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Functional Central Limit Theorems for
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Abstract. We obtain the strong law of large numbers, Glivenko-Cantelli theo-
rem, central limit theorem, functional central limit theorem for various Bayesian
nonparametric priors which include the stick-breaking process with general stick-
breaking weights, the two-parameter Poisson-Dirichlet process, the normalized in-
verse Gaussian process, the normalized generalized gamma process, and the gener-
alized Dirichlet process. For the stick-breaking process with general stick-breaking
weights, we introduce two general conditions such that the central limit theorem
and functional central limit theorem hold. Except in the case of the generalized
Dirichlet process, since the finite dimensional distributions of these processes are
either hard to obtain or are complicated to use even they are available, we use the
method of moments to obtain the convergence results. For the generalized Dirich-
let process we use its marginal distributions to obtain the asymptotics although
the computations are highly technical.
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1 Introduction

Ever since the work of Ferguson (1973) the Dirichlet process has become a critical
tool in Bayesian nonparametric statistics and has found applications in various areas,
including machine learning, biological science, social science and so on. One of the
important features of the Dirichlet process is that when the prior is a Dirichlet process
its posterior is also a Dirichlet process (see e.g. Ferguson, 1973). This makes the complex
computation in the Bayesian nonparametric analysis possible and enables the Dirichlet
process to become a backbone of the Bayesian nonparametric statistics.

To widen the applicability of the Bayesian nonparametric statistics, researchers have
tried to extend the concept of Dirichlet process. One of these efforts is the introduc-
tion of the stick-breaking process. The first breakthrough along this path is due to
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Sethuraman (1994) who shows that the Dirichlet process admits the stick-breaking rep-
resentation (see (2.1)–(2.2) in the next section), where the stick-breaking weights are
independent and identically distributed (i.i.d.) random variables satisfying the Beta dis-
tribution Beta(1, a) (throughout this paper the notation Beta(α, β) denotes the Beta

distribution whose density is g(x;α, β) = Γ(α)Γ(β)
Γ(α+β) x

α−1(1− x)β−1 , 0 < x < 1). Within

this stick-breaking representation, we can extend the class of Dirichlet processes to
many other priors by assuming that the stick-breaking weights are i.i.d. with other
distributions; satisfy some other kinds of dependence; or satisfy some specific (joint)
distributions. Among various such extensions, let us mention the following works which
we shall deal with in this paper. Perman et al. (1992) obtain a general formulae for
sized-biased sampling from a Poisson point process where the size of a point is defined
by an arbitrary strictly positive function. From these formulae, they identify the stick-
breaking representation of the two-parameter Poisson-Dirichlet process, which admits

a stick-breaking process with the stick-breaking weights vi
ind∼ Beta(1− b, a+ ib), where

b > 0, a > −b and i = 1, 2, · · · . Favaro et al. (2012) introduce the normalized inverse
Gaussian process through its stick-breaking representation by identifying the explicit
finite dimensional joint density functions of its stick-breaking weights. Favaro et al.
(2016) present the stick-breaking representation of homogeneous normalized random
measures with independent increments (hNRMIs) (see e.g. Regazzini et al., 2003 for
more details of NRMIs), which include the normalized generalized gamma process and
the generalized Dirichlet process, two widely used priors in Bayesian nonparametric
statistics.

Strong law of large numbers, central limit theorem and functional central limit the-
orem have always been ones of the central topics in statistics and in probability theory.
Without exception the asymptotic behaviors of the Dirichlet process and other Bayesian
nonparametric priors play important roles in the Bayesian nonparametric analysis, for
example in the construction of asymptotic Bayesian confidence intervals, regression
analysis and functional estimations. Compared to the vast literature in the field of
parametric statistics relevant to these issues the achievements in the field of Bayesian
nonparametrics are quite limited. However, let us mention the following works pio-
neered this paper. Sethuraman and Tiwari (1982) discuss the weak convergences of the
Dirichlet measure P when its parameter measure (i.e the measure aH in this paper)
approaches to a non-zero measure or a zero measure respectively. Lo (1983) studies the
central limit theorem of the posterior distribution of Dirichlet process which is anal-
ogous to our central limit theorem for the Dirichlet process. Based on this result, Lo
(1987) obtains the asymptotic confidence bounds and establishes the asymptotic valid-
ity of the Bayesian bootstrap method. The above mentioned Lo’s results are extended
to the mixtures of Dirichlet process by Brunner and Lo (1996). James (2008) reveals
the consistency behavior (the posterior distribution converges to the true distribution
weakly) and the functional central limit theorem for the posterior distribution of the
two-parameter Poisson-Dirichlet process (with fixed a and when the sample size goes
to infinity). The consistency of the posterior is discussed by Ho Jang et al. (2010) when
the priors are the two-parameter Poisson-Dirichlet prior and the species sampling prior.
Furthermore, De Blasi et al. (2013) investigate the consistency of the Gibbs-type pri-
ors. Kim and Lee (2004) show that the Bernstein-von Mises theorem holds in survival
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models for the Dirichlet process, Beta process and Gamma process. Dawson and Feng
(2006) establish the large deviation principle for the Poisson-Dirichlet distribution and
give the explicit rate functions when the parameter a (which represents the mutation
rate in the context of population genetics) approaches infinity. Labadi and Zarepour
(2013) present the functional central limit theorem for the normalized inverse Gaussian
process on D(R) when its parameter a is large by using its finite dimensional joint den-
sity. Labadi and Abdelrazeq (2016) obtain the functional central limit theorem for the
Dirichlet process by using the finite dimensional densities and for the Beta process on
D(R) by using the characteristic function.

From the above mentioned works we see that there are only very limited results on
the asymptotics of the stick-breaking processes. Relevant to the asymptotics as a → ∞,
there have been established the central limit theorem and functional central limit the-
orem only for two processes: the Dirichlet process and the normalized inverse Gaussian
process. The reason for the above limitation is that the most commonly used technique
appeals to the explicit forms of the finite dimensional densities of the process itself.
This method is effective only when the finite dimensional distributions have explicit
forms and are possible to handle. It cannot be applied to study other processes when
the explicit forms for the finite dimensional marginal densities of the process itself are
unavailable or they are too complex to analyze even though they are available.

This paper is to introduce the method of moments into this study and to provide
a systematic study of the asymptotics as a → ∞ for various stick-breaking processes
depending on a parameter a > 0. Let us emphasize that the method of moments in
this paper refers to the fact that if the distribution of the random variable X is de-
termined by its moments, and the random variables {Xi}ni=1 have all moments, and if

limn→∞ E [Xr
n] = E [Xr] for r = 1, 2, · · · , then Xn

d→ X (see e.g. Billingsley, 1995,
Theorem 30.2). We are mainly concerned with three types of the asymptotics (strong
law of large numbers, central limit theorem, and functional central limit theorem) for
a number of processes, which include the stick-breaking process with general stick-
breaking weights, the classical Dirichlet process DP(a,H) (see Ferguson, 1973), the
two-parameter Poisson-Dirichlet process PDP(a, b,H) (also known as Pitman-Yor pro-
cess, Pitman and Yor, 1997), the normalized inverse Gaussian process N-IG(a,H) (see
Lijoi et al., 2005b), the normalized generalized gamma process NGG(σ, a,H) (see Lijoi
et al., 2003, 2007; Brix, 1999), and the generalized Dirichlet process GDP(a, r,H) (see
Lijoi et al., 2005a).

All of the mentioned processes depend on a parameter a which is usually called
the concentration parameter . It is of the same order as the inverse of the variance of
the process (see Remark 3.6 for more precise meaning). It has also some more specific
meanings for various processes. For example, if {Xi}ni=1 is a sample from the Dirichlet
process DP(a,H), then it is known that the posterior mean is E [P (·)|X1, · · · , Xn] =
a

a+nH(·)+ n
a+n

∑n
i=1 Xi

n , which means that a plays the key role of the weight of the prior.

For the generalized Dirichlet process since the finite dimensional marginal distri-
butions of the process itself are available we shall use them to obtain the asymptotics
directly although the computations are very technical. Let us point out that this pro-
cess also admits a stick-breaking representation. However, it seems to us that it is more
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complex to use the method of moments than to use the finite dimensional marginal
distributions of the process itself.

Let us stress the following points of the paper about the well-known Bayesian non-
parametric priors.

(1) (for Dirichlet process) Both the finite dimensional distributions of the stick-break-
ing weights and the process itself are explicit and are easy to handle. Prior to this
work the central limit theorem and the functional central limit theorem have been
established for this process by using the finite dimensional distribution of the
process itself.

For the Dirichlet process the stick-breaking weights {vi} are i.i.d. and follow
the Beta distribution Beta(1, α). We introduce the concept of stick-breaking pro-
cess with general stick-breaking weights, where we still require the stick-breaking
weights {vi} to be i.i.d. but the law μ they follow can be arbitrary. In this case
there is no way to obtain the explicit form of the joint distributions of the process
itself. We use the method of moments to establish the central limit theorem and
the functional central limit theorem for this process. For example, vi ∼ Beta(ρa, a),
where ρa is a function of a such that ρa/a → 0 as a → ∞. In this case the joint
distributions of the process itself are unavailable except in the case ρa = 1, i.e. in
the case of the Dirichlet process.

(ii) (for the normalized inverse Gaussian process and for the generalized Dirichlet pro-
cess) Both the finite dimensional distributions of the stick-breaking weights and
that of the process itself are explicit. Prior to this work the central limit theo-
rem and the functional central limit theorem have been established only for the
normalized inverse Gaussian process by using the finite dimensional distributions
of the process itself. We shall also use the finite dimensional distributions of the
process itself to obtain the central limit theorem and the functional central limit
theorem for the generalized Dirichlet process. We shall use the method of moments
to re-derive the central limit theorem and the functional central limit theorem for
the normalized inverse Gaussian process, providing an alternative tool for this
process.

(iii) (for the two-parameter Poisson-Dirichlet process and the normalized generalized
gamma process) The finite dimensional distributions of the stick-breaking weights
are known but the finite dimensional distributions of the process itself are not
available. We use the method of moments to obtain the central limit theorem and
the functional central limit theorem for these processes.

Now we explain the organization of this paper. In Section 2, we recall the gen-
eral stick-breaking process and introduce the stick-breaking process with general stick-
breaking weights (SPG(μ,H)). In Section 3, we present the moment results for various
stick-breaking processes, including SPG(μ,H), PDP(a, b,H), N-IG(a,H), and
NGG(σ, a,H), GDP(a, r,H) separately since the computations are different for different
processes. In Section 4, we state the strong law of large numbers, central limit theorem,
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and functional central limit theorem. The stick-breaking process with general stick-
breaking weights are new and we allow the stick-breaking weights to be some very gen-
eral i.i.d. random variables defined on (0, 1). With different choices of the stick-breaking
weights we can obtain various known stick-breaking processes. Because of this general-
ity of the stick-breaking weights we state one theorem on the central limit theorem and
functional central limit theorem for this type of processes. We state a similar theorem
for all other processes (PDP(a, b,H), N-IG(a,H), NGG(σ, a,H), GDP(a, r,H)). The
details of the proofs will be provided in a supplementary file (Hu and Zhang, 2021)
where we also include some definitions and some well-known propositions of the men-
tioned processes to provide the necessary background. Interested readers are referred
to Hu and Zhang (2020) and references therein for a recent survey of some of these
processes and their applications.

Finally, let us emphasize that all the processes we dealt with in this paper are actually
“random probability measures”. However, we follow the convention in the literature to
continue to call them “processes”.

2 Preliminary notations

2.1 Definitions

Let (Ω,F ,P) be a complete probability space and let (X,X ) be a measurable Polish
space, namely, X is a separable complete metric space and X is the Borel σ-algebra
of X. Let H be a nonatomic probability measure on (X,X ) (i.e. H({x}) = 0 for any
x ∈ X). Now we give the definition of the stick-breaking process (more appropriately a
stick-breaking random probability measure).

Definition 2.1. A random measure P = (P (ω,A), ω ∈ Ω, A ∈ X ) is said to be a
stick-breaking process with the base measure H, if it has the following representation:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P =

∞∑
i=1

wiδθi , where

w1 = v1, wi = vi

i−1∏
j=1

(1− vj) for i = 2, 3, · · · ,

(2.1)

(2.2)

where θi, i = 1, 2, · · · are i.i.d. random variables defined on (Ω,F ,P) with values in
(X,X ) such that for each i, the law of θi is H; δθi denotes the Dirac measure on (X,X ),
and vi, i = 1, 2, · · · are random variables with values in [0, 1], independent of {θi}, which
are called the stick-breaking weights.

Since we assume that {θi} are i.i.d. and follow the distribution H, if H is given and
fixed, then the random probability measure P depends only on the choice of {vi}.
Remark 2.2. To make sure that P is well-defined (namely, (2.1) is convergent), one
needs to impose the condition that

∑∞
i=1 wi = 1 almost surely, which is equivalent to

the condition that
∑∞

i=1 logE [(1− vi)] = −∞ (e.g. Ghosal and Van der Vaart, 2017,
Lemma 3.4).
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Remark 2.3. Throughout the entire paper, we shall assume that a is a positive real
number and H is a nonatomic measure on (X,X ) unless otherwise specified.

For potential applications in practice we introduce the concept of stick-breaking
process with general stick-breaking weights.

Definition 2.4. P is called the stick-breaking process with general stick-breaking weights,
denoted by P ∼ SPG(μ,H), if the stick-breaking weights {v1, v2, · · · } in (2.1)–(2.2) are
i.i.d. and follow a general distribution μ.

Remark 2.5. The law μ on (0, 1) can be of continuous or discrete types, or the mixture.
An interesting special example is the quasi Bernoulli stick-breaking process (Zeng and
Duan, 2020), where the vi ∼ g(x) = pf(x) + 1−p

ε f(x/ε) for the Bernoulli density
f(x) ∼ Beta(1, a) and for some p ∈ (0, 1), ε > 0.

Based on the expectation and variance of P , we introduce the following quantities
that are investigated in the main theorems:

Da(·) =
P (·)− E[P (·)]√

Var[P (·)]
=

P (·)−H(·)√
H(A)(1−H(A))E [

∑∞
i=1 w

2
i ]
, (2.3)

where the last identity follows from (7.12)–(7.13) (in the supplementary material). Up
to a constant we may just consider the following quantity for notational simplicity:

QH,a(·) =
P (·)− E[P (·)]√
E [

∑∞
i=1 w

2
i ]
. (2.4)

3 Moment results

We use the method of moments to show the announced asymptotics. This requires to
have some nice estimates of the moments of the random probability measure P , which
in turn requires some nice bounds for the moments of {wi}∞i=1. Thus, in this section
we present the asymptotic behaviors of the joint moments of wi’s for various processes
introduced in the introduction. These results will play the key roles in the proofs of our
main theorems. On the other hand, they also have their own interest.

In the following proposition and throughout the paper we use the notation pm:n :=∑n
i=m pi for m ≤ n, and let the sequence {wi}∞i=1 be defined as in (2.2).

Proposition 3.1. Let P ∼ SPG(μa, H), i.e., the law of the i.i.d stick-breaking weights
vi is μa, where a > 0 is a certain parameter. We assume that vi is not identically 0. If

lim
a→∞

E[vn+1
1 ]

E[vn1 ]
= 0 for all n ∈ Z+ (set of nonnegative integers), then for any nonnegative

integers m,n, ⎧⎪⎪⎨
⎪⎪⎩
E [vni (1− vi)

m] = E[vn1 ] + o (E[vn1 ]) ,
∞∑
j=0

(E [(1− vi)
m])

j
=

1

mE[v1]
+ o

(
1

mE[v1]

)
.

(3.1)

(3.2)
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Furthermore, for any positive integers p1, · · · , pk, we have

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

wp1

i1
wp2

i2
· · ·wpk

ik

⎤
⎦

=
E[vp1

1 ] · · ·E[vpk

1 ]

p1:kp2:k · · · pk:k (E[v1])k
+ o

(
E[vp1

1 ] · · ·E[vpk

1 ]

(E[v1])
k

)
.

(3.3)

In particular, when pj = 2 for all j ∈ {1, · · · , k} (hence p1:k = 2k), the asymptotics (3.3)
becomes

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

w2
i1w

2
i2 · · ·w

2
ik

⎤
⎦ =

1

2kk!

(
E[v21 ]

E[v1]

)k

+ o

((
E[v21 ]

E[v1]

)k
)
. (3.4)

Proposition 3.2. Let P ∼ PDP(a, b,H). Namely, let the stick-breaking weights
v1, v2, · · · be given by (7.2) (in the supplementary material). Then, for any positive
integers p1, · · · , pk, we have the following identity.

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

wp1

i1
wp2

i2
· · ·wpk

ik

⎤
⎦

=
1

(a+ kb)(a+ 1)(p1:k−1)

k∏
i=1

(1− b)pi(a+ bi)

pi:k − (k − i+ 1)b
. (3.5)

In particular, when pj = 2 for all j ∈ {1, · · · , k}, the above expectation becomes

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

w2
i1w

2
i2 · · ·w

2
ik

⎤
⎦ =

(1− b)k(a+ b) · · · (a+ b(k − 1))

k!(a+ 1) · · · (a+ 2k − 1)
. (3.6)

Proposition 3.3. Let P ∼ N-IG(a,H). Namely, let the stick-breaking weights {vi}∞i=1

be given by (7.3)–(7.4) (in the supplementary material). Then, for any positive integers
p, p1, · · · , pk, we have

E

[ ∞∑
n=1

wp
n

]
= O

(
1

ap−1

)
as a → ∞ , (3.7)

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

wp1

i1
wp2

i2
· · ·wpk

ik

⎤
⎦ = O

(
1

ap1:k−k

)
as a → ∞ . (3.8)

Furthermore, when p = p1 = · · · = pk = 2, we have

E

[ ∞∑
n=1

w2
n

]
=

1

a
+ o

(
1

a

)
as n → ∞ , (3.9)
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E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

w2
i1w

2
i2 · · ·w

2
ik

⎤
⎦ =

1

k!ak
+ o

(
1

ak

)
. (3.10)

[Namely, the leading coefficient in (3.7) is 1 and the leading coefficient in (3.8) is 1
k! .]

Proposition 3.4. Let P ∼ NGG(σ, a,H). Namely, let the distribution of the stick-
breaking weights {v1, v2, · · · } be given by (7.5)–(7.6) (in the supplementary material).
Then, for any positive integers p1, · · · , pk, we have

E

[ ∞∑
n=1

wp
n

]
= O

(
1

ap−1

)
as a → ∞, (3.11)

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

wp1

i1
wp2

i2
· · ·wpk

ik

⎤
⎦ = O

(
1

ap1:k−k

)
as a → ∞. (3.12)

Furthermore, when p = p1 = · · · = pk = 2 and when σ = 1
m for some arbitrarily fixed

integer m ≥ 2, we have

E

[ ∞∑
n=1

w2
n

]
=

1

a
+ o

(
1

a

)
as a → ∞, (3.13)

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

w2
i1w

2
i2 · · ·w

2
ik

⎤
⎦ =

1

k!ak
+ o

(
1

ak

)
as a → ∞. (3.14)

Proposition 3.5. Let P ∼ GDP(a, r,H) and let p1, · · · , pk be positive integers. Then,
as a → ∞,

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

wp1

i1
wp2

i2
· · ·wpk

ik

⎤
⎦ = O

(
1

ap1:k−k

)
. (3.15)

In particular, when pj = 2 for all j ∈ {1, · · · , k}, the above expectation becomes

E

⎡
⎣ ∑
1≤i1<i2<···<ik<∞

w2
i1w

2
i2 · · ·w

2
ik

⎤
⎦ =

[∑ r
k=1( 1

k )
2

(
∑ r

j=1
1
j )

2

]k
k!ak

+ o

(
1

ak

)
. (3.16)

Remark 3.6. As for SPG(μa, H), a is a parameter such that vi converges in distribu-
tion to 1 as a → ∞. And we will give more details in Remark 4.13 on page 13 later on.
For the specified processes in Propositions 3.2–3.5, the parameter a is the prior precision
or the concentration parameter as we mentioned in the introduction. We can also see
that the parameter a is the same order as 1

E[
∑∞

i=1 w2
i ]
.

Remark 3.7. The special cases when p1 = · · · = pk = 2 in Propositions 3.1–3.5 are
particularly important, since the corresponding terms in Theorem 4.4 will not converge
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to zero and we need to use them to identify the limits. Other terms will converge to 0.
This is because otherwise some pi will be greater than 2 and then there will be fewer
factors in the product for the same value p1 + · · · + pk (see the proof of Theorem 4.4,
Cases 1 and 2).

Remark 3.8. The quantity p(n1, · · · , nk) =
∑

i1,··· ,ik E
[
wn1

i1
wn2

i2
· · ·wnk

ik

]
bears the

same form of the exchangeable partition probability function (EPPF) in the random
partition theory (see e.g Pitman, 1996, 2003), where the wi is replaced by the so-called
size biased permutation from a random partition. In the study of Poisson-Kingman
model, the order statistics w∗

1 , w
∗
2 , · · · of w1, w2 · · · are given by w∗

i = Ji

J1+J2+··· , where
J1, J2, · · · are the ranked points of a Poisson process with Lévy density ρ (see Pitman,
2003, Definition 3). When vi’s are iid Beta(1, a), w∗

i is Poisson-Dirichlet distribution
(see Pitman, 1996, Theorem 5). In general case it seems hard to find the distribution of
w∗

i from vi’s. However, it remains interesting to apply our method of moments to study
the asymptotics for the Poisson-Kingman model.

4 Main results

4.1 Strong law of large numbers

The strong law of large numbers and the Glivenko-Cantelli theorem play undoubtedly
important roles in statistics. In this subsection we state the strong law of large numbers
and the Glivenko-Cantelli theorem for various processes introduced in the introduction.
But before we state our theorem, we need an additional condition on the stick-breaking
weights vi in the case of SPG(μa, H).

Assumption 4.1. Let the i.i.d. stick-breaking weights {vi} satisfy

E[vpi ] =
Cp

akp
+ o

(
1

akp

)
as a → ∞ , (4.1)

for any p ∈ N, where kp is a positive sequence satisfying jki ≥ ikj for i ≥ j and Cp is
a sequence of finite constants, independent of a.

Theorem 4.2. Let P be one of the stick-breaking process with general stick-breaking
weights SPG(μa, H) satisfying Assumption 4.1, the two-parameter Poisson-Dirichlet
process PDP(a, b,H), the normalized inverse Gaussian process N-IG(a,H), the nor-
malized generalized gamma process NGG(σ, a,H), and the generalized Dirichlet process
GDP(a, r,H). Assume that a = Nτ for some arbitrarily fixed τ > 0. Then, as N → ∞,

P (A)
a.s.→ H(A) (4.2)

for any measurable set A ∈ X .

Once we have the strong law of large numbers for P , we can deduce the Glivenko-
Cantelli theorem for P (see e.g. Theorem 20.6 in Patrick (1995) for a general discussion).
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Theorem 4.3. Let (X,X ) = (R,B(R)). Let P be one of the stick-breaking process
with general stick-breaking weights SPG(μa, H) satisfying Assumption 4.1, the two-
parameter Poisson-Dirichlet process PDP(a, b,H), the normalized inverse Gaussian pro-
cess N-IG(a,H), the normalized generalized gamma process NGG(σ, a,H), and the gen-
eralized Dirichlet process GDP(a, r,H). Assume that a = Nτ for some arbitrarily fixed
τ > 0. Then, as N → ∞,

sup
x∈R

|P ((−∞, x])−H ((−∞, x]) | a.s.→ 0 .

4.2 Central limit theorems and functional central limit theorems

In this subsection, we state the central limit theorems corresponding to the strong law
of large numbers of the form (4.2).

We shall state the central limit theorems and functional central limit theorems for
various processes as the following three theorems. The first one is for the stick-breaking
process with general stick-breaking weights defined by Definition 2.4. We will assume
mild convergence conditions on the stick-breaking weights.

Theorem 4.4. Let P ∼ SPG(μa, H), where the stick-breaking weights v1, v2, · · · (whose
distributions) depending on a parameter a > 0 (we omit the explicit dependence on a of
the vi’s). Let Da and QH,a be defined by (2.3) and (2.4) respectively. Assume that the
stick-breaking weights v1, v2, · · · satisfy the following two conditions.

(i) For all n ∈ Z
+, we have

lim
a→∞

E[vn+1
1 ]

E[vn1 ]
= 0 . (4.3)

(ii) For any multi-index (p1, · · · , pk) such that pi ≥ 2 and p1:k

2 > k, where p1:k =∑k
i=1 pi, we have

lim
a→∞

(E[v1])
p1:k

2 −k ∏k
i=1 E[v

pi

1 ]

(E[v21 ])
p1:k

2

= 0. (4.4)

Then we have the following results.

(i) (Central limit theorem) Let A1, A2, · · · , An be any disjoint measurable subsets
of X. Then, as a → ∞,

(Da(A1), Da(A2), · · · , Da(An))
d→ (X1, X2, · · · , Xn) , (4.5)

where (X1, X2, · · · , Xn) ∼ N(0,Σ) and Σ = (σij)1≤i,j≤n is given by

σij =

{
1 if i = j ,

−
√

H(Ai)H(Aj)
(1−H(Ai))(1−H(Aj))

if i 	= j .
(4.6)
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(ii) (Functional central limit theorem) Let (X,X ) = (Rd,B(Rd)) be the d-dimensional
Euclidean space with the Borel σ-algebra. Then

QH,a
weakly→ Bo

H in D(Rd) (4.7)

with respect to the Skorohod topology.

Remark 4.5. For central limit theorem we use Da because each component converges to
a standard Gaussian. For functional central limit theorem we use QH,a since it converges
to a Brownian bridge with parameter H. We can presumably use Da (or QH,a) in
both (4.6) and (4.7) with a scaling.

The conditions (i) and (ii) in Theorem 4.4 are implied by many other conditions.
One of them is given below.

Remark 4.6. Assumption 4.1 implies the conditions (i) and (ii) in Theorem 4.4.

Proof. It is obvious that {kp} is an increasing sequence, and thus the condition (i) of
Theorem 4.4 (i.e (4.3)) holds.

For any nonnegative integer m, let N be a certain collection of integers j′s such that∑
j∈N

j = m. The condition (ii) in Theorem 4.4 is equivalent to the following statement:

If j ≥ 2 and |N| < m

2
, then

m(k2 − k1)

2
<

∑
j∈N

kj − |N|k1. (4.8)

Thus, to prove (4.4) it is sufficient to show mk2

2 <
∑

j∈N
kj . This is a simple consequence

of jki ≥ ikj for i ≥ j. In fact, taking i = 2, we have for all j ≥ 2, 2kj ≥ jk2 holds
and thus we have

∑
j∈N

2kj ≥
∑

j∈N
jk2, which implies mk2

2 <
∑

j∈N
kj . Hence we

have (4.8).

The conditions (i) and (ii) in Theorem 4.4 are satisfied by many interesting processes
including the Dirichlet process. We give three examples to illustrate the applicability of
our above theorem.

Corollary 4.7. Theorem 4.4 holds true when P ∼ DP(a,H).

Proof. It is sufficient to verify the condition (4.1) in Assumption 4.1. Since vi
iid∼

Beta(1, a), we have for any positive integer p,

E[vpi ] =
Γ(a+ 1)Γ(p+ 1)

Γ(1)Γ(a+ p+ 1)
=

p!

(a+ 1) · · · (a+ p)
=

p!

ap
+ o

(
1

ap

)
.

Hence, kp = p and Cp = p!. Obviously, for i ≥ j, jki ≥ ikj always holds true.
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Remark 4.8. Since the posterior of the Dirichlet process is still a Dirichlet process,
the above result can be applied to the posterior process in the Bayesian nonparametric
models when the prior is the Dirichlet process for the following situations: (i) with large
sample size and finite parameter a; (ii) with large parameter a and finite sample size,
(iii) with parameter a and sample size both large.

The assumption of the Beta(1, a)-distribution in Corollary 4.7 can be replaced by a
general Beta(ρa, a), where ρa/a → 0. In fact, in this case, we have

E [vn1 ] =
(ρa
a

)n

+ o
((ρa

a

)n)
.

It is easy to verify that the conditions (4.3)–(4.4) in Theorem 4.4 are satisfied. Thus we
have

Corollary 4.9. Theorem 4.4 holds true when P ∼ SPG(μa, H), where vi
iid∼ Beta(ρa, a)

with lim
a→∞

ρa
a

= 0.

Remark 4.10. It is not clear yet what is the finite dimensional distribution of stick-

breaking process P if the corresponding stick-breaking weights vi
iid∼ Beta(ρa, a).

The next corollary is about the asymptotic behavior of the prior P , when the cor-
responding stick-breaking weights vi follow a linear combination of Beta distributions,
whose precise meaning is given below.

Definition 4.11. Let s be any positive integer and let {r1, · · · , rs} and {t1, · · · , ts}
be two sets of positive real numbers such that

∑s
�=1 t� = 1. Let u1,1, · · · , u1,s, u2,1, · · · ,

u2,s, · · · be independent and let ui,�∼Beta(1, ar�) , i = 1, 2, · · · , � = 1, · · · , s. Then the
random variables

vi =

s∑
�=1

t�ui,� , i = 1, 2, · · · , (4.9)

are called linear combinations of Beta random variables.

Corollary 4.12. Theorem 4.4 holds true when P is the stick-breaking process as defined
in Definition 2.1, where the weights vi are the linear combinations of Beta random
variables defined by (4.9).

Proof. By the independence of {ui,�}s�=1, we can compute the p-th moment of vi as
follows.

E[vpi ] = E

[(
s∑

�=1

t�ui,�

)p]
=

∑
q1,··· ,qs∈Z+
q1+···+qs=p

(
p

q1, · · · , qs

) s∏
�=1

E [(t�ui,�)
q� ]

=
∑

q1,··· ,qs∈Z+
q1+···+qs=p

(
p

q1, · · · , qs

) s∏
�=1

tq��

(
q�!

aq�r�
+ o

(
1

aq�r�

))
=

tpp!

apr
+ o

(
1

apr

)
,

where r = min(r1, · · · , rs). Taking kp = pr and Cp = tpp! in Assumption 4.1 we see the
condition i ≥ j, jki ≥ ikj is always verified.
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Remark 4.13. Let us return to Corollary 4.7. This is a typical case and we take a close
look of the density fa(x) = a(1− x)a−1, 0 ≤ x ≤ 1, of the Beta distribution Beta(1, a).

For any continuous function g : R → R, it is easy to verify that∫
R

[g(x)− g(1)] fa(x)dx =

∫ 1

0

[g(x)− g(1)] fa(x)dx → 0 as a → ∞ .

This means that
∫
R
g(x)fa(x)dx → g(1). In other word, fa converges to the Dirac delta

function δ(x− 1). This observation hints that when the distribution fa of vi’s converges
to the Dirac delta function δ(x− 1), or the random variable vi converges in distribution
to 1 (as a → ∞) we should have the convergence of the random process QH,a. But we
still need to impose some more technical conditions. We give a further illustration by
the following corollary.

Corollary 4.14. Let the stick-breaking process P be defined as in Definition 2.1, where
the corresponding vi follows the following distribution:

fa(x) =

{
a(1− g(a)) if 0 < x ≤ 1/a;
ag(a)
a−1 if 1/a < x ≤ 1,

where g(a) = e−aε

, a > 1, for a certain arbitrarily fixed ε > 0. Then, as a → ∞, the con-
ditions (4.3) and (4.4) of Theorem 4.4 hold for this density fa. Thus the statements (4.5)
and (4.7) of Theorem 4.4 hold true.

Proof. Before we proceed to the proof. Let us note the obvious fact that fa converges
to the Dirac delta distribution δ(x− 1).

For any n > 0, we see lim
a→∞

ang(a) = 0. A trivial calculation implies that for any

positive integer p,

E[vpi ] =
(1/a)p + g(a)

∑p
i=0(1/a)

i

p+ 1
=

1

(p+ 1)ap
+ o(b−p) .

An application of Assumption 4.1 with kp = p yields the desired statement.

When the stick-breaking weights are i.i.d., Theorem 4.4 that we obtained for the
stick-breaking random measure P covers very general situation and the conditions (4.3)–
(4.4) are minimal and are easy to verify. But when the stick-breaking weights are not
i.i.d. the situation becomes much more sophisticated like in other statistical situations.
We shall consider some well-known processes introduced in the introduction. For these
processes the explicit forms of the joint finite dimensional distributions of the stick-
breaking weights, although complicated, are given (in the supplementary material). We
can state similar results as those in Theorem 4.4 in one theorem for all these processes.

Theorem 4.15. Let P be one of the Poisson-Dirichlet process PDP(a, b,H), the nor-
malized inverse Gaussian process N-IG(a,H), the normalized generalized gamma process
NGG(σ, a,H), and the generalized Dirichlet process GDP(a, r,H). Then, we have the
following results.
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(i) As a → ∞,

(Da(A1), Da(A2), · · · , Da(An))
d→ (X1, X2, · · · , Xn) , (4.10)

where (X1, X2, · · · , Xn) ∼ N(0,Σ) and Σ = (σij)1≤i,j≤n is given by

σij =

{
1 if i = j

−
√

H(Ai)H(Aj)
(1−H(Ai))(1−H(Aj))

if i 	= j .
(4.11)

(ii) Let (X,X ) = (Rd,B(Rd)) be the d-dimensional Euclidean space with the Borel
σ-algebra. Then

QH,a
weakly→ Bo

H in D(Rd) (4.12)

with respect to the Skorohod topology.

Corollary 4.16. Theorem 4.15 holds true when the random measure P is the Beta
process (denoted by P ∼ BP(a, γH)), whose stick-breaking representation is given in
Definition 7.8 (in the supplementary material). Our method of moments still works
and in fact, due to the independence of the weights wi,j in (7.9) (in the supplementary
material) the computation is much simpler.

As long as the central limit theorem of P is obtained, it is trivial to use the delta-
method to show the similar theorem for the nonlinear functional of this process. Using
Theorem 3.9.4 in van der Vaart and Wellner (1996), we can state the following theorem.

Theorem 4.17. Let P be one of N-IG(a,H), PDP(a, b,H), NGG(σ, a,H),
GDP(a, r,H) or SPG(μa, H) satisfying (4.3)–(4.4) of Theorem 4.4. Let D be the met-
ric space of all probability measures on (X,X ) with the total variation distance. Let
φ : D → R

d be a continuous functional which is Hadamard differentiable on D. Then,
as a → ∞, we have

1√
E[

∑∞
i=1 w

2
i ]

(φ (P (·))− φ (H(·))) weakly→ φ′
H(·) (B

o
H) .

Remark 4.18. When P is Dirichlet process or the normalized inverse Gaussian pro-
cess, the above conclusion has been known (e.g. Labadi and Zarepour, 2013; Labadi and
Abdelrazeq, 2016).

One application of the above theorem is the limiting distribution of the quantile
process of P .

Example 4.19. Suppose (X,X ) = (R,B(R)) and suppose that P is one of N-IG(a,H),
PDP(a, b,H), NGG(σ, a,H), GDP(a, r,H) or SPG(μa, H) satisfying (4.3)–(4.4) of The-
orem 4.4. Let H be absolutely continuous with positive derivative h. By Lemma 3.9.23
of van der Vaart and Wellner (1996), we have

1√
E[

∑∞
i=1 w

2
i ]

(
P−1(·)−H−1(·)

) weakly→ − Bo(·)
h (H−1(·)) = G(·) , (4.13)
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where H−1(s) = inf{t : H(t) ≥ s}. The limiting process G is a Gaussian process with
zero-mean and with covariance function

Cov (G ((0, s]) , G ((0, t])) =
s ∧ t− st

h (H−1 ((0, s]))h (H−1 ((0, t]))

for s, t ∈ R,

5 Numerical illustration

Theorem 4.15 states that (Da(A1), Da(A2), · · · , Da(An)) converges to a joint normal
distribution as a → ∞. In this section we shall perform some numerical simulations
to illustrate this convergence. To be specific the processes we choose to simulate are
Poisson-Dirichlet process PDP(a, b,H) and the stick-breaking process with general stick-
breaking weights constructed in Corollary 4.14. For PDP(a, b,H) we consider the cases
the parameter b = 0.2 and b = 0.5 and for the process constructed in Corollary 4.14 we
consider the cases ε = 1 and ε = 5.

For both of these two processes, the base measure H is assumed to be uniform
distribution on X = (0, 1) and we take n = 3 and fix the partition of X as A1 = (0, 0.3],
A2 = (0.3, 0.7], A3 = (0.7, 1). In our simulations we truncate the infinite series (2.1)
to 5000 terms and we simulate 2000 samples of (Da(A1), Da(A2), Da(A3)). Since it
is rather messy to visualize the joint densities of (Da(A1), Da(A2), Da(A3)), we plot
the histograms of the linear combination 1.6×Da(A1) + 1.4×Da(A2) + 0.5×Da(A3)
(other linear combinations will produce similar results with different variances). The
histograms for PDP(a, b,H) with b = 0.2 and b = 0.5 and with a = 2, 5, 10, 20 are plotted
in Figure 1 and the histograms for the stick-breaking process with general stick-breaking
weights constructed in Corollary 4.14 with ε = 1 and ε = 5 and with a = 2, 5, 10, 20
are plotted in Figure 2. Graphs corresponding to different parameters (different b or
different ε) are plotted in different figures but those corresponding to different values of
a are plotted in the same figure with different colored curves so that one can observe
the convergence to mean zero normal curves easily.

It is easy to observe that the convergence to the normal shape is very fast as a is
getting larger.

6 Concluding remarks

The method of moments used in this paper could be applied to the study of asymp-
totics for some Bayesian nonparametric posterior processes in the following situations:
(i) when the parameter a is finite and the sample size is large; (ii) when the parameter
a is large and the sample size is finite; (iii) when the parameter a and the sample size
are both large. As is well-known it is usually very hard to obtain the explicit form of
the posterior distribution (even in the parametric cases) and even when the posterior
distribution is obtained sometimes it is still very hard to use it to compute the needed
statistics. A particularly interesting example is the posterior distribution of a homoge-
neous normalized random measure with independent increments (hNRMI) obtained by
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Figure 1: Convergence of Da with respect to PDP(a, b,H) for a = 2, 5, 10, 20.

Figure 2: Convergence of Da with respect to the constructed process in Corollary 4.14
for a = 2, 5, 10, 20.
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James et al. (2009) and Favaro et al. (2016, Proposition 4). The hNRMI is a large class
of priors, which contains the normalized generalized gamma processes (Definition 7.6
in the supplementary material) and the generalized Dirichlet processes (Definition 7.7
in the supplementary material) mentioned in this paper as special cases. Assume that
P a is an hNRMI depending on a parameter a > 0 and some other parameters studied
in Favaro et al. (2016), where the parameter a is the same as the one in our paper
when the hNRMI becomes a normalized generalized gamma process or a generalized
Dirichlet process. If {Xi}ni=1 is a sample from the hNRMI P a, in the sense that the
sequence of exchangeable observations {Xi}ni=1 are defined on (Ω,F ,P) with values in
X in such a way that, given P a, X1, · · · , Xn are i.i.d with distribution P a, then the
posterior distribution of P a can be computed with the help of a latent variable Un as
follows (Favaro et al., 2016, Proposition 4)

P a|Un, X1, . . . , Xn ∼ P̂ a
n := ϕa

0,Un
P̃ a
Un

+

k∑
j=1

ϕa
j,Un

δX∗
j
,

where given Un = u, P̃ a
u is an hNRMI admitting a stick-breaking representation and

{X∗
j }kj=1 are the distinct values of {Xi}ni=1. To compute a Bayesian statistic, we need

to compute some functional of the posterior probability measure P̂ a
n . For example,

to find the quantile tq such that P̂ a
n ((−∞, tq)) ≤ q ≤ P̂ a

n ((−∞, tq]) for some given

q ∈ (0, 1) or to compute
∫
Xd f(x1, · · · , xd)P̂

a
n (dx1) · · · P̂ a

n (dxd) and so on (e.g. Ferguson,

1973; Hu and Zhang, 2020), which is usually complicated due to the complexity of P̃ a
Un

.

However, when a is sufficiently large the probability measure P̃ a
Un

is approximately

a normal distribution, then we can use the normal distribution to approximate P̃ a
Un

in the computation of these Bayesian statistics. Let us also point out that in some
situations the normal approximation is sufficiently good for reasonable size a (from the
figures in this paper, we see that when a = 5, the graphs are already close to normal
distributions).

Supplementary Material

Supplementary Material of “Functional central limit theorems for stick-breaking priors”
contains all proofs of the results provided in the main paper, together with the definitions
and some well-known propositions of the studied processes.
(DOI: 10.1214/21-BA1290SUPP; .pdf).
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