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Abstract

Exponential tightness of a family of Skorohod integrals is studied in this paper. We
first provide a counterexample to illustrate that in general the exponential tightness
with speed ε similar to Itô integral does not hold, even for any speed εα with α > 0.
Then, some characterizations of this subject are given. Application is also provided to
illustrate our results.
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1 Introduction

Large deviations principle (see e.g., [3] for a full discussion of this subject) plays
an important role in both theory and application such as averaging principle of fast-
slow systems, equilibrium and non-equilibrium statistical mechanics, multi-fractals, and
thermodynamic formulation of chaotic systems; see [3, 15] and the reference therein. In
Polish space, the exponential tightness is a necessary condition for the large deviations
principle (with inf-compact rate functions) and implies the large deviations relative
compactness (i.e., every sub-sequence contains another sub-sequence satisfying the
large deviations principle with some rate function); see e.g., [3]. Hence, this property
has a crucial role in the large deviations theory, for example, see [4, 8, 9, 13]. Moreover,
since it provides a kind of “exponential tail estimates for the tightness”, it is also very
interesting in its own right in stochastic analysis. Recall that we say a family of random
variables {Fε}ε>0 in Rd is exponentially tight with speed v(ε) satisfying v(ε) → 0 as
ε→ 0, if

lim
L→∞

lim sup
ε→0

v(ε) logP(|Fε| > L) = −∞.

It is noted that if v1(ε) < v2(ε) (as ε→ 0) then the exponential tightness with the speed
v1(ε) implies the exponential tightness with the speed v2(ε).

Given a d-dimensional standard Brownian motion W (t) defined on the canonical
probability space (Ω,F , {Ft},P) and the Hilbert space H = L2([0, 1],Rd), consider an
isonormal Gaussian process W = {W (h) : h ∈ H} defined by W (h) =

∫ 1

0
h(t)dW (t).

Denote by D the Malliavin derivative operator and by δ its adjoint, the divergence
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Exponential tightness of a family of Skorohod integrals

operator, which is called Skorohod integral in our setting; see [11]. Let {uε}ε>0 be a
family of Skorohod integrable processes and we consider the family of random variables

Fε =
√
εδ(uε).

As a special case, it is well-known in the classical Itô stochastic calculus that if uε is a
non-anticipating process, δ(uε) can be understood in the Itô sense. If we assume further
that uε are bounded (uniformly in ε) by K, i.e., for all ε > 0, |uε(t)| ≤ K, ∀t ∈ [0, 1] a.s.,
then {Fε}ε>0 is exponentially tight with the speed v(ε) = ε. To be more precise, by
Schilder’s theorem [3, Lemma 5.2.2] one has

P(|Fε| > L) ≤ 4d exp
{
− L2

2dεK2

}
.

What about the exponential tightness of the family {Fε}ε>0 in the general case? This
work aims to address such a question.

First, we are wondering if one relaxes the measurability and allows {uε}ε>0 to be
anticipating processes and keeps the (uniform) boundness, is the family {Fε}ε>0 still
exponentially tight with the speed v(ε) = ε or at least with some speed v(ε) = εα (for some
α ∈ (0, 1))? Unfortunately, it is not true in general. We first provide a counterexample as
follows.

Theorem 1.1. Assume W (t) is a one-dimensional Brownian motion. Let f : R→ R be
the function defined by f(x) = (0 ∨ x ∧ 1)3/4. Define X = f(W (1)) and

Fε =
√
εδ
(
X1[0,1](t)

)
.

The family {Fε}ε>0 is not exponentially tight with any speed v(ε) = εα, α > 0. Moreover,
for any α > 0 one has

lim sup
L→∞

lim sup
ε→0

εα logP(|Fε| > L) = 0. (1.1)

Therefore, it is very natural to ask the question: under what conditions on uε is the
family {Fε}ε>0 exponentially tight (with some suitable speed)? We aim to provide some
sufficient conditions for the exponential tightness of this family of Skorohod integrals.

It will be seen from the above counterexample that the family {Fε}ε>0 may not be
exponentially tight because the relationship between the integrands and the whole paths
of Brownian motion is somewhat uncontrollable. This relation is often described by the
derivative of the integrands with respect to the Brownian motion. Therefore, if we can
control the moments of the derivative of the integrands, we can have the exponential
tightness with some suitable speed. To be precise, we have the following theorem. [In
this paper, ⊗ denotes the tensor product; and for a normed space V endowed with the

norm ‖ · ‖V , and V -valued random variable v, ‖v‖Lp(Ω,V ) :=
(
E(‖v‖pV )

)1/p
.]

Theorem 1.2. Let {uε}ε>0 be a family of Skorohod integrable stochastic processes.
Assume that there are κ1 > −1/2 and κ2 ≥ 0 such that

‖uε‖Lp(Ω,H) + ‖Duε‖Lp(Ω,H⊗H) ≤ cεκ1pκ2 , ∀ε > 0, p ≥ 1, (1.2)

for some universal constant c, independent of ε, p. Then the family {Fε =
√
εδ(uε)}ε>0 is

exponentially tight with the speed v(ε) = εα for any α satisfying

α <
1/2 + κ1

5 + κ2
. (1.3)

This theorem is proved by using Meyer’s inequality after revisiting its proof with the
use of best constants and the estimate of the exponential moment. As seen in the above
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Exponential tightness of a family of Skorohod integrals

theorem, compared with the speed in the Itô case, we have the exponential tightness in
slower speeds due to the non-adaptedness.

If we can control the moments of the second-order Malliavin derivative (denoted by
D2) of the integrands, we can combine Itô’s formula for Skorohod integral and Meyer’s
inequality to estimate the pth-moment and obtain the following result, which can be used
to improve the speed in certain cases.

Theorem 1.3. Let {uε}ε>0 be a family of Skorohod integrable stochastic processes.
Assume that there are κ1, κ3 > −1/2, and κ2, κ4 ≥ 0 such that

‖Duε‖Lp(Ω×H⊗2) + ‖D2uε‖Lp(Ω×H⊗3) ≤ cεκ1pκ2 , ‖uε‖Lp(Ω);H ≤ c′εκ3pκ4 , ∀ε > 0, p ≥ 1,

(1.4)
for some universal constants c, c′, independent of ε, p. In the above,

‖Duε‖Lp(Ω×H⊗2) :=
(∫ 1

0

∫ 1

0

E|Dsuε(r)|pdrds
)1/p

,

‖D2uε‖Lp(Ω×H⊗3) :=
(∫ 1

0

∫ 1

0

∫ 1

0

E|DtDsuε(r)|pdrdtds
)1/p

,

and

‖uε‖Lp(Ω);H :=
(∫ 1

0

(E|uε(s)|p)2/pds
)1/2

.

Then the family {Fε =
√
εδ(uε)}ε>0 is exponentially tight with the speed v(ε) = εα for

any α satisfying

α <
1/2 + κ̂1

κ̂2
,

where 2κ̂1 = min{κ1 + κ3, 2κ3}, 2κ̂2 = max{6 + κ2 + κ4, 1 + 2κ4}.
The rest of the paper is organized as follows. Section 2 recalls briefly the Malliavin

calculus emphasizing the Malliavin derivative operator, its adjoint operator, and Meyer’s
inequality. The proofs of our main results are given in Section 3. An application to
mathematical physics is given in Section 4.

2 Malliavin calculus

2.1 Malliavin derivative and Skorohod integral

We recall briefly some basic definitions in Malliavin calculus and refer the readers
to [11] for a full construction. Let W (t) be a d-dimensional standard Brownian mo-
tion defined on the canonical probability space (Ω,F , {Ft},P) and H = L2([0, 1],Rd).
Consider W = {W (h), h ∈ H}, the space of Gaussian isonormal processes defined by
W (h) =

∫ 1

0
h(t)dW (t). Denote by

S =
{
F = f(W (h1), . . . ,W (hn))|f ∈ C∞p (Rn), hi ∈ H,n ≥ 1

}
,

the class of smooth random variables, where C∞p (Rn) is the space of smooth function
f ∈ C∞ with polynomial growth on derivatives; and by P the class of all random variables
F of the form F = f(W (h1), . . . ,W (hn)) such that f is a polynomial.

Definition 2.1. (See [11, Definition 1.2.1]) The derivative of a smooth random variable
F ∈ S is the H-valued random variable given by

DF =

n∑
i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi.
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Define the norm
‖F‖21,2 = E

(
|F |2 + ‖DF‖2H

)
.

Let D1,2 be the closure of S with respect to the norm ‖ · ‖1,2. One can extend D on S
as a closed operator on D1,2. We call this operator D the Malliavin derivative operator.
Moreover, we can also define the iteration of the operator D in such a way that for a
smooth random variable F , the iterated derivative DkF is a random variable with values
in H⊗k, then we denote by Dk,p the completion of the family of smooth random variables
S with respect to the norm ‖ · ‖k,p defined by

‖F‖k,p =

(
E(|F |p) +

k∑
j=1

E(‖DjF‖pH⊗j )

) 1
p

.

For k = 0, we use the convention ‖ · ‖0,p = ‖ · ‖p and D0,p = Lp(Ω).

Definition 2.2. (See [11, Definition 1.3.1]) Denote by δ the adjoint of the operator D,
i.e., δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such that:

(i) The domain of δ, denoted by Domδ, is the set of H-valued square integrable
random variables u ∈ L2(Ω;H) such that

|E(〈DF, u〉H)| ≤ c‖F‖2,

for all F ∈ D1,2, where c is some constant depending on u.

(ii) If u belongs to Domδ, then δ(u) is the element of L2(Ω) characterized by the
following expression

E(Fδ(u)) = E(〈DF, u〉H) for any F ∈ D1,2.

The operator δ is called the divergence operator and is closed sinceD is an unbounded
and densely defined operator. In our case, H is an L2 space, the elements of Domδ are
square integrable processes, and δ(u) is called the Skorohod stochastic integral. One
says u is Skorohod integrable if δ(u) is well-defined. We will often use the notation∫ 1

0

u(s)δW (s) := δ(u) and

∫ t

0

u(s)δW (s) := δ(u1[0,t]).

2.2 Meyer’s inequality and the best constants

Meyer’s inequality gives us an effective way to bound the moments of the Skorohod
integrals by the moments of the integrands and its derivatives. Denote by L1,2 the class
of processes u ∈ L2([0, 1]×Ω) such that u(t) ∈ D1,2 for almost all t, and there exists a mea-
surable version of the two-parameter process Dsu(t) verifying E

∫ 1

0

∫ 1

0
(Dsu(t))2dsdt <∞.

[Here, it is noted that for each t, u(t) is a random variable; and Du(t) is a H-valued
random variable and thus, can be parameterized as Dsu(t).]

We first recall Meyer’s inequality; see e.g., [11, Theorem 1.5.1].

Proposition 2.3. For 1 < p <∞ there are constants Kp such that

‖DF‖Lp(Ω,H⊗H) ≤ Kp‖CF‖p, (2.1)

for any random variable F ∈ D1,p, where C := −
√
−L and L = −δD is the Ornstein-

Uhlenbeck operator (see [11, Section 1.4] for the definition).

Therefore, we can obtain from Proposition 2.3 the following estimate; see e.g., [11,
Proposition 1.5.4].
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Proposition 2.4. Let u be a stochastic process in L1,2, and let p > 1. Then we have(
E|δ(u)|p

) 1
p ≤ Kp

(
‖u‖Lp(Ω,H) + ‖Du‖Lp(Ω,H⊗H)

)
. (2.2)

To estimate the speed of the exponential tightness, we want to use the best constants,
and have precise estimates for the constants in the estimate (2.2). We have the following
result.

Proposition 2.5. The constants Kp, p ≥ 2 in (2.2) can be chosen smaller than a positive
constant multiple of p5, i.e., there is a universal constant c such that Kp ≤ cp5 for all
p ≥ 2.

Proof. We prove this proposition by revisiting the proof of Proposition 1.5.4 in [11] with
the use of the best constants for Meyer’s inequality and taking care of the norms of
multiplier operators used in the arguments. In the below, we use the letter c to represent
universal constants (independent of ε, p, q), whose values may change for different usage.

We first revisit the generalized Meyer’s inequality [11, Theorem 1.5.1] and have the
following lemma.

Lemma 2.6. For 1 < q < ∞, there are constants K2,q satisfying that for all random
variable G ∈ P,

‖D2G‖Lq(Ω,H⊗H) ≤ K2,q‖C2G‖q, (2.3)

and that K2,q ≤ c
(q−1)3 , ∀1 < q < 2.

Proof. The proof of (2.3) is given in [11, Proof of Theorem 1.5.1, page 73]. Now, we
provide a precise estimate for the constant K2,q. From the computations in [11, page
73], we obtain that

‖D2G‖qLq(Ω,H⊗H) ≤ cAqK
q

q‖DCRG‖
q
Lq(Ω,H) (see [11, page 73])

≤ cAqK
2q

q ‖C2RG‖qq (applying Proposition 2.3)

≤ cAqK
2q

q ‖R‖
q
Lq(Ω)→Lq(Ω)‖C

2G‖qq,

(2.4)

where Kq is the constant in Meyer’s inequality (Proposition 2.3), Aq is the q-th moment

of a Gaussian variable (see [11, Appendix A.1]) and R =
∑∞
n=1

√
1− 1

nJn, Jn is the

projection operator onto n-th Wiener chaos (see e.g., [11, Section 1.2]). The operator R
is used to exchange the derivative operator (by using the commutativity relationship [11,
Lemma 1.4.2]). The last estimate in (2.4) follows from the fact that C2 = −L =

∑∞
n=1 nJn.

As a result, K2,q can be chosen such that

K2,q ≤ cA1/q
q K

2

q‖R‖Lq(Ω)→Lq(Ω).

It follows from [6] that Kq ≤ c
q−1 , ∀1 < q < 2. Now, we estimate ‖R‖Lq(Ω)→Lq(Ω). Let Tt

be the Ornstein-Uhlenbeck semigroup (see e.g., [11, Definition 1.4.1]). It is shown in
[11, Lemma 1.4.1] that: for any q > 1, integer N ≥ 1, there exists a constant K̂ such that

‖Tt(I − J0 − J1 − · · ·−JN−1)(G)‖q ≤ K̂e−Nt‖G‖q, for all t > 0.

Moreover, as shown in the proof of [11, Lemma 1.4.1], if q ≥ 2, q = e2t0 + 1 (for some
t0), then K̂ can be chosen such that K̂ = Ne2Nt0 + eNt0 , i.e., K̂ ≤ 2NqN . If 1 < q < 2, by
the duality (of Lq(Ω) and L

q
q−1 (Ω)) and the fact that Tt is symmetric (i.e., E(GTt(G

′)) =

E(G′Tt(G)) for all random variables G,G′), K̂ can be chosen such that K̂ ≤ 2NqN

(q−1)N
.

Therefore, the multiplier theorem [11, Theorem 1.4.2] states that: if we let {φ(n), n ≥ 0}
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be a sequence of real numbers such that φ(0) = 0 and φ(n) =
∑∞
k=0 akn

−k,∀n ≥ N for
some integer N ≥ 1, ak ∈ R, and such that

∑∞
k=0 |ak|N−k <∞, then

‖
∞∑
n=N

φ(n)JnG‖q ≤ K̂
∞∑
k=0

|ak|N−k‖G‖q, for any 1 < q <∞,

where K̂ can be chosen such that K̂ ≤ 2NqN if q ≥ 2, and such that K̂ ≤ 2NqN

(q−1)N
if

1 < q < 2. As a result, by applying the multiplier theorem [11, Theorem 1.4.2] and

[11, Lemma 1.4.1] for R =
∑∞
n=1

√
1− 1

nJn, N = 1, one can obtain that R is a bounded

operator and ‖R‖Lq(Ω)→Lq(Ω) ≤ c
q−1 , ∀1 < q < 2. Therefore, we can complete the proof

of this lemma.

Now, let q = p
p−1 be the conjugate of p and G ∈ P be any polynomial random

variable with E(G) = 0. Under the convention (Eu = 0) for simplicity as in [11, Proof
of Proposition 1.5.4], we have from [11, Proof of Proposition 1.5.4], Lemma 2.6, the
commutativity relationship [11, Lemma 1.4.2] that

|E(δ(u)G)| ≤‖Du‖Lp(Ω;H⊗H)‖DC−2DG‖Lq(Ω,H⊗H)

=‖Du‖Lp(Ω;H⊗H)‖D2C−2RG‖Lq(Ω,H⊗H)

≤K2,q‖Du‖Lp(Ω;H⊗H)‖RG‖q
≤K2,q‖R‖Lq(Ω)→Lq(Ω)‖Du‖Lp(Ω;H⊗H)‖G‖q.

(2.5)

In the above, R =
∑∞
n=2

n
n−1Jn, which is used to exchange the derivative operator by

using the commutativity relationship. By applying the multiplier theorem [11, Theorem
1.4.2] and [11, Lemma 1.4.1] for R =

∑∞
n=2

n
n−1Jn, N = 2, one can obtain that R is a

bounded operator and ‖R‖Lq(Ω)→Lq(Ω) ≤ c
(q−1)2 , ∀1 < q < 2, and thus ‖R‖Lq(Ω)→Lq(Ω) ≤

cp2, ∀p ≥ 2. Moreover, it follows from Lemma 2.6 that K2,q ≤ c
(q−1)3 , ∀1 < q < 2; and

thus, K2,q ≤ cp3, ∀p ≥ 2. Therefore, we obtain from (2.5) that there is a universal
constant c, which is independent of p ≥ 2 such that

|E(δ(u)G)| ≤ cp5‖Du‖Lp(Ω;H⊗H)‖G‖q. (2.6)

The proposition follows from (2.6) after taking the supremum with respect to polynomial
random variable G as in the standard duality argument [11].

3 Proof of main results

Proof of Theorem 1.1. Direct calculation shows that

f ′(x) =

{
0 if x < 0 or x > 1,
3x−1/4

4 if 0 < x < 1.

Therefore, f ′(W (1)) ∈ L2(Ω). Applying the chain rule (see e.g., [11], [5, Proposition
2.3.1] or [12, Theorem 5.7]), we have that DX = Df(W (1)) = f ′(W (1))1[0,1](t) ∈
L2(Ω, L2([0, 1])). Moreover, it is readily seen that X1[0,1](t) is Skorohod integrable. Using
integration by parts (see [11, Proposition 1.3.3]), we have that

Fε =
√
εδ
(
X1[0,1](t)

)
=
√
εXδ(1[0,1](t))−

√
ε

∫ 1

0

DrXdr

=
√
εXW (1)−

√
εf ′(W (1)).

(3.1)
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To prove Theorem 1.1, it suffices to prove (1.1) for any α ∈ (0, 1). We aim to use a
contradiction argument by assuming that

lim sup
L→∞

lim sup
ε→0

εα logP(|Fε| > L) ≤ η ∈ (−∞, 0). (3.2)

Since X is bounded almost surely and W (1) is Gaussian, we can obtain that the family{√
εXW (1)

}
ε>0

is exponentially tight with speed v(ε) = ε. Thus, one has

lim sup
L→∞

lim sup
ε→0

εα logP
(∣∣∣√εXW (1)

∣∣∣ > L
)

= −∞.

As a result, the family
{
Fε −

√
εXW (1)

}
ε>0

satisfies that

lim sup
L→∞

lim sup
ε→0

εα logP
(∣∣∣Fε −√εXW (1)

∣∣∣ > L
)

≤ lim sup
L→∞

lim sup
ε→0

εα log

{
P
(
|Fε| >

L

2

)
+ P

(∣∣∣√εXW (1)
∣∣∣ > L

2

)}
= max

{
lim sup
L→∞

lim sup
ε→0

εα logP
(
|Fε| >

L

2

)
, lim sup
L→∞

lim sup
ε→0

εα logP
(∣∣∣√εXW (1)

∣∣∣ > L

2

)}
≤ η < 0.

(3.3)
A consequence of (3.1) and (3.3) is that

lim sup
L→∞

lim sup
ε→0

εα logP
(∣∣∣√εf ′(W (1))

∣∣∣ > L
)
≤ η,

and then one gets

lim sup
L→∞

lim sup
ε→0

εα logP
(∣∣∣f ′(W (1))

∣∣∣ > Lε−1/2
)
≤ η. (3.4)

Now, denote Y = f ′(W (1)). From (3.4), there are L0 = L0(η) > 1 and ε0 = ε0(L0, η) <

1 such that for all L > L0, ε < ε0

P(|Y | > Lε−1/2) ≤ exp
{ηε−α

2

}
.

Particularly, let ε = ε0L0

L2 , one has for all L > L0

P
(
|Y | > L2(ε0L0)−1/2

)
≤ exp

{η(ε0L0)−αL2α

2

}
,

which implies that

P
(
|Y |α/2 > Lα(ε0L0)−α/4

)
≤ exp

{η(ε0L0)−αL2α

2

}
, ∀L > L0. (3.5)

We obtain from (3.5) that for all t > L
3α/4
0 ε

−α/4
0

P
(
|Y |α/2 > t

)
≤ exp{−c0t2}, (3.6)

where c0 = −η(ε0L0)−α/2

2 > 0. From (3.6), which is a kind of tail estimates of a sub-
Gaussian random variable, we can get a kind of “moments control property” for |Y |α/2
(see e.g., [14, Lemma 1.4]), i.e., for all p > 0

E|Y |αp/2 ≤ c1cp2pp/2, (3.7)
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for some constants c1, c2 depending only on η, ε0, L0, α and being independent of p.
On the other hand, we have

E|Y |p =

∫ ∞
−∞
|f ′(x)|p e

− x22
√

2π
dx ≥

∫ 1

0

|f ′(x)|p e
− x22
√

2π
dx

≥ (3/4)p√
2eπ

∫ 1

0

x−p/4dx

=∞ if p ≥ 4.

(3.8)

Combining (3.7) and (3.8) leads to a contradiction. So, we obtain (1.1) and complete the
proof.

Remark 3.1. As was seen in the above counterexample, although the process uε(t) =

f(W (1))1[0,1](t) is bounded uniformly, the corresponding family of Skorohod integrals
is not exponentially tight with any speed εα, α > 0. The reason is that the relationship
between the non-adapted intergrand and the whole paths of the Brownian motion
is “uncontrollable”, which is illustrated by (3.8). Since all moments of the Malliavin
derivative do not exist, the assumptions in Theorems 1.2 and 1.3 are violated.

Proof of Theorem 1.2. Denote α = (1/2 + κ1)β for some β satisfying β < 1
5+κ2

< 1. We
have from Meyer’s inequality with precise constants (Proposition 2.4 and 2.5) and (1.2)
that

E exp{|ε−κ1δ(uε)|β} =

∞∑
n=0

E|ε−κ1δ(uε)|nβ

n!
≤
∞∑
n=0

(
E|ε−κ1δ(uε)|n

)β
n!

≤ c3 +

∞∑
n=2

ε−nκ1βKnβ
n ‖uε‖

nβ
1,n

n!

≤ c3 + c4

( ∞∑
n=0

n(5+κ2)nβ

n!

)
≤ c5,

for some constants c3, c4, c5, independent of n, ε. In the above, the last estimate follows

from the fact that
∑∞
n=0

n(5+κ2)nβ

n! < ∞, which is implied by the fact that (5 + κ2)β < 1

and the ratio test.
By Markov’s inequality, one has that for any L > 0,

lim sup
ε→0

εα logP(|Fε| > L) = lim sup
ε→0

εα logP(ε1/2+κ1 |ε−κ1δ(uε)| > L)

= lim sup
ε→0

εα logP(ε(1/2+κ1)β |ε−κ1δ(uε)|β > Lβ)

= lim sup
ε→0

εα logP
(

exp{|ε−κ1δ(uε)|β} > exp{Lβε−(1/2+κ1)β}
)

≤ lim sup
ε→0

εα log
E exp{|ε−κ1δ(uε)|β}
exp{Lβε−(1/2+κ1)β}

≤ lim sup
ε→0

εα log
c5

exp{Lβε−(1/2+κ1)β}
= − lim sup

ε→0
εα−(1/2+κ1)βLβ

= −Lβ .

Therefore, the exponential tightness with the speed v(ε) = εα follows immediately.

Remark 3.2. Actually, the constant 5 + κ2 in (1.3) comes from the order needed to
control the p-th moment of δ(uε). Moreover, let us come back to the non-anticipating
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Exponential tightness of a family of Skorohod integrals

stochastic integral case and let uε be constant for simplicity. In that case κ1 = κ2 = 0 and
δ(uε) is Gaussian. It is well-known that the p-th moment of a Gaussian random variable
is controlled by pp/2 only and thus, replacing 5 in the denominator of the right hand
side in (1.3) by 1/2 will bring us back to the results in the classical case (the case of Itô
integrals) as given by Schilder’s theorem [3, Lemma 5.2.2]. The details are left to the
reader.

Proof of Theorem 1.3. Let Z(t) =
∫ t

0
uε(t)δW (t) := δ(uε1[0,t]). For the simplicity of no-

tation, let us assume W (t) and uε(t) have real values, i.e., the dimension d = 1. [The
general case (d > 1) is the same by understanding appropriate calculations in their
corresponding vector operations.]

By Itô’s formula for Skorohod integral [11, Theorem 3.2.2], we have for n ≥ 2

∣∣Z(t)
∣∣n =

∫ t

0

n
∣∣Z(s)

∣∣n−1
uε(s)δW (s)

+

∫ t

0

n(n− 1)
∣∣Z(s)

∣∣n−2
( |uε(s)|2

2
+ uε(s)

∫ s

0

Dsuε(r)δW (r)
)
ds.

(3.9)

Therefore, it follows from (3.9) and Hölder’s inequality that for n > 2

E
∣∣Z(t)

∣∣n =n(n− 1)E

∫ t

0

∣∣Z(s)
∣∣n−2

(u2
ε(s)

2
+ uε(s)

∫ s

0

Dsuε(r)δW (r)
)
ds

≤n(n− 1)

∫ t

0

(
E
∣∣Z(s)

∣∣n)n−2
n

((
E|uε(s)|n

) 2
n

+ 2

(
E

∣∣∣uε(s)∫ s

0

Dsuε(r)δW (r)
∣∣∣n/2) 2

n

)
ds.

(3.10)

It is known from Bihari-LaSalle inequality [7] that if

v(t) ≤ a
∫ t

0

k(s)(v(s))
n−2
n ds, ∀t ∈ [0, 1],

then we have

v(t) ≤

(
2a
∫ t

0
k(s)ds

n

)n/2
, ∀t ∈ [0, 1].

Applying this fact and (3.10), we deduce that

E|Z(1)|n ≤

(
(n− 1)

∫ 1

0

(
E|uε(s)|n

)2/n

ds

+ 2(n− 1)

∫ 1

0

(
E

∣∣∣uε(s)∫ s

0

Dsuε(r)δW (r)
∣∣∣n/2)2/n

ds

)n/2

≤

(
n‖uε‖2Ln(Ω);H + 2n

∫ 1

0

(
E

∣∣∣uε(s)∫ s

0

Dsuε(r)δW (r)
∣∣∣n/2)2/n

ds

)n/2
.

(3.11)
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On the other hand, one has from Hölder’s inequality and Proposition 2.4 that for n > 2

E

∣∣∣uε(s)∫ s

0

Dsuε(r)δW (r)
∣∣∣n/2

≤
(
E|uε(s)|n

)1/2(
E

∣∣∣ ∫ s

0

Dsuε(r)δW (r)
∣∣∣n)1/2

≤
(
E|uε(s)|n

)1/2

Kn/2
n

((
E‖Dsuε‖nL2([0,1])

)1/n

+
(
E‖DDsuε‖nL2((0,1)2)

)1/n
)n/2

≤Kn/2
n

(
E|uε(s)|n

)1/2
((

E
(∫ 1

0

|Dsuε(r)|2dr
)n/2)1/n

+

(
E
(∫ 1

0

∫ 1

0

|DtDsuε(r)|2drdt
)n/2)1/n

)n/2

≤Kn/2
n

(
E|uε(s)|n

)1/2
((

E

∫ 1

0

|Dsuε(r)|ndr
)1/n

+

(
E

∫ 1

0

∫ 1

0

|DtDsuε(r)|ndrdt
)1/n

)n/2

≤2n/2Kn/2
n

(
E|uε(s)|n

)1/2
((∫ 1

0

E|Dsuε(r)|ndr
)1/2

+
(∫ 1

0

∫ 1

0

E|DtDsuε(r)|ndrdt
)1/2

)
,

which implies that(
E

∣∣∣uε(s)∫ s

0

Dsuε(r)δW (r)
∣∣∣n/2)2/n

≤2Kn

(
E|uε(s)|n

)1/n
((∫ 1

0

E|Dsuε(r)|ndr
)1/n

+
(∫ 1

0

∫ 1

0

E|DtDsuε(r)|ndrdt
)1/n

)
,

(3.12)
Combining (3.12), Hölder’s inequality, Proposition 2.5 and (1.4), we have for n > 2∫ t

0

(
E
(
uε(s)

∫ s

0

Dsuε(r)δW (r)
)n/2)2/n

ds

≤4Kn

(∫ 1

0

(
E|uε(s)|n

)2/n

ds

)1/2
((∫ 1

0

∫ 1

0

E|Dsuε(r)|ndrds
)1/n

+

(∫ 1

0

∫ 1

0

∫ 1

0

E|DtDsuε(r)|ndrdtds
)1/n

)
≤c6n5+κ2+κ4εκ1+κ3 ,

(3.13)

for some constant c6, independent of n, ε. Combining (3.11) and (3.13), we have

E|Z(1)|n ≤cn/27

(
n1+2κ4ε2κ3 + n6+κ2+κ4εκ1+κ3

)n/2
≤cn/28 nκ̂2nεκ̂1n,

(3.14)

for some constants c7, c8, independent of n, ε.
Now, denote α = (1/2 + κ̂1)β for some β satisfying βκ̂2 < 1. We have from (3.14) that

E exp{|ε−κ̂1δ(uε)|β} = E exp{|ε−κ̂1Z(1)|β} =

∞∑
n=0

E|ε−κ̂1Z(1)|nβ

n!

≤ c8 +

∞∑
n=2

c
nβ/2
9 nκ̂2nβ

n!
≤ c10,
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for some constants c8, c9, c10, independent of n, ε. In the above, the last estimate follows

from the fact that
∑∞
n=2

c
nβ/2
9 nκ̂2nβ

n! < ∞, which is implied by the fact κ̂2β < 1 and the
ratio test. As in the proof of Theorem 1.2, by Markov’s inequality one has that for any
L > 0

lim sup
ε→0

εα logP(|Fε| > L) ≤ −Lβ .

Therefore, the exponential tightness with the speed v(ε) = εα follows immediately.

Remark 3.3. It is seen from Theorem 1.2 and 1.3 that when κ1, κ̂1 are small and κ4 is
not too large, the exponential tightness in Theorem 1.3 is stronger than that in Theorem
1.2.

Remark 3.4. One can reduce the moment needed in the conditions (1.2) and (1.4). For

example, we can replace the term ‖u‖Lp(Ω,H) =
(
E‖uε‖pH

)1/p

by a smaller term ‖E|uε|‖H
in (1.2) and (1.4) by using the argument as in, for example, [11, Proposition 1.5.8] based
on the use of operator (I − L)

1
2 and a bound (in Lp(Ω)) on the operator R which is used

to exchange the derivative operator. However, one may need higher order term than p2

to bound the constant Kp in (2.2). It is worth noted that one can modify the results in
the paper and use weaker norms, which may be more suitable for their own problems.
However, in those cases, the order needed to bound the constant Kp would be higher.

4 An application

This section is devoted to an application of our main results. Let {ξε(t)}ε>0 be a
family of stochastic processes depending on a Brownian motion W (t). We are concerned
with the exponential tightness of the following family of random variables

Fε =
√
εe−

1
ε2

∫ 1
0
λ(ξε(r))dr

∫ 1

0

e
1
ε2

∫ s
0
λ(ξε(r))drg(ξε(s))dW (s), (4.1)

where λ, g are smooth functions, bounded together with their derivatives. Moreover,
λ(x) ≥ κ0 > 0,∀x. In many problems in mathematical physics such as Langevin equations,
stochastic acceleration, we need to deal with this family and establish its tightness (to
obtain the limit behavior, the large deviations principle, the averaging principle, etc);
see e.g., [1, 2, 9] and references therein. In general, such a term is often related to the
solution of a second-order stochastic differential equations in random environment or
in the setting of fast-slow second-order system; see e.g., [10]. To be self-contained, we
write down a simple Langevin equation with strong damping after scaling the time (see
e.g., [2]) in random environment as follows:

ε2ẍ(t) = f(x(t), ξε(t))− λ(ξε(t))ẋ(t) +
√
εg(ξε(t))Ẇ (t).

By using the variation of parameter formula (see e.g., [2]), we can obtain explicitly the
diffusion part of xε. Dealing with this part requires the treatment of the family {Fε}ε>0

defined as in (4.1); see e.g., [2, 9, 10]. The non-adaptedness of e−
1
ε2

∫ 1
0
λ(ξε(r))dr is a main

challenge here because we cannot move it inside the stochastic integral in Itô’s sense and
estimates for martingales are no longer valid. Meanwhile, we really need such variable
to balance the large factor e

1
ε2

∫ s
0
λ(ξε(r))dr inside the stochastic integral. In the literature,

much effort has been devoted to overcoming this challenge. For example, if we consider
the case where ξε(t) is continuously differentiable (or piecewise continuously differ-

entiable), Cerrai and Freidlin [2] have tried to interpret
∫ 1

0
e

1
ε2

∫ s
0
λ(ξε(r))drg(ξε(s))dW (s)

in the pathwise sense. But this approach is no longer valid without the regularity of
the random environment and also we cannot cancel out effectively the large factor 1

ε2
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to provide estimates in probability; see the details in [1, 2, 9]. Another approach in
[10] is to decompose λ(ξε(s)) into two parts, one of them is adapted and the other is
“controllable”. However, this approach requires the decay of the derivative of λ to control
such a decomposition.

With the results developed in this work, we propose a new approach for such problems.
Using Malliavin calculus and integration by parts (see [11, Proposition 1.3.3]), we can
write

Fε =
√
ε

∫ 1

0

e−
1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))δW (s)

+
√
ε

∫ 1

0

e
1
ε2

∫ s
0
λ(ξε(r))drg(ξε(s))Dse

− 1
ε2

∫ 1
0
λ(ξε(r))drds

=:F (1)
ε + F (2)

ε .

In fact, if {F (1)
ε }ε>0 is exponentially tight with the speed v1(ε) and {F (2)

ε }ε>0 is exponen-
tially tight with the speed v2(ε), we will obtain that the family {Fε}ε>0 is exponentially
tight with the speed v(ε) = max{v1(ε), v2(ε)}. In the below, we use the letter c to repre-
sent universal constants (independent of ε, p), whose values may change for different
usage.

Because there is no stochastic integral involving F
(2)
ε , the family {F (2)

ε } can be
handled in the usual methodology in the literature. Indeed, we have that

Dse
− 1
ε2

∫ 1
0
λ(ξε(r))dr =− 1

ε2
e−

1
ε2

∫ 1
0
λ(ξε(r))dr

∫ 1

0

λ′(ξ(r))Dsξε(r)dr.

So, one gets

F (2)
ε = ε−3/2

∫ 1

0

e−
1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))

∫ 1

0

λ′(ξε(r))Dsξε(r)drds,

and thus,

|F (2)
ε | ≤ cε−3/2

∫ 1

0

e−
κ0(1−s)
ε2 ‖Dsξε‖L1([0,1])ds.

For any p ∈ (1,∞], Hölder’s inequality yields that

|F (2)
ε | ≤cε−3/2

(∫ 1

0

e
− pκ0(1−s)

(p−1)ε2 ds
) p−1

p
(∫ 1

0

‖Dsξε‖pL1([0,1])ds
) 1
p

≤cε
p−4
2p

(∫ 1

0

‖Dsξε‖pL1([0,1])ds
) 1
p

.

Therefore, establishing the exponential tightness for {F (2)
ε }ε>0 reduces to establishing

the exponential tightness for
( ∫ 1

0
‖Dsξε‖pL1([0,1])ds

)1/p

. Thus, under certain conditions

on ξε(s), we can obtain the exponential tightness of {F (2)
ε }ε>0.

The challenge, which we now should focus more on, is to handle the family {F (1)
ε }ε>0,

which is in fact a family of Skorohod integrals. By applying our results, we can obtain
the exponential tightness of {F (1)

ε }ε>0 under certain conditions. First, it is readily seen
that ∫ 1

0

e−
1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))ds ≤ cε2.
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On the other hand, we have

Dte
− 1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))

=− 1

ε2
e−

1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))Dt

∫ 1

s

λ(ξε(r))dr + e−
1
ε2

∫ 1
s
λ(ξε(r))drg′(ξε(s))Dtξε(s)

=− ε−2e−
1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))

∫ 1

s

λ′(ξε(r))Dtξε(r)dr + e−
1
ε2

∫ 1
s
λ(ξε(r))drg′(ξε(s))Dtξε(s).

(4.2)
Therefore, by direct computations, one has

|Dte
− 1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))|2 ≤ cε−4e−

2κ0(1−s)
ε2

∫ 1

0

|Dtξε(r)|2dr + c|Dtξε(s)|2,

and thus ∫ 1

0

∫ 1

0

|Dte
− 1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))|2dtds ≤ cε−2‖Dξε‖2L2([0,1]2).

Therefore, by applying Theorem 1.2, under certain condition on ‖Dξε‖L2(Ω,L2([0,1]2)), we

can obtain the exponential tightness for {F (1)
ε }ε>0 with some speed v1(ε). To be clear,

let us state an explicit result as the following theorem, which follows immediately from
Theorem 1.2.

Theorem 4.1. Assume that the family of random environments ξε is such that there are
constants κ1 > 1/2, κ2 ≥ 0 satisfying

‖Dξε‖Lp(Ω,L2([0,1]2)) ≤ cεκ1pκ2 , ∀ε > 0, p ≥ 1,

for some universal constant c. The family {F (1)
ε }ε>0 is exponentially tight with the speed

v1(ε) = εα for any α satisfying

α <
κ1 − 1/2

5 + κ2
.

One may worry about the condition κ1 > 1/2 in Theorem 4.1. In particular, if ξε is
independent of ε, such a “decaying condition” on ε may be violated. In that case, we can
modify the above as follows. We have from (4.2) that

|Dte
− 1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))|2 ≤ cε−4e−

2κ0(1−s)
ε2 (1− s) sup

r∈[0,1]

|Dtξε(r)|2 + c|Dtξε(s)|2. (4.3)

A change of variable leads to∫ 1

0

exp

{
−κ0s

ε2

}
· s
ε2
ds = ε2

∫ 1
ε2

0

e−κ0rrdr ≤ cε2. (4.4)

Combining (4.3) and (4.4), one gets that∫ 1

0

∫ 1

0

|Dte
− 1
ε2

∫ 1
s
λ(ξε(r))drg(ξε(s))|2dtds ≤ c

∫ 1

0

sup
r∈[0,1]

|Dtξε(r)|2dt.

Theorem 4.2. Assume that the family of random environments ξε is such that there are
constants κ1 > −1/2, κ2 ≥ 0 satisfying∥∥∥∫ 1

0

sup
r∈[0,1]

|Dtξε(r)|2dt
∥∥∥
p
≤ cεκ1pκ2 , ∀ε > 0, p ≥ 1,

for some universal constant c. The family {F (1)
ε }ε>0 is exponentially tight with the speed

v1(ε) = εα for any α satisfying

α <
κ1 + 1/2

5 + κ2
.
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