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Bayesian Tensor Response Regression with an
Application to Brain Activation Studies*

Rajarshi Guhaniyogi’ and Daniel Spencer?

Abstract. This article proposes a novel Bayesian implementation of regression
with multi-dimensional array (tensor) response on scalar covariates. The recent
emergence of complex datasets in various disciplines presents a pressing need to
devise regression models with a tensor valued response. This article considers one
such application of detecting neuronal activation in fMRI experiments in presence
of tensor valued brain images and scalar predictors. The overarching goal in this
application is to identify spatial regions (voxels) of a brain activated by an ex-
ternal stimulus. In such and related applications, we propose to regress responses
from all cells (or voxels in brain activation studies) together as a tensor response
on scalar predictors, accounting for the structural information inherent in the ten-
sor response. To estimate model parameters with proper cell specific shrinkage,
we propose a novel multiway stick breaking shrinkage prior distribution on tensor
structured regression coefficients, enabling identification of cells which are related
to the predictors. The major novelty of this article lies in the theoretical study of
the contraction properties for the proposed shrinkage prior in the tensor response
regression when the number of cells grows faster than the sample size. Specifically,
estimates of tensor regression coefficients are shown to be asymptotically concen-
trated around the true sparse tensor in Ls-sense under mild assumptions. Various
simulation studies and analysis of a brain activation data empirically verify desir-
able performance of the proposed model in terms of estimation and inference on
cell-level parameters.

Keywords: brain activation, BOLD measure, fMRI studies, multiway stick
breaking shrinkage prior, posterior consistency, tensor response.

1 Introduction

Of late, neuroscience or related applications routinely encounter regression scenarios in-
volving a multidimensional array or tensor structured response and scalar predictors. An
important motivating example occurs in single-subject Functional MRI (fMRI) studies
to detect localized regions where neuronal activation takes place in presence of external
stimuli (e.g., during a task). During the course of an fMRI experiment, the three dimen-
sional brain image space is divided into a large number of rectangular cells, also referred
to as “voxels”. A series of brain images of the blood-oxygen-level-dependent measure
(BOLD measure) are acquired over multiple time points across all voxels while a subject
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performs multiple tasks, yielding three dimensional tensor responses over time points.
One could also examine a slice of an fMRI scan, resulting in a two-dimensional tensor
for each time point. The BOLD measure tensor response at each time point is presumed
to be associated with the task related predictors and it is of scientific interest to de-
lineate the nature and regions of activation using a regression framework involving the
tensor response and task related predictors. Similarly, in electroencephalography (EEG)
studies voltage values are measured from numerous electrodes placed on the scalp over
time. The resulting data is a two-dimensional matrix where the readings are both spa-
tially and temporally correlated. These matrix responses are often regressed on a set of
scalar predictors (e.g., if a subject is alcoholic or not) to identify their variation with
the predictors. All these applications involve a response tensor Y; € RP1* " *PD and a
vector of predictors x; € R™ at time ¢, respectively, with an objective to understand
the cells in Y; influenced by the changes in x;. Although the tensor response regres-
sion framework is motivated by the aforementioned neuroimaging studies, the proposed
methodology equally applies to a variety of scientific applications, including chemomet-
rics (Bro, 2006), psychometrics (Kiers and Mechelen, 2001) and relational data (Gerard
and Hoff, 2015), among others, where tensor valued responses are collected routinely.

Rather than analyzing voxels within a tensor response together, many neurosci-
entists use what is referred to as the General Linear Model (GLM), which is not to
be confused with the generalized linear model. The GLM fits a regression model at
each cell in the tensor response independently of the others and calculates the test
statistic corresponding to each cell to identify if the response is significantly associated
with a predictor in that cell, accounting for multiple testing corrections (Penny et al.,
2011; Friston et al., 1995; Genovese et al., 2002). The GLM is conceptually simple and
computationally efficient, though many multiple testing corrections do not take spatial
relationships into account. Corrections that do take the spatial relationships between
voxels into account require tuning and make strong assumptions about spatial struc-
tures (Poline et al., 1997). Additionally, neuroimaging data are usually pre-processed
using a kernel convolution based spatial smoothing approach. Using the GLM on pre-
smoothed data may result in inaccurate estimation and testing of the covariate effects
(Chumbley and Friston, 2009; Li et al., 2011). More principled approaches vectorize the
tensor response to construct a multivariate vector response regression. Some notable
structures employed to estimate parameters in the multivariate vector response regres-
sion include sparse regressions with various penalties incorporating correlated response
variables (Simila and Tikka, 2007; Peng et al., 2010), reduced-rank regressions (Yuan
et al., 2007; Chen et al., 2013) and sparse reduced-rank regressions (Chen and Huang,
2012). While these methods view tensor response as a high dimensional vector without
any spatial association among its cells, our goal is to retain some spatial information in
the multidimensional tensor into the proposed model.

To this end, sophisticated approaches include adaptive multiscale smoothing meth-
ods and spatially varying coefficient (SVC) models. The former estimates parameters by
building iteratively increasing neighbors around each cell and combining observations
within the neighbors with weights (Li et al., 2011). The SVC models add spatial compo-
nents in the cell by cell regression that account for the spatial correlations between cells
(Zhang et al., 2015, 2014; Descombes et al., 1998; Zhu et al., 2014). These approaches
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introduce distinct parameters for different cell specific regressions and propose to model
them jointly. For a tensor response of dimensions p; X --+ X pp, where py1,...,pp are
moderately large, such strategies lead to the joint modeling of at least Hle p; parame-
ters, which may turn out to be computationally challenging. There is a parallel literature
to model spatial dependence among regression coefficients induced by Markov random
fields (MRF) (Smith and Fahrmeir, 2007; Zhang et al., 2015). MRF models are gener-
ally efficient in computation, though our proposed approach seems to yield somewhat
better inference in comparison with a specific Gaussian MRF model (see Section 3).
Intuitively, introducing tensor response in the regression without reshaping it seems to
preserve the neighborhood information of the cells in the response. A more sophisticated
MRF model may improve the inference, with perhaps added computational cost.

Recently, Li and Zhang (2017) propose a novel approach of regressing the tensor vari-
ate response on scalar predictors, where the envelope technique by Cook et al. (2010) is
employed to yield point estimates of the parameters. Subsequently, Sun and Li (2017)
provide convergence rates of the frequentist penalized regression approaches with a ten-
sor response and vector predictors. This approach proposes low rank decomposition
of the tensor coefficient and introduces multiple constraints on the parameter space.
While such constraints can be more seamlessly accommodated by frequentist optimiza-
tion algorithms, they offer a steep challenge for Bayesian implementation. Additionally,
frequentist optimization frameworks are dependent on tuning parameters (e.g., the en-
velope dimensions in Li and Zhang (2017)), with choices for these parameters being
sensitive to the tensor dimensions and the signal-to-noise ratio (degree of sparsity).

In the same vein as Li and Zhang (2017), we propose a regression scenario with
tensor response Y; and predictors x;, referred to as the tensor response regression
(TRR). The coefficient corresponding to each predictor in the vector x; is a tensor,
and is assumed to possess a “low rank” canonical decomposition/parallel factorization
decomposition (CANDECOMP/PARAFAC, or CP), which is defined in Section 2.1.
The model is also designed to be generalizable to any value of D for possible appli-
cation in other research areas. For the Bayesian implementation, we employ a novel
multiway stick breaking shrinkage prior distribution to shrink the cells of the tensor
coefficient corresponding to unimportant voxels close to zero while maintaining accu-
rate estimation and uncertainty of cell coefficients related to important voxels. Our
framework is, to the best of our knowledge, the first Bayesian framework for regressing
a tensor response on scalar predictors. Additionally, TRR retains the tensor structure
of the response to implicitly preserve correlations between cells and yet substantially
reducing the number of parameters using the CP decomposition to accrue computa-
tional benefits. The TRR framework with the multiway stick breaking prior gives rise
to model-based shrinkage towards a “low rank” solution for the tensor coefficient, with a
carefully constructed shrinkage prior that naturally induces sparsity within and across
ranks for the tensor coefficient and results in identification of important cells in the
tensor related to a predictor. In addition, there is a strong need for uncertainty quan-
tification for parametric estimates, especially when the tensor dimension far exceeds the
sample size, or the signal to noise ratio is low, motivating the Bayesian TRR (BTRR)
approach.
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There is recent literature on regressing a scalar response on a tensor covariate
(Guhaniyogi et al., 2017; Zhou et al., 2013; Zhou and Li, 2014) that focuses on iden-
tifying voxels in the tensor which are related to the response. In contrast, we flip the
role and regress a tensor response on scalar predictors. Our approach differs from the
existing frequentist and Bayesian tensor modeling approaches (Gerard and Hoff, 2015;
Dunson and Xing, 2009) as we offer a supervised tensor regression framework that
accommodates scalar predictors.

One important contribution of this article remains proving posterior consistency for
the proposed BTRR model with the multiway stick breaking shrinkage prior. Theory of
posterior contraction for high dimensional regression models has gained traction lately,
though the literature is less developed in shrinkage priors compared to point-mass priors.
For example, Castillo et al. (2012) and Belitser and Nurushev (2015) have established
posterior concentration and variable selection properties for certain point-mass priors in
the many normal-means model. The latter article also establishes coverage of Bayesian
credible sets. Results on posterior concentration and variable selection in high dimen-
sional linear models are also established by Castillo et al. (2015) and Martin et al.
(2017) for certain point-mass priors. In contrast, Armagan et al. (2013b) show poste-
rior consistency in the linear regression model with shrinkage priors for low-dimensional
settings where the number of covariates does not exceed the number of observations.
Using direct calculations, Van Der Pas et al. (2014) show that the posterior based on the
horseshoe prior concentrates at the optimal rate for the many normal-mean problem.
Song and Liang (2017) and Wei and Ghosal (2017) consider a general class of continu-
ous shrinkage priors and obtain posterior contraction rates in ordinary high dimensional
linear regression models and logistic regression models, respectively, depending on the
concentration and tail properties of the density of the continuous shrinkage prior. In
contrast, the study of posterior contraction properties for tensor regression models in the
Bayesian paradigm has been given far too less attention. A recent article by Guhaniyogi
(2017) is of interest in this regard. Developing theory for tensor response regression
models is faced with two major challenges. While high dimensional regression models
directly impose a well investigated shrinkage prior on the predictor coefficients, BTRR
imposes shrinkage priors on margins of the CP decomposition of tensor coefficients.
As a result, the prior distribution on voxel level elements of the tensor coefficient is
difficult to deal with. Additionally, in typical applications, the dimensions of tensor co-
efficients are much larger than the sample size. Both of these present obstacles which
we overcome in this work. We also emphasize that the posterior contraction of ten-
sor regression in Guhaniyogi (2017) is shown for the Kullback-Leibler neighborhood.
In contrast, Bayesian tensor response regression develops a much stronger result with
Ls-neighborhood around the true tensor coefficient.

The remainder of the article flows as following. Section 2 introduces the model and
describes prior distributions on the parameters. Sections 3 and 4 show performance
of the proposed model through simulation studies and brain activation data analysis,
respectively. Section 5 concludes the paper. Posterior consistency results and their proofs
along with details of posterior computation including the full MCMC implementation
of the model can be found in the Supplementary Material (Guhaniyogi and Spencer,
2021).
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2 Framework & Model
2.1 Basic Notation

Let v1 = (Y115---»71py)" and v5 = (Y21,--.,72p,)’ be p1 x 1 and ps X 1 vectors, re-
spectively. The vector outer product «y; o 5 is a p1 X pg array with (i,7)-th entry
Y1iv2j- A D-way outer product between vectors v; = (Vj1,---,7jp;), 1 < j < D, is
a p; X --+ X pp dimensional array denoted by I' = «; o y4 0 --- 0o v with entries
Ly ip= Hle Vi - Define a vec(T') operator as one that stacks elements of this ten-

sor into a column vector of length H;-j:l pj. From the definition of outer products, it
follows that vec(y, 0oyy0--0vp) =vp ® -+ ® -, where ® represents the Kronecker
product. A tensor I' € ®]D:1§Rpf is known as a D-way tensor. A mode-k fiber of a D-way
tensor is obtained by fixing all dimensions of a tensor except the k-th one. For example,
in a matrix (equivalently a 2-way tensor), a column is a mode-1 fiber and a row is a
mode-2 fiber. A k-th mode vector product of a D-way tensor I' and vector a € RP*,
denoted by I'xya, is a tensor of the order of p; X -+ X pr_1 X pry1 X + -+ X pp, whose
elements are the inner products of each mode-k fibers of I with a.

A D-way tensor I' € ®jD:1§Rpf assumes a rank-R parallel factorization (PARAFAC)
decomposition (Kiers, 2000; Kolda and Bader, 2009) if T can be expressed as

R
F:Z7gr)o~~o'yg), (2.1)
r=1

where 'y;r) is a p; dimensional column vector as before, for 1 < j < D and 1 <r < R.

The terminology refers to these vectors as ‘margins’ of a particular rank. The PARAFAC
decomposition is generally preferred in most modeling applications involving tensors,
both in terms of interpretability (i.e., invariance to the order of summation) and from a
computational tractability point of view (Kolda and Bader, 2009). Part of the utility of
this decomposition in many sparse tensor scenarios is that it allows for contiguous areas
with the response to have little or no association with the covariate, which is reasonable
in the context of the application in neuroscience (Li and Zhang, 2017). This is also
visualized as the higher dimensional analogue to the singular value decomposition of
matrices.

2.2 Model Framework

Let Yy = (Yio))o 0P _) € @2 RP5 denote a tensor valued response at time ¢, where
v = (v1,...,0p)" represents the position of cell v in the D dimensional array of cells.
Let ; = (T14,...,Zm,t) € X CR™ be the m-dimensional measured vector predictor.
Assuming that both response Y, and predictors x; are centered around their respective

means, the proposed tensor response regression model of Y; on x; is given by
Y, =Tz + - +Tnzm + By, (2.2)

fort=1,...,T. T € ®jD:13%pJ', k =1,..,m is the tensor coefficient corresponding to
the predictor xj ;. To account for the temporal correlation of the response tensor at
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each cell v, the error is assumed to follow a component-wise first-order autoregressive
structure, Ey , = Ky Ei—1.4 + M0, Where &, € (—1,1) is the autocorrelation coefficient
corresponding to the cell v. This parametrization allows varying temporal correlation
in different voxels. However, k,, parameters are weakly identifiable and thus introducing
a large number of voxel specific k,, parameters is perhaps not worth the extra burden
both due to computation and due to estimation of these parameters. In fact, in many
fMRI data application for brain imaging studies, one often transforms the voxel spe-
cific response vector and predictor matrices using the wavelet transform, and perform
inference on the model parameters based on the transformed data. Wavelet transforms
have the advantage of ‘whitening’ the data, i.e., reducing the temporally correlated
errors to i.i.d. errors (Bullmore et al., 2004; Fadili and Bullmore, 2002; Meyer, 2003;
Zhang et al., 2015). In the light of this, we refrain from modeling E; using complex
temporal correlation structure and simplify the temporal correlation of E; by setting
Ky = K, for all v. Under this simplification, the error tensor E; € ®§-3:1§Rpj is assumed
to follow a componentwise AR(1) structure, vec(E;) = & vec(E;_1) + vec(n,), where
k € (—1,1) is the autocorrelation coefficient and 1, € ®]D:13‘€pf with each cell in n, fol-
lowing N(0,02/(1 — ?)). This ensures both computational simplicity and stationarity
in the AR(1) structure.

Voxel-by-voxel regression of Y; , on x; requires introducing m regression parameters
per voxel, hence a total of m Hle p; parameters, resulting in an ultra-high dimensional
modeling pursuit, and fails to incorporate tensor structural information into the esti-
mation procedure. This necessitates imposing a sufficiently expressive structure on I'y
which simultaneously achieves a large dimensionality reduction. We propose a flexible
rank-R PARAFAC decomposition of each 'y, i.e., I'y = Zf;l ,},Y’)c 0---0 'yg?k, where

’Yﬁ = (fy](.?l,...,’y;r,z. pj)' is a p; dimensional vector, 1 < r < R, 1 < j < D and

k=1,..,m.

A few remarks on (2.2) are in order. First, since we deal with modeling the linear
predictor part of the model, our framework can be extended to a GLM set up. Second,
the formulation also assumes easy extensions to settings with a more complicated spatio-
temporal correlation structure in E;. Additionally, PARAFAC decomposition reveals
that the cell level parameters are nonlinear functions of the tensor margins 71(:3 Careful
choice of prior distributions on the tensor margins implicitly imposes correlations among
voxels and facilitates identifying significantly nonzero cells in T'.

Imposing this additional rank-R PARAFAC structure on I'y, remarkably reduces the
total number of parameters in the model from 7”/1]_[;:):1 pj to Rm Zle pj. A critical
question remains whether such a dimension reduced structure can identify geometric
sub-regions in the tensor response which are related to the predictors. Additionally, we
also intend to accurately estimate coefficients corresponding to these sub-regions of the
tensor coefficient. The next section proposes a careful elicitation of the prior distribution
on the tensor parameters to achieve our goal.
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2.3 Multiway Stick Breaking Shrinkage Prior on Tensor Coefficients

Although the spike-slab prior for selective predictor inclusion (George and McCulloch,
1993; Clyde et al., 1996) possesses attractive theoretical properties, intractability of
exploring an exponentially large space of predictor inclusion along with the belief that
many regression coefficients may be small rather than exactly zero has led to consid-
erable growth in the appeal for continuous shrinkage priors. An impressive variety of
Bayesian shrinkage priors for ordinary high dimensional regression with a scalar/vector
response on high dimensional vector predictors has been proposed in recent times, see
for example Hans (2009); Carvalho et al. (2010); Armagan et al. (2013a) and references
therein. Shrinkage priors are based on the principle of artfully shrinking predictor co-
efficients of unimportant predictors to zero, while maintaining proper estimation and
uncertainty of the important predictor coefficients. Polson and Scott (2010) further
show that most of the existing shrinkage priors can be expressed as the scale mixture
of normal distributions with a global parameter common to all predictors and predictor
specific local parameters. The global parameter imposes shrinkage globally while local
parameters carefully balance shrinkage for large and small coefficients.

The literature on the vector shrinkage priors provides an excellent starting point
for studying multiway shrinkage priors on the tensor coefficient I'y, though the latter
presents a lot more challenges. Assuming that I';, admits a rank-R PARAFAC decom-
position, proposing a prior on I'j is equivalent to specifying priors over tensor margins
’ygr,z Given that every cell coefficient in I'y, is a nonlinear function of the tensor margins,
care should be taken while imposing prior shrinkage on them. To this end, Guhaniyogi
et al. (2017) have characterized multiple restrictions on putting prior distributions on
tensor valued parameters and have proposed the multiway Dirichlet generalized double
Pareto (M-DGDP) shrinkage prior satisfying all the restrictions. However, in the context
of BTRR, a straightforward application of M-DGDP prior on I'y leads to inaccurate
estimation due to less desirable tail behavior of the distribution of Iy, , parameters. The
aberrant tail behavior results from the exchangeability of the rank-specific variance pa-
rameters across ranks in the M-DGDP prior, which results in convergence issues for the
voxel parameters within I'y, when using Markov Chain Monte Carlo methods to draw
from their posterior distributions. In contrast, we will propose a prior construction that
prevents the rank-specific variance components from effectively switching values back
and forth, leading to fast convergence of the voxel-specific parameters.

We propose a multiway stick breaking shrinkage prior on I'y to ensure desirable
tail behavior for the tensor coefficient. More specifically, set 7, = ¢, 1Tk, as the scaling
specific torank 7 = 1,..., R. To achieve effective shrinkage across ranks, we adopt a stick

r—1
breaking construction for the rank-specific scale parameters ¢, s, ¢rr = & [[ (1 —
1=1

R—1 .
Gr)r=1,...,R—1,and ¢ppp = [ (1 — &), where &5 ~° Beta(1, ay). The global
=1
scale parameter is modeled as 73, ~ Inverse Gamma(a,, b;). Additionally, the local scale
parameters W, = diag(wjr’k’h...,wj,«,k,pj) are employed to achieve margin level

shrinkage in the following way

'ygrlz ~ N, 7 s Wirk), Wirki~ Exp()\?r’k/Q), Ajre ~ Gamma(ay, by), i=1,...,p;.

)
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The construction tacitly exploits the finite stick breaking construction for the local
parameters ¢,;’s. As ap — 0, most of ¢,;’s will be close to being sparse. There-
fore, careful learning of «j leads to a sparse and parsimonious representation of the
tensor. The parameter oy is assigned a discrete uniform prior on a grid and learnt
using a greedy Gibbs algorithm. Additionally, flexibility in estimating tensor margins
{q/y,z :1<j<D,1<r <R} is accommodated by modeling heterogeneity within
margins via element-specific scaling of W ;.. A common rate parameter Aj, ; encour-
ages sharing of information between the margin elements. In fact, it is easy to see that
7](4;371'\@,1@, Ti, follows the well known generalized double Pareto (GDP) (Armagan et al.,
2013a) shrinkage prior distribution. Exploiting more efficient computational techniques,
TRR with the multiway stick breaking shrinkage prior accurately estimates the poste-
rior distribution of I'y for a relatively large number of cells compared to the ordinary
spike and slab prior on cell coefficients.

An important aspect of these models is the selection of the model rank R. Since
rank-R PARAFAC decomposition is a low-rank decomposition of the tensor, we can
think about selecting R as selecting the truncation level of a large dimensional model.
As long as R is “large enough”, the results should be robust to our choice (and further
increasing R will lead to negligible changes in the results). Natural analogies are the
truncation of a Dirichlet process mixture model, which results in an (approximate) finite
mixture model (e.g., see Ishwaran and James (2001)), and the truncation of the stick-
breaking construction of the Indian Buffet process (Teh et al., 2007). In practice, it is
recommended that different rank-models be compared with some criterion in order to
decide which rank model will be used to perform inference. Accordingly, in the real data
application, we have fitted the model with a range of R values. The specific choice of R
that corresponds to the lowest Deviance Information Criterion (DIC) (Gelman et al.,
2014) is used.

Under a Bayesian framework, parameter estimation can be achieved via Markov
chain Monte Carlo (MCMC) algorithms, in which posterior distributions for the un-
known quantities are approximated with empirical distributions of samples from a
Markov chain. The full conditional distributions for developing Metropolis within Gibbs
sampling algorithms are provided in the Supplementary Material.

3 Simulated Data Results

This section showcases parametric inference from Bayesian tensor response regression
(BTRR) with various simulation studies. Since the major motivation of model devel-
opment is drawn from the fMRI based brain activation study, the simulation study is
performed on simulated datasets which closely mimic the real world fMRI data. Scalar
predictors are simulated with the block experimental design. A single stimulus block is
convolved with the canonical double-gamma haemodynamic response function. A more
thorough discussion on how the covariate values are generated can be found below.

The block design consists of a single discrete epoch of activity and rest, with “activ-
ity” representing a period of stimulus presentation, and “rest” referring to a state of rest
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Figure 1: Values taken by the simulated covariate through time when the number of
total time steps was set to T' = 100.

or baseline. The stimulus is assumed to take place at time ¢ = 0 for a duration of one
time step, with a stimulus value of 1. This is done to assure that results from simulated
datasets with different choices of T' (length of the time series) can be compared, as even
data sets with small values of T" would have a covariate that exhibits a peak in the
stimulus function.

For a specific value of T, the covariate is generated using the canonicalHRF function
in the neuRosim package in R (Welvaert et al., 2011) in which the delay of response
relative to onset is 7' x 0.12, the delay of undershoot is T'x 0.5, the dispersion of response
is set to 2, the dispersion of undershoot is set to 1, and the scale of undershoot is set to
0.5. This setup is used so that simulations can be performed under different values of
T without affecting the number of stimulus blocks in the simulated data and without
changing the relative pattern of the simulated covariate values. An example of the values
taken by the covariate for T'= 100 can be seen in Figure 1.

The response tensor is simulated from (2.2) with D = 2, and ¢(®? = 1. The true
coefficient tensor T is assumed to be sparse and two-dimensional (i.e., D = 2). The
specifyregion function within the neuRosim package in R (Welvaert et al., 2011) is
employed to simulate the nonzero regions of the true coefficient tensor r®. Lengths of
each dimension (p1,ps2) of the tensor coefficient are drawn from a Poisson distribution
with a shared parameter p. The nonzero elements of r'® are generated fixing a certain

(0)
. . o max_(o)cp(0) 17| . .
contrast-to-noise ratio 7, which is defined as n = VUJE(—E;) In our simulations, the

noise variance o(%)? is set to 1. Different simulation scenarios are created by constructing
a grid over different values for T' € {20, 50,100,200}, u € {5,10,20,30}, and n =
{0.1,0.25,0.5,0.75,1, 1.5}.

Competitors The model is fitted in each simulation scenario along with the classical
General Linear Model (GLM), in which independent linear regressions are fitted with
serially correlated errors using an AR(1) specification for each cell. Comparison with
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the maximum likelihood estimator of each cell of I" thus obtained with the estimate of
T from BTRR, will highlight the potential advantages of joint Bayesian modeling with
tensor coefficients. In fitting the General Linear Model with AR(1) error structure for
each cell, the cochrane.orcutt function in the orcutt package in R (Stefano et al.,
2018) is used. It performs the iterative process necessary to estimate the values of T’
and k. The estimates from the GLM are corrected by fixing the false positive rate to be
0.05 using the multiple testing correction proposed by Benjamini and Hochberg (1995).
All coefficient estimates that are not deemed to be significantly different from zero are
set equal to zero for any point estimates of the tensor response.

We also include another competitor that models spatial dependence among tensor
cells through a Gaussian Markov Random Field (GMRF) (Zhang et al., 2015; Gdossl
et al., 2001; Quirés et al., 2010). More specifically, a GMRF prior is assigned on the
vectorized elements of I" as following,

vec(T') ~ N(0,(AQ)™),
A ~ Gammal(ay, by),

Ny, V=24~
Q=¢-1, v~V ,
0, otherwise

where n, is the number of neighbors of element v and v ~ ¢ denotes that elements v
and ¢ are neighbors (Zhang et al., 2015). In fitting the GMRF model, ay and by are set
to 1 and 0.001 respectively, to match the noninformative prior in the BTRR model.

For the Bayesian models, the log-likelihood is examined in order to verify that the
Markov chain converges. The models witness rapid convergence, so that only 1,100
draws are taken from the joint posterior distribution in each model fitting, out of which
the first 100 draws are discarded as burn-ins. Average effective sample sizes shown in
Figure 2 for the 1,000 post burn-in samples calculated using the coda package in R
confirm sufficiently uncorrelated post burn-in samples.

Point Estimation of I' Due to the continuous nature of the multiway stick breaking
prior on I', posterior mean estimate of all cells in I" from BTRR turn out to be nonzero.
In general, shrinkage priors in high dimensional regression are not designed to perform
variable selection, and hence a post processing step on posterior samples of parameters is
required to identify important and unimportant variables. Following Li and Pati (2017),
we employ a two-stage variable selection algorithm that identifies zero and nonzero cells
of T' from its post burn-in MCMC samples. For cells of T' identified as zero by the
algorithm, the final point estimates are taken to be zero. We keep the posterior mean
as point estimates for cells of IT' identified as nonzero. A comparison of the two stage
estimates of I' for different values of R and n when p = 30 and 7" = 20 can be seen
in Figure 3. We especially show figures in this case since it represents higher tensor
dimensions and smaller sample size. As the signal-to-noise ratio tends to be very low
for fMRI data (Welvaert and Rosseel, 2013), the model is attractive in this application
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Figure 2: The average effective sample size for elements of I' under each of 288 scenarios.

if it performs better in such settings. The simulation settings under higher signal-to-
noise are less realistic and are kept only to show relative performance of all models
under varying signal-to-noise ratio. Also, since the main goal being the identification of
activated cells, it is not primarily the estimated cell coefficients, but the contrast between
coefficients corresponding to “active” and “inactive” voxels that is more informative.
However, to show the effect of the shrinkage priors in the proposed Bayesian tensor
response regression and the Gaussian Markov Random Field models, the scales are
shown in Figure 3. The scales are kept separate due to the differing results in terms of
both the contrast-to-noise ratio () and the effects of the different model treatments on
the shrinkage of the activation estimates.

The true and the estimated activation maps in Figure 3 demonstrate desirable per-
formance of BTRR in capturing the true activation pattern under moderate contrast
to noise ratio 7. When contrast to noise ratio drops below 1, identifying signal from
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Figure 3: Posterior mean and true values for I'” when p = 30 and T' = 20 under different

values for R and 7. For comparison, the posterior mean estimate from a Gaussian
Markov Random Field (GMRF) is also included.

noise remains a challenging task which causes less accurate identification of activated
regions. Figure 3 shows the improvement in the proposed model of shrinking insignifi-
cant coeflicient estimates toward zero. This is done using a strong shrinkage prior, which
also draws down the values for the significant coefficients. Such an observation is not
entirely uncommon even with shrinkage priors in ordinary ultra-high dimensional re-
gressions, see Bhattacharya et al. (2016). Moreover, as mentioned before, in the interest
of detecting regions of nonzero coefficients, the contrast between the zero and nonzero
estimates is more informative. In this regard, we argue in the next few paragraphs that
the proposed model outperforms the GMRF both in terms of the overall estimation of
cell coefficients and in identifying truly activated cells. The coefficient estimates from
our approach can be somewhat improved by more involved choices of prior distribution
on ay. However, the little gain in the estimation of cell coefficients is perhaps not worth
extra computational burden, since the inference on identifying activated cells does not
change much with the more involved choices.

Figure 4 shows the standardized mean square error for estimates of I, which is found
using the formula
1 JE -T2

X 5
var (1‘(0)) # voxels in T(¥)

sMSE =

where var (I‘(O)) = |IT© — mean(T)||2/# voxels in T®). In each scenario, BTRR
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model with ranks (R) 1, 2, and 3 is tested, and further testing suggests that additional
ranks do not improve the performance. For the Bayesian models, that is, the proposed
Bayesian tensor response regression (BTRR) and the Gaussian Markov random field
(GMRF) models, the sequential 2-means method of post-hoc variable selection method
(Li and Pati, 2017) is used to produce the final point estimate. The General Linear
Model (GLM) uses the Benjamini-Hochsberg multiple testing correction (Benjamini
and Hochberg, 1995) to produce the final point estimate. In a real data application, the
final rank used to fit a BTRR model can be selected using the Deviance Information
Criterion (DIC) (Gelman et al., 2014). The model fitted with ranks 1, 2, and 3 is
compared to the General Linear Model and the GMRF model described above.
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Figure 4: The standardized mean square error from analyses on simulated data compared
to results from the Gaussian Markov Random Field (GMRF) model and the General
Linear Model (GLM).

It is evident that the proposed model performs significantly better than all its com-
petitors in terms of point estimation under low signal-to-noise ratio (see Figure 4),
which perhaps justifies its usefulness for real fMRI data. In fact, the standardized MSE
values in Figure 4 show that the proposed method also performs better than its com-
petitors under high signal-to-noise scenarios, except for cases where magnitude of the
true simulated tensor has small number of cells (first two rows of Figure 4) and T is
large. In fact, the only two specific scenarios under high signal-to-noise ratio where
GLM does significantly better than BTRR can be found in the last two columns of the
first row of Figure 4. Both these settings correspond to a large value of 7' and smaller
tensor dimensions, which are favorable to asymptotic settings, and thus the carefully
constructed shrinkage mechanism is no longer advantageous to the naive GLM. In fact,
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we have included these scenarios to provide an idea about the settings where the model
does not necessarily have edge over its competitors.

Digging a bit deeper, Figure 5 presents the False Positive Rates (FPR) for identifying
nonzero cells in I’ from competing methods. Although the FPR values are generally low
for all competing methods under all scenarios, BTRR tends to offer lower FPRs than
the GMRF under scenarios with low-signal to noise ratios. The regularization imposed
by the shrinkage prior helps in shrinking unimportant cell coefficients, which appears
to yield advantages over GMRF, especially in presence of highly noisy data.
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Figure 5: False Positive Rates (FPR) for the GLM, GMRF model and BTRR models
with different ranks.

Parametric Uncertainty of I' To assess uncertainty quantification of I'" from BTRR,
we focus on coverage and length of 95% credible intervals (CI) of the cells of I', shown
in Figures 6 and 7, respectively. Given that the coverage of the 95% credible intervals
in almost all the scenarios is close to nominal, attention turns to the length of the 95%
credible intervals. Two visible patterns emerge from the figures. First, the 95% credible
intervals shrink as T" increases, since the posterior variance lowers with increased sample
size. Secondly, the credible intervals are wider for higher contrast to noise ratio, which
can be attributed to the fact that estimating a few high signals with a lot of zero
coefficients involves more uncertainty. Finally, there is a drop in coverage for the 95%
posterior credible intervals as the contrast-to-noise ratio increases, especially for small
tensor dimensions. This is due to the fact that the shrinkage priors, in their attempt
to estimate cell coefficients with zero effects, lead to a little underestimation of the
nonzero cell coefficients. When nonzero cell coefficients are higher in magnitude, this
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Figure 6: The average coverage of the 95% posterior credible intervals for the posterior
draws for the elements of I' under varying conditions.

shrinkage effect becomes more prominent. The drop in coverage can be attributed to
this phenomenon. It is also important to note that a rank-1 decomposition of the tensor
coefficient is more restrictive structurally than rank-2 or rank-3 coefficients, and hence
the drop in coverage is more severe in rank-1 decomposition.

Simulated Data with Model Mis-specification To assess performance of the BTRR
model along with the GMRF competitor under model mis-specification, a simulated
data set is created in which the nonzero-valued components within I' are not sparse or
spatially-contiguous. This would present a problem for the model, as the spatial corre-
lation between elements in the tensor coefficient would essentially be meaningless, and
the shrinkage imposed by the model would be an incorrect treatment of this data. In
this example, the values within I' are simulated independently from a Bernoulli(0.9)
distribution, and the response in each cell is simulated independently from a linear re-
gression model with errors auto-correlated in an AR(1) structure. The hyper-parameters
used in the MCMC are the same used in other simulated data analyses. Figure 8 shows
the final estimates of I' from the GMRF model and the BTRR models with ranks 1,
2 and 3. The standardized Mean Squared Errors (sMSE) for the BTRR models with
ranks 1, 2, and 3 and the GMRF model are 1.30, 0.93, 0.92, and 1.02, respectively. This
illustrates the point that while the BTRR models do not perform well estimating the
dense, random coefficient tensor, the estimates are able to approximate results close to
those of the mean model, which has an sMSE of 1.
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Figure 7: The average length of the 95% posterior credible intervals for the posterior
draws for the elements of I' under varying conditions.
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Figure 8: Final estimates of I' from BTRR and GMRF when ' is constructed under
a mis-specified model.

Posterior Estimates of Autoregression Parameter x Accurately estimating the pos-
terior distribution of the autoregression parameter x becomes essential since it captures
the temporal correlation among tensor responses. We present posterior densities of k
for BTRR with ranks 1,2 and 3 for a representative simulation scenario with 7' = 100,
@ =30 and n = 1 in Figure 9. The posterior mean of « is found to be estimated close to
the truth with a narrow 95% credible interval. The conclusion remains true in all other
simulation scenarios.
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Figure 9: Plots of the posterior densities of the autoregression coefficient for different
ranks when data are simulated under for 7" = 100, p = 30 and n = 1. The true value
for the autoregression coefficient is indicated with a red line.

The simulation study conclusively establishes the strength of BTRR as a principled
Bayesian approach that accurately detects brain activation with proper characterization
of uncertainties. It is particularly appealing to observe BTRR decisively outperforming
the GLM estimates in smaller contrast to noise ratios reminiscent of real fMRI data.
An application of the model to a dataset on brain activation study is explored in the
following section.

4 Application to Balloon Analog Risk Taking Data

Neuroscientists at the University of California Los Angeles have conducted an experi-
ment intended to infer about the regions of the brain that are involved in the process
of evaluating risk (Schonberg et al., 2012). Sixteen young adults (average age of 23.56
years) are subjects in an experiment with the following design. Each subject enters
an fMRI machine with a computer display and a controller with two buttons. On the
screen, the image of a balloon is shown, along with a payout amount, starting with
a value of $0.25. The buttons on the controller allow the subject to either inflate the
balloon or take the payout. If the subject inflates the balloon, and the balloon does
not explode, the payout amount increases by $0.25. If the subject inflates the balloon,
and the balloon explodes, no payout is received, the payout value is reset to $0.25,
and a new balloon is displayed. Balloons are assigned a number of pumps at which the
balloon will explode from a discrete uniform distribution with a lower bound of 1, and
an upper bound of 8, 12, or 16, depending on whether the balloon is red, green, or
blue, respectively. A grey “control” balloon, offering no payout and an upper bound of
12 pumps before exploding, is also part of the trial to record a riskless scenario. Each
subject participates in three runs. Each run consists of either 10 minutes, or 48 balloons
exploding, whichever comes first. Note that in our real data application, we only work
with data from a single run for one randomly chosen subject, since the proposed BTRR
method is designed for single-subject scenarios.
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Preprocessing was done using FSL (Smith et al., 2004) following what was done by
Schonberg et al. (2012) as closely as possible. The fMRI have a repetition time (TR)
of 2 seconds. In order to allow for T1 equilibrium effects, the first two images in the
series were dropped. The echo planar imaging (EPI) scan was motion corrected, then
high-pass filtered using a Gaussian least-squares linear fit with sigma = 50.0 seconds.
While it is common for researchers to prewhiten their data in order to remove tem-
poral autocorrelation, we followed the preprocessing steps followed by Schonberg et al.
(2012), which did not include prewhitening. Thus, we make an assumption that the
temporal autocorrelation does not vary significantly within the regions of interest in the
study data. Brain extraction was done using the BET function in FSL. The anatomic
(T1-weighted) scan was registered using an affine transformation to standard Montreal
Neurological Institute (MNI) space, and the EPI scans were then registered to each
subject’s corresponding anatomic scan. Finally, the data were spatially smoothed using
a Gaussian kernel with a 5mm full-width half-maximum (FWHM). To fit BTRR in a
computationally efficient manner on a full 3D fMRI image response, the EPI scans were
downsampled to have voxels with volume 8 mm3. This analysis with low-resolution 3D
fMRI images is used to find areas of increased activity within the entire brain in order
to choose slices within the brain that can be analyzed at a higher resolution with voxels
of volume 2 mm?. For both cases, to facilitate parallelization of computational tasks and
flexible choice of rank R for different brain structures, data were separated into one of
9 regions of interest based on the MNI structural atlas provided within FSL (Collins
et al., 1995; Mazziotta et al., 2001). The MNI structural atlas is a hand-segmented atlas
developed by Mazziotta et al. (2001) and Collins et al. (1995) and distributed within
the FSL library of neuroimaging tools (Jenkinson et al., 2012).

As regions of interest are not hypercubic in nature, the smallest cuboid containing
a region of interest is taken as the response tensor. Parts of the cuboid that are not a
part of the region of interest are all assigned the value 0, and masking was performed
on the coefficients of all of the models to avoid finding activations outside the brain.
There is an established literature on brain imaging that conceptualizes brain images
or brain image cross-sections as 3- or 2-dimensional tensors respectively, after similar
adjustments (please see Zhou et al., 2013 and Li and Zhang, 2017). Table 1 records
the Regions of Interest (ROI) with the number of voxels in both the whole-brain low-
resolution analysis and one of the single-slice high-resolution analyses.

The analysis of the whole-brain high-resolution scan for an individual is the ideal
goal of these methods. However, due to the size of the data and availability of computer
memory, the regions of interest were separated in order to draw from the posterior dis-
tribution via Markov Chain Monte Carlo simulations. As an added benefit, the paral-
lelization keeps the computation time reasonable. A follow-up project has recently been
published that extends the BTRR model to a tensor response mixed effect model. The
proposed model incorporates region-specific random effects and infers jointly on voxel-
level activation and region-level connectivity from multi-subject fMRI data, please see
Spencer et al. (2020) for details.

To measure the level of risk to a subject at a given time, we modify the procedure
used in Schonberg et al. (2012) slightly. First, we measure the centered number of pumps
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Figure 10: The raw values of the demeaned number of pumps (points), their convolution
with the double-gamma haemodynamic response function (light lines), and the final
covariate resulting from their difference (heavy black line) for the subject analyzed.

that an individual gives a “treatment” balloon before they “cash-out” or the balloon
explodes. It is assumed that the higher the number of pumps becomes, the higher
is the risk perceived by the subject. This value is then convolved with the double-
gamma haemodynamic response function, which takes into account the physiological
lag between stimulus and response, and smooths the stepwise function for the centered
number of pumps. An illustration of this calculation can be seen in Figure 10. Finally,
the centered, convolved number of pumps on the control balloon is subtracted from the
treatment series to provide a basis for comparison.

It is important to mention that the analysis performed by Schonberg et al. (2012)
has some significant differences to the analysis shown here. To begin, their study is
done on 16 subjects and across three runs for each subject, with analyses performed
separately for each subject and run. The parameters were then averaged across runs,
and an analysis of variance (ANOVA) was performed in order to assess variance in
activation within and between subjects. As our proposed model is intended for a single
subject, the first run from a randomly-selected subject was used. The predictors for the
treatment and control balloons were kept separate in Schonberg et al. (2012), and the
activation found from the control balloons was subtracted from the activation found with
the treatment balloons. We sought to effectively combine these steps by subtracting the
predictors, which produces similar results, as the treatment and control balloons do not
overlap temporally within the experiment. Z-score thresholding was used in Schonberg
et al. (2012) in combination with a correction by Poline et al. (1997) that combines
peak intensity testing corrections with active cluster size corrections. However, these
corrections rely on the implicit assumption that the activation parameters follow a
lattice approximation to a Gaussian field, which does not assume sparsity and spatial
similarity in the same way as the proposed model. In addition, the parameters used
to perform the testing corrections are not shared in Schonberg et al. (2012), and thus
the results cannot be replicated. Schonberg et al. (2012) also used additional regressors
in modeling, including a regressor for the average number of pumps in each balloon
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trial for both cash-out and explosion outcomes. These were not used in this analysis
to focus on an application of the proposed model in a more accessible setting without
including additional variables with different variable treatments, including slice timing
and other nuisance variables. As a result, this analysis does not account for average
BOLD responses under different trial conditions, such as different outcomes (cash-out or
explosion) and stimuli (treatment or control balloons). However, inference from BTRR
generally coincides with the conclusion presented by Schonberg et al. (2012) and the
General Linear Model concerning the bilateral insula activation patterns, even though
only one subject is analyzed. We will present them in the upcoming paragraphs.

As discussed earlier, in order to perform inference on high-resolution neuroimag-
ing data, low-resolution inference is performed first on the entire three-dimensional
volume of the regions of interest. Once general areas of activation are found in the
three-dimensional regions of interest, slices of the subject’s scan can be chosen in or-
der to perform high-resolution inference. In order to illustrate this process, we first
make 11,000 draws from the posterior distribution, discarding the first 1,000 draws as
a burn-in using the low-resolution data. Point estimates for one of the axial slices of
the low-resolution data after applying the sequential 2-means variable selection method
(Li and Pati, 2017) and merging the regions of interest into a single image can be seen
in Figure 11. This slice of the three-dimensional image was chosen for display in the
figure because it shows information on an axial slice through the middle of the brain.
Table 1 shows the tensor dimensions in each region, the number of ROI voxels within
each response tensor, and which rank was chosen for each region using the Deviance In-
formation Criterion (Gelman et al., 2014) for the low-resolution analysis. For reference,
a figure showing the locations of each of these regions of interest within the Montreal
Neurological Institute Atlas has been included in the Supplementary Material. We then
run the analysis following the same procedure on the high-resolution data on three slices
that fall within the area shown in the downsampled slice in Figure 11. This high res-
olution 2D slices correspond to z = (44,45, 46). The tensor dimensions in each region,
the number of ROI voxels within each response tensor, and which rank was chosen
for each region using the Deviance Information Criterion (Gelman et al., 2014) for the
high-resolution analysis for these slices are shown in Table 1. The point estimates for
the high-resolution analysis for the single slice data with tensor ranks 1, 2 and 3 can be
seen in Figure 12. The analysis shows no significant difference in terms of activation in
these three slices and hence we only provide the final estimate of the coefficients in the
high-resolution analysis allowing for different ranks to be used for different regions of
interest based on the DIC for slice z = 45. This can be seen in Figure 13. For ease of
visual comparison, all of the plots within Figures 11, 12, and 13 were color-thresholded
at the approximate 90th percentile value for nonzero coefficients across the four mod-
els being compared. The active coeflicients identified in the single-slice analyses were
between 0 and 0.37 for the Bayesian models and between —0.4 and 0.73 for the GLM.
The active coefficients identified in the whole-brain analyses were between 0 and 0.59
for the Bayesian models and between —0.23 and 0 for the GLM.

The same general linear model maximum likelihood estimate described in Section 3
is included for comparison. In the whole brain analysis, the Bayesian estimates for the
tensor coefficient are coincident with each other, with higher rank models producing
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Figure 11: A single slice of the tensor estimate for the whole brain overlaid on top of
the reference image.
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Figure 12: The estimates for the tensor coefficient in high-resolution single-slice analyses
for slices z = (44, 45,46) overlaid on reference images of the brain.

larger coefficient estimates. The BTRR model estimates suggest that there is activation
in the subject’s frontal and temporal lobes. The general linear model has estimates that
are somewhat larger in amplitude in the high-resolution slice analysis than the Bayesian
sparse tensor response regression estimates, though usually over smaller spatial regions.
This is likely due to the shrinkage prior favoring smaller tensor coefficient values in the
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Figure 13: The final estimate of the effect of increased perceived risk on BOLD measure
response in different regions of the brain after selecting R for each region using the DIC.

BTRR models. However, the final point estimates from the general linear model and
the BTRR models show generally coincident voxel-level activations, though the areas of
activation are larger in the BTRR inference. In addition, the activation patterns across
the adjacent slices within the high-resolution are largely coincident with each other and
the low-resolution while-brain analysis.

5 Conclusion

This article proposes a Bayesian framework to regress a tensor valued response on scalar
covariates. Adopting the rank-R PARAFAC decomposition for the tensor coefficient, the
proposed model is able to reduce the number of free parameters. We employ a novel
multiway stick breaking shrinkage prior distribution on the tensor coefficient to be able
to identify significantly nonzero cell coefficients. New results on posterior consistency
have been developed to show convergence in Lo sense of the fitted tensor coefficient to
the true tensor coefficient as data size increases.
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ROI Rank Selected pl p2 p3 # voxels
Low-resolution
Caudate Rank 1 7 8 7 126
Cerebellum Rank 3 15 11 10 691
Frontal Lobe Rank 1 18 16 16 1667
Insula Rank 1 13 9 6 148
Occipital Lobe Rank 1 16 10 10 649
Parietal Lobe Rank 1 19 12 13 1113
Putamen Rank 2 9 7 5 103
Temporal Lobe Rank 1 19 15 11 943
Thalamus Rank 3 7 6 4 99
High-resolution slice (z = 45)
Caudate Rank 1 21 13 113
Frontal Lobe Rank 2 68 42 952
Insula Rank 3 41 16 83
Occipital Lobe Rank 1 47 24 606
Parietal Lobe Rank 1 70 37 761
Temporal Lobe Rank 1 63 8 86
Thalamus Rank 3 20 9 92

Table 1: The different values for R selected by the deviance information criterion (DIC),
along with the dimensions associated with the response tensors in each region.

As an illustrative example, the present article focuses on the analysis of a single-
subject fMRI data to detect voxels of the brain which exhibit neuronal activity in
response to stimuli. The whole brain is analyzed first using low-resolution data from
the three-dimensional brain volume, and then three slices of high-resolution data from
the brain volume are analyzed to more specifically infer areas of activation. Analysis of
simulated time series and real fMRI data demonstrates excellent performance of BTRR
in identifying the regions of activation with required uncertainties. Additionally, BTRR
is able to achieve remarkable parsimony, even as a Bayesian model. This facilitates its
usage in presence of images with a fine resolution. The use of MCMC in the analysis
does pose a challenge computationally, which necessitates the separation of the regions
of interest in order to make the analysis parallelizable.

The core idea of the article is to recognize the importance of retaining the tensor
structure of the image response during the entire statistical analysis for studies including
brain activation. An immediate extension to the proposed model to investigate both
voxel level activation and ROI level connectivity from multi-subject fMRI data has
recently been published (Spencer et al., 2020). It also needs to be emphasized that
the proposed tensor regression framework is developed along the principles of high
dimensional variable selection/shrinkage prior literature where a new multi-way stick
breaking shrinkage prior is developed to shrink unimportant cell coeflicients close to zero.
Introducing tensor variables in the analysis intuitively make use of the neighborhood
information in the cells, though an explicit spatial modeling of elements in the tensor
cells has not been considered here. Developing shrinkage priors for high dimensional
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parameters after accounting for their spatial correlations has been recognized to be an
extremely challenging problem, and hence is much less addressed. We recognize the
steep challenge involved in extending our approach to account for spatial correlations
of cell parameters and plan to tackle the problem in a future work.

Supplementary Material

Supplementary Material: Bayesian Tensor Response Regression With an Application to
Brain Activation Studies (DOI: 10.1214/21-BA1280SUPP; .pdf). The supplementary
material contains posterior consistency in tensor response regression, proofs of the pos-
terior consistency results, posterior sampling algorithm and a picture of the Montreal
Neurological Institute (MNI) atlas.
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