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Abstract

We prove that the best so far known constant cp = p−p

1−p
, p ∈ (0, 1) of a domination

inequality, which originates to Lenglart, is sharp. In particular, we solve an open
question posed by Revuz and Yor [12]. Motivated by the application to maximal
inequalities, like e.g. the Burkholder-Davis-Gundy inequality, we also study the
domination inequality under an additional monotonicity assumption. In this special
case, a constant which stays bounded for p near 1 was proven by Pratelli and Lenglart.
We provide the sharp constant for this case.
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1 Introduction

In this note, we prove that the best so far known constant cp of a domination in-
equality, which originates to Lenglart [6, Corollaire II] (see Theorem 1.1), is sharp. In
particular, we solve an open question posed by Revuz and Yor [12, Question IV.1, p.178].
Furthermore, motivated by the method of applying Lenglart’s inequality to extend maxi-
mal inequalities to small exponents, we study Lenglart’s domination inequality under an
additional monotonicity assumption: A result by Pratelli [10] and Lenglart [6] implies
(under the additional monotonicity assumption) a constant, which is bounded by 2, and
hence considerably improves the constant of Lenglart’s inequality for p near 1. We
provide a sharp constant. The sharpness of our monotone version of Lenglart’s inequality
is related to a result by Wang [16].

Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space satisfying the usual conditions.
The following lemma is [8, Lemma 2.2 (ii)]:

Theorem 1.1 (Lenglart’s inequality). Let X and G be non-negative adapted right-
continuous processes, and let G be in addition non-decreasing and predictable such that
E[Xτ | F0] ≤ E[Gτ | F0] ≤ ∞ for any bounded stopping time τ . Then for all p ∈ (0, 1),

E

[(
sup
t≥0

Xt

)p ∣∣∣∣F0

]
≤ cpE

[(
sup
t≥0

Gt

)p ∣∣∣∣F0

]
,
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where cp := p−p

1−p .

In the original work by Lenglart [6, Corollaire II], the inequality is proven for cp = 2−p
1−p ,

p ∈ (0, 1). The constant cp is improved to p−p

1−p by Revuz and Yor in [12, Exercise IV.4.30]
for continuous processes X and G. This result is generalized to càdlàg processes by
Ren and Shen in [11, Theorem 1] and is extended to a more general setting than [6,
Corollaire II] by Mehri and Scheutzow [8, Lemma 2.2 (ii)]. Furthermore, the growth rate
of the optimal constant c(opt)p for càdlàg processes has been studied (see [11, Theorem

2]): It holds that (c
(opt)
p )1/p = O(1/p) for p→ 0+. We prove (see Theorem 2.1) that p−p

1−p is
sharp.

Lenglart’s inequality yields a very short proof of the Burkholder-Davis-Gundy in-
equality for continuous local martingales for small exponents (see e.g. [12, Theo-
rem IV.4.1]): Let (Mt)t≥0 be a continuous local martingale with M0 = 0. To prove

E[〈M,M〉q/2t ] . E[supt≥0 |Mt|q] for q ∈ (0, 2), take

Xt := 〈M,M〉t, Gt := sup
0≤s≤t

|Ms|2.

Using that M2
t − 〈M,M〉t is a continuous local martingale, we have E[Xτ ] ≤ E[Gτ ] for

any bounded stopping time τ . Applying Lenglart’s inequality with p = q/2, we obtain

E[〈M,M〉q/2t ] ≤ cq/2E[sup
t≥0
|Mt|q].

For q = 1, this implies cBDG,1 = cq/2 = 2
√

2 ≈ 2, 8284. The optimal BDG constant can
be computed numerically for this case (see Schachermayer and Stebegg [13]) and is
c
(opt)
BDG,1 ≈ 1, 2727. A better constant than cq/2 can be achieved if we apply the following

proposition due to Lenglart [6, Proposition I] and Pratelli [10, Proposition 1.2] instead:

Proposition 1.2 (Lenglart, Pratelli). Let F be a concave non-decreasing function with
F (0) = 0 and let c > 0 be a constant. Let Y and G be adapted non-negative right-
continuous processes starting in 0. Furthermore, let G be non-decreasing and pre-
dictable. Assume that E[Yτ ] ≤ cE[Gτ ] holds for all finite stopping times τ . Then, for all
finite stopping times τ , we have

E[F (Yτ )] ≤ (1 + c)E[F (Gτ )].

Let X and G be as in Theorem 1.1. Assume in addition that both processes start in 0.
Then Proposition 1.2 implies, choosing F (x) = xp for some p ∈ (0, 1) and optimizing over
c, that

E[Xp
τ ] ≤ (1− p)−(1−p)p−pE[Gpτ ]. (1.1)

Hence, Proposition 1.2 gives cBDG,1 = 2. We show that the constant of inequality (1.1)
can be improved to p−p (see Theorem 2.2 and Remark 2.4), which is sharp. In particular,
by the argument described above we now achieve cBDG,1 =

√
2 ≈ 1, 4142. For the right-

hand side of the BDG inequality E[supt≥0 |Mt|] . E[〈M,M〉1/2t ], the monotone version
of Lenglart’s inequality does not yield a sharper constant than the normal Lenglart’s
inequality.

Lenglart’s inequality is frequently applied to extrapolate maximal inequalities to
smaller exponents (see e.g. [2], [7], [14], [15] and [17]). Furthermore, Lenglart’s
inequality is a useful tool for proving stochastic Gronwall inequalities (see e.g. [1] and
[8]) and more generally studying SDEs (see e.g. [5] and [9]). In many of the application
examples listed above, the additional assumption, that X is non-decreasing is satisfied.
Hence, instead, Theorem 2.2 could be applied, improving the constant considerably for
p near 1.
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2 Main results

We assume, unless otherwise stated, that all processes are defined on an underlying
filtered probability space (Ω,F ,P, (Ft)t≥0) which satisfies the usual conditions. The
following theorem answers the open question posed by Revuz and Yor [12, Question IV.1,
p.178].

Theorem 2.1 (Sharpness of Lenglart’s inequality). For all p ∈ (0, 1), there exist families

of continuous processes X(n) = (X
(n)
t )t≥0 and G(n) = (G

(n)
t )t≥0 (depending on p) which

satisfy the assumptions of Theorem 1.1 such that

p−p

1− p
= lim
n→∞

E

[(
supt≥0X

(n)
t

)p]
E

[(
supt≥0G

(n)
t

)p] . (2.1)

In particular, the constant cp = p−p

1−p in Theorem 1.1 is sharp.

As explained in the introduction, the application to maximal inequalities motivates
us to consider the following monotone version of Lenglart’s inequality. We assume in
addition that X is non-decreasing and obtain a considerably improved constant for p
near 1.

Theorem 2.2 (Sharp monotone Lenglart’s inequality). Let X and G be non-decreasing
non-negative adapted right-continuous processes, and let G be in addition predictable
such that E[Xτ | F0] ≤ E[Gτ | F0] ≤ ∞ for any bounded stopping time τ . Then for all
p ∈ (0, 1),

E

[(
sup
t≥0

Xt

)p ∣∣∣∣F0

]
≤ p−pE

[(
sup
t≥0

Gt

)p ∣∣∣∣F0

]
. (2.2)

Furthermore, for all p ∈ (0, 1) there exist continuous processes X̃ = (X̃t)t≥0 and G̃ =

(G̃t)t≥0, satisfying the assumptions above such that

p−p = lim
n→∞

E

[(
supt≥0 X̃t∧n

)p]
E

[(
supt≥0 G̃t∧n

)p] .
In particular, the constant p−p is sharp.

Remark 2.3. Inequality (2.2) is a sharpened special case of Proposition 1.2, its proof is
a modification of the proof of [10, Proposition 1.2]. The theorem generalizes a result by
Garsia [4, Theorem III.4.4, page 113]. In [16, Theorem 2], Wang proved that [4, Theorem
III.4.4, page 113] is sharp. Hence, by translating his result from discrete to continuous
time proves sharpness of p−p.

Remark 2.4. Theorem 2.2 can be also applied when X is not non-decreasing. In that
case, the theorem implies for any stopping time τ the inequality E[Xp

τ ] ≤ p−pE[Gpτ ].
This can by seen by defining X̂t := Xτ1[τ,∞)(t) for all t ≥ 0 and noting that (X̂t)t≥0 and
(Gt∧τ )t≥0 satisfy the assumptions of Theorem 2.2.

Remark 2.5. In Theorem 2.2, the assumption that G is right-continuous and predictable
can be replaced by the assumption that G is left-continuous and adapted.

Remark 2.6. A key part of the proof of Lenglart’s inequality is the inequality

P

(
sup
t≥0

Xt > c

∣∣∣∣F0

)
≤ 1

c
E

[
sup
t≥0

Gt ∧ d
∣∣∣∣F0

]
+ P

(
sup
t≥0

Gt ≥ d
∣∣∣∣F0

)
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for all c, d > 0. If X is non-decreasing, this can be improved to

1

c
E

[
sup
t≥0

Xt ∧ c
∣∣∣∣F0

]
≤ 1

c
E

[
sup
t≥0

Gt ∧ d
∣∣∣∣F0

]
+ P

(
sup
t≥0

Gt ≥ d
∣∣∣∣F0

)
,

which is used to prove the monotone version of Lenglart’s inequality.

Remark 2.7. If G is not predictable and no further assumptions are made, then there
exists no finite constant in inequality (2.2). An example which demonstrates this can be
found in [6, Remarque after Corollaire II].

Theorem 1.1, Theorem 2.1, and Theorem 2.2 also hold in discrete time. Here,
sharpness of p−p follows immediately from [16, Theorem 2].

Corollary 2.8 (Discrete Lenglart’s inequality). Let (Xn)n∈N0
and (Gn)n∈N0

be non-
negative adapted processes, and let G be in addition non-decreasing and predictable
such that E[Xτ | F0] ≤ E[Gτ | F0] ≤ ∞ for any bounded stopping time τ . Then for all
p ∈ (0, 1),

E

[(
sup
n∈N0

Xn

)p ∣∣∣∣F0

]
≤ cpE

[(
sup
n∈N0

Gn

)p ∣∣∣∣F0

]
, (2.3)

where cp := p−p

1−p and the constant cp is sharp.
If we assume in addition, that (Xn)n∈N0

is non-decreasing, then we have

E

[(
sup
n∈N0

Xn

)p ∣∣∣∣F0

]
≤ p−pE

[(
sup
n∈N0

Gn

)p ∣∣∣∣F0

]
(2.4)

and the constant p−p is sharp.

3 Proof of Theorem 2.1

Proof of Theorem 2.1. Choose an arbitrary p ∈ (0, 1) for the remainder of this proof.
First, we define non-decreasing processes X̃ = (X̃t)t≥0 and G̃ = (G̃t)t≥0 which satisfy
the assumptions of Theorem 1.1, such that

p−p = lim
n→∞

E
[(

supt≥0 X̃t∧n
)p ]

E
[(

supt≥0 G̃t∧n
)p ] .

To obtain the extra factor (1− p)−1, we modify X̃ and G̃ using an independent Brownian

motion: This gives us the families {(X(n)
t )t≥0, n ∈ N} and {(G(n)

t )t≥0, n ∈ N}.
Note that if we have non-negative random variables XRV := 1 and GRV with

E[XRV ] = E[GRV ], then we obtain E[Xp
RV ] >> E[GpRV ] for example by choosing GRV to

be very large on a set with small probability and everywhere else 0. Keeping this in mind,
we construct X̃ and G̃ as follows: Let Z be an exponentially distributed random variable
on a complete probability space (Ω,F ,P) with E[Z] = 1. Set

A : [0,∞)→ [0,∞), t 7→ exp(t/p).

Define for all t ≥ 0

X̃t := A(Z)1[Z,∞)(t), G̃t :=

∫ t∧Z

0

A(s)ds.

Choose F̃t := σ({Z ≤ r} | 0 ≤ r ≤ t) for all t ≥ 0. Observe that X̃ and G̃ are
non-decreasing non-negative adapted right-continuous processes, and G̃ is in addition
continuous, hence predictable. Furthermore, due to Z being exponentially distributed,
G̃ is the compensator of X̃, implying E[X̃τ ] = E[G̃τ ] for all bounded τ .
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Now we use the processes X̃ and G̃ to construct the families {(X(n)
t )t≥0, n ∈ N} and

{(G(n)
t )t≥0, n ∈ N}: Assume w.l.o.g. that there exists a Brownian motion B on (Ω,F ,P).

Let (Ft)t≥0 be the smallest filtration satisfying the usual conditions which contains
(F̃t)t≥0 and w.r.t. which B is a Brownian motion. Denote by gn,n+1 : [0,∞) → [0, 1] a
continuous non-decreasing function such that

gn,n+1(t) = 0 ∀t ≤ n, and gn,n+1(t) = 1 ∀t ≥ n+ 1. (3.1)

Define:
τ (n) := inf{t ≥ n+ 1 | X̃n + (Bt −Bn+1)1{t≥n+1} = 0},

X
(n)
t := gn,n+1(t)X̃n + (Bt∧τ(n) −Bt∧(n+1))

G
(n)
t := G̃t∧n

The stopping time τ (n) ensures that X(n)
t is non-negative. By construction, we have for

every bounded (Ft)t≥0 stopping time τ

E[X(n)
τ ] ≤ E[X̃τ∧n +Bτ∧τ(n) −Bτ∧(n+1)] = E[G̃τ∧n] = E[G(n)

τ ].

Hence, (X
(n)
t )t≥0 and (G

(n)
t )t≥0 are continuous processes that satisfy the assumptions of

Theorem 1.1.
It remains to calculate E

[(
supt≥0X

(n)
t

)p]
and E

[(
supt≥0G

(n)
t

)p]
, to show that equa-

tion (2.1) is satisfied. We have

E[X̃p
t ] =

∫ ∞
0

A(x)p1{t≥x} exp(−x)dx = t,

E[G̃pt ] =

∫ ∞
0

(∫ t∧x

0

A(s)ds

)p
exp(−x)dx ≤ pp (t+ 1),

(3.2)

which implies in particular that E
[(

supt≥0G
(n)
t

)p] ≤ pp (n+ 1).

We calculate E
[(

supt≥0X
(n)
t

)p]
using the independence of Z and B. To this end, let

B̃ be some Brownian motion and consider for all 0 ≤ x < a1/p the stopping times

σx := inf{t ≥ 0 | B̃t + x = 0}, σx,a := inf{t ≥ 0 | B̃t + x = a1/p}.

Define the family of random variables Yx := supt≥0 B̃t∧σx +x, x ≥ 0. Then E[B̃σx∧σx,a ] = 0

implies P[Yx ≥ a1/p] = P[σx,a < σx] = xa−1/p, and hence

E[Y px ] = xp +

∫ ∞
xp

P[Yx ≥ a1/p]da = xp + xp
p

1− p
=

xp

1− p
. (3.3)

Hence, we have by (3.2), (3.3) and independence of (Bt −Bn+1)t≥n+1 and Fn+1:

E
[(

sup
t≥0

X
(n)
t

)p]
= E

[
E
[(

sup
t≥0

X
(n)
t

)p | Fn+1

]]
= E

[
1

1− p
(
X̃n

)p]
=

n

1− p
.

Therefore, we have:

cp ≥
E[(supt≥0X

(n)
t )p]

E[(supt≥0G
(n)
t )p]

≥ n

1− p
p−p

n+ 1
,

which implies (2.1).
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4 Proof of Theorem 2.2

Remark 4.1. The following proof of inequality (2.2) is a modification of the proof of [10,
Proposition 1.2]. Sharpness of the constant can be proven using [16, Theorem 2].

Proof of Theorem 2.2. We first show that p−p is the optimal constant. Sharpness of p−p

can be proven by translating [16, Theorem 2] into continuous time. Alternatively, one
can use the processes X̃ and G̃ and the filtration (Ft)t≥0 from the proof of Theorem 2.1:
Equation (3.2) implies, that

p−p = lim
n→∞

p−p
n

n+ 1
≤ lim
n→∞

E

[(
supt≥0 X̃t∧n

)p ]
E

[(
supt≥0 G̃t∧n

)p ] ,
and therefore that p−p is sharp.

Now we prove that inequality (2.2) holds true. We may assume w.l.o.g. that (Gt)t≥0 is
bounded (because it is predictable). This implies E[supt≥0Xt] <∞. To shorten notation,
we define

X∞ := sup
t≥0

Xt, G∞ := sup
t≥0

Gt. (4.1)

We use the following formulas for positive random variables Z (equation (4.3) is a direct
consequence of (4.2), alternatively see also [3, Theorem 20.1, p. 38-39]):

E[Zp | F0] =

∫ ∞
0

P[Z ≥ u1/p | F0] du, (4.2)

E[Zp | F0] = p(1− p)
∫ ∞
0

E[Z ∧ u | F0]up−2du. (4.3)

We will apply (4.3) to X∞. To estimate E[X∞ ∧ t | F0], we fix some t, λ > 0 and define:

τ := inf{s ≥ 0 | Gs ≥ λt}.

Because (Gt)t≥0 is predictable, there exists a sequence of stopping times (τ (n))n∈N that
announces τ . Therefore, we have on the set {G0 < λt}:

E[Xτ− | F0] = lim
n→∞

E[Xτ(n) | F0] ≤ lim
n→∞

E[Gτ(n) | F0]

≤ E[G∞ ∧ λt | F0] = λE[(G∞λ
−1) ∧ t | F0].

(4.4)

On {τ =∞} we have limn→∞Xτ(n) ∧ t = X∞ ∧ t, which implies on the set {G0 < λt}:

E[X∞ ∧ t−Xτ− ∧ t | F0] ≤ tE[1{τ<+∞} | F0]. (4.5)

Combining inequalities (4.4) and (4.5) gives:

E[X∞ ∧ t | F0] ≤ t1{G0≥λt} +
(
E[Xτ− | F0] + E[X∞ ∧ t−Xτ− ∧ t | F0]

)
1{G0<λt}

≤ λE[(G∞λ
−1) ∧ t | F0] + tP[G∞ ≥ λt | F0].

(4.6)

Applying (4.3) to X∞ and inserting (4.6) gives:

E[Xp
∞ | F0] ≤ λp(1− p)

∫ ∞
0

E[(G∞λ
−1) ∧ u | F0]up−2du

+ p(1− p)
∫ ∞
0

P[G∞ ≥ λu | F0]up−1du.
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Applying (4.2) and (4.3) to G∞ in the previous inequality implies:

E[Xp
∞ | F0] ≤ λ1−pE[Gp∞ | F0] + (1− p)

∫ ∞
0

P[G∞ ≥ λy1/p | F0]dy

≤ λ−p
(
λ+ 1− p

)
E[Gp∞ | F0].

Choosing λ = p implies the assertion of the theorem.

5 Proof of Corollary 2.8

Proof of Corollary 2.8. We first prove inequalities (2.3) and (2.4): We turn the processes
(Xn)n∈N0

and (Gn)n∈N0
into càdlàg processes in continuous time as follows: Set for all

n ∈ N0, t ∈ [n, n+ 1):
Xt := Xn, Gt := Gn, Ft := Fn.

As we can approximate (Gt)t≥0 by left-continuous adapted processes, it is predictable.
Now Theorem 1.1 and Theorem 2.2 immediately imply inequalities (2.3) and (2.4).

The sharpness of p−p follows from [16, Theorem 2]. We show that p−p

1−p is sharp. Let

X(n), G(n), A and (Ft)t≥0 be as in proof of Theorem 2.1. Fix some arbitrary N ∈ N. Set
for all k, n ∈ N

X
(n,N)
0 := X

(n)
0 X

(n,N)
k := X

(n)

k2−N ,

G
(n,N)
0 := G

(n)
0 G

(n,N)
k := G

(n)

(k−1)2−N +

∫ k2−N∧n

(k−1)2−N∧n
A(s)ds,

F (n,N)
0 := F0 F (n,N)

k := Fk2−N .

The processes (X
(n,N)
k )k∈N0 and (G

(n,N)
k )k∈N0 are non-negative and adapted, (G

(n,N)
k )k∈N0

is in addition non-decreasing and predictable. Since G
(n)

k2−N ≤ G
(n,N)
k , the processes

satisfy the Lenglart domination assumption. Hence, noting that

lim
N→∞

E

[(
sup
k∈N0

X
(n,N)
k

)p ]
= E

[(
sup
t≥0

X
(n)
t

)p ]
,

lim
N→∞

E

[(
sup
k∈N0

G
(n,N)
k

)p ]
= E

[(
sup
t≥0

G
(n)
t

)p ]
,

implies the assertion of the corollary.
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