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Abstract

This note is motivated by connections between the online and offline problems of
selecting a possibly long subsequence from a Poisson-paced sequence of uniform
marks under either a monotonicity or a sum constraint. The offline problem with the
sum constraint amounts to counting the Poisson arrivals before their total exceeds a
certain level. A precise asymptotics for the mean count is obtained by coupling with a
nonlinear pure birth process.
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1 Introduction

When a shuttle carrying a large number of hotel guests arrives at the hotel, the
passengers start queuing and pass the exit door at times of a Poisson process. The
waiting times spent in the queue are added up as the passengers quit. What is the
number N(t) of passengers that exit the shuttle before the accumulated waiting time
exceeds t?

We shall call this the shuttle exit problem. The exit count N(t) is the maximum
number of Poisson times with the total not exceeding t. The total waiting time and the
exit count process are important in many models of applied probability. Our interest
stems from the connection to the online version of the longest increasing subsequence
problem, which we now describe along with its offline counterpart.

Suppose independent, uniform [0,1] marks arrive sequentially at times of a unit rate
Poisson process on [0, t]. Plotting each mark against its arrival time yields a Poisson
scatter of points in two dimensions. An increasing subsequence is a subset of points
making up a chain in the natural partial order. A prophet with complete overview of
the data can use an offline algorithm to select the longest increasing subsequence of
some length L∗(t). The circle of questions about L∗(t) is known as the Ulam-Hammersley
problem, see Romik’s book [17] for a nice exposition. A nonclairvoyant gambler learns
the data and makes irrevocable decisions in real time using a nonanticipating online
selection policy. Let L(t) be the length of increasing subsequence selected under the
online policy that achieves the maximum expected length. As t→∞,

EL∗(t) = 2
√
t− c0 t1/6 + o(t1/6), (1.1)

EL(t) =
√

2t− 1
12 log t+O(1), (1.2)
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Sequential selection and a first passage

(where c0 = 1.77 . . . is an explicit constant). The limit ratio 2 :
√

2 serves as a rough
measure of advantage of the prophet over the gambler. The asymptotics (1.1) has a
long and colourful history, culminating in the work of Baik, Deift and Johansson [3]. The
leading term of (1.2) is due to Samuels and Steele [18] who were first to study the online
problem, later Bruss and Delbaen [7] identified the logarithmic order of the second term
and the full expansion has appeared recently in [13].

Remarkably, the online increasing subsequence problem can be recast as a very
different bin-packing problem, where the task is to maximise the expected length of
online selected subsequence under the constraint that the sum of selected marks does
not exceed 1 (the interpretation of the condition is that the selected items fit in a bin of
unit capacity) [6, 9]. By analogy with (1.1) and (1.2) it is natural to consider the offline
counterpart of L(t) in the bin packing context. Obviously, with full information available,
the optimal prophet’s policy amounts to the smallest first policy that packs the items in
the increasing order of size as long as they fit in the unit bin.

Since the marks sorted into increasing order themselves comprise a homogeneous
Poisson process, zooming in the marks scale with factor t and changing the metaphore,
it is seen that the number of items packed under the smallest first policy coincides with
the exit count N(t) from the shuttle problem we started with.

The first surprise in the online-offline bin packing comparison comes with the fact
that the limit prophet-to-gambler ratio is equal to 1. This follows from the asymptotics
EN(t) ∼

√
2t, which in turn can be concluded from a benchmark [6, 8, 11, 19] upper

bound EN(t) <
√

2t, the trivial inequality L(t) ≤ N(t) and (1.2). Therefore, to assess
the magnitude of prophet’s advantage one needs to examine the mean exit count more
closely.

In this note we find a formula for EN(t) in terms of the Borel distribution. Though
explicit, the formula seem to require substantial analytic work to extract the desired
second term of the asymptotic expansion. We circumvent this by resorting to elementary
probabilistic tools, with the core of our approach being the observation that N(t), for
each fixed t, has the same distribution as the entrance count M(t) appearing in the
following dual shuttle entrance problem.

When the shuttle picks up hotel guests at the airport, they enter by the Poisson
process. The shuttle departs at the moment when the total waiting time of the driver
and all passengers inside the shuttle is t. What is the number M(t) of hotel guests in the
shuttle by the departure?

We observe that the process M(t) is a nonlinear pure-birth Markov chain which was
considered in Kingman and Volkov [15] in the context of gunfight models. Using the
identity in distribution we show that

√
2t− EN(t)→ 2

3
(1.3)

and that the difference is always less than 1. This contrasts sharply with the second
terms in (1.1) and (1.2). For the difference between the prophet and gambler values we
have therefore

EN(t)− EL(t) ∼ 1
12 log t.

Bruss and Delbaen [7] showed that L(t) is AN(
√

2t, 1
3

√
2t) (where AN abbreviates

‘asymptotically normal’), see also [13]. We argue that the same is true for N(t). The
asymptotic coincidence of variances looks unexpected since the underlying selection
policies are very different. We remind that in the increasing subsequence problem the
types of the limit distributions of L∗(t) and L(t) are different, as the distribution of the
maximum offline length L∗(t) approaches the Tracy-Widom law from the random matrix
theory [3, 17].
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Sequential selection and a first passage

This note is a collection of snapshots around (1.3). Various connections are pursued,
but to keep the discussion short details of routine proofs are only sketched. Related
work on sums of consequitive arrivals for inhomogeneous Poisson process appeared in
[2], and on the integrated Poisson process in [20].

The rest of the paper is organised as follows. In the next two sections we describe
the selection policies and add insight to what is already known regarding the coupling of
online problems and the benchmark upper bound. In sections 4 and 5 we scrutinise the
exit-entrance duality. In section 6 we highlight the normal limits. In section 7 we derive a
series formula for the mean count and relate it to the Borel distribution. In section 8 we
employ the pure birth process to refine the

√
2t asymptotics. In section 9 we depoissonise

(1.3) to improve upon the well known [6, 8, 9, 19] fixed sample size asymptotics of the
smallest first policy. A large deviation bound needed for our arguments is derived in the
last section.

Throughout we shall be using the notation

ν(t) := EN(t), σ2(t) := VarN(t).

2 Coupling of online problems

We first detail the equivalence between the online increasing subsequence and bin
packing problems. They differ by the contraint: in the first problem the selected marks
should increase and in the second the total should be at most 1. The question about
explicit coupling was emphasized in Section 5 of Steele [19], where problems with fixed
number of arrivals n were discussed.

The distribution of marks in the increasing subsequence problem does not matter
(subject to being continuous), while the bin packing problem is not distribution-free.
In the special case of uniform [0, 1] marks and the bin of unit capacity, the equivalence
in terms of the optimal policies has been commonly argued by comparing the dynamic
programming equations for the value function [1, 9]. It was also noticed in [9] (p. 455)
that the greedy policy which selects every item that fits in the remaining capacity outputs
the same length as the policy selecting every consequitive record (a mark bigger than
all marks seen so far).

The following construction provides a general coupling in our setting of Poisson
arrivals, but it can be readily adjusted to other arrival processes including the discrete
time models with fixed or random horizon [1, 11, 18].

Let Π2 be a planar Poisson point process with unit rate in the strip [0,∞)× [0, 1]. We
endow Π2 with the natural filtration of sigma-algebras generated by {Π2|[0,t]×[0,1], t ≥ 0}.
The generic atom of Π2 at location (τ, ξ) is understood as mark ξ arriving at time τ .

We define an i-selection policy to be a nondecreasing, adapted, cádlág jump process I
with I(0) = 0, such that the north-west corners of the graph of I are some atoms (τk, ξk)

of Π2 labeled by increase of the time component. This sequence of atoms spanning the
graph is an increasing chain in the partial order in two dimensions.

Similarly, we define a b-selection policy to be a nondecreasing, adapted, cádlág jump
process B with B(0) = 1 and values in [0, 1]. We require that each jump be corresponding
to an atom (τk, ξk), so that the jump-time is τk and the increment is ξk. Thus the range of
B is the sequence of partial sums of ξ1, ξ2, . . . .

For a fixed i-selection policy I, we are going to introduce an invertible random
transform φI of [0,∞)× [0, 1], which will map I to a b-selection policy with the same path
B = I. The construction is iterative.

At each step k we shall have [0,∞)× [0, 1] and its duplicate obtained by a measure-
preserving βk. Start with two identical copies of the strip equipped with Poisson point
scatters of Π2, and a fixed path of I spanned on some points (τk, ξk). Let β0 be the
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identity, and ξ0 = 0. At step k > 0 only the strip βk((τk,∞) × [ξk−1, 1]) undergoes a
change which amounts to cutting at height ξk − ξk−1 by the horizontal line and placing
part βk((τk,∞) × [ξk−1, ξk]) atop of βk((τk,∞) × [ξk, 1]) with the orientation preserved.
The mapping βk+1 is the composition of βk and this surgery. With probability one, each
point moves under βk’s finitely many times, as the moves may only be associated with
(τk, ξk)’s to the left of this point. Thus we may define φI as the composition of all βk’s.

Note that φI preserves the planar Lebesgue measure and does not alter the time
component, so leaving each set (t,∞)× [0, 1] invariant. Consider the transformed point
process Π̂2 := φI(Π

2). By the invariance, Π2 and Π̂2 share the same one-dimensional
Poisson process of arrival times. Given arrival at time τ , the image of (τ, ξ) under φI
is uniformly distributed on {τ} × [0, 1] and is independent of Π2|[0,τ)×[0,1], hence also

independent of Π̂2|[0,τ)×[0,1]. But this implies that Π̂2 has the same distribution as Π2.
The transformation φI sends the sequence (τk, ξk) to a sequence (τ, ξk − ξk−1) (where
ξ0 = 0), which are now some atoms of Π̂2, and I becomes a b-selection policy spanned
on the transformed sequence.

The above concepts of selection policy are much more general than the Markovian
threshold policies studied in the literature. For the purpose of optimisation, however, it is
sufficient to consider the following family of policies. For ψ : [0,∞)→ [0, 1] thought of as
a function controlling the size of acceptance window, and given horizon t, an i-selection
policy is defined recursively by the rule: conditionally on arrival occurring at time τ < t

and given I(τ−) = x (the last selection so far), the observed mark ξ is selected if and
only if

0 <
ξ − x
1− x

≤ ψ((t− τ)(1− x)). (2.1)

In [13] we called such policies self-similar because the performance from each stage on
only depends on the mean number of future arrivals, admissible in the sense that they
could be added to the subsequence constructed so far. Thus defined, I is a jump Markov
process with transition mechanism determined by ψ. The twin b-selection policy has the
acceptance condition

0 <
ξ

1− x
≤ ψ((t− τ)(1− x)), (2.2)

given B(τ−) = x (the total of selected items so far). The optimal i-/b-selection policy is
of this form with some control ψ∗ satisfying

ψ∗(z) ∼
√

2

z
− 1

3z
, z →∞,

see [5, 7, 13]. In [13] we proved that every policy having ψ(z) ∼
√

2/z is within O(1)

from the optimality, that is achieves the asymptotics (1.2).
The general Markovian policy differs from (2.1) and (2.2) in that ψ is replaced by

arbitrary function of τ, t and x.

3 The upper bound

For the rest of this paper the variable t will have the meaning of either the bin
capacity (the offline bin-packing contest) or the total waiting time (the shuttle context).
We shall use x to denote the time variable of the Poisson process.

Let π1 < π2 < . . . be the points of a unit rate Poisson process Π on the positive
half-line. The exit count is defined as

N(t) := max{n : π1 + · · ·+ πn ≤ t}, t ≥ 0,

where max∅ = 0.
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There is a benchmark upper bound for the mean,

ν(t) <
√

2t , t > 0, (3.1)

that appeared in the Poisson setting in [6] (Example 2.4). Similar inequalities for sums of
order statistics from the general distribution are found in [8], also see [19] for extended
discussion. We relate (3.1) to an isoperimetric inequality, much in line with the examples
from [5, 11].

Fix t. The set of Poisson points πn with π1 + · · ·+ πn ≤ t is a point subprocess of Π

with rate function pt satisfying

ν(t) =

∫ t

0

pt(x)dx,

∫ t

0

x pt(x)dx ≤ t, 0 ≤ pt(x) ≤ 1. (3.2)

This suggests a problem from the calculus of variations:

maximise

∫ t

0

q(x)dx, under the constraints

∫ t

0

x q(x)dx ≤ t, 0 ≤ q(x) ≤ 1.

The Lagrangian function becomes∫ t

0

(θ − x)q(x)dx, with θ > 0,

which for given multiplier θ is maximised by the indicator function q(x) = 1(x ≤ θ).
Accounting for the constraint, the overall maximum value of the integral is

√
2t, attained

at

θ∗ =
√

2t, q∗(x) = 1(x ≤
√

2t),

which gives the upper bound (3.1) follows.

Remark Solution q∗ corresponds to a packing policy that picks all items smaller than
the threshold

√
2/t. The policy violates the (almost sure) sum constraint but meets

a weaker mean-value constraint. This policy is online implementable and outputs the
number of selections with Poisson(

√
2t) distribution, so has the variance about three

times higher than under the optimal offline (see below) or the optimal online policy
[7, 13].

4 The exit-entrance duality

Consider the shuttle entrance problem. When the nth passenger enters the total
waiting time of everyone inside the shuttle is

π1 + 2(π2 − π1) + · · ·+ n(πn − πn−1) = nπn − (π1 + · · ·+ πn−1),

so the entrance count is

M(t) := max{n : nπn − (π1 + · · ·+ πn−1) ≤ t}.

We assert that

N(t)
d
= M(t). (4.1)

Indeed, since

N(t) ≥ n⇔ π1 + · · ·+ πn ≤ t, M(t) ≥ n⇔ nπn − (π1 + · · ·+ πn−1) ≤ t,
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we need to check that

π1 + · · ·+ πn
d
= nπn − (π1 + · · ·+ πn−1).

Recall that, given πn, the quotients πj/πn, j < n, are independent from πn and jointly
distributed like the uniform order statistics. Thus for u1, u2, . . . iid uniform [0, 1] we have

π1 + · · ·+ πn = πn

(
1 +

π1 + · · ·+ πn−1

πn

)
d
= πn(1 + u1 + · · ·+ un−1)

d
=

πn(1 + (1− u1) + · · ·+ (1− un−1))
d
= πn(n− (u1 + · · ·+ un−1))

d
=

πn

(
n− π1 + . . . πn−1

πn

)
= nπn − (π1 + · · ·+ πn−1),

where we used symmetry of the uniform distribution.
It is also instructive to argue in terms of the iid exponentially distributed gaps

ηj := πj − πj−1 (with the convention π0 = 0). We have

π1 + · · ·+ πn = nη1 + (n− 1)η2 + · · ·+ ηn
d
=

η1 + 2η2 + · · ·+ nηn = π1 + 2(π2 − π1) + · · ·+ n(πn − πn−1).

The variables ζn := η1 + 2η2 + · · ·+nηn are the jump-times of the entrance count process.
Thus (M(t), t ≥ 0) is a pure-birth process that starts with M(0) = 1 and moves from
state n to state n+ 1 at rate (n+ 1)−1.

The entrance count process has a simple combinatorial interpretation. Think of an
urn with one red and some number of white balls. At times of the Poisson process a ball
is randomly chosen and replaced to the urn. If the chosen ball is red, a white ball is
added to the urn, otherwise the urn composition is not changed. For the process starting
with one red ball, M(t) is the number of white balls in the urn at time t.

The identity (4.1) only holds for the marginal distributions, and the exit count process
(N(t), t ≥ 0) is not even Markovian. The driver’s waiting time was included in the total
waiting time to avoid a shift in the distributional identity. We note in passing that without
appealing to (4.1) the upper bound EM(t) ≤

√
2t does not seem at all obvious.

5 Integrals of the Poisson process

Let

T (x) :=

∫ x

0

y dΠ(y) =

Π(x)∑
j=1

πj , S(x) :=

∫ x

0

Π(y)dy =

Π(x)∑
j=1

(x− πj).

The total waiting time accumulated within the real time x is T (x) in the shuttle exit
problem, and x+ S(x) in the entrance problem, where x is added to account for driver’s
waiting time. The integration by parts formula becomes

T (x) = xΠ(x)− S(x).

By reversibility of Π on [0, x] we have

T (x)
d
= S(x), (5.1)

This identity has appeared in [20], where it was concluded analytically from the identity
of Laplace transforms. Despite that (5.1) holds for each fixed x, the processes are very
different: T is a jump process with independent increments, while the paths of S are
piecewise linear.
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Plugging for x the Poisson times we obtain a few ‘total waiting time paradoxes’. First
note the defining recursions

S(πn+1) = S(πn) + n(πn+1 − πn), T (πn+1) = T (πn) + πn+1. (5.2)

Now, given πn+1, the variables T (πn) and S(πn+1) have the same distribution, and so
unconditionally

T (πn)
d
= S(πn+1), (5.3)

in apparent disagreement with (5.1).

Moreover, S(πn+1)
d
= S(πn) + πn, which is to be compared with (5.2) and (5.3). This

identity is equivalent to

πn+1(u1 + · · ·+ un)
d
= πn(1 + u1 + · · ·+ un−1), (5.4)

where the πn’s are independent of the iid uniform uj ’s. To prove (5.4), one can observe
two ways to split T (πn) in independent factors, as πn+1(T (πn)/πn+1) and as πn(T (πn)/πn),
then represent the quotients in brackets in terms of the uj ’s. Written explicitly in terms
of the Erlang density of πn and the Irwin-Hall density of the sum of uniforms, (5.4) looks
rather involved. See [12] for other exponential-uniform identities derived from the planar
Poisson process.

Next, we can represent the exit and entrance counts by means of a time-changed
Poisson process. Let X(t) = min{x : T (x) > t} be the right-continuous inverse of T , with
X(0) = π1. We can take here min rather than infinum since T jumps at the discrete set
of Poisson points. We have then

N(t) = Π(X(t))− 1. (5.5)

The process S(x) + x is strictly increasing, so there is a well defined inverse process τ
with S(τ(t)) + τ(t) = t and

dτ

dt
=

1

Π(τ(t)) + 1
.

The entrance counting process satisfies

M(t) = Π(τ(t)). (5.6)

The last two formulas give yet another proof that the entrance count is a pure-birth
process with the jump rate (n+ 1)−1 at state M(t) = n.

6 Normal limits

Note that T has independent increments. An application of Campbell’s formula yields
the moments

ET (x) = 1
2x

2, VarT (x) = 1
3x

3,

and, more generally, the moment generating function

EezT (x) = exp

(
ezx − zx− 1

z

)
.

Inverting this, Suyono and van der Weide [20] found the density of T (x) in terms of
modified Bessel functions (note that T (x) has mass e−x at zero).

Routine applications of the law of large numbers and the central limit theorem show
that for x→∞

T (x), S(x) ∼ 1
2x

2 a.s., and are AN
(

1
2x

2, 1
3x

3
)
. (6.1)
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These relations are readily translated in terms of the inverses, giving for t→∞

X(t), τ(t) ∼
√

2t a.s., and are AN
(√

2t , 1
3

√
2t
)
. (6.2)

For instance, the normal limit for X(t) follows from (6.1) and the identity P(T (x) < t) =

P(X(t) > x) applied with

t =
1

2
x2 + z

√
1

3
x3, x =

√
2t− z 21/4

31/2
t1/4 +O(t−1/4).

The asymptotics (6.1) combined with (5.5), (5.6) and a large deviation bound for Π(x)

can be pursued to obtain for t→∞

N(t),M(t) ∼
√

2t a.s., and are AN
(√

2t , 1
3

√
2t
)
. (6.3)

A more direct way relies on the representation

M(t) = max{n : ζn ≤ t},

with ζn = η1 + 2η2 + · · · + nηn and iid, unit rate exponential ηj ’s. To arrive at (6.3) we
use that

ζn ∼ an a.s., and is AN(an, b
2
n),

where
an := 1

2 n(n+ 1), bn := 1
6 n(n+ 1)(2n+ 1)

are the mean and the variance of ζn, asymptotic to n2/2 and n3/3, respectively.
The normal limit (6.3) suggests asymptotics of the variance

σ2(t) ∼ 1
3

√
2t. (6.4)

For the time being we shall take the formula for granted, deferring its justification, by
checking a uniform integrability condition, to the last section of this paper.

7 Connection to the Borel distribution

Recall that ζn =
∑n
j=1 jηj (with the ηj ’s being iid exponential) has the same distribu-

tion as the entrance total waiting time S(πn) + πn.
The Laplace transform of ζn is

E exp(zζn) =

n∏
j=1

1

1− jz
.

Inverting this yields a formula for the distribution function

P(M(t) ≥ n) = P(ζn ≤ t) =
1

n!

n∑
j=1

(
n

j

)
(−1)n−jjn(1− e−t/j).

See [21] for an asymptotic expansion for large t.
For the mean of N(t), with a small series work, we obtain an exact formula

ν(t) =

∞∑
n=1

P(ζn ≤ t) =

∞∑
j=1

e−j
jj

j!
(1− e−t/j). (7.1)

Obviously, (7.1) can be viewed as a mean

ν(t) = E(Z(1− e−t/Z)) (7.2)
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over the Borel(1) distribution

P(Z = j) = e−j
jj−1

j!
, j = 1, 2, · · · ,

which has familiar interpretations as

(i) the total population in the critical Galton-Watson process with the Poisson(1)

offspring,

(ii) the hitting time for a linear boundary Z
d
= min{n : Π(n) = n− 1}.

However, we could not find a construction explaining why the Borel distribution appears
in our context.

8 Bounds on the mean and the limit constant

The transition probability of the entrance count process M is

P(M(t+ dt)−M(t) = 1|M(t)) =
dt

M(t) + 1
,

which upon taking the expectation becomes

ν′(t) = E

(
1

M(t) + 1

)
. (8.1)

Applying Jensen’s inequality we arrive at a differential inequality

ν′(t) >
1

ν(t) + 1
,

which is readily solved by separating variables as ν(t) >
√

2t+ 1− 1, t > 0.
So together with (3.1) we have fairly tight bounds

√
2t+ 1− 1 < ν(t) <

√
2t, t > 0, (8.2)

where the gap stays below 1 for all t. The bounds (8.2) clearly suggest that the gap
converges to a constant.

Next, we aim at finding the limiting constant suggested by (8.2). The random variable

M(t) + 1 = min{n : ζn > t}

is a stopping time. Doob’s optional sampling theorem applied to the martingale ζn − an
yields a Wald-type identity

E
[
ζM(t)+1 − 1

2 (M(t) + 1)(M(t) + 2)
]

= 0. (8.3)

On the other hand, conditionally on M(t) = n the distribution of ζM(t)+1− t is exponential
with rate (n+ 1)−1, so unconditionally we can write the identity in distribution

ζM(t)+1
d
= t+ (M(t) + 1)η,

where η is a unit exponential random variable, independent of M(t). Thus

E ζM(t)+1 = t+ EM(t) + 1, (8.4)

which together with (8.3) give

EM2(t) = 2t− EM(t). (8.5)
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Sequential selection and a first passage

Alternatively, (8.5) can be derived from the k = 2 instance of the formula

(EMk(t))′ = E

(
(M(t) + 1)k −Mk(t)

M(t) + 1

)
generalising (8.1). Expanding the right-hand side, it is seen that all moments EMk(t)

can be expressed, recursively, via the first moment ν(s), s ≤ t.
Formula (8.5) allows us to express the variance through the mean as

σ2(t) = 2t− ν2(t)− ν(t). (8.6)

Substituting the lower bound (8.2) in (8.6) yields the bound σ2(t) <
√

2t+ 1− 1, which
for large t is too far from (yet to be justified) (6.4). But working the other way round
we substitute (6.4) with indefinite smaller order remainder in (8.6), and work out the
quadratic equation to extract the value of the sought limit constant:

√
2t− ν(t)→ 2

3
, as t→∞. (8.7)

This result contrasts expansions (1.1) and (1.2) but brings to mind some analogy with
the expansion of the classic renewal function in the setting with uniform interarrival
times [4] (Ch. 11, Example 8). Numerical calculations with (7.1) suggest that the limit is
approached monotonically from below. By analogy with [7, 13], one can conjecture that
the next term of the asymptotic expansion of the mean is of the order of t−1/2, see also
[10] for a similar situation.

Remark For random variable Z with Borel(1) distribution, from (8.7) follows the
asymptoic expansion for the truncated mean

E[Z 1(Z ≤ z)] =

√
2z

π
− 2

3
+ o(1), z →∞.

This is obtained by writing (7.2) as a Laplace transform

ν(t) = t

∫ ∞
0

e−ty E [Z 1(Z ≤ y−1)]dy

and applying the Tauberian theorem.

Remark Formulas (8.1) and (8.5) generalise. Suppose for the time being that M is a
pure-birth Markov process M with M(0) = 0, and transition rates βn, n ≥ 0, meeting
the regularity condition

∑∞
n=0

1
βn

=∞. The mean population size ν(t) := EM(t) and the

second moment satisfy then ν′(t) = EβM(t) and (EM2(t))′ = E [(2M(t) + 1)βM(t)]. The
identity (8.5) extends as

t = E

M(t)−1∑
n=0

1

βn

 .

9 The smallest first policy for fixed sample size

We turn to the smallest first policy in the bin packing problem with unit capacity and
fixed sample size n. Let 0 < un1 < · · · < unn < 1 be the uniform [0, 1] order statistics, and
let

Kn = max{k : un1 + · · ·+ unk ≤ 1}.
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Sequential selection and a first passage

be the smallest first count, κn := EKn. An explicit formula for κn exists (see [9], Theorem
7), but is not particularly user-friendly, as it involves an alternating double sum. It is well
known that κn ∼

√
2n and that

√
2n is also an upper bound [8, 9, 11, 18, 19].

We assert now a much more precise result:

κn =
√

2n− 2

3
+ o(1), n→∞. (9.1)

To show this, we first resort to the setting of the Poisson process on [0, 1] with rate t. The
exit count N(t) translates as the maximal number of Poisson points whose total is at
most 1. Given that the number of all Poisson points is n, this count coincides with Kn,
therefore we have the poissonisation relation

ν(t) =

∞∑
n=1

κne−t
tn

n!
.

To depoissonise, we check conditions of Theorem 1 from [14]. To that end, we extend
the function ν(t) given by (7.1) to the complex argument t ∈ C, thus obtaining an entire
function as the series converges everywhere. Some analytic work with the aid of the
Stirling formula shows that |ν(t)| < c1|t|1/2 in the sector | arg t| < π/4. Outside the sector,
we have an estimate

|etν(t)| < c2|t|1/2 exp(|t|/
√

2).

This follows by observing that the maximum of |et(1− e−t/j)| for given |t| is achieved at
the boundary |arg t| = π/4, and then by approximating the sum (7.1) by an integral. The
cited theorem gives the poissonisation error

|ν(t)− κbtc| = O(t−1/2), t→∞,

hence (8.7) implies (9.1).

The general bin size More generally, suppose the bin has capacity C > 0. Consider
the smallest first policy applied to the Poisson process on [0, 1] with rate t and, in parallel,
to n items sampled from the uniform [0, 1] distribution. Extending our notation from the
case C = 1, let NC(t) and KC,n be the counts of items packed, and let νC(t),κC,n be their
means, respectively.

Generalising the C = 1 result, we argue that

νC(t) =
√

2Ct− 2
3 + o(1) and |νC(t)− κC,btc| = O(t−1/2). (9.2)

For C ≤ 1, this is straightforward, as νC(t) = ν(Ct) and we readily conclude (9.2)
from the C = 1 case.

For C > 1 we need to be more careful since the item sizes are constrained by 1 and
not by the bin capacity C. Assessing the mean in terms of the unit Poisson process on
[0, Ct] we have

νC(t) =

∞∑
n=1

P(NC(t) ≥ n) =

∞∑
n=1

{P(T (πn) ≤ Ct)− P(T (πn) ≤ Ct, πn > t)} =

ν(Ct)−
∞∑
n=1

P(T (πn−1) ≤ (C − 1)t, πn > t).

Recalling (5.3), we get the identity (T (πn−1), πn)
d
= (S(πn), πn), hence the last sum

becomes

∞∑
n=1

P(S(πn) ≤ (C−1)t, πn > t) ≤
bt/2c∑
n=1

P(πn > t)+

∞∑
n=bt/2c+1

P(S(πn) ≤ (C−1)t) =: Σ1+Σ2.
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As t→∞, a large deviation estimate for the Poisson process shows that Σ1 approaches 0

exponentially fast, and the same is shown for Σ2 using S(πn) = ζn and the large deviation
estimate (10.1) in the next section.

10 A large deviation bound

To justify asymptotics of the variance (6.4) it remains to verify that the family

M(t)−
√

2t

( 1
3

√
2t)1/2

, t > 0,

is uniformly integrable.
We consider first

ζn − an =

n∑
j=1

j(ηj − 1).

For η with the unit exponential distribution, the central moments are estimated as

E(η − 1)m = m!

m∑
j=1

(−1)j

j!
<
m!

e
+ 1.

Using this it is easy to check that

E[k(η − 1)]m ≤ k2

2
nm−2m! , 1 ≤ k ≤ n, m ≥ 2,

which verifies the condition for large deviation bounds from [16] (Chapter 3, Theorem
17). Hence we obtain

sup
z≥0

P(|ζn − an| > bnz) < 3 e−z/4, (10.1)

where both constants are not sharp. Inverting the latter we arrive at similar bound

P

(
|M(t)−

√
2t| > z

(
1
3

√
2t
)1/2

)
< c e−z

2/4,

which implies the desired uniform integrability.
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