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Fluctuation around the circular law for random
matrices with real entries
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Abstract

We extend our recent result [22] on the central limit theorem for the linear eigenvalue
statistics of non-Hermitian matrices X with independent, identically distributed com-
plex entries to the real symmetry class. We find that the expectation and variance
substantially differ from their complex counterparts, reflecting (i) the special spectral
symmetry of real matrices onto the real axis; and (ii) the fact that real i.i.d. matrices
have many real eigenvalues. Our result generalizes the previously known special cases
where either the test function is analytic [49] or the first four moments of the matrix
elements match the real Gaussian [59, 44]. The key element of the proof is the analysis
of several weakly dependent Dyson Brownian motions (DBMs). The conceptual novelty
of the real case compared with [22] is that the correlation structure of the stochastic
differentials in each individual DBM is non-trivial, potentially even jeopardising its
well-posedness.
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1 Introduction

We consider an ensemble of n× n random matrices X with real i.i.d. entries of zero
mean and variance 1/n; the corresponding model with complex entries has been studied
in [22]. According to the circular law [6, 58, 38] (see also [11]), the density of the
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Fluctuation around the circular law

eigenvalues {σi}ni=1 of X converges to the uniform distribution on the unit disk. Our
main result is that the fluctuation of their linear statistics is Gaussian, i.e.

Ln(f) :=

n∑
i=1

f(σi)−E

n∑
i=1

f(σi) ∼ N (0, Vf ) (1.1)

converges, as n→∞, to a centred normal distribution for regular test functions f with
at least 2 + δ derivatives. We compute the variance Vf and the next-order deviation
of the expectation E

∑n
i=1 f(σi) from the value n

π

∫
|z|≤1

f(z) given by the circular law.
As in the complex case, both quantities depend on the fourth cumulant of the single
entry distribution of X, but in the real case they also incorporate the spectral symmetry
of X onto the real axis. Moreover, the expectation carries additional terms, some of
them are concentrated around the real axis; a by-product of the approximately

√
n real

eigenvalues of X. For the Ginibre (Gaussian) case they may be computed from the
explicit density [27, 26], but for general distributions they were not known before. As
expected, the spectral symmetry essentially enhances Vf by a factor of two compared
with the complex case but this effect is modified by an additional term involving the fourth
cumulant. Previous works considered either the case of analytic test functions f [48, 49]
or the (approximately) Gaussian case, i.e. when X is the real Ginibre ensemble or at least
the first four moments of the matrix elements of X match the Ginibre ensemble [59, 44].
In both cases some terms in the unified formulas for the expectation and the variance
vanish and thus the combined effect of the spectral symmetry, the eigenvalues on the
real axis, and the role of the fourth cumulant was not detectable in these works. We
remark that a CLT for polynomial statistics of only the real eigenvalues for real Ginibre
matrices was proven in [56].

In [53] the limiting random field L(f) := limn→∞ Ln(f) for complex Ginibre matrices
has been identified as a projection of the Gaussian free field (GFF) [55]. We extended this
interpretation [22] to general complex i.i.d. matrices with non-negative fourth cumulant
and obtained a rank-one perturbation of the projected GFF. As a consequence of the CLT
in the present paper, we find that in the real case the limiting random field is a version of
the same GFF, symmetrised with respect to the real axis, reflecting the fact that complex
eigenvalues of real matrices come in pairs of complex conjugates.

In general, proving CLTs for the real symmetry class is considerably harder than for
the complex one. The techniques based upon the first four moment matching [59, 44]
are insensitive to the symmetry class, hence these results are obtained in parallel for
both real and complex ensembles. Beyond this method, however, most results on CLT for
non-Hermitian matrices were restricted to the complex case [25, 33, 47, 51, 52, 54], see
the introduction of [22] for a detailed history, as well as for references to the analogous
CLT problem for Hermitian ensembles and log-gases. The special role that the real
axis plays in the spectrum of the real case substantially complicates even the explicit
formulas for the Ginibre ensemble both for the density [26] as well as for the k-point
correlation functions [37, 12, 42]. Besides the complexity of the explicit formulas, there
are several conceptual reasons why the real case is more involved. We now explain them
since they directly motivated the new ideas in this paper compared with [22].

In [22] we started with Girko’s formula [38] in the form given in [59] that relates the
eigenvalues of X with resolvents of a family of 2n× 2n Hermitian matrices

Hz :=

(
0 X − z

X∗ − z 0

)
(1.2)

parametrized by z ∈ C. For any smooth, compactly supported test function f we have
n∑
i=1

f(σi) = − 1

4π

∫
C

∆f(z)

∫ ∞
0

=TrGz(iη) dη d2z, (1.3)
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Fluctuation around the circular law

where Gz(w) := (Hz − w)−1 is the resolvent of Hz. We therefore needed to understand
the resolvent Gz(iη) along the imaginary axis on all scales η ∈ (0,∞).

The main contribution to (1.3) comes from the η ∼ 1 macroscopic regime, which
is handled by proving a multi-dimensional CLT for resolvents with several z and η

parameters and computing their expectation and covariance by cumulant expansion. The
local laws along the imaginary axis from [2, 3] serve as a basic input (in the current work,
however, we need to extend them for spectral parameters w away from the imaginary
axis). The core of the argument in the real case is similar to the complex case in [22],
however several additional terms have to be computed due to the difference between the
real and complex cumulants. By explicit calculations, these additional terms break the
rotational symmetry in the z parameter and, unlike in the complex case, the answer is
not a function of |z| any more. The mesoscopic regime n−1 � η � 1 is treated together
with the macroscopic one; the fact that only the η ∼ 1 regime contributes to (1.3) is
revealed a posteriori after these calculations.

The scale η . n−1 in (1.3) requires a very different treatment since local laws are
not applicable any more and individual eigenvalues 0 ≤ λz1 ≤ λz2 . . . of Hz near zero
substantially influence the fluctuation of Gz(iη) (since Hz has a symmetric spectrum, we
consider only positive eigenvalues). The main insight of [22] was that it is sufficient to
establish that the small eigenvalues, say, λz1 and λz

′

1 , are asymptotically independent if z
and z′ are relatively far away, say |z − z′| ≥ n−1/100. This was achieved by exploiting the
fast local equilibration mechanism of the Dyson Brownian motion (DBM), which is the
stochastic flow of eigenvalues λz(t) := {λzi (t)} generated by adding a time-dependent
Gaussian (Ginibre) component. The initial condition of this flow was chosen carefully to
almost reproduce X after a properly tuned short time. We needed to follow the evolution
of λz(t) for different z parameters simultaneously. These flows are correlated since they
are driven by the same random source. We thus needed to study a family of DBMs,
parametrized by z, with correlated driving Brownian motions. The correlation structure
is given by the overlap of the eigenfunctions of Hz and Hz′ . We could show that this
overlap is small, hence the Brownian motions are essentially independent, if z and z′ are
far away. This step required to develop a new type of local law for products of resolvent,
e.g. for TrGz(iη)Gz

′
(iη′) with η, η′ ∼ n−1+ε. Finally, we trailed the joint evolution of λz(t)

and λz
′
(t) by their independent Ginibre counterparts, showing that they themselves are

asymptotically independent.

We follow the same strategy in the current paper for the real case, but we immediately
face with the basic question: how do the low lying eigenvalues of Hz, equivalently the
small singular values of X−z, behave? We do not need to compute their joint distribution,
but we need to approximate them with an appropriate Ginibre ensemble. For complex X
in [22] the approximating Ginibre ensemble was naturally complex. For real X there
seem to be two possibilities. The key insight of our current analysis is that the small
singular values of X − z behave as those of a complex Ginibre matrix even though X is
real, as long as z is genuinely complex (Theorem 2.8). In particular, we prove that the
least singular value of X − z belongs to the complex universality class. Moreover, we
prove that the small singular values of X − z1 and the ones of X − z2 are asymptotically
independent as long as z1 and z2 are far from each other.

To explain the origin of this apparent mismatch, we will derive the DBM

dλzi =
dbzi√
n

+
1

2n

∑
j 6=i

1 + Λzij
λzi − λzj

dt+ . . . (1.4)

for λz(t), ignoring some additional terms with negative indices coming from the spectral
symmetry of Hz (see (7.14) and (B.15) for the precise equation). The correlations of the
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driving Brownian motions are given by

Edbzi dbz
′

j =
1

2

[
Θz,z′

ij + Θz,z′

ij

]
dt (1.5)

with overlaps Θ,Λ defined as

Θz,z′

ij := 4<
[
〈uz

′

j ,u
z
i 〉〈vzi ,vz

′

j 〉
]
, Λzij := Θz,z

ij , (1.6)

where (uzi ,v
z
i ) ∈ C2n is the (normalized) eigenvector of Hz corresponding to the eigen-

value λzi . Note that Θz,z
ij = δi,j , and for j 6= i we have that Λzij ≈ 0. Moreover, if

z is very close to the real axis, then the eigenvectors of Hz are essentially real and
Λzii = Θz,z

ii ≈ Θz,z
ii = 1. With z = z′, this leads to (1.4) being essentially a real DBM with

β = 1. (We recall that the parameter β = 1, 2, customarily indicating the real or complex
symmetry class of a random matrix, also expresses the ratio of the coefficient of the
repulsion to the strength of the diffusion in the DBM setup.) However, if z and z are
far away, i.e. z is away from the real axis, then we can show that the overlap Λz = Θz,z

is small, hence Λzij ≈ 0 for all i, j, including i = j. Thus the variance of the driving
Brownian motions in (1.5) with z = z′ is reduced by a factor of two, rendering (1.4)
essentially a complex DBM with β = 2.

The appearance of Λz in (1.4) and the second term Θz,z′ in (1.5) is specific to the
real symmetry class; they were not present in the complex case [22]. They have three
main effects for our analysis. First, they change the symmetry class of the DBM (1.4)
as we just explained. Second, due to the symmetry relation λz−1 = −λz1 and bz−1 = −bz1,
the strength of the level repulsion between λz1 and λz−1 in (1.4) is already critically small
even for Λz = 0, see e.g. [18, Appendix A], hence the well-posedness of (1.4) does not
follow from standard results on DBM. Third, Θz,z renders the driving Brownian motions
bz = {bzi } correlated for different indices i even for the same z, since Λzij in general
is nonzero. In fact, the vector bz is even not Gaussian, hence strictly speaking it is
only a multidimensional martingale but not a Brownian motion in general. In contrast,
Θz,z
ij = δi,j and only the overlaps Θz,z′

ij for different z 6= z′ are nontrivial. Thus in the
complex case [22], lacking the term Θz,z in (1.5), the DBM (1.4) for any fixed z was the
conventional DBM with independent Brownian motions and parameter β = 2 (c.f. [22,
Eq. (7.15)]) and only the DBMs for different z’s were mildly correlated. In the real case
the correlations are already present within (1.4) for the same z due to Λz = Θz,z 6= 0.

We note that Dyson Brownian motions with nontrivial coefficients in the repulsion
term have already been investigated in [17] (see also [19]) in the context of spectral
universality of addition of random matrices twisted by Haar unitaries, however the
driving Brownian motions were independent. The issue of well-posedness, nevertheless,
has already emerged in [17] when the more critical orthogonal group (β = 1) was
considered. The corresponding part of our analysis partly relies on techniques developed
in [17]. We have already treated the dependence of Brownian motions for different z’s
in [22] for the complex case; but the more general dependence structure characteristic
to the real case is a new challenge that the current work resolves.

Notations and conventions

We introduce some notations we use throughout the paper. For integers k ∈ N we use
[k] := {1, . . . , k}. We write H for the upper half-plane H := {z ∈ C | =z > 0}, D ⊂ C for
the open unit disk, and we use the notation d2z := 2−1i(dz ∧ dz) for the two dimensional
volume form on C. For positive quantities f, g we write f . g and f ∼ g if f ≤ Cg

and cg ≤ f ≤ Cg, respectively, for some constants c, C > 0 which depend only on the
model parameters appearing in (2.1). For any two positive real numbers ω∗, ω∗ ∈ R+, by
ω∗ � ω∗ we denote that ω∗ ≤ cω∗ for some sufficiently small constant 0 < c ≤ 1/1000. We
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denote vectors by bold-faced lower case Roman letters x,y, . . . ,∈ Ck, for some k ∈ N,
and use the notation dx := dx1 . . . dxk. Vector and matrix norms, ‖x‖ and ‖A‖, indicate
the usual Euclidean norm and the corresponding induced matrix norm. For any k × k
matrix A we set 〈A〉 := k−1 TrA to denote the normalized trace of A. Moreover, for
vectors x,y ∈ Ck and matrices A,B ∈ Ck×k we define

〈x,y〉 :=
∑

xiyi, 〈A,B〉 := 〈A∗B〉 =
1

k
TrA∗B.

We will use the concept of “event with very high probability” meaning that for any fixed
D > 0 the probability of the event is bigger than 1− n−D if n ≥ n0(D). Moreover, we use
the convention that ξ > 0 denotes an arbitrary small exponent which is independent of n.

2 Main results

We consider real i.i.d. matrices X, i.e. n× n matrices whose entries are independent
and identically distributed as xab

d
= n−1/2χ for some real random variable χ, satisfying

the following:

Assumption 2.1. We assume that Eχ = 0 and Eχ2 = 1. In addition we assume the
existence of high moments, i.e. that there exist constants Cp > 0, for any p ∈ N, such
that

E|χ|p ≤ Cp. (2.1)

The circular law [6, 7, 11, 39, 10, 36, 38, 50, 58] asserts that the empirical distribution
of eigenvalues {σi}ni=1 of a complex i.i.d. matrix X converges to the uniform distribution
on the unit disk D, i.e.

lim
n→∞

1

n

n∑
i=1

f(σi) =
1

π

∫
D

f(z) d2z, (2.2)

with very high probability for any continuous bounded function f . Our main result is a
central limit theorem for the centred linear statistics

Ln(f) :=

n∑
i=1

f(σi)−E

n∑
i=1

f(σi) (2.3)

for general real i.i.d. matrices and generic test functions f , complementing the recent
central limit theorem [22] for the linear statistics of complex i.i.d. matrices. This CLT,
formulated in Theorem 2.2, and its proof have two corollaries of independent interest
that are formulated in Section 2.1 and Section 2.2.

In order to state the result we introduce some notations. For any function h defined
on the boundary of the unit disk ∂D we define its Fourier transform as

ĥ(k) =
1

2π

∫ 2π

0

h(eiθ)e−iθk dθ, k ∈ Z. (2.4)

For f, g ∈ H2+δ(Ω) for some domain Ω ⊃ D we define

〈g, f〉Ḣ1/2(∂D) :=
∑
k∈Z

|k|ĝ(k)f̂(k), ‖f‖2Ḣ1/2(∂D) := 〈f, f〉Ḣ1/2(∂D),

〈g, f〉H1
0 (D) := 〈∇g,∇f〉L2(D), ‖f‖2H1

0 (D) := 〈f, f〉H1
0 (D),

(2.5)

where, in a slight abuse of notation, we identified f and g with their restrictions to ∂D.
We use the convention that f is extended to C by setting it equal to zero on Ωc. Finally,
we introduce the projection

(Psymf)(z) :=
f(z) + f(z)

2
. (2.6)
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which maps functions on the complex plane to their symmetrisation with respect to the
real axis.

Theorem 2.2 (Central Limit Theorem for linear statistics). Let X be a real n × n i.i.d.
matrix satisfying Assumption 2.1 with eigenvalues {σi}ni=1, and denote the fourth cumu-
lant1 of χ by κ4 := Eχ4 − 3. Fix δ > 0, let Ω ⊂ C be open and such that D ⊂ Ω. Then, for
complex-valued test functions f ∈ H2+δ(Ω), the centred linear statistics Ln(f), defined
in (2.3), converge

Ln(f) =⇒ L(f),

to complex Gaussian random variables L(f) with expectation EL(f) = 0 and variance
E|L(f)|2 = C(f, f) =: Vf and EL(f)2 = C(f, f), where

C(g, f) :=
1

2π
〈∇Psymg,∇Psymf〉L2(D) + 〈Psymg, Psymf〉Ḣ1/2(∂D)

+ κ4

(
1

π

∫
D

g(z) d2z − 1

2π

∫ 2π

0

g(eiθ) dθ

)(
1

π

∫
D

f(z) d2z − 1

2π

∫ 2π

0

f(eiθ) dθ

)
.

(2.7)

For the k-th moments we have an effective convergence rate of

ELn(f)kLn(f)
l

= EL(f)kL(f)
l
+O

(
n−c(k+l)

)
for some constant c(k + l) > 0. Moreover, the expectation in (2.3) is given by

E

n∑
i=1

f(σi) = E(f) +O
(
n−c

)
E(f) :=

n

π

∫
D

f(z) d2z +
1

4π

∫
D

f(<z)− f(z)

(=z)2
d2z − κ4

π

∫
D

f(z)(2|z|2 − 1) d2z

− 1

2π

∫ 2π

0

f(eiθ) dθ +
1

2π

∫ 1

−1

f(x)√
1− x2

dx+
f(1) + f(−1)

4

(2.8)

for some small constant c > 0.

Remark 2.3.

(i) Both expectation E(f) and covariance C(g, f) only depend on the symmetrised
functions Psymf and Psymg. Indeed, E(f) = E(Psymf), and the coefficient of κ4

in (2.7) can also be written as an integral over Psymf and Psymg.

(ii) By polarisation, a multivariate central limit theorem as in [22, Corollary 2.4] follows
immediately and any mixed k-th moments have an effective convergence rate of
order n−c(k).

(iii) The variance Vf = E|L(f)|2 in Theorem 2.2 is strictly positive whenever f is not
constant on the unit disk (see [22, Remark 2.3]).

Remark 2.4 (Comparison with [44] and [49]).

(i) The central limit theorem [44, Theorem 2] is a special case of Theorem 2.2. In-
deed, [44, Theorem 2] implies that for real i.i.d. matrices with entries matching the
real Ginibre ensemble to the fourth moment, and real-valued smooth test functions

1Note that in the real case the fourth cumulant is given by κ4 = κ(χ, χ, χ, χ) = Eχ4 − 3, while in the
complex case [22] the relevant fourth cumulant was given by κ(χ, χ, χ, χ) = E|χ|4 − 2.
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f compactly supported within the upper half of the unit disk Ln(f) converge to a
real Gaussian of variance

1

4π
〈∇f,∇f〉L2(D) =

1

2π
〈∇Psymf,∇Psymf〉L2(D), (2.9)

where we used that z 7→ f(z) and z 7→ f(z) are assumed to have disjoint support.
Due to the moment matching assumption, κ4 = 0 in the setting of [44].

(ii) The central limit theorem [49, Corollary 2.6] is also a special case of Theorem 2.2.
Indeed, [49, Corollary 2.6] implies that for real i.i.d. matrices and test functions f
which are analytic in a neighbourhood of the unit disk and satisfy Psymf : D→ R

the linear statistics Ln(f) converge to a Gaussian of variance

1

π

∫
D

|∂zf(z)|2 d2z =
1

4π
〈∇f,∇f〉L2(D) +

1

2
〈f, f〉Ḣ1/2(∂D)

=
1

2π
〈∇Psymf,∇Psymf〉L2(D) + 〈Psymf, Psymf〉Ḣ1/2(∂D).

Here in the first step we used the analyticity of f (see [22, Eq. (2.11)]), and in the
second step we used that 〈(∇f)(z), (∇f(·))(z)〉 = 0 and that f̂(k) = 0 for k < 0 while

f̂(·)(k) = 0 for k > 0 by analyticity. We thus arrived at (2.7), since the coefficient of
κ4 in (2.7) vanishes also by analyticity of f in the setting of [49].

Remark 2.5 (Comparison with the complex case). We remark that the limiting variance
in the case of complex i.i.d. matrices, as studied in [22], is generally different from the
real case. In the complex case Ln(f) converges to a complex Gaussian with variance

V
(C)
f = V

(C,1)
f + κ4V

(C,2)
f ,

V
(C,1)
f :=

1

4π
‖∇f‖2L2(D) +

1

2
‖f‖2Ḣ1/2(∂(D)), V

(C,2)
f := |〈f〉D − 〈f〉∂D|

2
,

where 〈·〉D denotes the averaging over D as in (2.7). In contrast, in the real case the
limiting variance is given by

V
(R)
f = 2V

(C,1)
Psymf

+ κ4V
(C,2)
f .

Thus the variances agree exactly in the case of analytic test functions by (2.9) and
V

(C,2)
f = 0, while e.g. in the case of symmetric test functions, f = Psymf and vanishing

fourth cumulant κ4 = 0 the real variance is twice as big as the complex one, V (R)
f =

2V
(C)
f .

Remark 2.6 (Real correction to the expected circular law). In [26, Theorem 6.2] Edelman
computed the density of genuinely complex eigenvalues of the real Ginibre ensemble to
be

ρn(x+ iy) :=

√
2n

π
|y|e2ny2 erfc(

√
2n|y|)Γ(n− 1, n(x2 + y2))

Γ(n− 1)
(2.10)

in terms of the upper incomplete Gamma function Γ(s, x). Using the large n asymptotics
uniform in z = x+ iy for the incomplete Gamma function [61, Eq. (2.2)] we obtain

ρn(z) ≈
√

2n

π
|=z|e2n(=z)2 erfc(

√
2n|=z|) erfc

(
sgn(|z| − 1)

√
n(|z|2 − 1− 2 log|z|)

)
,

which, using asymptotics of the error function for any fixed |z| < 1,√
2n

π
|=z|e2n(=z)2 erfc(

√
2n|=z|) ≈ 1

2π
− 1

8nπ(=z)2
,
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gives that

ρn(z) =
1

π
− 1

4πn

1

(=z)2
+ O(n−1),

in agreement with the second term in the rhs. of (2.8) accounting for the n−1-correction
to the circular law away from the real axis.

The situation very close to the real axis is much more subtle. The density of the
real Ginibre eigenvalues is explicitly known [27, Corollary 4.3] and it is asymptotically
uniform on [−1, 1], see [27, Corollary 4.5], giving a singular correction of mass of order
n−1/2 to the circular law. However, the abundance of real eigenvalues is balanced by
the sparsity of genuinely complex eigenvalues in a narrow strip around the real axis —
a consequence of the factor |y| in (2.10). Since these two effects of order n−1/2 cancel
each other on the scale of our test functions f , they are not directly visible in (2.8).
Instead we obtain a smaller order correction of order n−1 specific to the real axis, in
form of the second, the penultimate and the ultimate term in (2.8).

Remark 2.7 (Special case: Polynomial test functions). We remark that in [35, 57] exact
n-dependent formulae for ETrXk = E

∑
i σ

k
i and real Ginibre X have been obtained.

Translated into our scaling it follows from [35, Corollary 4] that

ETrXk =

{
1, k even,

0, k odd,
+ Ok(1) (2.11)

for integers k ≥ 1, as n→∞ (note that the trace is unnormalised). The asymptotics (2.11)
are consistent with (2.8) since∫

D

zk d2z = 0,

∫ 1

−1

(eiθ)k dθ = 0,
1k + (−1)k

4
=

{
1
2 , k even,

0, k odd,

and

1

4π

∫
D

(<z)k − zk

(=z)2
d2z =

{
1
2 − 2−k

(
k−1
k/2

)
, k even,

0, k odd,

1

2π

∫ 1

−1

xk√
1− x2

dx =

{
2−k

(
k−1
k/2

)
, k even,

0, k odd.

2.1 Connection to the Gaussian free field

It has been observed in [53] that for complex Ginibre matrices the limiting random
field L(f) can be viewed as a projection of the Gaussian free field (GFF) [55]. In [22,
Section 2.1] we extended this interpretation to general complex i.i.d. matrices with
κ4 ≥ 0 and provided an interpretation as a rank-one perturbation of the projected
GFF. The real case yields the symmetrised version of the same GFF with respect to
the real axis, reflecting the fact that the complex eigenvalues of real matrices come in
pairs of complex conjugates. We keep the explanation brief due to the similarity to [22,
Section 2.1].

The Gaussian free field on C is a Gaussian Hilbert space of random variables h(f)

indexed by functions in the Sobolev space f ∈ H1
0 (C) such that the map f 7→ h(f) is

linear and
Eh(f) = 0, Eh(f)h(g) = 〈f, g〉H1

0 (C) = 〈∇f,∇g〉L2(C). (2.12)

The Sobolev space H1
0 (C) = C∞0 (C)

‖·‖
H1

0(C) can be orthogonally decomposed into

H1
0 (D)⊕H1

0 (D
c
)⊕H1

0 (D ∪D
c
)⊥,
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i.e. the H1
0 -closure of smooth functions which are compactly supported in D or D

c
, and

their orthogonal complement H1
0 ((∂D)c)⊥, the closed subspace of functions analytic

outside of ∂D (see e.g. [55, Thm. 2.17]). With the orthogonal projection P onto the first
and third of these subspaces,

P := PH1
0 (D) + PH1

0 ((∂D)c)⊥ ,

we have (see [22, Eq. (2.13)])

‖Pf‖2H1
0 (C) = ‖f‖2H1

0 (D) + 2π‖f‖2Ḣ1/2(∂D). (2.13)

If κ4 ≥ 0, then L can be interpreted as

L =
1√
2π
PPsymh+

√
κ4

(
〈·〉D − 〈·〉∂D

)
Ξ, (2.14)

where Ξ is a standard real Gaussian, independent of h, and the projection of h is to be
interpreted by duality, i.e. (PPsymh)(f) := h(PPsymf), cf. [22, Eq. (2.15)]. Indeed,

E

∣∣∣∣ 1√
2π
h(PPsymf) +

√
κ4(〈f〉D − 〈f〉∂D)Ξ

∣∣∣∣2 = C(f, f),

as a consequence of (2.12) and (2.13).

2.2 Universality of the local singular value statistics of X − z close to zero

As a by-product of our analysis we obtain the universality of the small singular values
of X − z, and prove that (up to a rescaling) their distribution asymptotically agrees with
the singular value distribution of a complex Ginibre matrix X̃ if z /∈ R, even though X is
a real i.i.d. matrix. In the following by {λzi }i∈[n] we denote the singular values of X − z
in increasing order.

It is natural to express universality in terms of the k-point correlation functions p(n)
k,z

which are defined implicitly by

E

(
n

k

)−1 ∑
{i1,...,ik}⊂[n]

f(λzi1 , . . . , λ
z
ik

) =

∫
Rk

f(x)p
(n)
k,z(x) dx, (2.15)

for test functions f . The summation in (2.15) is over all the subsets of k distinct integers
from [n]. Denote by p(∞,C)

k the scaling limit of the k-point correlation function p(n,C)
k of

the singular values of a complex n× n Ginibre matrix X̃. See e.g. [34, Eqs. (2.3)–(2.4)]
or [9, Eq. (1.3)] for the explicit expression of p(∞,C)

k .

Theorem 2.8 (Universality of small singular values of X − z). Fix z ∈ C with |=z| ∼ 1,
and |z| ≤ 1 − ε, for some small fixed ε > 0. Let X be an i.i.d. matrix with real entries
satisfying Assumption 2.1, and denote by ρz the self consistent density of states of the
singular values of X − z (see (3.3) later). Then for any k ∈ N, and for any compactly
supported test function F ∈ C1

c (Rk), it holds∫
Rk

F (x)

[
ρz(0)−kp

(n)
k,z

(
x

nρz(0)

)
− p(∞,C)

k (x)

]
dx = O

(
n−c(k)

)
, (2.16)

where c(k) > 0 is a small constant only depending on k. The implicit constant in O(·)
may depend on k, ‖F‖C1 , and Cp from (2.1).

Remark 2.9. Theorem 2.8 states that the local statistics of the singular values of X − z
close to zero, for |=z| ∼ 1, asymptotically agree with the ones of a complex Ginibre
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matrix X̃, even if the entries of X are real i.i.d. random variables. It is expected that
the same result holds for all (possibly n-dependent) z as long as |=z| � n−1/2, while in
the opposite regime |=z| � n−1/2 the local statistics of the real Ginibre prevails with an
interpolating family of new statistics which emerges for |=z| ∼ n−1/2.

Besides the universality of small singular values of X − z, our methods also allow us
to conclude the asymptotic independence of the small singular values of X−z1 and those
of X − z2 for generic z1, z2. More precisely, similarly to (2.15), we define the correlation
function p(n)

k1,z1;k2,z2
for the singular values of X − z1 and X − z2 implicitly by

E

(
n

k1

)−1(
n

k2

)−1 ∑
{i1,...,ik1}⊂[n]

{j1,...,jk2}⊂[n]

f(λz1i ,λ
z2
j )

=

∫
Rk1

dx1

∫
Rk2

dx2 f(x1,x2)p
(n)
k1,z1;k2,z2

(x1,x2),

(2.17)

for any test function f , and any k1, k2 ∈ N, where we used the notations λz1i :=

(λz1i1 , . . . , λ
z1
ik1

) and λz2j := (λz2j1 , . . . , λ
z2
jk2

).

Theorem 2.10 (Asymptotic independence of small singular values of X − z1, X − z2). Let
z1, z2 ∈ C be as z in Theorem 2.8, and assume that |z1 − z2|, |z1 − z2| ∼ 1. Let X be an
i.i.d. matrix with real entries satisfying Assumption 2.1, then for any k1, k2 ∈ N, and for
any compactly supported test function F ∈ C1

c (Rk), with k = k1 + k2, using the notation
x = (x1,x2), with xl ∈ Rkl , it holds

∫
Rk

F (x)

[
p

(n)
k1,z1;k2,z2

(
x1

nρz1 ,
x2

nρz2

)
(ρz1)k1(ρz2)k2

− p(∞,C)
k1

(x1)p
(∞,C)
k2

(x2)

]
dx = O

(
n−c(k)

)
, (2.18)

where ρzl = ρzl(0), and c(k) > 0 is a small constant only depending on k. The implicit
constant in O(·) may depend on k, ‖F‖C1 , and Cp from (2.1).

Remark 2.11. We stated Theorem 2.8 for two different z1, z2 for notational simplicity.
The analogous result holds for any finitely many z1, . . . , zq such that |zl−zm|, |zl−zm| ∼ 1,
with l,m ∈ [q].

3 Proof strategy

The proof of Theorem 2.2 follows a similar strategy as the proof of [22, Thm. 2.2]
with several major changes. We use Girko’s formula to relate the eigenvalues of X to
the resolvent of the 2n× 2n matrix

Hz :=

(
0 X − z

(X − z)∗ 0

)
, (3.1)

the so called Hermitisation of X − z. We denote the eigenvalues of Hz, which come
in pairs symmetric with respect to zero, by {λz±i}i∈[n]. The local law, see Theorem 3.1
below, asserts that the resolvent G(w) = Gz(w) := (Hz − w)−1 of Hz with η = =w 6= 0

becomes approximately deterministic, as n→∞. Its limit is expressed via the unique
solution of the scalar equation

− 1

mz
= w +mz − |z|2

w +mz
, η=mz(w) > 0, η = =w 6= 0, (3.2)

which is a special case of the matrix Dyson equation (MDE), see e.g. [1] and (5.1) later.
Note that on the imaginary axis mz(iη) = i=mz(iη). We define the self-consistent density
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of states of Hz and its extension to the upper half-plane by

ρz(E) := ρz(E + i0), ρz(w) :=
1

π
=mz(w). (3.3)

In terms of mz the deterministic approximation to Gz is given by the 2n×2n block matrix

Mz(w) :=

(
mz(w) −zuz(w)

−zuz(w) mz(w)

)
, uz(w) :=

mz(w)

w +mz(w)
, (3.4)

where each block is understood to be a scalar multiple of the n× n identity matrix. We
note that m,u,M are uniformly bounded in z, w, i.e.

‖Mz(w)‖+ |mz(w)| . 1, |uz(w)| ≤ |mz(w)|2 + |uz(w)|2|z|2 < 1, (3.5)

see e.g. [22, Eqs. (3.3)–(3.5)].
The local law for Gz(w) in its full averaged and isotropic form has been obtained for

w ∈ iR in [2] for the bulk regime |1− |z|| ≥ ε and in [3] for the edge regime |1− |z|| < ε.
In fact, in the companion paper [22] on the complex CLT the local law for w on the
imaginary axis was sufficient. For the real CLT, however, we need its extension to general
spectral parameters w in the bulk |1− |z|| ≥ ε case that we state below. We remark that
tracial and entry-wise form of the local law in Theorem 3.1 has already been established
in [16, Theorem 3.4].

Theorem 3.1 (Optimal local law for G). For any ε > 0 and z ∈ C with |1 − |z|| ≥ ε the
resolvent Gz at w ∈ H with η = =w is very well approximated by the deterministic matrix
Mz in the sense that

|〈(Gz(w)−Mz(w))A〉| ≤ Cε‖A‖nξ

nη
,

|〈x, (Gz(w)−Mz(w))y〉| ≤ Cε‖x‖‖y‖nξ
( 1
√
nη

+
1

nη

)
,

(3.6)

with very high probability for some Cε ≤ ε−100, uniformly for η ≥ n−100, |1− |z|| ≥ ε, and
for any deterministic matrices A and vectors x,y, and ξ > 0.

Remark 3.2 (Cusp fluctuation averaging). For w ∈ iR we may choose Cε = 1 by [3,
Theorem 5.2] which takes into account the cusp fluctuation averaging effect. Since
it is not necessary for the present work we refrain from adapting this technique for
general w and rather present a conceptually simpler proof resulting in the ε-dependent
bounds (3.6).

As in [22] we express the linear statistics (1.1) of eigenvalues σi of X through the
resolvent Gz via Girko’s Hermitisation formula (1.3)

Ln(f) =
1

4π

∫
C

∆f(z)
[

log|det(Hz − iT )| −E log|det(Hz − iT )|
]

d2z

− n

2πi

∫
C

∆f(z)

[(∫ η0

0

+

∫ ηc

η0

+

∫ T

ηc

)[
〈Gz(iη)−EGz(iη)〉

]
dη

]
d2z

=: JT + Iη00 + Iηcη0 + ITηc ,

(3.7)

for η0 = n−1−δ0 , ηc = n−1+δ1 , and T = n100, where JT in (3.7) corresponds to the rhs. of
the first line in (3.7) whilst Iη00 , Iηcη0 , I

T
ηc correspond to the three different η-integrals in

the second line of (3.7). Here we used that by spectral symmetry of Hz it follows that
〈Gz(iη)〉 ∈ iR and therefore =〈Gz(iη)〉 = 〈Gz(iη)〉/i in order to obtain (3.7) from (1.3).
The regime JT can be trivially estimated by [22, Lemma 4.3], while the regime Iη00 can
be controlled using [60, Thm. 3.2] as in [22, Lemma 4.4] (see [22, Remark 4.5] for an
alternative proof). Both contributions are negligible. For the main term ITηc we prove the
following resolvent CLT .
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Proposition 3.3 (CLT for resolvents). Let ε > 0, η1, . . . , ηp > 0, and z1, . . . , zp ∈ C be such
that for any i 6= j, min{ηi, ηj} ≥ nε−1|zi − zj |−2. Then for any ξ > 0 the traces of the
resolvents Gi = Gzi(iηi) satisfy an asymptotic Wick theorem

E
∏
i∈[p]

〈Gi −EGi〉 =
∑

P∈Pairings([p])

∏
{i,j}∈P

E〈Gi −EGi〉〈Gj −EGj〉+O (Ψ)

=
1

np

∑
P∈Pairings([p])

∏
{i,j}∈P

V̂i,j + κ4UiUj
2

+O(Ψ),

(3.8)

where

Ψ :=
nξ

(nη∗)1/2

1

mini6=j |zi − zj |4
∏
i∈[p]

( 1

|1− |zi||
+

1

(=zi)2

) 1

nηi
, η∗ := min

i
ηi, (3.9)

and V̂i,j = V̂ (zi, zj , ηi, ηj) and Ui = U(zi, ηi) are defined as

V̂ (zi, zj , ηi, ηj) := V (zi, zj , ηi, ηj) + V (zi, zj , ηi, ηj)

V (zi, zj , ηi, ηj) :=
1

2
∂ηi∂ηj log

[
1 + (uiuj |zi||zj |)2 −m2

im
2
j − 2uiuj<zizj

]
,

U(zi, ηi) :=
i√
2
∂ηim

2
i ,

(3.10)

with mi = mzi(iηi) and ui = uzi(iηi) from (3.2)–(3.4).
Moreover, the expectation of the normalised trace of G = Gi is given by

E〈G〉 = 〈M〉+ E +O

(( 1

|1− |z||
+

1

|=z|2
)( 1

n3/2(1 + η)
+

1

(nη)2

))
, (3.11)

where

E := − iκ4

4n
∂η(m4) +

i

4n
∂η log

(
1− u2 + 2u3|z|2 − u2(z2 + z2)

)
. (3.12)

Proposition 3.3 is the real analogue of [22, Prop. 3.3]. The main differences are that
(i) the V -term for the variance appears in a symmetrised form with zj and zj , (ii) the
error term (3.9) deteriorates as =zi ≈ 0, and (iii) the expectation (3.11) has an additional
subleading term which is even present in case κ4 = 0 (second term in (3.12)).

Finally, in order to show that Iηcη0 in (3.7) is negligible, we prove that 〈Gz1(iη1)〉 and
〈Gz2(iη2)〉 are asymptotically independent if z1, z2 and z1, z2 are far enough from each
other, they are far away from the real axis, they are well inside D, and η0 ≤ η1, η2 ≤ ηc.
These regimes of the parameters z1, z2 represent the overwhelming part of the d2z1 d2z2

integration in the calculation of E|Iηcη0 |
2. The following proposition is the direct analogue

of [22, Prop. 3.5].

Proposition 3.4 (Independence of resolvents with small imaginary part). Fix p ∈ N.
For any sufficiently small ωh, ωd > 0 there exist ω∗, δ0, δ1 with ωh � δm � ω∗ � 1, for
m = 0, 1, such that for any choice of z1, . . . , zp with

|zl| ≤ 1− n−ωh , |zl − zm| ≥ n−ωd , |zl − zm| ≥ n−ωd , |zl − zl| ≥ n−ωd ,

with l,m ∈ [p], l 6= m, it follows that

E

p∏
l=1

〈Gzl(iηl)〉 =

p∏
l=1

E〈Gzl(iηl)〉+O
(
np(ωh+δ0)+δ1

nω∗

)
, (3.13)

for any η1, . . . , ηp ∈ [n−1−δ0 , n−1+δ1 ].
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As in the complex case [22], one key ingredient for both Propositions 3.3 and 3.4
is a local law for products of resolvents G1, G2 for Gi = Gzi(wi). We remark that
local laws for products of resolvents have also been derived for (generalized) Wigner
matrices [30, 46] and for sample covariance matrices [20], as well as for the addition of
random matrices [8].

Note that the deterministic approximation to G1G2 is not given simply by M1M2

where Mi := Mzi(wi) from (3.4). To describe the correct approximation, as in [22,
Section 5], we define the stability operator

B̂ = B̂12 = B̂(z1, z2, w1, w2) := 1−M1S[·]M2, (3.14)

acting on the space of 2n × 2n matrices. Here the linear covariance or self-energy
operator S : C2n×2n → C2n×2n is defined as

S
[(
A B

C D

)]
:= ẼW̃

(
A B

C D

)
W̃ =

(
〈D〉 0

0 〈A〉

)
, W̃ =

(
0 X̃

X̃∗ 0

)
, X̃ ∼ GinC,

(3.15)
i.e. it averages the diagonal blocks and swaps them. Here Ẽ denotes the expectation with
respect to X̃, 〈A〉 = n−1TrA and GinC stands for the standard complex Ginibre ensemble.
The ultimate equality in (3.15) follows directly from E x̃2

ab = 0, E|x̃ab|2 = n−1. Note that
as a matter of choice we define the stability operator (3.14) with the covariance operator
S corresponding to the complex rather than the real Ginibre ensemble. However, to
leading order there is no difference between the two and the present choice is more
consistent with the companion paper [22]. The effect of this discrepancy will be estimated
in a new error term (see (6.4) later).

For any deterministic matrix B we define

Mz1,z2
B (w1, w2) := B̂−1

12 [Mz1(w1)BMz2(w2)], (3.16)

which turns out to be the deterministic approximation to G1BG2. Indeed, from the local
law for G1, G2, Theorem 3.1, and [22, Thm. 5.2] we immediately conclude the following
theorem.

Theorem 3.5 (Local law for Gz1BGz2). Fix z1, z2 ∈ C with |1 − |zi|| ≥ ε, for some ε > 0

and w1, w2 ∈ C with |ηi| := |=wi| ≥ n−1 such that

η∗ := min{|η1|, |η2|} ≥ n−1+ε∗ |β̂∗|−1
,

for some small ε∗ > 0, where β̂∗ is the, in absolute value, smallest eigenvalue of B̂12

defined in (3.14). Then, for any bounded deterministic matrix B, ‖B‖ . 1, the product of
resolvents Gz1BGz2 = Gz1(w1)BGz2(w2) is well approximated by Mz1,z2

B = Mz1,z2
B (w1, w2)

defined in (3.16) in the sense that

|〈A(Gz1BGz2 −Mz1,z2
B )〉| ≤ Cε‖A‖nξ

nη∗|η1η2|1/2|β̂∗|

(
η

1/12
∗ +

η
1/4
∗

|β̂∗|
+

1
√
nη∗

+
1

(|β̂∗|nη∗)1/4

)
,

|〈x, (Gz1BGz2 −Mz1,z2
B )y〉| ≤ Cε‖x‖‖y‖nξ

(nη∗)1/2|η1η2|1/2|β̂∗|
(3.17)

for some Cε with very high probability for any deterministic A,x,y and ξ > 0. If
w1, w2 ∈ iR we may choose Cε = 1, otherwise we can choose Cε ≤ ε−100.

An effective lower bound on <β̂∗, hence on |β̂∗|, will be given in Lemma 6.1 later.
The paper is organised as follows: In Section 4 we prove Theorem 2.2 by combining

Propositions 3.3 and 3.4. In Section 5 we prove the local law for G away from the
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imaginary axis, Theorem 3.1. In Section 6 we prove Proposition 3.3, the Central Limit
Theorem for resolvents using Theorem 3.5. In Section 7 we prove Proposition 3.4 again
using Theorem 3.5, and conclude Theorem 2.8.

Note that Theorem 3.5, the local law for Gz1BGz2 , is used in two different contexts.
Traces of AGz1BGz2 , for some deterministic matrices A,B ∈ C2n×2n, naturally arise
along the cumulant expansion for

∏
i〈Gi −EGi〉 in Proposition 3.3. The proof of Proposi-

tion 3.4 is an analysis of weakly correlated DBMs, where the correlations are given by
eigenvector overlaps (1.6), whose estimate is reduced to an upper bound on 〈=Gz1=Gz2〉.

4 Central limit theorem for linear statistics: proof of Theorem 2.2

From Propositions 3.3 and 3.4 we conclude Theorem 2.2 analogously to [22, Sec-
tion 4], we only describe the few minor modifications.

Proof of Theorem 2.2. We explain the three modifications compared with the proof of [22,
Theorem 2.2]. First, there are two additional terms in in the variance (3.10) and
expectation (3.12) of the resolvent CLT, compared to [22, Eqs. (3.14)–(3.15)]. These
additional terms result in additional explicit terms in (2.8) and (2.7). For the expectation
in (2.8) we have

− 1

2πi

∫
C

∆f(z)
i

4n

∫ ∞
0

∂η log
(

1− u2 + 2u3|z|2 − u2(z2 + z2)
)

dη d2z (4.1)

=
1

4π

∫
D

f(<z)− f(z)

(=z)2
d2z − 1

2π

∫ 2π

0

f(eiθ) dθ +
1

2π

∫ 1

−1

f(x)√
1− x2

dx+
f(1) + f(−1)

4

and for the variance in (2.7) we have

− 1

8π2

∫
C

d2z1

∫
C

d2z2∆f(z1)∆g(z2)

∫ ∞
0

dη1

∫ ∞
0

dη2V (z1, z2, η1, η2)

=
1

4π
〈∇g(·),∇f〉L2(D) +

1

2
〈g(·), f〉Ḣ1/2(∂D),

(4.2)

so that together with contribution from V (z1, z2, η1, η2) in (3.10) we have

1

4π
〈∇g +∇g(·),∇f〉L2(D) +

1

2
〈g + g(·), f〉Ḣ1/2(∂D)

=
1

2π
〈∇Psymg,∇Psymf〉L2(D) + 〈Psymg, Psymf〉Ḣ1/2(∂D).

.

The identities (4.1)–(4.2) will be proven separately below. The other two modifications
concern the error terms in (3.9) and (3.11). Namely, there is an additional factor includ-
ing (=zl)−2 (cf. [22, Eqs. (3.13), (3.15)]), and, finally, (3.13) holds under the additional
assumption that |zl − zm| ≥ n−ωd , and |zl − zl| ≥ n−ωd (cf. [22, Prop. 3.5]). Both these
issues can be handled in the same way as the constraints on |zl − zm| have been treated
in [22, Section 4] (see e.g. [22, Eq. (4.11)]). This means that we additionally exclude
the regimes of negligible volume |zl − zm| < n−ωd or |zl − zl| < n−ωd from the dz1 . . . dzp-
integral in [22, Eqs. (4.10), (4.22)] using the almost optimal a priori bound from [22,
Lemma 4.3].

Proof of (4.1). With the short-hand notation z = x+ iy, we compute∫ ∞
0

i

4n
∂η log

(
1− u2 + 2u3|z|2 − u2(z2 + z2)

)
dη

= − i

4n

{
log 4 + 2 log|y|, |z| ≤ 1,

log
∣∣(x2 + y2)2 + 1− 2(x2 − y2)

∣∣− log
∣∣(x2 + y2)2

∣∣, |z| > 1,

(4.3)
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Fluctuation around the circular law

using that u = 1 +O(η) for |z| ≤ 1 and u = |z|−2 +O(η) for |z| > 1, so that for (4.1) we
need to compute

1

4

∫
C

∆f(z)
[
(log 4 + 2 log|y|)1(|z| ≤ 1) + (log|z− 1|2 + log|z+ 1|2− 2 log|z|2)1(|z| ≥ 1)

]
d2z.

(4.4)
We may assume that f is symmetric with respect to the real axis, i.e. f = Psymf with Psym

as in (2.6) since Ln(f − Psymf) = 0 by symmetry of the spectrum and therefore Ln(f) =

Ln(Psymf). Since the functions in (4.4) are singular we introduce an ε-regularisation
which enables us to perform integration by parts. In particular, the integral in (4.4) is
equal to the ε→ 0 limit of∫

C

∂z∂zf(z)
[
(log 4 + 2 log|y|)1(|z| ≤ 1, |y| ≥ ε)

+ (log|z − 1|2 + log|z + 1|2 − 2 log|z|2)1(|z| ≥ 1, |z ± 1| ≥ ε)
]

d2z,

(4.5)

where |z±1| ≥ ε denotes that |z−1| ≥ ε and |z+1| ≥ ε, and we used that the contribution
from the regimes |y| ≤ ε and |z±1| ≤ ε are negligible as ε→ 0. In the following equalities
should be understood in the ε→ 0 limit.

Since

log|z − 1|2 + log|z + 1|2 − 2 log|z|2 = log 4 + 2 log|y|

for |z| = 1, when integrating by parts in (4.5), the terms where either 1(|z| ≤ 1) or
1(|z| > 1) are differentiated are equal to zero, using that

∂z1(|z| ≥ 1) d2z =
i

2
1(|z| = 1) dz. (4.6)

We remark that (4.6) is understood in the sense of distributions, i.e. the equality holds
when tested against compactly supported test functions f :

−
∫
C

∂zf(z)1(|z| ≥ 1) d2z =
i

2

∫
|z|=1

f(z) dz.

Moreover, with a slightly abuse of notation in (4.6) by 1(|z| = 1) dz we denote the clock-
wise contour integral over the unit circle. This notation is used in the remainder of this
section.

Then, performing integration by parts with respect to ∂z, we conclude that (4.5) is
equal to

−
∫
C

∂zf(z)

[
i

y
1(|z| ≤ 1, |y| ≥ ε) +

(
1

z − 1
+

1

z + 1
− 2

z

)
1(|z| ≥ 1, |z ± 1| ≥ ε)

]
d2z.

(4.7)
In order to get (4.7) we used that

|∂zf(x+ iε)− ∂zf(x− iε)| · |log ε| . εδ
′
,

for some small fixed δ′ > 0, by f ∈ H2+δ, and similarly all the other ε-boundary terms
tend to zero. This implies that when the ∂z derivative hits the ε-boundary terms then
these give a negligible contribution as ε → 0. We now consider the two terms in (4.7)
separately.

Since the integral of y−1 over D is zero we can rewrite the first term in (4.7) as

−
∫
C

∂z(f(z)− f(x))
i

y
1(|z| ≤ 1, |y| ≥ ε) d2z.
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Then performing integration by parts we conclude that the first term in (4.7) is equal to

− 1

2

∫
D

f(x+ iy)− f(x)

y2
dxdy − i

2

∫ 2π

0

f(eiθ)− f(cos θ)

sin θ
e−iθ dθ (4.8)

where we used that ∣∣∣∣f(x, ε)− 2f(x, 0) + f(x,−ε)
ε

∣∣∣∣ . εδ
′
,

to show that the terms when the ∂z derivative hits the ε-boundary terms go to zero as
ε → 0. Note that the integrals in (4.8) are absolutely convergent since f is symmetric
with respect to the real axis. For the second term in (4.8) we further compute∫ 2π

0

f(eiθ)− f(cos θ)

sin θ
e−iθ dθ =

∫ 2π

0

f(eiθ)− f(cos θ)

sin θ
(cos θ − i sin θ) dθ

= −i

∫ 2π

0

(
f(eiθ)− f(cos θ)

)
dθ

(4.9)

where we used that the term with cos θ/ sin θ is zero by symmetry.
With defining the domain

Ωε := {|z| ≥ 1} ∩ {|z ± 1| ≥ ε},

the second term in (4.7) is equal to

−
∫

Ωε

∂zf(z)

(
1

z − 1
+

1

z + 1
− 2

z

)
d2z. (4.10)

Since
1

z − 1
+

1

z + 1
− 2

z
is anti-holomorphic on Ωε, performing integration by parts with respect to ∂z in (4.10),
we obtain

−
∫

Ωε

∂zf(z)

(
1

z − 1
+

1

z + 1
− 2

z

)
d2z =

i

2

∫
∂Ωε

f(z)

(
1

z − 1
+

1

z + 1
− 2

z

)
dz. (4.11)

Taking the limit ε→ 0 in the r.h.s. of (4.11) we conclude

lim
ε→0

i

2

∫
∂Ωε

f(z)

(
1

z − 1
+

1

z + 1
− 2

z

)
dz =

π

2

[
f(1) + f(−1)

]
−
∫ 2π

0

f(eiθ) dθ

+ lim
ε→0

(∫ π−ε

ε

+

∫ 2π−ε

π+ε

)
f(eiθ)

e−2iθ

e−2iθ − 1
dθ.

(4.12)

The last term in (4.12) simplifies to

lim
ε→0

(∫ π−ε

ε

+

∫ 2π−ε

π+ε

)
f(eiθ)

e−2iθ

e−2iθ − 1
dθ = lim

ε→0

(∫ π−ε

ε

+

∫ 2π−ε

π+ε

)
f(eiθ)

[ i

2

cos θ

sin θ
+

1

2

]
dθ

=
1

2

∫ 2π

0

f(eiθ) dθ,

(4.13)

by symmetry. By combining (4.8)–(4.13) we conclude (4.1).

Proof of (4.2). By change of variables z2 → z2 we can then write∫
C

d2z1

∫
C

d2z2

∫ ∞
0

dη1

∫ ∞
0

dη2∆f(z1)∆g(z2)V (z1, z2, η1, η2)

=

∫
C

d2z1

∫
C

d2z2

∫ ∞
0

dη1

∫ ∞
0

dη2∆f(z1)∆g(z2)V (z1, z2, η1, η2)

(4.14)

such that [22, Lemma 4.8] is applicable and (4.2) follows.
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Fluctuation around the circular law

5 Local law away from the imaginary axis: proof of Theorem 3.1

The goal of this section is to prove a local law for G = Gz(w) for z in the bulk, as
stated in Theorem 3.1. We do not follow the precise ε-dependence in the proof explicitly
but it can be checked from the arguments below that Cε = ε−100 clearly suffices. We
denote the unique solution to the deterministic matrix equation (see e.g. [1])

− 1 = S[M ]M + ZM + wM, Z :=

(
0 z

z 0

)
, =M > 0, =w > 0 (5.1)

by M = Mz(w), where we recall the definition of S from (3.15). The solution to (5.1)
is given by (3.4). To keep notations compact, we first introduce a commonly used (see,
e.g. [28]) notion of high-probability bound.

Definition 5.1 (Stochastic Domination). If

X =
(
X(n)(u)

∣∣∣ n ∈ N, u ∈ U (n)
)

and Y =
(
Y (n)(u)

∣∣∣ n ∈ N, u ∈ U (n)
)

are families of non-negative random variables indexed by n, and possibly some parameter
u in a set U (n), then we say that X is stochastically dominated by Y , if for all ε,D > 0 we
have

sup
u∈U(n)

P
[
X(n)(u) > nεY (n)(u)

]
≤ n−D

for large enough n ≥ n0(ε,D). In this case we use the notation X ≺ Y . Moreover, if we
have |X| ≺ Y for families of random variables X,Y , we also write X = O≺(Y ).

Let us assume that some a-priori bounds

|〈x, (G−M)y〉| ≺ Λ, |〈A(G−M)〉| ≺ ξ (5.2)

for some deterministic control functions Λ and ξ depending on w, z have already been
established, uniformly in x,y, A under the constraint ‖x‖, ‖y‖, ‖A‖ ≤ 1. From the
resolvent equation 1 = (W − Z − w)G we obtain

− 1 = −WG+ ZG+ wG = S[G]G+ ZG+ wG−WG, (5.3)

where we introduced the self-renormalisation, denoted by underlining, of a random
variable of the form Wf(W ) for some regular function f as

Wf(W ) := Wf(W )− ẼW̃ (∂
W̃
f)(W ), W̃ =

(
0 X̃

X̃∗ 0

)
, X̃ ∼ GinC, (5.4)

with X̃ independent of X. The choice of defining the self-renormalisation in terms of the
complex rather than real Ginibre ensemble has the consequence that an additional error
term needs to be estimated. For real Ginibre we have

EWG = −ES[G]G−E T [G]G, T

[(
a b

c d

)]
=

1

n

(
0 ct

bt 0

)
,

but the renormalisation comprises only the S[G] term, i.e.

WG = WG+ ES[G]G,

thus the T -term needs to be estimated. By the Ward identity GG∗ = G∗G = η−1=G it
follows that

|〈x, T [G]Gy〉| ≤ 1

n

√
〈x, GG∗x〉

√
〈y, G∗Gy〉 =

1

nη

√
〈x,=Gx〉

√
〈y,=Gy〉 ≺ Λ + ρ

nη
, (5.5)
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where ρ := π−1=m from (3.3). By [29, Theorem 4.1] it follows that

|〈x, (WG+ S[G]G+ T [G]G)y〉| ≺

√
ρ+ Λ

nη
, |〈A(WG+ S[G]G+ T [G]G)〉| ≺ ρ+ Λ

nη

and therefore, together with the bound (5.5) on the T -term we obtain

|〈x,WGy〉| ≺

√
ρ+ Λ

nη
, |〈AWG〉| ≺ ρ+ Λ

nη
. (5.6)

We now consider the stability operator B := 1−MS[·]M which expresses the stability
of (5.1) against small perturbations. Since S only depends on the four block traces of
the input matrix, and M is a multiple of the identity matrix in each block, the operator
B can be understood as an operator acting on 2 × 2 matrices after taking a partial
trace. Henceforth for all practical purposes we may identify B with this four dimensional
operator. Written as a 4× 4 matrix, it is given by

B =

(
B1 0

B2 1

)
, B1 =

(
1− u2|z|2 −m2

−m2 1− u2|z|2
)
, B2 =

(
muz muz

muz muz

)
, (5.7)

with m,u defined in (3.2)–(3.4). Here the rows and columns of B are ordered in such a
way that 2× 2 matrices are mapped to vectors as in

(
a b

c d

)
⇒


a

d

b

c

 .

We first record some spectral properties of B in the following lemma, the proof of which
we defer to the end of the section. Note that B∗ refers to the adjoint of B with respect to
the scalar product 〈A,B〉 = (2n)−1TrA∗B, for any deterministic matrices A,B ∈ C2n×2n.

Lemma 5.2. Let w ∈ H, z ∈ C be bounded spectral parameters, |w|+ |z| . 1. Then the
operator B has the trivial eigenvalues 1 with multiplicity 2, and furthermore has two
non-trivial eigenvalues, and left and right eigenvectors

B[E−] = (1 +m2 − u2|z|2)E− B∗[E−] = (1 +m2 − u2|z|2)E−,

B[Vr] = (1−m2 − u2|z|2)Vr, B∗[Vl] = (1−m2 − u2|z|2)Vl,

where E− := (E1 − E2)/
√

2 and

E1 :=

(
1 0

0 0

)
, E2 :=

(
0 0

0 1

)
, Vr :=

(
m2 + u2|z|2 −2muz

−2muz m2 + u2|z|2
)
, Vl :=

1

〈Vr〉
.

(5.8)
Moreover, for the second non-trivial eigenvalue we have the lower bound

|1−m2 − u2|z|2| &

{
=m, |1− |z|| ≥ ε,
(=m)2, |1− |z|| < ε.

(5.9)

Corresponding to the two non-trivial eigenvalues of B we define the spectral projec-
tions

P∗ := 〈E−, ·〉E−, P := 〈Vl, ·〉Vr, Q∗ := 1− P∗, Q := 1− P∗ − P.

From (5.1) and (5.3) it follows that

B[G−M ] = MS[G−M ](G−M)−MWG. (5.10)
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We now distinguish the two cases ρ ∼ 1 and ρ� 1. In the former we obtain

‖Q∗B−1‖‖·‖→‖·‖ .
1

|1−m2 − u2|z|2|
. 1 (5.11)

by (5.9). Since 〈E−, G〉 = 〈E−,M〉 = 0 by block symmetry, it follows that

G−M = Q∗[G−M ] = Q∗B−1B[G−M ]

and thus

〈x, (G−M)y〉 = Tr
[
(Q∗B−1)∗[xy∗]

]∗ B[G−M ]

=

4∑
i=1

〈xi, (MS[G−M ](G−M)−MWG)yi〉

= O≺

(
ξΛ +

√
ρ+ Λ

nη

)
,

(5.12a)

where we used that the image of xy∗ under (Q∗B−1)∗ is of rank at most 4, hence it can
be written as

∑4
i=1 xiy

∗
i with vectors of bounded norm. Similarly, for general matrices A

we find

〈A(G−M)〉 = 〈
[
(QB−1)∗[A∗]

]∗ B[G−M ]〉

= 〈
[
(Q∗B−1)∗[A∗]

]∗
(MS[G−M ](G−M)−MWG)〉

= O≺
(
ρ+ Λ

nη
+ ξ2

)
.

(5.12b)

In the complementary case ρ� 1 we similarly decompose

G−M = P[G−M ] + P∗[G−M ] +Q[G−M ] = θVr +Q[G−M ], θ := 〈Vl, G−M〉.
(5.13)

Now we apply B to both sides of (5.13) and take the inner product with Vl to obtain

〈Vl,B[G−M ]〉 = (1−m2 − u2|z|2)θ + 〈Vl,BQ[G−M ]〉 (5.14)

from (5.10). For the spectral projection Q we find

B−1Q = QB−1 =

(
0 0

B3 1

)
, B3 =

mu

m2 + u2|z|2

(
z z

z z

)
. (5.15)

Thus it follows that

‖B−1Q‖‖·‖→‖·‖ .
|muz|

|m2 + u2|z|2|
. 1 (5.16)

since in the regime ρ� 1 we have |1−m2 − u2|z|2| � 1 due to |=u2| � 1 which follows
by a simple calculation.

By using (5.10) in (5.14) it follows that

|θ| ≺ 1

ρ

(ρ+ Λ

nη
+ ξ2

)
(5.17)

from (5.2), (5.6) since, due to ||z|−1| & ε, we have |1−m2−u2|z|2| ≥ ρ according to (5.9).
For general vectors x,y it follows from (5.13), (5.17) and inserting 1 = B−1B similarly
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to (5.12) that

〈x, (G−M)y〉 = O≺
(
ρ+ Λ

ρnη
+
ξ2

ρ

)
+ 〈
[
(QB−1)∗[xy∗]

]∗ B[G−M ]〉

= O≺
(
ρ+ Λ

ρnη
+
ξ2

ρ

)
+

4∑
i=1

〈xi, (MS[G−M ](G−M)−MWG)yi〉

= O≺

(
ρ+ Λ

ρnη
+
ξ2

ρ
+ ξΛ +

√
ρ+ Λ

nη

)
,

(5.18a)

and

〈A(G−M)〉 = O≺
(
ρ+ Λ

ρnη
+
ξ2

ρ

)
+ 〈
[
(QB−1)∗[A∗]

]∗ B[G−M ]〉

= O≺
(
ρ+ Λ

ρnη
+
ξ2

ρ

)
+ 〈
[
(QB−1)∗[A∗]

]∗
(MS[G−M ](G−M)−MWG)〉

= O≺
(
ρ+ Λ

ρnη
+
ξ2

ρ

)
.

(5.18b)

By using the bounds in (5.12) and (5.18) in the two complementary regimes we
improve the input bound in (5.2). We can iterate this procedure and obtain

|〈x, (G−M)y〉| ≺ 1

nη
+

√
ρ

nη
, |〈A(G−M)〉| ≺ 1

nη
. (5.19)

In order to make sure the iteration yields an improvement one needs an priori bound
on ξ of the form ξ � 1 since otherwise ξ2 is difficult to control. For large η such
an a priori bound is trivially available which can then be iteratively bootstrapped by
monotonicity down to the optimal η � n−1. For details on this standard argument the
reader is referred to e.g. [4, Section 3.3]. Then the local law for any η > 0 readily
follows by exactly the same argument as in [23, Appendix A]. This completes the proof
of Theorem 3.1.

Proof of Lemma 5.2. The fact that B has the eigenvalue 1 with multiplicity 2, and the
claimed form of the remaining two eigenvalues and corresponding eigenvectors can be
checked by direct computations. Taking the imaginary part of (3.2) we have

(1− |m|2 − |u|2|z|2)=m = (|m|2 + |u|2|z|2)=w, (5.20)

which implies

|m|2 + |u|2|z|2 < 1, lim
=w→0

(|m|2 + |u|2|z|2) = 1, <w ∈ supp ρ (5.21)

as =m and =w have the same sign. Here supp ρ should be understood as the support of
the self-consistent density of states, as defined in (3.3), restricted to the real axis. The
second bound in (5.9) then follows from (5.21) and

|1−m2 − u2|z|2| ≥ <(1−m2 − u2|z|2) = 1− (<m)2 + (=m)2 −<(u2)|z|2 & (=m)2. (5.22)

The bound (5.22) can be improved in the case ρ� 1 if w is near a regular edge of ρ,
i.e. where ρ locally vanishes as a square-root. According to [24, Eq. (15b)] the density
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ρ has two regular edges ±√e+ if |z| ≤ 1− ε, and four regular edges in ±√e+,±
√
e− for

|z| ≥ 1 + ε, where

e± :=
8(1− |z|2)2 ± (1 + 8|z|2)3/2 − 36(1− |z|2) + 27

8|z|2
& 1.

By the explicit form of e± it follows that e± & 1 whenever |1 − |z|| ≥ ε. In contrast, if
|z| = 1, then ρ has a cusp singularity in 0 where it locally vanishes like a cubic root. Near
a regular edge we have =m .

√
=w, and therefore from (5.20)

(1− |m|2 − |u|2|z|2) &
√
=w & =m

and it follows that
|1−m2 − u2|z|2| & =m,

proving also the first inequality in (5.9).

6 CLT for resolvents: proof of Proposition 3.3

The goal of this section is to prove the CLT for resolvents, as stated in Proposition 3.3.
The proof is very similar to [22, Section 6] and we focus on the differences specific to
the real case. Within this section we consider resolvents G1, . . . , Gp with Gi = Gzi(iηi)

and ηi ≥ n−1. As a first step we recall the leading-order approximation of G = Gi

〈G−M〉 = −〈WGA〉+O≺
(

1

|β|(nη)2

)
, A := (B∗)−1[1]∗M (6.1)

from [22, Eq. (6.9)], where the stability operator B has been defined in (5.7). Here β is
the eigenvalue of B with eigenvector (1, 1, 0, 0) and is bounded by (see [22, Eq. (6.8b)])

|β| & |1− |z||+ η2/3. (6.2)

One important input for the proof of Proposition 3.3 is a lower bound on the eigenvalues
of the stability operator B̂, defined in (3.14), the proof of which we defer to the end of
the section. Note that the two-body stability operator B̂ and its eigenvalues β̂, β̂∗ are
consistently decorated by hats (̂·) to distinguish them from their one-body analogues B, β.
We will consistently equip B, B̂ and their eigenvalues, β, β̂, β̂∗ with indices when instead
of M they are defined with the help of Mi = Mzi(wi); e.g. β̂1i

∗ is the lowest eigenvalue of
B̂1i = B̂(z1, zi, w1, wi) defined analogously to (3.14).

Lemma 6.1. For z1, z2 ∈ C, w1, w2 ∈ C \ R such that |zi|, |wi| . 1 the two non-trivial
eigenvalues β̂, β̂∗ of B̂ satisfy

min{<β̂,<β̂∗} & |z1 − z2|2 + min{|w1 + w2|, |w1 − w2|}2 + |=w1|+ |=w2| (6.3)

Proof of Proposition 3.3. The proof of Proposition 3.3 goes in two steps. First, we
use (6.1) and a cumulant expansion in order to prove the asymptotic representation of
the expectation in (3.11). In the second step we then turn to the computation of higher
moments and establish an asymptotic Wick theorem in the form of (3.8).

We use the notation ∆ab for the matrix (∆ab)cd = δacδbd and decompose W =∑
ab wab∆

ab. For each a, b we then perform a cumulant expansion and obtain

E〈WGA〉 = − 1

n

∑′

ab

E〈∆abG∆abGA〉+
∑
k≥2

∑
ab

∑
α∈{ab,ba}k

κ(ab,α)

k!
E ∂α〈∆abGA〉, (6.4)

which has an additional term compared to the complex case [22, Eq. (6.11)] since
the self-renormalisation (5.4) was chosen such that it only takes the κ(ab, ba) = 1 and
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Fluctuation around the circular law

not the κ(ab, ab) = 1 cumulant into account. Here κ(ab, cd, ef, . . .) denotes the joint
cumulant of the random variables wab, wcd, wef , . . ., and we denote partial derivatives by
∂α := ∂wα1

· · · ∂wαk for tuples α = (α1, . . . , αk), with αi ∈ [n]× [n]. In (6.4) we introduced
the notation ∑′

ab

:=
∑
a≤n

∑
b>n

+
∑
a>n

∑
b≤n

.

We note that by Assumption 2.1 the cumulants κ(α1, . . . , αk) satisfy the scaling

|κ(α1, . . . , αk)| . n−k/2. (6.5)

For the second term in (6.4) we find exactly as in [22, Eqs. (6.13)–(6.10)] that∑
k≥2

∑
ab

∑
α∈{ab,ba}k

κ(ab,α)

k!
∂α〈∆abGA〉 =

iκ4

4n
∂η(m4) +O≺

(
1

|β|

( 1

n3/2(1 + η)
+

1

(nη)2

))
.

(6.6)
For the first term in (6.4), which is new compared to [22, Eq. (6.11)], we rewrite

1

n

∑′

ab

〈∆abG∆abGA〉 =
1

n
〈GAEGtE′〉 =

1

n
〈GzAEGzE′〉,

where we used that (Gz)t = Gz, and the convention that formulas containing (E,E′)

are understood so that the matrices E,E′ are summed over the assignments (E,E′) =

(E1, E2) and (E,E′) = (E2, E1) with

E1 :=

(
1 0

0 0

)
E2 :=

(
0 0

0 1

)
.

From the local law [22, Theorem 5.2] for products of resolvents and the bound on |β̂∗|
from Lemma 6.1 we can thus conclude

1

n

∑′

ab

〈∆abG∆abGA〉 =
1

n
〈Mz,z

AEE
′〉+O≺

(
1

|z − z|2
1

(nη)2

)

=
m

n

m4 +m2u2|z|2 − 2u4|z|4 + 2u2(x2 − y2)

(1−m2 − u2|z|2)(1 + u4|z|4 −m4 − 2u2(x2 − y2))

+O≺

(
1

|z − z|2
1

(nη)2

)
,

(6.7)

where z = x+ iy, and the second step follows by explicitly computing the inverse

Mz,z
AE = (1−MzS[·]Mz)−1[MzAEMz]

in terms of the entries of M , noting that mz = mz and uz = uz. Then, using the definition
v := −im > 0 and that

|z|2u2 + v2 = u, u′ = − 2uv

1 + u− |z|2u2
, v2 = u(1− |z|2u)

we obtain

m
m4 +m2u2|z|2 − 2u4|z|4 + 2u2(x2 − y2)

(1−m2 − u2|z|2)(1 + u4|z|4 −m4 − 2u2(x2 − y2))

= − iu′

2

u− 3|z|2u2 + 2u(x2 − y2)

1− u2 + 2u3|z|2 − 2u2(x2 − y2)
.

(6.8)
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Now (3.11) follows from combining (6.1) and (6.4)–(6.8).
We now turn to the computation of higher moments for which we recall from (6.1)

and (3.11) that ∏
i∈[p]

〈Gi −EGi〉 =
∏
i∈[p]

〈Gi −Mi − Ei〉+O≺
(
ψ

nη

)

=
∏
i∈[p]

〈−WGiAi − Ei〉+O≺
(
ψ

nη

) (6.9)

with Ai as in (6.1) and Ei as in (3.12), and

ψ :=
∏
i

( 1

|βi|
+

1

(=zi)2

) 1

nηi
≤
∏
i

( 1

|1− |zi||
+

1

(=zi)2

) 1

nηi
(6.10)

with the bound on βi from (6.2). We begin with the cumulant expansion of WG1 to obtain

E
∏
i∈[p]

〈−WGiAi − Ei〉

= E

(
1

n

∑′

ab

〈∆abG1∆abG1A1〉 − 〈E1〉
)∏
i 6=1

〈−WGiAi − Ei〉

+
∑
i 6=1

EÊ〈ŴG1A1〉〈ŴGiAi −WGiŴGiAi〉
∏
j 6=1,i

〈−WGjAj − Ej〉

+
∑
k≥2

∑
ab

∑
α∈{ab,ba}k

κ(ba,α)

k!
E ∂α

[
〈−∆baG1A1〉

∏
i6=1

〈−WGiAi − Ei〉
]
,

(6.11)

where, compared to [22, Eq. (6.17)], the first line on the rhs. has an additional term
specific to the real case, and Ŵ , as opposed to W̃ in (5.4), is the Hermitisation of an
independent real Ginibre matrix X̂ with expectation Ê. The expansion of the third line
on the rhs. of (6.11) is completely analogous to [22] since for cumulants of degree at
least three nothing specific to the complex case was used. Therefore we obtain, from
combining2 [22, Eqs. (6.26), (6.29)], that∑
k≥2

∑
ab

∑
α∈{ab,ba}k

κ(ba,α)

k!
E ∂α

[
〈−∆baG1A1〉

∏
i 6=1

〈−WGiAi − Ei〉
]

= − iκ4

4n
∂η1(m4

1)E
∏
i 6=1

〈−WGiAi − Ei〉+
∑
i 6=1

κ4U1Ui
2n2

E
∏
j 6=1,i

〈−WGjAj − Ej〉+O
(
nξψ
√
nη∗

)
,

(6.12)

where

Ui := −
√

2〈Mi〉〈MiAi〉 =
i√
2
∂ηim

2
i .

Recall the definition of Ei in (3.12), then using (6.7)–(6.8) and (6.12) in (6.11) we thus
have

E
∏
i∈[p]

〈−WGiAi − Ei〉

=
∑
i6=1

E
(κ4U1Ui

2n2
+ Ê〈ŴG1A1〉〈ŴGiAi −WGiŴGiAi〉

) ∏
j 6=1,i

〈−WGjAj − Ej〉

+O
(
nξψ
√
nη∗

)
.

(6.13)

2Note that the definition of E in [22, Eq. (6.8c)] differs from (3.12) in the present paper.

EJP 26 (2021), paper 24.
Page 23/61

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP591
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Fluctuation around the circular law

It remains to consider the variance term in (6.13) for which we use the identity

Ê〈ŴA〉〈ŴB〉 =
1

2n2
〈AE(B +Bt)E′〉 =

〈AE1(B +Bt)E2〉+ 〈AE2(B +Bt)E1〉
2n2

(6.14)

in order to compute

Ê〈ŴG1A1〉〈ŴGiAi −WGiŴGiAi〉

=
1

2n2
〈G1A1E(GiAi +AtiG

t
i)E
′ −G1A1E(GiAiWGi +GtiWAtiG

t
i)E
′〉,

(6.15)

where, compared to [22, Eqs. (6.18)–(6.19)], there is an additional term with transposi-
tion. Here the self-renormalisation e.g. in GiAiWGi is defined analogously to (5.4) with
the derivative acting on both Gi’s. For the second term in (6.15) we identify the leading
order contribution using the fact that Gz(w)t = Gz(w) and denoting Gi = Gzi(iηi) as

〈G1A1E(GiAiWGi +GtiWAtiG
t
i
)E′〉 = −〈G1S[G1A1EGiAi]GiE

′ +G1S[G1A1EGi]A
t
iGiE

′〉

+ 〈G1A1EGiAiWGiE
′ +G1A1EGiWAtiGiE

′〉
(6.16)

for which we use the local law from Theorem 3.5 to conclude that the main terms
in (6.15) are

〈G1A1E(GiAi +AtiGi)E
′ +G1S[G1A1EGiAi]GiE

′ +G1S[G1A1EGi]A
t
iGiE

′〉

= V̂1,i +O≺

(
1

n|β̂1i
∗ |

2
η1i
∗ |η1ηi|1/2

+
1

n2|β̂1i
∗ |

2
(η1i
∗ )2|η1ηi|

)
V̂1,i := 〈Mz1,zi

A1E
AiE

′ +Mz1,zi
A1EAti

E′ + S[Mz1,zi
A1E

Ai]M
zi,z1
E′ + S[Mz1,zi

A1E
]AtiM

zi,z1
E′ 〉,

(6.17)

where |β̂1i
∗ | & |z1−zi|2 from Lemma 6.1, and η1i

∗ := min{η1, ηi}. By an explicit computation
similarly to [22, Eq. (6.23)] it follows that

V̂1,i = V (z1, zi, η1, ηi) + V (z1, zi, η1, ηi) (6.18)

with V being exactly as in the complex case, i.e. as in (3.10). For the error term in (6.16)
we claim that

E|〈G1A1EGiAiWGiE
′〉|2 + E|〈G1A1EGiWAtiGiE

′〉|2 .
( 1

nη1ηiη1i
∗

)2

. (6.19)

The CLT for resolvents, as stated in (3.8) follows from inserting (6.15)–(6.19) into (6.13),
and iteration of (6.13) for the remaining product.

In order to conclude the proof of Proposition 3.3 it remains to prove (6.19). Introduce
the shorthand notation Gi1i for generic finite sums of products of Gi, G1, Gi (or Gi
in place of Gi) with arbitrary bounded deterministic matrices, e.g. GiE′G1A1EGiAi
appearing in the first term in (6.19). We will prove the more general claim

E|〈WGi1i〉|2 .
( 1

nη1ηiη1i
∗

)2

. (6.20)

The proof is similar to [22, Eq. (6.32)]. Therefore we focus on the differences. In the
cumulant expansion of (6.20) there is an additional term compared to [22, Eq. (6.33)]
given by

1

n

∑′

ab

E〈∆abGi∆
abGi1i + ∆abGi1∆abG1i + ∆abGi1i∆

abGi〉〈WGi1i〉

=
1

n
E〈G1iii +Gi1i1〉〈WGi1i〉,

(6.21)
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where we combined two terms of type G1iii into one since in our convention G1iii is a
short-hand notation for generic sums of products. We now perform another cumulant
expansion of (6.21) to obtain

1

n
E〈G1iii +Gi1i1〉〈WGi1i〉

=
1

n2
E〈G1iii +Gi1i1〉2

+
1

n
EẼ〈W̃ (G1iii1 +Giii1i +Gii1ii +Gi1iii +G1i1i1 +Gi1i1i)〉〈W̃Gi1i〉

+
∑
k≥2

O
(

1

n(k+3)/2

)∑′

ab

∑
α∈{ab,ba}k

E ∂α

[
〈G1iii +Gi1i1〉〈∆abGi1i〉

]
,

(6.22)

where the first line on the rhs. corresponds to the term where the remaining W acts on
Gi1i within its own trace as in (6.21), and in the last line we used the scaling bound (6.5)
for κ. In order to estimate (6.21) we recall [22, Lemma 5.8].

Lemma 6.2. Let w1, w2, . . . , z1, z2, . . . , denote arbitrary spectral parameters with ηi =

=wi > 0. Let Gj = Gzj (wj), then with Gj1...jk we denote generic products of resolvents
Gj1 , . . . , Gjk , or their adjoints/transpositions (in that order, each Gji appears exactly
once) with bounded deterministic matrices in between, e.g. G1i1 = A1G1A2GiA3G1A4.

(i) For j1, . . . jk we have the isotropic bound

|〈x, Gj1...jky〉| ≺ ‖x‖‖y‖
√
ηj1ηjk

( k∏
n=1

ηjn

)−1

. (6.23a)

(ii) For j1, . . . , jk and any 1 ≤ s < t ≤ k we have the averaged bound

|〈Gj1...jk〉| ≺
√
ηjsηjt

( k∏
n=1

ηjn

)−1

. (6.23b)

Since only η1, ηi play a role within the proof of (6.19), we drop the indices from η1i
∗

and use the notation η∗ = η1i
∗ . For the first term in (6.22) we use (6.23b) to obtain

1

n2
|〈G1iii +Gi1i1〉|2 ≺

1

n2η2
1η

2
i η

2
∗
. (6.24)

Similarly for the second term we use (6.14) and again (6.23b) to bound it by

1

n
|Ẽ〈W̃ (G1iii1 +Giii1i +Gii1ii +Gi1iii +G1i1i1 +Gi1i1i)〉〈W̃Gi1i〉|

≺ 1

n3η2
1η

2
i η

3
∗
≤ 1

n2η2
1η

2
i η

2
∗

(6.25)

since η∗ ≥ 1/n. Finally, for the last term of (6.22) we estimate∣∣∣∣∣O
(

1

n(k+7)/2

)∑′

ab

∑
c

∑
α

∂α

[
(G1iii +Gi1i1)cc(Gi1i)ba

]∣∣∣∣∣ ≺ 1

n2η2
1η

2
i η

2
∗

(6.26)

for any k ≥ 2. Indeed, for k ≥ 3 the claim (6.26) follows trivially from (6.23a) and
the observation that the bound (6.23a) remains invariant under the action of deriva-
tives. Indeed, differentiating a term like (Gi1i)ab gives rise to the terms (Gi)aa(Gi1i)bb,
(Gi1)ab(G1i)ab, . . . for all of which (6.23a) gives the same estimate as for (Gi1i)ab since

EJP 26 (2021), paper 24.
Page 25/61

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP591
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Fluctuation around the circular law

the presence of an additional factor of G1 or Gi is compensated by the fact that the same
type of G appears two additional times as the first or last factor in some product. For the
k = 2 case we observe that by parity at least one factor will be off-diagonal in the sense
that it has two distinct summation indices from {a, b, c} giving rise to an additional factor
of (nη∗)

−1/2 by summing up one of the indices with the Ward identity. For example, for
the term with (G1iii)cc(Gi1)bb(G1i)aa(Gi)ba we estimate

n−9/2

∣∣∣∣∣∑′

ab

∑
c

(G1iii)cc(Gi1)bb(G1i)aa(Gi)ba

∣∣∣∣∣ ≺ n−9/2 n

η
3/2
1 η

7/2
i

∑′

ab

|(Gi)ba|

≤ n−3 1

η
3/2
1 η

7/2
i

∑
b

√∑
a

|(Gi)ba|2

= n−3 1

η
3/2
1 η4

i

∑
b

√
(=Gi)bb ≺

1

n2η
3/2
1 η4

i

.

Thus, in general we obtain a bound of

1

n3/2

( 1

η
3/2
1 η

7/2
i

+
1

η
5/2
1 η

5/2
i

) 1
√
nη∗

.
1

n2η2
1η

2
i η

2
∗
.

By combining (6.24)–(6.26) we obtain a bound of (nη1ηiη∗)
−2 on the additional term (6.21).

The remaining terms can be estimated as in [22, Eq. (6.32)] and we conclude the proof
of (6.20) and thereby Proposition 3.3.

Proof of Lemma 6.1. The claim (6.3) is equivalent to the claim

max{<τ,<τ∗} ≤ 1− c
[
|z1 − z2|2 + min{|w1 + w2|2, |w1 − w2|2}+ |=w1|+ |=w2|

]
, c > 0,

(6.27)
where τ, τ∗ are the eigenvalues of the matrix

R :=

(
z1z2u1u2 m1m2

m1m2 z1z2u1u2

)
, (6.28)

thus β̂ = 1− τ , β̂∗ = 1− τ∗. We first check that (6.27) holds true ineffectively, i.e. with
c = 0. We claim that

max< Spec(A) ≤ λmax

(A+A∗

2

)
:= max Spec

(A+A∗

2

)
(6.29)

holds for any square matrix A. Indeed, suppose that Ax = λx, ‖x‖ = 1 and (A+A∗)/2 ≤
M in the sense of quadratic forms. We then compute

0 ≥
〈
x,
(A+A∗

2
−M

)
x

〉
=
〈x, Ax〉+ 〈Ax,x〉

2
−M = <λ−M,

from which (6.29) follows by choosing M to be the largest eigenvalue of (A+A∗)/2.

Since R is such that its entrywise real part is given by <R = (R+R∗)/2, from (6.29)
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we conclude the chain of inequalities

max{<τ,<τ∗} ≤ λmax

(
<(z1z2u1u2) <(m1m2)

<(m1m2) <(z1z2u1u2)

)
(6.30a)

= (<u1u2)(<z1z2) +

√(
|=u1u2||=z1z2|+ |<m1m2|

)2 − 2|=u1u2||=z1z2||<m1m2| (6.30b)

≤ (<u1u2)(<z1z2) + |=u1u2||=z1z2|+ |<m1m2| (6.30c)

≤
∣∣∣(<u1u2)(<z1z2) + |=u1u2||=z1z2|

∣∣∣+ |<m1m2| (6.30d)

=

√
|z1z2u1u2|2 −

(
<u1u2|=z1z2| − <z1z2|=u1u2|

)2
+

√
|m1m2|2 − [=m1m2]2 (6.30e)

≤ |z1z2u1u2|+ |m1m2| (6.30f)

=

√
(|u1z1|2 + |m1|2)(|u2z2|2 + |m2|2)− (|u1z1m2| − |u2z2m1|)2 (6.30g)

≤
√

(|m1|2 + |z1u1|2)(|m2|2 + |z2u2|2) (6.30h)

≤ 1, (6.30i)

where in the last step we used (5.21).
We now assume that for some 0 ≤ ε� 1 we have

max{<τ,<τ∗} ≥ 1− ε2, (6.31)

i.e. that all inequalities in (6.30a)–(6.30i) are in fact equalities up to an ε2 error. The
assertion (6.27) is then equivalent to

|z1 − z2|+ min{|w1 + w2|, |w1 − w2|}+
√
|=w1|+

√
|=w2| . ε, (6.32)

the proof of which we present now.
The fact that (6.30h)–(6.30i) is ε2-saturated implies the saturation

|mi|2 + |ziui|2 = 1 +O(ε2), (6.33)

and, consequently,
|ui| ∼ 1. (6.34)

Indeed, suppose that |ui| � 1, then on the one hand since ui = u2
i |zi|

2 −m2
i , it follows

that |mi| � 1, while on the other hand |1 − |mi|2| � 1 from (6.33) which would be a
contradiction. From (5.20) it follows that

|mi|2 + |ui|2|zi|2 ≤ 1− c=wi,

from which we conclude |=w1|+ |=w2| . ε2, i.e. the bound on the last two terms in (6.32).
The ε2-saturation of (6.30g)–(6.30h) implies that

O(ε) = |u1z1m2| − |u2z2m1| =
√

1− |m1|2|m2| −
√

1− |m2|2|m1|+O(ε2)

=

√
1− |u1z1|2|u2z2| −

√
1− |u2z2|2|u1z1|+O(ε2).

Thus it follows that

|m1| = |m2|+O(ε), |z1u1| = |z2u2|+O(ε). (6.35)

In the remainder of the proof we distinguish the cases

(C1) ε� |z1| and |m1| ∼ 1,
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(C2) |z1| . ε,

(C3) |m1| .
√
ε and |z1| ∼ 1,

(C4)
√
ε� |m1| � 1 and |z1| ∼ 1,

where we note that this list is exhaustive since |z1| � 1 implies |m1| ∼ 1 from (6.33).
In case (C1) we have |z2| ∼ |z1| and |m1| ∼ |m2| ∼ 1 from (6.34)–(6.35). By the

near-saturation of (6.30e)–(6.30f) it follows that =m1m2 = O(ε) and therefore with (6.35)
that

m1 = ±m2 +O(ε), (6.36)

hence |<m1m2| ∼ 1. From the ε2-saturation of (6.30b)–(6.30c) and (6.30e)–(6.30f) it then
follows that

|=u1u2|
∣∣∣∣= z1z2

|z1z2|

∣∣∣∣ = O

(
ε2

|z1|2

)
, (<u1u2)

∣∣∣∣= z1z2

|z1z2|

∣∣∣∣ =
(
< z1z2

|z1z2|

)
|=u1u2|+O

(
ε

|z1|

)
,

(6.37)
and (6.37) implies

|=u1u2|+
∣∣∣∣= z1z2

|z1z2|

∣∣∣∣ . ε

|z1|
. (6.38)

Indeed, the first equality in (6.37) implies that at least one of the two factors is at most
of size ε/|z1| � 1 in which case the second equality implies that the other factor satisfies
the same bound since |u1u2| ∼ 1. Thus there exists some c ∈ R, |c| ∼ 1 such that
z2 = cz1 +O(ε) and u2 = ±|c|−1

u1 +O(ε/|z1|) since the two proportionality constants c
and ±|c|−1 are related by (6.35). On the other hand, from the MDE (3.2) we have that

u2 = u2
2|z2|2 −m2

2 = u1
2|z1|2 −m1

2 +O(ε) = u1 +O(ε) (6.39)

and thus |c| = 1 +O(ε/|z1|). Finally, since (6.30c)–(6.30d) is assumed to be saturated up
to an ε2-error, <u1u2 and <z1z2 have the same sign which, together with (6.39), fixes
c > 0, and we conclude z2 = z1 +O(ε). Finally, with

w2 =
m2

u2
−m2 = ±

(m1

u1
−m1

)
+O(ε) = ±w1 +O(ε) (6.40)

the claim (6.32) follows.
In case (C2) the conclusion z2 = z1 + O(ε) follows trivially from (6.35) and (6.34).

Next, just as in case (C1), we conclude (6.36) and therefore from (3.2) that

u2 = u2
2|z2|2 −m2

2 = −m1
2 +O(ε) = u1 +O(ε),

and thus (6.32) follows just as in (6.40).
Finally, we consider the case |mi| � 1, i.e. (C3) and (C4). If |mi| � 1, then from (6.33),

|1− |ziui|2| � 1, and therefore from (3.2), |1− |ui|| � 1 and consequently |1− ui|zi|2| =
|m2

i /ui| � 1 and |1 − ui| + |1 − |zi|2| � 1. If |m1| .
√
ε, then it follows from (6.35) that

also |m2| .
√
ε. From solving the equation (3.2) for ui we find

ui =
1 +

√
1 + 4|zi|2m2

i

2|zi|2
=

1

|zi|2
+O(|mi|2), (6.41)

where the sign choice is fixed due to |1− ui| � 1.
In case (C3) from |mi| .

√
ε it follows that ui = |zi|−2

+O(ε), and thus with (6.30e),
(6.30f) and <u1u2 ∼ 1 we can conclude

|=z1z2| =
<z1z2

<u1u2
|=u1u2|+O(ε) = O(ε), |=u1u2| = O(ε). (6.42)
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Together with (6.35) and the saturation of (6.30c)–(6.30d), we obtain z1 = z2 + O(ε)

and u1 = u2 + O(ε) by the same argument as after (6.38). Equation (3.2) implies that
m2 = ±m1 +O(ε) and we are able to conclude (6.32) just as in (6.40).

In case (C4) from (6.35) we have |m2| ∼ |m1|. By saturation of (6.30e)–(6.30f) it
follows that

= m1m2

|m1m2|
= O

(
ε

|m1|

)
and therefore, together with (6.35) we conclude that (6.36) also holds in this case. Now
we use the saturation of (6.30b)–(6.30c) to conclude

|=u1u2||=z1z2||<m1m2| . ε2
(
|<m1m2|+ |=u1u2||=z1z2|

)
.

Together with the fact that |=u1u2||=z1z2| . |mi|2 ∼ |<m1m2| from (6.36), (6.41), this
implies |=u1u2||=z1z2| . ε2. Finally, the ε2-saturation of (6.30e)–(6.30f) shows that (6.37)
(with |z1| ∼ |z2| ∼ 1) also holds in case (C4) and we are able to conclude (6.32) just like
in case (C1).

7 Asymptotic independence of resolvents: proof of Proposition 3.4

For any fixed z ∈ C let Hz be defined in (3.1). Recall that we denote the eigenvalues
of Hz by {λz±i}i∈[n], with λz−i = −λzi , and by {wz

±i}i∈[n] their corresponding orthonormal
eigenvectors. As a consequence of the symmetry of the spectrum of Hz with respect to
zero, its eigenvectors are of the form wz

±i = (uzi ,±vzi ), for any i ∈ [n]. The eigenvectors
of Hz are not well defined if Hz has multiple eigenvalues. This minor inconvenience can
be easily solved by a tiny Gaussian regularization (see (7.17) and Remark 7.5 later).

Convention 7.1. We omitted the index i = 0 in the definition of the eigenvalues of Hz.
In the remainder of this section we always assume that all the indices are not zero, e.g
we use the notation

n∑
i=−n

:=

−1∑
i=−n

+

n∑
i=1

,

and we use |i| ≤ A, for some A > 0, to denote 0 < |i| ≤ A, etc.

The main result of this section is the proof of Proposition 3.4 which follows by
Proposition 7.2 and the local law in Theorem 3.1.

Proposition 7.2 (Asymptotic independence of small eigenvalues of Hzl). Fix p ∈ N, and
let {λzl±i}ni=1 be the eigenvalues of Hzl , with l ∈ [p]. For any ωd, ωh, ωf > 0 sufficiently
small constants such that ωh � ωf � ωd � 1, there exist constants ω, ω̂, δ0, δ1 > 0, with
ωh � δm � ω̂ � ω � ωf , for m = 0, 1, such that for any fixed z1, . . . , zp ∈ C so that
|zl| ≤ 1− n−ωh , |zl − zm|, |zl − zm|, |zl − zl| ≥ n−ωd , with l,m ∈ [p], l 6= m, it follows that

E

p∏
l=1

1

n

∑
|il|≤nω̂

ηl
(λzlil )

2 + η2
l

=

p∏
l=1

E
1

n

∑
|il|≤nω̂

ηl
(λzlil )

2 + η2
l

+O

(
nω̂

n1+ω

p∑
l=1

1

ηl
×

p∏
m=1

(
1 +

nξ

nηm

)
+
npξ+2δ0nωf

n3/2

p∑
l=1

1

ηl
+
npδ0+δ1

nω̂

)
,

(7.1)

for any ξ > 0, where η1, . . . , ηp ∈ [n−1−δ0 , n−1+δ1 ] and the implicit constant in O(·) may
depend on p.
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Proof of Proposition 3.4. Let ρzl be the self consistent density of states of Hzl , and define
its quantiles γzli by

i

n
=

∫ γ
zl
i

0

ρzl(x) dx, i ∈ [n],

and γzl−i = −γzli for i ∈ [n]. Then, using the local law in Theorem 3.1, by standard
application of Helffer-Sjöstrand formula (see e.g. [28, Lemma 7.1, Theorem 7.6] or [32,
Section 5] for a detailed derivation), we conclude the following rigidity bound

|λzli − γ
zl
i | ≤

n100ωh

n
, |i| ≤ n1−10ωh , (7.2)

with very high probability, uniformly in |zl| ≤ 1 − n−ωh . Then Proposition 3.4 follows
by Proposition 7.2 and (7.2) exactly as in [22, Section 7.1]. We remark that in the
current case we additionally require that |zl − zm|, |zl − zl| & n−ωd compared to [22,
Proposition 7.2], but this does not cause any change in the proof in [22, Section 7.1].

Section 7 is divided as follows: in Section 7.1 we state the main technical results
needed to prove Proposition 7.2 and conclude its proof. In Section 7.2 we prove Theo-
rem 2.8, which will follow by the results stated in Section 7.1. In Section 7.3 we estimate
the overlaps of eigenvectors, corresponding to small indices, of Hzl , Hzm for l 6= m; this
is the main input to prove the asymptotic independence in Proposition 7.2. In Section 7.4
and Section 7.6 we prove several technical results stated in Section 7.1. In Section 7.5
we present Proposition 7.14 which is a modification of the path-wise coupling of DBMs
close to zero from [22, Proposition 7.14] to the case when the driving martingales in the
DBM have a small correlation. This is needed to deal with the (small) correlation of λzl ,
the eigenvalues of Hzl , for different l’s.

7.1 Overview of the proof of Proposition 7.2

The main result of this section is the proof Proposition 7.2, which is essentially about
the asymptotic independence of the eigenvalues λzli , λzmj , for l 6= m and small indices
i and j. We do not prove this feature directly, instead we will compare λzli , λzmj with
similar eigenvalues µ(l)

i , µ(m)
j coming from independent Ginibre matrices, for which

independence is straightforward by construction. The comparison is done by exploiting
the strong local equilibration of the Dyson Brownian motion (DBM) in several steps. For
convenience, we record the sequence of approximations in Figure 1. We remark that
z1, . . . , zp are fixed as in Proposition 7.2 throughout this section.

First, via a standard Green’s function comparison argument (GFT) in Lemma 7.3 we
prove that we may replace X by an i.i.d. matrix with a small Gaussian component. In
the next step we make use of this Gaussian component and interpret the eigenvalues
λz of Hz as the short-time evolution λz(t) of the eigenvalues of an auxiliary matrix Hz

t

according to the Dyson Brownian motion. Proposition 7.2 is thus reduced to proving
asymptotic independence of the flows λzl(t) for different l ∈ [p] after a short time
t = tf , a bit bigger than n−1. The corresponding DBM describing the eigenvalues of Hz

t

(see (7.14) later) differs from the standard DBM in two related aspects: (i) the driving
martingales are weakly correlated, (ii) the interaction term has a coefficient slightly
deviating from one. Note that the stochastic driving terms bi in (7.14) are martingales
but not Brownian motions (see Appendix B for more details). Both effects come from
the small but non-trivial overlap of the eigenvectors wzl

i with wzl
j . They also influence

the well-posedness of the DBM, so an extra care is necessary. We therefore define two
comparison processes. First we regularise the DBM by (i) setting the coefficient of
the interaction equal to one, (ii) slightly reducing the diffusion term, and (iii) cutting
off the possible large values of the correlation. The resulting process, denoted by λ̊(t)
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(see (7.22) later), will be called the regularised DBM. Second, we artificially remove the
correlation in the driving martingales for large indices. This partially correlated DBM,
defined in (7.27) below, will be denoted by λ̃(t). We will show that in both steps the error
is much smaller than the relevant scale 1/n. After these preparations, we can directly
compare the partially correlated DBM λ̃(t) with its Ginibre counterpart µ̃(t) (see (7.29)
later) since their distribution is the same. Finally, we remove the partial correlation in
the process µ̃(t) by comparing it with a purely independent Ginibre DBM µ(t), defined
in (7.24) below.

λz

λ(t) λ̊(t) λ̃(t)

µ̃(t)µ(t)

Lemma 7.3 (GFT)

Prop. 7.7 Lemma 7.8
equal in dist.

Lemma 7.9

Figure 1: Proof overview for Proposition 7.2: The collections of eigenvalues λzl of Hzl for
different l’s are approximated by several stochastic processes. The processes µ = µ(l)

are independent for different l’s by definition.

Now we define these processes precisely. From now on we assume that p = 2 in
Proposition 7.2 to make our presentation clearer. The case p ≥ 3 is completely analogous.
Consider the Ornstein-Uhlenbeck (OU) flow

dX̂t = −1

2
X̂t dt+

dB̂t√
n
, X̂0 = X, (7.3)

for a time

tf :=
nωf

n
, (7.4)

with some small exponent ωf > 0 given as in Proposition 7.2, in order to add a small

Gaussian component to X. Here B̂t in (7.3) is a standard matrix valued real Brownian
motion, i.e. B̂ab, a, b ∈ [n] are i.i.d. standard real Brownian motions, independent of X̂0.
Then we can construct an i.i.d. matrix qXtf such that

X̂tf
d
= qXtf +

√
ctfU, (7.5)

for some explicit constant c > 0 very close to 1, and U is a real Ginibre matrix independent
of qXtf . Using a simple Green’s function comparison argument (GFT), by [22, Lemma 7.5],
we conclude the following lemma.

Lemma 7.3. The eigenvalues of Hzl and the eigenvalues of Ĥzl
tf

, with tf = n−1+ωf

obtained from replacing X by X̂tf , are close in the sense that for any sufficiently small
ωf , δ0, δ1 > 0 it holds

E

2∏
l=1

1

n

∑
|il|≤n

ηl
(λil(H

zl))2 + η2
l

= E

2∏
l=1

1

n

∑
|il|≤n

ηl

(λil(Ĥ
zl
tf

))2 + η2
l

+O

(
n2ξ+2δ0tf
n1/2

2∑
l=1

1

ηl

)
,

(7.6)
where ηl ∈ [n−1−δ0 , n−1+δ1 ].

Next, we consider the matrix flow

dXt =
dBt√
n
, X0 = qXtf , (7.7)
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and denote by Hz
t the Hermitisation of Xt − z. Here Bt is a real standard matrix valued

Brownian motion independent of X0 and B̂t. Note that by construction Xctf is such that

Xctf
d
= X̂tf . (7.8)

Denote the eigenvalues and eigenvectors of Hz
t by

λz(t) =
{
λz±i(t)

∣∣ i ∈ [n]
}
,
{
wz
±i(t)

∣∣ i ∈ [n]
}

= {(uzi (t),±vzi (t)) | i ∈ [n]},

and the resolvent by Gzt (w) := (Hz
t −w)−1 for w ∈ H. For any w = (u,v), with u,v ∈ Cn

define the projections P1, P2 : C2n → Cn by

P1w = u, P2w = v, (7.9)

and, for any z, z′ ∈ C, define the eigenvector overlaps by

Θz,z′

ij = Θz,z′

ij (t) := 4<[〈P1w
z′

j (t), P1w
z
i (t)〉〈P2w

z
i (t), P2w

z′

j (t)〉], |i|, |j| ≤ n. (7.10)

Note that by the spectral symmetry of Hz
t it holds

Θz,z
ij = δi,j − δi,−j , Θz,z′

ij = Θz′,z
ji , |Θz,z′

ij | ≤ 1, (7.11)

for any |i|, |j| ≤ n. The coefficients Θz,z′

ij (t) are small with high probability due to the
following lemma whose proof is postponed to Section 7.3.

Lemma 7.4 (Eigenvectors overlaps are small). For any sufficiently small constants
ωh, ωd > 0, there exists ωE > 0 so that for any z, z′ ∈ C such that |z|, |z′| ≤ 1 − n−ωh ,
|z − z′| ≥ n−ωd , we have

sup
0≤t≤T

sup
|i|,|j|≤n

∣∣∣Θz,z′

ij (t)
∣∣∣ ≤ n−ωE , (7.12)

with very high probability for any fixed T ≥ 0.

Most of the DBM analysis is performed for a fixed z ∈ {z1, z2}, with z1, z2 as in
Proposition 7.2, for this purpose we introduce the notation

Λzij(t) := Θz,z
ij (t), (7.13)

for any |i|, |j| ≤ n. In particular, note Θz,z
ij = Θz,z

ij and so that by (7.11) it follows that
Λzij(t) = Λzji(t).

By the derivation of the DBM in Appendix B, using the fact that wz = wz, for z = zl
with l ∈ [2], it follows that (7.7) induces the flow

dλzi (t) =
dbzi√
n

+
1

2n

∑
j 6=i

1 + Λzij(t)

λzi (t)− λzj (t)
dt, λzi (0) = λzi , |i| ≤ n, (7.14)

on the eigenvalues {λzi (t)}|i|≤n of Hz
t . Here {λzi }|i|≤n are the eigenvalues of the initial ma-

trix Hz. The martingales {bzi }i∈[n], with bzi (0) = 0, and Λzij(t), the overlap of eigenvectors
in (7.13), (7.10), are defined on a probability space Ωb equipped with the filtration

(Fb,t)0≤t≤T :=
(
σ(X0, (Bs)0≤s≤t)

)
0≤t≤T , (7.15)

where Bs is defined in (7.7). The martingale differentials in (7.14) are such that
(see (B.16)–(B.17))

dbzi := dBzii + dBzii, with dBzij := 〈uzi , (dB)vzi 〉, i, j ∈ [n],

E
[
dbzi dbzj

∣∣ Fb,t] =
δij + Λzij(t)

2
dt, i, j ∈ [n],

(7.16)
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and dbz−i = −dbzi for i ∈ [n]. Here we used the notation Ωb for the probability space to
emphasize that is the space where the martingales bz are defined, since in Section 7.1.2
we will introduce another probability space which we will denote by Ωβ .

In the remainder of this section we will apply Lemma 7.4 for z = z1, z
′ = z2 and

z = z1, z
′ = z2 and z = zl, z

′ = zl, for l ∈ [2], with z1, z2 fixed as in Proposition 7.2. We
recall that throughout this section we assumed that p = 2 in Proposition 7.2. Note that
Λz1ij , Λz2ij , Θz1,z2

ij , Θz1,z2
ij with |i|, |j| ≤ n, are not well-defined if Hz1

t , Hz2
t have multiple

eigenvalues. This minor inconvenience can easily be resolved by a tiny regularization as
in [19, Lemma 6.2] (which is the singular values counterpart of [17, Proposition 2.3]).
Using this result, we may, without loss of generality, assume that the eigenvalues of Hzl

t

are almost surely distinct for any fixed time t ≥ 0. Indeed, if this were not the case then
we replace Hzl

0 by

Hzl
0,reg :=

(
0 X − zl + e−nQ

X∗ − zl + e−nQ∗ 0

)
, (7.17)

with Q being a complex n× n Ginibre matrix independent of X, i.e. we may regularize X
by adding an exponentially small Gaussian component. Then, by [19, Lemma 6.2], Hzl

t,reg,
the evolution of Hzl

0,reg along the flow (7.7), does not have multiple eigenvalues almost
surely; additionally, the eigenvalues of Hzl

0,reg and the ones of Hzl
0 are exponentially

close. Hence, by Fubini’s theorem, {Λzlij(t)}|i|,|j|≤n, with l ∈ [2], and {Θz1,z2
ij (t)}|i|,|j|≤n,

{Θz1,z2
ij (t)}|i|,|j|≤n are well-defined for almost all t ≥ 0; we set them equal to zero when-

ever they are not well defined.

Remark 7.5. The perturbation of X in (7.17) is exponentially small, hence does not
change anything in the proof of the local laws in Theorem 3.1 and Theorem 3.5 or in
the Green’s function comparison (GFT) argument in Lemma 7.3, since these proofs deal
with scales much bigger than e−n. This implies that any local law or GFT result which
holds for Hzl

t then holds true for Hzl
t,reg as well. Hence, in the remainder of this section

we assume that [19, Lemma 6.2] holds true for Hzl
t (the unperturbed matrix).

The process (7.14) is well-defined in the sense of Proposition 7.6, whose proof is
postponed to Section 7.6.

Proposition 7.6 (The DBM in (7.14) is well-posed). Fix z ∈ {z1, z2}, and let Hz
t be defined

by the flow (7.7). Then the eigenvalues λ(t) of Hz
t are the unique strong solution to (7.14)

on [0, T ], for any T > 0, such that λ(t) is adapted to the filtration (Fb,t)0≤t≤T , λ(t) is
γ-Hölder continuous for any γ ∈ (0, 1/2), and

P
(
λ−n(t) < · · · < λ−1(t) < 0 < λ1(t) < · · · < λn(t), for almost all t ∈ [0, T ]

)
= 1.

In order to prove that the term Λzij in (7.14) is irrelevant, we will couple the driving
martingales in (7.14) with the ones of a DBM that does not have the additional term Λzij
(see (7.22) below). For this purpose we have to consider the correlation of {bz1i }|i|≤n,
{bz2i }|i|≤n for two different z1, z2 ∈ C as in Proposition 7.2. In the following we will focus
only on the driving martingales with positive indices, since the ones with negative indices
are defined by symmetry. The martingales bzl = {bzli }i∈[n], with l = 1, 2, are defined on a
common probability space equipped with the filtration (Fb,t)0≤t≤T from (7.15).

We consider bz1 , bz2 jointly as a 2n-dimensional martingale (bz1 , bz2). Define the
naturally reordered indices

i = (l − 1)n+ i, j = (m− 1)n+ j,

with l,m ∈ [2], i, j ∈ [n], and i, j ∈ [2n]. Then the correlation between bz1 , bz2 is given by

Cij(t) dt := E
[
dbzli dbzmj

∣∣ Fb,t] =
Θzl,zm
ij (t) + Θzl,zm

ij (t)

2
dt i, j ∈ [2n]. (7.18)
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Note that C(t) is a positive semi-definite matrix. In particular, taking also negative
indices into account, for a fixed z ∈ {z1, z2}, the family of martingales bz = {bzi }|i|≤n is
such that

E
[
dbzi dbzj

∣∣ Fb,t] =
δi,j − δi,−j + Λzij(t)

2
dt, |i|, |j| ≤ n. (7.19)

7.1.1 Comparison of λ with the regularised process λ̊

By Lemma 7.4 the overlaps Θz,z′

ij are typically small for any z, z′ ∈ C such that |z|, |z′| ≤
1 − n−ωh and |z − z′| ≥ n−ωd . We now define their cut-off versions (see (7.21) below).
We only consider positive indices, since negative indices are defined by symmetry.
Throughout this section we use the convention that regularised objects will be denoted
by circles. Let zl, with l ∈ [2] be fixed throughout Section 7 as in Proposition 7.2. Define
the 2n× 2n matrix C̊(t) by

C̊ij(t) :=
Θ̊zl,zm
ij (t) + Θ̊zl,zm

ij (t)

2
i, j ∈ [n], i, j ∈ [2n], (7.20)

where Θ̊zl,zl
ij = δij for i, j ∈ [n], and

Θ̊z1,z2
ij (t) : = Θz1,z2

ij (t) · 1
(
A(t) ≤ n−ωE

)
, Θ̊zl,zm

ij (t) := Θzl,zm
ij (t) · 1

(
A(t) ≤ n−ωE

)
,

A(t) = Az1,z2(t) := max
|i|,|j|≤n

|Λz1ij (t)|+ |Λz2ij (t)|+ |Θz1,z2
ij (t)|+ |Θz1,z2

ij (t)|

(7.21)

for any l,m ∈ [2], recalling that Λzlij = Θzl,zl
ij . Note that by Lemma 7.4 it follows that

C̊(t) = C(t) on a set of very high probability, and C̊(t) = 1
2I, with I the 2n× 2n identity

matrix, on the complement of this set, for any t ∈ [0, T ]. In particular, C̊(t) is positive
semi-definite for any t ∈ [0, T ], since C(t), defined as a covariance in (7.18), is positive
semi-definite. The purpose of the cut-off in (7.20) it is to ensure the well-posedness of
the process (7.22) below.

We compare the processes λzl(t) in (7.14) with the regularised processes λ̊zl(t)
defined, for z = zl, by

d̊λzi =
d̊bzi√

n(1 + n−ωr )
+

1

2n

∑
j 6=i

1

λ̊zi − λ̊zj
dt, λ̊zi (0) = λzi (0), |i| ≤ n, (7.22)

with ωr > 0 such that ωf � ωr � ωE . We organise the martingales bz1 , bz2 with positive
indices into a single 2n-dimensional vector b = (bz1 , bz2) with a correlation structure
given by (7.18). Then by Doob’s martingale representation theorem [41, Theorem 18.12]
there exists a standard Brownian motion w = (w(1),w(2)) ∈ R2n realized on an extension
(Ω̃b, F̃b,t) of the original probability space (Ωb,Fb,t) such that db =

√
C dw, with

√
C =√

C(t) the matrix square root of C(t). Moreover, w(t) and C(t) are adapted to the

filtration F̃b,t. Then the martingales b̊zl = {̊bzli }i∈[n], with l ∈ [2], are defined by b̊zl(0) = 0

and (
d̊bz1(t)

d̊bz2(t)

)
:=

√
C̊(t)

(
dw(1)(t)

dw(2)(t)

)
, (7.23)

where
√
C̊(t) denotes the matrix square root of the positive semi-definite matrix C̊(t).

For negative indices we define b̊−i = −̊bi, with i ∈ [n]. The purpose of the additional
factor 1 + n−ωr in (7.22) is to ensure the well-posedness of the process, since b̊z is
a small deformation of a family of i.i.d. Brownian motions with variance 1/2, and the
well-posedness of (7.22) is already critical for those Brownian motions (it corresponds
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to the GOE case, i.e. β = 1). The well-posedness of the process (7.22) is proven in
Appendix A. The main result of this section is the following proposition, whose proof is
deferred to Section 7.4.

Proposition 7.7 (The regularised process λ̊ is close to λ). For any sufficiently small
ωd, ωh, ωf > 0 such that ωh � ωf � 1 there exist small constants ω̂, ω > 0 such that
ωh � ω̂ � ω � ωf , and that for |zl − zl|, |zl − zm|, |zl − zm| ≥ n−ωd , |zl| ≤ 1− n−ωh , with
l 6= m, it holds

|λzli (ctf )− λ̊zli (ctf )| ≤ n−1−ω, |i| ≤ nω̂,

with very high probability, where tf = n−1+ωf and c > 0 is defined in (7.5).

7.1.2 Definition of the partially correlated processes λ̃, µ̃

The construction of the partially correlated processes for λ̊zl(t) is exactly the same as
in the complex case [22, Section 7.2]; we present it here as well for completeness. We
want to compare the correlated processes λ̊zl(t), with l = 1, 2, defined on a probability
space Ω̃b equipped with a filtration F̃b,t with carefully constructed independent processes
µ(l)(t), l = 1, 2 on a different probability space Ωβ equipped with a filtration Fβ,t, which
is defined in (7.25) below. We choose µ(l)(t) to be a complex Ginibre DBM, i.e. it is given
as the solution of

dµ
(l)
i (t) =

dβ
(l)
i√
2n

+
1

2n

∑
j 6=i

1

µ
(l)
i (t)− µ(l)

j (t)
dt, µ

(l)
i (0) = µ

(l)
i , |i| ≤ n, (7.24)

with µ
(l)
i the singular values, taken with positive and negative sign, of independent

complex Ginibre matrices X(l), and β(l) = {β(l)
i }i∈[n] being independent vectors of i.i.d.

standard real Brownian motions, and β(l)
−i = −β(l)

i for i ∈ [n]. The filtration Fβ,t is defined
by (

Fβ,t
)

0≤t≤T :=
(
σ(X(l), (β(l)

s )0≤s≤t, (ζ̃
(l)
s )0≤s≤t; l ∈ [2])

)
0≤t≤T , (7.25)

with ζ̃(l) standard real i.i.d. Brownian motions, independent of β(l), which will be used
later in the definition of the processes in (7.29).

The comparison of λ̊zl(t) and µ(l)(t) is done via two intermediate partially correlated

processes λ̃(l)(t), µ̃(l)(t) so that for a time t ≥ 0 large enough λ̃
(l)
i (t), µ̃(l)

i (t) for small

indices i will be close to λ̊zli (t) and µ
(l)
i (t), respectively, with very high probability.

Additionally, the processes λ̃(l), µ̃(l) will be constructed such that they have the same
joint distribution: (

λ̃(1)(t), λ̃(2)(t)
)

0≤t≤T

d
=
(
µ̃(1)(t), µ̃(2)(t)

)
0≤t≤T

, (7.26)

for any T > 0.
Fix ωA > 0 such that ωh � ωA � ωf , and for l ∈ [2] define the process λ̃(l)(t) to be

the solution of

dλ̃
(l)
i (t) =

1

2n

∑
j 6=i

1

λ̃
(l)
i (t)− λ̃(l)

j (t)
dt+

{(
n(1 + n−ωr )

)−1/2
d̊bzli , |i| ≤ nωA

(2n)−1/2 db̃
(l)
i , nωA < |i| ≤ n,

(7.27)

with initial data λ̃(l)(0) being the singular values, taken with positive and negative sign,
of independent complex Ginibre matrices Ỹ (l) independent of λzl(0). Here d̊bzli is the
martingale differential from (7.22) which is used for small indices in (7.27). For large
indices we define the driving martingales to be an independent collection {{b̃(l)i }ni=nωA+1 |
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l ∈ [2]} of two vector-valued i.i.d. standard real Brownian motions which are also

independent of {{̊bzl±i}ni=1 | l ∈ [2]}, and that b̃(l)−i = −b̃(l)i for i ∈ [n]. The martingales b̊zl ,

with l ∈ [2], and {{b̃(l)i }ni=nωA+1 | l ∈ [2]} are defined on a common probability space that

we continue to denote by Ω̃b with the common filtration F̃b,t, given by(
F̃b,t

)
0≤t≤T :=

(
σ(X0, Ỹ

(l), (Bs)0≤s≤t, (b̃
(l))0≤s≤t; l ∈ [2])

)
0≤t≤T .

The well-posedness of (7.27), and of (7.29) below, readily follows by exactly the same
arguments as in Appendix A.

Notice that λ̊(t) and λ̃(t) differ in two aspects: the driving martingales with large
indices for λ̃(t) are set to be independent, and the initial conditions are different.
Lemma 7.8 below states that these differences are negligible for our purposes (i.e. after
time ct1 the two processes at small indices are closer than the rigidity scale 1/n). Its
proof is postponed to Section 7.5.1. Let ρsc(E) = 1

2π

√
4− E2 denote the semicircle

density.

Lemma 7.8 (The partially correlated process λ̃ is close to λ̊). Let λ̊zl(t), λ̃(l)(t), with
l ∈ [2], be the processes defined in (7.22) and (7.27), respectively. For any sufficiently
small ωh, ωf > 0 such that ωh � ωf � 1 there exist constants ω, ω̂ > 0 such that
ωh � ω̂ � ω � ωf , and that for |zl| ≤ 1− n−ωh it holds

|ρzl(0)̊λzli (ctf )− ρsc(0)λ̃
(l)
i (ctf )| ≤ n−1−ω, |i| ≤ nω̂, (7.28)

with very high probability, where tf := n−1+ωf and c > 0 is defined in (7.5).

Finally, µ̃(l)(t), the comparison process of µ(l)(t), is given as the solution of the
following DBM

dµ̃
(l)
i (t) =

1

2n

∑
j 6=i

1

µ̃
(l)
i (t)− µ̃(l)

j (t)
dt+

{(
n(1 + n−ωr )

)−1/2
dζ̊zli , |i| ≤ nωA ,

(2n)−1/2 dζ̃
(l)
i , nωA < |i| ≤ n,

(7.29)

with initial data µ̃(l)(0) = µ(l). We now explain how to construct the driving martingales
in (7.29) so that (7.26) is satisfied. For this purpose we closely follow [22, Eqs. (7.22)–
(7.29)]. We only consider positive indices, since the negative indices are defined by
symmetry. Define the 2nωA -dimensional martingale b̊ := {{̊bzli }i∈[nωA ] | l ∈ [2]}. Through-
out this section underlined vectors or matrices denote their restriction to the first
i ∈ [nωA ] indices within each l-group, i.e.

v ∈ C2n =⇒ v ∈ C2nωA , with vi :=

{
vi if i ∈ [nωA ]

vi+nωA if i ∈ n+ [nωA ].

Then we define C̊(t) as the 2nωA × 2nωA positive semi-definite matrix which consists of
the four blocks corresponding to index pairs {(i, j) ∈ [nωA ]2} of the matrix C̊(t) defined
in (7.20). Similarly to (7.23), by Doob’s martingale representation theorem, we obtain
d̊b = (C̊)1/2 dθ with θ(t) := {{θ(l)

i (t)}i∈[nωA ] | l ∈ [2]} a family of i.i.d. standard real

Brownian motions. We define an independent copy C̊
#

(s) of C̊(s) and β := {{β(l)
i }i∈[nωA ] |

l ∈ [2]} such that (C̊
#

(t),β(t)) has the same joint distribution as (C̊(t),θ(t)). We then

define the families ζ̊ := {{ζ̊zli }i∈[nωA ] | l ∈ [2]} by ζ̊(0) = 0 and

dζ̊(t) :=
(
C̊

#
(t)
)1/2

dβ(t), (7.30)

and extend this to negative indices by ζzl−i = −ζzli for i ∈ [nωA ]. For indices nωA < |i| ≤ n,

instead, we choose {ζ̃(l)
±i}ni=nωA+1 to be independent families (independent of each other
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for different l’s, and also independent of β) of i.i.d. Brownian motions defined on the
same probability space Ωβ . Note that (7.26) follows by the construction in (7.30).

Similarly to Lemma 7.8 we also have that µ(t) and µ̃(t) are close thanks to the
carefully designed relation between their driving Brownian motions. The proof of this
lemma is postponed to Section 7.5.1.

Lemma 7.9 (The partially correlated process µ̃ is close to µ). For any sufficiently small
ωd, ωh, ωf > 0, there exist constants ω, ω̂ > 0 such that ωh � ω̂ � ω � ωf , and that for
|zl − zm|, |zl − zm|, |zl − zl| ≥ n−ωd , |zl| ≤ 1− n−ωh , with l,m ∈ [2], l 6= m, it holds∣∣∣µ(l)

i (ctf )− µ̃(l)
i (ctf )

∣∣∣ ≤ n−1−ω, |i| ≤ nω̂, l ∈ [2], (7.31)

with very high probability, where tf = n−1+ωf and c > 0 is defined in (7.5).

7.1.3 Proof of Proposition 7.2

In this section we conclude the proof of Proposition 7.2 using the comparison processes
defined in Section 7.1.1 and Section 7.1.2. We recall that p = 2 for simplicity. More
precisely, we use that the processes λzl(t), λ̊zl(t) and λ̊zl(t), λ̃(l)(t) and µ̃(l)(t), µ(l)(t)

are close path-wise at time t1, as stated in Proposition 7.7, Lemma 7.8, and Lemma 7.9,
respectively, choosing ω, ω̂ as the minimum of the ones in the statements of this three
results. In particular, by these results and Lemma 7.3 we readily conclude the following
lemma, whose proof is postponed to the end of this section.

Lemma 7.10. Let λzl be the eigenvalues of Hzl , and let µ(l)(t) be the solution of (7.24).
Let ω, ω̂, ωh > 0 given as above, and define νzl := ρsc(0)/ρzl(0), then for any small ωf > 0

such that ωh � ωf there exists δ0, δ1 such that ωh � δm � ω̂, for m = 0, 1, and that

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl
(λzlil )

2 + η2
l

= E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(µ
(l)
il

(ctf )νzl)
2 + η2

l

+O(Ψ), (7.32)

where tf = n−1+ωf , ηl ∈ [n−1−δ0 , n−1+δ1 ], and the error term is given by

Ψ :=
nω̂

n1+ω

(
2∑
l=1

1

ηl

)
·

2∏
l=1

(
1 +

nξ

nηl

)
+
n2ξ+2δ0tf
n1/2

2∑
l=1

1

ηl
+
n2(δ1+δ0)

nω̂
. (7.33)

We remark that Ψ in (7.33) denotes a different error term compared with the error
terms in (3.9) and (6.10).

By the definition of the processes µ(l)(t) in (7.24) it follows that µ(l)(t), µ(m)(t) are
independent for l 6= m and so that

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(µ
(l)
il

(ctf )νzl)
2 + η2

l

=

2∏
l=1

E
1

n

∑
|il|≤nω̂

ηl

(µ
(l)
il

(ctf )νzl)
2 + η2

l

. (7.34)

Then, similarly to Lemma 7.10, we conclude that

2∏
l=1

E
1

n

∑
|il|≤nω̂

ηl
(λzlil )

2 + η2
l

=

2∏
l=1

E
1

n

∑
|il|≤nω̂

ηl

(µ
(l)
il

(ctf )νzl)
2 + η2

l

+O(Ψ). (7.35)

Finally, combining (7.32)–(7.35) we conclude the proof of Proposition 7.2.
We remark that in order to prove (7.35) it would not be necessary to introduce

the additional comparison processes λ̃(l) and µ̃(l) of Section 7.1.2, since in (7.35) the
product is outside the expectation, so one can compare the expectations one by one;
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the correlation between these processes for different l’s plays no role. Hence, already
the usual coupling (see e.g. [15, 18, 45]) between the processes λzl(t), µ(l)(t) defined
in (7.14) and (7.24), respectively, would be sufficient to prove (7.35). On the other hand,
the comparison processes λ̊zl(t) are anyway needed in order to remove the coefficients
Λij (which are small with very high probability) from the interaction term in (7.14).

We conclude this section with the proof of Lemma 7.10.

Proof of Lemma 7.10. In the following, to simplify notations, we assume that the scaling
factors νzl are equal to one. First of all, we notice that the summation over the indices
nω̂ < |i| ≤ n in (7.6) can be removed, using the eigenvalue rigidity (7.2) similarly to [22,
Eq. (7.6)–(7.7)], at a price of an additional error term n2(δ1+δ0)−ω̂:

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl
(λil(H

zl))2 + η2
l

= E

2∏
l=1

1

n

∑
|il|≤n

ηl
(λil(H

zl))2 + η2
l

+O
(
n2(δ1+δ0)

nω̂

)
. (7.36)

The error term is negligible by choosing δ0, δ1 to be such that ωh � δm � ω̂, for m = 0, 1.
Then, from the GFT Lemma 7.3, and (7.8), using (7.36) again, this time for λzlil (ctf ), we
have that

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl
(λil(H

zl))2 + η2
l

= E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl
(λzlil (ctf ))2 + η2

l

+O

(
n2ξ+2δ0tf
n1/2

2∑
l=1

1

ηl
+
n2(δ1+δ0)

nω̂

)
.

(7.37)

We remark that the rigidity for λzlil (ctf ) is obtained by Theorem 3.1 exactly as in (7.2).
Next, by the same computations as in [22, Lemma 7.8] by writing the difference of l.h.s.
and r.h.s. of (7.38) as a telescopic sum and then using the very high probability bound
from Proposition 7.7 we get

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl
(λzlil (ctf ))2 + η2

l

= E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(̊λ
(l)
il

(ctf ))2 + η2
l

+O(Ψ). (7.38)

Similarly to (7.38), by Lemma 7.8 it also follows that

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(̊λzlil (ctf ))2 + η2
l

= E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(λ̃
(l)
il

(ctf ))2 + η2
l

+O(Ψ). (7.39)

By (7.26) it readily follows that

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(λ̃
(l)
il

(ctf ))2 + η2
l

= E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(µ̃
(l)
il

(ctf ))2 + η2
l

. (7.40)

Moreover, by (7.31), similarly to (7.38), we conclude

E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(µ̃
(l)
il

(ctf ))2 + η2
l

= E

2∏
l=1

1

n

∑
|il|≤nω̂

ηl

(µ
(l)
il

(ctf ))2 + η2
l

+O(Ψ). (7.41)

Combining (7.37)–(7.41), we conclude the proof of (7.32).

Finally, we conclude Section 7.1 by listing the scales needed in the entire Section 7
and explain the dependences among them.
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7.1.4 Relations among the scales in the proof of Proposition 7.2

Throughout Section 7 various scales are characterized by exponents of n, denoted by
ω’s, that we will also refer to scales for simplicity.

All the scales in the proof of Proposition 7.2 depend on the exponents ωd, ωh, ωf � 1.
We recall that ωd, ωh are the exponents such that Lemma 7.4 on eigenvector overlaps
holds under the assumption |zl − zm|, |zl − zm|, |zl − zl| ≥ n−ωd , and |zl| ≤ 1− n−ωh . The
exponent ωf determines the time tf = n−1+ωf to run the DBM so that it reaches its local
equilibrium and thus to prove the asymptotic independence of λzli (ctf ) and λzmj (ctf ), with
c > 0 defined in (7.5), for small indices i, j and l 6= m.

The most important scales in the proof of Proposition 7.2 are ω, ω̂, δ0, δ1, ωE . The
scale ωE is determined in Lemma 7.4 and it controls the correlations among the driving
martingales originating from the eigenvector overlaps in (7.11)–(7.13). The scale ω

gives the n−1−ω precision of the coupling between various processes while ω̂ determines
the range of indices |i| ≤ nω̂ for which this coupling is effective. These scales are
chosen much bigger than ωh and they are determined in Proposition 7.7, Lemma 7.8 and
Lemma 7.9, that describe these couplings. Each of these results gives an upper bound
on the scales ω, ω̂, at the end we will choose the smallest of them. Finally, δ0, δ1 describe
the scale of the range of the η’s in Proposition 7.2. These two scales are determined
in Lemma 7.10, given ω, ω̂ from the previous step. Putting all these steps together,
we constructed ω, ω̂, δ0, δ1 claimed in Proposition 7.2 and hence also in Proposition 3.4.
These scales are related as

ωh � δm � ω̂ � ω � ωf � ωE � 1, ωE = 4ωd, (7.42)

for m = 0, 1.
Along the proof of Proposition 7.2 four auxiliary scales, ωL, ωA, ωr, ωc, are also intro-

duced. The scale ωL describes the range of interaction in the short range approximation
processes x̂zl(t, α) (see (7.60) later), while ωA is the scale for which we can (partially)
couple the driving martingales of the regularized processes λ̊zl(t) with the driving Brow-
nian motions of Ginibre processes µ(l)(t). The scale ωc is a cut-off in the energy estimate
in Lemma 7.13, see (7.68). Finally, ωr reduces the variance of the driving martingales
by a factor (1 + n−ωr )−1 to ensure the well-posedness of the processes λ̊zl(t), λ̃(l)(t),
µ̃(l), xzl(t, α) defined in (7.22), (7.27), (7.29), and (7.48), respectively. These scales are
inserted in the chain (7.42) as follows

ωh � ωA � ωf � ωL � ωc � ωr � ωE . (7.43)

Note that there are no relations required among ωA and ω, ω̂, δm.

7.2 Universality and independence of the singular values of X− z1, X− z2 close
to zero: proof of Theorems 2.8 and 2.10

In the following we present only the proof of Theorem 2.10, since the proof of
Theorem 2.8 proceeds exactly in the same way. Universality of the joint distribution of
the singular values of X − z1 and X − z2 follows by universality for the joint distribution
of the eigenvalues of Hz1 and Hz2 , which is defined in (1.2), since the eigenvalues of
Hzl are exactly the singular values of X − zl taken with positive and negative sign.
From now on we only consider the eigenvalues of Hzl , with zl ∈ C such that |=zl| ∼ 1,
|z1 − z2|, |z1 − z2| ∼ 1, and |zl| ≤ 1− ε for some small fixed ε > 0.

For l ∈ [2], denote by {λzli }|i|≤n the eigenvalues of Hzl and by {λzli (t)}|i|≤n their

evolution under the DBM flow (7.14). Define {µ(l)
i (t)}|i|≤n, for l ∈ [2], to be the solution

of (7.24) with initial data {µ(l)
i }|i|≤n, which are the eigenvalues of independent complex
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Ginibre matrices X̃(1), X̃(2). Then, defining the comparison processes λ̊zl(t), λ̃(l)(t),
µ̃(l)(t) as in Sections 7.1.1–7.1.2, and combining Proposition 7.7, Lemma 7.8, and
Lemma 7.9, we conclude that for any sufficiently small ωf > 0 there exist ω, ω̂ > 0

such that ω̂ � ω � ωf , and that

|ρzl(0)λzli (ctf )− ρsc(0)µ
(l)
i (ctf )| ≤ n−1−ω, |i| ≤ nω̂, (7.44)

with very high probability, with c > 0 defined in (7.5).
Then, by a simple Green’s function comparison argument (GFT) as in Lemma 7.3,

using (7.44), by exactly the same computations as in the proof of [21, Proposition 3.1 in
Section 7] adapted to the bulk scaling, i.e. changing br,t1 → 0 and N3/4 → 2n, using the
notation therein, we conclude Theorem 2.10.

7.3 Bound on the eigenvector overlaps

In this section we prove the bound on the eigenvector overlaps, as stated in Lemma 7.4.
For any T > 0, and any t ∈ [0, T ], denote by ρzt the self consistent density of states (scDOS)
of the Hermitised matrix Hz

t , and define its quantiles by

i

n
=

∫ γzi (t)

0

ρzt (x) dx, i ∈ [n], (7.45)

and γz−i(t) = −γzi (t) for i ∈ [n]. Similarly to (7.2), as a consequence of Theorem 3.1 and
the fact that the eigenvalues of Hzl

t are γ-Hölder continuous in time for any γ ∈ (0, 1/2)

by Weyl’s inequality, by standard application of Helffer-Sjöstrand formula, we conclude
the following rigidity bound

sup
0≤t≤T

|λzli (t)− γzli (t)| ≤ n100ωh

n2/3(n+ 1− i)1/3
, i ∈ [n], (7.46)

with very high probability, uniformly in |zl| ≤ 1− n−ωh . A bound similar to (7.46) holds
for negative indices as well. We remark that the Hölder continuity of the eigenvalues of
Hzl
t is used to prove (7.46) uniformly in time, using a standard grid argument.

The main input to prove Lemma 7.4 is Theorem 3.5 combined with Lemma 6.1.

Proof of Lemma 7.4. Recall that P1w
z
i = uzi and P2w

z
i = sign(i)vzi , for |i| ≤ n, by (7.9).

In the following we consider z, z′ ∈ C such that |z|, |z′| ≤ 1 − n−ωh , |z − z′| ≥ n−ωd , for
some sufficiently small ωh, ωd > 0.

Eigenvector overlaps can be estimated by traces of products of resolvents. More
precisely, for any η ≥ n−2/3+ε∗ , for some small fixed ε∗ > 0, and any |i0|, |j0| ≤ n, using
the rigidity bound (7.46), similarly to [22, Eq. (7.43)], we have that

|〈uzi0(t),uz
′

j0(t)〉|2 . η2 Tr
(
=Gz(γzi0(t) + iη)

)
E1

(
=Gz

′
(γz

′

j0(t) + iη)
)
E1,

|〈vzi0(t),vz
′

j0(t)〉|2 . η2 Tr
(
=Gz(γzi0(t) + iη)

)
E2

(
=Gz

′
(γz

′

j0(t) + iη)
)
E2,

(7.47)

with E1, E2 defined in (5.8). By Theorem 3.5, combined with Lemma 6.1, choosing
η = n−12/23, say, the error term in the r.h.s. of (3.17) is bounded by n−1/23n2ωd+100ωh ,
hence we conclude the bound in (7.12) for any fixed time t ∈ [0, T ], choosing ωE =

−(2ωd + 100ωh − 1/23), for any ωh � ωd ≤ 1/100.
Moreover, the bound (7.12) holds uniformly in time by a union bound, using a standard

grid argument and Hölder continuity in the form

‖=Gzt=Gz
′

t −=Gzs=Gz
′

s ‖ . n3
(
‖Hz

t −Hz
s ‖+ ‖Hz′

t −Hz′

s ‖
)
. n7/2|t− s|1/2

for any s, t ∈ [0, T ], where the spectral parameters in the resolvents have imaginary parts
at least η > 1/n. This concludes the proof of Lemma 7.4.
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7.4 Proof of Proposition 7.7

Throughout this section we use the notation z = zl, with l ∈ [2], with z1, z2 fixed as in
Proposition Proposition 7.7.

Remark 7.11. In the remainder of this section we assume that |z| ≤ 1 − ε, with some
positive ε > 0 instead of n−ωh , in order to make our presentation clearer. One may
follow the ε-dependence throughout the proofs and find that all the estimates deteriorate
with some fixed ε−1 power, say ε−100. Thus, when |z| ≤ 1− n−ωh is assumed, we get an
additional factor n100ωh but this does not play any role since ωh is the smallest exponent
(e.g. see Proposition 7.7) in the analysis of the processes (7.14), (7.22).

The proof of Proposition 7.7 consists of several parts that we first sketch. The process
λ̊z(t) differs from λz(t) in three aspects: (i) the coefficients Λzij(t) in the SDE (7.14) for
λz(t) are removed; (ii) large values of the correlation of the driving martingales is cut off,
and (iii) the martingale term is slightly reduced by a factor (1 + nωr )−1/2. We deal with
these differences in two steps. The substantial step is the first one, from Section 7.4.1 to
Section 7.4.4, where we handle (i) by interpolation, using short range approximation
and energy method. This is followed by a more technical second step in Section 7.4.5,
where we handle (ii) and (iii) using a stopping time controlled by a well chosen Lyapunov
function to show that the correlation typically remains below the cut-off level.

A similar analysis has been done in [17, Section 4] (which has been used in the
singular value setup in [19, Eq. (3.13)]) but our more complicated setting requires major
modifications. In particular, (7.14) has to be compared to [17, Eq. (4.1)] with dMi = 0,
Zi = 0, and identifying Λzij with γij , using the notations therein. One major difference is
that we now have a much weaker estimate |Λzij | ≤ n−ωE than the bound |γij | ≤ n−1+a,
for some small fixed a > 0, used in [17]. We therefore need to introduce an additional
cut-off function χ in the energy estimate in Section 7.4.4.

7.4.1 Interpolation process

In order to compare the processes λz and λ̊z from (7.14) and (7.22) we start with defining
an interpolation process, for any α ∈ [0, 1], as

dxzi (t, α) =
d̊bzi√

n(1 + n−ωr )
+

1

2n

∑
j 6=i

1 + αΛ̊zij(t)

xzi (t, α)− xzj (t, α)
dt, xzi (0, α) = λzi (0), |i| ≤ n.

(7.48)
We recall that ωf � ωr � ωE . We use the notation xzi (t, α) instead of zi(t, α) as in [17,
Eq. (4.12)] to stress the dependence of xzi (t, α) on z ∈ C. The well-posedness of the
process (7.48) is proven in Appendix A for any fixed α ∈ [0, 1]. In particular, the particles
keep their order xzi (t, α) < xzi+1(t, α). Additionally, by Lemma A.2 it follows that the
differentiation with respect to α of the process xz(t, α) is well-defined.

Note that the process xz(t, α) does not fully interpolate between λ̊z(t) and λz(t);
it handles only the removal of the Λ̊ij term. Indeed, it holds xz(t, 0) = λ̊z(t) for any
t ∈ [0, T ], but xz(t, 1) is not equal to λz(t). Thus we will proceed in two steps as already
explained:

Step 1 The process xz(t, α) does not change much in α ∈ [0, 1] for particles close to zero
(by Lemma 7.13 below), i.e. xzi (t, 1) − xzi (t, 0) is much smaller than the rigidity
scale 1/n for small indices;

Step 2 The process xz(t, 1) is very close to λz(t) for all indices (see Lemma 7.14 below).

We start with the analysis of the interpolation process xz(t, α), then in Section 7.4.5 we
state and prove Lemma 7.14.
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7.4.2 Local law for the interpolation process

In order to analyse the interpolation process xz(t, α), we first need to establish a local
law for the Stieltjes transform of the empirical particle density. This will be used for a
rigidity estimate to identify the location of xi(t, α) with a precision n−1+ε, for some small
ε > 0, that is above the final target precision but it is needed as an a priori bound. Note
that, unlike for λz(t), for xz(t, α) there is no obvious matrix ensemble behind this process,
so local law and rigidity have to be proven directly from its defining equation (7.48).

Define the Stieltjes transform of the empirical particle density by

mn(w, t, α) = mz
n(w, t, α) :=

1

2n

∑
|i|≤n

1

xzi (t, α)− w
, (7.49)

and denote the Stieltjes transform of ρz, the self-consistent density of states (scDOS) of
Hz, by mz(w). Moreover, we denote the Stieltjes transform of ρzt , the free convolution of
ρz with the semicircular flow up to time t, by mz

t (w). Using the definition of the quantiles
γzi (t) in (7.45), by Theorem 3.1 we have that

sup
|<w|≤10c1

sup
n−1+γ≤=w≤10

sup
α∈[0,1]

|mn(w, 0, α)−mz(w)| ≤ nξCε
n=w

,

sup
|i|≤10c2n

sup
α∈[0,1]

|xzi (0, α)− γzi (0)| ≤ Cεn
ξ

n
,

(7.50)

with very high probability for any ξ > 0, uniformly in |z| ≤ 1 − ε, for some small fixed
c1, c2, γ > 0. We recall that Cε ≤ ε−100. The rigidity bound in the second line of (7.50)
follows by a standard application of Helffer-Sjöstrand formula.

In Lemma 7.12 we prove that (7.50) holds true uniformly in 0 ≤ t ≤ tf . For its proof,
similarly to [17, Section 4.5], we follow the analysis of [40, Section 3.2] using (7.50) as
an input.

Lemma 7.12 (Local law and rigidity). Fix |z| ≤ 1− ε, and assume that (7.50) holds with
some γ, c1, c2, Cε > 0, then

sup
|<w|≤10c1

sup
n−1+γ≤=w≤10

sup
α∈[0,1]

sup
0≤t≤tf

|mz
n(w, t, α)−mt(w)| ≤ Cεn

ξ

n=w
,

sup
|i|≤10c2n

sup
α∈[0,1]

sup
0≤t≤tf

|xzi (t, α)− γzi (t)| ≤ Cεn
ξ

n
,

(7.51)

with very high probability for any ξ > 0, with γzi (t) ∼ i/n for |i| ≤ 10c2n and t ∈ [0, tf ].

Proof. Differentiating (7.49), by (7.48) and Itô’s formula, we get

dmn = mn(∂wmn) dt− 1

2n3/2
√

1 + n−ωr

∑
|i|≤n

d̊bi
(xi − w)2

+
α

4n2

∑
|i|,|j|≤n

Λ̊ij
(xi − w)2(xj − w)

dt

+
1

4n2

∑
|i|≤n

[
1− α− n−ωr (1 + n−ωr )−1

]
Λ̊ii

(xi − w)3
dt.

(7.52)

Note that by (7.20)–(7.21) it follows that

Λ̊ij(t) = Λij(t),
(̊
bi(s)

)
0≤s≤t =

(
bi(s)

)
0≤s≤t, (7.53)

with very high probability uniformly in 0 ≤ t ≤ tf , where Λij and (bi(s))0≤s≤t are defined
in (7.10)–(7.13) and (7.15)–(7.16), respectively.
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The equation (7.52) is the analogue of [40, Eq. (3.20)] with some differences. First,
the last two terms are new and need to be estimated, although the penultimate term
in (7.52) already appeared in [17, Eq. (4.62)] replacing Λ̊ij by γ̂ij , using the notation
therein. Second, the martingales in the second term in the r.h.s. of (7.52) are correlated.
Hence, in order to apply the results in [40, Section 3.2] we prove that these additional
terms are bounded as in [17, Eq. (4.64)]. Note that in [17, Eq. (4.64)] the corresponding
term to the penultimate term in the r.h.s. of (7.52) is estimated using that γ̂ij ≤ n−1+a,
for some small a > 0. In our case, however, the bound on |Λ̊| is much weaker and a crude
estimate by absolute value is not affordable. We will use (7.53) and then the explicit
form of Λij in (7.10)–(7.13), that enables us to perform the two summations and write
this term as the trace of the product of two operators (see (7.57) later).

Since |Λ̊ii| ≤ n−ωE by its definition below (7.21), the last term in (7.52) is easily
bounded by

∣∣∣∣∣∣ 1

4n2

∑
|i|≤n

(1− α− n−ωr (1 + n−ωr )−1)Λ̊ii
(xi − w)3

∣∣∣∣∣∣ ≤ =mn(w)

n1+ωE (=w)2
. (7.54)

Next, we proceed with the estimate of the penultimate term in (7.52). Define the
operators

T (t, α) :=
∑
|i|≤n

f(xi(t, α))wi(t)[wi(t)]
∗, S(t, α) :=

∑
|i|≤n

g(xi(t, α))wi(t)[wi(t)]
∗, (7.55)

where {wi(t)}|i|≤n are the orthonormal eigenvectors in the definition of Λij(t) in (7.10),
and for any fixed w ∈ H the functions f, g : R→ C are defined as

f(x) :=
1

(x− w)2
, g(x) :=

1

x− w
. (7.56)

Then, using the definitions (7.55)–(7.56) and (7.53), we bound the last term in the first
line of (7.52) as

∣∣∣∣∣∣ α4n2

∑
|i|,|j|≤n

Λ̊ij
(xi − w)2(xj − w)

dt

∣∣∣∣∣∣ =
∣∣∣ α
2n2

[
Tr
(
P1TP2P2SP1

)
+ Tr

(
P1TP2P2SP1

)]∣∣∣
.

1

n2

[
=wTr

[
P1TP2(P1TP2)∗

]
+

Tr
[
P1SP2(P1SP2)∗

]
=w

]

.
1

n2

=w ∑
|i|≤n

|f(xi)|2 +
1

=w
∑
|i|≤n

|g(xi)|2
 .

=mn(w)

n(=w)2
,

(7.57)

with very high probability uniformly in 0 ≤ t ≤ tf . Note that in the first equality of (7.57)
we used that Λ̊ij(t) = Λij(t) for any 0 ≤ t ≤ tf with very high probability by (7.53).

Finally, in order to conclude the proof, we estimate the martingale term in (7.52). For
this purpose, using that E[d̊bi d̊bj | Fb,t] = (δi,j − δi,−j + Λ̊ij)/2 dt and proceeding similarly
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to (7.57), we estimate its quadratic variation by

1

4n3(1 + n−ωr )

∑
|i|,|j|≤n

E[d̊bi d̊bj | Fb,t]
(xi − w)2(xj − w)2

=
1

8n3(1 + n−ωr )

∑
|i|≤n

1

|xi − w|4
dt

+
1

8n3(1 + n−ωr )

∑
|i|≤n

1

(xi + w)2(xi − w)2
dt

+
1

8n3(1 + n−ωr )

∑
|i|,|j|≤n

Λ̊ij
(xi − w)2(xj − w)2

dt

.
=mn(w)

n2(=w)3
+

1

n3
Tr
[
P1TP2(P1TP2)∗

]
dt

.
=mn(w)

n2(=w)3
,

(7.58)

where the operator T is defined in (7.55), and in the penultimate inequality we used that
Λ̊ij(t) = Λij(t) for any 0 ≤ t ≤ tf with very high probability.

Combining (7.54), (7.57), and (7.58) we immediately conclude the proof of the first
bound in (7.51) using the arguments of [40, Section 3.2]. The rigidity bound in the
second line of (7.51) follows by a standard application of Helffer-Sjöstrand (see also
below (7.50)).

7.4.3 Short range approximation

Since the main contribution to the dynamics of xzi (t, α) comes from the nearby particles,
in this section we introduce a short range approximation process x̂z(t, α), which will very
well approximate the original process xz(t, α) (see (7.63) below). The actual interpolation
analysis comparing α = 0 and α = 1 will then be performed on the short range process
x̂z(t, α) in Section 7.4.4.

Fix ωL > 0 so that ωf � ωL � ωE , and define the index set

A := {(i, j) | |i− j| ≤ nωL} ∪ {(i, j) | |i|, |j| > 5c2n}, (7.59)

with c2 > 0 defined in (7.51). We remark that in [17, Eq. (4.69)] the notation ωl is used
instead of ωL; we decided to change this notation in order to not create confusion with
ωl defined in [22, Eq. (7.67)]. Then we define the short range approximation x̂z(t, α) of
the process xz(t, α) by

dx̂zi (t, α) =
d̊bzi√
n

+
1

2n

∑
j:(i,j)∈A,

j 6=i

1 + αΛ̊ij(t)

x̂zi (t, α)− x̂zj (t, α)
dt+

1

2n

∑
j:(i,j)/∈A,

j 6=i

1

xzi (t, 0)− xzj (t, 0)
dt,

x̂zi (0, α) = xzi (0, α), |i| ≤ n.
(7.60)

The well-posedness of the process (7.60) follows by nearly identical computations as in
the proof of Proposition A.1.

In order to check that the short range approximation x̂z(t, α) is close to the process
xz(t, α), defined in (7.48), we start with a trivial bound on |xzi (t, α)− xzi (t, 0)| (see (7.61)
below) to estimate the difference of particles far away from zero in (7.62), for which we
do not have the rigidity bound in (7.51). Notice that by differentiating (7.48) in α and
estimating |Λ̊ij | trivially by n−ωE , it follows that

sup
0≤t≤tf

sup
|i|≤n

sup
α∈[0,1]

|xzi (t, α)− xzi (t, 0)| . n−ωE/2, (7.61)
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similarly to [17, Lemma 4.3].
By the rigidity estimate (7.51), the weak global estimate (7.61) to estimate the

contribution of the far away particles for which we do not know rigidity, and the bound
|Λ̊ij | ≤ n−ωE from (7.21) it follows that∣∣∣∣∣∣∣∣

1

2n

∑
j:(i,j)/∈A,

j 6=i

1

xzi (t, 0)− xzj (t, 0)
− 1

2n

∑
j:(i,j)/∈A,

j 6=i

1 + αΛ̊ij(t)

xzi (t, α)− xzj (t, α)

∣∣∣∣∣∣∣∣ . n−ωE/2 + n−ωL+ξ,

(7.62)
for any ξ > 0 with very high probability uniformly in 0 ≤ t ≤ tf . Hence, by exactly the
same computations as in [45, Lemma 3.8], it follows that

sup
α∈[0,1]

sup
|i|≤n

sup
0≤t≤tf

|xzi (t, α)− x̂zi (t, α)| ≤ n2ωf

n

(
1

nωE/2
+

1

nωL

)
. (7.63)

Note that (7.63) implies that the second estimate in (7.51) holds with xzi replaced by
x̂zi . In order to conclude the proof of Proposition 7.7 in the next section we differentiate
in the process x̂z in α and study the deterministic (discrete) PDE we obtain from (7.60)
after the α-derivation. Note that the α-derivative of x̂z is well defined by Lemma A.2.

7.4.4 Energy estimate

Define vi = vzi (t, α) := ∂αx̂
z
i (t, α), for any |i| ≤ n. In the remainder of this section we

may omit the z-dependence since the analysis is performed for a fixed z ∈ C such that
|z| ≤ 1 − ε, for some small fixed ε > 0. By (7.60) it follows that v is the solution of the
equation

∂tvi = −(Bv)i + ξi, vi(0) = 0, |i| ≤ n, (7.64)

where

(Bv)i :=
∑

j:(i,j)∈A

Bij(vj − vi), Bij = Bij(t, α) :=
1 + αΛ̊ij(t)

2n(x̂i(t, α)− x̂j(t, α))2
1((i, j) ∈ A),

(7.65)
and

ξi = ξi(t, α) :=
1

2n

∑
j:(i,j)∈A

Λ̊ij(t)

x̂i(t, α)− x̂j(t, α)
.

Before proceeding with the optimal estimate of the `∞-norm of v in (7.67), we give
the following crude bound

sup
|i|≤n

sup
0≤t≤tf

sup
α∈[0,1]

|vi(t, α)| . 1, (7.66)

that will be needed as an a priori estimate for the more precise result later. The
bound (7.66) immediately follows by exactly the same computations as in [17, Lemma
4.7] using that |Λ̊ij | ≤ n−ωE .

The main technical result to prove Step 1 towards Proposition 7.7 is the following
lemma. In particular, after integration in α, Lemma 7.13 proves that the processes
xz(t, 1) and xz(t, 0) are closer than the rigidity scale 1/n.

Lemma 7.13. For any small ωf > 0 there exist small constants ω, ω̂ > 0 such that
ω̂ � ω � ωf and

sup
α∈[0,1]

sup
|i|≤nω̂

sup
0≤t≤tf

|vi(t)| ≤ n−1−ω, (7.67)

with very high probability.
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This lemma is based upon the finite speed of propagation mechanism for the dynam-
ics (7.64) [31, Lemma 9.6]. Our proof follows [13, Lemma 6.2] that introduced a carefully
chosen special cut-off function.

Proof. In order to bound |vi(t)| for small indices we will bound ‖vχ‖∞ for an appropriate
cut-off vector χ supported at a few coordinates around zero. More precisely, we will use
an energy estimate to control ‖vχ‖2 and then we use the trivial bound ‖vχ‖∞ ≤ ‖vχ‖2.
This bound would be too crude without the cut-off.

Let ϕ(x) be a smooth cut-off function which is equal to zero for |x| ≥ 1, it is equal to
one if |x| ≤ 1/2. Fix a small constant ωc > 0 such that ωf � ωL � ωc � ωE , and define

χ(x) := e−2xn1−ωc
ϕ((2c2)−1x), (7.68)

for any x > 0, with the constant c2 > 0 defined in (7.51). It is trivial to see that χ is
Lipschitz, i.e.

|χ(x)− χ(y)| . e−(x∧y)n1−ωc |x− y|n1−ωc , (7.69)

for any x, y ≥ 0, and that

|χ(x)− χ(y)| . e−(x+y)n1−ωc |x− y|n1−ωc , (7.70)

if additionally |x− y| ≤ nωc/(2n). Finally we define the vector χ by

χi = χ(x̂i) := e−2|x̂i|n1−ωc
ϕ((2c1)−1x̂i). (7.71)

Note that χi is exponentially small if n3ωc/2 ≤ |i| ≤ n by rigidity (7.51) and the fact
that γzi ∼ i/n, for n3ωc/2 ≤ |i| ≤ 10c2n. We remark that the lower bound n3ωc/2 on |i| is
arbitrary, since χi is exponentially small for any |i| much bigger than nωc . Moreover, as a
consequence of (7.51) we have that

x̂i ∼
i

n
for nξ ≤ |i| ≤ 10c2n, (7.72)

with very high probability for any ξ > 0.
By (7.64) it follows that

∂t‖vχ‖22 = ∂t
∑
|i|≤n

v2
i χ

2
i = −2

∑
i

χ2
i vi(Bv)i +

1

n

∑
(i,j)∈A

χ2
i viΛ̊ij
x̂i − x̂j

= −
∑

(i,j)∈A

Bij(viχi − vjχj)2 +
1

2n

∑
(i,j)∈A

(viχi − vjχj)Λ̊ij
x̂i − x̂j

χi

+
∑

(i,j)∈A

Bijvivj(χi − χj)2 +
1

2n

∑
(i,j)∈A

(χi − χj)Λ̊ij
x̂i − x̂j

vjχj ,

(7.73)

where, in order to symmetrize the sums, we used that the operator B and the set A are
symmetric, i.e. Bij = Bji (see (7.65)) and (i, j) ∈ A ⇔ (j, i) ∈ A, and that Λ̊ij = Λ̊ji.

We start estimating the terms in the second line of the r.h.s. of (7.73). The most
critical term is the first one because of the (x̂i − x̂j)−2 singularity of Bij . We write this
term as

∑
(i,j)∈A

Bijvivj(χi − χj)2 =

 ∑
(i,j)∈A,
|i−j|≤nωL

+
∑

(i,j)∈A,
|i−j|>nωL

Bijvivj(χi − χj)2. (7.74)
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Then, using (7.70), ‖v‖∞ . 1 by (7.66), |Λ̊ij | ≤ n−ωE by (7.21), the rigidity (7.72), and
that ωL � ωc, we bound the first sum by∣∣∣∣∣∣∣∣

∑
(i,j)∈A,
|i−j|≤nωL

Bijvivj(χi − χj)2

∣∣∣∣∣∣∣∣
.

1

n

∑
(i,j)∈A,
|i−j|≤nωL

1 + |Λ̊ij |
(x̂i − x̂j)2

|vivj |
n2|x̂i − x̂j |2

n2ωc
e−2(|x̂i|+|x̂j |)n1−ωc

. n1−2ωc

 ∑
|i|,|j|≤n3ωc/2

+
∑

|i|≤n3ωc/2,|j|≥n3ωc/2,
|i−j|≤nωL

 |vi||vj |e−2(|x̂i|+|x̂j |)n1−ωc

. n1−ωc/2‖vχ‖22 + e−
1
2n

ωc/2

,

(7.75)

with very high probability. In the last inequality we trivially inserted ϕ to reproduce
χ, using that ϕ((2c2)−1|x̂i|) = ϕ((2c2)−1|x̂j |) = 1 with very high probability uniformly in
0 ≤ t ≤ tf if |i|, |j| ≤ c2n by the rigidity estimate in (7.72).

Define the set

A1 := {(i, j) | |i|, |j| ≥ 5c2n} ∩ {(i, j) | |i− j| > nωL} = A ∩ {(i, j) | |i− j| > nωl},

which is symmetric. The second sum in (7.74), using (7.69), (7.66), and rigidity from (7.72),
is bounded by∣∣∣∣∣∣

∑
(i,j)∈A1

Bijvivj(χi − χj)2

∣∣∣∣∣∣ . n1−2ωc
∑

(i,j)∈A1

e−2(|x̂i|∧|x̂j |)n1−ωc ≤ e−n/2, (7.76)

with very high probability.

Next, we consider the second term in the second line of the r.h.s. of (7.73). Us-
ing (7.70), and that |Λ̊ij | ≤ n−ωE , proceeding similarly to (7.75)–(7.76), we bound this
term as

∣∣∣∣∣∣ 1n
∑

(i,j)∈A

(χi − χj)Λ̊ij
x̂i − x̂j

vjχj

∣∣∣∣∣∣ .
∣∣∣∣∣∣∣∣
∑

(i,j)∈A
|i−j|≤nωL

(χi − χj)Λ̊ij
n(x̂i − x̂j)

vjχj

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(i,j)∈A1

(χi − χj)Λ̊ij
n(x̂i − x̂j)

vjχj

∣∣∣∣∣∣
.

∑
(i,j)∈A
|i−j|≤nωL

|Λ̊ij |
|x̂i − x̂j |

|x̂i − x̂j |
nωc

|vj |χje−(|x̂i|+|x̂j |)n1−ωc
+ e−n/2

.
1

nωc+ωE

∑
|i|,|j|≤n3ωc/2

|vj |χj + e−
1
2n

ωc/2

(7.77)

.
1

nωc/4+ωE
‖vχ‖2 + e−

1
2n

ωc/2

,

with very high probability uniformly in 0 ≤ t ≤ tf .

Finally, we consider the first line in the r.h.s. of (7.73). Since 1 + αΛ̊ij ≥ 1/2, we
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conclude that∣∣∣∣∣∣ 1n
∑

(i,j)∈A

(viχi − vjχj)Λ̊ij
x̂i − x̂j

χi

∣∣∣∣∣∣
≤ 1

C

∑
(i,j)∈A

Bij(viχi − vjχj)2 +
C

n

∑
(i,j)∈A

|Λ̊ij |2χ2
i

≤ 1

C

∑
(i,j)∈A

Bij(viχi − vjχj)2 +
C

n

∑
|i|,|j|≤n3ωc/2

|Λ̊ij |2χ2
i + e−

1
2n

ωc/2

≤ 1

C

∑
(i,j)∈A

Bij(viχi − vjχj)2 +
n3ωc

n1+2ωE
,

(7.78)

for some large C > 0. The error term in the r.h.s. of (7.78) is affordable since ωc � ωE .
Hence, combining (7.73)–(7.78), we conclude that

∂t‖vχ‖22 . −1

2

∑
(i,j)∈A

Bij(viχi − vjχj)2 + n1−ωc/2‖vχ‖22 + n−ωc/4−ωE‖vχ‖2 +
n3ωc

n1+2ωE
,

(7.79)
with very high probability uniformly in 0 ≤ t ≤ tf . Then, ignoring the negative first
term, integrating (7.79) from 0 to tf = n−1+ωf , and using that n1−ωc/2tf = nωf−ωc/2 with
ωf � ωc � ωE , we get

sup
0≤t≤tf

‖vχ‖22 ≤
n3ωctf
n1+2ωE

.

Hence, using the bound

sup
0≤t≤tf

sup
|i|≤nω̂

|vi(t)| ≤ sup
0≤t≤tf

‖vχ‖2 ≤
√
n3ωctf
n1+2ωE

,

we conclude (7.67) for some ω, ω̂ > 0 such that ω̂ � ω � ωf � ωL � ωc � ωE .

With this proof we completed the main Step 1 in the proof of Proposition 7.7, the
analysis of the interpolation process xz(t, α).

7.4.5 The processes λ(t) and xz(t, 1) are close

In Step 2 towards the proof of Proposition 7.7, we now prove that the processes λ(t) and
xz(t, 1) are very close for any t ∈ [0, tf ]:

Lemma 7.14. Let λz(t), xz(t, 1) be defined in (7.14) and (7.48), respectively, and let
tf = n−1+ωf , then

sup
|i|≤n

sup
0≤t≤tf

|xzi (t, 1)− λzi (t)| .
nωf

n1+ωr
. (7.80)

with very high probability.

Proof of Proposition 7.7. Proposition 7.7 follows by exactly the same computations as
in [17, Section (4.10)], combining (7.80), (7.63), (7.66)–(7.67).

Proof of Lemma 7.14. The proof of this lemma closely follows [17, Lemma 4.2]. We
remark that in our case dMi = Zi = 0 compared to [17, Lemma 4.2], using the notation
therein. Recall the definitions of C(t),Λzlij(t),Θ

z1,z2
ij (t),Θz1,z2

ij (t) and C̊(t), Λ̊zlij(t), Θ̊z1,z2
ij (t),
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Θ̊z1,z2
ij (t) in (7.18), (7.10),(7.13) and (7.20)–(7.21), respectively. In the following we may

omit the z-dependence. Introduce the stopping times

τ1 := inf
{
t ≥ 0

∣∣∣ ∃|i|, |j| ≤ n; l ∈ [2] s.t. |Λzlij(t)|+ |Θ
z1,z2
ij (t)|+ |Θz1,z2

ij (t)| > n−ωE
}
, (7.81)

τ2 := inf{t ≥ 0 | ∃|i| ≤ n s.t. |xi(t, 1)|+ |λi(t)| > 2R}, (7.82)

for some large R > 0, and
τ := τ1 ∧ τ2 ∧ tf . (7.83)

Note that |λi(t)| ≤ R with very high probability, since λ(t) are the eigenvalues of Hz
t ,

whose norm is typically bounded. Furthermore, by (7.61) and the fact that the process
x(t, 0) stays bounded by [40, Section 3] it follows that |xi(t, α)| ≤ R for any t ∈ [0, tf ]

and α ∈ [0, 1]. We remark that the analysis in [40, Section 3] is done for a process
of the form (7.48), with α = 0, when it has i.i.d. driving Brownian motions, but the
same results apply for our case as well since the correlation in (7.20) does not play
any role (see (7.58)). This, together with Lemma 7.13 applied for z = z1, z

′ = z2 and
z = z1, z

′ = z2 and z = zl, z
′ = zl, implies that

τ = tf

with very high probability. In particular, Θ̊ij(t) = Θij(t) for any t ≤ τ , hence

C(t) = C̊(t) (7.84)

for any t ≤ τ .
In the remainder of the proof, omitting the time- and z-dependence, we use the

notation x = xz(t, 1), λ = λ(t). Define

ui := λi − xi, |i| ≤ n,

then, as a consequence of (7.84), subtracting (7.14) and (7.48), it follows that

dui =
∑
j 6=i

Bij(uj − ui) dt+
An√
n

dbi, (7.85)

for any 0 ≤ t ≤ τ , where

Bij =
1 + Λij

2n(λi − λj)(xi − xj)
> 0, (7.86)

since |Λij(t)| = |Λ̊ij(t)| ≤ n−ωE , and

An =
1√

1 + n−ωr
− 1 = O(n−ωr ). (7.87)

Let ν := n1+ωr , and define the Lyapunov function

F (t) :=
1

ν
log

∑
|i|≤n

eνui(t)

 . (7.88)

By Itô’s lemma, for any 0 ≤ t ≤ τ , we have that

dF =
1∑

|i|≤n e
νui

∑
|i|≤n

eνui
∑
j 6=i

Bij(uj − ui) dt+
n−1/2An∑
|i|≤n e

νui

∑
|i|≤n

eνui dbi (7.89)

+
n−1νA2

n

4
∑
|i|≤n e

νui

∑
|i|≤n

eνui(1 + Λii) dt− 4n−1νA2
n(∑

|i|≤n e
νui

)2

∑
|i|,|j|≤n

eνuieνuj E
[
dbi dbj

∣∣∣ F̃b,t].
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Note that the first term in the r.h.s. of (7.89) is negative since the map x 7→ eνx is
increasing. The second and third term in the r.h.s. of (7.89), using that 1 + Λii ≤ 2, are
bounded exactly as in [17, Eqs. (4.37)–(4.38)] by

nξt
1/2
f

n1/2+ωr
+

tfν

n1+2ωr
,

with very high probability for any ξ > 0.
Note that ∑

|i|,|j|≤n

eνuieνuj E
[
dbi dbj

∣∣∣ F̃b,t] ≥ 0,

hence, the last term in the r.h.s. of (7.89) is always non positive. This implies that

sup
0≤t≤tf

F (t) ≤ F (0) +
tfνA

2
n

n
+
nξt

1/2
f An

n1/2
,

for any ξ > 0. Then, since

F (0) =
log(2n)

n1+ωr
, F (t) ≥ sup

|i|≤n
ui(t),

we conclude the upper bound in (7.80). Then noticing that u−i = −ui for i ∈ [n], we
conclude the lower bound as well.

7.5 Path-wise coupling close to zero: proof of Lemmata 7.8–7.9

This section is the main technical result used in the proof of Lemmata 7.8–7.9. In
Proposition 7.17 we will show that the points with small indices in the two processes
become very close to each other on a certain time scale tf = n−1+ωf , for any small
ωf > 0.

The main result of this section (Proposition 7.17) is stated for general deterministic
initial data s(0) satisfying a certain regularity condition (see Definition 7.16 later) even
if for its applications in the proof of Proposition 7.2 we only consider initial data which
are eigenvalues of i.i.d. random matrices. The initial data r(0), without loss of generality,
are assumed to be the singular values of a Ginibre matrix (see also below (7.91) for a
more detailed explanation). For notational convenience we formulate the result for two
general processes s and r and later we specialize them to our application.

Fix a small constant 0 < ωr � 1, and define the processes si(t), ri(t) to be the solution
of

dsi(t) =

√
1

2n(1 + n−ωr )
dbsi (t) +

1

2n

∑
j 6=i

1

si(t)− sj(t)
dt, 1 ≤ |i| ≤ n, (7.90)

and

dri(t) =

√
1

2n(1 + n−ωr )
dbri (t) +

1

2n

∑
j 6=i

1

ri(t)− rj(t)
dt, 1 ≤ |i| ≤ n, (7.91)

with initial data si(0) = si, ri(0) = ri, where s = {s±i}i∈[n] and r = {r±i}i∈[n] are
two independent sets of particles such that s−i = −si and r−i = −ri for i ∈ [n]. The
driving martingales {bsi}i∈[n], {bri }i∈[n] in (7.90)–(7.91) are two families satisfying As-
sumption 7.15 below, and they are such that bs−i = −bsi , br−i = −bri for i ∈ [n]. The
coefficient (1 + n−ωr )−1/2 ensures the well-posedness of the processes (7.90)–(7.91) (see
Appendix A), but it does not play any role in the proof of Proposition 7.17 below.
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For convenience we also assume that {r±i}ni=1 are the singular values of X̃, with X̃ a
Ginibre matrix. This is not a restriction; indeed, once a process with general initial data
s is shown to be close to the reference process with Ginibre initial data, then processes
with any two initial data will be close.

On the correlation structure between the two families of i.i.d. Brownian motions
{bsi}ni=1, {bri }ni=1 and the initial data {s±i}i∈[n] we make the following assumptions.

Assumption 7.15. Fix ωK , ωQ > 0 such that ωK � ωr � ωQ � 1, with ωr defined
in (7.90)–(7.91), and define the n-dependent parameter K = Kn = nωK . Suppose that
the families {bs±i}ni=1, {br±i}ni=1 in (7.90)–(7.91) are realised on a common probability
space with a common filtration Ft. Let

Lij(t) dt := E
[(

dbsi (t)− dbri (t)
)(

dbsj(t)− dbrj(t)
) ∣∣ Ft] (7.92)

denote the covariance of the increments conditioned on Ft. The processes satisfy the
following assumptions:

(a) The two families of martingales {bsi}ni=1, {bri }ni=1 are such that

E
[
dbq1i (t) dbq2j (t)

∣∣ Ft] =
[
δijδq1q2 + Ξq1,q2ij (t)

]
dt, |Ξq1,q2ij (t)| ≤ n−ωQ , (7.93)

for any i, j ∈ [n], q1, q2 ∈ {s, r}. The quantities in (7.93) for negative i, j-indices are
defined by symmetry.

(b) The subfamilies {bs±i}Ki=1, {br±i}Ki=1 are very strongly dependent in the sense that
for any |i|, |j| ≤ K it holds

|Lij(t)| ≤ n−ωQ (7.94)

with very high probability for any fixed t ≥ 0.

Definition 7.16 ((g,G)-regular points [22, Definition 7.12]). Fix a very small ν > 0, and
choose g, G such that

n−1+ν ≤ g ≤ n−2ν , G ≤ n−ν .

A set of 2n-points s = {si}|i|≤n on R is called (g,G)-regular if there exist constants
cν , Cν > 0 such that

cν ≤
1

2n
=

n∑
i=−n

1

si − (E + iη)
≤ Cν , (7.95)

for any |E| ≤ G, η ∈ [g, 10], and if there is a constant Cs large enough such that
‖s‖∞ ≤ nCs . Moreover, cν , Cν ∼ 1 if η ∈ [g, n−2ν ] and cν ≥ n−100ν , Cν ≤ n100ν if
η ∈ (n−2ν , 10].

Let ρfc,t(E) be the scDOS of the particles {s±i(t)}i∈[n] that is given by the semicircular
flow acting on the scDOS of the initial data {s±i(0)}i∈[n], see [45, Eqs. (2.5)–(2.6)].

Proposition 7.17 (Path-wise coupling close to zero). Let the processes s(t) = {s±i(t)}i∈[n],
r(t) = {r±i(t)}i∈[n] be the solutions of (7.90) and (7.91), respectively, and assume that
the driving martingales in (7.90)–(7.91) satisfy Assumption 7.15 for some ωK , ωQ > 0.
Additionally, assume that s(0) is (g,G)-regular in the sense of Definition 7.16 and that
r(0) are the singular values of a Ginibre matrix. Then for any small ωf , ν > 0 such that
ν � ωK � ωf � ωQ and that gnν ≤ tf ≤ n−νG2, there exist constants ω, ω̂ > 0 such that
ν � ω̂ � ω � ωf , and

|ρfc,t1(0)si(tf )− ρsc(0)ri(tf )| ≤ n−1−ω, |i| ≤ nω̂, (7.96)

with very high probability, where tf := n−1+ωf .
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Proof. The proof of Proposition 7.17 is nearly identical to the proof of [22, Proposi-
tion 7.14], which itself follows the proof of fixed energy universality in [15, 45], adapted
to the block structure (3.1) in [18] (see also [14] for a different technique to prove
universality, adapted to the block structure in [62]). We will not repeat the whole
proof, just explain the modification. The only difference of Proposition 7.17 compared
to [22, Proposition 7.14] is that here we allow the driving martingales in (7.90)–(7.91)
to have a (small) correlation (compare Assumption 7.15 with a non zero Ξq1,q2ij to [22,

Assumption 7.11]). The additional pre-factor (1 + n−ωr )−1/2 does not play any role.
The correlation of the driving martingales in (7.90)–(7.91) causes a difference in the

estimate of [22, Eq. (7.83)]. In particular, the bound on

dMt =
1

2n

∑
|i|≤n

(wi − fi)f ′i dCi(t, α), dCi(t, α) :=
α dbs + (1− α) dbr√

2n(1 + n−ωr )
, (7.97)

using the notation in [22, Eq. (7.83)], will be slightly different. In the remainder of the
proof we present how [22, Eqs. (7.83)–(7.87)] changes in the current setup. Using that
by [45, Eqs. (3.119)–(3.120)] we have

|fi|+ |f ′i |+ |wi| ≤ n−D, nωA < |i| ≤ n, (7.98)

for ωA = ωK (with ωK defined in Assumption 7.15), and for any D > 0 with very high
probability, we bound the quadratic variation of (7.97) by

d〈M〉t =
1

4n2

∑
1≤|i|,|j|≤nωA

(wi − fi)(wj − fj)f ′if ′j E[dCi(α, t) dCj(α, t) | Ft] +O
(
n−100

)
.

(7.99)
Here we estimated the regime when |i| or |j| are larger than nωA differently compared
to [22, Eq. (7.84)], since, unlike in [22, Eq. (7.84)], E[dCi(t, α) dCj(t, α) | Ft] 6= δij , hence
here we anyway need to estimate the double sum using (7.98).

Then, by (a)–(b) of Assumption 7.15, for |i|, |j| ≤ nωA we have

E[dCi(t, α) dCj(t, α) | Ft] =
δij + α2Ξs,sij (t) + (1− α)2Ξr,rij (t)

2n(1 + n−ωr )
dt

+
α(1− α)

2n(1 + n−ωr )
E
[(

dbsi dbrj + dbri dbsj
) ∣∣ Ft], (7.100)

and that ∣∣E[dbsi dbrj
∣∣ Ft]∣∣ =

∣∣E[(dbsi − dbri ) dbrj
∣∣ Ft]+ (δij + Ξr,rij (t)) dt

∣∣
. (|Lii(t)|1/2 + |Ξr,rij (t)|+ δij) dt,

(7.101)

where in the last step we used Kunita-Watanabe inequality for the quadratic variation
(dbsi − dbri ) dbrj .

Combining (7.99)–(7.101), and adding back the sum over nωA < |i| ≤ n of (wi −
fi)

2(f ′i)
2 at the price of an additional error O(n−100), omitting the t-dependence, we

finally conclude that

d〈M〉t .
1

n3

∑
1≤|i|≤n

(wi − fi)2(f ′i)
2 dt

+
1

n3

∑
|i|,|j|≤nωA

(
|Lii|1/2 + |Ξs,sij |+ |Ξ

r,r
ij |
) ∣∣(wi − fi)(wj − fj)f ′if ′j∣∣dt+O

(
n−100

)
.

(7.102)
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Since |Lii| + |Ξq1,q2ij | ≤ n−ωQ , for any |i|, |j| ≤ n, q1, q2 ∈ {s, r}, and ωA = ωK � ωQ
by (7.93)–(7.94), using Cauchy-Schwarz in (7.102), we conclude that

d〈M〉t .
1

n3

∑
1≤|i|≤n

(wi − fi)2(f ′i)
2 dt+O

(
n−100

)
, (7.103)

which is exactly the same bound as in [22, Eq. (7.88)] (except for the tiny error O(n−100)

that is negligible). Proceeding exactly as in [22], we conclude the proof of Proposi-
tion 7.17.

7.5.1 Proof of Lemma 7.8 and Lemma 7.9

The fact that the processes λ̊(t), λ̃(t) and µ̃(t), µ(t) satisfy the hypotheses of Propo-
sition 7.17 for the choices ν = ωh, ωK = ωA, ωQ = ωE , and Ξq1,q2ij = Θz1,z2

ij follows by
Lemma 7.4 applied for z = z1, z

′ = z2 and z = z1, z
′ = z2 and z = zl, z

′ = zl, and exactly
the same computations as in [22, Section 7.5]. We remark that the processes µ(l)(t) do
not have the additional coefficient (1 + n−ωr ) in the driving Brownian motions, but this
does not play any role in the application of Proposition 7.17 since it causes an error term
n−1−ωr that is much smaller then the bound n−1−ω in (7.31). Then, by Proposition 7.17,
the results in Lemma 7.8 and Lemma 7.9 immediately follow.

7.6 Proof of Proposition 7.6

First of all we notice that λ(t) is γ-Hölder continuous for any γ ∈ (0, 1/2) by Weyl’s
inequality. Then the proof of Proposition 7.6 consists of two main steps, (i) proving that
the eigenvalues λ(t) are a strong solution of (7.14) as long as there are no collisions,
and (ii) proving that there are no collisions for almost all t ∈ [0, T ].

The proof that the eigenvalues λ(t) are a solution of (7.14) is deferred to Appendix B.
The fact that there are no collisions for almost all t ∈ [0, T ] is ensured by [19, Lemma
6.2] following nearly the same computations as in [17, Theorem 5.2] (see also [19,
Theorem 6.3] for its adaptation to the 2× 2 block structure). The only difference in our
case compared to the proof of [17, Theorem 5.2] is that the martingales dMi(t) (cf. [17,
Eq. (5.4)]) are defined as

dMi(t) :=
dbzi (t)√

n
, |i| ≤ n, (7.104)

with {bzi }i∈[n] having non trivial covariance (7.16). This fact does not play any role in
that proof, since the only information about dM = {dMi}|i|≤n used in [17, Theorem 5.2]
is that it has bounded quadratic variation and that M(t) is γ-Hölder continuous for any
γ ∈ (0, 1/2), which is clearly the case for dM defined in (7.104).

A The interpolation process is well defined

We recall that the eigenvectors of Hz are of the form wz
±i = (uzi ,±vzi ) for any i ∈ [n],

as a consequence of the symmetry of the spectrum of Hz with respect to zero. Consider
the matrix flow

dXt =
dBt√
n
, X0 = X, (A.1)

with Bt being a standard real matrix valued Brownian motion. Let Hz
t denote the

Hermitisation of Xt−z, and {wz
i (t)}|i|≤n its eigenvectors. We recall that the eigenvectors

{wz
i (t)}|i|≤n are almost surely well defined, since Hz

t does not have multiple eigenvalues
almost surely by (7.17). We set the eigenvectors equal to zero where they are not
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well defined. Recall the definitions of the coefficients Λzij(t), Λ̊zij(t) from (7.10), (7.13)
and (7.21), respectively. Set

∆n :=
{

(xi)|i|≤n ∈ R2n
∣∣ 0 < x1 < · · · < xn, x−i = −xi, ∀i ∈ [n]

}
,

and let C(R+,∆n) be the space of continuous functions f : R+ → ∆n. Let ωE > 0 be the
exponent in (7.21), and let ωr > 0 be such that ωr � ωE . In this appendix we prove that
for any α ∈ [0, 1] the system of SDEs

dxzi (t, α) =
d̊bzi (t)√

n(1 + n−ωr )
+

1

2n

∑
j 6=i

1 + αΛ̊zij(t)

xzi (t, α)− xzj (t, α)
dt, xzi (0, α) = xi(0), |i| ≤ n,

(A.2)
with x(0) ∈ ∆n, admits a strong solution for any t ≥ 0. For T > 0, by (7.20), the
martingales {̊bzi }|i|≤[n], defined on a filtration (F̃b,t)0≤t≤T , are such that b̊z−i = −̊bzi for
i ∈ [n], and that

E
[
d̊bzi d̊bzj

∣∣∣ F̃b,t] =
δi,j − δi,−j + Λ̊zij(t)

2
dt, |i|, |j| ≤ n. (A.3)

The main result of this section is Proposition A.1 below. Its proof follows closely [17,
Proposition 5.4], which is inspired by the proof of [5, Lemma 4.3.3]. We neverthe-
less present the proof of Proposition A.1 for completeness, explaining the differences
compared with [17, Proposition 5.4] as a consequence of the correlation in (A.3).

Proposition A.1. Fix any z ∈ C, and let x(0) ∈ ∆n. Then for any fixed α ∈ [0, 1] there
exists a unique strong solution x(t, α) = xz(t, α) ∈ C(R+,∆n) to the system of SDE (A.2)
with initial condition x(0).

We will mostly omit the z-dependence since the analysis of (A.2) is done for any fixed
z ∈ C; in particular, we will use the notation Λ̊ij = Λ̊zij . By (7.10), (7.13) and (7.21) it

follows that Λ̊ij(t) = Λ̊ji(t), and that |Λ̊ij(t)| ≤ n−ωE , for any t ≥ 0.

Proof. We follow the notations used in the proof of [17, Proposition 5.4] to make the
comparison clearer. Moreover, we do not keep track of the n-dependence of the constants,
since throughout the proof n is fixed. By a simple time rescaling, we rewrite the
process (A.2) as

dxi(t, α) = d̊bi(t) +
1

2

∑
j 6=i

1 + θij(t)

xi(t, α)− xj(t, α)
dt, |i| ≤ n, (A.4)

where θij(t) := αΛ̊ij(1+n−ωr )+n−ωr is such that θij(t) = θji(t). Note that c1 ≤ θij(t) ≤ c2
for any t ≥ 0 and α ∈ [0, 1], with c1 = n−ωr/2, c2 = 1. For any ε > 0 define the bounded
Lipschitz function φε : R→ R as

φε(x) :=

{
x−1, |x| ≥ ε,
ε−2x, |x| < ε,

that cuts off the singularity of x−1 at zero.
Introduce the system of cut-off SDEs

dxεi(t, α) = d̊bi(t) +
1

2

∑
j 6=i

(1 + θij(t))φε(x
ε
i(t, α)− xεj(t, α)) dt, |i| ≤ n, (A.5)

which admits a unique strong solution (see e.g. [43, Theorem 2.9 of Section 5]) as a
consequence of φε being Lipschitz and the fact that d̊b = (C̊)1/2 dw (see (7.23)). Define
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the stopping times

τε = τε(α) := inf

{
t

∣∣∣∣ min
|i|,|j|≤n

∣∣xεi(t, α)− xεj(t, α)
∣∣ ≤ ε or ‖xε(t, α)‖∞ ≥ ε

−1

}
. (A.6)

By strong uniqueness we have that xε2(t, α) = xε1(t, α) for any t ∈ [0, τε2 ] if 0 < ε1 < ε2.
Note that τε2 ≤ τε1 for ε1 < ε2, thus the limit τ = τ(α) := limε→0 τε(α) exists, and x(t, α) :=

limε→0 x
ε(t, α) defines a strong solution to (A.4) on [0, τ). Moreover, by continuity in

time, x(t, α) remains ordered as 0 < x1(t, α) < · · · < xn(t, α) and x−i(t, α) = −xi(t, α) for
i ∈ [n]. Additionally, for the square of the `2-norm ‖x‖22 =

∑
i x

2
i a simple calculation

shows that

d‖x(t, α)‖22 =
1

2

∑
j 6=i

(1 + θij) +
∑
|i|,|j|≤n

Λ̊ij

 dt+ dM1, (A.7)

with dM1 being a martingale term. This implies that E‖x(t ∧ s)‖22 ≤ c(1 + t) for any
stopping time s < τ and for any t ≥ 0, where c depends on n.

Let a > 0 be a large constant that we will choose later in the proof, and define ak
recursively by a0 := a, ak+1 := a5

k for k ≥ 0. Consider the Lyapunov function

f(x) := −2
∑
k 6=l

a|k−l| log|xk − xl|. (A.8)

Then by Itô’s formula we get

df(x) = A(x(t, α)) dt+ dM2(t), (A.9)

with

A(x(t, α)) := − 2
∑

l 6=i,j 6=i

(1 + θij)a|i−l|

(xi(t, α)− xl(t, α))(xi(t, α)− xj(t, α))
+
∑
|i|≤n

a|2i|

(2xi(t, α))2

+
∑
j 6=i

a|i−j|(1 + Λ̊ii(t)− Λ̊ij(t))

(xi(t, α)− xj(t, α))2
,

(A.10)

where dM2 is a martingale given by

dM2(t) = −2
∑
j 6=i

a|i−j| d̊bi(t)

xi(t, α)− xj(t, α)
.

In the following we will often omit the time dependence. Note that the term in (A.10)
containing Λ̊ii − Λ̊ij is new compared to [17, Eq. (5.39)], since it comes from the
correlation of the martingales {̊bi}|i|≤n, whilst in [17, Eq. (5.39)] i.i.d. Brownian motions

have been considered. In the remainder of the proof we show that the term Λ̊ii − Λ̊ij is
negligible using the fact that |Λ̊ij | ≤ n−ωE , and so that this term can be absorbed in the
negative term coming from the first sum in the r.h.s. of (A.10) for l = j.

We now prove that A(x(t, α)) ≤ 0 if a > 0 is sufficiently large. Firstly, we write
A(x(t, α)) as

A(x(t, α)) = −2
∑

l 6=i,j 6=i
j 6=l

(1 + θij)a|i−l|

(xi − xl)(xi − xj)
−
∑
j 6=±i

a|i−j|(1 + 2θij − Λ̊ii + Λ̊ij)

(xi − xj)2

− 2
∑
|i|≤n

a|2i|(θ−i,i − Λ̊ii)

(2xi)2
.

(A.11)
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Then, using that the first sum in (A.11) is non-positive for (i − l)(i − j) > 0, and that
c1 ≤ θij ≤ c2, with c1 = n−ωr , we bound A(x(t, α)) as follows

A(x(t, α)) ≤ −2(1 + c2)
∑
|i|≤n

∑
(i−l)(i−j)<0

a|i−l|

(xi − xl)(xi − xj)

− c1
∑
j 6=i

a|i−j|

(xi − xj)2
−
∑
j 6=±i

a|i−j|

(xi − xj)2
.

(A.12)

In (A.12) we used that

θij − Λ̊ii + Λ̊ij ≥
c1
2
, θ−i,i − Λ̊ii ≥

c1
2
,

since θij ≥ c1 = n−ωr and |Λ̊ij | ≤ n−ωE , where ωr � ωE . This shows that the correlations
of the martingales {̊bi}|i|≤n is negligible. Note that the r.h.s. of (A.12) has exactly the
same form as [17, Eq. (5.42)], since the third term in (A.12) is non-positive. Hence,
following exactly the same computations as in [17, Eqs. (5.43)–(5.46)], choosing a > n10,
we conclude that

A(x(t, α)) ≤
[

2(1 + c2)

a
− c1

]∑
j 6=i

a|i−j|

(xi − xj)2
, (A.13)

which is negative for a sufficiently large.
Fix a > 0 large enough so that A(x(t, α)) ≤ 0, then for any stopping time s < τ , and

any t ≥ 0 we have

E[f(x(t ∧ s, α))] ≤ E[f(x(0, α))]. (A.14)

Hence, by [17, Eqs. (5.48)–(5.49)], using that E‖x(t ∧ τε)‖22 ≤ c(1 + t), it follows that

log(ε−1)P(τε < t) ≤ c,

and so that P(τ < t) = 0, letting ε → 0. Since t ≥ 0 is arbitrary, this implies that
P(τ < +∞) = 0, i.e. (A.4) has a unique strong solution on (0,∞) such that x(t, α) ∈ ∆n

for any t ≥ 0 and α ∈ [0, 1].

Additionally, by a similar argument as in [17, Proposition 5.5], we conclude the
following lemma.

Lemma A.2. Let x(t, α) be the unique strong solution of (A.2) with initial data x(0, α) ∈
∆n, for any α ∈ [0, 1], and assume that there exists L > 0 such that ‖x(0, α1)−x(0, α2)‖2 ≤
L|α1 − α2|, for any α1, α2 ∈ [0, 1]. Then x(t, α) is Lipschitz in α ∈ [0, 1] for any t ≥ 0 on an
event Ω such that P(Ω) = 1, and its derivative satisfies

∂αxi(t, α) = ∂αxi(0, α) +
1

2n

∫ t

0

∑
j 6=i

[1 + αΛ̊ij(s)][∂αxj(s, α)− ∂αxi(s, α)]

(xi(s, α)− xj(s, α))2
ds

+
1

2n

∫ t

0

∑
j 6=i

Λ̊ij(s)

xi(s, α)− xj(s, α)
ds.

(A.15)

B Derivation of the DBM for singular values in the real case

Let X be an n× n real random matrix, and define Y z := X − z. Consider the matrix
flow (A.1) defined on a probability space Ω equipped with a filtration (Ft)0≤t≤T , and
denote by Hz

t the Hermitisation of Xt − z. We now derive (7.14), under the assumption
that the eigenvalues are all distinct. This derivation is easily made complete by the
argument in the proof Proposition 7.6 in Section 7.6.
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Let {λzi (t),−λzi (t)}i∈[n] be the eigenvalues of Hz
t , and denote by {wz

i (t),wz
−i(t)}i∈[n]

their corresponding orthonormal eigenvectors, i.e. for any i, j ∈ [n], omitting the t-
dependence, we have that

Hzwz
±i = ±λziwz

±i, (wz
i )∗wz

j = δij , (wz
i )∗wz

−j = 0. (B.1)

In particular, for any i ∈ [n], by the block structure of Hz it follows that

wz
±i = (uzi ,±vzi ), Y zvzi = λziu

z
i , (Y z)∗uzi = λzi v

z
i . (B.2)

Moreover, since {wz
±i}ni=1 is an orthonormal basis, we conclude that

(uzi )
∗uzi = (vzi )∗vzi =

1

2
. (B.3)

In the following, for any fixed entry xab of X, we denote the derivative in the xab
direction by

ḟ :=
∂f

∂xab
, (B.4)

where f = f(X) is a function of the matrix X. From now on we only consider positive
indices 1 ≤ i ≤ n. We may also drop the z and t dependence to make our notation lighter.
For any i, j ∈ [n], differentiating (B.1) we obtain

Ḣwi +Hẇi = λ̇iwi + λiẇi, (B.5)

ẇ∗iwj +w∗i ẇj = 0, (B.6)

w∗i ẇi + ẇ∗iwi = 0. (B.7)

Note that (B.7) implies that <[w∗i ẇi] = 0. Moreover, since the eigenvectors are defined
modulo a phase, we can choose eigenvectors such that =[w∗i ẇi] = 0 for any t ≥ 0 hence
w∗iwi = 0. Then, multiplying (B.5) by w∗i we conclude that

λ̇i = u∗i Ẏ vi + v∗i Ẏ
∗ui. (B.8)

Moreover, multiplying (B.5) by w∗j , with j 6= i, and by w∗−j , we get

(λi − λj)w∗j ẇi = w∗j Ḣwi, (λi + λj)w
∗
−jẇi = w∗−jḢwi, (B.9)

respectively. By (B.7) and w∗iwi = 0 it follows that

ẇi =
∑
j∈[n],
j 6=i

(w∗j ẇi)wj +
∑
j∈[n]

(w∗−jẇi)w−j , (B.10)

hence, by (B.9), we conclude

ẇi =
∑
j 6=i

v∗j Ẏ
∗ui + u∗j Ẏ vi

λi − λj
wj +

∑
j

u∗j Ẏ vi − v∗j Ẏ ∗ui
λi + λj

w−j . (B.11)

Throughout this appendix we use the convention that for any vectors v ∈ Cn we
denote its entries by v(a), with a ∈ [n]. By (B.8)–(B.11) it follows that

∂λi
∂xab

= 2<[u∗i (a)vi(b)], (B.12)

and that

∂wi
∂xab

(k) =
∑
j 6=i

[
u∗j (a)vi(b) + v∗j (b)ui(a)

λi − λj
wj(k) +

u∗j (a)vi(b)− v∗j (b)ui(a)

λi + λj
w−j(k)

]

+
u∗i (a)vi(b)− v∗i (b)ui(a)

2λi
w−i(k).

EJP 26 (2021), paper 24.
Page 57/61

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP591
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Fluctuation around the circular law

By Ito’s formula we have that

dλi =
∑
ab

∂λi
∂xab

dxab +
1

2

∑
ab

∑
kl

∂2λi
∂xab∂xkl

dxab dxkl. (B.13)

Then we compute

∂2λi
∂xab∂xkl

(B.14)

= 2<
[
∂v∗i
∂xab

(l)ui(k) + v∗i (l)
∂ui
∂xab

(k)

]
= 2<

[∑
j 6=i

[
uj(a)v∗i (b) + vj(b)u

∗
i (a)

λi − λj
v∗j (l)ui(k)− uj(a)v∗i (b)− vj(b)u∗i (a)

λi + λj
v∗j (l)ui(k)

]

− ui(a)v∗i (b)− vi(b)u∗i (a)

2λi
v∗i (l)ui(k) +

u∗i (a)vi(b)− v∗i (b)ui(a)

2λi
ui(k)v∗i (l)

+
∑
j 6=i

[
u∗j (a)vi(b) + v∗j (b)ui(a)

λi − λj
uj(k)v∗i (l) +

u∗j (a)vi(b)− v∗j (b)ui(a)

λi + λj
uj(k)v∗i (l)

] ]
.

Hence, combining (B.12)–(B.14), we finally conclude that

dλzi =
dbzi√
n

+
1

2n

∑
j 6=i

[
1 + 4<[〈uzj , uzi 〉〈vzi , vzj 〉]

λzi − λzj
+

1 + 4<[〈uzj , uzi 〉〈vzi ,−vzj 〉]
λzi + λzj

]
dt

+
1 + 4<[〈uzi , uzi 〉〈vzi ,−vzi 〉]

4nλzi
dt.

(B.15)

In (B.15) we used the convention that for any vector v ∈ Cn by v we denote the vector
with entries v(a) = v(a), for any a ∈ [n]. The driving martingales in (B.15) are defined as

dbzi := dBzii + dBzii, with dBzij :=
∑
ab

(uzi )
∗(a) dBabv

z
j (b), (B.16)

with B = Bt the matrix valued Brownian motion in (A.1), and their covariance given by

E
[
dbzi dbzj

∣∣ Ft] =
δij + 4<

[
〈uzj , uzi 〉〈vzi , vzj 〉

]
2

dt. (B.17)

Note that {bzi }i∈[n] defined in (B.16) are not Brownian motions, as a consequence of the
non deterministic quadratic variation (B.17).
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