. Stating the result for hulls instead of
balls is a minor improvement that could also be achieved in the framework of [7]. Balls
and hulls with respect to the first-passage percolation distance are defined in the same
way as for the graph distance: For every r ∈ (0,∞), the fpp-ball Bfpp

Q∞
(r) is the union

of all faces of Q∞ that are incident to a vertex at fpp-distance strictly less than r from
the root vertex of Q∞, and the fpp-hull B•,fpp

Q∞
(r) is the union of Bfpp

Q∞
(r) and of the finite

connected components of its complement.

Theorem 5.8. Let ε ∈ (0, 1). We have

lim
r→∞

P

(
sup

x,y∈V (B•Q∞ (r))

∣∣∣dQ∞fpp (x, y)− cdQ∞gr (x, y)
∣∣∣ > εr

)
= 0. (5.9)

Consequently,

P
(
BQ∞((1− ε)r/c) ⊂ Bfpp

Q∞
(r) ⊂ BQ∞((1 + ε)r/c)

)
−→
r→∞

1,

P
(
B•Q∞((1− ε)r/c) ⊂ B•,fpp

Q∞
(r) ⊂ B•Q∞((1 + ε)r/c)

)
−→
r→∞

1.

EJP 27 (2022), paper 30.
Page 33/50

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP662
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPP in random maps

We will need the following lemma, where we use the same notation Q•n as in the

preceding sections. We make the convention that, if r ≥ d
Q•n
gr (ρn, ∂n)− 1, then B•Q•n(r) =

Q•n.

Lemma 5.9. For every ε > 0, we can choose K ′ > 1 s.t. for every β > 0, for all n large
enough, we have with probability greater than 1− ε,

B•Q•n(βn1/4) ⊂ BQn(K ′βn1/4),

and for all r large enough, with probability greater than 1− ε,

B•Q∞(r) ⊂ BQ∞(K ′r).

Proof of Lemma 5.9. Let us begin with an observation that will be useful later in the
proof. Fix ε > 0. Let (P, D∞) stand for the Brownian plane of [6]. Recall that the
Brownian plane comes with a distinguished point, which we denote by x0. We write
BP(β) for the closed ball of radius β centered at x0 in P. For every β > 0, the hull of
radius β in (P, D∞), denoted by B•P(β), is the complement of the unbounded connected
component of the complement of BP(β). Then,

sup{D∞(x0, x) : x ∈ B•P(1)} <∞ a.s.

and thus we can find K > 1 such that the latter supremum is smaller than K with
probability at least 1− ε/4. By the scaling invariance of the Brownian plane, it follows
that for every β > 0,

P(B•P(β) ⊂ BP(Kβ)) ≥ 1− ε/4. (5.10)

Consider then the Brownian map (m∞, D∗), which also comes with a distinguished
point x∗ (in the construction of the Brownian motion from the CRT indexed by Brownian
labels, x∗ is the point with minimal label). We write Bm∞(β) for the closed ball of radius
β centered at x∗. We let ∂ be another distinguished point uniformly distributed over
m∞, and, if 0 < β < D∗(x∗, ∂), we define B•m∞(β) as the complement of the connected
component of the complement of the ball Bm∞(β) that contains ∂. If β ≥ D∗(x∗, ∂), we
take B•m∞(β) = m∞. Using the coupling between the Brownian map (m∞, D∗) and the
Brownian plane found in [6, Theorem 1], one gets from (5.10) that there exists δ > 0

such that
P
(
B•m∞(β) ⊂ Bm∞(Kβ)

)
≥ 1− ε/2, (5.11)

for every 0 < β < δ. Let us briefly justify this. We note that [6, Theorem 1] allows
us to couple P and m∞ so that there exists α0 > 0 such that, with high probability,
we have Bm∞(α) = BP(α) for every α ∈ (0, α0]. Then, if Kβ < α ≤ α0, the property
B•P(β) ⊂ BP(Kβ) = Bm∞(Kβ) also implies that B•m∞(β) = B•P(β), provided that ∂ does
not belong to Bm∞(α), which holds with high probability if α has been taken small
enough.

In fact, taking the constant K larger if necessary, we may even assume that the
bound in (5.11) holds for every β > 0. Indeed, we just have to take K so large that
P(Bm∞(Kδ) = m∞) ≥ 1− ε/2.

In order to deduce the first assertion of the lemma from the preceding considera-

tions, we use the convergence of (V (Q•n), (8/9)1/4d
Q•n
gr ) towards the Brownian map in the

bipointed Gromov-Hausdorff topology (see [13, Theorem 7]). Note V (Q•n) is viewed as
a bipointed space with distinguished points ρn and ∂n (in this order) and similarly m∞
is a bipointed space with distinguished points x∗ and ∂ — at this point we note that
[13, Theorem 7] considers a seemingly different choice of distinguished points in the
Brownian map, but the re-rooting invariance properties of [11, Section 8] show that this
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makes no difference. It follows from the preceding convergence of bipointed spaces that,
for any choice of 0 < β < β′ < γ′ < γ,

lim inf
n→∞

P
(
B•Q•n((8/9)1/4βn1/4) ⊂ BQn((8/9)1/4γn1/4)

)
≥ P

(
B•m∞(β′) ⊂ Bm∞(γ′)

)
. (5.12)

The derivation of (5.12) is a simple exercise on the Gromov-Hausdorff convergence and
we omit the details.

The first assertion of the lemma now follows from (5.11) and (5.12): just take K ′ > K

to obtain the desired statement for n large enough. The second assertion of the lemma
can be derived by similar arguments using now the fact that the Brownian plane is the
scaling limit of the UIPQ in the local Gromov-Hausdorff sense [6, Theorem 2].

Proof of Theorem 5.8. Let us focus on the first statement (the second one follows easily).
Let δ > 0.

By Lemma 5.9 applied to Q∞, we can find K ′ > 1 such that, for r large enough,
B•Q∞(r) ⊂ BQ∞(K ′r) with probability at least 1− δ/4. An elementary argument allows
one to find a large enough constant C > 1 such that, for every r ≥ 1, the dQ∞gr and

dQ∞fpp -distances between vertices of BQ∞(K ′r) are determined by BQ∞(CK ′r) and the
weights on the edges of BQ∞(CK ′r). In particular, outside of an event of probability
smaller than δ/4, the event whose probability is considered in (5.9) can be expressed
in terms of the ball BQ∞(CK ′r) (and weights in this ball). Similarly it follows from
Lemma 5.9 that for any β > 0, for n large enough, the dQngr -distance and the dQnfpp-distance

between two vertices of B•Q•n(βn1/4) are determined by BQn(CK ′βn1/4), except on a set
of probability smaller than δ/4.

On the other hand, by Proposition 5.5, we can find χ > 0 such that for all n large, we
can couple Q•n and Q∞ in such a way that BQn(χn1/4) = BQ∞(χn1/4) except on a set of
probability at most δ/4.

Let ε > 0. For n large we have

P

 sup
x,y∈V (B•Q∞ (χn

1/4

CK′ ))

|dQ∞fpp (x, y)− cdQ∞gr (x, y)| > εn1/4


≤ 3δ

4
+ P

(
sup

x,y∈V (Q•n)

|dQ
•
n

fpp(x, y)− cd
Q•n
gr (x, y)| > εn1/4

)
≤ δ.

The second inequality follows from Theorem 5.7. For the first one, we observe that

both the dQ∞fpp -distance and the dQ∞gr -distance on V (B•Q∞(χn
1/4

CK′ )) only depend on the ball

BQ∞(χn1/4) (except on a set of probability at most δ/4 in each case) and we know that
we can couple Q∞ and Qn so that the balls BQ∞(χn1/4) and BQn(χn1/4) are equal except
on a set of probability less than δ/4. This completes the proof.

6 Technical lemmas for distances in the general map

We now proceed to prove that Tutte’s bijection is asymptotically an isometry. In order
to do so, we first prove a handful of lemmas that control the distance in the map obtained
from a quadrangulation Q via Tutte’s bijection in terms of the graph distance in Q. The
key object is an analog of left-most geodesics, which we call downward paths, and which
we define in Section 6.1.

Let us briefly recall the definition of Tutte’s bijection (see Figure 1). Let Q be a
quadrangulation with n faces, and color its vertices in black and white so that adjacent
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Figure 11: Tutte’s bijection applied to a truncated hull of even radius, here of radius 2.
In every face of Q of degree 4 but the external one, draw a “diagonal” between the two
white corners. Then erase the edges of the original map and all black vertices, keeping
however the edges of the boundary. The map we obtain is rooted at the edge drawn in
the face of Q on the left of the root edge of Q, oriented in such a way that its tail vertex
is the root vertex of Q.

vertices have a different color and the root vertex is white. In every face of Q, draw an
edge between the two white corners of this face. Then erase the edges of Q and all black
vertices. We denote by T (Q) the map with n edges obtained in this way.

The preceding construction of a (general) planar map from a quadrangulation can
also be applied to the UIPQ, and yields an infinite (random) planar map called the UIPM
for Uniform Infinite Planar Map. Indeed, it was observed in [17] that the UIPM is the
local limit of uniformly distributed (general) planar maps with n edges.

We can extend Tutte’s correspondence to truncated hulls of even radius: The white
vertices are those whose graph distance from the root vertex is even, then we draw
diagonals between the two white corners of any quadrangular inner face, and we also
keep the edges of the external boundary (indeed this external boundary was made of
diagonals in the construction of the truncated hull). By definition, the (new) root edge is
the diagonal drawn in the face to the left of the original root edge, and the root vertex
remains the same. See Figure 11 for an example. Similarly, we can extend Tutte’s
correspondence to quadrangulations of a cylinder of even height, in such a way that we
keep edges of both the top and the bottom boundary. The root edge then remains the
same.

Finally, Tutte’s correspondence is also extended in an obvious manner to the LHPQ,
in such a way that all edges of the boundary of the LHPQ remain present in the resulting
infinite map (the latter also contains all edges of the form ((i, j), (i+ 1, j)) for even values
of j ≤ 0).

6.1 Downward paths

In this section, we define certain special paths called downward paths, in the image
of a quadrangulation of the cylinder under Tutte’s correspondence. These special paths
will be used to derive upper bounds for the distances in the UIPM.

Let R > 0 be an integer, let Q be a quadrangulation of the cylinder of height 2R with
top boundary length p, and let u0 be a vertex of its top boundary. We write (ui)0≤i<p for
the vertices of the top boundary in clockwise order, and extend this numbering to i ∈ Z
by periodicity (recall that the top face is drawn as the infinite face). Recall that for every
i ∈ Z, the edge {ui, ui+1} is also an edge of T (Q).

Recall the skeleton decomposition from Section 2: Q is encoded by a forest (τi)0≤i<p,
whose vertices are identified with the edges of ∂rq for 0 ≤ r ≤ 2R, and a collection of
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truncated quadrangulations. We extend the numbering of the forest to Z by periodicity,
and shift the indices so that for all i ∈ Z, the left-most vertex of the root of τi is ui.

We say that the vertex ui is good if the slot associated with the edge (ui, ui+1) is
filled in by the truncated quadrangulation represented in the right side of Figure 12
(in particular the edge (ui, ui+1) must have exactly one child in the skeleton), and
bad otherwise. Assume that at least one of the uj ’s is labeled good, and let ui, with
−p ≤ i ≤ −1, be the first good vertex visited when exploring the top boundary in
counterclockwise order starting from u−1. We define the downward path DP(u0, 2R− 2)

from u0 to ∂2R−2Q as follows. We first move along ∂2RQ in counterclockwise order from
u0 to ui. Then, we follow the unique edge of T (Q) from ui to ∂2R−2q inside the slot
associated with (ui, ui+1). See Figure 12 for an illustration.

u0u−1u−2u−3u−4 u1

τ0τ−1
τ−2τ−3τ−4

Figure 12: Left, a part of the annulus C(2R− 2, 2R) with slots in pale yellow, the skeleton
in dotted blue lines, and the special slot in green. We have not drawn the edges and
vertices inside the other slots. The downward path (in red) visits u0, u−1, u−2, . . . until it
meets a “good” vertex (here u−4), whose corresponding slot is filled by the truncated
quadrangulation on the right side.

This path can be extended by induction to a path in T (Q) from u0 to ∂2sQ for every
0 ≤ s < 2R, provided we can find good vertices at height 2k for all s < k ≤ R. If not, the
downward path is not defined, but we still define its length to be +∞.

We can extend this definition to downward paths in T (L) where L is the LHPQ with
truncated boundary. There will a.s. be good vertices at all heights, thus downward paths
are always well defined.

Remark 6.1. A downward path can only cross a left-most geodesic “from right to left”.
Let us briefly justify this claim. A crossing between a left-most geodesic and a downward
path can only occur at vertices of ∂2RQ with R ≥ 1. Number the vertices of ∂2RQ as
above. The downward path does not cross the left-most geodesics passing through ui;
the left-most geodesics passing through uj with i+ 1 ≤ j ≤ −1 are indeed crossed from
right to left, and the left-most geodesics passing through u0 are either not crossed at all,
or crossed from right to left — for this to hold, it is important that we begin with a step
to the left.

The following lemma provides an upper bound on the length of downward paths
in annuli of the UIPQ (recall that these annuli are quadrangulations of the cylinder).
Roughly speaking, this upper bound shows that the graph distance (in T (Q∞)) between
a vertex of ∂2sQ∞ and the cycle ∂2rQ∞ is not larger than a constant times s − r, with
high probability uniformly in r < s < R.

Lemma 6.2. We can find α > 0 such that the following holds. For every ε, δ > 0 and
every integer R > 0, let AR(δ, ε) be the event where for all δ R

lnR ≤ r < s ≤ R such that
s− r ≥ εr, for every v ∈ ∂2sQ∞, the downward path from v to ∂2rQ∞ is well defined and
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has length smaller than α(s− r). Then

P(AR(δ, ε)) −→
R→∞

1.

Proof. We fix an integer R > 0. Let us first consider a forest (τ̃1, τ̃2, ..., τ̃p) of p indepen-
dent Bienaymé-Galton-Watson trees with offspring distribution θ, where R < p ≤ R3. We
truncate this forest at generation 2R (we remove all vertices whose height is greater than
2R). We can view this forest as the skeleton of a quadrangulation Q̃ of the cylinder whose
height is the maximal generation in the truncated forest (in the skeleton decomposition
of Q̃, slots are filled in independently according to the same distribution as in the UIPQ).
We again say that a vertex u of the skeleton is good if it has a unique child and the slot
corresponding to u is filled as shown in the right side of Figure 12. We let a > 0 be the
product of θ(1) with the probability that a slot with lower boundary of size 1 is filled in
as just explained. Informally, a represents the probability that a vertex is good.

Let T stand for the smallest i ≥ 0 such that generation 2i has no good vertex. For
every i ≥ 0, let Yi be the number of vertices at generation 2i, and

ζ = min{i : Yi ≤ R or Yi > R3}.

Note that, on the event {ζ > R}, the height of the truncated forest is 2R and Q̃ is a
quadrangulation of the cylinder of height 2R. For every i ≥ 0, let Fi be the σ-field
generated by the trees truncated at generation 2i and the labels good or bad up to
generation 2i− 2 (the labels at generation 2i are not Fi-measurable).

Fix a vertex u at generation 0 in the forest. For every 1 ≤ i ≤ T , we can construct the
downward path from u, or rather from the vertex v of Q̃ which is the left end of the edge
associated with u, to generation 2i of the forest (more precisely to the cycle whose edges
form generation 2i of the forest), and we define Lu(i) as the length of this downward
path. By convention, Lu(0) = 0.

Let us observe the following key fact: we can construct a sequence G0, G1, ... of i.i.d.
geometric random variables with parameter a such that, for every 0 ≤ i ≤ R− 1,

1{T≥i}P (Lu(i+ 1)− Lu(i) 6= Gi + 2 | Fi) ≤ 1{T≥i}aYi (6.1)

(note that {T ≥ i} ∈ Fi). This bound holds because Fi gives no information on whether
vertices at generation 2i are good or not: if these vertices are enumerated in clockwise
order starting from a random vertex measurable w.r.t. Fi the index of the first good one
will follow a geometric distribution “truncated” at Yi.

Let us now bound, for 1 ≤ k ≤ R,

P

(
T ≥ k, ζ ≥ k , Lu(k) 6=

k−1∑
i=0

(Gi + 2)

)

≤ P

(
T ≥ k, ζ ≥ k , Lu(k − 1) 6=

k−2∑
i=0

(Gi + 2)

)
+ P (T ≥ k, ζ ≥ k , Lu(k)− Lu(k − 1) 6= Gk−1 + 2)

≤ P

(
T ≥ k − 1, ζ ≥ k − 1 , Lu(k − 1) 6=

k−2∑
i=0

(Gi + 2)

)
+ E

[
1{ζ≥k}a

Yk−1
]
,

using (6.1) and the property that {ζ ≥ k} is Fk−1-measurable. By induction, we get

P

(
T ≥ k, ζ ≥ k , Lu(k) 6=

k−1∑
i=0

(Gi + 2)

)
≤
k−1∑
i=0

E
[
1{ζ>i}a

Yi
]
≤ kaR. (6.2)
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We can similarly bound

P (ζ ≥ k, T < k) =

k−1∑
i=0

P(T = i, ζ ≥ k)

≤
k−1∑
i=0

P(T = i, ζ > i)

=

k−1∑
i=0

E
[
1{T>i−1}1{ζ>i}a

Yi
]

where the last equality is obtained by conditioning with respect to Fi (on the event
{T > i− 1}, we have P(T = i | Fi) = aYi). It follows that

P (ζ ≥ k, T < k) ≤ kaR. (6.3)

On the other hand, by elementary large deviations estimates, there exist α,A > 0 such
that for every k ≥ 0,

P

(
k−1∑
i=0

(Gi + 2) > αk

)
≤ e−Ak. (6.4)

By combining (6.2) and (6.4), we arrive at

P (T ≥ k, ζ ≥ k , Lu(k) > αk) ≤ kaR + e−Ak.

We apply this to k = R− r for all values of r such that r ≥ δ R
lnR and R− r > εr, to get

P
(
T ≥ R−

⌈
δ
R

lnR

⌉
, ζ ≥ R−

⌈
δ
R

lnR

⌉
,

Lu(R− r) > α(R− r) for some r s.t. δ
R

lnR
≤ r < R

1 + ε

)
≤ R2aR +Re−Aδ

R
lnR .

We can then consider the union over all vertices u at generation 0 of the events appearing
in the last display. Since generation 0 has at most R3 vertices, the probability of this
union is trivially bounded by R3(R2aR +Re−AδR/ lnR).

Fix an integer s such that R
lnR ≤ r < s ≤ R. For every vertex u at generation 2(R− s)

in the forest and every R− s ≤ k ≤ R, we use the same notation Lu(k) for the length of
the downward path in Q̃ from u (or rather from the vertex v of Q̃ which is the left end
of the edge associated with u) to ∂2R−2kQ̃ (corresponding to generation 2k in the forest
coding Q̃), provided this downward path exists. The same argument we used in the case
s = R shows that the probability of the event where T ∧ ζ ≥ R−

⌈
δ R

lnR

⌉
and there exists

a vertex u at generation 2(R − s) such that Lu(s − r) > α(s − r) for some r such that
δ R

lnR ≤ r < s and s− r ≥ εr is bounded above by

R3(R2aR +Re−AδεR/ lnR).

We then sum this estimate over possible values of s. To simplify notation, set

R(R, δ, ε) =

{
(r, s) ∈ N×N : δ

R

lnR
≤ r < s ≤ R, s− r ≥ εr

}
,

and also write D for the event where Lu(R− r) < α(s− r) for every (r, s) ∈ R(R, δ, ε) and
every vertex u at generation 2(R− s) in the forest. Then using also (6.3) we get

P

({
ζ ≥ R− δ R

lnR

}
∩ Dc

)
≤ RaR +R6aR +R5e−AεδR/ lnR. (6.5)
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Consider now the UIPQ Q∞ and fix η > 0. Using the tail estimates in Proposition 2.1,
we can easily verify that for R large enough, the event

E def
=

⋂
dδ R

lnRe≤r≤R

{
R < H2r ≤ R3

}
.

has probability at least 1− η/2. Let AR(δ, ε) be the event considered in the statement of
the lemma: AR(δ, ε) is the event where, for every (r, s) ∈ R(R, δ, ε), for every vertex v of
∂2sQ∞ the downward path from v to ∂2rQ∞ (exists and) has length smaller than α(s− r).
We observe that the event

E ∩AR(δ, ε)c

is a function of the skeleton of the annulus C(2
⌈
δ R

lnR

⌉
, 2R) (and the quadrangulations

filling in the slots). The point is now that the event in the left-hand side of (6.5) is
the same function of the forest (τ̃1, τ̃2, ..., τ̃p) of independent trees truncated at height

2R− 2
⌈
δ R

lnR

⌉
(and of the quadrangulations used to construct Q̃ from its skeleton). This

means that we can use the relations between the law of the skeleton of the annulus and
that of a forest of independent trees to compare P(E ∩AR(δ, ε)c) with the probability in
(6.5). More precisely, Proposition 2.3 gives for every R < p′ ≤ R3,

P
(
E ∩AR(δ, ε)c ∩

{
H2dδ R

lnRe = p′
} ∣∣∣ H2R = p

)
=
ϕ2dδ R

lnRe(p
′)

ϕ2R(p)
P

({
ζ > R− δ R

lnR

}
∩ Dc ∩

{
YR−dδ R

lnRe = p′
})

, (6.6)

where we recall that Yi is the number of vertices at generation 2i in the forest (τ̃1, τ̃2, ...,

τ̃p). Using the explicit formula (2.6), we find a constant C > 0 such that for every
sufficiently large R and p′ ≤ R3,

ϕ2dδ R
lnRe(p

′) ≤ CR3

(
δ
R

lnR

)−3

≤ Cδ−3(lnR)3.

On the other hand, (2.6) and Proposition 2.1 give for p′ > 0

P(H2R = p)

ϕ2R(p)
=

32

3κ1

3 + 2R

((3 + 2R)2 − 1)2
κp(2π2R)p

(
64

3
p

3 + 2R

((3 + 2R)2 − 1)2
πp−1

2R

)−1

=
2pκp
p(2κ1)

π2R ≤ C ′

for a suitable constant C ′ independent of p > 0. Multiplying (6.6) by P(H2R = p) and
summing over all choices of R < p, p′ ≤ R3 (using (6.5)), we get

P
(
E ∩AR(δ, ε)c

)
≤
(
Cδ−3(lnR)3

) (
C ′R3

) (
RaR +R6aR +R5e−AεδR/ lnR

)
,

which is smaller than η/2 for R large. We already saw that the probability of E is
larger than 1− η/2 for R large enough, so we get that for all η > 0, for R large enough
P(AR(δ, ε)) ≥ 1− η. This completes the proof.

6.2 Coalescence in the UIPM

Downward paths do not coalesce as nicely as left-most geodesics, but we can still
get an ersatz of Proposition 4.2. Let R > 0 an integer. Choose a vertex u(R)

0 uniformly

distributed over ∂2RQ∞, write (u
(R)
j )0≤j≤H2R−1 for the vertices of ∂2RQ∞ enumerated in

clockwise order, and extend the definition of u(R)
j to all j ∈ Z by periodicity.
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Corollary 6.3 (Coalescence of downward paths). For every ε > 0 and γ ∈ (0, 1), we can
find a constant A > 1 such that, for every large enough integer R, the following holds
with probability at least 1− ε: any vertex of ∂2RQ∞ is connected to one of the vertices
u

(R)
bkR2/Ac, 0 ≤ k ≤

⌊
AH2R/R

2
⌋
, by a path in T (C(2R− 2bγRc, 2R)) of length at most γR.

Proof. Consider two integers 0 < s < R. In the same way as we defined the downward
path from a vertex v of ∂2RQ∞ to ∂2sQ∞, we can define the dual notion of the right
downward path from v to ∂2sQ∞: If v = u

(R)
j , the first step goes from v to u

(R)
j+1, then

we move clockwise along ∂2RQ∞ until we meet a good vertex which allows us to go in
one step from ∂2RQ∞ to ∂2(R−2)Q∞, and we continue by induction. As in the case of
downward paths, the existence of the right downward path requires the existence of at
least one good vertex on every cycle ∂2jQ∞, s < j ≤ R.

Let v, w be two distinct vertices of ∂2RQ∞ and let 0 < s < R. Assume that the
downward paths (and right downward paths) from v and w to ∂2sQ∞ are well defined,
and furthermore that the left-most geodesics from v and from w coalesce (strictly) before
reaching ∂2sQ∞. Write L for the union of these two left-most geodesics up to their
coalescence time, and C1, resp. C2, for the path from v to w along ∂2RQ∞ in clockwise
order, resp. in counterclockwise order. Let R1, resp. R2, be the (closed) bounded region
delimited by the closed path which is the union of L and C1, resp. the union of L and C2.
Then either R1 or R2 does not intersect ∂2sQ∞. Consider the first case for definiteness,
so that R1 is contained in the annulus between ∂2RQ∞ and ∂2sQ∞.

The way we built downward paths ensures that, informally speaking, a downward
path cannot cross a left-most geodesic “from left to right” (see Figure 12 and Remark
6.1). A downward path started at w can thus only exit R1 after hitting the left-most
geodesic started from v. Similarly, the right downward path started from v can only exit
R1 after hitting the left-most geodesic started from w. A planarity argument now shows
that the downward path started from w and the right downward path started from v

intersect before exiting R1, and therefore before hitting ∂2sQ∞. Consequently, v and
w are connected by a path in T (C(2s, 2R)) whose length is bounded by the sum of the
lengths of the downward path from w to ∂2sQ∞ and the right downward path from v to
∂2sQ∞

Let α be as given in Lemma 6.2. Without loss of generality we can assume α ≥ 1. We
apply the preceding considerations with s = s(R) = R − dγR/(3α)e ≥ R − bγRc. Using
also Lemma 6.2, we get that, if R is large enough, the following holds with probability
at least 1 − ε/2: Whenever v and w are two vertices of ∂2RQ∞ such that the left-most
geodesics from v and from w coalesce before reaching ∂2sQ∞, v and w are connected by
a path of T (C(2s, 2R)) of length at most 2α(R− s) ≤ γR.

On the other hand, Proposition 4.2 yields A > 0 such that with probability at least
1−ε/2, any left-most geodesics starting from a vertex of ∂2RQ∞ coalesces before reaching
∂2s(R)Q with one of the left-most geodesics started from ubkR2/Ac, 0 ≤ k ≤

⌊
AH2R/(2R)2

⌋
.

By combining this with the preceding paragraph, we get that, with probability at least
1 − ε, any vertex of ∂2RQ∞ is connected to one of these vertices ubkR2/Ac by a path of
T (C(2s, 2R)) of length at most γR. This completes the proof.

6.3 Two technical lemmas

We prove an estimate on the maximum degree of an inner face in the image of a
large truncated hull of Q∞ by Tutte’s correspondence. We then obtain a bound on the
first-passage percolation distance in T (Q∞) between a vertex of ∂2nQ∞ and the root
vertex, for n large enough.

Lemma 6.4. For every integer r ≥ 1, let ∆◦
(
T
(
Htr
Q∞

(2r)
))

denote the maximal degree
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v w ∂2RQ∞

∂2sQ∞

C1 C2

R2
R1

L

Figure 13: In blue, the left-most geodesics (in Q∞) started from v, w two vertices of
∂2RQ∞, that coalesce before reaching ∂2sQ∞. The downward path in T (Q∞) started at
w (in green) cannot cross the left-most geodesic in Q∞ from w, and the right downward
path in T (Q∞) started at v (in red) cannot cross the left-most geodesic in Q∞ from v: by
planarity, they must cross (and thus intersect) before reaching ∂2sQ∞. We get a path
in T (Q∞) between v and w by first following the right downward path from v up to the
intersection (white point), then the (reverse) downward path from w.

of internal faces of T
(
Htr
Q∞

(2r)
)

.

P
(
∆◦
(
T
(
Htr
Q∞(2r)

))
> 5 ln r

)
−→
r→∞

0.

Proof. For any map M , let ∆(M) be the maximal degree of a face of M . Let Mn be a
uniform rooted map with n edges. It follows from [8, Theorem 3] that

P(∆(Mn) > lnn) −→
n→∞

0. (6.7)

This result is actually stated for the maximal degree of a vertex of Mn in [8], but (6.7)
then follows by self-duality of Mn, see [3, Lemma 3.2].

By Proposition 5.5 we can fix an integer A > 0 large enough such that, for every r
large enough, we can couple Q•bAr4c and Q∞ so that B•Q•bAr4c

(2r) = B•Q∞(2r) except on a

set of probability at most ε/2. Note that this equality of hulls also implies Htr
Q•bAr4c

(2r) =

Htr
Q∞

(2r) (the truncated hull is determined by the “standard” hull). Thus on the latter
event,

∆◦
(
T
(
Htr
Q∞(2r)

))
= ∆◦

(
T
(
Htr
Q•bAr4c

(2r)

))
≤ ∆

(
T
(
QbAr4c

))
.

To get the last inequality, we observe that the degree of an internal face of T (Htr
Q•bAr4c

(2r))

is exactly the degree of the black vertex of Htr
Q•bAr4c

(2r) that is contained in this face, and

this vertex has the same degree in Htr
Q•bAr4c

(2r) and in QbAr4c. See Figure 11.

We know that T
(
QbAr4c

)
is distributed as MbAr4c. To complete the proof, we note

that (6.7) ensures that for r large enough, ∆
(
MbAr4c

)
≤ 5 ln r with probability at least

1− ε/2.
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Lemma 6.5. For every ε > 0, there exists A > 0 such that for all n large enough,

P

(
max

v∈∂2nQ∞
d
T (Q∞)
fpp (ρ, v) ≤ 2An

)
≥ 1− ε.

Proof. Since weights are bounded, it is enough to prove this statement with d
T (Q∞)
fpp

replaced by d
T (Q∞)
gr . Let η ∈ (0, 1). To simplify notation, in the remaining part of the

proof, we write Htr
n = Htr

Q∞

(
2
⌊
η n

lnn

⌋)
so that ∂Htr

n = ∂2bη n
lnncQ∞.

By Lemma 6.2, if n is large enough, we have with probability at least 1− ε/2

dT (Q∞)
gr

(
v, ∂Htr

n

)
≤ αn,

for every v ∈ ∂2nQ∞. On the other hand, by Lemma 6.4 the bound ∆◦ (T (Htr
n )) ≤ 5 lnn

holds with probability at least 1− ε/2 when is large. On this event, the simple bound

d
T (Htr

n)
gr (x, y) ≤ ∆◦

(
T
(
Htr
n

))
d
Htr
n

gr (x, y),

valid for all x, y ∈ V (T (Htr
n )), ensures that for all v ∈ ∂Htr

n , d
T (Q∞)
gr (ρ, v) ≤ 10ηn. The

statement of the lemma follows by combining these observations.

6.4 Continuity properties of the Tutte correspondence

Let us use the notation Mn = T (Qn) for the image of Qn under Tutte’s bijection.
Note that Mn is uniformly distributed over (rooted) planar maps with n edges. For every
r > 0, we write BMn(r) for the (closed) metric ball of radius r centered at the root vertex
ρn in V (Mn). We may view this ball (resp. its complement) as a graph by keeping only
those edges incident to a face of the ball (resp. of its complement).

Proposition 6.6. For every ε, η > 0, there exists δ > 0 s.t. for all n large enough,

P

(
sup

x∈V (Mn), dQngr (ρn,x)≤δn1/4

dMn
gr (ρn, x) ≤ εn1/4

)
≥ 1− η.

Proof. We again use the convergence in distribution to the Brownian map (m∞, D∗).
It follows from (5.11) that we can choose a constant K > 2 large enough so that, for
every ε > 0, the probability of the event where at least two connected components of
the complement of the ball Bm∞(ε) intersect the complement of Bm∞(Kε/2) is bounded
above by η/4. From [3, Corollary 1.2], we know that the random compact metric
spaces (V (Mn), ( 9

8n )1/4dMn
gr ) converge in distribution in the Gromov-Hausdorff sense to

the Brownian map. Although this is not stated in [3], it follows from the proof that
this convergence also holds in the pointed Gromov-Hausdorff sense, if Mn is pointed
at the root vertex ρn (and m∞ is pointed at x∗). From this pointed convergence, and
the properties of the Brownian map stated above, we can now deduce that, for every
ε > 0, for all sufficiently large n, the probability that at least two components of the
complement of the ball BMn

(εn1/4) intersect the complement of the ball BMn
(Kεn1/4) is

bounded above by η/2.
Let us fix ε > 0 and set β = ε/K. We can assume that ε is so small thatP(dQngr (ρn, ∂n) >

4Kβn1/4) > 1 − η/4. Using the coupling between Q•n and the UIPQ Q∞ in Proposition
5.5, we get from Lemma 6.5 that there exists µ > 0 such that

max
v∈∂

2bµn1/4cQ
•
n

dMn
gr (ρn, v) <

β

2
n1/4

with probability at least 1− η/4. Recall that the edges of the cycle ∂2bµn1/4cQ
•
n are also

edges of Mn. Argue on the event where both the bound in the last display holds and
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dQngr (ρn, ∂n) > 4Kβn1/4. Then, except on an event of probability at most η/2, at most one
of the two components bounded by the cycle ∂2bµn1/4cQ

•
n can intersect the complement

of the ball BMn(Kβn1/4), and this must be the component that contains the distinguished
vertex ∂n. We conclude that, except on a set of probability at most η, the truncated
hull Htr

Q•n
(2
⌊
µn1/4

⌋
) does not intersect the complement of the ball BMn

(Kβn1/4), and in
particular the bound

sup
x∈V (Mn), dQngr (ρn,x)≤2bµn1/4c

dMn
gr (ρn, x) ≤ Kβn1/4 = εn1/4

holds with probability at least 1− η. This completes the proof.

7 Main results for general maps

7.1 Subadditivity in the LHPQ

Recall from the beginning of Section 6 that we can apply Tutte’s bijection to the
LHPQ L, and that T (L) denotes the resulting infinite map. We observe that every edge
of the form ((i,−2r), (i+ 1,−2r)) for r ≥ 0 and i ∈ Z appear in T (L) because vertices of
the type (i,−2r) are white, and every edge of the preceding form is a diagonal of some
quadrangle. It follows that we can define slices of T (L) for even coordinates in a way

similar to the case of the LHPQ: for even j ≤ j′ ≤ 0, T (L)
j′

j is the part of T (L) contained
in R× [j, j′]. Furthermore, disjoint slices are independent.

We write d
T (L)
fpp (x, y), for x, y ∈ V (T (L)), for the first-passage percolation distance on

V (T (L)) (recall that weights belong to [1, κ]).

Proposition 7.1. There exists a constant c′ ∈ [ 1
2 ,∞) such that

(2r)−1d
T (L)
fpp (ρ, ∂−2rL)

a.s.−→
r→∞

c′. (7.1)

Proof. The proof uses the same subadditivity argument as that of Proposition 3.7, with
the minor difference that we restrict our attention to even heights.

We first note that, for x, y ∈ V (T (L)), d
T (L)
fpp (x, y) ≥ d

T (L)
gr (x, y) ≥ 1

2dLgr(x, y), so that
the limit c′ in (7.1), if it exists, has to be greater than or equal to 1/2. The only new part

is that we have to check that E[d
T (L)
gr (ρ, ∂−2L)] <∞.

As we already noticed in Section 6.1, the downward path started from the root is well
defined in the LHPQ, and provides an upper bound on d

T (L)
gr (ρ, ∂−2L). The number of

steps of this downward path before it reaches a vertex of ∂−2L is distributed as G+ 2,
where G is a geometric random variable, thus has a finite expectation, giving the desired
result.

7.2 Distance through a thin annulus

We use the notation M∞ = T (Q∞), so that M∞ may be called the uniform infinite
planar map or UIPM.

Proposition 7.2. Let ε ∈ (0, 1) and δ > 0. For every η > 0 small enough, for all
sufficiently large n, the property

2(1− ε)c′ηn ≤ dM∞fpp (v, ∂2(n−bηnc)Q∞) ≤ 2(1 + ε)c′ηn, (7.2)

holds for every v ∈ ∂2nQ∞, with probability at least 1− δ.

Proof. The proof is patterned after that of Proposition 5.1 using Proposition 7.1 instead
of Proposition 3.7. The following minor adaptations are required.
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Let u(n)
0 be a uniformly distributed vertex of ∂2nQ∞. Then Lemma 6.2 ensures that

we have with high probability,

dM∞fpp

(
u

(n)
0 , ∂2(n−bηnc)Q∞

)
≤ 2ακbηnc.

Let G(n)
0 be defined as in the proof of Proposition 5.1 (with n replaced by 2n). As in the

latter proof, we know with high probability that the length of the minimal path (in Q∞)
between u(n)

0 and the lateral boundary of G(n)
0 that stays in H̃tr

Q∞
(2n) is bounded below

by cn with some constant c > 0. Trivially, two vertices of Htr
Q∞

(2n) that are linked by an

edge of T (Q∞) are also connected by a Q∞-path of length two in H̃tr
Q∞

(2n). Taking η

smaller if necessary, it follows that the dM∞fpp -shortest path between u(n)
0 and ∂2(n−bηnc)Q∞

that stays in Htr
Q∞

(2n) does not leave G(n)
0 on an event of high probability. We can then

use the same density arguments as in the proof of Proposition 5.1.
In the last step of the proof, we need to verify that it suffices to obtain (7.2) for a

bounded number of vertices v of ∂2nQ∞. The argument is the same as in the proof of
Proposition 5.1, but we use Corollary 6.3 in place of Proposition 4.2: assuming that
(7.2) is satisfied for every u(R)

bkR2/Ac for 0 ≤ k ≤
⌊
AH2R/R

2
⌋

with ε/2 instead of ε, then

choosing γ = c′εη/κ in Corollary 6.3 gives that with high probability, every v ∈ ∂2nQ∞ is

at fpp-distance at most c′εηn from one of the u(R)
bkR2/Ac in M∞, and thus that (7.2) holds

simultaneously for every v ∈ ∂2nQ∞.

7.3 Distance from the boundary of a hull to its center

The next proposition is analogous to Proposition 5.2.

Proposition 7.3. For every ε ∈ (0, 1),

P
(

2(c′ − ε)n ≤ dM∞fpp (ρ, v) ≤ 2(c′ + ε)n for every v in ∂2nQ∞

)
−→
n→∞

1.

Proof. The proof is very similar to that of Proposition 5.2. Consider the annuli
C(2nk+1, 2nk) for every 0 ≤ k < q, where n0 = n and nk+1 = nk − bηnkc, and q is as
defined in Proposition 5.2. By Proposition 7.2, we can find η > 0 such that “most” of
these annuli will satisfy the analog of (7.2), except possibly on a set of probability at most
ε. We then use Lemma 6.2 to bound the dM∞fpp -distance through the annuli where (7.2)

does not hold, and Lemma 6.5 to control the dM∞fpp -distance between ρ and ∂2nqQ∞.

7.4 Distance between two uniformly sampled points in finite maps

Recall that Mn = T (Qn) in such a way that V (Mn) can be viewed as the subset of
V (Qn) consisting of the “white” vertices. Also recall that #V (Qn) = n+ 2. We observe
that

#V (Mn)

#V (Qn)
−→
n→∞

1

2

in probability (see e.g. the proof of Proposition 3.1 in [3]). Then, since conditionally on
Qn the distinguished vertex ∂n is uniformly distributed over V (Qn), we have also

P(∂n ∈ V (Mn)) −→
n→∞

1

2
.

We also observe that the result of Proposition 6.6 remains valid if we replace the root
vertex ρn by ∂n. More precisely, for every ε, η > 0, we can find β > 0 such that, for all n
large enough, we have

P

(
sup

x∈V (Mn), dQngr (∂n,x)≤βn1/4

dMn
gr (∂n, x) ≤ εn1/4

∣∣∣∣∣ ∂n ∈ V (Mn)

)
≥ 1− η. (7.3)
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This follows from the invariance of Qn under uniform re-rooting, by an argument very
similar to the one used in the proof of Theorem 5.7.

Proposition 7.4. For every γ ∈ (0, 1),

P
(
|dMn

fpp (ρn, ∂n)− c′dQngr (ρn, ∂n)| > γn1/4
∣∣∣ ∂n ∈ V (Mn)

)
−→
n→∞

0.

Proof. The proof is based on the same ingredients as that of Proposition 5.3, but we
use (7.3) and Proposition 7.3 instead of Proposition 5.2. We argue on the event where
∂n ∈ V (Mn). Let γ > 0, η > 0 and choose β > 0 so that (7.3) holds with ε = γ.

Fix δ > 0 small enough so that 3δ2 < β and the event Hn,δ of Lemma 5.6 has
probability at least 1− η when n is large. For integers j, l ≥ 1, let Hj,l

n,δ be defined as in

Lemma 5.6. If n is large, the dQngr -distance between ∂n and ∂2bαjn1/4/2cQ
•
n is smaller than

βn1/4 on Hj,l
n,δ. Thus, on the intersection of Hj,l

n,δ with the event considered in (7.3) (with

ε = γ), the dMn
gr -distance between ∂n and ∂2bαjn1/4/2cQ

•
n is smaller that γn1/4.

On the other hand, from Proposition 7.3 and using (5.6) as in the proof of Proposition
5.3, we get that, outside of a set of probability going to 0 as n→∞, the dMn

fpp -distance

between any vertex of ∂2bαjn1/4/2cQ
•
n and ρn is close to c′αjn1/4, up to an error term

bounded by γn1/4.
Finally, on the intersection of Hn,δ with {∂n ∈ V (Mn)} and with the event considered

in (7.3), we have
|d(ρn, ∂n)− c′d

Q•n
gr (ρn, ∂n)| ≤ (1 + κ)γn1/4,

except on a set of probability tending to 0 as n→∞. Using Lemma 5.6 we obtain that
the latter intersection has probability larger than P(∂n ∈ V (Mn)) − 2η for all n large
enough. This completes the proof.

7.5 Distances between any pair of points of finite maps

The next statement gives both Theorem 1.2 and the part of Theorem 1.1 concerning
general planar maps.

Theorem 7.5. For every ε > 0, we have

P

(
sup

x,y∈V (Mn)

∣∣∣dMn

fpp (x, y)− c′dQngr (x, y)
∣∣∣ > εn1/4

)
−→
n→∞

0

If all weights are equal to 1 (that is, dMn

fpp = dMn
gr ), we have c′ = 1.

Before we prove Theorem 7.5, we state and prove a lemma.

Lemma 7.6. Let η ∈ (0, 1), and, for every n ≥ 1, conditionally on Mn, let ∂1
n, ∂

2
n, . . . be

independent random vertices uniformly distributed over V (Mn). Then, for every ε > 0,
we can find an integer N ≥ 1 such that, for every sufficiently large n, we have

P

(
max

v∈V (Mn)

(
min

1≤`≤N
dMn

gr (∂`n, v)

)
< εn1/4

)
> 1− η.

Proof. We first note that the statement would follow if we knew the convergence in the
Gromov-Hausdorff-Prokhorov sense of (V (Mn), (9/8n)1/4dMn

gr ) equipped with the uniform
probability measure to the Brownian map — cf. the analogous statement for Qn used
in the proof of Theorem 5.7. Unfortunately, [3] does not give the Gromov-Hausdorff-
Prokhorov convergence, and so we will provide a direct proof, which still relies much
on the arguments of [3]. We start by observing that [3, Proposition 3.1] allows us to
replace Mn by a random pointed planar map M•n which is uniformly distributed over
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pointed planar maps with n edges (this replacement needs to be justified because, in
contrast with the case of quadrangulations, forgetting the distinguished vertex of M•n
does not give a map distributed as Mn). Then, as in [3, Section 4], we can construct a
finite sequence ṽn0 , ṽ

n
1 , . . . , ṽ

n
2n such that every vertex v of M•n appears at least once in this

sequence, and, if we set D̃n(i, j) = d
M•n
gr (ṽni , ṽ

n
i ) for i, j ∈ {0, 1, . . . , 2n} and interpolate

linearly to get a function D̃(s, t) defined on [0, 2n]2, we have((
9

8n

)1/4

D̃n(2ns, 2nt)

)
0≤s,t≤1

−→
n→∞

(D∗(s, t))0≤s,t≤1,

in distribution in the space of continuous functions on [0, 1]2. Here D∗(s, t) is the random
pseudo-metric on [0, 1]2 that defines the Brownian map. Since D∗ vanishes on the
diagonal, we can fix an integer A ≥ 1 such that, writing δ = 1/A, the property

D∗(s, s′) <
ε

4
, ∀s, s′ ∈ [(k − 1)δ, kδ], ∀k ∈ {1, . . . , A}

holds with probability greater than 1− η/2. Using the preceding convergence, it follows
that, for n large enough, the property

d
M•n
gr (ṽni , ṽ

n
j ) <

ε

2
n1/4 , ∀i, j ∈ [2n(k − 1)δ, 2nkδ] ∩Z, ∀k ∈ {1, . . . , A}

also holds with probability greater than 1− η/2. We claim that we can find an integer N
large enough so that, for every n large enough, with probability greater than 1−η/2, there
exists for each k ∈ {1, . . . , A} an index ` ∈ {1, . . . , N} and an integer i ∈ [2n(k− 1)δ, 2nkδ]

such that
d
M•n
gr (∂`n, ṽ

n
i ) ≤ ε

2
n1/4.

If we combine the claim with the preceding considerations, we get that, with probability
at least 1− η, any vertex of M•n is at distance smaller than εn1/4 from one of the vertices
∂`n, ` ∈ {1, . . . , N}, which was the desired result.

It remains to prove our claim. To this end, we need more information about the se-
quence ṽni (we refer to [3] for more details). Via the Ambjørn-Budd bijection, the pointed
planar map M•n is associated with a (uniformly distributed) pointed quadrangulation
Q•n with n faces, in such a way that V (M•n) is identified to a subset of V (Q•n), and in
particular #V (M•n) ≤ #V (Q•n) = n+ 2. In the CVS correspondence, V (Q•n) corresponds
to a labeled tree Tn, and the contour sequence vn0 , v

n
1 , . . . , v

n
2n of the tree Tn (defined as

in the proof of Lemma 5.6) can also be viewed as a sequence of vertices of Q•n. Then, for
every i ∈ {1, . . . , 2n}, vni and ṽni are linked by an edge of Q•n (see [3]). Moreover, in the
case when vni ∈ V (M•n), one has

d
M•n
gr (vni , ṽ

n
i ) ≤ ∆(M•n). (7.4)

This bound follows directly from the construction of the Ambjørn-Budd bijection (the
point is that any edge of Q•n is contained in a face of M•n). Recalling (6.7), and using
again [3, Proposition 3.1], we know that we have ∆(M•n) < ε

2n
1/4 with probability greater

than 1 − η/8. For every integer p ∈ {0, 1, . . . , n}, let N (n)
p be the number of distinct

vertices vni with i ∈ {0, 1, . . . , p} that belong to V (M•n). Then, from the end of [3, Section
5], we have for every t ∈ [0, 1],

1

n
N (n)
b2ntc −→n→∞

t

2
in probability. It follows that, for n large enough, we have

∀k ∈ {0, 1, . . . , A} , #{vni : i ∈ [2n(k − 1)δ, 2nkδ] and vni ∈ V (M•n)}

≥ N (n)
b2nkδc −N

(n)
d2n(k−1)δe ≥

δ

4
n, (7.5)
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with probability at least 1−η/8. We can choose N large enough so that, on the event (7.5),
the conditional probability given M•n that each set {vni : i ∈ [2n(k − 1)δ, 2nkδ] and vni ∈
M•n}, for 1 ≤ k ≤ A, contains at least one of the vertices ∂`n, 1 ≤ ` ≤ N , is greater than
1− η/4. Summarizing the preceding considerations and using (7.4), we get that, with
probability at least 1− η/2, for every k ∈ {1, . . . , A}, there exist an index ` ∈ {1, . . . , N}
and an integer i ∈ [2n(k − 1)δ, 2nkδ] such that ∂`n = vni and d

M•n
gr (∂`n, ṽ

n
i ) = d

M•n
gr (vni , ṽ

n
i ) <

ε
2n

1/4. This completes the proof of the claim and of the lemma.

Proof of Theorem 7.5. By the same re-rooting invariance argument as in the proof of
Theorem 5.7, the statement of Proposition 7.4 remains valid if the pair (ρn, ∂n) is replaced
by (∂′n, ∂

′′
n), where, conditionally on Qn, ∂′n and ∂′′n are independent and uniformly

distributed over V (Qn): more precisely, we have, for every ε > 0,

P
(
|dMn

fpp (∂′n, ∂
′′
n)− c′dQngr (∂′n, ∂

′′
n)| > εn1/4

∣∣∣ ∂′n ∈ V (Mn), ∂′′n ∈ V (Mn)
)
−→
n→∞

0.

Let us fix ε > 0 and η > 0. Thanks to Lemma 7.6, we can fix an integer N large enough
so that, if ∂1

n, ∂
2
n, . . . , ∂

N
n are independent and uniformly distributed over V (Mn), then,

with probability at least 1− η, the metric balls of radius εn1/4 in (V (Mn),dMn
gr ) centered

at ∂1
n, . . . , ∂

N
n cover V (Mn). Let us call Hn the event where this covering property holds.

On the other hand, consider the event

Kn := {|dMn

fpp (∂in, ∂
j
n)− c′dQngr (∂in, ∂

j
n)| ≤ εn1/4, ∀i, j ∈ {1, . . . , N}}.

By the first observation of the proof, we have also P(Kn) ≥ 1− η for n large enough.
For n large, the event Hn ∩ Kn has probability at least 1− 2η. Let us argue on this

event in the remaining part of the proof. Let x, y ∈ V (Mn), we can find i, j ∈ {1, . . . , N}
such that dMn

gr (∂in, x) ≤ εn1/4 and dMn
gr (∂jn, y) ≤ εn1/4. Note that this implies dQngr (∂in, x) ≤

2εn1/4 and dQngr (∂jn, y) ≤ 2εn1/4. It follows that we have

|dMn

fpp (x, y)− dMn

fpp (∂in, ∂
j
n)| ≤ dMn

fpp (∂in, x) + dMn

fpp (∂jn, y) ≤ 2κεn1/4

and
|dQngr (x, y)− dQngr (∂in, ∂

j
n)| ≤ 4εn1/4.

Hence, from the definition of Kn,

|dMn

fpp (x, y)− c′dQngr (x, y)| ≤ (1 + 4c′ + 2κ)ε n1/4.

This completes the proof of the first assertion.
As for the second one, we observe that the first assertion, together with the known

convergence of rescaled quadrangulations to the Brownian map, implies that(
V (Mn),

(
9

8n

)1/4

dMn

fpp

)
(d)−→

n→∞
(m∞, c

′D∗)

in distribution in the Gromov-Hausdorff sense. In the case where all weights are equal
to 1, comparing this convergence with [3, Corollary 1.2] gives cT = 1.

7.6 Distances in the UIPM

Recall that M∞ = T (Q∞) is the UIPM.

Theorem 7.7. Let ε ∈ (0, 1). We have

lim
r→∞

P

(
sup

x,y∈V (M∞), dM∞gr (ρ,x)∨dM∞gr (ρ,y)≤r

∣∣∣dM∞fpp (x, y)− c′dM∞gr (x, y)
∣∣∣ > εr

)
= 0, (7.6)
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and

lim
r→∞

P

(
sup

x,y∈V (M∞), dM∞gr (ρ,x)∨dM∞gr (ρ,y)≤r

∣∣dM∞gr (x, y)− dQ∞gr (x, y)
∣∣ > εr

)
= 0. (7.7)

We only sketch the proof, as it is very similar to that of Theorem 5.8. Since
dM∞gr (x, y) ≥ 1

2dQ∞gr (x, y) for every x, y ∈ V (M∞), the condition dM∞gr (ρ, x) ≤ r implies
dQ∞gr (ρ, x) ≤ 2r. By the same argument, we can find a constant K large enough so that,
for every r ≥ 1 and for every x, y ∈ V (M∞) such that dM∞gr (ρ, x) ≤ r and dM∞gr (ρ, y) ≤ r,

the quantities dM∞fpp (x, y), dM∞gr (x, y) and dQ∞gr (x, y) are determined by the hull B•Q∞(Kr)

(and of course weights on edges in the case of dM∞fpp ). We then use Proposition 5.5 that
allows us to find a large constant C such that the hulls B•Q•bC(Kr)4c

(Kr) and B•Q∞(Kr) are

equal with probability close to 1. We conclude by using Theorem 7.5.

Theorem 1.3 stated in the introduction follows from Theorem 5.8 and Theorem 7.7.

8 Perspectives

A natural question is to try and generalize the results of our paper when the edge
weights are not bounded. An application are models of random graphs obtained from
maps by substituting edges of the map with i.i.d. random graphs with two distinguished
vertices. Controlling the distances in the map before substitution with distances after
substitution would allow to transfer results from one model to the other, for example the
convergence in the Gromov-Hausdorff topology. We considered bounded weights for the
sake of simplicity and concision, but we are confident that our methods can be adapted
when the edge weights have a sufficiently light tail.

Let us highlight some places that would need to be adapted. For the sake of simplicity
again, we assume that the edge weights are still larger than a positive constant. At
several points, we would simultaneously bound from above the fpp-length of paths in
some set by a constant times their length, with high probability. This replaces the “easy”
upper bound on the fpp-length of paths that we currently derive from the upper bound
on weights. Obtaining this new upper bound is straightforward: concentration of sums
of i.i.d. random variables shows that the fpp-weight of a path of a given length has a
light tail; the simultaneous bound follows by taking an union bound over the set of paths
(provided that the set of paths one considers is “not too large”). Typically, the set of
paths will be a set of segments of left-most geodesics to the root. In quadrangulations
and the UIPQ, this idea would be used in Proposition 5.1 to bound the cost of crossing
annuli and the cost of using Proposition 4.2, as well as in Proposition 5.2 to bound the
cost of crossing the “bad” annuli. A similar argument would be required towards the
end of Proposition 5.3, and again in the proof of Theorems 5.7 and 5.8. In the UIPM and
in planar maps, stating and proving slightly different versions of the results in Section
6 as well as Lemma 7.6 (by replacing dMn

gr by dMn

fpp , resp dM∞gr by dM∞fpp ), would allow the
rest of the proof to require only small adaptations.

Of interest is the case where the edge weights have a finite exponential moment. We
are confident the above adaptations would be sufficient to address this case. In fact,
we believe they would still work as soon as the law of the edge weights has a finite
4 + ε moment for some ε > 0. One cannot expect a much stronger condition: if the
edge weight has a regularly varying tail and if its moment of order 4− ε is infinite, then
with high probability, some vertex of degree 1 in Qn (of which there are at least dn for
some d > 0, with high probability) will be at fpp-distance at least n1/4+δ from their only
neighbor for some δ > 0, so the fpp-distance and the graph distance, renormalized by
n−1/4, will not be asymptotically proportional.

EJP 27 (2022), paper 30.
Page 49/50

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP662
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPP in random maps

References

[1] Céline Abraham, Rescaled bipartite planar maps converge to the Brownian map, Ann. Inst.
Henri Poincaré Probab. Stat. 52 (2016), no. 2, 575–595. MR3498001

[2] Louigi Addario-Berry and Marie Albenque, The scaling limit of random simple triangulations
and random simple quadrangulations, Ann. Probab. 45 (2017), no. 5, 2767–2825. MR3706731

[3] Jérémie Bettinelli, Emmanuel Jacob, and Grégory Miermont, The scaling limit of uniform
random plane maps, via the Ambjørn-Budd bijection, Electron. J. Probab. 19 (2014), no. 74,
16. MR3256874

[4] N. Curien, L. Ménard, and G. Miermont, A view from infinity of the uniform infinite planar
quadrangulation, ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), no. 1, 45–88. MR3083919

[5] Nicolas Curien, Tom Hutchcroft, and Asaf Nachmias, Geometric and spectral properties of
causal maps, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 12, 3997–4024. MR4176785

[6] Nicolas Curien and Jean-François Le Gall, The Brownian plane, J. Theoret. Probab. 27 (2014),
no. 4, 1249–1291. MR3278940

[7] Nicolas Curien and Jean-François Le Gall, First-passage percolation and local modifications of
distances in random triangulations, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 3, 631–701.
MR3982872

[8] Zhicheng Gao and Nicholas C. Wormald, The distribution of the maximum vertex degree in
random planar maps, J. Combin. Theory Ser. A 89 (2000), no. 2, 201–230. MR1741015

[9] Svante Janson and Jean-François Marckert, Convergence of discrete snakes, J. Theoret.
Probab. 18 (2005), no. 3, 615–647. MR2167644

[10] Maxim Krikun, Local structure of random quadrangulations, arXiv:math/0512304v2 (2008).

[11] Jean-François Le Gall, Geodesics in large planar maps and in the Brownian map, Acta Math.
205 (2010), no. 2, 287–360. MR2746349

[12] Jean-François Le Gall, Uniqueness and universality of the Brownian map, Ann. Probab. 41
(2013), no. 4, 2880–2960. MR3112934

[13] Jean-François Le Gall, Brownian disks and the Brownian snake, Ann. Inst. Henri Poincaré
Probab. Stat. 55 (2019), no. 1, 237–313. MR3901647

[14] Jean-François Le Gall and Thomas Lehéricy, Separating cycles and isoperimetric inequalities
in the uniform infinite planar quadrangulation, Ann. Probab. 47 (2019), no. 3, 1498–1540.
MR3945752

[15] Jean-François Le Gall and Grégory Miermont, Scaling limits of random trees and planar maps,
Probability and statistical physics in two and more dimensions, Clay Math. Proc., vol. 15,
Amer. Math. Soc., Providence, RI, 2012, pp. 155–211. MR3025391

[16] Thomas M. Liggett, An improved subadditive ergodic theorem, Ann. Probab. 13 (1985), no. 4,
1279–1285. MR0806224

[17] Laurent Ménard and Pierre Nolin, Percolation on uniform infinite planar maps, Electron. J.
Probab. 19 (2014), no. 79, 27. MR3256879

[18] Grégory Miermont, The Brownian map is the scaling limit of uniform random plane quadran-
gulations, Acta Math. 210 (2013), no. 2, 319–401. MR3070569

Acknowledgments. We thank two anonymous referees for their helpful feedback.

EJP 27 (2022), paper 30.
Page 50/50

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3498001
https://mathscinet.ams.org/mathscinet-getitem?mr=3706731
https://mathscinet.ams.org/mathscinet-getitem?mr=3256874
https://mathscinet.ams.org/mathscinet-getitem?mr=3083919
https://mathscinet.ams.org/mathscinet-getitem?mr=4176785
https://mathscinet.ams.org/mathscinet-getitem?mr=3278940
https://mathscinet.ams.org/mathscinet-getitem?mr=3982872
https://mathscinet.ams.org/mathscinet-getitem?mr=1741015
https://mathscinet.ams.org/mathscinet-getitem?mr=2167644
https://arXiv.org/abs/math/0512304v2
https://mathscinet.ams.org/mathscinet-getitem?mr=2746349
https://mathscinet.ams.org/mathscinet-getitem?mr=3112934
https://mathscinet.ams.org/mathscinet-getitem?mr=3901647
https://mathscinet.ams.org/mathscinet-getitem?mr=3945752
https://mathscinet.ams.org/mathscinet-getitem?mr=3025391
https://mathscinet.ams.org/mathscinet-getitem?mr=0806224
https://mathscinet.ams.org/mathscinet-getitem?mr=3256879
https://mathscinet.ams.org/mathscinet-getitem?mr=3070569
https://doi.org/10.1214/21-EJP662
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Preliminaries
	The lower half-plane quadrangulation
	Definition of the model
	The lower-half plane quadrangulation is the local limit of large hulls
	Control of distances along the boundary
	The main estimate
	Proof of Proposition 3.3

	Subadditivity

	Technical tools
	Density between the LHPQ and truncated hulls of the UIPQ
	Coalescence of left-most geodesics in the UIPQ

	Main results for the first-passage percolation distance on quadrangulations
	Distance through a thin annulus
	Distance from the boundary of a hull to its center
	Distance between two uniform points in finite quadrangulations
	Proof of Proposition 5.3
	First step: Pruning finite trees and infinite trees
	Second step: Hulls in finite quadrangulations and in the UIPQ
	Final step

	Distances between two arbitrary points in a finite quadrangulation

	Technical lemmas for distances in the general map
	Downward paths
	Coalescence in the UIPM
	Two technical lemmas
	Continuity properties of the Tutte correspondence

	Main results for general maps
	Subadditivity in the LHPQ
	Distance through a thin annulus
	Distance from the boundary of a hull to its center
	Distance between two uniformly sampled points in finite maps
	Distances between any pair of points of finite maps
	Distances in the UIPM

	Perspectives
	References

