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A Comparison of Learning Rate Selection
Methods in Generalized Bayesian Inference∗

Pei-Shien Wu† and Ryan Martin‡

Abstract. Generalized Bayes posterior distributions are formed by putting a frac-
tional power on the likelihood before combining with the prior via Bayes’s formula.
This fractional power, which is often viewed as a remedy for potential model mis-
specification bias, is called the learning rate, and a number of data-driven learning
rate selection methods have been proposed in the recent literature. Each of these
proposals has a different focus, a different target they aim to achieve, which makes
them difficult to compare. In this paper, we provide a direct head-to-head empir-
ical comparison of these learning rate selection methods in various misspecified
model scenarios, in terms of several relevant metrics, in particular, coverage prob-
ability of the generalized Bayes credible regions. In some examples all the methods
perform well, while in others the misspecification is too severe to be overcome,
but we find that the so-called generalized posterior calibration algorithm tends to
outperform the others in terms of credible region coverage probability.
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1 Introduction

Specification of a sound model is a critical part of an effective statistical analysis. This
is especially true for a Bayesian approach, since the statistical model or likelihood is ex-
plicitly used to construct the posterior distribution from which inferences will be drawn.
However, it is common in applications to know relatively little about the phenomenon
under investigation, which impacts our ability to specify a sound statistical model. For
this reason, the effects of model misspecification have received considerable attention; in
the Bayesian literature, this includes Berk (1966), Bunke and Milhaud (1998), Diaconis
and Freedman (1986b,a), Kleijn and van der Vaart (2006, 2012), Walker (2013), De Blasi
and Walker (2013), Ramamoorthi et al. (2015), and Grünwald and van Ommen (2017).
In the most general case, misspecification implies that there is no “true” parameter
value that the posterior could concentrate around. Instead, under suitable conditions,
the posterior will concentrate around a “best” parameter value, one that minimizes the
Kullback–Leibler divergence of the posited model from the true data-generating distri-
bution. But even in those relatively nice cases, where the best parameter value around
which the posterior concentrates could be meaningful, or even equal to the real quantity
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of interest, there is reason for concern. Kleijn and van der Vaart (2012) showed that
misspecification can also affect the posterior spread, which means that the actual fre-
quentist coverage probability of the Bayesian posterior credible region can be arbitrarily
far below the advertised/nominal level.

Real coverage probabilities differing significantly from advertised levels is a serious
concern (Fraser, 2011; Martin, 2019). A gap between real and advertised coverage prob-
abilities can have various causes, but here we focus on model misspecification. To avoid
this misspecification bias, there are a few options: first, to take an approach that does
not depend explicitly on a statistical model; second, to work with a model that is suf-
ficiently broad that misspecification is virtually impossible; and third, to make some
adjustments to correct for potential model misspecification. From a Bayesian perspec-
tive, the first fix is not available, since Bayes’s formula requires a likelihood function.
The second fix amounts to the use of Bayesian nonparametrics but, when the quantity
of interest is a low-dimensional feature of the full distribution, introducing an infinite-
dimensional parameter, with the computational and statistical challenges that entails,
would be overkill. This leaves only the third option, but what kind of adjustments might
the Bayesian consider? Recently, Grünwald and van Ommen (2017) argued that a cer-
tain adjustment to the usual Bayesian posterior distribution can repair inconsistencies
resulting from model misspecification. The goal of the present paper is to investigate
the extent to which Grünwald and Van Ommen’s adjustment—and other related ad-
justments in the literature—can close the gap between the real and advertised coverage
probabilities of Bayesian posterior credible regions affected by model misspecification.

More specifically, here we will be working in the so-called generalized Bayes frame-
work, which differs from the traditional Bayes framework only in that a learning rate
parameter, a power η > 0 on the likelihood function, is introduced. That is, if we have
data Dn and a posited statistical model Pn

θ , indexed by a parameter θ in Θ, then the
generalized Bayes posterior distribution for θ is

Π(η)
n (dθ) ∝ Lη

n(θ)Π(dθ), θ ∈ Θ, (1.1)

where θ �→ Ln(θ) = L(θ;Dn) is the likelihood function and Π is a prior distribution on Θ.
Among the first papers to adopt such an approach is Walker and Hjort (2001), followed
up on by Zhang (2006). Bissiri et al. (2016) showed that (1.1) is the principled way to
update prior beliefs when the model is potentially misspecified, and that the appearance
of a non-trivial learning rate is a necessary by-product. A different connection between
robustness and learning rate η < 1 was made recently in Miller and Dunson (2019).
More details about model misspecification and generalized Bayes are given in Section 2.

Grünwald and Van Ommen’s claim is that, for a sufficiently small learning rate η,
certain model misspecification biases can be repaired. Of course, the threshold defining
“sufficiently small” cannot be known in practice, so some data-driven choices are re-
quired. Grünwald (2012, 2018), Grünwald and van Ommen (2017), and de Heide et al.
(2020) developed a so-called SafeBayes algorithm to choose the learning rate η, based on
minimizing a sequential risk measure. A number of other learning rate selection methods
have been proposed recently, including the two distinct information matching strategies
in Holmes and Walker (2017) and Lyddon et al. (2019), and the bootstrap-motivated
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calibration method of Syring and Martin (2019). Since the role played by the learning
rate is relatively unfamiliar and since the various methods differ significantly in terms
of their motivations and implementations, it would be beneficial to see a head-to-head
comparison in terms of some standard metrics, for example, the validity and efficiency
of the corresponding generalized Bayes credible regions. This paper does just that.

The remainder of this paper is organized as follows. In Section 2, we discuss the
behavior of Bayesian posterior distribution under a misspecified model and define and
review the literature on generalized Bayes posteriors. For the latter, the choice of learn-
ing rate is essential, and we provide details for four recently proposed learning rate
selection methods in Section 3. Then, in Section 4, we show a simple illustrative exam-
ple to give some intuition about how the different methods perform and, in particular,
this suggests that the methods which are not designed specifically to calibrate the
credible region’s coverage probability may not be able to achieve the nominal level in
general. In particular, while SafeBayes has been shown to repair inconsistencies, the
improved performance is with respect to what Grünwald and van Ommen (2017) call
“KL-associated prediction tasks,” e.g., achieving small mean-square error in regression,
which, of course, provides no guarantees of similarly good performance with respect to
inference-related tasks, e.g., credible regions for model parameters achieving the nomi-
nal frequentist coverage. To investigate this further, simulation results are presented in
Sections 5 and 6 for linear and binary regression models, respectively, and the take-away
message is that, while all the learning rate selection methods considered here perform
similarly in terms of parameter estimation, when it comes to inference-related tasks,
only the inference-focused method of Syring and Martin (2019) can reliably achieve
the advertised coverage probability across different sample sizes and misspecification
degrees. Some concluding remarks are given in Section 7.

2 Background

2.1 Model misspecification

Suppose we have data Dn which, for simplicity, we assume consists of independent
and identically distributed observations: either response variables Yi only or predictor
and response variables pairs (Xi, Yi), i = 1, . . . , n. Then we posit a statistical model
P = {Pθ : θ ∈ Θ}, a collection of probability measures on the sample space, indexed by
a parameter θ taking values in the parameter space Θ. From this model and the observed
Dn, we obtain a likelihood function Ln. The likelihood summarizes the information in
the data relative to the posited model, which can be combined with prior information
encoded in a distribution Π for θ on Θ via Bayes’s formula:

Πn(dθ) ∝ Ln(θ)Π(dθ), θ ∈ Θ.

In the Bayesian paradigm, inferences about θ are drawn based on the posterior distri-
bution Πn, e.g., degrees of belief about the truthfulness of an assertion “θ ∈ A,” for
A ⊂ Θ, are summarized by the posterior probability Πn(A).

Let P � denote the true distribution of Y1 or of (X1, Y1). If the model is correctly
specified, then there exists a θ� ∈ Θ such that P � = Pθ� . In that case, under suitable
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regularity conditions, inference based on the posterior distribution will be valid, at least
asymptotically. That is, Πn will concentrate its mass around θ� as n → ∞ and, moreover,
the Bernstein–von Mises theorem (e.g., van der Vaart, 2000, Chapter 10) states that Πn

is approximately a normal distribution, centered at the maximum likelihood estimator
θ̂n, with covariance matrix proportional to the inverse of the Fisher information matrix
at θ�. This implies, among other things, that credible regions derived from Πn closely
resemble those asymptotic confidence regions based on likelihood theory. Therefore,
asymptotically, the Bayesian posterior credible regions will have frequentist coverage
probability close to the advertised level.

If the model is incorrectly specified, in the sense that P � 	∈ P, then there are several
challenges. First, there is no “true” θ�, which creates some challenges in interpretation.
Indeed, the maximum likelihood estimator, Bayes posterior, or any other model-based
procedure will identify the Kullback–Leibler projection of P � onto the model, i.e.,

θ† = argmin
θ

K(P �, Pθ),

where K(P �, Pθ) =
∫
log(dP �/dPθ) dP

� is the Kullback–Leibler divergence of Pθ from
P �. In general, θ† does not have a real-world interpretation but, in some cases, certain
features of P � can be identified based on a misspecified model. For example, if P is an
exponential family, then the mean function of the exponential family model, evaluated at
θ†, equals the mean of P � (Bunke and Milhaud, 1998, Example 2). Another similar case
is considered in Section 5. The second challenge is that, even in the case where θ† has a
(limited) real-world interpretation, misspecification can still negatively impact posterior
inferences. Kleijn and van der Vaart (2012) established a Bernstein–von Mises theorem
under model misspecification which states that, under certain regularity conditions, the
posterior Πn will be approximately normal, with mean equal to the maximum likelihood
(or M-) estimator θ̂ and covariance matrix V −1

θ† , where

Vθ† =

∫ (∂2 log pθ
∂θ∂θ�

∣∣∣
θ=θ†

)
dP �,

and pθ is the density function corresponding to Pθ. The problem, of course, is that V −1
θ†

is not the asymptotic covariance matrix of θ̂n; the latter, as shown by Huber (1967)
and van der Vaart (2000), has the famous sandwich matrix V −1

θ† Λθ†V −1
θ† , where

Λθ† =

∫ (∂ log pθ
∂θ

∣∣∣
θ=θ†

)(∂ log pθ
∂θ

∣∣∣
θ=θ†

)�
dP �.

The implication of this covariance mismatch is that, even if the quantity of interest
can be identified under the misspecified model, the frequentist coverage probability of
the Bayes posterior credible sets could be arbitrarily far from the advertised level. The
question is: can something be done to correct this problematic behavior?

2.2 Generalized Bayes

Modifying the usual Bayesian update with a learning rate η as in (1.1) is a simple change,
but it has some unexpected consequences. In particular, Walker and Hjort (2001) showed
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that, for a correctly specified model, consistency of the generalized Bayes posterior Π
(η)
n

in (1.1) could be established for any η < 1, with only local conditions on the prior—as
opposed to the local and global conditions required for consistency with η = 1 (e.g.,
Ghosal et al., 1999; Barron et al., 1999). The intuition given by Walker et al. (2005)
is that inconsistencies result from the posterior over-fitting or tracking the data too
closely, and the fractional power discounts the data slightly to prevent this over-fitting.
The Walker–Hjort result has been extended to cover posterior concentration rates, where
the removal of the global prior conditions—usually formulated in terms of metric entropy
(cf. Ghosal et al., 2000; Ghosal and van der Vaart, 2017)—leads to simpler proofs and
generally (at least slightly) faster rates. See Zhang (2006) for one of the first papers
exploring these ideas, and Bhattacharya et al. (2019) and Grünwald and Mehta (2020)
for more recent contributions. The fractional power has also been employed recently
in work on high-dimensional problems using an empirical or data-driven prior (e.g.,
Martin and Walker, 2019; Martin et al., 2017; Martin and Tang, 2020) where, again,
the fractional power is motivated by the desire to prevent over-fitting; see, also, Martin
(2017) and Martin and Ning (2020) for some potential benefits of η < 1 to uncertainty
quantification.

When the model is misspecified, however, the learning rate is less about convenience
and more about necessity. Bissiri et al. (2016) showed that the generalized Bayes up-
date (1.1) is fundamental from a decision-theoretic point of view. Moreover, they argue
that the learning rate η naturally emerges since, roughly, the parameter θ† being es-
timated is defined by minimizing the expectation of a loss function θ �→ log pθ, and
since that minimization problem is invariant to scalar multiples of the loss, the learn-
ing rate should appear in the posterior (1.1). In fact, the loss function interpretation
makes their result much more general. In many cases, it is more natural to formulate
the inference problem with a loss function rather than a statistical model. These are
often referred to as Gibbs posterior distributions ; see Syring and Martin (2017, 2019,
2020b,a), Bhattacharya and Martin (2022), Wang and Martin (2020), and Section 6
below.

Beyond recognizing the importance of the learning rate parameter, an actual value
for η needs to be set in practical applications. Several recent papers—including Grünwald
and van Ommen (2017), Holmes and Walker (2017), Lyddon et al. (2019), and Syring
and Martin (2019)—have proposed data-driven choices for the learning rate, with dif-
ferent motivations. Section 3 describes these methods. The remainder of the paper is
focused on a comparison of these different learning rate methods.

3 Learning rate selection methods

3.1 Grünwald’s SafeBayes

Grünwald and van Ommen (2017) observe that, when the model is non-convex and mis-
specified, there is a chance for hyper-compression. This is the term they use to describe
the seemingly paradoxical result that the Bayesian predictive distribution can be closer,
in a Kullback–Leibler sense, to the true P � than the within-model Kullback–Leibler
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minimizer Pθ† . What makes this possible is non-convexity: the predictive distribution is
an average of in-model distributions Pθ which, without convexity, could end up outside
the model and potentially closer to P � than is Pθ† . Besides being counter-intuitive,
hyper-compression also reveals a practical problem, namely, inconsistency—that the
posterior distribution is not concentrating its mass near θ† as expected. To overcome
this, Grünwald and van Ommen (2017) suggest to work with a new (hypothetical)
model, with densities

p
(η)
θ (x, y) = p�(x, y)

{
pθ(y | x)/pθ†(y | x)

}η
,

indexed by a parameter η > 0. We say this model is “hypothetical” because it depends
on p� and θ†, two ingredients that are not available to the data analyst. However, if η

is sufficiently small, in the sense that
∫
p
(η)
θ (x, y) dx dy is strictly less than 1, then this

indeed defines a genuine statistical model, with two interesting properties:

• it is not misspecified, i.e., the Kullback–Leibler minimizer is θ† and p
(η)

θ† = p�;

• and the Bayesian posterior based on this new model is precisely the generalized

Bayes posterior Π
(η)
n , with learning rate η, as in (1.1).

Since this new model is not misspecified, hyper-compression and inconsistency of the
η-generalized Bayes posterior can be avoided. So: how to choose η sufficiently small?

Grünwald and van Ommen (2017), building on work in, e.g., Grünwald (2012), argue
that the so-called SafeBayes algorithm will select a learning rate η that is sufficiently
small in the sense above. Define the cumulative expected log-loss under the η-generalized
Bayes posterior distribution, as a function of η:

η �→
n∑

i=1

∫
− log pθ(Yi | Xi)Π

(η)
i−1(dθ). (3.1)

The SafeBayes algorithm returns the minimizer, η̂, of this function over the range
η ∈ [0, 1]. Grünwald (2012) presents an argument for why the SafeBayes choice of η̂
works in the sense of being sufficiently small as in the discussion above. Note that it is
SafeBayes’s focus on minimizing the cumulative log-loss that makes it especially suited
for overcoming misspecification with respect to “KL-associated prediction tasks.”

What we have described here is one of two versions of the SafeBayes algorithm
presented in Grünwald and van Ommen (2017), namely, the “R-SafeBayes” version. In
our examples below, we found that the “R” version outperformed the other—namely,
the “I-SafeBayes” version—so here we only discuss the former.

3.2 Holmes and Walker (2017)

Following Bissiri et al. (2016), the Bayesian and generalized Bayesian frameworks can be
considered simply as rules for using data to update prior beliefs to posterior beliefs. As
such, it makes sense to consider how much information has been gained from the update,
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by comparing the prior to the posterior. Of course, this information gain depends on
both the updating rule and on the data, and Holmes and Walker (2017) proposed a
procedure for selecting the learning rate η based on matching the expected information
gain between Bayes and generalized Bayes updates.

More formally, if Iη(x, y) denotes the information gain in the generalized Bayes
update from prior to posterior based on learning rate η and data values (x, y), then
Holmes and Walker (2017) propose to set η such that∫

Iη(x, y)P
�(dx, dy) =

∫
I1(x, y)Pθ†(dx, dy), (3.2)

where I1(·) denotes the information gain in the standard Bayesian update. The specific
choice of information measure they recommend is the Fisher divergence

Iη(x, y) =

∫
{∇ log π(η)

x,y(θ)−∇ log π(θ)}2 π(θ) dθ,

where π
(η)
x,y denotes the generalized Bayes posterior based on data (x, y) and learning

rate η, and∇ is the gradient operator. Then it is straightforward to check that Iη(x, y) =
η2I1(x, y) and, therefore, by (3.2), an “oracle” learning rate is given by

η� =
{∫

I1(x, y)Pθ†(dx, dy)∫
I1(x, y)P �(dx, dy)

}1/2

.

Of course, both P � and Pθ† are unknown, so η� cannot be evaluated, but the expecta-
tions can be estimated with the actual data {(Xi, Yi) : i = 1, . . . , n}. That is,

η̂ =
{∫

I1(x, y)Pθ̂n
(dx, dy)∫

I1(x, y)Pn(dx, dy)

}1/2

,

where θ̂n is the maximum likelihood estimator of θ under the model—which is an
estimate of θ†—and Pn is the empirical distribution of the data.

3.3 Lyddon et al. (2019)

The learning rate selection strategy presented in Lyddon et al. (2019) is motivated
by the weighted likelihood bootstrap approach of Newton and Raftery (1994), which
was shown to generate bootstrap samples that have the same asymptotic distribution
as Bayesian posterior distribution under a correctly specified model. For the case of
a misspecified model, Lyddon et al. (2019) proposed a modified weighted likelihood
bootstrap approach which replaces the ordinary bootstrap with the Bayesian bootstrap,
and establish its asymptotic limiting distribution. Then following a strategy similar to
that in Holmes and Walker (2017) described above, they propose to choose η in order
to match the limiting η-generalized Bayes posterior to that of this modified likelihood
bootstrap. They then show that, using the notation defined at the end of Section 2.1,
an “oracle” learning rate is

η� =
tr(Vθ†Λ−1

θ† Vθ†)

tr(Vθ†)
.
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Again, since θ† and P � are unknown, this oracle value cannot be evaluated. However, a
data-driven choice η̂ can be obtained by replacing θ† the maximum likelihood estimator
and the expectations with respect to P � in Vθ and Λθ, respectively, with expectations
with respect to the empirical distribution Pn.

3.4 Syring and Martin (2019)

The three previous subsections describe principled learning rate selection strategies,
but none of those are tailored so that the generalized posterior distribution achieves
any specific and desirable frequentist properties. Since the learning rate’s effect on the
posterior is largely to control the spread, Syring and Martin (2019) proposed to tune
the learning rate such that posterior credible sets approximately achieve the nominal
frequentist coverage probability.

The coverage probability function is given by

cα(η | P �) = P �{C(η)
α (Dn) � θ†},

where C
(η)
α is the η-generalized Bayes 100(1− α)% credible region for θ, e.g., a highest

posterior density region, θ† is the Kullback–Leibler minimizer in the model, treated as
a functional of P �, and Dn = {(Xi, Yi) : i = 1, . . . , n} is the iid data set from P �. Then
the goal is to find η such that cα(η | P �) = 1 − α. Of course, lots of the quantities
involved in this equation are unknown, but they can be estimated. In particular, if P �

is replaced by the empirical distribution Pn, then the new equation is

cα(η | Pn) := Pn{C(η)
α (Dn) � θ̂n} = 1− α,

where θ̂n is the maximum likelihood estimator based on the observed data, i.e., the “θ†-
functional” applied to Pn. Even this alternative coverage probability function cannot be
evaluated, since it requires enumerating all nn possible with-replacement samples from
the observed data, but a bootstrap approximation is possible. That is, for B bootstrap
samples D̃n

1 , . . . , D̃
n
B , calculate

ĉα(η | Pn) =
1

B

B∑
b=1

1{C(η)
α (D̃n

b ) � θ̂n}.

To solve the equation, ĉα(η | Pn) = 1 − α, Syring and Martin (2019) recommend a
stochastic approximation scheme that defines a learning rate sequence (ηt) as

ηt+1 = ηt + kt{ĉα(η | Pn)− (1− α)}, t ≥ 1,

where kt is a sequence such that
∑

t kt = ∞ and
∑

t k
2
t < ∞. When the ηt sequence

effectively converges, the limit is the suggested learning rate η̂. This is what Syring
and Martin (2019) refer to as the generalized posterior calibration (GPC) algorithm.
Like SafeBayes, it is relatively expensive computationally—these algorithms require
posterior computations for multiple learning rates and data sets—but the benefit is
having a posterior distribution with meaningful spread, even in finite samples.
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4 Learning rates in a toy example

Before we consider the effect of different learning rate selection methods in some non-
trivial real-world problems, it helps to consider a simple example, one where some of
the calculations can be done by hand, to develop some intuition about what to expect.

Suppose that the posited model for iid data Y n = (Y1, . . . , Yn) is Pθ = N(θ, σ2),
with σ > 0 fixed, but that the true distribution is P � = N(θ�, σ�2), where σ� > 0 is
potentially different from σ. With a conjugate normal prior, θ ∼ N(0, σ2/σ2

0) where
σ2
0 = 10, the η-generalized Bayes posterior density is Πn = N(mn, vn), with

mn =
nη

nη + σ2
0

ȳn and vn =
σ2

nη + σ2
0

.

It is easy to confirm that the Kullback–Leibler minimizer satisfies θ† = θ�, but the
misspecified variance can still cause problems, as we now demonstrate.

It is intuitively clear that the generalized Bayes framework could completely resolve
the model misspecification if the learning rate was chosen as η� = (σ/σ�)2. More for-
mally, de Heide et al. (2020) show that, if the learning rate is no larger than this ratio,
the generalized Bayes posterior will enjoy fast root-n rate convergence properties, while
Syring and Martin (2019) argue that, in this and other similar problems, taking the
learning rate exactly equal to η� is necessary in order to achieve exact coverage of cred-
ible sets. In any case, of course, one cannot make this learning rate choice in practice
because it depends on the unknown value of true variance. But this intuition tells us
what the different learning rate selection methods’ target should be.

To evaluate the performance of the different learning rate methods, we simulate 1000
data sets, for each of several different sample sizes n and values of η� = (σ/σ�)2, and
compare the average estimated learning rate against η�; see Figure 1. If the estimated
η is close to the diagonal line η = η�, then the generalized Bayesian credible sets have
coverage probability near the nominal level. To confirm this, see Figure 2. When the
degree of misspecification is relatively mild, i.e., when η� ≈ 1, all the methods perform
well. However, as the misspecification degree increases, or η� decreases, we find that
SafeBayes and the Holmes and Walker method have decreasing coverage probability,
quickly falling below any reasonable tolerance. On the other hand, both the Lyddon
et al. and Syring and Martin methods are able to achieve the target 95% coverage
probability over the entire range of settings.

5 Learning rates in linear regression

5.1 Model setup

Consider a linear regression model of the form

yi = x�
i β + σεi, i = 1, . . . , n, (5.1)

where the pairs (x1, y1), . . . , (xn, yn), taking values in R
p ×R, are independent, β ∈ R

p

is an unknown vector of coefficients, σ is an unknown scale parameter, and ε1, . . . , εn
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Figure 1: Average learning rate η, across 1000 replications, versus the optimal η� =
(σ/σ�)2, the closer to the diagonal line the better. True (black), GPC (red), R-SafeBayes
(blue), Holmes and Walker (green), Lyddon et al. (orange).

are random error terms. As is most common, here we will consider a model that assumes
the errors ε1, . . . , εn are iid N(0, 1), independent of x1, . . . , xn. In the experiments that
follow, the p-dimensional covariates, xi, are taken to be iid from a multivariate normal
distribution with mean zero, unit variance, and a first-order autocorrelation structure,
i.e., E(xijxik) = ρ|j−k|, with correlation ρ = 0.2. For most of this section, we take p = 4
and set the true coefficient vector to be β = (1, 1, 2,−1)�.

If it happens that the true distribution is different from this posited model, then,
in general, we can expect an ordinary Bayes posterior to suffer from misspecification
bias. The goal here is to investigate how the different learning rate methods can help
the generalized Bayes posterior to correct for this misspecification bias.

The two key assumptions behind the textbook linear regression model are that the
errors are (a) independent of covariates and (b) normally distributed. Here we present
results for two types of misspecification, namely, Dependent Errors and Non-normal
Errors. The specific form and degree of these misspecifications will be described in the
following subsections. For the comparison, the metrics we consider are
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Figure 2: Average coverage probability of the nominal 95% generalized Bayes credible
intervals, across 1000 replications. GPC (red), SafeBayes (blue), Holmes and Walker
(green), Lyddon et al. (orange).

• mean value of the learning rate estimates, η̂;

• coverage probability of the η̂-generalized Bayes 95% highest posterior density cred-
ible sets for the full β vector;

• mean square error of the η̂-generalized Bayes posterior mean of β;

• the average of the marginal η̂-generalized Bayes posterior variances for each coor-
dinate of β.

We are specifically interested in the learning rate and its effect on the coverage proba-
bility of the generalized posterior credible sets, so the first two metrics are clear. The
mean square error of the generalized posterior mean acts like an overall measure of bias,
i.e., how far does the center of the posterior tend to be from the true parameter values.
In the examples that follow, we find that the mean square error does not vary much
relative to the learning rate selection method, which confirms our intuition that, at least
within a suitable range of η values, the choice of learning rate really only impacts the
posterior spread; as we show in Section 5.4, this remains true even as the dimension



116 A Comparison of Learning Rate Selection Methods

of the covariate increases. The fourth metric is an overall measure of the spread of the
generalized Bayes posterior, and we expect that those learning rate selection methods
whose credible regions tend to under-cover will have smaller total variance.

Let Gamma(a, b) denote a gamma distribution with shape parameter a > 0 and rate
parameter b > 0; the density function is

y �→ ya−1e−by, y > 0.

For a Bayesian analysis, we proceed by introducing a conjugate normal–inverse gamma
prior for (β, σ2), where the conditional prior for β, given σ2, is Np(0, σ

2Ip) and the
marginal prior for σ−2 is Gamma(a = 1, b = 0.025). Then the η-generalized posterior is

(σ−2 | y,X, η) ∼ Gamma
(
a = a0 +

1
2ηn, b = b0 +

η
2 (y

�y −m�
nX

�y)
)

(β | σ2, y,X, η) ∼ Np(mn, σ
2Vn),

where Vn = (ηX�X + I)−1 and mn = ηVnX
�y.

The method of Holmes and Walker and Lyddon et al. are much less demanding in
terms of computation time compared to GPC and SafeBayes, so here we only compare
the computational time of the latter two and only in the highest degree of misspecifi-
cation cases. For the SafeBayes algorithm, we follow the recommendation of Grünwald
and van Ommen (2017) and set the grid points for η as {1, 2−1/3, 2−2/3, . . . , 2−8} and
calculate the total computation time. For the GPC algorithm, we calculate the total
computation time that the credible regions of the generalized posterior distribution had
empirical coverage probability near the nominal level, based on 200 bootstrap samples.
Both GPC and SafeBayes take less than 7 seconds per replicate, even for n = 400,
though SafeBayes is faster than GPC in this case. This is because a closed-form ex-
pression for the right-hand side of (3.1) is available in this example; GPC, on the other
hand, can use a similar closed-form expression, but it still has to cycle through each
bootstrap sample. The computation time comparisons change dramatically, however,
once we move beyond the simple conjugate linear regression model; see Section 6.

5.2 Misspecified error distribution

Dependent errors

Here we deviate from the textbook linear model assumptions by allowing the variance
of the error εi to depend in a certain way on the covariate vector xi, i = 1, . . . , n. In
particular, let ξ̂0.05 and ξ̂0.95 denote the sample 5th and 95th percentiles of x11, . . . , xn1.
Then define the case-specific standard deviation as

σi =

⎧⎪⎨
⎪⎩
ssmall if xi1 < ξ̂0.05

smod if ξ̂0.05 ≤ xi1 ≤ ξ̂0.95

1 if xi1 > ξ̂0.95,

where the small and moderate values, ssmall and smod, control the degree of the depar-
tures from constant variance. We consider three different degrees of misspecification.
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Degree 1. ssmall = 0.25 and smod = 0.50;

Degree 2. ssmall = 0.05 and smod = 0.25;

Degree 3. ssmall = 0.01 and smod = 0.10.

A summary of the different learning rate selection procedures, across the different
misspecification degrees and sample sizes n ∈ {100, 200, 400}, is presented in Table 1,
based on 1000 data sets for each combination. In Degree 1, where the misspecification is
relatively mild, we see that all four learning rate selections perform well and similarly in
terms of both the learning rates chosen—all near 1—and in the coverage probabilities.
As expected, however, as misspecification gets more severe, in Degrees 2 and 3, the
more disparity we see between the selected learning rates and, in turn, in the coverage
probabilities. Only GPC is able to achieve the nominal coverage probability in the more
severe misspecification settings, while the performance of other methods can be quite
poor, especially under Degree 3 with small n. The mean square errors are more or less
the same for the methods within each sample size–degree combination; and the fact
that these values are small indicates the posterior is generally centered around the true
β values. As for the posterior spread, there is not much difference between the results in
the Degree 1 case with only mild misspecification. However, in Degrees 2 and 3, where
the misspecification is more severe, we see greater difference in the posterior variance.
As expected, those methods whose posterior variance tends to be small are those who
tend to have credible sets that under-cover, in many cases severely.

Non-normal errors

Next, we consider departures from the specified model in terms of the distribution of the
error terms. It turns out that the performance of the learning rate selection methods was
less sensitive to departures from normality compared to departures from the constant-
error-variance assumption. Here we present the results for only one kind of departure
from normality, namely, with heavy-tailed errors. In particular, consider errors ε1, . . . , εn
iid from a Student-t distribution with degrees of freedom ν. As before, we consider three
degrees of misspecification, each sufficiently light-tailed that the variance exists.

Degree 1. ν = 5;

Degree 2. ν = 4;

Degree 3. ν = 3.

Table 2 summarizes the results just like in the previous subsection. Here, however,
the differences in performance across different learning rate selection methods, sample
sizes, and misspecification degrees is much smaller. Overall the methods return similar
learning rate estimates and hit the target coverage probability on the mark. The method
of Lyddon et al. tends to select a learning rate that is too large, leading to under-
coverage, but its performance tends to improve as the sample size increases.
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Degree n Method η̂ Coverage MSE Variance
1 100 GPC 0.95 0.95 0.05 0.012

SafeBayes 0.92 0.94 0.05 0.014
Holmes and Walker 1.00 0.93 0.05 0.011

Lyddon et al. 1.18 0.89 0.05 0.010
200 GPC 0.95 0.93 0.02 0.006

SafeBayes 0.92 0.93 0.02 0.007
Holmes and Walker 0.99 0.92 0.02 0.006

Lyddon et al. 1.06 0.90 0.02 0.005
400 GPC 0.94 0.95 0.01 0.003

SafeBayes 0.93 0.94 0.01 0.003
Holmes and Walker 0.99 0.94 0.01 0.003

Lyddon et al. 0.99 0.94 0.01 0.003
2 100 GPC 0.79 0.95 0.06 0.015

SafeBayes 0.90 0.90 0.06 0.014
Holmes and Walker 0.98 0.89 0.06 0.012

Lyddon et al. 1.33 0.76 0.06 0.009
200 GPC 0.75 0.95 0.03 0.008

SafeBayes 0.92 0.90 0.03 0.006
Holmes and Walker 0.97 0.89 0.03 0.006

Lyddon et al. 1.11 0.84 0.03 0.005
400 GPC 0.74 0.94 0.01 0.004

SafeBayes 0.93 0.89 0.01 0.003
Holmes and Walker 0.96 0.88 0.01 0.003

Lyddon et al. 0.97 0.88 0.01 0.003
3 100 GPC 0.54 0.98 0.07 0.023

SafeBayes 0.75 0.87 0.07 0.018
Holmes and Walker 0.94 0.80 0.07 0.012

Lyddon et al. 2.45 0.38 0.07 0.005
200 GPC 0.53 0.95 0.04 0.011

SafeBayes 0.76 0.86 0.04 0.008
Holmes and Walker 0.91 0.79 0.04 0.006

Lyddon et al. 1.74 0.53 0.04 0.003
400 GPC 0.53 0.95 0.02 0.005

SafeBayes 0.78 0.84 0.02 0.004
Holmes and Walker 0.89 0.81 0.02 0.003

Lyddon et al. 1.25 0.69 0.02 0.002

Table 1: Comparison of average learning rate estimates (η̂), estimated coverage proba-
bilities (Coverage), mean square error (MSE), and total posterior variance (Variance)
across different sample sizes and misspecification degrees in the Dependent Errors ex-
ample.
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Degree n Method η̂ Coverage MSE Variance
1 100 GPC 0.98 0.95 0.07 0.019

SafeBayes 0.90 0.95 0.07 0.023
Holmes and Walker 1.00 0.94 0.07 0.019

Lyddon et al. 1.28 0.87 0.07 0.014
200 GPC 0.99 0.96 0.04 0.009

SafeBayes 0.90 0.96 0.04 0.011
Holmes and Walker 0.98 0.96 0.04 0.009

Lyddon et al. 1.15 0.92 0.04 0.008
400 GPC 1.00 0.95 0.02 0.005

SafeBayes 0.92 0.95 0.02 0.005
Holmes and Walker 0.98 0.95 0.02 0.005

Lyddon et al. 1.07 0.94 0.02 0.004
2 100 GPC 0.97 0.96 0.08 0.024

SafeBayes 0.89 0.96 0.08 0.028
Holmes and Walker 0.99 0.96 0.08 0.023

Lyddon et al. 1.38 0.87 0.08 0.016
200 GPC 0.98 0.96 0.04 0.011

SafeBayes 0.91 0.96 0.04 0.013
Holmes and Walker 0.97 0.96 0.04 0.011

Lyddon et al. 1.20 0.91 0.04 0.009
400 GPC 0.99 0.96 0.02 0.006

SafeBayes 0.92 0.96 0.02 0.007
Holmes and Walker 0.96 0.96 0.02 0.006

Lyddon et al. 1.12 0.92 0.02 0.005
3 100 GPC 0.92 0.97 0.13 0.044

SafeBayes 0.87 0.97 0.13 0.047
Holmes and Walker 0.93 0.96 0.13 0.041

Lyddon et al. 1.69 0.81 0.13 0.020
200 GPC 0.96 0.97 0.06 0.018

SafeBayes 0.90 0.96 0.06 0.021
Holmes and Walker 0.92 0.96 0.06 0.020

Lyddon et al. 1.37 0.86 0.06 0.011
400 GPC 0.97 0.96 0.03 0.009

SafeBayes 0.91 0.96 0.03 0.010
Holmes and Walker 0.86 0.96 0.03 0.012

Lyddon et al. 1.26 0.89 0.03 0.006

Table 2: Comparison of average learning rate estimates (η̂), estimated coverage proba-
bilities (Coverage), mean square error (MSE), and total posterior variance (Variance)
across different sample sizes and misspecification degrees in the Non-normal Errors
example.
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Other experiments

Finally, we considered other types of misspecification in addition to those presented
above. These results are not presented here because all four learning rate selection
methods performed similarly and displaying a table of similar numbers is not a good use
of space. But it is worth mentioning in what cases these methods perform comparably,
and below is a brief summary of our findings.

• In cases where the heteroscedasticity is less extreme than in Section 5.2 above,
in particular, with errors having non-constant variance but independent of x, we
found that all four learning rate selection methods performed well. That is, the
learning rate estimates were all similar and the credible regions all had coverage
probability near the nominal 95% level.

• The example in Section 5.2 considered heavy-tailed error distributions. We also
considered cases where the error distribution was asymmetric, e.g., skew-normal
(Pérez-Rodŕıguez et al., 2018). Apparently, misspecification in the shape of the
error distribution has little effect because, as above, the learning rate selection
methods all performed well in these cases.

5.3 Real data analysis

To compare different learning rate selection methods in a real data set, we can do
resampling from the observed data. Suppose that we have data Dn, a posited statistical
model Pθ, and the maximum likelihood estimate is θ̂. For resampling, let {Dn

r }Rr=1 be
the R resamples, each of size n, generated from Dn. That is, each Dn

r is a random
sample of size n, with replacement, from the original data Dn. We then estimate the
learning rate using different learning rate selection methods on the resampled data,
and investigate whether the credible regions for the various η̂-generalized posteriors can
cover θ̂. In particular, the coverage probability is estimated by

1

R

R∑
i=1

1{Cη̂,α(D
n
r ) � θ̂},

where Cη̂,α(D
n
r ) is the 100(1−α)% credible region for θ from the η̂-generalized posterior

based on resampled data Dn
r , r = 1, . . . , R.

Here we consider the data of the number of plant species along with several geo-
graphic variables, the gala data in R faraway package (Faraway, 2016). Figure 3 demon-
strates that a textbook normal linear model is severely misspecified in the sense that
the errors are clearly heteroscedastic, i.e., have non-constant variance. Among the four
learning rate selection methods, the Lyddon et al. method selects a learning rate that
is far too large, leading to poor coverage, so here we only compare the performance of
the other three learning rate selection methods. Table 3 presents the estimated coverage
probabilities for the three learning rate selection methods, based on R = 1000 resam-
ples. Clearly, for a severely misspecified model like this, only GPC is able to select a
small enough learning rate to achieve the desired coverage.
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Figure 3: Plot of the residuals versus fitted values based on the real data example in
Section 5.3, based on a textbook normal linear regression model.

Method η̂ Coverage MSE Variance
GPC 0.054 0.963 2.231 11.889

SafeBayes 0.154 0.916 2.363 5.335
Holmes and Walker 1.003 0.477 2.556 0.172

Table 3: Comparison of average learning rate estimates (η̂), estimated coverage proba-
bilities (Coverage), mean square error (MSE), and total posterior variance (Variance)
in the gala data example.

5.4 Effect of covariate dimension

Previous experiments focused on how the degree of misspecification affects the behavior
of generalized posterior distributions. Instead of varying the misspecification degree,
it would be interesting to see how different learning rate selection methods perform
across different covariate dimensions p ∈ {4, 8, 16, 32} when the sample size is fixed
and relatively small, n = 100. We generate the covariates xi in the same way as in
Section 5.2, and extended the low-dimensional linear regression model examples to the
more general case. The true coefficient vector recycles the four values (1, 1, 2,−1)� used
in the previous simulations for each p, which are multiples of 4. To demonstrate the
effect of covariate dimension, here we consider a relatively mild misspecification case,
degree 2 misspecification in the dependent errors example.

The results are summarized in Table 4. First, notice that the learning rate selection
procedure does not have much effect on the posterior mean’s MSE, which reiterates
our previous claim that the learning rate mainly controls the posterior spread, and has
little effect on the posterior center. Second, we can see that GPC can still achieve the
100(1 − α)% coverage when the dimension is pushed to p = 16 at small sample size
n = 100. On the other hand, SafeBayes and Lyddon et al. tend to choose too small
and too large of learning rates, leading to over- and under-coverage, respectively, as the
dimension increases. When the dimension is relatively large, all but Lyddon et al. tend
to be quite conservative. This is perhaps not surprising, since adjustments being made
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p Method η̂ Coverage MSE Variance
4 GPC 0.79 0.95 0.06 0.015

SafeBayes 0.90 0.90 0.06 0.014
Holmes and Walker 0.98 0.89 0.06 0.012

Lyddon et al. 1.33 0.76 0.06 0.009
8 GPC 0.94 0.95 0.10 0.013

SafeBayes 0.80 0.95 0.11 0.019
Holmes and Walker 1.00 0.93 0.10 0.012

Lyddon et al. 1.67 0.60 0.10 0.007
16 GPC 0.98 0.96 0.22 0.015

SafeBayes 0.57 1.00 0.23 0.037
Holmes and Walker 1.01 0.94 0.22 0.014

Lyddon et al. 2.20 0.24 0.22 0.006
32 GPC 1.01 0.99 0.52 0.019

SafeBayes 0.38 1.00 0.63 0.103
Holmes and Walker 1.01 1.00 0.52 0.019

Lyddon et al. 3.46 0.00 0.51 0.004

Table 4: Comparison of average learning rate estimates (η̂), estimated coverage proba-
bilities (Coverage), mean square error (MSE), and total posterior variance (Variance)
across different dimensions (p) in the Dependent Errors misspecified degree-2 example
with n = 100.

to shrink/stretch the credible regions are overly simple and do not account for any
structure (e.g., sparsity) in the higher-dimensional parameters.

6 Learning rates in logistic regression

6.1 Model setup

An important problem in medical statistics is estimation of the so-called minimum clin-
ically important difference (MCID) that assesses the practical as opposed to statistical
significance of a treatment. In words, the MCID is the threshold on the diagnostic
measure scale such that improvements beyond that level are associated with patients
feeling better after the treatment; see, e.g., Hedayat et al. (2015) and the references
therein. To set the scene, let X ∈ R denote the patient’s diagnostic measure, e.g., the
pre-treatment minus post-treatment difference in blood pressure, and let Y ∈ {−1,+1}
denote the patient-reported indicator of whether they felt the treatment was effective,
with “y = +1” indicating effective. The quantity of interest, θ, the MCID, is the cutoff
on the X scale such that the indicator 1{X > θ} is most highly associated with Y .
More precisely, the MCID is defined as

θ = argmin
ϑ

P{Y 	= sign(X − ϑ)},

where sign(0) = 1. Clearly, θ depends on the unknown joint distribution P of (X,Y ).
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Towards inference on the MCID, it is natural to introduce a statistical model for P .
It would be difficult to develop a model for which θ is directly a model parameter, but
one idea would be to use a logistic regression model with Y as the binary response and
X as a continuous predictor. That is, the logistic regression model states that

(Y | X = x) ∼ Rad
(
F (β0 + β1x)

)
,

where Rad(p) denotes a Rademacher distribution, i.e., a binary distribution on {−1,+1},
with probability mass p assigned to the value +1, and F is a logistic distribution function
with F (u) = (1+ e−u)−1, for u ∈ R. The logistic regression model is determined by the
unknown parameters (β0, β1). Since the MCID θ also satisfies P (Y = +1 | X = θ) = 1

2 ,
if the above model is assumed, then

θ = −β0/β1.

Given independent observations (X1, Y1), . . . , (Xn, Yn) from this model, a posterior
distribution for (β0, β1), generalized Bayes or otherwise, can be obtained. From this,
one can readily obtain the corresponding posterior distribution of θ via the identity
above.

Of course, this model could easily be misspecified. So it is of interest to investigate
what happens with the generalized Bayes posterior with suitably chosen learning rates
when the logistic link function F is incorrectly specified.

6.2 Results

We fit a misspecified logistic regression model, i.e., where the diagnostic measure X
comes from a normal mixture model with distribution function

F �(x) = 0.7Φ(x | 5, 1) + 0.3Φ(x | μ, 1),

and the patient reported effectiveness indicator is (Y | X = x) ∼ Rad(F �(x)). The
quantity μ controls the degree of misspecification, with μ closer to 5 corresponding to
“less misspecification” relative to the logistic link function F above; see Figure 4. The
three specific degrees considered are:

Degree 1. μ = 7;

Degree 2. μ = 8;

Degree 3. μ = 9.

For the posited logistic regression model, we follow Robert and Casella (2004, Ex-
ample 7.11) and take a default prior distribution for (β0, β1) to be

π(β0, β1) = b̂−1 exp{β0 − b̂−1eβ0},

which is simply a flat prior for β1 and an exponential prior for eβ0 with scale b̂ =
exp(β̂0 + γ), where β̂0 is the maximum likelihood estimator and γ ≈ 0.5772 is Euler’s
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Figure 4: Distribution function of the three normal mixtures (black) with the logistic
distribution function (red) overlaid.

constant. Other kinds of prior distributions can be considered, but more sophisticated
choices can lead to substantially longer computation times; see below.

The goal is, as in the previous section, to investigate the extent to which the learning
rate selection methods can help the generalized Bayes posterior distribution to overcome
the model misspecification, and Table 5 summarizes the results. There we present the
average learning rate value, the coverage probability of 95% credible intervals for θ,
the average length of those credible intervals, and mean square error, all based on 500
replications, for each pair of μ and sample size n. Here we see that, in the Degree 1
case where misspecification is relatively mild, the methods perform reasonably well in
terms of coverage probability, but things get worse as sample size increases, a symptom
of the model misspecification bias. For the Degree 2–3 cases with even more model
misspecification, all the methods perform quite poorly. Apparently none of the learning
rate selection methods can help the posterior overcome the relatively severe model
misspecification bias in this example.

As mentioned above, there is an alternative default prior that is commonly used in
logistic regression, namely, the Pólya–gamma prior of Polson et al. (2013). The challenge
is that embedding a more sophisticated posterior sampling scheme, which involves the
introduction of latent variables, inside the learning rate selection procedures is very
expensive. Indeed, in our simulations, GPC could be used to tune the learning rate for
a single data set, with n = 100, in about 4 minutes; SafeBayes, however, took about
5 times as long. Given these computational challenges, what we found in our limited
simulation studies is that the Pólya–gamma prior does seem to have slightly better
performance in the simulations. But, the overall message does not change, namely, that
no learning rate selection method can help the generalized Bayes posterior adjust for
moderate to extreme misspecification in the logistic regression example, at least not
when the MCID is the inferential target.
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Degree n Method η̂ Coverage Length MSE
1 100 GPC 0.904 0.938 0.883 0.051

SafeBayes 0.790 0.953 0.987 0.053
Holmes and Walker 0.999 0.927 0.834 0.051

Lyddon et al. 1.003 0.923 0.830 0.051
200 GPC 0.977 0.914 0.575 0.029

SafeBayes 0.913 0.916 0.599 0.029
Holmes and Walker 0.999 0.902 0.568 0.030

Lyddon et al. 1.003 0.923 0.830 0.030
400 GPC 0.910 0.912 0.418 0.015

SafeBayes 0.822 0.926 0.450 0.015
Holmes and Walker 0.999 0.890 0.397 0.015

Lyddon et al. 0.988 0.892 0.401 0.015
2 100 GPC 0.786 0.866 1.148 0.139

SafeBayes 0.890 0.893 1.283 0.138
Holmes and Walker 1.000 0.836 1.071 0.137

Lyddon et al. 0.986 0.838 1.085 0.137
200 GPC 0.970 0.788 0.752 0.083

SafeBayes 0.906 0.816 0.786 0.082
Holmes and Walker 1.001 0.776 0.741 0.082

Lyddon et al. 0.974 0.727 0.742 0.087
400 GPC 0.901 0.622 0.539 0.067

SafeBayes 0.833 0.646 0.574 0.067
Holmes and Walker 0.999 0.564 0.511 0.067

Lyddon et al. 0.969 0.588 0.518 0.067
3 100 GPC 0.955 0.742 1.412 0.345

SafeBayes 0.891 0.750 1.482 0.346
Holmes and Walker 1.001 0.726 1.377 0.344

Lyddon et al. 0.970 0.731 1.385 0.343
200 GPC 0.951 0.532 0.976 0.266

SafeBayes 0.887 0.562 1.024 0.264
Holmes and Walker 1.004 0.502 0.946 0.265

Lyddon et al. 0.955 0.510 0.963 0.261
400 GPC 0.820 0.244 0.693 0.247

SafeBayes 0.893 0.290 0.743 0.248
Holmes and Walker 1.000 0.228 0.657 0.248

Lyddon et al. 0.951 0.236 0.671 0.247

Table 5: Summary of learning rate selection method performance in the misspecified
logistic regression example based on 500 replications.
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6.3 A Gibbs posterior

The generalized Bayes posterior is not able to overcome this apparently rather severe
form of misspecification bias. As an alternative, we can consider a different type of
posterior construction, the so-called Gibbs posterior. The generalized Bayes approach,
which is model-based, proceeds as follows:

1. decide on the functional form that relates the diagnostic measure x to the prob-
ability that a patient reports feeling better (y = +1); this form could be quite
flexible, e.g., with a nonparametric model;

2. choose priors for the parameters of that model;

3. fit that model, possibly with an adjusted learning rate;

4. find the marginal posterior for the MCID, θ, from the posterior of the model
parameters.

The Gibbs posterior framework, on the other hand, constructs a posterior for θ directly,
i.e., without introducing a functional form and without marginalization. This is done
via a useful characterization of θ as the minimizer of a suitable expected loss; see below.
More generally, the Gibbs posterior framework can be very effective when, like the
present MCID application, the quantity of interest is not naturally understood as a
model parameter that shows up in a likelihood function.

Define the loss function �θ(x, y) =
1
2{1 − y sign(x − θ)} and the corresponding risk

(expected loss) R(ϑ) = P�ϑ. As Hedayat et al. (2015), showed, the MCID is the mini-
mizer of R, i.e., θ� = argminθ R(θ). So the goal is to construct an empirical version of
the risk function, and then a sort of posterior distribution that will concentrate around
values that make the empirical risk small. For the empirical risk, let

Rn(θ) =
1

n

n∑
i=1

�θ(Xi, Yi).

Then the Gibbs posterior distribution for θ has a density function defined as

π(η)
n (θ) ∝ e−ηnRn(θ) π(θ),

where η > 0 is, as before, the learning rate. In principle, all the different learning rate
selection methods considered above can be applied to the Gibbs posterior framework to
choose an appropriate value of η. Here, however, the loss function is not differentiable,
which creates a challenge for the methods of Holmes and Walker (2017) and Lyddon
et al. (2019). Therefore, in what follows, we only compare GPC and SafeBayes.

The results in Table 6 are to illustrate the performance of finding the learning rate
using Gibbs posterior with scaling algorithm in Syring and Martin (2019) and Grünwald
(2018). Since the true MCID is almost certain to be in the range of observed X values,
the results here for both GPC and SafeBayes are based on uniform prior on [X(1), X(n)],
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Degree n Method η̂ Coverage Length MSE
1 100 GPC 0.496 0.948 1.579 0.103

SafeBayes 0.982 0.810 0.910 0.111
200 GPC 0.396 0.932 1.177 0.060

SafeBayes 0.986 0.700 0.587 0.073
400 GPC 0.292 0.952 0.971 0.033

SafeBayes 0.975 0.588 0.378 0.048
2 100 GPC 0.444 0.972 2.251 0.228

SafeBayes 0.966 0.830 1.216 0.201
200 GPC 0.339 0.950 1.797 0.143

SafeBayes 0.967 0.700 0.750 0.123
400 GPC 0.246 0.970 1.396 0.073

SafeBayes 0.964 0.592 0.490 0.066
3 100 GPC 0.408 0.966 3.076 0.548

SafeBayes 0.953 0.804 1.536 0.372
200 GPC 0.313 0.958 2.452 0.351

SafeBayes 0.964 0.692 0.892 0.205
400 GPC 0.231 0.964 1.953 0.187

SafeBayes 0.965 0.618 0.544 0.080

Table 6: Summary of GPC and SafeBayes learning rate selection method performance
using a Gibbs posterior, based on 500 replications.

the sample range. Here we observe that the GPC is able to choose the learning rate
such that the desired 95% coverage target for each sample size. SafeBayes, on the other
hand, tends to choose too large of a learning rate, leading to (sometimes severe) under-
coverage. In terms of computation time, with n = 100, GPC and SafeBayes took roughly
6 and 14 seconds per replication, respectively.

7 Conclusion

This paper investigated the performance of several existing procedures for choosing the
learning rate parameter in generalized Bayes models. Our goal was to see which, if any,
of these methods, are able to overcome the model misspecification bias and give valid
posterior uncertainty quantification. While there are some models that are too severely
misspecified for a learning rate adjustment alone to accommodate, we did find that such
adjustments can be successful when misspecification is mild to moderate.

A take-away message is that, among the learning rate selection methods considered
here, the GPC algorithm of Syring and Martin (2019) seems to be best suited overall
for calibrating the generalized Bayes credible regions. This is not surprising, given that
is precisely what the GPC algorithm is designed to do. GPC is computationally more
expensive than, say, the method of Lyddon et al. (2019), but our results here suggest
that the extra time/effort is well spent. Although GPC has been shown to have very
good empirical performance here and in a number of other references, and the intuition
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behind why it should work is clear, there is still no formal proof that it does indeed
provide valid posterior uncertainty quantification.

Finally, our focus here was exclusively on inference, but it would be of interest to
see if/how different learning rate selection methods might assist in generalized Bayes
prediction. After all, the prediction problem is one where it is possible to perform
well even without a model, so developing a learning rate selection method that would
correct for certain kinds of model misspecification, e.g., misspecified tails, should be
within reach. That is, can a suitable choice of learning rate ensure that quantiles of the
posterior predictive distribution achieve the nominal prediction coverage probability?
In a recent manuscript (Wu and Martin, 2021), we show that it is possible to extend
the GPC procedure to the prediction case, to achieve both valid and efficient prediction
intervals across a wide range of applications, including those with spatial dependence.
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