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An Ensemble EM Algorithm for Bayesian
Variable Selection

Jin Wang∗, Yunbo Ouyang†, Yuan Ji‡, and Feng Liang§

Abstract. We study the Bayesian approach to variable selection for linear re-
gression models. Motivated by a recent work by Ročková and George (2014), we
propose an EM algorithm that returns the MAP estimator of the set of relevant
variables. Due to its particular updating scheme, our algorithm can be imple-
mented efficiently without inverting a large matrix in each iteration and therefore
can scale up with big data. We also have showed that the MAP estimator returned
by our EM algorithm achieves variable selection consistency even when p diverges
with n. In practice, our algorithm could get stuck with local modes, a common
problem with EM algorithms. To address this issue, we propose an ensemble EM
algorithm, in which we repeatedly apply our EM algorithm to a subset of the
samples with a subset of the covariates, and then aggregate the variable selection
results across those bootstrap replicates. Empirical studies have demonstrated the
superior performance of the ensemble EM algorithm.

Keywords: Bayesian variable selection, EM, Bayesian bootstrap, asymptotic
consistency.

1 Introduction

Consider a simple linear regression model with Gaussian noise:

y = Xβ + e, (1.1)

where y = (y1, . . . , yn)
T is the n × 1 response vector, X is the n × p design matrix,

β = (β1, . . . , βp)
T is the unknown regression coefficient vector, and e = (e1, . . . , en)

T is
a vector of i.i.d. Gaussian random variables with mean zero and variance σ2. In many
real applications, such as bioinformatics and image analysis, where linear regression
models have been routinely used, the number of potential predictors (i.e., p) is large
but only a small fraction of them are believed to be relevant. Therefore model (1.1)
is often assumed to be “sparse” in the sense that most of the coefficients βj are zero.
Estimating the set of relevant variables, S = {j : βj �= 0}, is an important problem in
modern statistical analysis. Many variable selection algorithms have been proposed in
the framework of penalized likelihood, such as LASSO (Tibshirani, 1996), SCAD (Fan
and Li, 2001) and MCP (Zhang et al., 2010), just to name a few; for a review of this
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area, see the book by Bühlmann and van de Geer (2011) and a selective review article
by Fan and Lv (2010).

The Bayesian approach to variable selection is conceptually simple and straightfor-
ward. First introduce a p-dimensional binary vector γ = (γ1, . . . , γp)

T to index all the 2p

subsets of variables, where γj = 1 if the jth variable is included in the model and γj = 0
if excluded. Usually γjs are modeled by independent Bernoulli distributions. Given γ,
a popular prior choice for β is the “spike and slab” prior (Mitchell and Beauchamp,
1988):

π(βj | γj) =
{
δ0(βj), if γj = 0;

g(βj), if γj = 1,
(1.2)

where δ0(·) is the Kronecker delta function corresponding to the density function of a
point mass at 0 and g is a continuous density function. After specifying priors on all
the unknowns, one needs to calculate the posterior distribution. Most algorithms for
Bayesian variable selection rely on MCMC algorithms, such as Gibbs or Metropolis-
Hasting, to obtain the posterior distribution; for a review of recent developments in this
area, see O’Hara and Sillanpää (2009). MCMC algorithms, however, are insufficient
to meet the growing demand for scalability from real applications. Since the primary
goal here is variable selection, we focus on efficient algorithms that return the MAP
estimator of γ, as an alternative to these MCMC-based sampling methods that return
the whole posterior distribution of all the unknown parameters.

Recently, Ročková and George (2014) proposed a simple, elegant EM algorithm for
Bayesian variable selection. They adopted a continuous version of the “spike and slab”
prior in which the spike and the slab components in (1.2) are two normal distributions
with different variances (George and McCulloch, 1993), and proposed an EM algorithm

to obtain the MAP estimator of the regression coefficients β. The MAP estimator β̂MAP,
however, is not sparse, so an additional thresholding step is needed to estimate γ.

In this paper, we develop an EM algorithm that directly returns the MAP estimator
of γ. We adopt the same continuous “spike and slab” prior as do Ročková and George
(2014), but while their algorithm returns β̂MAP by treating γ as latent, our approach
treats β as latent and returns γ̂MAP, the MAP estimator of the model index. The special
structure of our EM algorithm allows us to use a computational trick to avoid inverting
a big matrix at each iteration, which seems unavoidable when using the algorithm of
Ročková and George (2014). Further we can show that γ̂MAP returned by our EM algo-
rithm achieves asymptotic consistency even when p diverges to infinity with increasing
sample size n.

Although shown to achieve selection consistency, in practice, our EM algorithm could
get stuck at a local mode due to the large discrete space in which γ lies. Borrowing the
idea of bagging, we propose an ensemble version of our EM algorithm (which we call
BBEM): apply our EM algorithm to multiple Bayesian bootstrap (BB) copies of the
data, and then aggregate the variable selection results. Bayesian bootstrap for variable
selection was explored before by Clyde and Lee (2001) for the purpose of prediction,
where models built on different bootstrap copies are combined to predict the response.
But the focus of our approach is to summarize the evidence for variable relevance from
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multiple BB copies, which is similar in nature to several frequentist ensemble methods
for variable selection, such as the AIC ensemble (Zhu and Chipman, 2006), stability
selection (Meinshausen and Bühlmann, 2010), and random Lasso (Wang et al., 2011).

The rest of the paper is organized as follows. Section 2 describes our method in
detail, Section 3 presents the asymptotic results, and Section 4 describes the BBEM
algorithm. Empirical studies are presented in Section 5, conclusions in Section 6, and
technical proofs in Section 7.

2 Method

2.1 Prior Specification

We adopt the continuous version of “spike and slab” prior for each βj , i.e., a mixture
of two normal distributions with mean zero and different variances:

π(βj | σ, γj) =
{
N(0, σ2v0), if γj = 0;

N(0, σ2v1), if γj = 1,
(2.1)

where v1 > v0 > 0. Alternatively, we can write the prior of β as a product of

π(βj | σ2, γj) = N(0, σ2dγj ), j = 1, . . . , p,

where
dγj = γjv1 + (1− γj)v0.

We shall discuss the choice of the tuning parameters v0 and v1 in our asymptotic analysis
in Section 3 and in our empirical studies in Section 5.

For the remaining parameters, we specify independent Bernoulli priors for elements
of γ, and conjugate Beta and Inverse Gamma priors for θ and σ2 as follows:

π(γ | θ) = Bern(θ),

π(θ) = Beta(a0, b0),

π(σ2) = IG(ν0/2, ν0λ0/2).

For hyper-parameters (a0, b0, ν0, λ0), we suggest the following non-informative choices
unless prior knowledge is available:

a0 = b0 = 1.1, ν0 = λ0 = 1. (2.2)

2.2 The EM Algorithm

With the Gaussian model and prior distributions specified above, we write the full
posterior distribution as follows:

π(γ,β, θ, σ2 | y) ∝ p(y | β, σ2)× π(β | σ,γ)× π(γ | θ)× π(θ)× π(σ2).

Treating β as the latent variable, we derive an EM algorithm that returns the MAP
estimator of parameters Θ = (γ, σ2, θ); note that we have switched the roles of β and
γ compared to the approach of Ročková and George (2014).
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E Step

The objective function Q at the (t + 1)th iteration in an EM algorithm is defined as
the integrated logarithm of the full posterior with respect to β, given y and Θ(t) =
(γ(t), σ2

(t), θ
(t)), the parameter values from the previous iteration:

Q(Θ | Θ(t)) = Eβ|Θ(t),y log π(Θ,β | y)

= − 1

2σ2
Eβ|Θ(t),y

[
‖y −Xβ‖2 +

p∑
j=1

β2
j

dγj

]
+ F (Θ),

where

F (Θ) = −n+ p

2
log σ2 − 1

2

p∑
j=1

log dγj + log π(γ|θ)

+ log π(θ) + log π(σ2) + constant

is a function of Θ not depending on β.

It is easy to show that given Θ(t) and y, β follows a normal distribution with mean
m and covariance matrix σ2

(t)V, where

m = V−1XTy, V =
(
XTX+D−1

γ(t)

)−1
, (2.3)

Dγ(t) = diag
(
d
γ
(t)
j

)p

j=1
= diag

(
γ
(t)
j v1 + (1− γ

(t)
j )v0

)p

j=1
.

Then the two expectation terms in (2.3) can be expressed as:

Eβ|Θ(t),y

∥∥y −Xβ
∥∥2

= σ2
(t)tr(XVXT ) +

∥∥y −Xm
∥∥2

, (2.4)

Eβ|Θ(t),y

p∑
j=1

β2
j

dγj

=

p∑
j=1

σ2
(t)Vjj +m2

j

(1− γ
(t)
j )v0 + γ

(t)
j v1

. (2.5)

M Step

We update each parameter in (γ, θ, σ) sequentially by holding others fixed to maximize
the objective function Q, as in the ECM algorithm (Meng and Rubin, 1993).

1. Update γjs. The terms involving γj in (2.3) are

− 1

2σ2
(t)

Eβ|Θ(t),y

[
β2
j

dγj

]
− 1

2
log dγj + log π(γj | θ(t)). (2.6)

Plugging in γj = 0 and γj = 1 to (2.6) respectively, we have

γ
(t+1)
j = 1, if Eβ|Θ(t),y

[
β2
j

]
> r(t), (2.7)
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where Eβ|Θ(t),y

[
β2
j

]
can be computed based on (2.3) and

r(t) =
σ2
(t)

1/v0 − 1/v1

(
log

v1
v0

− 2 log
θ(t)

1− θ(t)

)
.

2. Update (σ2, θ). Given γ(t+1), the updating equations for the other two parame-
ters are given by

σ2
(t+1) =

Eβ|Θ(t),y

[
‖y −Xβ‖2 +

∑p
j=1 β

2
j /dγ(t+1)

j

]
+ v0λ0

n+ p+ v0
, (2.8)

θ(t+1) =

∑p
j=1 γ

(t+1)
j + a0 − 1

p+ a0 + b0 − 2
. (2.9)

Due to the conjugate prior (2.1) specified on β, the update equation (2.8) for σ2

has a weighted sum of squares of β in the numerator and p in the denominator,
which may cause σ2 to be underestimated when p is large and β is sparse. As shown
in our asymptotic analysis in Section 3, however, variable selection accuracy is not
sensitive to the estimation accuracy of σ2. In practice, to alleviate this problem
we suggest that the linear model be refitted with selected variables. Alternatively,
as one reviewer suggested, one could use a non-conjugate prior for β leaving out
σ2 from the prior variance.

Stopping Rule

The EM algorithm alternates between the E-step and M-step until convergence. A nat-
ural stopping criterion is to check whether the change of the objective function Q has
become small. Evaluating the Q function, however, is time consuming. To reduce the
computational cost for evaluating the Q function, we adopt a different stopping rule, as
our main focus is γ: halt when the estimate γ(t) stays the same for k0 iterations. In prac-
tice, we suggest setting k0 = 3. The pseudo code of this EM algorithm is summarized
in Algorithm 1.

2.3 Computational Cost

At each E-step, updating the posterior of β given other parameters in (2.3) requires
inverting a p× p matrix

V(t) = (XTX+D−1
γ(t))

−1, (2.10)

which is the major computational burden of our algorithm. When p > n, we can use
the Sherman-Morrison-Woodbury formula to compute the inverse of an n × n matrix.
So the computational cost at each iteration is of order O(min(n, p)3), which, however,
is still time-consuming when both n and p are large.

Note that the only change in (2.10) from iteration to iteration is Dγ(t) , a diagonal

matrix depending on the binary vector γ(t). From our experience, only a small fraction
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Algorithm 1: EM

Input: X,y, v0, v1, a0, b0, ν0, λ0

Initialize Θ(0);

E-step: Calculate the two expectations in (2.4) and (2.5), denoted as EE(0);
for t = 1 : maxIter do

M-step: Update Θ(t) using (2.7), (2.8), (2.9);

E-step: Update EE(t) using (2.4), (2.5);

if γ(t) stays the same for k0 = 3 iterations then
break;

end

end
Return γ;

of {γ(t)
j }pj=1 are changed at each iteration after the first few iterations. So we propose

to use the following recursive formula to compute (2.10):

V(t) = (XTX+D−1
γ(t−1) +D−1

γ(t) −D−1
γ(t−1))

−1

= (V−1
(t−1) +D−1

γ(t) −D−1
γ(t−1))

−1, (2.11)

where D−1
γ(t) − D−1

γ(t−1) is a diagonal matrix with the jth diagonal entry being non-

zero only if the inclusion/exclusion status, i.e., the value of γj , is changed from the
previous iteration. Let l denote the number of variables whose γj values are changed
from iteration (t−1) to t. Then D−1

γ(t)−D−1
γ(t−1) is a rank l matrix. We can further reduce

the computational complexity from O(min(n, p)3) to O(l3) by applying the Woodbury
formula to (2.11).

For example, without loss of generality, suppose only the first l covariates have their
γj values changed. Then, we can write

D−1
γ(t) −D−1

γ(t−1) = Up×lAl×lU
T ,

where A =
(

1
v0

− 1
v1

)
diag(2γ

(t)
j − 1)lj=1 and U consists of the first l columns from Ip.

Applying the Woodbury formula, we have

V(t) = V(t−1) −V(t−1)U(A−1 + UTV(t−1)U)−1UTV(t−1),

where we need to invert only an l × l matrix (A−1 + UTV(t−1)U).

3 Asymptotic Consistency

In this section, we study the asymptotic property of the MAP estimator returned by our
EM algorithm. Assume that the data are generated from a Gaussian regression model:

yn ∼ Nn

(
Xnβ

∗
n, σ

2In
)
.
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Here we allow the dimension p = pn to diverge with n, and also, to vary with n, the
true coefficient vector β∗

n and the true model index γ∗
n, where γ∗

nj = 1 if β∗
nj �= 0 and

γ∗
nj = 0 if β∗

nj = 0. Next we show that, asymptotically, our EM algorithm can return us
the correct model index γ∗

n with probability approaching unity.

First we list some technical conditions needed in our proof.

(A1) Condition on the design matrix: λn1(X
T
nXn)

−1 = O(n−η1), 0 < η1 ≤ 1, where
λn1(A) denotes the smallest eigenvalue of matrix A.

(A2) Condition on the sparsity level: ‖β∗
n‖2 = O(nη2), 0 < η2 < η1. This condition

controls the L2 norm of the true regression coefficient vector. Similar conditions
on the L2 or L1 norm of β∗

n have been used in other work, such as Shao and Deng
(2012) and Loh et al. (2017).

(A3) Beta-min condition:

lim inf
n

min
{
|β∗

nj |, γ∗
nj = 1

}
n(η3−1)/2

≥ M, 0 ≤ η3 < 1,

where M is a positive constant. This is a common condition in the literature
of selection consistency (Bühlmann and van de Geer, 2011); it requires that the
minimal non-zero coefficient not goes to zero at a rate faster than 1/

√
n. In the

traditional asymptotic setting where β∗
n is fixed, we have η3 = 0.

(A4) Condition on hyper-parameters: assume that log[θ̂n/(1− θ̂n)] and σ̂2
n are bounded.

(A5) Condition on tuning parameters: assume that v1 is fixed at some constant and
that v0 satisfies

0 < v0 = O(n−r0), 1− η3 < r0 < min
{
η1 − α,

2

3
(η1 − η2)

}
,

where 0 < α < 1 is the rate of the dimension p = O(nα).

Theorem 3.1. Assume (A1)–(A5) and p = O(nα) where 0 ≤ α < 1; then the model
returned by our EM algorithm, γ̂n, achieves model selection consistency, namely,

P(γ̂n = γ∗
n) → 1, as n → ∞. (3.1)

Proof. See Section 7.1.

Remark 1. Our condition on the design matrix (A1) is much weaker than the Irrepre-
sentable Condition needed for LASSO (Wainwright, 2009; Zhao and Yu, 2006). In the
classical asymptotic setting for linear regression when p is fixed, it is common to as-
sume that (XT

nXn)/n converges to a full-rank matrix, which satisfies our condition with
η1 = 1. Having a design matrix satisfying η1 = 1 represents an ideal setting where the
smallest eigenvalue of (XT

nXn)/n is still lower-bounded by a positive constant. But this
may not hold when p diverges with n. Our condition (A1) allows the smallest eigenvalue
of (XT

nXn)/n to go to zero at a rate slower than 1
n1−η1

.
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Remark 2. To satisfy our condition on hyper-parameters (A4), we could either fix

θ̂n and σ̂n to be, or upper-bounded by, some constants in our algorithm so that they
will not take extreme values. In simulations, we recommend (2.2) as the choice for
hyper-parameters unless p is large. Note that our recommendation differs from the
ones in Castillo et al. (2015) and Narisetty et al. (2014) because the notion of selection
consistency studied in the two aforementioned papers is different from ours. In a nutshell,
for the MAP estimator to achieve selection consistency defined in (3.1), we only need
the posterior probability on the true model γ∗

n to be the largest among all 2p models,
while selection consistency in Castillo et al. (2015) and Narisetty et al. (2014) requires
the posterior probability on γ∗

n to go to unity.

Remark 3. Our proof can be easily extended to cover the case when p � n; we discuss
the proof and related assumptions in Section 7.2. Although our EM algorithm is shown
to achieve selection consistency theoretically, in practice, we find it not performing well
with high-dimensional data. This is why we propose a variation of our algorithm in the
next section.

4 Bayesian Bootstrap

A common issue with the EM algorithm is that it could be trapped at local modes.
Standard remedies are available for dealing with this issue—for instance, trying a set
of different initial values or utilizing more advanced optimization procedures at the M-
step. Since our EM algorithm is searching for the optimal γ over a big discrete space
(all p-dimensional binary vectors), these remedies are less useful when p is large.

When performing optimization with respect to γ, a discrete vector, the resulting
solution is often not stable. Bagging is an easy but powerful method (Breiman, 1996) to
alleviate this problem; it consists of applying the same algorithm to multiple bootstrap
copies of the data and then aggregating the final results. We propose the following
ensemble EM algorithm, in which we repeatedly run our EM algorithm, Algorithm 1
from Section 2.2, on Bayesian bootstrap replicates.

The original bootstrap repeatedly samples data from the original data set {(xi, yi)}ni=1

with replacement, i.e., each observation (xi, yi) is sampled with probability 1/n. In
Bayesian bootstrap (Rubin, 1981), instead of sampling a subset of the data, we assign
a random weight wi to the ith observation and then fit a weighted least squares regres-
sion model on the whole data set. In particular, following Rubin (1981), we generate
the weights w = (w1, . . . , wn) from an n-category Dirichlet distribution:

wn×1 ∼ Dir(1, · · ·, 1). (4.1)

When applying Algorithm 1 with a weighted linear regression model, all the updating
equations stay the same, except the updating equations (2.3) for the posterior of β,
which become

m = VXTdiag(w)y, V = (XTdiag(w)X+D−1
γ(t))

−1. (4.2)



J. Wang, Y. Ouyang, Y. Ji, and F. Liang 887

Equation (2.4), the expectation of the weighted residual sum of squares, needs to be
updated accordingly:

Eβ|Θ(t),y

∥∥y−Xβ
∥∥2

w
= σ2

(t)tr(diag(w)XVXT ) + (y−Xm)Tdiag(w)(y −Xm). (4.3)

It is well-known that in order to make the aggregation work, we should control the
correlation among estimates from bootstrap replicates. For example, in Random Forest
(Breiman, 2001), the number of variables used for choosing the optimal split of a tree
is restricted to a subset of the variables, instead of all p variables. A similar idea was
implemented in Random Lasso (Wang et al., 2011), an ensemble algorithm for variable
selection with Lasso. In the same spirit, we apply our EM algorithm with only a subset
of variables at each Bayesian bootstrap iteration. A naive way is to pick a subset from
the p variables randomly. This, however, will be inefficient when p is large and the true
model is sparse, since it is likely that most random subsets will contain no relevant
variables. So we employ a biased sampling procedure: sample the p variables based on
a weight vector π̃ that is defined as

π̃p×1 ∝ |XTy|/diag(XTX), (4.4)

that is, variables are sampled based on their marginal effect in a simple linear regression.

The ensemble EM algorithm operates as follows. First we sample a random set of
L variables according to the probability vector π̃, and then draw an n × 1 bootstrap
weight vector w from (4.1). Let X̃ be the new data matrix with the L columns. Then
apply our EM algorithm to the bootstrap replicate X̃ with weight w. Let γk denote the
model returned by the kth Bayesian bootstrap iteration, where the jth position γkj is 1
if the jth variable is selected and zero otherwise; of course, the jth position is zero if the
jth variable is not included in the initial L variables. Define the final variable selection
frequency for the p variables as

φp×1 =
1

K

K∑
k=1

γk. (4.5)

We can report the final variable selection result by thresholding φj at some fixed number,
for example, one half. Or we can produce a path-plot of φ as v0 varies, which could be
a useful tool to investigate the importance of each variable. We illustrate the latter in
our simulation study in Section 5.

As for the computational cost, the inversion of the L × L matrix in (4.2) is a big
improvement compared with that of a p × p matrix. By the same reasoning as in Sec-
tion 2.3, the computation can be further reduced by inverting an l-by-l matrix, where l
is the number of the L variables that change their inclusion status. The complete BBEM
algorithm is summarized in Algorithm 2.

5 Empirical Study

In this section, we first compare the proposed EM algorithm (Algorithm 1) with other
popular methods on a widely used benchmark data set. Then we compare BBEM (Al-
gorithm 2) with other methods on two more challenging data sets of larger dimensions.
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Algorithm 2: BBEM

Input: X,y, v0, v1, a0, b0, ν0, λ0,K, L
Compute the variable weight vector π̃ from (4.4);
for k = 1 : K do

Generate a subset of L variables according to π̃;

Create the replicate X̃k with the L variables;

Initialize Θ
(0)
k ;

Generate the bootstrap weight vector w from (4.1);

E-step: Calculate the two expectations in (2.5), denoted as EE
(0)
k ;

for t = 1 : maxIter do

M-step: Update Θ
(t)
k using (2.7), (2.8), (2.9);

E-step: Update EE
(t)
k using (4.2), (4.3);

if γ
(t)
k stays the same for k0 = 3 iterations then
break;

end

end

Record γ
(t)
k ;

end
Return φ from (4.5);

Finally, we apply BBEM to a restaurant revenue data set from a Kaggle competition,
and show that our algorithm outperforms the benchmark given by Random Forest.

For the hyper-parameters v0 and v1, we set v1 = 100 as fixed and tune an appropriate
value for v0 based either on 5-fold cross-validation or on BIC. For the initial value of θ,
we suggest that 1/2 be used for ordinary problems, but

√
n/p for large-p problems. Given

θ(0), the initial value of the binary vector γ(0) is randomly generated from Bernoulli
distribution with parameter θ(0). The initial value of σ2 is set as 1. In addition, there are
two bootstrap parameters: the total number of replicatesK, and the number of variables
used in each bootstrap L. For efficiency, the number of variables in each bootstrap
replicate should not exceed the sample size n. We use K = 100, and L = n/2 if p is
large and L = p is p is small.

5.1 Performance on a Widely Used Benchmark

First we apply our EM algorithm on a widely used benchmark data set (Tibshirani,
1996), which has p = 8 variables, each from a standard normal distribution with pairwise
correlation ρ(xi,xj) = 0.5|i−j|. The response variable is generated from

y = 3x1 + 1.5x2 + 2x5 + ε,

where ε ∼ N(0, σ2).
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Following Fan and Li (2001), we repeat the experiment 100 times under two scenar-
ios: (1) n = 40, σ = 3 and (2) n = 60, σ = 1. The result is summarized in Table 1, which
reports the average number of zero-coefficients (i.e., no selection) among signal variables
(x1,x2,x5) and among noise variables, respectively. The results for SCAD1 (tuning pa-
rameter selected by cross-validation), SCAD2 (tuning parameter fixed) and LASSO are
taken from Fan and Li (2001). In the first “small sample-size high noise” scenario, our
EM algorithm has the highest number of zero-coefficients among noise variables, i.e.,
the lowest type I error. The average number of signal variables missed by EM is slightly
higher than SCAD1 (where the tuning parameter is chosen by cross-validation) but
lower than SCAD2 (where the tuning parameter is pre-fixed). But overall, our EM al-
gorithm and the two SCAD methods perform the best. In the second “large sample-size
low noise” scenario, no signal variables are missed by any method, but EM has the
lowest type I error.

Method xj ∈ Noise
(j = 3, 4, 6, 7, 8)

xj ∈ Signal
(j = 1, 2, 5)

n = 40, σ = 3
EM 4.55 0.24
SCAD1 4.20 0.21
SCAD2 4.31 0.27
LASSO 3.53 0.07
Oracle 5.00 0.00
n = 60, σ = 1
EM 4.72 0.00
SCAD1 4.37 0.00
SCAD2 4.42 0.00
LASSO 3.56 0.00
Oracle 5.00 0.00

Table 1: Performance on a widely used benchmark (n = 40, 60). The average number
of zero-coefficients (i.e., no selection) out of 100 simulations for each types of variable
(Signal or Noise) are shown. The results other than EM (Algorithm 1) are from Fan
and Li (2001).

Following Wang et al. (2011) and Xin and Zhu (2012), we repeat the experiment
100 times with the same sample size n = 50 but two different noise levels: low noise
level (σ = 3) and high noise level (σ = 6). Table 2 reports, for the signal and the noise
variables, respectively, the minimum, median, maximum of being selected out of 100
simulations. Both Lasso and random Lasso have a higher chance of selecting the signal
variables, but at the price of mistakenly including many noise variables. Overall, our EM
algorithm performs the best, along with PGA and stability selection, two frequentist
ensemble methods for variable selection.

5.2 Performance on a Highly-Correlated Data Set

Next we demonstrate our two algorithms on an example of highly-correlated variables
from Wang et al. (2011). The data set has p = 40 variables and the response y is
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Method xj ∈ Signal (j = 1, 2, 5) xj ∈ Noise (j = 3, 4, 6, 7, 8)
Min Median Max Min Median Max

n = 50, σ = 3
EM 91 97 100 3 6 12
Lasso 99 100 100 48 55 61
Random Lasso 95 99 100 33 40 48
ST2E 89 96 100 4 12 20
PGA 82 98 100 4 7 11
Stability selection

λmin = 1 81 83 100 0 2 9
λmin = 0.5 90 98 100 4 8 22

n = 50, σ = 6
EM 53 67 91 6 10 14
Lasso 76 85 99 47 49 53
Random Lasso 92 94 100 40 48 58
ST2E 68 69 96 9 13 21
PGA 54 76 94 9 14 16
Stability selection

λmin = 1 59 61 92 4 8 18
λmin = 0.5 76 84 100 30 42 50

Table 2: Performance on a widely used benchmark (n = 50). The min, median, max
number of being selected out of 100 simulations for each types of variable (Signal or
Noise) are shown. The results other than EM (Algorithm 1) are from Xin and Zhu
(2012).

generated from

y = 3x1 + 3x2 − 2x3 + 3x4 + 3x5 − 2x6 + ε,

where ε ∼ N(0, σ2) and σ = 6. Each xi is generated from a standard normal with the
following correlation structure among the first six signal variables: the signal variables
are divided into two groups, V1 = {x1,x2,x3} and V2 = {x4,x5,x6}; the within group
correlation is 0.9 and the between-group correlation is 0.

We repeat the simulation 100 times with n = 50 and n = 100, and summarize
the results in Table 3. For this example, due to the high correlation among features, we
expect ensemble methods to perform better. Indeed, BBEM has the best performance in
terms of selecting true signal variables while excluding noise variables. The performance
of EM algorithm, although not the best, is also comparable with other top ensemble
methods like random Lasso from Wang et al. (2011), and T2E and PGA from Xin and
Zhu (2012).

For illustration purpose, we apply BBEM on a data set with n = 50 and v0 varying
from 10−4 to 1. Figure 1 shows the path-plot of the selection frequency from BBEM.
There is clearly a gap between the signal variables and the noise ones. For a range of v0,
from 0.001 to 0.02, BBEM can successfully select the six true variables {x1,x2, . . . ,x6}
if we threshold the selection frequency φj at 0.5.
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Method xj ∈ Signal (j = 1 : 6) xj ∈ Noise
Min Median Max Min Median Max

n = 50, σ = 6
Lasso 11 70 77 12 17 25
Random Lasso 84 96 97 11 21 30
ST2E 85 96 100 18 25 34
PGA 55 87 90 14 23 32
EM 65 85.5 89 4 10 13
BBEM 89 96 100 4 8 15
n = 100, σ = 6
Lasso 8 84 88 12 22 31
Random Lasso 89 99 99 8 14 21
ST2E 93 100 100 14 21 27
PGA 40 85 92 13 22 33
EM 84 91 95 1 7 16
BBEM 95 99 100 4 9 14

Table 3: Performance on a highly-correlated data set. The min, median, max number of
times being selected (i.e., no selection) out of 100 simulations for each type of variables
(Signal and Noise) are shown. The results other than EM (Algorithm 1) and BBEM
(Algorithm 2) are from Xin and Zhu (2012).

5.3 Performance on a Large-p Small-n Example

Finally we apply BBEM to a large-p small-n example from Ročková and George (2014),
where p = 1000 and n = 100. Each of the p features is generated from a standard
normal with pairwise correlation to be 0.6|i−j| and the response y is generated from the
following linear model:

y = x1 + 2x2 + 3x3 + ε,

where ε ∼ N(0, 3).

For this large p example, we set the parameters in the BBEM algorithm as follows:
the initial value of θ is

√
n/p, the number of variables used in each bootstrap iteration

L = n/2 = 50 and the total number of replicates K = 100. It is well known that
cross-validation based on prediction accuracy tends to include more noise variables
(Bühlmann and van de Geer, 2011; Meinshausen, 2007; Wang et al., 2007). Following
Wang et al. (2007), we choose to tune v0 via BIC for this example where the true model
is known to be sparse. For illustration purpose, we also include BBEM with a fixed
tuning parameter v0 = 0.03 in the comparison group. We compare BBEM with the
EMVS algorithm from Ročková and George (2014), which is implemented by us using
the annealing technique for β’s initialization, and fixed v0 = 0.5, v1 = 1000 as suggested
in Ročková and George (2014).

Table 4 reports the average number of signal and noise variables being selected over
100 iterations for each method. BBEM with BIC tuning performs the best: it selects
2.99 signal variables out of 3 on average—only miss x1, the variable with the weakest
signal, once in all 100 iterations, and meanwhile has the smallest type I error. The
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Figure 1: Highly-correlated data (n = 50). A path-plot of the average selection frequency
when v0 varies in the logarithm scale of base 10. Top 6 lines represent the true variables
x1:6 and the bottom 3 lines represent the maximum, median and minimum among the
noise variables x7:40.

BBEM algorithm with a fixed tuning parameter has a similar result as EMVS but
is much faster. The computation advantage for BBEM comes from two aspects: the
computation trick that reduces the computation cost on matrix inversion, and the sub-
sampling step in Bayesian bootstrap that allows us to work with a subset of variables
of size smaller than p.

5.4 A Real Example

For TFI, a company that owns some of the world’s most well-known brands like Burger
King and Arby’s, decisions on where to open new restaurants are crucial. It usually takes
a big investment of both time and capital at the beginning to set up a new restaurant.
If a wrong location is chosen, likely the restaurant will soon be closed and all the initial
investment will be lost. TFI hosted a prediction competition on Kaggle,1 where the goal
is to build a mathematical model to predict the revenue of a restaurant based on a set

1https://www.kaggle.com/c/restaurant-revenue-prediction

https://www.kaggle.com/c/restaurant-revenue-prediction
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xj ∈ Signal xj ∈ Noise
BBEM (BIC) 2.99 0.24
BBEM (v0 = 0.03) 2.96 0.27
EMVS 2.97 0.29
Oracle 3 0

Table 4: Performance on a large-p small-n example. The table shows the average number
of signal and noise variables being selected out of 100 iterations. In BBEM (Algorithm 2),
v0 is either chosen by BIC or fixed at 0.03. EMVS is the algorithm proposed by Ročková
and George (2014).

of demographic, real estate, and commercial information. There are 137 restaurants in
the training data set and 1000 in the test data set. Features include the Open Date,
City, City Group, Restaurant Type, and three categories of obfuscated data (P1–P37,
numeric): demographic data, real estate data, and commercial data. The response is the
transformed restaurant revenue in a given year.

We first transform the “Open Date” to a numeric feature called “Year Since 1900”
and merge the “City” column into the “City Group” column, which now contains four
categories: Istanbul, Izmir, Ankara, and others (small cities). Then we create dummy
variables for the categorical features like “City Group” and “Restaurant Type”, and
keep all the obfuscated numeric columns P1–P37. The final training set has 43 features
and 137 samples.

After standardizing the data, we fix v1 at 100 and tune v0 from 10−4.5 to 10−0.5 for
the BBEM algorithm, where each bootstrap sample uses L = 15 variables, and the total
number of replicates is K = 300. The path-plot of selection frequency for important
features is shown in Figure 2. It is not surprising that “City Group”, “Years Since
1900” and “Restaurant Type” are important predictors for the revenue. Quite a few
obfuscated features are also selected as important predictors. Although we do not know
their meanings, they should provide valuable information for TFI to choose their next
restaurant’s location.

Since the evaluation metric for this specific competition is based on the rooted
mean square error (RMSE), we use the same metric in our 5-fold cross-validation. We
tuned v0 from the set {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01}, and found v0 =
0.002 has the smallest RMSE score. Then we fix v0 at 0.002, and re-run BBEM on the
whole training data. Let m denote the averaged posterior mean of β from L bootstrap
iterations, and γ the averaged selection frequency for p variables. We then use m ∗ γ
(where ∗ denotes element-wise product) for prediction in the same spirit as the Bayesian
model averaging. Our final Kaggle score is 1989762.52, which outperforms the random
forest benchmark (RMSE = 1998014.94) provided by Kaggle.2 It is remarkable for
BBEM to outperform random forest considering that BBEM does not use any nonlinear
features but random forest does.

2At Kaggle, each team can submit their prediction and see the corresponding performance on the
test data many times, so one can easily obtain a good score by keep tweaking the model to overfit the
test data. For this reason, we did not compare our result with those “low” scores on the leaderboard
provided by individual teams.
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Figure 2: Restaurant data. The path plot of selection frequency when v0 varies in the
logarithm scale of base 10. Only a subset of variables with high selection frequencies are
displayed.

6 Further Discussion

Variable selection is an important problem in modern statistics. In this paper, we study
the Bayesian approach to variable selection in the context of multiple linear regression.
We proposed an EM algorithm that returns the MAP estimator of the set of relevant
variables. The algorithm can be operated very efficiently and therefore can scale up with
big data. In addition, we have shown that the MAP estimator from our EM algorithm
provides a consistent estimator of the true variable set even when the model dimension
diverges with the sample size.

Further, we propose an ensemble version of our EM algorithm based on Bayesian
bootstrap, which, as demonstrated via real and simulated examples, substantially in-
creases accuracy while maintaining computation efficiency. A further investigation is
needed for our ensemble EM algorithm to address questions like the optimal choice of
bootstrap parameters and variable selection consistency after resampling.

Although we restrict our discussion for the linear model, the two algorithm we
proposed can be easily extended to other generalized linear models by using latent
variables (Polson and Scott, 2013), another interesting topic for future research.
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7 Proofs

7.1 Proof of Theorem 3.1

Proof. Recall the EM algorithm returns

γ̂nj = 1, if Eβn|Θ(t),y

[
β2
nj

]
> rn,

where the threshold

rn =
σ̂2
n

1/v0 − 1/v1

(
log

v1
v0

− 2 log
θ̂n

1− θ̂n

)
= O(n−r0 logn)

and the conditional second moment of βnj is equal to m2
j + σ̂2

nVjj with

m = (XT
nXn +D−1)−1XT

n (Xnβ
∗
n + en)

= β∗
n − (XT

nXn +D−1)−1D−1β∗
n + (XT

nXn +D−1)−1XT
nen

= β∗
n − bn +Wn,

V = (XT
nXn +D−1)−1, D−1 = diag

(
1− γ̂nj

v0
+

γ̂nj
v1

)
.

Here we represent the posterior mean of βn as three separate terms: the true coefficient
vector β∗

n, the bias term bn and the random error term Wn. The event {γ̂n = γ∗
n} is

equivalent to {
min

j:γ∗
nj=1

m2
j + σ̂2

nVjj > rn

}
∩

{
max

j:γ∗
nj=0

m2
j + σ̂2

nVjj < rn

}
. (7.1)

Throughout the proof, for two sequences {an} and {bn}, we write an ≺ bn if an/bn →
0. For a matrix A, denote the matrix L∞ norm by ‖A‖∞ which is equal to the maximum
absolute row sum of A, and denote the matrix L2 norm by ‖A‖2 which is equal to its
largest eigenvalue (singular value) when A is symmetric (non-symmetric). For a vector
v, denote its L2 norm by ‖v‖2, and max norm by ‖v‖∞ = maxj |vj |.

First we prove the following results that quantify m2
j and Vjj .

(R1) Vjj is upper bounded by the largest eigenvalue of V,

Vjj ≤
1

λn1 + 1/v1
= O(n−η1) ≺ O(n−r0 logn) = rn. (7.2)

(R2) The bias term bn is bounded by

‖bn‖∞ ≤ ‖bn‖2 ≤ ‖(XT
nXn +D−1)−1‖2 · ‖D−1β∗

n‖2

≤ 1/v0
λn1 + 1/v1

‖β∗
n‖2 = O(nr0−η1+η2). (7.3)

When r0 < 2(η1 − η2)/3, maxj |bnj |2 ≺ O(n−r0 logn) = rn.
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(R3) Note that Wn is not a Gaussian random vector due to the dependence between
D and en, but it can be rewritten as

Wn = (XT
nXn +D−1)−1(XT

nXn)(X
T
nXn)

−1XT
nen = AW̃n,

where A =
(
XT

nXn +D−1
)−1 (

XT
nXn

)
and W̃n = (XT

nXn)
−1XT

nen. Since A is a
matrix with norm bounded by 1, we have

‖Wn‖∞ ≤ ‖A‖∞‖W̃n‖∞ ≤ √
p‖A‖2‖W̃n‖∞ ≤ √

p‖W̃n‖∞. (7.4)

(R4) W̃n =(XT
nXn)

−1XT
nen is a Gaussian random vector with covariance σ2(XT

nXn)
−1

and mean 0. So the variance for Wnj is upper bounded by σ2λ−1
n1 . Recall the tail

bound for Gaussian variables: for any Z ∼ N(0, τ2),

P(|Z| > t) = P(|Z|/τ > t/τ) ≤ τ

t
e−

t2

2τ2 .

With Result (R3) and the Bonferroni’s inequality, we can find a constant M > 0
such that

P(max
j

|Wnj | >
√
rn) ≤ P(max

j
|W̃nj | >

√
rn/p)

≤ p · P(|W̃nj | >
√

rn/p)

≤ p
√
pσ√

rnλn1

e
− rnλn1

2pσ2 = O
(
e−Mnη1−r0−α)

,

which goes to 0 when r0 < η1 − α. So with probability going to 1, maxj |Wnj | is
upper bounded by

√
rn.

(R5) When 1− η3 < r0, minj:γ∗
j =1 |β∗

nj |2 ∼ nη3−1 � O(n−r0 logn) = rn.

Now we prove (7.1). Given 1− η3 < r0 < min{η1 − α, 2(η1 − η2)/3}, we have

P

(
max

j:γ∗
nj=0

(m2
j + σ̂2

nVjj) > rn

)
≤ P

((
max

j
|bnj |+max

j
|Wnj |

)2
+ σ̂2

n max
j

Vjj > rn

)

≤ P

(
max

j
|Wnj | >

√
rn

)
= O

(
e−Mnη1−r0−α)

,

P

(
min

j:γ∗
nj=1

(m2
j + σ̂2

nVjj) < rn

)
≤ P

(
min

j:γ∗
nj=1

|β∗
nj |2 −

(
max

j
|bnj |+max

j
|Wnj |

)2
< rn

)

≤ P

(
max

j
|Wnj | >

√
rn

)
= O

(
e−Mnη1−r0−α)

.

So (7.1) holds with probability 1−O(e−Mnη1−r0−α

) → 1.
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7.2 Selection Consistency when p � n

Our proof for Theorem 3.1 can be easily extended to cover the case when p grows
exponentially with n. However, when p > n, the coefficient vector β∗

n is typically not
identifiable. For more discussions on identifiability under deterministic designs, see Shao
and Deng (2012).

In order to discuss selection consistency, we first need to impose some identifiability
condition. Let Q be a p × r matrix with columns being a set of orthonormal basis
of R, the subspace spanned by rows of Xn, where r ≤ n denotes the rank of Xn.
Let Q⊥ be a p × (p − r) matrix with columns being a set of orthonormal basis of
R⊥, the orthogonal complement of R. There are infinitely many p-dimensional vectors
β satisfying Xnβ = Xnβ

∗
n; we can only identify their projections onto R, which are

uniquely determined, but not their projections onto R⊥. We assume that the projection
of the sparse true coefficient vector β∗

n onto R⊥ is of a small magnitude:

‖β∗
n −QQTβ∗

n‖∞ = ‖Q⊥Q
T
⊥β

∗
n‖∞ = o(n−r0 logn). (7.5)

Note that this condition (7.5) is satisfied automatically when βn is in the row span of the
design matrix Xn or when Xn is of full rank as in Theorem 3.1, while the Irrepresentable
Condition could be violated even when Xn is of full rank. Similar conditions are used
in Shao and Deng (2012) and Zhang et al. (2008).

The other conditions, (A1)–(A5), in Section 3 are almost the same, except that (i)
λn1 in (A1) now denotes the smallest non-zero eigenvalue of XT

nXn since the smallest
eigenvalue of XT

nXn is zero, and (ii) in (A5), α is no longer needed or equivalently
α = 0, and log p = O(nη1−r0).

To achieve selection consistency when p >> n, we need another condition that is
not needed for Theorem 3.1: the EM algorithm must start with all variables being
excluded, i.e., γ(0) is an all zero vector. Then we have D−1 = 1

v0
Ip being a constant

diagonal matrix.

Now, we are ready to prove selection consistency when p � n. The proof is similar
to the one in Section 7.1 with the following changes:

(R1) the new bound for Vjj is given by

Vjj ≤
1

0 + 1/v0
= O(n−r0) ≺ O(n−r0 logn) = rn. (7.6)

(R2) We now bound maxj |bnj | as follows.

‖bn‖∞ =
1

v0
‖(XT

nXn +
1

v0
I)−1β∗

n‖∞

≤ 1

v0
‖(XT

nXn +
1

v0
I)−1QQTβ∗

n‖∞ +
1

v0
‖(XT

nXn +
1

v0
I)−1Q⊥Q

T
⊥β

∗
n‖∞

≤ 1

v0
‖(XT

nXn +
1

v0
I)−1QQTβ∗

n‖2 + ‖Q⊥Q
T
⊥β

∗
n‖∞
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≤ 1/v0
λn1 + 1/v0

‖β∗
n‖2 + o(n−r0 logn) ≺ O(n−r0 logn) = rn.

(R3) Wn now is a Gaussian random vector since D is a constant matrix. So we no
longer need W̃n, and consequently can ignore the

√
p factor from (7.4) in our

later proof.

(R4) Wn = (XT
nXn + 1

v0
I)−1XT

nen is a Gaussian random vector with maximum vari-

ance upper bounded by σ2λ−1
n1 . Applying the union bound, we have

P(max
j

|Wnj | >
√
rn) ≤ p · P(|Wnj | >

√
rn)

≤ p

√
σ2

rnλn1
e−

rnλn1
2σ2 = O

(
e−Mnη1−r0+log p

)
which goes to 0 when log p = o(nη1−r0).

Combining all the results, we can conclude that our EM algorithm can achieve
selection consistency even when log p = O(nη1−r0).
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