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Spatial 3D Matérn Priors for Fast Whole-Brain
fMRI Analysis∗

Per Sidén†,∗∗, Finn Lindgren‡, David Bolin§, Anders Eklund†,¶, and Mattias Villani†,‖

Abstract. Bayesian whole-brain functional magnetic resonance imaging (fMRI)
analysis with three-dimensional spatial smoothing priors has been shown to pro-
duce state-of-the-art activity maps without pre-smoothing the data. The proposed
inference algorithms are computationally demanding however, and the spatial pri-
ors used have several less appealing properties, such as being improper and having
infinite spatial range. We propose a statistical inference framework for whole-brain
fMRI analysis based on the class of Matérn covariance functions. The frame-
work uses the Gaussian Markov random field (GMRF) representation of possibly
anisotropic spatial Matérn fields via the stochastic partial differential equation
(SPDE) approach of Lindgren et al. (2011). This allows for more flexible and in-
terpretable spatial priors, while maintaining the sparsity required for fast inference
in the high-dimensional whole-brain setting. We develop an accelerated stochastic
gradient descent (SGD) optimization algorithm for empirical Bayes (EB) inference
of the spatial hyperparameters. Conditionally on the inferred hyperparameters, we
make a fully Bayesian treatment of the brain activity. The Matérn prior is applied
to both simulated and experimental task-fMRI data and clearly demonstrates that
it is a more reasonable choice than the previously used priors, using comparisons
of activity maps, prior simulation and cross-validation.

Keywords: spatial priors, Gaussian Markov random fields, fMRI, spatiotemporal
modeling, efficient computation.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a noninvasive technique for making
inferences about the location and magnitude of neuronal activity in the living human
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brain. The use of fMRI has provided neuroscientists with countless new insights on
how the brain operates (Lindquist, 2008). By observing changes in blood oxygenation
in a subject during an experiment, a researcher can apply statistical methods such as
the general linear model (GLM) (Friston et al., 1995) to draw conclusions regarding
task-related brain activations.

One may see fMRI data as a sequence of three-dimensional images collected by a
magnetic resonance (MR) scanner over time, where each image can be divided into a
large number of voxels. Alternatively, fMRI data can be seen as a collection of time
series, one for each voxel, measuring the blood oxygen level dependent (BOLD) signal
which is a response to local neural activity (Ogawa et al., 1990). The GLM approach
uses a regression model to estimate the linear dependence between the expected BOLD
response given the task or condition presented to the scanned subject and the observed
BOLD signal in each voxel. Significant regression coefficients determine the activation of
a certain voxel for some condition, or, in a Bayesian treatment, the posterior probability
of activation of each voxel can be computed and visualised as a posterior probability
map (PPM). By designing different tasks, researchers can use this technology to localize
different functional regions in the brain, which can for example be used in presurgical
planning (Gallen et al., 1994), or to compare the activity patterns between different
patients in a group study. A problem with the GLM approach and many of its succes-
sors is that the model is mass-univariate, that is, it analyses each voxel independently.
This ignores the well-known inherent spatial dependencies in the brain activity between
neighboring brain regions, known as functional segregation (Friston and Price, 2011). In-
stead, this problem is normally addressed in pre- and post-processing as discussed below.

An alternative to the mass-univariate approach is to use Bayesian spatial smoothing
priors for the brain activity, and an early example of this is the two-dimensional prior
in slice-wise fMRI analysis proposed by Penny et al. (2005). The spatial prior on the
activity coefficients reflects the prior knowledge that activated regions are spatially
contiguous and locally homogeneous. Penny et al. (2005) use the variational Bayes
(VB) approach to approximate the posterior distribution of the activations. Sidén et al.
(2017) extend that prior to the 3D case and propose a fast Markov Chain Monte Carlo
(MCMC) method and an improved VB approach, that is empirically shown to give
negligible error compared to MCMC.

In this paper, we show how the spatial priors used in these previous articles can
be seen as special cases of the Gaussian Markov random field (GMRF) representation
of Gaussian fields of the Matérn class, using the stochastic partial differential equation
(SPDE) approach presented in Lindgren et al. (2011). The Matérn family of covariance
functions, attributed to Matérn (1960) and popularized by Handcock and Stein (1993),
is seeing increasing use in spatial statistical modeling. It is also a standard choice for
Gaussian process (GP) priors in machine learning (Rasmussen and Williams, 2006).
In his practical suggestions for prediction of spatial data, Stein (1999) notes that the
properties of a spatial field depend strongly on the local behavior of the field and that
this behavior is unknown in practice and must be estimated from the data. Moreover,
some commonly used covariance functions, for example the Gaussian (also known as
the squared exponential), do not provide enough flexibility with regard to this local
behavior and Stein summarizes his suggestions with “Use the Matérn model”. Using the
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Matern prior on large-scale 3D data such as fMRI data is computationally challenging,
however, in particular with MCMC. We present a fast Bayesian inference framework to
make Stein’s appeal feasible in practical work.

For fMRI analysis, standard practice has traditionally relied on the Gaussian co-
variance function rather than the Matérn. The data are pre-smoothed with a Gaussian
kernel, with reference to the matched filter theorem (Rosenfield and Kak, 1982), which
suggests that the signal-to-noise ratio can be improved by smoothing the data with
the same frequency structure as that of the signal. Furthermore, the standard post-
correction of multiple hypothesis testing use random field theory (RFT) with an assumed
Gaussian covariance function, an assumption partly motivated by the pre-smoothing.
However, this approach was shown to lead to spurious results by Eklund et al. (2016),
who mention the Gaussian covariance assumption as a principal cause of the invalid re-
sults, and demonstrate that the empirical spatial auto-correlation functions of raw fMRI
data seem more fat-tailed than a Gaussian, see also Cox et al. (2017). Even though this
use of the Gaussian covariance function is different from for example using it in a spatial
GP prior for the brain activity, this raises a doubt of its suitability for fMRI data.

A problem with GPs for most commonly used covariance functions, including the
Gaussian, is computational. The standard GP formulation results in a dense covariance
matrix which becomes too computationally expensive to invert even with only a few
thousand voxels. For example, (Groves et al., 2009) use a spatial GP prior with Gaus-
sian covariance and do the analysis slice-wise, due to the computational cost. For this
reason, much work on spatial modeling of fMRI data has been using GMRFs instead,
see for example Gössl et al. (2001); Woolrich et al. (2004); Penny et al. (2005); Harrison
and Green (2010); Sidén et al. (2017). GMRFs have the property of having sparse pre-
cision matrices, which make them computationally very fast to use, but do not always
correspond to simple covariance functions, especially the intrinsic GMRFs often used
as priors, whose precision matrices are not invertible (Rue and Held, 2005).

A different branch of Bayesian spatial models for fMRI has considered selecting
active voxels as a variable selection problem, modeling the spatial dependence between
the activity indicators rather than between the activity coefficients (see, among others
Smith and Fahrmeir, 2007; Vincent et al., 2010; Lee et al., 2014; Zhang et al., 2014;
Bezener et al., 2018). These articles mostly use Ising priors for the indicator dependence,
which also gives sparsity. However, these priors are rarely defined over the whole brain,
but are applied independently to parcels or slices, probably due to computational costs.

The SPDE approach of Lindgren et al. (2011) has been applied to fMRI data using
either a slice-wise approach (Yue et al., 2014) or on the sphere after transforming the
volumetric data to the cortical surface (Mejia et al., 2020). In both cases integrated
nested Laplace approximations (INLA) (Rue et al., 2009) were used for approximating
the posterior, which is efficient but presently cumbersome to apply directly to volumetric
fMRI data, as the R-INLA R-package currently lacks support for three-dimensional data.

Our paper makes a number of contributions. First, we develop a fast Bayesian in-
ference algorithm that allows us to use spatial three-dimensional whole-brain priors of
the Matérn class on the activity coefficients, for which previous MCMC and VB ap-
proaches are not computationally feasible. The algorithm applies empirical Bayes (EB)
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to optimize the hyperparameters of the spatial prior and the parameters of the autore-
gressive noise model, using an accelerated version of stochastic gradient descent (SGD).
The link to the Matérn covariance function gives the spatial hyperparameters a clear
interpretation as the range and marginal variance of the corresponding Gaussian field.
Given the maximum a posteriori (MAP) values of the optimized hyperparameters, we
make a fully Bayesian treatment of the activity coefficients, and compute brain activity
PPMs. The convergence of the optimization algorithm is established and the result-
ing EB posterior is shown to be extremely similar to the exact MCMC posterior for
the prior used in Sidén et al. (2017). Second, we develop an anisotropic version of the
Matérn 3D prior. The anisotropic prior allows the spatial dependence to vary in the x-,
y- and z-direction, and we propose a parameterization such that the new parameters do
not the affect the marginal variance of the field. Third, we apply the proposed Matérn
priors to both simulated and real experimental fMRI datasets, and compare with the
prior used in Sidén et al. (2017) by observing differences in the PPMs, by examining
the plausibility of new random samples of the different spatial priors, and by comparing
predictive performance, both in terms of point predictions and predictive uncertainty.
Collectively, our demonstration strongly suggests that the higher level of smoothness is
more reasonable for fMRI data, and also indicates that the second order Matérn prior
(see the definition in Section 2.2) is more sensible than its intrinsic counterpart.

The methods in this article are developed for analyzing fMRI data, but can also
be applied to other fields with large-scale image data with spatial dependencies, such
as diffusion tensor imaging (Gu et al., 2017), microscopy (Barman and Bolin, 2018) or
satellite data (Heaton et al., 2019).

The article is organized as follows. Section 2 reviews the model of Penny et al. (2005)
and introduces the proposed extension to Matérn priors spatial priors and associated
hyperpriors. In Section 3, we derive the optimization algorithm for the EB method,
and describe the PPM computation. Experimental and simulation results are shown in
Section 4. Section 5 contains conclusions and recommendations for future work. The
Supplementary Material to the article (Sidén et al., 2021) provides the derivation of the
gradient and approximate Hessian used in the SGD optimization algorithm, and gives
the details of the cross-validation (CV) framework used to assess predictive performance.

The new methods in this article have been implemented and added to the BFAST3D
extension to the SPM software, available at http://www.fil.ion.ucl.ac.uk/spm/

ext/#BFAST3D.

2 Model and priors

Our model for fMRI data can be divided into three parts: (i) the measurement model,
which consists of a regression model that relates the observed blood oxygen level de-
pendent (BOLD) signal in each voxel to the experimental paradigm and nuisance re-
gressors, and a temporal noise model (Section 2.1), (ii) the spatial prior that models
the dependence of the regression parameters between voxels (Sections 2.2 and 2.3), and
(iii) the priors on the spatial hyperparameters and noise model parameters (Sections 2.4
and 2.5).

http://www.fil.ion.ucl.ac.uk/spm/ext/#BFAST3D
http://www.fil.ion.ucl.ac.uk/spm/ext/#BFAST3D
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2.1 Measurement model

The single-subject fMRI-data is collected in a T × N matrix Y, with T denoting the
number of volumes collected over time and N the number of voxels. The experimental
paradigm is represented by the T ×K design matrix X, with K regressors representing
the expected BOLD response for different conditions computed as the hemodynamic
response function (HRF) convolved with the binary time series of task events, or for
example nuisance regressors to control for head motion artifacts. The model can be
written as Y = XW + E, where W is a K × N matrix of regression coefficients and
E is a T × N matrix of error terms. We will also work with the equivalent vectorized
formulation y = X̄β + e, where y = vec(YT ), X̄ = X ⊗ IN , β = vec(WT ) and
e = vec(ET ). The error terms are modeled as Gaussian and independent across voxels,
possibly following voxel-specific P th order AR (autoregressive) models, described by
the N × 1 vector λ of noise precisions and the P ×N matrix A of AR parameters. For
the ease of presentation we will in what follows only consider the special case P = 0,
that is, error terms that are independent across both time and voxels, and treat the
more general case in the supplementary material.

We can divide our parameters into three groups: β, θn and θs. Here, β describes the
brain activity coefficients which we are mainly interested in, θn = {λ,A} are parameters
of the noise model, and θs are spatial hyperparameters that will be introduced in the
next subsection.

2.2 Spatial prior on activations

We assume spatial, three-dimensional GMRF priors (Rue and Held, 2005; Sidén et al.,
2017) for the regression coefficients, which are independent across regressors, that is,
we assume β|θs ∼ N

(
0,Q−1

)
. Here Q is a KN ×KN block diagonal matrix with the

N×N matrix Qk as the kth block. The vector θs = {θs,1, . . . ,θs,K} contains the spatial
hyperparameters that the different Qk depend on. The precision matrices Qk may be
chosen differently for different k. In this paper, we construct the different Qk using the
SPDE approach (Lindgren et al., 2011), which allows for sparse GMRF representations
of Matérn fields. An overview of the different priors can be seen in Table 1, and are
described in more detail below.

Sidén et al. (2017) focus on the unweighted graph Laplacian prior Qk = τ2G which
we refer to here as the ICAR(1) (first-order intrinsic conditional autoregression) prior.
The matrix G is defined by

Gi,j =

⎧⎪⎨
⎪⎩
ni, for i = j,

−1, for i ∼ j,

0, otherwise,

(2.1)

where i ∼ j means that i and j are adjacent voxels and ni is the number of voxels
adjacent to voxel i. The ICAR(1) prior can be derived from the local assumption that
xi − xj ∼ N (0, τ−2), for all unordered pairs of adjacent voxels (i, j), where x denotes
the GMRF (Rue and Held, 2005). Thus, one can see that τ2 controls how much the
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Spatial prior α κ Precision matrix

GS – – τ2I

ICAR(1) 1 = 0 τ2G

M(1) 1 > 0 τ2K, K = κ2I+G

ICAR(2) 2 = 0 τ2GTG

M(2) 2 > 0 τ2KTK, K = κ2I+G

A-M(2) 2 > 0 τ2KTK, K = κ2I+ hxGx + hyGy + hzGz

Table 1: Summary of the spatial priors used and their precision matrices. The global
shrinkage (GS) prior is spatially independent, while the intrinsic conditional autore-
gression (ICAR), Matérn (M) and anisotropic Matérn (A-M) can be seen as GMRF
representations of generalized Matérn fields.

field can vary between neighboring voxels, where large values of τ2 enforce a field that is
spatially smooth. The ICAR(1) prior is default in the SPM software for Bayesian fMRI
analysis. The second-order ICAR(2) prior is a more smooth alternative, corresponding
to a similar local assumption for the second-order differences, and has been used earlier
for fMRI analysis in 2D (Penny et al., 2005). The ICAR priors can be extended by
adding κ2 to the diagonal of G as in the right hand column of Table 1, and when κ > 0
we refer to these as M(α) (α-order Matérn) priors. The reason for this is the SPDE link
established by Lindgren et al. (2011). For example, the M(2) prior can be seen as the
solution u to

τ
(
κ2I+G

)
u ∼ N (0, I) , (2.2)

which can in turn be seen as a numerical finite difference approximation to the SPDE

(
κ2 −Δ

)α/2
τu (s) = W (s) , (2.3)

when α = 2. Here s denotes a point in space, α is a smoothness parameter, Δ is the
Laplace operator, andW (s) is spatial white noise. Define also the smoothness parameter
ν = α − d/2, where d is the dimension of the domain. For ν > 0 and κ > 0, it can be
shown that a Gaussian field u(s) is a solution to the SPDE in (2.3), when it has the
Matérn covariance function (Whittle, 1954, 1963)

C(δ) =
σ2

2ν−1Γ(ν)
(κδ)

ν
Kν (κδ) , (2.4)

where δ is the Euclidean distance between two points in R
d, Kν is the modified Bessel

function of the second kind and

σ2 =
Γ (ν)

Γ (ν + d/2) (4π)
d/2

τ2κ2ν
(2.5)

is the marginal variance of the field u(s). As d = 3 in our case, for α = 2 we have
ν = 1/2 which is a special case where the Matérn covariance function is the same as the
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exponential covariance function. In this paper we also consider the SPDE when κ = 0
or ν = −1/2, in which case the solutions no longer have Matérn covariance, but are still
well-defined random measures, and we will refer to them as generalized Matérn fields.
We also define K = κ2I+G, in which case the solution to (2.2) is u ∼ N

(
0, (τ2KK)−1

)
,

which is largely the same as the solution obtained in Lindgren et al. (2011) using the
finite-element method when the triangle basis points are placed at the voxel locations,
apart for some minor differences at the boundary.

A benefit of the Matérn model is that its properties can be interpreted from the
parameters σ2, ρ and ν, which has a simple one-to-one relation to the hyperparameters
κ2, τ2 and α, at least when κ > 0 and ν > 0. In addition to the marginal variance of the
process σ2, defined in (2.5), we define the range ρ =

√
8ν/κ, which is the distance for

which two points in the field have correlation near to 0.13. This reveals an important
interpretation of the ICAR(2) prior, since this can be seen as a special case of M(2) with
κ = 0 ⇔ ρ = ∞, that is, infinite range. Increasing the smoothness parameter ν leads to
realizations of the process that appear as more smooth. This can be understood by the
property that a random realization of the process is n times differentiable if and only if
n < ν, see e.g. Sidén (2020, Figure 2.3) for an illustration.

For values of α �= 2, similar simple discrete solutions of the SPDE are also available.
In particular, for α = 1 we have u ∼ N

(
0, (τ2K)−1

)
. Extensions to higher integer

values of α such as α = 3, 4, . . . are straightforward in theory (Lindgren et al., 2011),
but will result in less sparse precision matrices Qk and thereby longer computing times,
and more involved gradient expressions for the parameter optimization in Section 3.1.

For each choice of Qk, we have spatial hyperparameters θs,k =
{
τ2k , κ

2
k

}
, which will

normally be estimated from data. For regressors not related to the brain activity, that
is, head motion regressors and voxel intercepts, we do not use a spatial prior, but instead
a global shrinkage (GS) prior with precision matrix Qk = τ2k I. We could here infer τ2k
from the data, but will normally fix it to some small value, for example τ2k = 10−12,
which gives a non-informative prior that provides some numerical stability.

2.3 Anisotropic spatial prior

The SPDE approach makes it possible to fairly easily construct anisotropic priors, for
example using a SPDE of the form

(
κ2 − hx

∂2

∂x2
− hy

∂2

∂y2
− hz

∂2

∂z2

)α/2

τu (s) = W (s) , (2.6)

with hz defined as hz = 1
hxhy

for identifiability. For α = 2, this SPDE has a finite-

difference solution with precision matrix τ2KK, with K now defined as K = hxGx +
hyGy+hzGz+κ2I. Here,Gx is defined as in (2.1), after redefining the neighbors as being
only the adjacent voxels in the x direction. Gy and Gz are defined correspondingly, so
that G = Gx+Gy+Gz. When using this prior for regressor k we have four parameters,
θs,k =

{
τ2k , κ

2
k, hx,k, hy,k

}
. The new parameters hx and hy allows for different relative

length scales of the spatial dependence in the x-, y- and z-direction. This is useful
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considering that fMRI data often do not have voxels of equal size in all dimensions and
the data collection is normally not symmetric with respect to the three axes. Also, in
case the spatial dependence in the underlying activity pattern is different in the different
spatial dimensions, this can automatically be inferred from the data, by learning the
values of hx and hy. Conveniently, hx = hy = 1 gives the standard isotropic Matérn
field defined earlier.

Proposition 2.1. For α > d/2, the anisotropic field u defined in (2.6) on R
d has the

marginal variance defined in (2.5), and the variance thus does not depend on hx and
hy. Furthermore, Cov(u(s), u(t)) = C(

√
(s− t)TH−1(s− t)), where H is a diagonal

matrix with diagonal (hx, hy, 1/ (hxhy))
T
, and C(δ) is the isotropic Matérn covariance

function defined in (2.4) with ν = α− d/2.

Proof. We show the covariance formula first, and then the statement about the marginal
variance follows as Cov(u(s), u(s)) = C(

√
0TH−10) = C(0). By using a certain defi-

nition of the Fourier transform, the spectral density of u in the anisotropic SPDE in
(2.6) is

S (ω) =
1

(2π)
d

1

τ2 (κ2 + ωTHω)
α , (2.7)

so the covariance function can be written as

Cov (u(s), u(t)) =

∫
Rd

1

(2π)
d

1

τ2 (κ2 + ωTHω)
α e

−iωT (s−t)dω. (2.8)

An isotropic field v can be written as an anisotropic field with H = I, so its covariance
function for δ = ‖s− t‖2 is

Cov (v(s), v(t)) =

∫
Rd

1

(2π)
d

1

τ2 (κ2 + ωTω)
α e

−iωT (s−t)dω. (2.9)

On the other hand,

Cov
(
v(H−1/2s), v(H−1/2t)

)
=

∫
Rd

1

(2π)
d

1

τ2 (κ2 + ωTω)
α e

−iωT (H−1/2s−H−1/2t)dω

(2.10)

=

∫
Rd

1

(2π)
d

1

τ2 (κ2 + zTHz)
α e

−izT (s−t) det
(
H1/2

)
dz,

where the last step used the variable substitution ω = H1/2z. Since det
(
H1/2

)
=√

hx · hy · 1/ (hxhy) = 1, the last expression equals that in (2.8). So

Cov (u(s), u(t)) = Cov
(
v(H−1/2s), v(H−1/2t)

)
= C

(√
(s− t)

T
H−1 (s− t)

)
,

(2.11)

using that

√
(s− t)

T
H−1 (s− t) =

∥∥H−1/2s−H−1/2t
∥∥
2
.
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Proposition 2.1 implies that changing hx or hy does not affect the marginal variance
of the field. This is convenient because it means that the anisotropic parameterization
does not change the interpretation of τ2 and κ2, apart from that ρ =

√
8ν/κ will now

be the (in some sense) average range in the x-, y- and z-direction. Thus, we can use
the same priors for τ2 and κ2 as in the isotropic case. By putting log-normal priors on
hx and hy, as explained in the next subsection, we get priors that are symmetric with
respect to the x-, y- and z-direction.

2.4 Hyperparameter priors

We will now specify priors for the spatial hyperparameters θs = {θs,1, . . . ,θs,K}, which
we assume to be independent across the different regressors k. For brevity, we drop
subindexing with respect to k in what follows.

Penalised complexity (PC) priors (Simpson et al., 2017) provide a framework for
specifying weakly informative priors that penalize deviation from a simpler base model.
Fuglstad et al. (2019) showed the usefulness of PC priors for the hyperparameters of
Matérn Gaussian random fields, where the base model is chosen for κ2 as the intrinsic
field κ2 = 0 and the base model for τ2|κ2 is chosen as the model with zero variance,
that is τ2 = ∞ (note that our definition of τ2 corresponds to τ−1 in Fuglstad et al.
(2019)). This means exponential priors for κd/2 and for τ−1|κ2. The PC prior for M(2)
allows the user to be weakly informative about range and standard deviation of the
spatial activation coefficient maps, by a priori controlling the lower tail probability
for the range Pr (ρ < ρ0) = ξ1 and the upper tail probability for the marginal vari-
ance Pr

(
σ2 > σ2

0

)
= ξ2 of the field. By default, we will set ξ1 = ξ2 = 0.05, ρ0 to 2

voxel lengths and σ2
0 corresponding to 5% probability that the marginal standard de-

viation of the activity coefficients is larger than 2% of the global mean signal. See the
supplementary material for full details about the PC prior for the M(2) hyperparame-
ters.

For M(1), PC priors are not straightforward to specify, since the range and marginal
variance are not available for ν = −1/2 in the continuous space, so we will instead use
log-normal priors for τ2 and κ2, as specified in the supplementary material.

For ICAR(1) and ICAR(2) we use the PC prior for τ2 for Gaussian random effects in
Simpson et al. (2017, Section 3.3), and we follow their suggestion for handling the sin-
gular precision matrix. Since these spatial priors do not have a finite marginal variance,
we let the PC prior control the marginal variances of β|VTβ = 0 instead, where V is
the nullspace of the prior precision matrix. These nullspaces are known by construction,
and the variances measure deviances beyond the addition of a constant to all voxels
for ICAR(1), and beyond the addition of constants and linear trends for ICAR(2). The
variances are inversely proportional to τ2, and we numerically computed them through
simulation using a typical brain (from the word object experiment described below)
to be σ̄2 = 0.29/τ2 for ICAR(1) and σ̄2 = 0.76/τ2 for ICAR(2), on average across
all voxels. We specify σ2

0 and ξ2 so that Pr(σ̄2 > σ2
0) = ξ2 and use ξ2 = 0.05 and σ0

corresponding to 2% of the global mean signal.
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For the anisotropic priors we use log-normal priors for hx and hy as

[
log hx

log hy

]
∼ N

(
0, σ2

h

[
1 −1

2
−1

2 1

])
, (2.12)

which means that also log (1/ (hxhy)) ∼ N
(
0, σ2

h

)
with correlation −1/2 with log hx

and log hy. The motivation for this prior is that it is centered at the isotropic model
hx = hy = 1, and it is symmetric with respect to the x-, y- and z-direction. We will use
σ2
h = 0.01 as default, which roughly corresponds to a (0.8, 1.2) 95%-interval for hx.

2.5 Noise model priors

We use priors for the noise model parameters θn = {λ,A} that are independent across
voxels and across AR parameters within the same voxel, with λn ∼ Γ (u1, u2) and
Ap,n ∼ N (0, 1/τ2A), which is the same prior as in Penny et al. (2005). Normally we use
u1 = 10 and u2 = 0.1, which are the default values in the SPM software and τ2A = 10−3

which is the value used in Penny et al. (2005). We have seen that the spatial prior for
the AR parameters previously used (Penny et al., 2007; Sidén et al., 2017) gives similar
results in practice, which is why we use the computationally more simple independent
prior for A.

3 Bayesian inference algorithm

The fast MCMC algorithm in Sidén et al. (2017) is not trivially extended to a 3D model
with a Matérn prior as the updating step for κ2

k conditional on the other parameters
requires the computation of log determinants such as log

∣∣κ2
kI+G

∣∣ for various κ2
k. This

in general requires the Cholesky decomposition of κ2
kI + G which has overwhelming

memory and time requirements for largeN and would normally not be feasible for whole-
brain analysis. In addition, κ2

k would require some proposal density for a Metropolis-
within-Gibbs-step, as a conjugate prior is not available. The same problems apply to the
MCMC steps for hx,k and hy,k when using the anisotropic model. The lack of conjugate
priors also makes the spatial VB (SVB) method in Sidén et al. (2017) more complicated,
as the mean-field VB approximate marginal posterior of κ2

k will no longer have a simple
closed form.

We instead take an EB approach and optimize the spatial and noise model param-
eters θ = {θs,θn}, for which we are not directly interested in the uncertainty, with
respect to the log marginal posterior p (θ|y). Conditional on the posterior mode esti-
mates of θ, we then sample from the joint posterior of the parameters of interest, the
activation coefficients in β, from which we construct PPMs of activations. Optimizing
θ is computationally attractive as we can use fast stochastic gradient methods (see
Section 3.1) tailored specifically for our problem. We also note that VB tends to under-
estimate the posterior variance of the hyperparameters (Bishop, 2006; Rue et al., 2009;
Sidén et al., 2017). The approximate posterior for β in Sidén et al. (2017) only depends
on the posterior mean of the hyperparameters, still it gives very small error compared to
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MCMC. Thus, if EB is seen as approximating the distribution of each hyperparameter
in θ as a point mass, it might not be much of a restriction compared to VB.

The marginal posterior of θ can be computed by

p (θ|y) = p (y|β,θ) p (β|θ) p (θ)
p (β|y,θ) p (y)

∣∣∣∣
β=β∗

, (3.1)

for arbitrary value of β∗, where all involved distributions are known in closed form, apart
from p (y), but this disappears when taking the derivative of log p (θ|y) with respect to
θi. In Section 3.1, we comprehensibly present the optimization algorithm, but leave the
finer details to the supplementary material. Given the optimal value θ̂, we will study
the full joint posterior β|y, θ̂ of activity coefficients, which is normally the main interest
for task-fMRI analysis. This distribution is a GMRF with mean μ̃ and precision matrix
Q̃, see details in the supplementary material, and can be used for example to compute
PPMs, as described in Section 3.2.

3.1 Parameter optimization

By using the EB approach with SGD optimization, we avoid the costly log determinant
computations needed for MCMC, since the computation of the posterior of θ is no
longer needed. Our algorithm instead uses the gradient of log p (θ|y) to optimize θ, for
which there is a cheap unbiased estimate. We also use an approximation of the Hessian
and other techniques to obtain an accelerated SGD algorithm as described below.

The optimization of θ will be carried out iteratively. At iteration j each θi is updated

with some step Δθi as θ
(j)
i = θ

(j−1)
i +Δθ

(j)
i . Let G(θ

(j−1)
i ) = ∂

∂θi
log p(θ|y)|θ=θ(j−1) de-

note the gradient andH(θ
(j−1)
i ) = ∂2

∂θ2
i
log p(θ|y)|θ=θ(j−1) denote the Hessian for θi (note

that we here use the term Hessian to describe a single number for each i, rather than
the full Hessian matrix for θ which would be too large to consider). Ideally, one would

use the Newton method with Δθ
(j)
i = −G(θ

(j−1)
i )/H(θ

(j−1)
i ), or at least some gradient

descent method with Δθ
(j)
i = −ηG(θ

(j−1)
i ), with some learning rate η. It turns out that

for our model, this is not computationally feasible in general, since the gradient depends
on various traces on the form tr(Q̃−1T) for some matrix T with similar sparsity struc-
ture as Q̃. For small problems, such traces can be computed exactly by first computing
the selected inverse Q̃inv of Q̃ using the Takahashi equations (Takahashi et al., 1973;
Rue and Martino, 2007; Sidén et al., 2017), but this is prohibitive for problems of size
larger than, say, KN > 105. However, the Hutchinson estimator (Hutchinson, 1990)

gives a stochastic unbiased estimate of the trace as tr(Q̃−1T) ≈ 1
Ns

∑Ns

j=1 v
T
j Q̃

−1Tvj ,
where each vj is a N × 1 vector with independent random elements 1 or −1 with equal

probability. This can be computed without computing Q̃−1, hence, we can obtain an
unbiased estimate of the gradient, which enables SGD. Using a learning rate η(j) with
the decay properties

∑
j(η

(j))2 < ∞ and
∑

j η
(j) = ∞ guarantees convergence to a local

optimum (Robbins and Monro, 1951; Asmussen and Glynn, 2007).

To speed up the convergence of the spatial hyperparameters θs, in addition to SGD,

we use an approximation of the Hessian H̃(θ
(j−1)
i ) = Eβ|Y,θ

[
∂2 log p(θ,β|y)

∂θ2
i

]∣∣∣
θ=θ(j−1)

,
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Algorithm 1 Parameter optimization algorithm.

Require: Initial values θ0 and Niter, γ1, γ2, ηmom,
{
η(j)

}Niter

j=1
, NPolyak, Ns

1: for j = 1 to Niter do

2: Estimate the gradient G(θ
(j−1)
i ) = ∂

∂θi
log p(θ|y)|θ=θ(j−1) for all i

3: Estimate H̃(θ
(j−1)
i ) = Eβ|Y,θ

[
∂2 log p(θ|y,β)

∂θ2
i

]∣∣∣
θ=θ(j−1)

for all i

4: Average Ḡ(θ
(j−1)
i ) = γ1Ḡ(θ

(j−2)
i ) + (1− γ1)G(θ

(j−1)
i ) for all i

5: Average H̄(θ
(j−1)
i ) = γ2H̄(θ

(j−2)
i ) + (1− γ2)H̃(θ

(j−1)
i ) for all i

6: Compute θs step sizes Δθ
(j)
s,i = ηmomΔθ

(j−1)
s,i − η(j)

H̄(θ
(j−1)
s,i )

Ḡ(θ
(j−1)
s,i ) for all i

7: Compute θn step sizes Δθ
(j)
n,i = ηnη

(j)Ḡ(θ
(j−1)
n,i ) for all i

8: Take step θ
(j)
i = θ

(j−1)
i +Δθ

(j)
i for all i

9: end for

10: Return θ̂ = 1
NPolyak

∑Niter

i=Niter−NPolyak+1 θ
(j)

which improves the step length (Lange, 1995; Bolin et al., 2019). This is also stochasti-
cally estimated using Hutchinson estimators of various traces, for example
tr(K−1

k K−1
k ) ≈ 1

Ns

∑Ns

j=1 v
T
j K

−1
k K−1

k vj , where K−1
k vj needs only to be computed once

for each j. The final optimization algorithm presented in Algorithm 1 also uses: i) av-
eraging over iterations (line 4-5), which gives robustness to the stochasticity in the
estimates, ii) momentum (line 6), which gives acceleration in the relevant direction and
dampens oscillations, and iii) Polyak averaging (line 10), which reduces the error in the
final estimate of θ by assuming that the last few iterations are just stochastic deviations
from the mode. In practice, all parameters are reparametrized to be defined over the
whole real line, see the supplementary material for details.

Some practical details about the optimization algorithm follow. Normally, the max-
imum number of iterations used is Niter = 200 the averaging parameters are γ1 = 0.2
and γ2 = 0.9, the momentum parameter is ηmom = 0.5, the learning rate decreases as
η(j) = 0.9

0.1max(0,j−100)+1 , the learning rate for θn is ηn = 0.001, we use NPolyak = 10

values for the Polyak averaging, and Ns = 50 samples for the Hutchinson estimator.
These parameter values led to desirable behavior when monitoring the optimization
algorithm on different datasets. We initialize the noise parameters by pre-estimating
the model without the spatial prior, and the spatial parameters are normally initialized
near to the prior mean. We also start the algorithm by running a 5 iterations of SGD
with small learning rate. In each iteration, we also check the sign of the approximate
Hessian to prevent steps in the direction opposite to the gradient, which could happen
due to the stochasticity or local non-convexity, and change the sign if necessary.

The computational bottleneck of the algorithm is the computation of large matrix
solves, such as Q̃−1vj , involving the multiplication of the inverse of large sparse precision
matrices with a vector. This is carried out using the fast preconditioned conjugate
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gradient (PCG) iterative solvers of the corresponding equation system Q̃u = vj , as
described in Sidén et al. (2017), where it is also illustrated that PCG is numerous times
faster than directly solving the equation system using the Cholesky decomposition in
these models. In addition, since the Hutchinson estimator requires many matrix solves
in each iteration, these can be performed in parallel on separate cores, giving great
speedup.

3.2 PPM computation

PPMs are used to summarize the posterior information about active voxels. The marginal
PPM is computed for each voxel n and contrast vector c as P (cTW·,n > γ|y, θ̂), for
some activity threshold γ, recalling that vec(WT ) = β are the activity coefficients.

Since β|y, θ̂ ∼ N (μ̃, Q̃−1) is a GMRF (see the supplementary material), it is clear

that cTW·,n|y, θ̂ is univariate Gaussian and the PPM would be simple to compute for

any c if we only had access to the mean and covariance matrix of W·,n|y, θ̂ for every
voxel n. The mean is known, but the covariance matrix is non-trivial to compute, since
the posterior is parameterized using the precision matrix. We therefore use the sim-
ple Rao-Blackwellized Monte Carlo (simple RBMC) estimate in Sidén et al. (2018) to
approximate this covariance matrix using

Var
(
W·,n|y, θ̂

)
=EW·,−n

[
Var

(
W·,n|W·,−n,y, θ̂

)]
+

VarW·,−n

[
E
(
W·,n|W·,−n,y, θ̂

)]
,

(3.2)

where −n denotes all voxels but n. The first term of the right hand side is cheaply
computed as the inverse of a K ×K subblock of Q̃. The second term is approximated

by producing NRBMC samples W(j) from W|y, θ̂, computing E(W·,n|W(j)
·,−n,y, θ̂) an-

alytically for each j, and computing the Monte Carlo approximation of the variance.
We leave out the details for brevity, but this computation is straightforward due to the
Gaussianity and computationally cheap due to the sparsity structure of Q̃. The PPM
computation time will normally be dominated by the GMRF sampling, which is done
using the technique invented in Papandreou and Yuille (2010) and summarized in Sidén
et al. (2017, Algorithm 2), and requires solving NRBMC equation systems involving Q̃
using PCG.

4 Results

This section is divided into three subsections. We start by analysing simulated fMRI
data, to demonstrate the EB method’s capability to estimate the true parameters, and
to visualise the differences between the spatial priors in a controlled setting. We then
consider real experimental fMRI data from two different experiments, and compare the
results when using different spatial priors by: inspecting the posterior activity maps,
examining the plausibility of new random samples from the spatial priors, and evaluating
the predictive performance using cross-validation. In the last subsection, we evaluate
approximation error of the EB method by comparing to full MCMC. All computations
are performed using our own Matlab code which is linked to in the end of Section 1.
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True values A-M(2) estimates

Condition ρ σ hx hy ρ σ hx hy

Weak 18 1 1 1 15.0 0.96 1.06 1.01
Short range 9 2 1 1 9.1 1.97 0.96 1.02
Long range 60 2 1 1 48.7 1.88 0.90 1.07
Anisotropic 18 1 0.5 2 16.9 1.05 0.60 1.67

Table 2: Spatial hyperparameters of the anisotropic Matérn model (A-M(2)), used for
the four conditions when simulating the data, and estimated values for the same data,
computed using the EB method. Spatial range ρ = 2/κ (in mm), marginal standard
deviation σ (see (2.5)) and anisotropic parameters hx and hy.

Figure 1: True activity coefficients β for the four conditions of the simulated dataset.

4.1 Simulated data

We consider a simulated dataset that is randomly generated using the anisotropic
Matérn (A-M(2)) prior with fixed hyperparameters. The size and shape of the brain
is taken from the word object dataset, described below. We first simulate four different
3D fields of activity coefficients β = vec(WT ) using four A-M(2) priors with different
hyperparameters. We select the hyperparameters to highlight different spatial charac-
teristics and name the four composed conditions: Weak (Small activation magnitude,
low σ), Short range (Short spatial range ρ), Long range (Long spatial range ρ) and
Anisotropic (hx �= 1 and hy �= 1). A summary of the selected hyperparameters can be
seen in Table 2, and one slice of the activity coefficient maps are shown in Figure 1.

We then use the simulated β coefficients to generate a time series of fMRI volumes. In
order to do this, we also borrow the following variables from the word object dataset: the
columns of the design matrix X corresponding to the HRF and intercept, the estimated
values for the elements in β corresponding to the intercept, and estimated values for
the noise variables λ and A. The generated dataset has T = 100 time points.

We use the EB method to estimate the model with the different spatial priors de-
scribed in Table 1. The estimated hyperparameters for the A-M(2) can be seen in
Table 2. The estimates indicate that the method manages to recover the true parameter
values fairly well for the Short range condition, when the signal is strong (high σ) and
the range is short (small ρ). However, when the signal is weak the estimates are more
affected by the noise, and when the range is long there is bias from boundary effects
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Figure 2: PPMs for the four conditions of the simulated dataset, estimated with dif-
ferent spatial priors. The last column “True” shows the results when the true A-M(2)
hyperparameters used to generate the data is used for estimation. The PPMs show
probabilities of exceeding 0.2% of the global mean signal, thresholded at 0.9. See the
definition of the spatial priors in Table 1. The corresponding posterior means are shown
in the supplementary material.

since a long range is harder to infer on a limited domain. The anisotropic parameters
hx and hy are reasonably well recovered in general, but the anisotropy is somewhat
underestimated for the Anisotropic condition, due to shrinkage from the prior.

Figure 2 shows the resulting PPMs for the different spatial priors, with hyperparam-
eters estimated by EB, for the same slice as in Figure 1. The last column also shows the
“true” PPMs obtained by using the A-M(2) with the hyperparameters used to generate
the data. We see how the non-spatial GS prior leads to cluttered PPMs which bear little
resemblance with the true activity coefficients. We note that the first-order ICAR(1)
and M(1) priors, with smoothness α = 1, tend to show smaller activity patterns than the
second-order priors with α = 2, except for perhaps the Short range condition. The differ-
ences between the second-order priors ICAR(2), M(2) and A-M(2) are quite subtle, but
for the Weak and Anisotropic conditions ICAR(2) shows some signs of over-smoothing,
resulting in slightly larger activity regions compared to the truth. As expected, M(2)
and A-M(2) show little discrepancy for the first three isotropic conditions, but for the
Anisotropic condition A-M(2) is to some degree closer to the truth.
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To test the capacity of the spatial priors, we consider an additional simulated dataset,
where the activity coefficients β were simulated using a spatially independent normal
distribution with standard deviation σ ∈ {1, 2, 4, 8} for the four different tasks. We
observe that the spatial Matérn priors are able to adapt to this situation by for example
learning a very short range ρ (shorter than one voxel length) for the M(2) and A-M(2)
priors, corresponding to near spatial independence. The PPMs for this simulation study
are shown in the supplementary material.

4.2 Experimental data

Description of the data

We evaluate the method on two different real experimental fMRI datasets, the face
repetition dataset (Henson et al., 2002) previously examined in Penny et al. (2005);
Sidén et al. (2017), and the word object dataset (Duncan et al., 2009). The face
repetition dataset is available at SPM’s homepage (http://www.fil.ion.ucl.ac.uk/
spm/data/face_rep/) and the word object dataset is available at OpenNEURO
(https://openneuro.org/datasets/ds000107/versions/00001) (Poldrack and Gor-
golewski, 2017). Both experiments have four conditions or subject tasks. Thus, the
design matrix X for both datasets has K = 15 columns, with column (1, 3, 5, 7) corre-
sponding to the standard canonical HRF convolved with the different task paradigms,
column (2, 4, 6, 8) corresponding to the HRF derivative, column 9 to 14 corresponding
to head motion parameters and the last column corresponding to the intercept.

The face repetition dataset was acquired during an event-related experiment, where
greyscale images of non-famous and famous faces were presented to the subject for 500
ms. The four conditions in the dataset correspond to the first and second time a non-
famous or famous face was shown. The contrast studied below “mean effect of faces” is
the average of the HRF regressors, that is cTW·,n = (W1,n +W3,n +W5,n +W7,n)/4,
and the presented PPMs can therefore be interpreted as showing brain regions involved
in face processing. The dataset was preprocessed using the same steps as in Penny
et al. (2005) using SPM12 (including motion correction, slice timing correction and
normalization to a brain template, but no smoothing), and small isolated clusters with
less than 400 voxels were removed from the brain mask. The resulting mask has N =
57184 voxels and there are T = 351 volumes.

The word object experiment also has conditions that correspond to visual stimuli:
written words, pictures of common objects, scrambled pictures of the same objects, and
consonant letter strings, which were presented to the subject for 350 ms according to a
block-related design. For the word object data, preprocessing consisted only of motion
correction and removal of isolated clusters of voxels, as the slice time information was
not available. We selected subject 10, which had relatively little head motion, and the
resulting brain mask has N = 41486 voxels and the number of volumes is T = 166.

For both datasets, the voxels are of size 3× 3× 3 mm and the global mean signal is
computed as the average value across all voxels in the brain mask and all volumes, and
the activity threshold γ used in the PPM computation is related to this quantity.

http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/
http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/
https://openneuro.org/datasets/ds000107/versions/00001
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Figure 3: PPMs for the two experimental datasets, when using different spatial priors,
thresholded at 0.9. The spatial priors are summarised in Table 1. The top row shows
axial slice 12 of the face repetition dataset, and the middle and bottom rows show axial
slice 7 and coronal slice 11 of the word object dataset. The face repetition PPMs consider
the contrast “mean effect of faces” and show probabilities of effect sizes exceeding 1%
of the global mean signal. The word object PPMs consider the first condition “Words”
and show probabilities of effect sizes exceeding 0.5% of the global mean signal. The
corresponding posterior means and standard deviations are shown in the supplementary
material.

Posterior results

We estimate the models with the different spatial priors for the two experimental
datasets using the EB method, and present the resulting PPMs in Figure 3. As for
the simulated dataset, we observe cluttered PPMs for the non-spatial GS prior, and in
general the priors with α = 1 (ICAR(1) and M(1)) lead to substantially smaller activity
regions compared to the priors with α = 2. Given the same α, the differences between
the Matérn and ICAR priors do not seem as striking, but for the word object data,
the ICAR(2) prior produces an activity region in the left-hand side of the brain that is
much smaller for the M(2) and A-M(2) priors.

The use of second order Matérn priors enables simple interpretations of the spatial
properties of the inferred activity coefficient fields. We report the estimated hyperpa-
rameters when using the A-M(2) prior for the four conditions in respective dataset in
Table 3. The results show that the face repetition data activity patterns have longer
spatial ranges (higher ρ) and generally larger magnitudes (higher σ), compared to the
word object data. The anisotropic parameters indicate stronger dependence in the z-
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Face repetition data

Condition ρ σ hx hy

Non-famous 1 62.9 2.36 0.72 0.75
Non-famous 2 58.7 2.40 0.73 0.73
Famous 1 59.5 2.28 0.70 0.74
Famous 2 47.0 1.98 0.79 0.68

Word object data

Condition ρ σ hx hy

Words 10.5 1.07 1.21 1.11
Objects 16.0 0.93 1.13 1.08

Scrambled 21.0 1.24 1.18 1.16
Consonant 11.7 2.09 1.14 1.23

Table 3: Estimated spatial hyperparameters for the A-M(2) prior by the EB method, for
the different datasets and conditions. Spatial range ρ = 2/κ (in mm), marginal standard
deviation σ (see (2.5)) and anisotropic parameters hx and hy.

direction (between slices) for the face repetition data, while the opposite is true for the
word object data.

The observed differences between the datasets could be explained by differences in
the studied subjects and tasks, but is likely as well an effect from differences in scanner
properties and that the slice timing and normalization preprocessing steps impose some
smoothness for the face repetition data. The latter are spatial properties that would
preferably be modelled in the noise rather than in the activity patterns, and we view
improved, computationally efficient spatial noise models for fMRI data as important
future work.

Nevertheless, the ability to flexibly estimate and indicate different spatial properties
is indeed a great advantage of the second order Matérn models. Furthermore, these
Matérn models correspond to exponential autocorrelation functions, whose fat tails
resemble the empirical autocorrelation functions for fMRI data found in Eklund et al.
(2016, Supplementary Figure 17) and Cox et al. (2017, Figure 3).

Prior simulation

To better understand the meaning of the different priors in practice, Figure 4 displays
samples from the spatial priors using the estimated hyperparameters for the first re-
gressor of the different datasets. The M(1) and ICAR(1) priors produce fields that vary
quite rapidly, while the second order priors give realizations that are more smooth. For
the word object dataset we note that the short estimated range for M(2) gives a sample
with much faster variability than the sample from ICAR(2), which looks unrealistically
smooth. This illustrates the problem with using the infinite range ICAR(2) prior for a
dataset where the inherent range is much shorter.

Cross-validation

Many studies, including this one, evaluate models for fMRI data by displaying the
estimated brain activity maps and deciding whether they look plausible or not. A more
scientifically sound approach would be to compare models based on their ability to
predict the values of unseen data points, which is the standard procedure in many
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Figure 4: Random samples from the different spatial priors using the estimated hyper-
parameters for the first regressor of the different datasets. The same seed has been used
for the same α and dataset.

other statistical applications. The problem for fMRI data is that the main object of
interest, the set of activity coefficients W corresponding to activity related regressors,
is not directly observable, but only indirectly through the observed noisy BOLD signal
Y. This makes direct comparison to ground truth activation impossible. We will here
attempt to evaluate the performance of the spatial priors for brain activity by measuring
the out-of-sample predictive performance by computing various prediction error scores
on Y instead. We cannot, however, expect to find large differences between the different
priors, as only a small fraction of the signal is explained by brain activation; most is
explained by the intercept and various noise sources.

We compute the out-of-sample fit using CV by repeatedly leaving out 90% of the
voxels randomly over the whole brain, and estimating the predictive distribution of
the data Y in the left-out voxels given the data in the remaining 10% of voxels and
the original estimates of the hyperparameters θ based on the whole dataset. The same
hyperparameters are used in all repetitions to avoid the computational cost of refitting
the model each time, still making the comparison fair across spatial priors. We then
compare the estimated predictive distribution and the actual signal Y in the left-out
voxels. In order to focus the comparison on the evaluation of the spatial priors, we must
compute the errors in a slightly more cumbersome way than normal, which is explained
in the supplementary material, to reduce the impact of the noise model, head motion
and intercept regressors.

We use the mean absolute error (MAE) and root mean square error (RMSE) to
evaluate the predicted mean of Y for each prior, and the mean continuous ranked
probability score (CRPS), the mean ignorance score (IGN, also known as the logarithmic
score) and the mean interval score (INT) to evaluate the whole predictive distribution
for Y. All these scores are all examples of proper scoring rules (Gneiting and Raftery,
2007), which encourage the forecaster to be honest and the expected score is maximized
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Figure 5: Cross-validation scores computed on 90% left out voxels for the two datasets,
comparing the different spatial priors. The scores are computed as means across voxels,
and presented in negatively oriented forms, so that smaller values are always better. The
boxplots reflect the variation in 50 random sets of left out voxels. Additional results in
the supplementary material show these scores also for in-sample fit and 50% left out
voxels.

when the predictive distribution equals the generative distribution of the data points.
Since the predictive distribution is Gaussian given the hyperparameters, all the scores
can be computed using simple formulas, see the supplementary material.

The results can be seen in Figure 5. For the face repetition data, we note that the
second order Matérn priors (M(2) and A-M(2)) perform better than the other priors in
all cases. For the word object data the differences between different priors are smaller,
which can probably be explained by the higher noise level and shorter spatial correlation
range in this dataset, but the second order Matérn priors are generally among the best.
The absolute differences between the different priors may seem small, but one must
remember that most of the error comes from noise that is unrelated to the brain activity,
making it hard for a spatial activity prior to substantially reduce the error. The large
RMSE for the ICAR(2) prior for the face repetition data indicates that this prior can
give relatively large out-of-sample errors, possibly due to over-smoothing.

4.3 Evaluation of the EB method and comparison to MCMC

One of the most challenging aspects with our work has been in the development of the
EB method, summarised in Algorithm 1, and in finding optimization parameters that
result in stable and fast convergence in the optimization of the spatial hyperparameters.
The convergence behaviour for the M(2) prior is depicted in Figure 6. The hyperparam-
eter optimization trajectories in Figure 6a suggest that the parameters reach the right
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Figure 6: Convergence of the EB method for the M(2) prior. (a) The hyperparameters
τ2k and κ2

k corresponding to different conditions over the iterations of the Algorithm 1,
when using the M(2) prior for the face repetition data (left) and word object data
(right). (b) PPM for the word object data after 10, 50, 100 and 200 iterations, where
the last is the same as in Figure 3.

GS ICAR(1) M(1) ICAR(2) M(2) A-M(2)

0.4 0.9 5.3 1.1 2.0 4.2

Table 4: Computing times (h) for the EB method for different spatial priors.

level in about 100 iterations. The results presented in this paper are all, more conser-
vatively, after 200 iterations of optimization, but future work could include coming up
with some automatic convergence criterion, based on the change of some parameters
over the iterations. Figure 6b shows how the PPM of the word object data converges.
The computing time on a computing cluster, using 16 workers on Intel Xeon Gold 6240
processors at 2.6 GHz, was 2.0h until convergence (100 iterations). The corresponding
times for the other spatial priors can be found in Table 4. For comparison, the com-
puting time for MCMC with the ICAR(1) in the analysis below was almost one week.
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Figure 7: Comparison between MCMC and EB in terms of PPMs (left) and posterior
mean of activity coefficients (right) using the ICAR(1) prior for the face repetition data.
The presented PPM for EB is the same as in Figure 3.

Due to a maximum time limit on the computing cluster (3 days), the MCMC run was
carried out on a different computer with Intel Xeon E5-1620 processors at 3.5 GHz.

To assess how well the EB posterior with optimized hyperparameters approximates
the full posterior, we also fit the model with the ICAR(1) prior using MCMC as de-
scribed in Sidén et al. (2017), using the face repetition data. Figure 7 compares PPMs
and posterior mean maps between the two methods, and the differences are practically
negligible, and much smaller than, for example, the differences between different spatial
priors. The EB estimates for the spatial hyperparameters

{
τ2k
}
are also very similar to

the MCMC posterior mean. For this exercise the same conjugate gamma prior for τ2k as
in Sidén et al. (2017) was also for EB. The MCMC method used 10,000 iterations after
1,000 burnin samples and thinning factor 5.

These results support the conjecture made earlier, that the posterior distributions
of the hyperparameters θ are well approximated by point masses when the goal of the
analysis is to correctly model the distribution of the activity coefficients W. It would be
interesting to do the same comparison for the other spatial priors, and the other hyperpa-
rameters (κ2, hx and hy), but to our knowledge there exists no computationally feasible
MCMC method to sample these parameters, which lack the conjugacy exploited for τ2.

5 Conclusions and directions for future research

We propose an efficient Bayesian inference algorithm for whole-brain analysis of fMRI
data using the flexible and interpretable Matérn class of spatial priors. We study the
empirical properties of the prior on simulated and two experimental fMRI datasets.
Based on the experimental data, we conclude that the second order Matérn priors (M(2)
or A-M(2)) should be the preferred choice for future studies. The priors with α = 1 are
clearly inferior in the sense that they do not find the seemingly correct activity patterns
that are found by the priors with α = 2, they produce new samples that appear too
speckled and they perform worse in the cross-validation. The differences between the
M(2) and ICAR(2) are less evident, but our paper contains a number of results that
are favorable to the M(2) prior: (i) these priors produce somewhat different activity



P. Sidén, F. Lindgren, D. Bolin, A. Eklund, and M. Villani 1273

maps for some datasets while M(2) has better theoretical properties, (ii) new samples
from the ICAR(2) look too smooth, (iii) M(2) performed consistently better in the
cross-validation, and (iv) the M(2) prior parameters are more easily interpreted.

The introduced anisotropic Matérn prior was shown to perform slightly better than
the isotropic Matérn prior in the cross-validation, but overall the differences between
the results for the two priors are quite small. Still, A-M(2) has the capacity to model
also anisotropic datasets, while containing the M(2) prior as a special case, and could
therefore be the best alternative. To get the full potential of the anisotropic model, one
should consider non-stationary anisotropic models (Lindgren et al., 2011; Fuglstad et al.,
2015), where the anisotropy is allowed to vary locally, capturing different dependence
structures in different brain regions.

The optimization algorithm appears satisfactory with relatively fast convergence.
Using SGD is an improvement relative to the coordinate descent algorithm employed for
SVB in Sidén et al. (2017), because following the gradient is in general the shorter way
to reach the optimum and there exists better theoretical guarantees for the convergence.
Also, well-known acceleration strategies, such as using momentum or the approximate
Hessian information, are easier to adopt to SGD and one can thereby avoid the more
ad hoc acceleration strategies used in Sidén et al. (2017, Appendix C).

The EB method is shown to approximate the exact MCMC posterior well empirically,
suggesting that properly accounting for the uncertainty in the spatial hyperparameters
is of minor importance if the main object is the activity maps.

As the smoothness parameter α appears to be the most important for the resulting
activity maps, it would in future research be interesting to estimate it as a non-integer
value, which could be addressed using the method in Bolin and Kirchner (2020).

The PPMs reported in this work only contain the marginal probability of activation
in each voxel. If instead using joint PPMs (Yue et al., 2014; Mejia et al., 2020) based on
excursions sets (Bolin and Lindgren, 2015) to address the multiple comparison problem
of classifying active voxels, it is likely to see larger differences between the M(2) and
ICAR(2) prior, since the joint PPMs depend more on the spatial correlation. The joint
PPMs are easily computed from MCMC output, but harder for the EB method due to
the posterior covariance matrix being costly to compute. Future work should address
this issue, which could probably be solved by extending the block RBMC method in
Sidén et al. (2018).

The estimated spatial hyperparameters for the experimental datasets in Table 3 have
strikingly similar values across different HRF regressors. A natural idea is therefore to
let these regressors share the same spatial hyperparameters, at least when the tasks
in the experiment are similar. Our Bayesian inference algorithm is straightforwardly
extended to this setting.

Supplementary Material

Supplementary Material for “Spatial 3D Matérn priors for fast whole-brain fMRI anal-
ysis” (DOI: 10.1214/21-BA1283SUPP; .pdf).

https://doi.org/10.1214/21-BA1283SUPP
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