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Abstract

In this paper we consider the cylindrical càdlàg property of a solution to a linear
equation in a Hilbert space H, driven by a Levy process taking values in a possibly
larger Hilbert space U . In particular, we are interested in diagonal type processes,
where processes on coordinates are functionals of independent α-stable symmetric
processes. We give the equivalent characterization in this case. We apply the same
techniques to obtain a sufficient condition for existence of a càdlàg version of stable
processes described as integrals of deterministic functions with respect to symmetric
α-stable random measures with α ∈ [1, 2).
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1 Introduction

We first consider a linear equation in a Hilbert space H given by dXt = AXtdt,
X0 = x, where A is a generator of a C0 semigroup (S(t))t>0 on H. Obviously, the solution
can be represented as Xt = S(t)x. We may perturb the linear equation by a Lévy process
Z = (Zt)t∈T which takes values in U , where U is a Hilbert space H ⊂ U . It leads to the
following equation of evolution with Lévy noise

dXt = AXtdt+ dZt, t ∈ T = [0, a], X0 = 0, a > 0. (1.1)

Note that if U = H, then once again (1.1) can be easily solved

Xt =

∫ t

0

S(t− s)dZs, X0 = 0. (1.2)

If H ⊂ U then the solution exists in a weaker form which we discuss in a special case
below. The equations of the form (1.1) were considered e.g. in [8], [10], [9], [6], [7]. One
may wonder whether there exists a càdlàg version of X = (Xt)t∈T in H. This problem is
described in Liu Zhai [6] and the answer is that if such a modification exists, then Z takes
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Time regularity of Lévy-type evolution

values in H. However, in some cases X may take values in H, even though the space,
in which the noise lives, is larger. One may wonder what other kinds of regularity one
may expect. In [9] several other notions of càdlàg property have been introduced, which
are weaker than càdlàg in H. In the present paper we focus on the cylindrical càdlàg
property. We consider the case when both Z and the equation (1.1) is of a diagonal form.

In the this paper we consider only the diagonal case with negative diagonal operator A
and diagonal Lévy-type process Z, which is a much simpler question. Namely, let (en)∞n=1

be an orthonormal and complete basis in H, we assume that for any n = 1, 2, . . . vector
en belongs to the domain of A and Aen = −γnen with γn > 0. Moreover, assume that
Zt =

∑∞
n=1 Z

(n)
t en, where Z(n) are real-valued independent symmetric Lévy processes

without Gaussian part and with Lévy measures µn, respectively. Note that, in general
the sum defining Z may not converge in H, but in some larger space Hilbert U . By the
solution to the diagonal type evolution equation we mean the process

Xt =

∞∑
n=1

X
(n)
t en, t ∈ [0, a],

where
dX

(n)
t = −γnX(n)

t dt+ dZ
(n)
t , X

(n)
0 = 0, n = 1, 2, . . . . (1.3)

The process X takes values in H if and only if the series
∑∞
n=1(X

(n)
t )2 converges in

probability (and therefore almost surely, thanks to independence). One can express
this condition in terms of Lévy measures µn (see Proposition 2.6 in [9]). An important
example considered in literature is when Z(n) = σnL

(n), where L(n) are independent
standard symmetric α-stable Lévy processes and σn > 0. This will be referred to as the
α-stable case. In this case, the condition for X to take values in H is

∞∑
n=1

σαn
1 + γn

<∞. (1.4)

The proof of the fact can be also found in [10]. Note that in [10] it was assumed that
γn → ∞, hence condition (1.4) was written with γn in the denominator, instead of our
1 + γn, but the proof without the assumption that γn tend to infinity is essentially the
same (cf. Proposition 4.2 in [10]).

Moreover, by the Liu Zhai result [6] we know that in the α-stable case, there exists a
càdlàg version of X = (Xt)t∈T in H if and only if Z takes values in H, which is equivalent
to

∞∑
n=1

σαn <∞. (1.5)

However, the intriguing situation is when (1.5) fails – which means that Z has values
beyond the space H. The question is whether we can still expect some regularity of
X. The regularity we analyze in this paper is the existence of a cylindrical càdlàg
modification.

According to the Definition 1.1 in [9] an H-valued process X is cylindrical càdlàg if
for any z ∈ H the real valued process

Yt = 〈z,Xt〉 =

∞∑
n=1

〈z, en〉X(n)
t , t > 0. (1.6)

has a càdlàg modification. Note that if X is a cylindrical càdlàg, then for any finite set of
vectors z1, z2, . . . , zn ∈ H the process

(〈z1, X〉, 〈z2, X〉, . . . , 〈zn, X〉)
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Time regularity of Lévy-type evolution

has a càdlàg modification and hence the property indicates weak regularity of X as
of a process in high dimensions. There are some partial results towards the question
discussed in the extensive paper [9] (note that there are discussed many forms of
regularity). However, the results in [9] do not completely cover even the basic question
of Z(n) that are α-stable, where α ∈ (1, 2). We do propose an approach which in particular
covers the question formulated as Question 4 in [9]. It should be mentioned that the
case of α ∈ (0, 1] was completely solved in [7].

As it will be proved, our approach works in the much more general setting of diagonal
type evolution equations implying a nice sufficient condition for the cylindrical càdlàg
property for all diagonal type equations.

The process Y of (1.6) clearly depends on z ∈ H, however since z will be fixed we
do not stress this dependence in the notation. Moreover, even though X does not take
values in H, it is possible that the process Y is well defined and we may consider the
problem of the existence of its càdlàg modification.

The key idea in the proof is to use the Poissonian representation of Lévy processes
and an application of a result of [3] concerning suprema of Bernoulli processes. In this
approach it is important that the Lévy processes are symmetric.

In the last part of the paper we show the usefulness of our method beyond the
evolution equations. Namely, we give sufficient conditions for existence of càdlàg
modifications of stable processes of the form

Xt =

∫
E

f(t, x)M(dx) t ∈ [0, a], (1.7)

where M is a symmetric α-stable random measure and f is a deterministic function
satisfying appropriate integrability conditions. See Section 5 and Theorem 5.1 below. It
is worth stressing that our condition also works in the case α ∈ (1, 2), which seems to be
a difficult one.

The paper is organized as follows. In Section 2 we introduce some notation and
representations of the process Y given by (1.6). In Section 3 we discuss a necessary
condition for existence of a càdlàg modification of the process Y . In Section 4 we provide
a sufficient condition. Finally, in Section 5 we discuss the problem of càdlàg modification
of stable processes of the form (1.7).

2 Representation of solution

For the sake of simplicity we assume that T = [0, 1]. As we have explained the solution
to the evolution equation has the form (1.2). Suppose that Z(n) = σnL

(n), where σn > 0

and L(n), n = 1, 2, . . . are independent symmetric Lévy processes without Gaussian
component and with Lévy measures νn, respectively. That is, L(n)

t has characteristic
function of the form

EeiθL
(n)
t = exp

{
−t
∫
R

(1− cos(θy))νn(dy)

}
,

where νn is a symmetric Borel measure on R, satisfying νn({0}) = 0 and∫
R

(y2 ∧ 1)νn(dy) <∞.

Such processes have a càdlàg modification, and in the sequel we will always assume
that L(n), n = 1, 2, . . . are càdlàg. As described in the introduction we assume that A is a
diagonal operator, and for an orthonormal basis (en)n of H we have Aen = −γnen, with
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γn > 0. Then (1.3) reads as

X
(n)
t =

∫ t

0

exp (−γn(t− s))σndL(n)
s . (2.1)

It is well known that the jump times and sizes of L(n) are points of a Poisson random
measure, with intensity measure ` ⊗ νn, where ` is the Lebesgue measure on R+. We
denote this random measure by πn. Thus

L
(n)
t = lim

δ→0

∫ t

0

∫
|y|>δ

yπn(ds, dy),

where the limit is a.s. Moreover, on a subsequence δn ↘ 0 fast enough the convergence
is a.s. uniform on bounded intervals (see e.g. Theorem 6.8 in[8]). Note that here we do
not need to compensate, since νn are symmetric.

Also, due to symmetry πn can be represented as a sum of Dirac measures

πn =
∑
k

δ(tn,k,(ε̃n,kyn,k)),

where (tn,k, yn,k) are points of a Poisson random measure with intensity ` ⊗ µn with
µn(B) = 2νn(B ∩R+), which will be denoted here by π+

n , and ε̃n,k k = 1, 2, . . . are i.i.d.
Rademacher random variables. In this setting the process L(n) at time tn,k has a jump of
absolute value yn,k and sign ε̃n,k, i.e.

∆L
(n)
tn,k

= ε̃n,kyn,k.

For n = 1, 2, . . . the corresponding Poisson random measures π+
n and random signs are

independent.
An important example is when L(n) are symmetric α-stable processes with α ∈ (0, 2).

In this case it is well known that

νn(dy) =
Cα
|y|α+1

dy. (2.2)

Here Cα > 0 is a constant that standardizes L(n), so that

EeiθL
(n)
t = e−t|θ|

α

.

We fix z ∈ H and consider existence of a càdlàg modification of

Yt = 〈Xt, z〉 =

∞∑
n=1

Y
(n)
t =

∞∑
n=1

〈z, en〉X(n)
t , t ∈ [0, 1]. (2.3)

where X(n) are given by (2.1), and Y (n)
t = 〈z, en〉X(n)

t .

Under a weak assumption the sum
∑
n Y

(n)
t converges a.s. for all t ∈ T = [0, 1], we

explain it below. Each of the variables Y (n)
t , t ∈ T can be represented in terms of the

Poisson random measure πn as

Y
(n)
t = lim

δ→0+

∑
k:yn,k>δ

bnεn,kyn,ke
−(t−tn,k)γn1tn,k6t, (2.4)

where bn = |σn〈z, en〉|, εn,k = ε̃n,k sgn(〈z, en〉) and tn,k, yn,k, ε̃n,k, n = 1, 2, . . ., i = 1, 2, . . .

are as above.
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Proposition 2.1. For any t ∈ [0, 1] the sum on the right hand side of (2.3) converges
almost surely if and only if

ψ(θ) :=

∞∑
n=1

∫ t

0

∫
R

(
1− cos

(
θbnye

−γns
))
νn(dy)ds <∞, θ ∈ R (2.5)

and the function ψ is continuous at 0.

Proof. By (2.4), using the form of the characteristic function of integrals with respect to
a Poisson random measure (see e.g. Theorem 6.6 in [8]) we have

EeiθY
(n)
t = exp

{
−
∫ t

0

∫
R

(1− cos(θbnye
−γn(t−s)))νn(dy)ds

}
, θ ∈ R.

Y
(n)
t are independent, hence almost sure convergence of the series (2.3) is equivalent to

its convergence in law and the result follows.

In particular, if L(n) are standard symmetric α-stable Lévy processes, then recalling
(2.2) we have∫ t

0

∫
R

(
1− cos

(
θbnye

−γns
))
νn(dy)ds =

∫ t

0

|θ|α
(
bne
−γns

)α
ds = |θ|α bαn

1− e−αγnt

αγn
.

Since 1−e−x
x for x > 0 is bounded from above and below by 1

1+x multiplied by a constant,
we see that the series (2.3) converges almost surely for any t ∈ [0, 1] if and only if

∞∑
n=1

bαn
1 + γn

<∞.

It is clear that each of the processes Y (n) is càdlàg. Thus, using (2.4) we can use the
following representation of Y

Yt = 〈z,Xt〉 =
∑
n

Y
(n)
t =

∑
n

∑
k

bnεn,kyn,ke
−(t−tn,k)γn1tn,k6t, t ∈ T, (2.6)

The sum over k is understood as limδ→0

∑
k:yn,k>δ

.... We are ready to discuss the

convergence of
∑
n Y

(n)
t , t ∈ T .

The main idea we follow is that (Yt)t∈T can be split into two parts according to
whether bnyn,k > 1 or bnyn,k < 1. The first part is a finite sum of càdlàg processes and
in the second the series with respect to n, converges uniformly in L1, thus there is a
subsequence on which the convergence is a.s. uniform on T , hence the limit is càdlàg.

3 Necessary condition

Recall (2.6) and (2.5). The next theorem provides a necessary condition for Y to have
a càdlàg modification. This result follows from Theorem 3.4 of [7], but, as it is short, we
will also present its proof, to have a full picture of our problem.

Theorem 3.1. If Y has a càdlàg modification, then for any ε > 0 we have

∞∑
n=1

νn

([ε
bn
,∞
))

<∞. (3.1)

Example 3.1. (Cf. Corollary 3.5 in [7]). If L(n) are independent standard symmetric
α-stable Lévy processes and the process Y has a càdlàg modification, then∑

n

bαn <∞. (3.2)
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Time regularity of Lévy-type evolution

Proof of Theorem 3.1. We argue by contradiction. Suppose that (3.1) does not hold for
some ε > 0 and that Y has a càdlàg modification Ỹ . Fix any n and denote:

Y
(n,ε)
t =

∑
k:yn,k>ε

bnεn,kyn,ke
−(t−tn,k)γn1tn,k6t, t > 0.

Then the processes

Ỹt − Y (n,ε)
t , t > 0, and Y

(n,ε)
t , t > 0 (3.3)

are càdlàg and they are independent (independence follows from the fact that πn is
independently scattered). Moreover, Y (n,ε) has jumps at jump times of the Poisson
process πn([0, t]× {y : |y| > ε}), t > 0. Therefore, with probability one, the sample paths
of the two processes defined in (3.3) must have jumps at different times. Hence, with
probability one, whenever Y (n) has a jump of size > ε, then Ỹ has a jump of equal size
and sign. Notice also, that ∣∣∣∆Y (n)

s

∣∣∣ = bn

∣∣∣∆L(n)
s

∣∣∣ ,
where, for a càdlàg process Z we denote ∆Zs = Zs − Zs−.

We will show that if (3.1) does not hold then, with probability one, there are infinitely
many n, such that L(n) has a jump of size > ε/bn. Moreover, all L(n) are independent,
hence they jump at different times. Consequently, by the argument above, this implies
that Ỹ must have an infinite number of jumps of size > ε on [0, 1], and therefore cannot
be càdlàg. This is a contradiction.

Let ξ(n) denote the maximal jump of L(n) on [0, 1]; ξ(n) = sups≤1 |∆Ls|. Clearly, for
u > 0

P(ξ(n) < u) = P(π(n)([0, 1]× {y : |y| > u}) = 0) = exp (−νn({y : |y| > u})) .

Hence ∑
n

P(bnξ
(n) > ε) =

∑
n

P(ξ(n) >
ε

bn
)

=
∑
n

(
1− exp(−2νn([

ε

bn
,∞))

)
(3.4)

> e−1
∑
n

min{2νn([
ε

bn
,∞), 1} =∞,

where the last equality is a consequence of the assumption of the opposite of (3.1). As
ξ(n) are independent, the Borel Cantelli lemma implies that with probability 1 there are
infinitely many n such that L(n) has a jump of size at least ε/bn.

4 Sufficient condition

We now discuss sufficient conditions for existence of càdlàg modification of Y .

Theorem 4.1. Assume that there exists ε > 0 such that (3.1) is satisfied, and additionally
that

∞∑
n=1

b2n

∫
bn|y|≤ε

|y|2 νn(dy) <∞. (4.1)

Then Y has a càdlàg modification.

Before we go to the proof of the theorem we make several observations:
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Remark 4.1. The assumptions of Theorem 4.1 may be also written in the form

∞∑
n=1

∫
R

(|bny|2 ∧ 1)νn(dy) <∞

thus our result is stronger than Theorem 3.8 in [7], where |bny| appeared with power 1

instead of the square.

Example 4.2. If L(n) are independent standard symmetric α-stable Lévy processes with
α ∈ (0, 2) then (3.1) and (4.1) both reduce to∑

n

bαn <∞. (4.2)

Hence by Theorems 3.1 and 4.1 (4.2) is a necessary and sufficient condition for Y to
have a càdlàg modification. This strengthens the result of [7] (Theorem 3.9) which was
only proved there for α < 1.

Corollary 4.3. Assume (1.4). Then X = (Xt)t∈T , T = [0, 1] has cylindrical càdlàg
property if and only if

∞∑
n=1

σ
2α

2−α
n <∞. (4.3)

Proof. Recalling the definition of bn, (4.2) is equivalent to∑
n

|〈z, en〉σn|α <∞. (4.4)

For X to have the cylindrical càdlàg property, (4.2) has to be satisfied for any z ∈ H. If
(4.3) holds then (4.4) is satisfied by Hölder’s inequality. In order to prove that (4.3) must
hold we first use Baire’s theorem. For N > 1 we define

DN = {z ∈ H :
∑
n

|〈z, en〉σn|α 6 N}.

Since clearly (4.4) implies that
⋃
N DN = H, we derive from Baire’s theorem that there

must exist N and a ball B(z0, r) in H such that B(z, r) ⊂ DN . Consequently,

sup
z∈B(0,1)

∑
n

|〈z, en〉σn|α <∞.

On the other hand, considering equality in Hölder’s inequality one can find a sequence
of zN ∈ B(0, 1) such that

∑
n

|〈z, en〉σn|α =

(
N∑
n=1

|σ2|
2α

2−α

) 2−α
2

.

If (4.3) fails, the latter expression tends to∞, when N →∞. This is contradiction.

Note that it is possible that (1.4) is satisfied and
∑
n σ

α
n = ∞ but (4.3) is satisfied.

This means that in this case the process X is not H-càdlàg but it is cylindrically càdlàg,
and for which the process Z of (1.1) does not have values in H.

Proof of Theorem 4.1. As in the proof of Theorem 3.1 let ξ(n) denote the maximal size of
a jump of L(n) on [0, 1]. Then, by (3.4) and an elementary estimate 1− e−x ≤ x we have
that ∑

n

P(bnξ
(n) > ε) <∞.
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Borel Cantelli lemma and the fact that each L(n) is càdlàg imply that there are only a
finite number of yn,k such that bnyn,k > ε.

Instead of Y it is therefore enough to consider the process

Y
(ε)
t :=

∞∑
n=1

Y
(n,ε)
t , t > 0, (4.5)

where
Y

(n,ε)
t = lim

δ→0

∑
i:δ≤yn,k<ε

bnεn,kyn,ke
−γn(t−tn,k)1t>tn,k , (4.6)

since the difference between Y and Y (n,ε) is a finite sum of càdlàg processes. Note that

Y
(n,ε)
t = σn〈z, en〉

∫ t

0

e−γn(t−s)dL(n,ε)
s ,

where L(n,ε)
t = Lt −

∑
s≤t:bn|∆sL|>ε ∆Ls. Each of the processes Y (n,ε) is càdlàg.

Moreover, observe that thanks to (4.1) the process

L(ε) =

∞∑
n=1

σn〈z, en〉L(n,ε)

is well defined and the sum converges in L2 in the supremum norm on [0, 1], since L(n,ε)

are independent martingales and

∞∑
n=1

E(L
(n,ε)
1 )2 =

∞∑
n=1

b2n

∫
bn|y|≤ε

|y|2 νn(dy) <∞,

by assumption (4.1). Therefore L(ε) is càdlàg.
The problem thus reduces to showing that

L
(ε)
t − Y

(ε)
t =

∑
n

(
L

(n,ε)
t − Y (n,ε)

t

)
, t > 0 (4.7)

has a càdlàg modification.
We will show that with probability one the series in (4.7) converges a.s. in the

supremum norm and in the topology J1. The property implies the existence of a càdlàg
modification of the limit. Since we could not find the right reference we give a short
proof below for the sake of completeness.

Lemma 4.4. Suppose that real processes (η
(n)
t )t∈T , T = [0, 1] are independent and

càdlàg. Moreover, suppose that for any ε > 0

lim
N→∞

sup
n>m>N

P

(∥∥∥∥∥
n∑

k=m

η(k)

∥∥∥∥∥
∞

> ε

)
= 0. (4.8)

Then, for any t ∈ [0, 1] the process ηt =
∑∞
n=1 η

(n)
t has a càdlàg modification. More

precisely,
∑∞
n=1 η

(n) converges a.s. in the Skorohod J1 topology to some η̄ which is the
càdlàg modification of η. Moreover, the series

∑∞
n=1 η

(n) also converges uniformly.

Remark 4.5. Note that the space D([0, 1]) equipped with the supremum norm is not
separable, so we cannot follow the usual approach for separable Banach spaces. In fact
we even do not know whether ω →

∑m
n=1 η

(n)
t is a random variable with values in D([0, 1])

with respect to the σ-field generated by the supremum norm.
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Proof of Lemma 4.4. For x, y ∈ D([0, 1]) let

d(x, y) = inf
λ∈Λ

max

(
sup

06s<t61

log[λ(t)− λ(s)]

t− s
, ‖x− y ◦ λ‖∞

)
,

where Λ is the set of nondecreasing continuous functions from [0, 1] onto itself. It is
known that d is a metric on D([0, 1]) inducing the Skorohod J1 topology and such that
the space D([0, 1]) with this metric is a Polish space (see [2]). Clearly, d(x, y) 6 ‖x− y‖∞,
hence

sup
n>m>N

P

(
d(

n∑
k=1

η(k),

m−1∑
k=1

η(k)) > ε

)
6 sup
n>m>N

P

(∥∥∥∥∥
n∑

k=m

η(k)

∥∥∥∥∥
∞

> ε

)
.

The space (D([0, 1]), d) is complete and that is why the series
∑∞
n=1 η

(n) converges in
probability in this space. By Theorem 1 [5] it also converges almost surely in the metric
d to some η̄ which is càdlàg. Moreover, a simple consequence of (4.8) is that ‖η(n)‖∞
converges in probability to 0 as n → ∞. Therefore, by Theorem 2 of [5], the series
η =

∑∞
n=1 η

(n) also converges a.s. in the uniform norm. Therefore, for any fixed t ∈ [0, 1]

variables ηt = η̄t a.s. It completes the proof.

The processes η(n) = Ln,ε − Y (n,ε) are independent for n = 1, 2, . . . and càdlàg,
therefore by Lemma 4.4 it suffices to prove that the supremum norms converge in L2.

We will prove the following lemma

Lemma 4.6. There exists a universal positive constant C such that for any k ≤ m we
have

E sup
t∈[0,1]

∣∣∣∣∣
m∑
n=k

(
L

(n,ε)
t −Y (n,ε)

t

)∣∣∣∣∣
2

≤C1E

∣∣∣∣∣
m∑
n=k

(
L

(n,ε)
1 −Y (n,ε)

1

)∣∣∣∣∣
2

≤C2

m∑
n=k

b2n

∫
bn|y|≤ε

|y|2 νn(dy).

(4.9)

By assumption (4.1) this implies the Cauchy condition for the series in (4.7). The
proof of the theorem will be complete provided that we show Lemma 4.6, which we do
presently.

Proof of Lemma 4.6. Denote

an,k(t) = bnyn,k(1− e−γn(t−tn,k))+.

Then for fixed k ≤ m
m∑
n=k

(
L

(n,ε)
t −X(n,ε)

t

)
= lim
δ→0+

A(δ), (4.10)

where for δ < ε

A
(δ)
t =

m∑
n=k

∑
k:δ≤bnyn,k<ε

εn,kan,k(t). (4.11)

In (4.10) the limit is in L2 for any fixed t ∈ [0, 1] moreover, it is a.s. uniform on [0, 1] on a
subsequence δn ↘ 0 fast enough.

We will estimate the expectation of the supremum norm of A(δ) on [0, 1] using a result
of [3]. Observe that the double sum in (4.11) is a.s. finite and the random processes an,k
are nondecreasing, an,k ≤ bnyn,k, moreover (εn,k)n,k are independent of (an,k)n,k. The
latter processes depend only on π+

n , n = 1, 2, . . .. Conditioning on π+
n n = k, . . . ,m and

using Theorem 1 of [3] for any u > 0 we have

PE( sup
t∈[0,1]

A
(δ)
t > 8u) ≤ 53PE(A

δ
1 > u)
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Time regularity of Lévy-type evolution

Here PE is the conditional probability were we condition on all variables but (εn,k)n,k.
Taking expectation, using the identity Eξ2 = 2

∫∞
0
uP (|ξ| > u)du and also symmetry we

obtain:

E sup
t∈[0,1]

∣∣∣A(δ)
t

∣∣∣2 ≤ CE ∣∣∣A(δ)
1

∣∣∣2
= CE

m∑
n=k

∑
k:δ<bn|yn,k|≤ε

b2ny
2
n,ka

2
n,k(1) ≤ E

m∑
n=k

∫
δ≤|bny|<ε

b2ny
2νn(dy)

Letting δ → 0 we obtain (4.9).

5 Càdlàg modification of processes expressed as integrals with
respect to symmetric stable random measures.

A large class of stable stochastic processes studied in literature are of the form

Xt =

∫
E

f(t, x)M(dx) t ∈ [0, a] (5.1)

where a > 0, M is an α-stable random measure defined on some measurable space
(E,B) and f : [0, a]× E 7→ R is a measurable function on the product space, satisfying
appropriate integrability conditions. See e.g. [11] for a systematic treatment of stable
integrals and stable processes. In this section we discuss a sufficient condition for the
process of the form (5.1) to have a càdlàg modification (and hence for local boundedness
of the process). Necessary and sufficient conditions for sample boundedness of processes
of the form (5.1) in the case α < 1 are known. The case α > 1 seems to be more difficult
(see Chapter 10 of [11]). Some more recent results on the càdlàg property of stable
integrals of the form (5.1) can be found in [4] and [1].

It turns out that our methods used in the previous section can be applied also in this
setting in case where M is a symmetric α-stable random measure.

We assume that 0 < α < 2 and let m be a σ-finite measure on a measurable space
(E,B). Let M denote a symmetric α-stable random measure on E with control measure
m. That is, if we denote by E0 := {A ∈ B : m(A) < ∞} then (M(A))A∈E0 is a family of
real valued random variables such that:

(i) For any A1, A2, . . . ∈ E0 such that Ai ∩ Aj = ∅ for i 6= j the random variables
M(A1),M(A2), . . . are independent. Moreover, if we also have that m(

⋃∞
n=1An) <

∞, then

M(

∞⋃
n=1

An) =

∞∑
n=1

M(An), a.s.

(ii) If A ∈ E0, then M(A) is a symmetric α-stable random variable with scale parameter
(m(A))

1
α , that is

EeiθM(A) = exp{−m(A) |θ|α}, θ ∈ R.

If f : E 7→ R is a measurable function such that∫
E

|f(x)|αm(dx) <∞

then one can define
∫
E
f(x)M(dx). This is done in the usual way, by approximating f by

simple functions and passing to the limit. It turns out that for integrals defined in this
way we have

E exp{i
∫
E

f(x)M(dx)} = exp{−
∫
E

|f(x)|αm(dx)}.
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Therefore, if a > 0, f : [0, a] × E 7→ R is measurable with respect to the σ-fields
B([0, a])⊗B/B(R) and such that for any t > 0 we have∫

E

|f(t, x)|αm(dx) <∞,

then the process (5.1) is well defined.
Recall also, that M(A) and

∫
E
f(t, x)M(dx) may be constructed using a Poisson

random measure. Assume that π is a Poisson random measure on R× E with intensity
measure

Cα

|z|1+α dzm(dx), (5.2)

where Cα > 0 is chosen such that∫
R

(1− cos z)
Cα

|z|1+α dz = 1.

Then, for A ∈ E0
M(A) = lim

δ→0

∫
{z:|z|>δ}×A

zπ(dz, dx),

where the limit is in probability, and a.s.
If δn ↘ 0 and En ∈ B are such that m(En) <∞, En ⊂ En+1 for all n and

⋃
nEn = E,

then for fixed t, the stable integral with respect to the stable random measure constructed
above may be represented as∫

E

f(t, x)M(dx) = lim
n→∞

∫
{z:|z|>δn}×En

zf(t, x)π(dz, dx), a.s. (5.3)

A simple, but key observation in our context is that since the Lévy measure cα
|z|1+α dz is

symmetric, the Poisson random measure π may be written as

π =
∑
k

δ(εkyk,xk), (5.4)

where π+ =
∑
i δ(yk,xk) is a Poisson random measure with intensity measure

2cα
yα+1 1y>0dym(dx) and ε1, ε2, . . . are i.i.d Rademacher random variables independent

of π+.
We have the following theorem.

Theorem 5.1. Assume that (Xt)t∈[0,a] is of the form (5.2) and f = f1 − f2, where the
functions f1, f2 : [0, a]× E 7→ R+, i = 1, 2 are B([0, a])⊗B/B(R) measurable and such
that there exists a set N ∈ B, m(N) = 0 such that for any x ∈ E\N the functions
t 7→ fi(t, x) are càdlàg and nondecreasing, i = 1, 2. Moreover, assume that∫

E

|fi(a, x)|αm(dx) <∞, i = 1, 2. (5.5)

Then the process (Xt)t∈[0,a] defined by (5.1) has a càdlàg modification.

Remark 5.1. Assumptions of Theorem 5.1 essentially mean that for any x ∈ E\N the
function t 7→ f(t, x) is càdlàg and has finite variation on [0, a]. Moreover, this variation as
a function of x is in Lα(E,m).

Proof of Theorem 5.1. Let π be a Poisson random measure of the form (5.4) and let δn
and En be as in (5.3). Note that π restricted to the set {|z| : z > δn}×En is such that the
number of points (εkyk, xk) in this set is Poisson with parameter

∫
{y:y>δn}

2cα
y1+α dym(En)
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and then all random variables εk, yk, xk k = 1, 2, .. are independent, εk are Rademacher
random variables, yk have law with the density proportional to 1(δn,∞)(y) 1

y1+α and xk

have the law 1
m(En)m

∣∣
En

.
Let us denote

X
(n)
t =

∫
{|z|>δn}×En

zf(t, x)π(dz, dx) =
∑

k:yk>δn,xk∈En

εkykf(t, xk).

Clearly the process (X
(n)
t )t∈[0,a] is càdlàg since the sum is finite and the function t 7→

f(t, x) is càdlàg for any x ∈ E\N . For any t ∈ [0, a] X
(n)
t converges pointwise to Xt.

Therefore, to prove the theorem it suffices to show that the processes X(n) converge a.s.
uniformly on [0, a]. Moreover, writing

X
(n)
t =

∫
{|z|>δn}×En

zf1(t, x)π(dz, dx)−
∫
{|z|>δn}×En

zf2(t, x)π(dz, dx)

it suffices to show that each of the two processes on the right hand side converges a.s.
uniformly on [0, a].

Hence, without loss of generality in what follows we will assume that f = f1, i.e. f is
nonnegative, t 7→ f(t, x) is càdlàg and nondecreasing for any x ∈ E\N and f satisfies
(5.5).

Let us denote
Ba = {(z, y) ∈ R× E : |zf(a, x)| ≤ 1}.

Thanks to the assumption (5.5) it is immediate to see that∫
Bca

cα

|z|1+α dzm(dx) <∞,

Hence π has a finite number of points in Bca. It is therefore enough to consider only the
part of X(n) which is an integral over the set An := ({|z| > δn} × En) ∩Ba.

Denote

Y
(n)
t :=

∫
An

zf(t, x)π(dz, dx).

We will show that

lim
m,n→∞

E sup
t∈[0,a]

∣∣∣Y (n)
t − Y (m)

t

∣∣∣2 = 0 (5.6)

This will imply that Y (n) converges in probability in the supremum norm, but since
Y (k) − Y (k−1), k = 1, 2, . . . are independent we can once again use Lemma 4.4, which
implies that Y (n) converge a.s. in the supremum norm, thus the limit is càdlàg.

Hence to complete the proof of the theorem it suffices to show (5.6). This is similar
to the proof of Lemma 4.6. Suppose that n > m, then

Y
(n)
t − Y (m)

t =
∑

k:(yk,xk)∈(An\Am)

εkykf(t, xk)

Integrating out first with respect to εi and applying Theorem 1 of [3] we have that

E sup
t∈[0,a]

∣∣∣Y (n)
t − Y (m)

t

∣∣∣2 ≤ CE ∑
k:(yk,xk)∈An\Am

y2
i f

2(a, x)

=

∫
An\Am

y2f2(a, x)
2cα
yα+1

dym(dx)→ 0.

The last convergence follows from the fact that

lim
n→∞

∫
An

y2f2(a, x)
2cα
yα+1

dym(dx) =

∫
Ba

y2f2(a, x)
2cα
yα+1

dym(dx)

which is finite by assumption (5.5).
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