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Abstract

We are interested in populations in which the fitness of different genetic types fluctu-
ates in time and space, driven by temporal and spatial fluctuations in the environment.
For simplicity, our population is assumed to be composed of just two genetic types.
Short bursts of selection acting in opposing directions drive to maintain both types at
intermediate frequencies, while the fluctuations due to ‘genetic drift’ work to eliminate
variation in the population.

We consider first a population with no spatial structure, modelled by an adapta-
tion of the Lambda (or generalised) Fleming-Viot process, and derive a stochastic
differential equation as a scaling limit. This amounts to a limit result for a Lambda-
Fleming-Viot process in a rapidly fluctuating random environment. We then extend to
a population that is distributed across a spatial continuum, which we model through a
modification of the spatial Lambda-Fleming-Viot process with selection. In this setting
we show that the scaling limit is a stochastic partial differential equation. As is usual
with spatially distributed populations, in dimensions greater than one, the ‘genetic
drift’ disappears in the scaling limit, but here we retain some stochasticity due to the
fluctuations in the environment, resulting in a stochastic p.d.e. driven by a noise that
is white in time but coloured in space.

We discuss the (rather limited) situations under which there is a duality with a sys-
tem of branching and annihilating particles. We also write down a system of equations
that captures the frequency of descendants of particular subsets of the population and
use this same idea of ‘tracers’, which we learned from HALLATSCHEK and NELSON
(2008, [23]) and DURRETT and FAN (2016, [13]), in numerical experiments with a
closely related model based on the classical Moran model.
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1 Introduction

A fundamental challenge in population genetics is to understand the balance between
adaptive processes (selection) and random neutral processes (genetic drift). The most
studied example of adaptation is directional selection acting on a single genetic locus.
In the simplest model, each individual is either of type a or type A at the locus under
selection, and the relative fitnesses of individuals carrying the two types is 1 + s0 : 1, for
some small parameter s0. At least provided that random fluctuations don’t eliminate
the favoured type before it can become established, natural selection will act to remove
variability from the population until, in the absence of mutation, everyone is of the
favoured type. However, there are other forms of selection that act to maintain genetic
variation. In this paper we are concerned with populations that are subject to changing
environmental conditions, that cause relative fitnesses of different genotypes to fluctuate
in time and space. To quote GILLESPIE (2004, [20]), “If fitnesses do depend on the state
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Evolution in a �uctuating environment

of the environment, as they surely must, then they must just as assuredly change in both
time and space, driven by temporal and spatial �uctuations in the environment.”

We shall suppose that our population occurs in just two types ( alleles ), f a; Ag and
that the environment �uctuates between two states, in the �rst of which a, and in the
second of which A , is favoured. We suppose that selection is suf�ciently strong that if
the environment did not �uctuate, the favoured type would rapidly �x in the population,
but that there is a `balance' between the two environments so that both types can be
maintained at non-trivial frequencies for long periods of time. If the population has no
spatial structure, then over large timescales the frequency of a-alleles can be modelled
by a stochastic differential equation:

dp = s2p(1 � p)(1 � 2p)dt +
p

p(1 � p)dB 1 +
p

2sp(1 � p)dB 2; (1.1)

where B 1 and B 2 are independent Brownian motions, the �rst (as we shall explain in
Section 3) capturing the randomness due to genetic drift (that is the randomness due to
reproduction in a �nite population), the second encoding the random �uctuations in the
environment (which are assumed to happen quickly on evolutionary timescales). The
constant s is a scaled selection coef�cient (see Section 3). For a population distributed
across a one-dimensional spatial continuum, one can write down an analogous stochastic
partial differential equation:

dw(t; x ) =
1
2

� w(t; x )dt + s2w(t; x )(1 � w(t; x )(1 � 2w(t; x ))d t

+
p

w(t; x )(1 � w(t; x ))W(dt; dx) +
p

2sw(t; x )(1 � w(t; x ))W (dt; dx); (1.2)

where W is space-time white noise (capturing genetic drift) and the independent noise
W is white in time, but may be coloured in space re�ecting spatial correlations in the
environmental �uctuations. In the biologically most relevant case of two dimensions,
this equation has no solution, and we must �nd a different approach.

The dif�culties with modelling genetic drift in populations evolving in higher dimen-
sional spatial continua, often referred to as `the pain in the torus', are well known; see
BARTON, ETHERIDGE and VÉBER (2013, [ 4]) for a review. They can be overcome using
the spatial Lambda-Fleming-Viot process, introduced in ETHERIDGE (2008, [ 14 ]) and
rigorously constructed in BARTON, ETHERIDGE and VÉBER (2010, [ 3]), and here we
adapt that model to incorporate �uctuating selection.

Our �rst result deals with the non-spatial case. We take a scaling limit of the Lambda-
Fleming-Viot process and recover (1.1), which coincides with that obtained by GILLESPIE
(2004, [ 20 ]) as a scaling limit of a Wright-Fisher type model. We then turn to the scaling
limit of the spatial Lambda-Fleming-Viot process with �uctuating selection. In dimension
one, the limiting process coincides (up to constants) with the stochastic p.d.e. (1.2). In
higher dimensions, the term corresponding to genetic drift vanishes in the limit, but the
effects of the �uctuations in the environment can still persist, resulting in a stochastic
p.d.e. driven by (spatially) coloured noise.

Our ultimate aim is to �nd ways to distinguish the effects of spatial and temporal
environmental �uctuations on genetic data. This would involve understanding the
genealogical trees relating individuals in a sample from the population. Although for
our prelimiting model we can write down an analogue of the ancestral selection graph
of KRONE and NEUHAUSER (1997, [ 28 ]), NEUHAUSER and KRONE (1997, [ 38 ]),
which tracks all `potential ancestors' of individuals in a sample from the population, this
process seems to be rather unwieldy. Moreover, when we apply our rescaling, the scaled
ancestral selection graphs do not converge and we have not found a satisfactory way
to extract genealogies for the limiting model. When selection does not �uctuate, the
original ancestral selection graph can be thought of as a moment dual to the forwards
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Evolution in a �uctuating environment

in time diffusion describing allele frequencies in the population. It is natural to ask
whether there are other dual processes that we could exploit when selection �uctuates.
Our attempts to �nd a useful dual for the equation (1.2) have met with limited success,
but in Section 5 we show that (after an af�ne transformation) there are circumstances in
which a branching and annihilating dual exists.

In the absence of a useful dual process, instead we take a �rst step towards un-
derstanding ancestry in the population by following an interesting approach of HAL-
LATSCHEK and NELSON (2008, [ 23 ]) and, more recently, DURRETT and FAN (2016,
[13 ]) which uses the idea of `tracers' to explore the way in which descendants of a
subpopulation of the type a individuals evolve forwards in time. In Section 6 we write
down the system of stochastic p.d.e.'s that will determine the tracer dynamics. This idea
is exploited further in our numerical experiments of Section 7.

The rest of the article is laid out as follows. In Section 2 we very brie�y outline some
of the biological background. In Section 3 we consider the case in which the population
has no spatial structure. To prepare the ground for the case of spatially structured
populations, we work with the Lambda-Fleming-Viot process (also sometimes known as
the generalised Fleming-Viot process) that was introduced in DONNELLY and KURTZ
(1999, [ 12 ]), BERTOIN and LE GALL (2003, [ 6]). In particular, we investigate different
scaling limits, re�ecting longtime behaviour of the process for different balances between
the rate of changes of environment and the strength of selection. In Section 4 we de�ne
the spatial Lambda-Fleming-Viot process with �uctuating selection and give a precise
statement of our scaling result for this model. In Section 5, we discuss the situations in
which we can investigate the limiting process through duality with a system of branching
and annihilating particles. Tracers are introduced in Section 6 and then explored
numerically (for a Moran model of a subdivided population) in Section 7. The proof of
our main scaling limit is in Section 8. The appendices contain some (important) technical
results that we require in the course of the proofs.

2 Biological background

In this section we outline the biological context for this work. Although not a
prerequisite for understanding the mathematics of subsequent sections, it explains our
motivation for tackling this particular scaling limit.

Suppose that a gene occurs in just two forms that, because of environmental �uc-
tuations, each �nds itself subject to short alternating bursts of positive and negative
selection. Even if these changes are happening on a much faster scale than neutral
evolution, they may in�uence gene frequencies. For example, in diploid individuals
(carrying two copies of the gene), a heterozygote (carrying one allele of each type)
may have higher mean �tness, when we take account of different environments, than
either homozygote, and so allelic variation can be maintained for long periods, even
though at any given time the population is subject to directional selection. This marginal
overdominance is an example of balancing selection . In equation (1.1) we see this in the
deterministic term ( sp(1 � p)(1 � 2p)dt) on the right hand side. WRIGHT (1969, [ 50 ])
observed that spatial heterogeneity in the direction of selection combined with density
dependent reproduction can also lead to balanced polymorphism , that is adaptive alleles
are held at intermediate frequencies for long periods (see also DELPH and KELLY (2014,
[10]) and references therein).

One of the recurring arguments in evolutionary biology is whether evolution occurs
principally through natural selection or through neutral processes, in which no particular
genetic type is favoured, such as genetic drift. A data set that has sat at the heart of
this debate for the last 70 years is a time series of changes in the genotype frequency

EJP 26 (2021), paper 25.
Page 4/51

https://www.imstat.org/ejp
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of a polymorphism of the Scarlet Tiger Moth, Callimporpha (Panaxia) dominula , in an
isolated population at Cothill Fen near Oxford, UK. FISHER and FORD (1947, [ 17 ])
found that the proportion of a certain medionigra allele in the population increased
signi�cantly between 1929 and 1941 from 1:2% to 11:1%, and decreased to 5:2% between
1941 and 1946. They concluded, “ : : : the observed �uctuations in generations are much
greater than could be ascribed to random survival only. Fluctuations in natural selection
must therefore be responsible for them.”. Fisher (a strong proponent of the importance
of selection) was challenged by Wright (a champion of genetic drift) who argued that
multiple factors could be at play and, moreover, Fisher may have underestimated the
strength of genetic drift. O'HARA 2005 (2005, [ 41 ]) analysed the, by then 60 year long,
time series of data from Cothill and concluded that most of the pattern of variation in the
population should be attributed to genetic drift. Moreover, although selection is acting,
mean �tness barely increased.

It is unusual to have such a long time series of data, especially in conjunction with
information about the environment. In general it will also be far from clear which
genes are undergoing selection, rather one tries to infer the action of selection through
studying neutral diversity. For most populations, it may be very dif�cult to distinguish
�uctuating selection from genetic drift. To see why, we recall a model due to Gillespie that
captures the effect of a series of `selective sweeps' through a population. Suppose that a
selectively favoured mutation arises at some point on the genome and rapidly increases
in frequency (until the whole population carries it). Because genes are arranged on
chromosomes, different genes do not evolve independently of one another. As a result of
a process called recombination, correlations between genes decrease as a function of
the distance between them on the chromosome. Nonetheless, a neutral allele fortunate
enough to be on the same chromosome as the selectively favoured mutation will itself
receive a boost in its frequency (even if as a result of recombination it doesn't exhaust
the whole population). This boost to the type at the neutral locus is known as `genetic
hitchhiking', a term introduced by MAYNARD SMITH and HAIGH (1974 [ 35 ]). Of course,
correspondingly, a neutral allele associated with an unfavoured type will decrease in
frequency. GILLESPIE (2000, [ 18 ]), GILLESPIE (2001, [ 19 ]) investigated a model in
which strongly selected mutations which give rise to hitchhiking events occur at the
points of a Poisson process. He assumes that selection is strong enough that the duration
of the sweeps causing the hitchhiking events that affect a given locus is small compared
to the time between them so that we can ignore the possibility that a locus will be subject
to two simultaneous hitchhiking events. He establishes that the �rst two moments of the
change in allele frequency at the neutral locus over the course of a hitchhiking event
take exactly the same form as if they had been produced by genetic drift over a single
generation of reproduction. It is not hard to see that we will see the same hitchhiking
effects under `partial sweeps' driven by environmental �uctuations. This process of
`genetic draft' induced by selection, strongly resembles genetic drift and it may be hard
to distinguish the two. BARTON (2000, [ 2]) also considers the `genetic drift' induced by
hitchhiking.

Not surprisingly, the impact of environmental �uctuations on genetic variation has
been extensively studied. Nonetheless, even in the absence of spatial structure, it re-
mains an open question to characterise situations under which �uctuating environmental
conditions can maintain genetic variation; see e.g. NOVAK and BARTON (2017, [ 40 ]).
Moreover, the effects of genetic drift have been largely ignored. This is perhaps because
acting in isolation, genetic drift typically impacts gene frequencies over periods of (tens
of) thousands of generations, much longer than the time scales of climatic �uctuation.
However, once a particular genotype becomes rare, perhaps as a result of a run of
unfavourable environments, stochastic �uctuations will be dominated by genetic drift,
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through which the genotype can be lost.

A further challenge in identifying genes that are subject to �uctuating selection is that,
even if we can disentangle the effects of drift, numerous selection schemes lead to forms
of balancing selection. For example, in the absence of spatial structure, allele frequency
dynamics under �uctuating selection are identical to those under within-generation
fecundity variance polymorphism. In this setting, TAYLOR (2013, [ 47 ]) shows that the
effects on the genealogy at a linked neutral locus will differ. FIJARCZYK and BABIK
(2015, [ 16 ]) and the references therein provide an overview of theoretical and empirical
evidence for various forms of balancing selection and methods for their detection.

Recently, BERGLAND, BEHRMAN, O'BRIEN, SCHMIDT and PETROV (2014, [ 5])
reported hundreds of polymorphisms in Drosophila melanogaster whose frequencies
oscillate among seasons and they attribute this to strong, temporally variable selection.
They also cite evidence that genetic (and phenotypic) variation is maintained by tem-
porally �uctuating selection for a variety of other organisms. GOMPERT (2016, [ 21 ])
proposes an approach to quantifying variable selection in populations experiencing both
spatial and temporal variations in selection pressure. In spite of this combination of
theoretical and empirical evidence for the importance of �uctuating selection, we have
only a limited understanding of some basic questions: how many loci are subject to
temporally �uctuating selection? How strong is that selection? What is the relationship
between temporally and spatially varying selection?

Since natural environments are never truly constant, it is clearly important to under-
stand the implication of temporally and spatially varying selection pressures. CVIJOVIC,
GOOD, JERISON and DESAI (2015, [ 9]) examines some of the implications of temporal
�uctuations. Our work here is a step towards a tractable framework in which to consider
the combined effects of spatial and temporal �uctuations.

3 The non-spatial case

3.1 The (non-spatial) model

We �rst consider a population without spatial structure. Although we would obtain
exactly the same scaling limits if we were to use the classical Moran or Wright-Fisher
models as the basis of our approach, c.f. GILLESPIE (2004, [ 20 ]), for consistency with
what follows, we shall work with the (non-spatial) Lambda-Fleming-Viot process. The key
ideas that will be required in the spatial setting already appear here, where they are not
obscured by notational complexity. An analogous scaling limit is obtained for the Wright-
Fisher model with �uctuating selection (using similar reasoning) in HUTZENTHALER,
PFAFFELHUBER and PRINTZ (2018, [25]).

We shall restrict ourselves to the special case of the Lambda-Fleming-Viot process
in which reproduction events fall at a �nite rate, determined by a Poisson process. We
shall also suppose that there are just two types of individual, f a; Ag. In each event, a
parent is chosen from the population immediately before the event, and a portion u of
the population is replaced by offspring of the same type as the parent. In general the
quantity u, which we shall call the impact of the event, may be random. Selection (on
fecundity) can be incorporated by weighting the choice of parent, to favour one type or
the other, and we shall extend previous versions of the model to allow the direction of
selection to �uctuate. More precisely, we have the following de�nition.

De�nition 3.1 (Lambda-Fleming-Viot process with �uctuating selection) . The Lambda-
Fleming-Viot process with �uctuating selection, f p(t)gt � 0 is a càdlàg process taking its
values in [0; 1], with p(t) to be interpreted as the proportion of type a individuals in the
population at time t .
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Let � be a Poisson process de�ned on R � (0; 1) � (0; 1) with intensity measure
dt 
 � (du) 
 � (ds), where � and � are some probability measures. Moreover, let � env be
a rate � env Poisson process, independent of � (where � env 2 (0; 1 )) . The state of the
environment is a random variable � (t) 2 f� 1; 1g. At the times of the Poisson process
� env , � is resampled uniformly from f� 1; 1g.

The dynamics of f p(t)gt � 0 can be described as follows. If (t; u; s) 2 � , a reproduction
event occurs. Then:

1. select a parental type � 2 f a; Ag according to

P[� = a] =
(1 + s)p(t � )
1 + sp(t � )

if � = � 1;

P[� = a] =
p(t � )

1 + s(1 � p(t � ))
if � = 1 :

2. A proportion u of the population immediately before the event dies and is replaced
by offspring of the chosen type, that is

p(t) = (1 � u)p(t � ) + 1f � = agu:

Remark 3.2. If, instead of resampling the environment according to an independent
Poisson process, we resampled it at each reproduction event, by choosing � to be
distributed as the proportion of hitchhikers when a selective sweep occurs at a random
distance from our chosen locus, we would recover Gillespie's model of genetic draft at a
neutral locus linked to loci undergoing a sequence of selective sweeps.

We shall see that the rate of resampling of the environment (relative to the strength
of selection in each event) plays a key role in the long term behaviour of the population.

3.2 Scaling limits

In order to simplify the notation still further, we specialise to the case in which the
Poisson point process � of De�nition 3.1 has intensity dt 
 � �u 
 � s for some �xed �u and s;
in other words we �x the impact and the strength of selection in each event. A general
result can be obtained from our calculations below by integration.

In order to obtain a diffusion approximation, we shall speed up the rate of repro-
duction events by a factor n, but scale down both the impact and the strength of the
selection. We write un , sn for the impact and strength of selection at the nth stage of
our rescaling. We shall also scale � env to have rate n
 , with 
 > 0 to be chosen. We shall
need the joint generator L (n ) of the pair (p; � ) at the nth stage of this rescaling. We write
� for the uniform measure on f� 1; 1g and E � for the corresponding expectation. In an
obvious notation, for suitable test functions f , we have

L n f (p; � ) = 1f � = � 1gn
��

(1 + sn )p
1 + sn p

�
f ((1 � un )p + un ; � )

+
�

1 � p
1 + sn p

�
f ((1 � un )p; � ) � f (p; � )

�

+ 1f � =1 gn
��

p
1 + sn (1 � p)

�
f ((1 � un )p + un ; � )

+
�

(1 + sn )(1 � p)
1 + sn (1 � p)

�
f ((1 � un )p; � ) � f (p; � )

�

+ n
 (E � [f (p; �)] � f (p; � )) :
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Expanding the ratios involving sn as geometric series, and using Taylor's Theorem to
expand f (as a function of p), we obtain

L n f (p; � ) = nf p � sn �p (1 � p) + O
�
s2

n

�
g

� f un (1 � p)f 0(p; � ) +
1
2

u2
n (1 � p)2f 00(p; � ) + O

�
u3

n

�
g

+ nf (1 � p) + sn �p (1 � p) + O
�
s2

n

�
g

� f� un pf 0(p; � ) +
1
2

u2
n p2f 00(p; � ) + O

�
u3

n

�
g

+ n
 (E � [f (p; �)] � f (p; � ))

=
1
2

nu2
n p(1 � p)f 00(p; � ) � nsn un �p (1 � p)f 0(p; � )

+ n
 (E � [f (p; � )] � f (p; � )) + O
�
n(s2

n un + u2
n sn + u3

n )
�

: (3.1)

In order to obtain a diffusion limit, we see that we should take nu2
n to be O(1). If the

environment didn't change, then we would require nun sn to be O(1) and on passage to
the limit recover the classical Wright-Fisher diffusion with selection, whose generator, if
� = � 1 say, takes the form

L W F S f (p) =
1
2

p(1 � p)f 00(p) + sp(1 � p)f 0(p):

Since we are modelling short bursts of strong selection, we set

un = n� 1=2 �u; sn = n� 1=2+ � s; (3.2)

for some � 2 (0; 1=4). The restriction � < 1=4 ensures that the error term ns2
n un in the

expression (3.1) is negligible as n ! 1 .
We can then write the rescaled generator in the form

L n f (p; � ) = L neu f (p; � ) + n� L fsel f (p; � ) + n
 L env f (p; � ) + O
�
n� 1=2+2 � �

; (3.3)

where

L neu f (p; � ) =
1
2

�u2p(1 � p)f 00(p; � )

L fsel f (p; � ) = � � �usp(1 � p)f 0(p; � )

L env f (p; � ) = E � [f (p; � )] � f (p; � ):

To see how we should choose 
 , we employ a `separation of timescales' trick due to
KURTZ (1973, [29]). We apply the generator (3.3) to test functions of the form

g(p; � ) = f (p) + n� � �
L fsel f

�
(p; � ): (3.4)

For this choice, we obtain

L n g(p; � ) = L neu f (p) + n� �
L fsel f

�
(p; � ) + n� � L neu �

L fsel f
�

(p; � )

+ n� � � L fsel �
L fsel f

�
(p; � ) � n
 � � �

L fsel f
�

(p; � ) + O
�
n� 1=2+2 � �

; (3.5)

where we have used the fact that L env f (p) = 0 (since f does not depend on � ) and
E � [n� �

�
L fsel f

�
(p; � )] = 0 , since E � [� ] = 0 .

Evidently, to obtain a non-trivial limit we should take 
 = � + � . The most interesting
case is when � = � and so 
 = 2 � . In that case, letting n ! 1 , in the limit the
equation (3.5) becomes

L f (p; � ) = L neu f (p) + L fsel �
L fsel f

�
(p; � ): (3.6)
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To evaluate the right hand side,

L fsel �
L fsel f

�
(p; � ) = L fsel (� � �usp(1 � p)f 0(p)) = � 2 �u2s2p(1 � p)

d
dp

�
p(1 � p)

d
dp

f (p)
�

= � 2 �u2s2p(1 � p)(1 � 2p)f 0(p) + � 2 �u2s2p2(1 � p)2f 00(p):

Noting that � 2 � 1, equation (3.6) then reads

L f (p) = �u2s2p(1 � p)(1 � 2p)f 0(p) +
�

1
2

�u2p(1 � p) + �u2s2p2(1 � p)2
�

f 00(p):

Remark 3.3. There are other limits that can be obtained when 
 > 2� . For example if
� = 1=4 and we resample the environment at every reproduction event, corresponding
to 
 > 1, then [ 36 ] shows that, under the same scaling of un , the frequency of type a
alleles in the population converges weakly to the solution of

dp =
1
2

s2 �up(1 � p)(1 � 2p)dt + �u
p

p(1 � p)dB t

for a standard Brownian motion f B t gt � 0. The deterministic drift here arises from the
term of order nun s2

n that under our previous scaling we were able to neglect in (3.1).

Based on these calculations, the following proposition follows easily from Theorem 2.1
of [ 30 ], which we recall later as Theorem 8.1. In the interests of space, we omit the
details of the proof, which follows from exactly the same arguments as those that we
employ in the spatial setting.

Proposition 3.4. Let f p(n ) (t)gt � 0 denote the (non-spatial) Lambda-Fleming-Viot process
of De�nition 3.1 in which � has intensity ndt 
 �u n 
 � sn , where

un = n� 1=2 �u; sn = n� 1=2+ � s; and � env = n2� ;

for some � 2 (0; 1=4). Suppose further that the sequence of initial conditions f p(n ) (0)gn � 1

converges to p0 as n ! 1 . Then as n tends to in�nity, f p(n ) (t)gt � 0 converges weakly
in D([0; 1 ); [0; 1]) (the space of càdlàg functions taking values in [0; 1]) to the one-
dimensional diffusion with drift

�u2s2p(1 � p)(1 � 2p)

and quadratic variation

�u2p(1 � p) + 2�u2s2p2(1 � p)2;

started from p0. In other words, the limiting process is the unique weak solution to the
equation

dp(t) = �u2s2p(t)(1 � p(t))(1 � 2p(t))d t

+ �u
p

p(t)(1 � p(t))dB (1)
t +

p
2�usp(t)(1 � p(t))dB (2)

t ; (3.7)

with p(0) = p0, and where f B (1)
t gt � 0 and f B (2)

t gt � 0 are two independent standard Brown-
ian motions.

4 De�nition and scaling of the SLFVFS

In this section we �rst extend the Lambda-Fleming-Viot model with �uctuating
selection of Section 3 to the spatial setting. The idea is simple: reproduction events are
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Evolution in a �uctuating environment

still driven by a Poisson point process, but now, in addition to specifying the strength of
selection and the impact associated with each event, we must also specify the spatial
region in which it takes place. As has become usual in this framework, we shall take
those regions to be closed balls (indeed for simplicity we shall take our events to be
of a �xed radius), but the same results will hold under much more general conditions,
subject to some symmetry and boundedness assumptions. Having de�ned the model, we
state our main scaling result for the spatial model.

4.1 Spatial Lambda-Fleming-Viot process with �uctuating selection

We suppose that the population, which is distributed across Rd , is subdivided into two
genetic types f a; Ag. As explained in detail in ETHERIDGE, VÉBER and YU (2020, [ 15 ]),
which in turn borrows results from VÉBER and WAKOLBINGER (2015, [ 49 ]), formally,
at each time the state of the population is described by a measure M t on Rd � K , where
K = f a; Ag, whose �rst marginal is Lebesgue measure on Rd . At any �xed time there is
a density w(t; �) : Rd ! [0; 1] such that

M t (dx; d� ) =
�
w(t; x )� a(d� ) + (1 � w(t; x )) � A (d� )

�
dx:

Of course w(t; x ), which one should interpret as the proportion of the population at the
location x at time t that is of type a, is only de�ned up to a Lebesgue null set. We shall
topologize M � by declaring that wn converges to w if for any continuous and compactly
supported function f

 Z

Rd
f (x)wn (x)dx;

Z

Rd
f (x)w2

n (x)dx;
Z

Rd
f (x)w3

n (x)dx

!

!

 Z

Rd
f (x)w(x)dx;

Z

Rd
f (x)w2(x)dx;

Z

Rd
f (x)w3(x)dx

!

:

The space M � with this topology is metrizable and compact, c.f. Section 2 of VÉBER
and WAKOLBINGER (2015, [ 49 ]). A brief discussion of the topology can be found in
Appendix C.

In what follows, we shall consider a representative of the density of M t . It will be
convenient to �x a representative w(0; �) of M 0 and then update it using the procedure
described in the de�nition below, but the reader should bear in mind that the fundamental
object is the measure-valued evolution. This becomes important when we talk about
convergence of our rescaled processes; tightness will be immediate in the space of
measures, but we will need to work harder to identify the dynamics of the density of the
limit.

In what follows, for every f 2 Cc (continuous functions of compact support on Rd) we
shall use the notation

hw; f i =
Z

Rd
w(x)f (x)dx:

Recall that the limit that we obtained in Section 3 corresponded to our throwing away
the terms of order ns2

n un in (3.1). In other words we approximated (1 + s)p=(1 + sp) by
p + sp(1 � p) = p(1 � s) + s

�
1 � (1 � p)2

�
and similarly p=(1 + s(1 � p)) was approximated

by p � sp(1 � p) = p(1 � s) + sp2. Under this approximation, since reproduction events
are based on a Poisson process of events, we can think of splitting those events into two
types: neutral events and selective events. In the non-spatial setting, neutral events
occur at rate (1 � s) and, for such an event, the chance that the parent is type a is
p. Selective events fall at rate s. One then selects two `potential' parents. If � = � 1,
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then the offspring are type a provided not both potential parents are type A , which has
probability 1 � (1 � p)2, whereas if � = 1 , the offspring are type a only if both potential
parents are type a (probability p2).

To avoid additional algebra, we shall de�ne the spatial version of our model using
this approximation. In our main scaling result, we shall indeed choose our scaling in
such a way that ns2

n un ! 0 as n ! 1 .
We shall assume that the random �eld which speci�es the environment is of the

form 2X 1B � 1, for a random closed subset B � Rd and X a Bernoulli random variable
with parameter 1=2. Our main result will require some additional regularity which
guarantees that changes in the environment are typically seen over larger spatial scales
than reproduction events. This is made precise in (4.3) below.

De�nition 4.1 (Spatial Lambda-Fleming-Viot process with �uctuating selection (SLFVFS)) .
Let � be a measure on (0; 1 ) and for each r 2 (0; 1 ), let � r be a probability measure on
[0; 1], such that the mapping r ! � r is measurable and

Z

(0 ;1 )
r d

Z

[0;1]
u � r (du)� (dr ) < 1 : (4.1)

Further, �x s 2 [0; 1] and let � neu , � fsel , be independent Poisson point processes on
R+ � Rd � (0; 1 ) � [0; 1] with intensity measures (1 � s)dt 
 dx 
 � (dr )� r (du) and sdt 

dx 
 � (dr )� r (du) respectively.

Let � env be a Poisson process, independent of � neu , � fsel , with intensity � env , dic-
tating the times of the changes in the environment. Let f � (m ) (�)gm � 0 be a family of
independent identically distributed random �elds of the form � (m ) = 2X (m ) 1B ( m ) � 1,
where f B (m ) gm � 0 are random closed subsets of Rd and f X (m ) gm � 0 are Bernoulli random
variables with parameter 1=2. We write

P
h
� (m ) (x) = � 1

i
=

1
2

= P
h
� (m ) (x) = +1

i
;

E
h
� (m ) (x)� (m ) (y)

i
= g(x; y);

where the covariance function g(x; y) will be assumed to be an element of Cb
�
Rd � Rd

�
.

Set � 0 = 0 and write f � m gm � 1 for the points in � env and de�ne

� (t; �) :=
1X

m =0

� (m ) (�)1[� m ;� m +1 ) (t):

In other words, the environment � (t; �) is resampled, independently, at the times of the
Poisson process � env .

The spatial Lambda-Fleming-Viot process with �uctuating selection (SLFVFS) with
driving noises � neu , � fsel , � env , is the M � -valued process

�
M t

�
t � 0 with dynamics de-

scribed as follows. Let w(t � ; �) be a representative of the density of M t � immediately
before an event (t; x; r; u ) from � neu or � fsel . Then the measure M t immediately after
the event has density w(t; �) determined by:

1. If (t; x; r; u ) 2 � neu , a neutral event occurs at time t within the closed ball B (x; r ).
Then

(a) Choose a parental location l according to the uniform distribution on B (x; r ).
(b) Choose the parental type � 2 f a; Ag according to the distribution

P [� = a] = w(t � ; l ); P [� = A] = 1 � w(t � ; l ):
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(c) A proportion u of the population within B (x; r ) dies and is replaced by offspring
with type � . Therefore, for each point y 2 B (x; r ),

w(t; y) = w(t � ; y)(1 � u) + u1f � = ag:

2. If (t; x; r; u ) 2 � fsel , a selective event occurs at time t within the closed ball B (x; r ).
Then

(a) Choose two parental locations l0; l1 independently, according to the uniform
distribution on B (x; r ).

(b) Choose the two parental types, � 0; � 1; independently, according to

P [� i = a] = w(t � ; l i ); P [� i = A] = 1 � w(t � ; l i ):

(c) A proportion u of the population within B (x; r ) dies and is replaced by offspring
with type chosen as follows:

i. If � (t; x ) = 1 , their type is set to be a if � 0 = � 1 = a, and A otherwise.
Thus, for each y 2 B (x; r ),

w(t; y) = (1 � u)w(t � ; y) + u1f � 0 = � 1 = ag:

ii. If � (t; x ) = � 1, their type is set to be a if � 0 = � 1 = a or � 0 6= � 1 and A
otherwise, so that for each y 2 B (x; r ),

w(t; y) = (1 � u)w(t � ; y) + u
�
1f � 0 = � 1 = ag + 1f � 0 6= � 1 g

�
:

Existence of the SLFVFS is guaranteed by the methods of ETHERIDGE, VÉBER and
YU (2020, [ 15 ]). Indeed, we could have taken different measures � and � r according to
whether events are selective or neutral. Although it is convenient to take the strength
of selection to be constant in space and have its direction determined by the variable
� 2 f� 1; +1g, we could, of course, have de�ned a much more general model. For
example, one could allow s to vary in space, or even resample s� from a suitable random
�eld whenever the environment is resampled. However, this would be at the expense of
considerably more complicated notation and it would become more involved to exploit
the Poisson structure of our model. See Remark 4.4 below for some comments on when
our scaling result would generalise.

One of the key tools in the study of the neutral SLFV is the dual process of coalescing
random walkers which traces out the genealogical trees relating individuals in a sample
from the population. An ancestral lineage doesn't move until it is both in the region
affected by an event and is among the offspring of that event, at which time it jumps to
the location of the parent of the event (which is uniformly distributed on the affected
region). Things are more complicated in the presence of selection. Whereas in the
neutral case we can always identify the distribution of the location of the parent of each
event, now, at a selective event, even knowing the state of the environment, we are
unable to identify which of the `potential parents' is the true parent of the event without
knowing their types. These can only be established by tracing further into the past. The
resolution is to follow all potential ancestral lineages backwards in time. This results in
a system of branching and coalescing walks in which branching and coalescence events
are `tagged' according to the state of the environment at the time at which they occur.

Just as in the neutral case, the dynamics of the dual are driven by the time reversals �
� neu ,

 �
� sel ,

 �
� env of the Poisson point processes of events that drove the forwards in

time process, that is

 �
� i :=

�
(� t; x; r; u ) : ( t; x; r; u ) 2 � i 	 ; i 2 f neu ; sel ; env g:
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It is convenient to extend time to the whole of R. The distribution of these Poisson point
processes is then invariant under the time reversal.

We emphasize that time for the process of ancestral lineages runs in the opposite
direction to that for the allele frequencies. Our dual will relate the distribution of allele
frequencies in a sample from the population at a time T , to allele frequencies at time
0. More precisely, suppose that we know the frequencies w(0; �) of a-alleles at time 0.
At time T , which we think of as `the present', we sample j individuals from locations
� 1

0; : : : ; � j
0. Tracing backwards in time, we write � 1

s ; : : : ; � N s
s for the locations of the Ns

potential ancestors that make up our dual at time s before the present.

De�nition 4.2 (Ancestral selection graph) . We �rst de�ne a
S

n � 1(Rd)n -valued Markov

process, (( � i
t )

N t
i =1 )t � 0, enriched by `environmental tags' as follows:

At each � 2
 �
� env the environment is resampled;

At each event (t; x; r; u ) 2
 �
� neu ,

1. for each � i
t �

2 B (x; r ), independently mark the corresponding potential ancestor
with probability u;

2. if at least one lineage is marked, all marked lineages disappear and are replaced
by a single potential ancestor, whose location is drawn uniformly at random from
within B (x; r ).

At each event (t; x; r; u ) 2
 �
� sel :

1. for each � i
t �

2 B (x; r ), independently mark the corresponding potential ancestor
with probability u;

2. if at least one lineage is marked, all marked lineages disappear and are replaced by
two potential ancestors, whose locations are drawn independently and uniformly
from within B (x; r ). The type of the environment is recorded.

In both cases, if no particles are marked, then nothing happens.
To determine the distribution of types of a sample of the population w(T; �), taken

from locations � 1
0; : : : ; � j

0, knowing the distribution of w(0; �) at time T before the present,
�rst evolve the process of branching and coalescing lineages until time T . At time T
assign types to � 1

T ; : : : ; � N T
T using independent Bernoulli random variables such that

P[Type(� i
T ) = a] = w(0; � i

T ). Tracing back through the system of branching and coalesc-
ing lineages (� i

t )
N t
i =1 , we de�ne types recursively: at each neutral event the lineages that

coalesced during the event are assigned the type of the parent; at a selective event,
if the state of the environment is equal to 1 then all coalescing lineages are type a if
and only if both parents are type a, otherwise they are type A whereas if the state of
the environment is equal to � 1, all coalescing lineages are type A if and only if both
parents are type A , otherwise they are type a. The distribution of types at time zero is
the desired quantity.

Since we only consider �nitely many initial individuals in the sample, the jump rate
in this process is �nite and so this description gives rise to a well-de�ned process.

This dual process is the analogue for the SLFVFS of the Ancestral Selection Graph
(ASG), introduced in the companion papers KRONE and NEUHAUSER (1997, [ 28 ]),
NEUHAUSER and KRONE (1997, [ 38 ]), which describes all the potential ancestors
of a sample from a population evolving according to the Wright-Fisher diffusion with
selection. Indeed we could be more careful and use this process to extract the genealogy
of a sample from the population. However, in this setting, this object seems to be rather
unwieldy and, under the scalings in which we are interested, it will not converge to a
well-de�ned limit.
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Remark 4.3. Informally, the procedure described above allows us to write down an ex-
pression, in terms of the marked process of branching and coalescing ancestral lineages
and w(0; �), for E[

Q j
i =1 w(T; � i

0)]; that is the probability that j individuals, sampled from
the present day population at locations � 1

0; : : : ; � j
0, are all of type a. More formally, since

the density of the SLFVFS is only de�ned Lebesgue-almost everywhere, the quantities
w(T; � i

0) are only de�ned for Lebesgue almost every choice of � 1
0; : : : ; � j

0 and, just as
in ETHERIDGE, VÉBER and YU (2020, [ 15 ]) Section 1.2, this duality must be de�ned
`weakly', that is by integrating against a suitable test function  (� 1

0; : : : ; � j
0). Also mir-

roring that setting, the resulting `moment duality' is suf�cient to guarantee uniqueness
of the SLFVFS. Since we do not use the duality in what follows, we refer the reader to
ETHERIDGE, VÉBER and YU (2020, [15]) for details.

4.2 Scaling the SLFVFS

We are interested in the effects of �uctuating selection over large spatial and temporal
scales and so we shall consider a rescaling of our model. ETHERIDGE, VÉBER and YU
(2020, [ 15 ]) consider the corresponding process in which selection does not �uctuate
with time, but instead always favours type A (say). In that setting it is shown that
if impact scales as un = �u=n1=3 and selection scales as sn = s=n2=3, then as n ! 1 ,
w(nt; n 1=3x) (or rather a local average of this quantity) converges in d � 2 to the solution
to the deterministic Fisher-KPP equation, and to the solution of the corresponding
stochastic p.d.e. in which a `Wright-Fisher noise' term, corresponding to genetic drift,
has been added in d = 1 . Here we wish to consider short periods of stronger selection
and so, by analogy with what we did in Section 3, we choose sn = sn� =n2=3 for some
� > 0, but we change the favoured type at times of mean 1=n2� . This is of course the
scaling suggested by the Central Limit Theorem (and is the natural analogue of our
results in Section 3). In order to be able to ignore terms of order ns2

n un (as we did in the
nonspatial setting) it is easy to see that we must take � 2 (0; 1=3). In fact, our proof of
our scaling result will require � 2 (0; 1=6).

We must also scale the environment in a consistent way. In the examples that we have
in mind, environmental correlations can be expected to extend over very large scales and
so we actually �x the correlations in the limiting environment by �xing the distribution of
a random �eld � and at the nth stage of the scaling sampling the environment according
to � n determined by

� (x) = � n (n� 1=3x):

At the nth stage of the rescaling, the environment will be resampled at points of a rate
n2� Poisson process.

Remark 4.4 (Extensions) . We have taken selection to be constant in magnitude and just
to vary in sign. This is not necessary, even for our scaling result. As an obvious extension,
we could �x the distribution of s(x)� (x) and, at the nth stage of the scaling de�ne

sn (n� 1=3x)� n (n� 1=3x) =
n�

n2=3
s(x)� (x):

At the expense of introducing an additional truncation of s(x) at the nth stage of the
scaling, to ensure that jsn (x)� n (x)j < 1, it is enough to insist that

P[s(x)� (x) > z ] = P[s(x)� (x) < � z]; 8z 2 R;

and
E[js(x)� (x)j2+ � ] < 1 ; for some � > 0;

plus some regularity to re�ect equation (4.3) below. To avoid a proliferation of notation,
we omit this somewhat arti�cial generalisation of our results.
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Our de�nition of the SLFVFS is still rather general. We include it to underline the
possibility of extending our results. However, in the interest of avoiding even more
complex expressions than those that follow, from now on we shall specialise to �x the
radius and impact of reproduction events.

Assumption 4.5. From now on, �x R 2 (0; 1 ) and �u 2 (0; 1) and take

� (dr ) = � R (dr ); � r (du) = � �u (du):

Just as in ETHERIDGE, VÉBER and YU (2020, [ 15 ]), we shall prove convergence, not
of the sequence of densities of the SLFVFS, but of a sequence of local averages. We
require some notation. Let R be the �xed radius of events. Set

Rn = n� 1=3R; B n (x) = B (x; Rn );

and de�ne the sequence of rescaled processes

wn (t; x ) = w(nt; n 1=3x); wn (t; x ) =
Z

B n (x )
wn (t; y)dy; (4.2)

where
R

B n (x ) denotes an average integral over the ball Bn (x). We write VR for the
volume of a ball of radius R.

Theorem 4.6. Write (M
n
t )t � 0 for the measure-valued process with density (wn (t)) t � 0.

Suppose that (M n
0 )n � 1 converges weakly in M � to the measure M 1

0 with density
w1 (0; x) = lim n !1 wn (0; x). Further, �x � 2 (0; 1=6), set sn = sn� =n2=3, un = �u=n1=3 and
suppose that the environment is resampled at the times of a Poisson process of rate n2� .
We assume that the correlation function g(x; y) that is determined by the environment
satis�es

jg(x; x ) � g(x; y)j � Cjx � yj for all x; y 2 Rd: (4.3)

Then the sequence (M
n
� )n � 1 is tight in D([0; 1 ); M � ) (the space of càdlàg functions on

[0; 1 ) taking values in M � ). Moreover, for any weak limit point (M 1
t )t � 0, writing w1

for a representative of the density of M 1 ,

1. in dimension d = 1 , w1 is a process for which, for every F 2 C1
c (R) and for every

f 2 C1
c (R),

F (hw1 (t); f i ) � F (hw1 (0); f i )

�
Z t

0
F 0(hw1 (s); f i )

�
�u� R

2
hw1 (s); � f i

+ V 2
R �u2s2hw1 (s)(1 � w1 (s))(1 � 2w1 (s)) ; f i

�
ds

�
Z t

0
F 00(hw1 (s); f i )

�
� Z

Rd

Z

Rd

�
V 2

R �u2s2g(x; y)w1 (s; x)(1 � w1 (s; x))

� w1 (s; y)(1 � w1 (s; y)) f (x)f (y)
�

dxdy

+
�u2V 2

R

2
hw1 (s)(1 � w1 (s)) ; f 2i

�
ds (4.4)

is a continuous martingale;
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2. in dimension d � 2, w1 is the process for which, for every F 2 C1
c (R) and for

every f 2 C1
c

�
Rd

�
,

F (hw1 (t); f i ) � F (hw1 (0); f i )

�
Z t

0
F 0(hw1 (s); f i )

�
�u� R

2
hw1 (s); � f i

+ V 2
R �u2s2hw1 (s)(1 � w1 (s))(1 � 2w1 (s)) ; f i

�
ds

�
Z t

0
F 00(hw1 (s); f i )

�
� Z

Rd

Z

Rd

�
V 2

R �u2s2g(x; y)w1 (s; x)(1 � w1 (s; x))

� w1 (s; y)(1 � w1 (s; y)) f (x)f (y)
�

dxdy
�

ds (4.5)

is a continuous martingale. Moreover, the solution to this martingale problem is
unique and so f M

n
gn � 1 actually converges.

The constant � R depends only on R and is de�ned in (8.19) .

The proof of uniqueness in d � 2 uses a uniqueness result of HU, NUALART and
SONG [24 ] for a corresponding stochastic p.d.e.. In Appendix B, we follow the approach
of KURTZ (2010, [ 32 ]), which uses the Markov Mapping Theorem, to show that any
solution to the martingale problem (4.5) is actually a weak solution to the stochastic
p.d.e.:

dw1 =
�

�u� R

2
� w1 + �u2V 2

R s2w1 (1 � w1 )(1 � 2w1 )
�

dt

+
p

2�uVR sw1 (1 � w1 )W (dt; dx); (4.6)

where the noise W is white in time and coloured in space, with quadratic variation given
by

hW (� )i t = t
Z

Rd

Z

Rd
g(x; y)� (x)� (y)dxdy: (4.7)

The corresponding equation for dimension d = 1 is

dw1 =
�

�u� R

2
� w1 + 4R2 �u2s2w1 (1 � w1 )(1 � 2w1 )

�
dt

+
p

22R�usw1 (1 � w1 )W (dt; dx) + 2 R�u
p

w1 (1 � w1 )W(dt; dx); (4.8)

where W is white in time and coloured in space as above and W is a space-time white
noise. As in d � 2, any solution to the martingale problem (4.4) will be a weak solution
to this stochastic p.d.e., but we only have a proof of uniqueness of (4.8) in the special
case in which W is also space-time white noise (in which case we can invoke the duality
of Section 5).

5 Duality

In general, we have been unable to identify a useful dual process for our limiting
equation. The exceptions are the non-spatial setting and the special case of one spatial
dimension, with both noises in the stochastic p.d.e. being white in space as well as time.
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Evolution in a �uctuating environment

In order to obtain these duals, we transform the system in a way inspired by BLATH,
ETHERIDGE and MEREDITH (2007, [8]).

Consider �rst the non-spatial case. We rewrite equation (3.7) by making the substitu-
tion X = 1 � 2p. The process X , which takes values in [� 1; 1], satis�es

dX t =
1
2

�u2s2 �
X 3

t � X t
�

dt + �u
q

1 � X 2
t dB 1

t +

p
2

2
�us(1 � X 2

t )dB 2
t ; (5.1)

for independent Brownian motions B 1, B 2.

Lemma 5.1. The solution to the transformed equation (5.1) is dual to a branching
annihilating process f N t gt � 0 with transitions

1. N 7! N + 2 at rate

�u2s2

2

�
N +

�
N
2

��
;

2. For N � 2, N 7! N � 2 at rate

�u2(1 +
s2

2
)
�

N
2

�
:

The duality relationship takes the form

EX 0

h
X N 0

t

i
= EN 0

h
X N t

0

i

where the expectation on the left is with respect to the law of f X t gt � 0 started from initial
condition X 0, and that on the right is with respect to the law of f N t gt � 0, started from N0.

The proof is an application of Itô's formula. It is easy to see that started from an even
number of particles, the dual process will die out in �nite time (count the number of
pairs of particles and compare to a subcritical birth-death process), corresponding to
the process f pt gt � 0 of allele frequencies being absorbed in either zero or one. Of course,
this is also readily checked directly for the diffusion (1.1) using the theory of speed and
scale, but if we could �nd an analogous dual for a spatially extended population, where
the theory of one dimensional diffusions is no longer helpful, we might be able to exploit
it to study the behaviour of allele frequencies.

In one spatial dimension, if the noises W and W are both white in space as well as
time, then we can extend this.

Lemma 5.2. Suppose that d = 1 and w1 solves

dw1 =
�

�u� R

2
� w1 + 4R2 �u2s2w1 (1 � w1 )(1 � 2w1 )

�
dt

+
p

22R�usw1 (1 � w1 )W (dt; dx) + 2 R�u
p

w1 (1 � w1 )W(dt; dx);

where W and W are independent space-time white noises. Then setting X t (x) =
1� 2w1 (t; x ), f X t (x)gt � 0 is dual to a system of branching-annihilating Brownian particles
whose spatial locations at time t we denote by � 1(t); : : : ; � N t (t), and whose dynamics are
described as follows:

1. Each particle, independently, follows a Brownian motion in R, with diffusion
constant �u� R ;

2. Each particle, independently, splits into three at rate �u2s2=2;

3. Each pair of particles annihilates, at a rate �u2(1 + s2=2), measured by their inter-
section local time;
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4. Each pair of particles replicates (i.e. is replaced by two identical pairs) at rate
�u2s2=2, also measured by their intersection local time.

The duality is expressed for points � 1(0); : : : � N 0 (0) 2 R and any continuous function
w1 (0; �) : R ! [0; 1], through

E

"
N 0Y

i =1

X t (� i (0))

#

= E

"
N tY

i =1

X 0(� i (t))

#

; (5.2)

where the expectation on the left is with respect to the law of the stochastic p.d.e. and
that on the right with respect to the law of the dual system of branching and annihilating
lineages.

TRIBE (1995, [ 48 ]) gives a construction of the analogous system of coalescing
Brownian motions, which is dual to the stochastic heat equation with Wright-Fisher
noise, as discussed in SHIGA (1988 [ 46 ]). DOERING, MUELLER and SMEREKA (2002,
[11 ]) provide a complete derivation in that context; see also LIANG (2009, [ 34 ]). We
also note that BIRKNER (2003, [ 7]) considers a similar system of branching random
walkers on Z d , in which particles reproduce at a rate that depends on the number of
other particles within the same site.

Remark 5.3. If we consider subdivided populations (i.e. an analogous model on a lat-
tice), then the analogous system of stochastic (ordinary) differential equations satis�es a
duality of this form with a system of branching and annihilating random walks. More-
over, we can apply the analogous transformation to the stochastic p.d.e. with coloured
noise, but now, when we seek a branching annihilating dual process, in addition to the
branching annihilating term when dual particles meet, we obtain cross terms of the form

g(x; y)X t (x)X t (y)
�
1 � X t (x)2��

1 � X t (y)2�
:

We can rearrange the factors involving X as

�
X t (x)2X t (y)2 � X t (x)X t (y)

�
+ (1 � X t (x)X t (y))

�
�
X t (x)2 � X t (x)X t (y)

�
�

�
X t (y)2 � X t (x)X t (y)

�
: (5.3)

If g(x; y) > 0, then we can interpret the �rst two terms in (5.3) as branching and
annihilating terms in a putative dual; if g(x; y) < 0, then the last two terms can be
interpreted as one particle jumping to the location of another. However, we have not, in
either case, found a way to interpret both terms simultaneously. The obvious approach
is to follow ATHREYA and TRIBE (2000, [ 1]) and introduce an additional `marker' that
switches sign every time we have an event of `the wrong sign'. This leads to a Feynman-
Kac correction term in the duality relation (5.2), which it turns out is in�nite.

6 Tracer dynamics

On passing to a stochastic p.d.e. limit, we have lost sight of the way in which
individuals in the population were related to one another and the ancestral selection
graphs which encoded that information in the prelimiting models do not converge.
However, some information about heredity can be recovered using the notion of `tracers'.
The idea, which �nds its roots in the statistical physics literature, has more recently
found application in models of population genetics, notably in HALLATSCHEK and
NELSON (2008, [ 23 ]), or, for a more mathematical approach, see DURRETT and FAN
(2016, [ 13 ]). The idea is simple: one labels some portion of the population of type a
individuals, say, at time zero not just according to their type at the selected locus, but
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also with a `neutral marker' that is passed down from parent to offspring. Individuals in
the population at time t that carry the neutral marker are precisely the descendants of
our original marked individuals.

To introduce this in our setting, let us label a portion of the a population at time zero
by a neutral marker. We shall use v(t; x ) to denote the proportion of the (total) population
that are both type a and labelled, and we shall use a� to denote that combined type. Thus

f type a� individuals g � f type a individuals g

and v(t; x ) � w(t; x ).
The dynamics are driven by the same Poisson point processes of events as before,

but now we modify our description of inheritance to include the extra label.

De�nition 6.1 (The SLFVFS with tracers) . Let � , � neu , � fsel ; � env be exactly as in De�ni-
tion 4.1. The dynamics of the pair (v; w) can be described as follows. Write ay to denote
individuals of type a, but not a� .

1. If (t; x; r; �u) 2 � neu , a neutral event occurs at time t within the closed ball B (x; r ).
Then:

(a) Choose a parental location l according to the uniform distribution over B (x; r ).
(b) Choose the parental type � 2 f a� ; ay; Ag according to distribution

P [� = a� ] = v(t � ; l ); P
�
� = ay�

= w(t � ; l ) � v(t � ; l );

P [� = A] = 1 � w(t � ; l ):

(c) For each y 2 B (x; r ),

v(t; y) = (1 � �u)v(t � ; y) + �u1f � = a � g(y);

w(t; y) = (1 � �u)w(t � ; y) + �u1f � 2f a � ;a y gg(y):

2. If (t; x; r; �u) 2 � fsel , a selective event occurs at time t within the closed ball B (x; r ).
Then:

(a) Choose the two parental locations l0; l1 independently, according to the uniform
distribution on B (x; r ).

(b) Choose the two parental types, � 0; � 1; according to

P [� i = a� ] = v(t � ; l i ); P
�
� i = ay�

= w(t � ; l i ) � v(t � ; l i );

P [� i = A] = 1 � w(t � ; l i ):

(c) i. If � (t; x ) = 1 , offspring inherit type � 0 if � 0 and � 1 are both type a (with or
without the neutral marker), otherwise they are type A ; so

v(t; y) = (1 � �u)v(t � ; y) + �u1f � 0 = a � ;� 1 2f a � ;a y gg

w(t; y) = (1 � �u)w(t � ; y) + �u1f � 0 ;� 1 2f a � ;a y gg :

ii. If � (t; x ) = � 1, offspring inherit type � 0 if � 0 is type a, and they inherit
type � 1 if � 0 is type A . Thus

v(t; y) = (1 � �u)v(t � ; y) + �u
�
1f � 0 = a � g + 1f � 0 = A;� 1 = a � g

�
;

w(t; y) = (1 � �u)w(t � ; y) + �u1f � 0 = � 1 = A gc :

Theorem 6.2. Applying our previous scalings, let the population evolve under the
assumptions of Theorem 4.6.
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Assume that the sequence of measures of the initial states of the marked population
converges weakly in M � to a measure with a density v1 (0; x) = lim n !1 vn (0; x). Then
as n ! 1 , the corresponding sequence of rescaled measure-valued processes is tight in
D([0; 1 ); M 2

� ), and any limit point is a weak solution to a system of stochastic p.d.e.'s
which in d � 2 takes the form

dw1 =
�

�u� R

2
� w1 + V 2

R �u2s2w1 (1 � w1 )(1 � 2w1 )
�

dt+
p

2VR �usw1 (1 � w1 )W (dt; dx);

dv1 =
�

�u� R

2
� v1 + V 2

R �u2s2v1 (1 � w1 )(1 � 2w1 )
�

dt+
p

2VR �usv1 (1 � w1 )W (dt; dx);

where the noise W is as before.
For dimension d = 1 , the limiting process is a weak solution to the system of stochastic

partial differential equations

dw1 =
�

�u� R

2
� w1 + 4R2 �u2s2w1 (1 � w1 )(1 � 2w1 )

�
dt +

p
22R�uw1 (1 � w1 )W (dt; dx)

+ 2R�u
p

v1 (1 � w1 )W 0(dt; dx) + 2 R�u
p

(w � v)1 (1 � w1 )W 1(dt; dx);

dv1 =
�

�u� R

2
� v1 + 4R2 �u2s2v1 (1 � w1 )(1 � 2w1 )

�
dt +

p
22R�usv1 (1 � w1 )W (dt; dx)

+ 2R�u
p

v1 (1 � w1 )W 0(dt; dx) + 2 R�u
p

v1 (w � v1 )W 2(dt; dx);

where, as before, W is white in time and coloured in space and and W i , i = 0 ; 1; 2, are
independent space-time white noises.

The proof of this result is an even longer version of the proof of Theorem 4.6, but
it follows exactly the same strategy. First we show that the limit points are solutions
to appropriate martingale problems, then we show that any solution to the martingale
problem provides a weak solution to the system of stochastic p.d.e.'s. Rather than
providing details of the proof, we indicate why this result is to be expected. We once
again use the trick of KURTZ (1973, [ 29 ]). In the case of one dimension and genic
selection, DURRETT and FAN (2016, [ 13 ]) obtain a pair of stochastic p.d.e.'s of the form

dw = ( � � w + sw(1 � w)) dt +
p

v(1 � w)W 0(dt; dx) +
p

(w � v)(1 � w)W 1(dt; dx)

dv = ( � � v + sv(1 � w)) dt +
p

v(1 � w)W 0(dt; dx) +
p

v(w � v)W 2(dt; dx);

where W 0, W 1 and W 2 are independent space-time white noises. Writing the corre-
sponding generator acting on test functions f (w; l) as L neu + L sel as in Section 3, to
identify the generator in the limit of (appropriately scaled) rapidly �uctuating selection
we must evaluate L sel (L sel f (�; �))( w; v) which, up to constants, is

�
w(1 � w)

@
@w

+ v(1 � w)
@
@v

� �
w(1 � w)

@f
@w

+ v(1 � w)
@f
@v

�

= w(1 � w)(1 � 2w)
@f
@w

+ v(1 � w)(1 � 2w)
@f
@v

+ w2(1 � w)2 @2f
@w2

+ 2wv(1 � w)2 @2f
@v@w

+ v2(1 � w)2 @2f
@v2

:

From this we see that the stochastic p.d.e's in Theorem 6.2 are of precisely the form that
we should expect.

7 Numerical results

In order to gain a little more intuition about the effects of �uctuating selection on
allele frequencies, in this section we present the results of a simple numerical experiment.
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It is certainly not an exhaustive study, but it points to some of the challenges that face
us in distinguishing causes of patterns of allele frequencies. Our simulations are not
of the spatial Lambda-Fleming-Viot models, but of natural extensions of the classical
Moran model to incorporate spatial structure and �uctuating selection. After suitable
scaling, we expect allele frequencies under these models to converge to the same limiting
stochastic p.d.e. as our scaled SLFVFS.

De�nition 7.1 (Spatial Moran model with �uctuating selection) . The population, which
consists of two genetic types, f a; Ag, lives at the vertices of a discrete lattice L . There
are Nd individuals at each vertex (or deme ). The state of the environment at time t in
deme x is denoted by � (t; x ).

The dynamics of the process are described as follows:

1. Reproduction events

(a) Neutral events: For each deme, independently, at rate
� N d

2

�
a pair of individ-

uals is chosen (uniformly at random), one of the pair (picked at random) dies
and the other splits in two;

(b) Selective events: For each deme x, independently, at rate sNd a pair of
individuals is chosen (uniformly at random), one individual splits in two and
the other one dies; if � (t; x ) = � 1 and at least one of the pair is type a, then it
is a type a individual that is chosen to split, whereas if � (t; x ) = 1 and at least
one of the pair is type A , then a type A individual is chosen to split.

2. Migration events: For each pair of demes x1, x2, we associate a nonnegative
parameter mx 1 ;x 2 . Independently for each pair, at rate mx 1 ;x 2 Nd , an individual is
chosen uniformly at random from each of the demes x1, x2 and they exchange
places.

3. Environmental events: At the times of a Poisson process of rate � , which is
independent of those driving reproduction and migration, the environment is
resampled. The value of the environment variable at each deme is uniformly
distributed on f� 1; +1g and E[� (t; x )� (t; y)] = g(x; y) for a correlation function g.

In the experiments that follow, we take the lattice L to be a circle of 100 demes
with nearest neighbour migration at rate 1. We set Nd = 400, s = 0 :1 and � = 10 . The
environment variables in demes 0 � 50 all take the same value, as do those in demes
51� 100. We consider four different scenarios:

1. Demes 0 � 50 and 51� 100are perfectly anticorrelated; the environment �uctuates
in time and the direction of selection is always different in demes 0� 50and 51� 100;

2. Demes 0 � 100are perfectly correlated; the direction of selection �uctuates in time
but it is the same in every deme;

3. Constant selection (the environment is �xed), with the direction of selection in
demes 0 � 50 the opposite of that in demes 51� 100;

4. The neutral case.

To ensure comparability of experiments, the same events are used for all the scenarios,
with the only difference lying in the value of the environment variable. Thus, in the
neutral case, either individual is equally likely to be the parent in `selective events',
irrespective of type. A more precise description of the code used for simulations can be
found in Appendix D.

As a �rst comparison, Figure 1 shows the proportion of type a individuals across the
whole population. This is just a single realisation of the experiment. There is certainly
no dramatic divergence from neutrality. However, as we illustrate below, this can mask
some more interesting effects at the local level.
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Figure 1: Global proportions of type a individuals; one realisation, four different scenar-
ios: blue anticorrelated environments, green correlated environments, black constant
selection, and yellow neutral. See the main text for a full explanation.

In Figure 2, we have used a greyscale to record the proportion of type a individuals
in each deme – the darker the colour, the greater the proportion of type a. In the top
left, selection is �xed, and we clearly see the effect of type a being favoured in demes
50� 100. In the next two frames (top right and bottom left), the environment �uctuates,
but whereas on the top right demes 0 � 50 always favour the opposite type to demes
51� 100, on the bottom left all demes always favour the same type. The neutral model is
the bottom right. When we repeat over many realisations, we see a greater concentration
of types than for the neutral model, but it is certainly not easy to distinguish between
the two frames.

Just following the overall proportion of types in a deme is throwing away a lot of
information, which may be available in genetic data, about the distribution of families.
To explore this we used `tracers', further investigated in the context of Spatial Lambda-
Fleming-Viot processes in Section 6. In Figure 3 we mark individuals descended from
the population in particular demes at time zero. The darker the colour, the higher the
proportion of marked individuals. In a constant environment, see the left panel, the
surviving family is well adapted to the environment in demes 50� 100, but has dif�culty
invading demes 1� 50, where it is not favoured. It also struggles to expand beyond deme
80. This turns out to be because of competition with the equally well adapted family
that is descended from individuals that were in deme 84 at time zero (see the right hand
panel).

In the left panel of Figure 4, we see a successful family in a �uctuating environment
(with demes 0 � 50 and 51� 100perfectly anticorrelated). The family is on the brink of
extinction several times and is rescued by a change in the environment. In the right
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Figure 2: Map of the proportion of type a individuals in each deme; the darker the colour
the higher the proportion of type a. Top left, constant selection; top right, �uctuating
selection with demes 0� 50 and 51� 100perfectly anticorrelated; bottom left, �uctuating
selection with all demes perfectly correlated; bottom right, the neutral case.

panel, we see a family that begins life right on the boundary between the two regions.
The environments are perfectly anticorrelated and the family is able to survive and
spread much more readily. The right hand panel of Figure 4 can be contrasted with
the left hand panel of Figure 5. The descendants of ancestors in deme 1 �nd it harder
to spread in a perfectly correlated environment than in the perfectly anticorrelated
environment of the previous �gure. The trace of descendants of ancestors in deme 78 in
the right hand panel of Figure 5 shows the `thinning' of the family resulting from the
periods of time when it is not favoured.

Finally, Figure 6 shows the trace of descendants of ancestors in demes 12 and 16 for
the neutral model. There appears to be a barrier between the two families, which could
easily be mistaken for a change in the environment somewhere between demes 12 and
16, on the lower side of which the family descended from deme 12 is better adapted and
on the upper side of which the family from deme 16 is better adapted. In fact this is due
to competition between two equally �t families.
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Figure 3: Tracer map of individuals descended from ancestors located in particular
demes at time zero; the darker the colour, the higher the proportion of such individuals.
Fixed environment.

Figure 4: Tracer map of individuals descended from ancestors located in particular
demes at time zero; the darker the colour, the higher the proportion of such individuals.
The environment is �uctuating, with its value in demes 0 � 50 perfectly anticorrelated
with that in demes 51� 100.

8 Proof of Theorem 4.6

The proof of Theorem 4.6 will rest on Theorem 2.1 of KURTZ (1992, [ 30 ]) (or rather
his Example 2.2). For a metric space E , let lm (E ) be the space of measures on [0; 1 ) � E
such that � 2 lm (E ) if � ([0; t) � E ) = t .

Theorem 8.1 (KURTZ (1992, [ 30 ]), Theorem 2.1) . Let E1, E2 be complete separable
metric spaces, and set E = E1 � E2. For each n, let f (X n ; Yn )g be a stochastic process
with sample paths in DE ([0; 1 )) adapted to a �ltration fF n

t g. Assume that f X n g satis�es
the compact containment condition, that is, for each � > 0 and T > 0, there exists a
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